1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40     : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // First, check if tail calls have been disabled in this function.
57   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
58     return false;
59 
60   // Conservatively require the attributes of the call to match those of
61   // the return. Ignore following attributes because they don't affect the
62   // call sequence.
63   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
64   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
65                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
66                            Attribute::NonNull})
67     CallerAttrs.removeAttribute(Attr);
68 
69   if (CallerAttrs.hasAttributes())
70     return false;
71 
72   // It's not safe to eliminate the sign / zero extension of the return value.
73   if (CallerAttrs.contains(Attribute::ZExt) ||
74       CallerAttrs.contains(Attribute::SExt))
75     return false;
76 
77   // Check if the only use is a function return node.
78   return isUsedByReturnOnly(Node, Chain);
79 }
80 
81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
82     const uint32_t *CallerPreservedMask,
83     const SmallVectorImpl<CCValAssign> &ArgLocs,
84     const SmallVectorImpl<SDValue> &OutVals) const {
85   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
86     const CCValAssign &ArgLoc = ArgLocs[I];
87     if (!ArgLoc.isRegLoc())
88       continue;
89     MCRegister Reg = ArgLoc.getLocReg();
90     // Only look at callee saved registers.
91     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
92       continue;
93     // Check that we pass the value used for the caller.
94     // (We look for a CopyFromReg reading a virtual register that is used
95     //  for the function live-in value of register Reg)
96     SDValue Value = OutVals[I];
97     if (Value->getOpcode() != ISD::CopyFromReg)
98       return false;
99     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
100     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
101       return false;
102   }
103   return true;
104 }
105 
106 /// Set CallLoweringInfo attribute flags based on a call instruction
107 /// and called function attributes.
108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
109                                                      unsigned ArgIdx) {
110   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
111   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
112   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
113   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
114   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
115   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
116   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
117   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
118   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
119   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
120   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
121   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
122   Alignment = Call->getParamStackAlign(ArgIdx);
123   IndirectType = nullptr;
124   assert(IsByVal + IsPreallocated + IsInAlloca <= 1 &&
125          "multiple ABI attributes?");
126   if (IsByVal) {
127     IndirectType = Call->getParamByValType(ArgIdx);
128     if (!Alignment)
129       Alignment = Call->getParamAlign(ArgIdx);
130   }
131   if (IsPreallocated)
132     IndirectType = Call->getParamPreallocatedType(ArgIdx);
133   if (IsInAlloca)
134     IndirectType = Call->getParamInAllocaType(ArgIdx);
135 }
136 
137 /// Generate a libcall taking the given operands as arguments and returning a
138 /// result of type RetVT.
139 std::pair<SDValue, SDValue>
140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
141                             ArrayRef<SDValue> Ops,
142                             MakeLibCallOptions CallOptions,
143                             const SDLoc &dl,
144                             SDValue InChain) const {
145   if (!InChain)
146     InChain = DAG.getEntryNode();
147 
148   TargetLowering::ArgListTy Args;
149   Args.reserve(Ops.size());
150 
151   TargetLowering::ArgListEntry Entry;
152   for (unsigned i = 0; i < Ops.size(); ++i) {
153     SDValue NewOp = Ops[i];
154     Entry.Node = NewOp;
155     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
156     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
157                                                  CallOptions.IsSExt);
158     Entry.IsZExt = !Entry.IsSExt;
159 
160     if (CallOptions.IsSoften &&
161         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
162       Entry.IsSExt = Entry.IsZExt = false;
163     }
164     Args.push_back(Entry);
165   }
166 
167   if (LC == RTLIB::UNKNOWN_LIBCALL)
168     report_fatal_error("Unsupported library call operation!");
169   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
170                                          getPointerTy(DAG.getDataLayout()));
171 
172   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
173   TargetLowering::CallLoweringInfo CLI(DAG);
174   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
175   bool zeroExtend = !signExtend;
176 
177   if (CallOptions.IsSoften &&
178       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
179     signExtend = zeroExtend = false;
180   }
181 
182   CLI.setDebugLoc(dl)
183       .setChain(InChain)
184       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
185       .setNoReturn(CallOptions.DoesNotReturn)
186       .setDiscardResult(!CallOptions.IsReturnValueUsed)
187       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
188       .setSExtResult(signExtend)
189       .setZExtResult(zeroExtend);
190   return LowerCallTo(CLI);
191 }
192 
193 bool TargetLowering::findOptimalMemOpLowering(
194     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
195     unsigned SrcAS, const AttributeList &FuncAttributes) const {
196   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
197     return false;
198 
199   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
200 
201   if (VT == MVT::Other) {
202     // Use the largest integer type whose alignment constraints are satisfied.
203     // We only need to check DstAlign here as SrcAlign is always greater or
204     // equal to DstAlign (or zero).
205     VT = MVT::i64;
206     if (Op.isFixedDstAlign())
207       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
208              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
209         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
210     assert(VT.isInteger());
211 
212     // Find the largest legal integer type.
213     MVT LVT = MVT::i64;
214     while (!isTypeLegal(LVT))
215       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
216     assert(LVT.isInteger());
217 
218     // If the type we've chosen is larger than the largest legal integer type
219     // then use that instead.
220     if (VT.bitsGT(LVT))
221       VT = LVT;
222   }
223 
224   unsigned NumMemOps = 0;
225   uint64_t Size = Op.size();
226   while (Size) {
227     unsigned VTSize = VT.getSizeInBits() / 8;
228     while (VTSize > Size) {
229       // For now, only use non-vector load / store's for the left-over pieces.
230       EVT NewVT = VT;
231       unsigned NewVTSize;
232 
233       bool Found = false;
234       if (VT.isVector() || VT.isFloatingPoint()) {
235         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
236         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
237             isSafeMemOpType(NewVT.getSimpleVT()))
238           Found = true;
239         else if (NewVT == MVT::i64 &&
240                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
241                  isSafeMemOpType(MVT::f64)) {
242           // i64 is usually not legal on 32-bit targets, but f64 may be.
243           NewVT = MVT::f64;
244           Found = true;
245         }
246       }
247 
248       if (!Found) {
249         do {
250           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
251           if (NewVT == MVT::i8)
252             break;
253         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
254       }
255       NewVTSize = NewVT.getSizeInBits() / 8;
256 
257       // If the new VT cannot cover all of the remaining bits, then consider
258       // issuing a (or a pair of) unaligned and overlapping load / store.
259       bool Fast;
260       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
261           allowsMisalignedMemoryAccesses(
262               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
263               MachineMemOperand::MONone, &Fast) &&
264           Fast)
265         VTSize = Size;
266       else {
267         VT = NewVT;
268         VTSize = NewVTSize;
269       }
270     }
271 
272     if (++NumMemOps > Limit)
273       return false;
274 
275     MemOps.push_back(VT);
276     Size -= VTSize;
277   }
278 
279   return true;
280 }
281 
282 /// Soften the operands of a comparison. This code is shared among BR_CC,
283 /// SELECT_CC, and SETCC handlers.
284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
285                                          SDValue &NewLHS, SDValue &NewRHS,
286                                          ISD::CondCode &CCCode,
287                                          const SDLoc &dl, const SDValue OldLHS,
288                                          const SDValue OldRHS) const {
289   SDValue Chain;
290   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
291                              OldRHS, Chain);
292 }
293 
294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
295                                          SDValue &NewLHS, SDValue &NewRHS,
296                                          ISD::CondCode &CCCode,
297                                          const SDLoc &dl, const SDValue OldLHS,
298                                          const SDValue OldRHS,
299                                          SDValue &Chain,
300                                          bool IsSignaling) const {
301   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
302   // not supporting it. We can update this code when libgcc provides such
303   // functions.
304 
305   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
306          && "Unsupported setcc type!");
307 
308   // Expand into one or more soft-fp libcall(s).
309   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
310   bool ShouldInvertCC = false;
311   switch (CCCode) {
312   case ISD::SETEQ:
313   case ISD::SETOEQ:
314     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
315           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
316           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
317     break;
318   case ISD::SETNE:
319   case ISD::SETUNE:
320     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
321           (VT == MVT::f64) ? RTLIB::UNE_F64 :
322           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
323     break;
324   case ISD::SETGE:
325   case ISD::SETOGE:
326     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
327           (VT == MVT::f64) ? RTLIB::OGE_F64 :
328           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
329     break;
330   case ISD::SETLT:
331   case ISD::SETOLT:
332     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
333           (VT == MVT::f64) ? RTLIB::OLT_F64 :
334           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
335     break;
336   case ISD::SETLE:
337   case ISD::SETOLE:
338     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
339           (VT == MVT::f64) ? RTLIB::OLE_F64 :
340           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
341     break;
342   case ISD::SETGT:
343   case ISD::SETOGT:
344     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
345           (VT == MVT::f64) ? RTLIB::OGT_F64 :
346           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
347     break;
348   case ISD::SETO:
349     ShouldInvertCC = true;
350     LLVM_FALLTHROUGH;
351   case ISD::SETUO:
352     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
353           (VT == MVT::f64) ? RTLIB::UO_F64 :
354           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
355     break;
356   case ISD::SETONE:
357     // SETONE = O && UNE
358     ShouldInvertCC = true;
359     LLVM_FALLTHROUGH;
360   case ISD::SETUEQ:
361     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
362           (VT == MVT::f64) ? RTLIB::UO_F64 :
363           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
364     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
365           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
366           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
367     break;
368   default:
369     // Invert CC for unordered comparisons
370     ShouldInvertCC = true;
371     switch (CCCode) {
372     case ISD::SETULT:
373       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
374             (VT == MVT::f64) ? RTLIB::OGE_F64 :
375             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
376       break;
377     case ISD::SETULE:
378       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
379             (VT == MVT::f64) ? RTLIB::OGT_F64 :
380             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
381       break;
382     case ISD::SETUGT:
383       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
384             (VT == MVT::f64) ? RTLIB::OLE_F64 :
385             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
386       break;
387     case ISD::SETUGE:
388       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
389             (VT == MVT::f64) ? RTLIB::OLT_F64 :
390             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
391       break;
392     default: llvm_unreachable("Do not know how to soften this setcc!");
393     }
394   }
395 
396   // Use the target specific return value for comparions lib calls.
397   EVT RetVT = getCmpLibcallReturnType();
398   SDValue Ops[2] = {NewLHS, NewRHS};
399   TargetLowering::MakeLibCallOptions CallOptions;
400   EVT OpsVT[2] = { OldLHS.getValueType(),
401                    OldRHS.getValueType() };
402   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
403   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
404   NewLHS = Call.first;
405   NewRHS = DAG.getConstant(0, dl, RetVT);
406 
407   CCCode = getCmpLibcallCC(LC1);
408   if (ShouldInvertCC) {
409     assert(RetVT.isInteger());
410     CCCode = getSetCCInverse(CCCode, RetVT);
411   }
412 
413   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
414     // Update Chain.
415     Chain = Call.second;
416   } else {
417     EVT SetCCVT =
418         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
419     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
420     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
421     CCCode = getCmpLibcallCC(LC2);
422     if (ShouldInvertCC)
423       CCCode = getSetCCInverse(CCCode, RetVT);
424     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
425     if (Chain)
426       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
427                           Call2.second);
428     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
429                          Tmp.getValueType(), Tmp, NewLHS);
430     NewRHS = SDValue();
431   }
432 }
433 
434 /// Return the entry encoding for a jump table in the current function. The
435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
436 unsigned TargetLowering::getJumpTableEncoding() const {
437   // In non-pic modes, just use the address of a block.
438   if (!isPositionIndependent())
439     return MachineJumpTableInfo::EK_BlockAddress;
440 
441   // In PIC mode, if the target supports a GPRel32 directive, use it.
442   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
443     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
444 
445   // Otherwise, use a label difference.
446   return MachineJumpTableInfo::EK_LabelDifference32;
447 }
448 
449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
450                                                  SelectionDAG &DAG) const {
451   // If our PIC model is GP relative, use the global offset table as the base.
452   unsigned JTEncoding = getJumpTableEncoding();
453 
454   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
455       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
456     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
457 
458   return Table;
459 }
460 
461 /// This returns the relocation base for the given PIC jumptable, the same as
462 /// getPICJumpTableRelocBase, but as an MCExpr.
463 const MCExpr *
464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
465                                              unsigned JTI,MCContext &Ctx) const{
466   // The normal PIC reloc base is the label at the start of the jump table.
467   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
468 }
469 
470 bool
471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
472   const TargetMachine &TM = getTargetMachine();
473   const GlobalValue *GV = GA->getGlobal();
474 
475   // If the address is not even local to this DSO we will have to load it from
476   // a got and then add the offset.
477   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
478     return false;
479 
480   // If the code is position independent we will have to add a base register.
481   if (isPositionIndependent())
482     return false;
483 
484   // Otherwise we can do it.
485   return true;
486 }
487 
488 //===----------------------------------------------------------------------===//
489 //  Optimization Methods
490 //===----------------------------------------------------------------------===//
491 
492 /// If the specified instruction has a constant integer operand and there are
493 /// bits set in that constant that are not demanded, then clear those bits and
494 /// return true.
495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
496                                             const APInt &DemandedBits,
497                                             const APInt &DemandedElts,
498                                             TargetLoweringOpt &TLO) const {
499   SDLoc DL(Op);
500   unsigned Opcode = Op.getOpcode();
501 
502   // Do target-specific constant optimization.
503   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
504     return TLO.New.getNode();
505 
506   // FIXME: ISD::SELECT, ISD::SELECT_CC
507   switch (Opcode) {
508   default:
509     break;
510   case ISD::XOR:
511   case ISD::AND:
512   case ISD::OR: {
513     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
514     if (!Op1C || Op1C->isOpaque())
515       return false;
516 
517     // If this is a 'not' op, don't touch it because that's a canonical form.
518     const APInt &C = Op1C->getAPIntValue();
519     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
520       return false;
521 
522     if (!C.isSubsetOf(DemandedBits)) {
523       EVT VT = Op.getValueType();
524       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
525       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
526       return TLO.CombineTo(Op, NewOp);
527     }
528 
529     break;
530   }
531   }
532 
533   return false;
534 }
535 
536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
537                                             const APInt &DemandedBits,
538                                             TargetLoweringOpt &TLO) const {
539   EVT VT = Op.getValueType();
540   APInt DemandedElts = VT.isVector()
541                            ? APInt::getAllOnes(VT.getVectorNumElements())
542                            : APInt(1, 1);
543   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
544 }
545 
546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
548 /// generalized for targets with other types of implicit widening casts.
549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
550                                       const APInt &Demanded,
551                                       TargetLoweringOpt &TLO) const {
552   assert(Op.getNumOperands() == 2 &&
553          "ShrinkDemandedOp only supports binary operators!");
554   assert(Op.getNode()->getNumValues() == 1 &&
555          "ShrinkDemandedOp only supports nodes with one result!");
556 
557   SelectionDAG &DAG = TLO.DAG;
558   SDLoc dl(Op);
559 
560   // Early return, as this function cannot handle vector types.
561   if (Op.getValueType().isVector())
562     return false;
563 
564   // Don't do this if the node has another user, which may require the
565   // full value.
566   if (!Op.getNode()->hasOneUse())
567     return false;
568 
569   // Search for the smallest integer type with free casts to and from
570   // Op's type. For expedience, just check power-of-2 integer types.
571   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
572   unsigned DemandedSize = Demanded.getActiveBits();
573   unsigned SmallVTBits = DemandedSize;
574   if (!isPowerOf2_32(SmallVTBits))
575     SmallVTBits = NextPowerOf2(SmallVTBits);
576   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
577     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
578     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
579         TLI.isZExtFree(SmallVT, Op.getValueType())) {
580       // We found a type with free casts.
581       SDValue X = DAG.getNode(
582           Op.getOpcode(), dl, SmallVT,
583           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
584           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
585       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
586       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
587       return TLO.CombineTo(Op, Z);
588     }
589   }
590   return false;
591 }
592 
593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
594                                           DAGCombinerInfo &DCI) const {
595   SelectionDAG &DAG = DCI.DAG;
596   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
597                         !DCI.isBeforeLegalizeOps());
598   KnownBits Known;
599 
600   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
601   if (Simplified) {
602     DCI.AddToWorklist(Op.getNode());
603     DCI.CommitTargetLoweringOpt(TLO);
604   }
605   return Simplified;
606 }
607 
608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
609                                           KnownBits &Known,
610                                           TargetLoweringOpt &TLO,
611                                           unsigned Depth,
612                                           bool AssumeSingleUse) const {
613   EVT VT = Op.getValueType();
614 
615   // TODO: We can probably do more work on calculating the known bits and
616   // simplifying the operations for scalable vectors, but for now we just
617   // bail out.
618   if (VT.isScalableVector()) {
619     // Pretend we don't know anything for now.
620     Known = KnownBits(DemandedBits.getBitWidth());
621     return false;
622   }
623 
624   APInt DemandedElts = VT.isVector()
625                            ? APInt::getAllOnes(VT.getVectorNumElements())
626                            : APInt(1, 1);
627   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
628                               AssumeSingleUse);
629 }
630 
631 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
632 // TODO: Under what circumstances can we create nodes? Constant folding?
633 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
634     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
635     SelectionDAG &DAG, unsigned Depth) const {
636   // Limit search depth.
637   if (Depth >= SelectionDAG::MaxRecursionDepth)
638     return SDValue();
639 
640   // Ignore UNDEFs.
641   if (Op.isUndef())
642     return SDValue();
643 
644   // Not demanding any bits/elts from Op.
645   if (DemandedBits == 0 || DemandedElts == 0)
646     return DAG.getUNDEF(Op.getValueType());
647 
648   bool IsLE = DAG.getDataLayout().isLittleEndian();
649   unsigned NumElts = DemandedElts.getBitWidth();
650   unsigned BitWidth = DemandedBits.getBitWidth();
651   KnownBits LHSKnown, RHSKnown;
652   switch (Op.getOpcode()) {
653   case ISD::BITCAST: {
654     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
655     EVT SrcVT = Src.getValueType();
656     EVT DstVT = Op.getValueType();
657     if (SrcVT == DstVT)
658       return Src;
659 
660     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
661     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
662     if (NumSrcEltBits == NumDstEltBits)
663       if (SDValue V = SimplifyMultipleUseDemandedBits(
664               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
665         return DAG.getBitcast(DstVT, V);
666 
667     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
668       unsigned Scale = NumDstEltBits / NumSrcEltBits;
669       unsigned NumSrcElts = SrcVT.getVectorNumElements();
670       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
671       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
672       for (unsigned i = 0; i != Scale; ++i) {
673         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
674         unsigned BitOffset = EltOffset * NumSrcEltBits;
675         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
676         if (!Sub.isZero()) {
677           DemandedSrcBits |= Sub;
678           for (unsigned j = 0; j != NumElts; ++j)
679             if (DemandedElts[j])
680               DemandedSrcElts.setBit((j * Scale) + i);
681         }
682       }
683 
684       if (SDValue V = SimplifyMultipleUseDemandedBits(
685               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
686         return DAG.getBitcast(DstVT, V);
687     }
688 
689     // TODO - bigendian once we have test coverage.
690     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
691       unsigned Scale = NumSrcEltBits / NumDstEltBits;
692       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
693       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
694       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
695       for (unsigned i = 0; i != NumElts; ++i)
696         if (DemandedElts[i]) {
697           unsigned Offset = (i % Scale) * NumDstEltBits;
698           DemandedSrcBits.insertBits(DemandedBits, Offset);
699           DemandedSrcElts.setBit(i / Scale);
700         }
701 
702       if (SDValue V = SimplifyMultipleUseDemandedBits(
703               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
704         return DAG.getBitcast(DstVT, V);
705     }
706 
707     break;
708   }
709   case ISD::AND: {
710     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
711     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
712 
713     // If all of the demanded bits are known 1 on one side, return the other.
714     // These bits cannot contribute to the result of the 'and' in this
715     // context.
716     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
717       return Op.getOperand(0);
718     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
719       return Op.getOperand(1);
720     break;
721   }
722   case ISD::OR: {
723     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
724     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
725 
726     // If all of the demanded bits are known zero on one side, return the
727     // other.  These bits cannot contribute to the result of the 'or' in this
728     // context.
729     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
730       return Op.getOperand(0);
731     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
732       return Op.getOperand(1);
733     break;
734   }
735   case ISD::XOR: {
736     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
737     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
738 
739     // If all of the demanded bits are known zero on one side, return the
740     // other.
741     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
742       return Op.getOperand(0);
743     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
744       return Op.getOperand(1);
745     break;
746   }
747   case ISD::SHL: {
748     // If we are only demanding sign bits then we can use the shift source
749     // directly.
750     if (const APInt *MaxSA =
751             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
752       SDValue Op0 = Op.getOperand(0);
753       unsigned ShAmt = MaxSA->getZExtValue();
754       unsigned NumSignBits =
755           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
756       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
757       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
758         return Op0;
759     }
760     break;
761   }
762   case ISD::SETCC: {
763     SDValue Op0 = Op.getOperand(0);
764     SDValue Op1 = Op.getOperand(1);
765     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
766     // If (1) we only need the sign-bit, (2) the setcc operands are the same
767     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
768     // -1, we may be able to bypass the setcc.
769     if (DemandedBits.isSignMask() &&
770         Op0.getScalarValueSizeInBits() == BitWidth &&
771         getBooleanContents(Op0.getValueType()) ==
772             BooleanContent::ZeroOrNegativeOneBooleanContent) {
773       // If we're testing X < 0, then this compare isn't needed - just use X!
774       // FIXME: We're limiting to integer types here, but this should also work
775       // if we don't care about FP signed-zero. The use of SETLT with FP means
776       // that we don't care about NaNs.
777       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
778           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SIGN_EXTEND_INREG: {
784     // If none of the extended bits are demanded, eliminate the sextinreg.
785     SDValue Op0 = Op.getOperand(0);
786     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
787     unsigned ExBits = ExVT.getScalarSizeInBits();
788     if (DemandedBits.getActiveBits() <= ExBits)
789       return Op0;
790     // If the input is already sign extended, just drop the extension.
791     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
792     if (NumSignBits >= (BitWidth - ExBits + 1))
793       return Op0;
794     break;
795   }
796   case ISD::ANY_EXTEND_VECTOR_INREG:
797   case ISD::SIGN_EXTEND_VECTOR_INREG:
798   case ISD::ZERO_EXTEND_VECTOR_INREG: {
799     // If we only want the lowest element and none of extended bits, then we can
800     // return the bitcasted source vector.
801     SDValue Src = Op.getOperand(0);
802     EVT SrcVT = Src.getValueType();
803     EVT DstVT = Op.getValueType();
804     if (IsLE && DemandedElts == 1 &&
805         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
806         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
807       return DAG.getBitcast(DstVT, Src);
808     }
809     break;
810   }
811   case ISD::INSERT_VECTOR_ELT: {
812     // If we don't demand the inserted element, return the base vector.
813     SDValue Vec = Op.getOperand(0);
814     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
815     EVT VecVT = Vec.getValueType();
816     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
817         !DemandedElts[CIdx->getZExtValue()])
818       return Vec;
819     break;
820   }
821   case ISD::INSERT_SUBVECTOR: {
822     SDValue Vec = Op.getOperand(0);
823     SDValue Sub = Op.getOperand(1);
824     uint64_t Idx = Op.getConstantOperandVal(2);
825     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
826     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
827     // If we don't demand the inserted subvector, return the base vector.
828     if (DemandedSubElts == 0)
829       return Vec;
830     // If this simply widens the lowest subvector, see if we can do it earlier.
831     if (Idx == 0 && Vec.isUndef()) {
832       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
833               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
834         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
835                            Op.getOperand(0), NewSub, Op.getOperand(2));
836     }
837     break;
838   }
839   case ISD::VECTOR_SHUFFLE: {
840     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
841 
842     // If all the demanded elts are from one operand and are inline,
843     // then we can use the operand directly.
844     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
845     for (unsigned i = 0; i != NumElts; ++i) {
846       int M = ShuffleMask[i];
847       if (M < 0 || !DemandedElts[i])
848         continue;
849       AllUndef = false;
850       IdentityLHS &= (M == (int)i);
851       IdentityRHS &= ((M - NumElts) == i);
852     }
853 
854     if (AllUndef)
855       return DAG.getUNDEF(Op.getValueType());
856     if (IdentityLHS)
857       return Op.getOperand(0);
858     if (IdentityRHS)
859       return Op.getOperand(1);
860     break;
861   }
862   default:
863     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
864       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
865               Op, DemandedBits, DemandedElts, DAG, Depth))
866         return V;
867     break;
868   }
869   return SDValue();
870 }
871 
872 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
873     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
874     unsigned Depth) const {
875   EVT VT = Op.getValueType();
876   APInt DemandedElts = VT.isVector()
877                            ? APInt::getAllOnes(VT.getVectorNumElements())
878                            : APInt(1, 1);
879   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
880                                          Depth);
881 }
882 
883 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
884     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
885     unsigned Depth) const {
886   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
887   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
888                                          Depth);
889 }
890 
891 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
892 /// result of Op are ever used downstream. If we can use this information to
893 /// simplify Op, create a new simplified DAG node and return true, returning the
894 /// original and new nodes in Old and New. Otherwise, analyze the expression and
895 /// return a mask of Known bits for the expression (used to simplify the
896 /// caller).  The Known bits may only be accurate for those bits in the
897 /// OriginalDemandedBits and OriginalDemandedElts.
898 bool TargetLowering::SimplifyDemandedBits(
899     SDValue Op, const APInt &OriginalDemandedBits,
900     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
901     unsigned Depth, bool AssumeSingleUse) const {
902   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
903   assert(Op.getScalarValueSizeInBits() == BitWidth &&
904          "Mask size mismatches value type size!");
905 
906   // Don't know anything.
907   Known = KnownBits(BitWidth);
908 
909   // TODO: We can probably do more work on calculating the known bits and
910   // simplifying the operations for scalable vectors, but for now we just
911   // bail out.
912   if (Op.getValueType().isScalableVector())
913     return false;
914 
915   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
916   unsigned NumElts = OriginalDemandedElts.getBitWidth();
917   assert((!Op.getValueType().isVector() ||
918           NumElts == Op.getValueType().getVectorNumElements()) &&
919          "Unexpected vector size");
920 
921   APInt DemandedBits = OriginalDemandedBits;
922   APInt DemandedElts = OriginalDemandedElts;
923   SDLoc dl(Op);
924   auto &DL = TLO.DAG.getDataLayout();
925 
926   // Undef operand.
927   if (Op.isUndef())
928     return false;
929 
930   if (Op.getOpcode() == ISD::Constant) {
931     // We know all of the bits for a constant!
932     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
933     return false;
934   }
935 
936   if (Op.getOpcode() == ISD::ConstantFP) {
937     // We know all of the bits for a floating point constant!
938     Known = KnownBits::makeConstant(
939         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
940     return false;
941   }
942 
943   // Other users may use these bits.
944   EVT VT = Op.getValueType();
945   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
946     if (Depth != 0) {
947       // If not at the root, Just compute the Known bits to
948       // simplify things downstream.
949       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
950       return false;
951     }
952     // If this is the root being simplified, allow it to have multiple uses,
953     // just set the DemandedBits/Elts to all bits.
954     DemandedBits = APInt::getAllOnes(BitWidth);
955     DemandedElts = APInt::getAllOnes(NumElts);
956   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
957     // Not demanding any bits/elts from Op.
958     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
959   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
960     // Limit search depth.
961     return false;
962   }
963 
964   KnownBits Known2;
965   switch (Op.getOpcode()) {
966   case ISD::TargetConstant:
967     llvm_unreachable("Can't simplify this node");
968   case ISD::SCALAR_TO_VECTOR: {
969     if (!DemandedElts[0])
970       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
971 
972     KnownBits SrcKnown;
973     SDValue Src = Op.getOperand(0);
974     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
975     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
976     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
977       return true;
978 
979     // Upper elements are undef, so only get the knownbits if we just demand
980     // the bottom element.
981     if (DemandedElts == 1)
982       Known = SrcKnown.anyextOrTrunc(BitWidth);
983     break;
984   }
985   case ISD::BUILD_VECTOR:
986     // Collect the known bits that are shared by every demanded element.
987     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
988     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
989     return false; // Don't fall through, will infinitely loop.
990   case ISD::LOAD: {
991     auto *LD = cast<LoadSDNode>(Op);
992     if (getTargetConstantFromLoad(LD)) {
993       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
994       return false; // Don't fall through, will infinitely loop.
995     }
996     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
997       // If this is a ZEXTLoad and we are looking at the loaded value.
998       EVT MemVT = LD->getMemoryVT();
999       unsigned MemBits = MemVT.getScalarSizeInBits();
1000       Known.Zero.setBitsFrom(MemBits);
1001       return false; // Don't fall through, will infinitely loop.
1002     }
1003     break;
1004   }
1005   case ISD::INSERT_VECTOR_ELT: {
1006     SDValue Vec = Op.getOperand(0);
1007     SDValue Scl = Op.getOperand(1);
1008     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1009     EVT VecVT = Vec.getValueType();
1010 
1011     // If index isn't constant, assume we need all vector elements AND the
1012     // inserted element.
1013     APInt DemandedVecElts(DemandedElts);
1014     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1015       unsigned Idx = CIdx->getZExtValue();
1016       DemandedVecElts.clearBit(Idx);
1017 
1018       // Inserted element is not required.
1019       if (!DemandedElts[Idx])
1020         return TLO.CombineTo(Op, Vec);
1021     }
1022 
1023     KnownBits KnownScl;
1024     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1025     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1026     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1027       return true;
1028 
1029     Known = KnownScl.anyextOrTrunc(BitWidth);
1030 
1031     KnownBits KnownVec;
1032     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1033                              Depth + 1))
1034       return true;
1035 
1036     if (!!DemandedVecElts)
1037       Known = KnownBits::commonBits(Known, KnownVec);
1038 
1039     return false;
1040   }
1041   case ISD::INSERT_SUBVECTOR: {
1042     // Demand any elements from the subvector and the remainder from the src its
1043     // inserted into.
1044     SDValue Src = Op.getOperand(0);
1045     SDValue Sub = Op.getOperand(1);
1046     uint64_t Idx = Op.getConstantOperandVal(2);
1047     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1048     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1049     APInt DemandedSrcElts = DemandedElts;
1050     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1051 
1052     KnownBits KnownSub, KnownSrc;
1053     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1054                              Depth + 1))
1055       return true;
1056     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1057                              Depth + 1))
1058       return true;
1059 
1060     Known.Zero.setAllBits();
1061     Known.One.setAllBits();
1062     if (!!DemandedSubElts)
1063       Known = KnownBits::commonBits(Known, KnownSub);
1064     if (!!DemandedSrcElts)
1065       Known = KnownBits::commonBits(Known, KnownSrc);
1066 
1067     // Attempt to avoid multi-use src if we don't need anything from it.
1068     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1069         !DemandedSrcElts.isAllOnes()) {
1070       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1071           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1072       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1073           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1074       if (NewSub || NewSrc) {
1075         NewSub = NewSub ? NewSub : Sub;
1076         NewSrc = NewSrc ? NewSrc : Src;
1077         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1078                                         Op.getOperand(2));
1079         return TLO.CombineTo(Op, NewOp);
1080       }
1081     }
1082     break;
1083   }
1084   case ISD::EXTRACT_SUBVECTOR: {
1085     // Offset the demanded elts by the subvector index.
1086     SDValue Src = Op.getOperand(0);
1087     if (Src.getValueType().isScalableVector())
1088       break;
1089     uint64_t Idx = Op.getConstantOperandVal(1);
1090     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1091     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1092 
1093     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1094                              Depth + 1))
1095       return true;
1096 
1097     // Attempt to avoid multi-use src if we don't need anything from it.
1098     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1099       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1100           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1101       if (DemandedSrc) {
1102         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1103                                         Op.getOperand(1));
1104         return TLO.CombineTo(Op, NewOp);
1105       }
1106     }
1107     break;
1108   }
1109   case ISD::CONCAT_VECTORS: {
1110     Known.Zero.setAllBits();
1111     Known.One.setAllBits();
1112     EVT SubVT = Op.getOperand(0).getValueType();
1113     unsigned NumSubVecs = Op.getNumOperands();
1114     unsigned NumSubElts = SubVT.getVectorNumElements();
1115     for (unsigned i = 0; i != NumSubVecs; ++i) {
1116       APInt DemandedSubElts =
1117           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1118       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1119                                Known2, TLO, Depth + 1))
1120         return true;
1121       // Known bits are shared by every demanded subvector element.
1122       if (!!DemandedSubElts)
1123         Known = KnownBits::commonBits(Known, Known2);
1124     }
1125     break;
1126   }
1127   case ISD::VECTOR_SHUFFLE: {
1128     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1129 
1130     // Collect demanded elements from shuffle operands..
1131     APInt DemandedLHS(NumElts, 0);
1132     APInt DemandedRHS(NumElts, 0);
1133     for (unsigned i = 0; i != NumElts; ++i) {
1134       if (!DemandedElts[i])
1135         continue;
1136       int M = ShuffleMask[i];
1137       if (M < 0) {
1138         // For UNDEF elements, we don't know anything about the common state of
1139         // the shuffle result.
1140         DemandedLHS.clearAllBits();
1141         DemandedRHS.clearAllBits();
1142         break;
1143       }
1144       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1145       if (M < (int)NumElts)
1146         DemandedLHS.setBit(M);
1147       else
1148         DemandedRHS.setBit(M - NumElts);
1149     }
1150 
1151     if (!!DemandedLHS || !!DemandedRHS) {
1152       SDValue Op0 = Op.getOperand(0);
1153       SDValue Op1 = Op.getOperand(1);
1154 
1155       Known.Zero.setAllBits();
1156       Known.One.setAllBits();
1157       if (!!DemandedLHS) {
1158         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1159                                  Depth + 1))
1160           return true;
1161         Known = KnownBits::commonBits(Known, Known2);
1162       }
1163       if (!!DemandedRHS) {
1164         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1165                                  Depth + 1))
1166           return true;
1167         Known = KnownBits::commonBits(Known, Known2);
1168       }
1169 
1170       // Attempt to avoid multi-use ops if we don't need anything from them.
1171       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1172           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1173       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1174           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1175       if (DemandedOp0 || DemandedOp1) {
1176         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1177         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1178         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1179         return TLO.CombineTo(Op, NewOp);
1180       }
1181     }
1182     break;
1183   }
1184   case ISD::AND: {
1185     SDValue Op0 = Op.getOperand(0);
1186     SDValue Op1 = Op.getOperand(1);
1187 
1188     // If the RHS is a constant, check to see if the LHS would be zero without
1189     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1190     // simplify the LHS, here we're using information from the LHS to simplify
1191     // the RHS.
1192     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1193       // Do not increment Depth here; that can cause an infinite loop.
1194       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1195       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1196       if ((LHSKnown.Zero & DemandedBits) ==
1197           (~RHSC->getAPIntValue() & DemandedBits))
1198         return TLO.CombineTo(Op, Op0);
1199 
1200       // If any of the set bits in the RHS are known zero on the LHS, shrink
1201       // the constant.
1202       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1203                                  DemandedElts, TLO))
1204         return true;
1205 
1206       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1207       // constant, but if this 'and' is only clearing bits that were just set by
1208       // the xor, then this 'and' can be eliminated by shrinking the mask of
1209       // the xor. For example, for a 32-bit X:
1210       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1211       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1212           LHSKnown.One == ~RHSC->getAPIntValue()) {
1213         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1214         return TLO.CombineTo(Op, Xor);
1215       }
1216     }
1217 
1218     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1219                              Depth + 1))
1220       return true;
1221     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1222     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1223                              Known2, TLO, Depth + 1))
1224       return true;
1225     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1226 
1227     // Attempt to avoid multi-use ops if we don't need anything from them.
1228     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1229       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1230           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1231       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1232           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1233       if (DemandedOp0 || DemandedOp1) {
1234         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1235         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1236         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1237         return TLO.CombineTo(Op, NewOp);
1238       }
1239     }
1240 
1241     // If all of the demanded bits are known one on one side, return the other.
1242     // These bits cannot contribute to the result of the 'and'.
1243     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1244       return TLO.CombineTo(Op, Op0);
1245     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1246       return TLO.CombineTo(Op, Op1);
1247     // If all of the demanded bits in the inputs are known zeros, return zero.
1248     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1249       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1250     // If the RHS is a constant, see if we can simplify it.
1251     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1252                                TLO))
1253       return true;
1254     // If the operation can be done in a smaller type, do so.
1255     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1256       return true;
1257 
1258     Known &= Known2;
1259     break;
1260   }
1261   case ISD::OR: {
1262     SDValue Op0 = Op.getOperand(0);
1263     SDValue Op1 = Op.getOperand(1);
1264 
1265     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1266                              Depth + 1))
1267       return true;
1268     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1269     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1270                              Known2, TLO, Depth + 1))
1271       return true;
1272     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1273 
1274     // Attempt to avoid multi-use ops if we don't need anything from them.
1275     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1276       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1277           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1278       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1279           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1280       if (DemandedOp0 || DemandedOp1) {
1281         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1282         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1283         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1284         return TLO.CombineTo(Op, NewOp);
1285       }
1286     }
1287 
1288     // If all of the demanded bits are known zero on one side, return the other.
1289     // These bits cannot contribute to the result of the 'or'.
1290     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1291       return TLO.CombineTo(Op, Op0);
1292     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1293       return TLO.CombineTo(Op, Op1);
1294     // If the RHS is a constant, see if we can simplify it.
1295     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1296       return true;
1297     // If the operation can be done in a smaller type, do so.
1298     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1299       return true;
1300 
1301     Known |= Known2;
1302     break;
1303   }
1304   case ISD::XOR: {
1305     SDValue Op0 = Op.getOperand(0);
1306     SDValue Op1 = Op.getOperand(1);
1307 
1308     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1309                              Depth + 1))
1310       return true;
1311     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1312     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1313                              Depth + 1))
1314       return true;
1315     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1316 
1317     // Attempt to avoid multi-use ops if we don't need anything from them.
1318     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1319       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1320           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1321       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1322           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1323       if (DemandedOp0 || DemandedOp1) {
1324         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1325         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1326         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1327         return TLO.CombineTo(Op, NewOp);
1328       }
1329     }
1330 
1331     // If all of the demanded bits are known zero on one side, return the other.
1332     // These bits cannot contribute to the result of the 'xor'.
1333     if (DemandedBits.isSubsetOf(Known.Zero))
1334       return TLO.CombineTo(Op, Op0);
1335     if (DemandedBits.isSubsetOf(Known2.Zero))
1336       return TLO.CombineTo(Op, Op1);
1337     // If the operation can be done in a smaller type, do so.
1338     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1339       return true;
1340 
1341     // If all of the unknown bits are known to be zero on one side or the other
1342     // turn this into an *inclusive* or.
1343     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1344     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1345       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1346 
1347     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1348     if (C) {
1349       // If one side is a constant, and all of the set bits in the constant are
1350       // also known set on the other side, turn this into an AND, as we know
1351       // the bits will be cleared.
1352       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1353       // NB: it is okay if more bits are known than are requested
1354       if (C->getAPIntValue() == Known2.One) {
1355         SDValue ANDC =
1356             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1357         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1358       }
1359 
1360       // If the RHS is a constant, see if we can change it. Don't alter a -1
1361       // constant because that's a 'not' op, and that is better for combining
1362       // and codegen.
1363       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1364         // We're flipping all demanded bits. Flip the undemanded bits too.
1365         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1366         return TLO.CombineTo(Op, New);
1367       }
1368     }
1369 
1370     // If we can't turn this into a 'not', try to shrink the constant.
1371     if (!C || !C->isAllOnes())
1372       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1373         return true;
1374 
1375     Known ^= Known2;
1376     break;
1377   }
1378   case ISD::SELECT:
1379     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1380                              Depth + 1))
1381       return true;
1382     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1383                              Depth + 1))
1384       return true;
1385     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1386     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1387 
1388     // If the operands are constants, see if we can simplify them.
1389     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1390       return true;
1391 
1392     // Only known if known in both the LHS and RHS.
1393     Known = KnownBits::commonBits(Known, Known2);
1394     break;
1395   case ISD::SELECT_CC:
1396     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1397                              Depth + 1))
1398       return true;
1399     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1400                              Depth + 1))
1401       return true;
1402     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1403     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1404 
1405     // If the operands are constants, see if we can simplify them.
1406     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1407       return true;
1408 
1409     // Only known if known in both the LHS and RHS.
1410     Known = KnownBits::commonBits(Known, Known2);
1411     break;
1412   case ISD::SETCC: {
1413     SDValue Op0 = Op.getOperand(0);
1414     SDValue Op1 = Op.getOperand(1);
1415     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1416     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1417     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1418     // -1, we may be able to bypass the setcc.
1419     if (DemandedBits.isSignMask() &&
1420         Op0.getScalarValueSizeInBits() == BitWidth &&
1421         getBooleanContents(Op0.getValueType()) ==
1422             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1423       // If we're testing X < 0, then this compare isn't needed - just use X!
1424       // FIXME: We're limiting to integer types here, but this should also work
1425       // if we don't care about FP signed-zero. The use of SETLT with FP means
1426       // that we don't care about NaNs.
1427       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1428           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1429         return TLO.CombineTo(Op, Op0);
1430 
1431       // TODO: Should we check for other forms of sign-bit comparisons?
1432       // Examples: X <= -1, X >= 0
1433     }
1434     if (getBooleanContents(Op0.getValueType()) ==
1435             TargetLowering::ZeroOrOneBooleanContent &&
1436         BitWidth > 1)
1437       Known.Zero.setBitsFrom(1);
1438     break;
1439   }
1440   case ISD::SHL: {
1441     SDValue Op0 = Op.getOperand(0);
1442     SDValue Op1 = Op.getOperand(1);
1443     EVT ShiftVT = Op1.getValueType();
1444 
1445     if (const APInt *SA =
1446             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1447       unsigned ShAmt = SA->getZExtValue();
1448       if (ShAmt == 0)
1449         return TLO.CombineTo(Op, Op0);
1450 
1451       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1452       // single shift.  We can do this if the bottom bits (which are shifted
1453       // out) are never demanded.
1454       // TODO - support non-uniform vector amounts.
1455       if (Op0.getOpcode() == ISD::SRL) {
1456         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1457           if (const APInt *SA2 =
1458                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1459             unsigned C1 = SA2->getZExtValue();
1460             unsigned Opc = ISD::SHL;
1461             int Diff = ShAmt - C1;
1462             if (Diff < 0) {
1463               Diff = -Diff;
1464               Opc = ISD::SRL;
1465             }
1466             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1467             return TLO.CombineTo(
1468                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1469           }
1470         }
1471       }
1472 
1473       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1474       // are not demanded. This will likely allow the anyext to be folded away.
1475       // TODO - support non-uniform vector amounts.
1476       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1477         SDValue InnerOp = Op0.getOperand(0);
1478         EVT InnerVT = InnerOp.getValueType();
1479         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1480         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1481             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1482           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1483           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1484             ShTy = InnerVT;
1485           SDValue NarrowShl =
1486               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1487                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1488           return TLO.CombineTo(
1489               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1490         }
1491 
1492         // Repeat the SHL optimization above in cases where an extension
1493         // intervenes: (shl (anyext (shr x, c1)), c2) to
1494         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1495         // aren't demanded (as above) and that the shifted upper c1 bits of
1496         // x aren't demanded.
1497         // TODO - support non-uniform vector amounts.
1498         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1499             InnerOp.hasOneUse()) {
1500           if (const APInt *SA2 =
1501                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1502             unsigned InnerShAmt = SA2->getZExtValue();
1503             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1504                 DemandedBits.getActiveBits() <=
1505                     (InnerBits - InnerShAmt + ShAmt) &&
1506                 DemandedBits.countTrailingZeros() >= ShAmt) {
1507               SDValue NewSA =
1508                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1509               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1510                                                InnerOp.getOperand(0));
1511               return TLO.CombineTo(
1512                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1513             }
1514           }
1515         }
1516       }
1517 
1518       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1519       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1520                                Depth + 1))
1521         return true;
1522       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1523       Known.Zero <<= ShAmt;
1524       Known.One <<= ShAmt;
1525       // low bits known zero.
1526       Known.Zero.setLowBits(ShAmt);
1527 
1528       // Try shrinking the operation as long as the shift amount will still be
1529       // in range.
1530       if ((ShAmt < DemandedBits.getActiveBits()) &&
1531           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1532         return true;
1533     }
1534 
1535     // If we are only demanding sign bits then we can use the shift source
1536     // directly.
1537     if (const APInt *MaxSA =
1538             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1539       unsigned ShAmt = MaxSA->getZExtValue();
1540       unsigned NumSignBits =
1541           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1542       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1543       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1544         return TLO.CombineTo(Op, Op0);
1545     }
1546     break;
1547   }
1548   case ISD::SRL: {
1549     SDValue Op0 = Op.getOperand(0);
1550     SDValue Op1 = Op.getOperand(1);
1551     EVT ShiftVT = Op1.getValueType();
1552 
1553     if (const APInt *SA =
1554             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1555       unsigned ShAmt = SA->getZExtValue();
1556       if (ShAmt == 0)
1557         return TLO.CombineTo(Op, Op0);
1558 
1559       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1560       // single shift.  We can do this if the top bits (which are shifted out)
1561       // are never demanded.
1562       // TODO - support non-uniform vector amounts.
1563       if (Op0.getOpcode() == ISD::SHL) {
1564         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1565           if (const APInt *SA2 =
1566                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1567             unsigned C1 = SA2->getZExtValue();
1568             unsigned Opc = ISD::SRL;
1569             int Diff = ShAmt - C1;
1570             if (Diff < 0) {
1571               Diff = -Diff;
1572               Opc = ISD::SHL;
1573             }
1574             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1575             return TLO.CombineTo(
1576                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1577           }
1578         }
1579       }
1580 
1581       APInt InDemandedMask = (DemandedBits << ShAmt);
1582 
1583       // If the shift is exact, then it does demand the low bits (and knows that
1584       // they are zero).
1585       if (Op->getFlags().hasExact())
1586         InDemandedMask.setLowBits(ShAmt);
1587 
1588       // Compute the new bits that are at the top now.
1589       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1590                                Depth + 1))
1591         return true;
1592       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1593       Known.Zero.lshrInPlace(ShAmt);
1594       Known.One.lshrInPlace(ShAmt);
1595       // High bits known zero.
1596       Known.Zero.setHighBits(ShAmt);
1597     }
1598     break;
1599   }
1600   case ISD::SRA: {
1601     SDValue Op0 = Op.getOperand(0);
1602     SDValue Op1 = Op.getOperand(1);
1603     EVT ShiftVT = Op1.getValueType();
1604 
1605     // If we only want bits that already match the signbit then we don't need
1606     // to shift.
1607     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1608     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1609         NumHiDemandedBits)
1610       return TLO.CombineTo(Op, Op0);
1611 
1612     // If this is an arithmetic shift right and only the low-bit is set, we can
1613     // always convert this into a logical shr, even if the shift amount is
1614     // variable.  The low bit of the shift cannot be an input sign bit unless
1615     // the shift amount is >= the size of the datatype, which is undefined.
1616     if (DemandedBits.isOne())
1617       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1618 
1619     if (const APInt *SA =
1620             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1621       unsigned ShAmt = SA->getZExtValue();
1622       if (ShAmt == 0)
1623         return TLO.CombineTo(Op, Op0);
1624 
1625       APInt InDemandedMask = (DemandedBits << ShAmt);
1626 
1627       // If the shift is exact, then it does demand the low bits (and knows that
1628       // they are zero).
1629       if (Op->getFlags().hasExact())
1630         InDemandedMask.setLowBits(ShAmt);
1631 
1632       // If any of the demanded bits are produced by the sign extension, we also
1633       // demand the input sign bit.
1634       if (DemandedBits.countLeadingZeros() < ShAmt)
1635         InDemandedMask.setSignBit();
1636 
1637       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1638                                Depth + 1))
1639         return true;
1640       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1641       Known.Zero.lshrInPlace(ShAmt);
1642       Known.One.lshrInPlace(ShAmt);
1643 
1644       // If the input sign bit is known to be zero, or if none of the top bits
1645       // are demanded, turn this into an unsigned shift right.
1646       if (Known.Zero[BitWidth - ShAmt - 1] ||
1647           DemandedBits.countLeadingZeros() >= ShAmt) {
1648         SDNodeFlags Flags;
1649         Flags.setExact(Op->getFlags().hasExact());
1650         return TLO.CombineTo(
1651             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1652       }
1653 
1654       int Log2 = DemandedBits.exactLogBase2();
1655       if (Log2 >= 0) {
1656         // The bit must come from the sign.
1657         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1658         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1659       }
1660 
1661       if (Known.One[BitWidth - ShAmt - 1])
1662         // New bits are known one.
1663         Known.One.setHighBits(ShAmt);
1664 
1665       // Attempt to avoid multi-use ops if we don't need anything from them.
1666       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1667         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1668             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1669         if (DemandedOp0) {
1670           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1671           return TLO.CombineTo(Op, NewOp);
1672         }
1673       }
1674     }
1675     break;
1676   }
1677   case ISD::FSHL:
1678   case ISD::FSHR: {
1679     SDValue Op0 = Op.getOperand(0);
1680     SDValue Op1 = Op.getOperand(1);
1681     SDValue Op2 = Op.getOperand(2);
1682     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1683 
1684     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1685       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1686 
1687       // For fshl, 0-shift returns the 1st arg.
1688       // For fshr, 0-shift returns the 2nd arg.
1689       if (Amt == 0) {
1690         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1691                                  Known, TLO, Depth + 1))
1692           return true;
1693         break;
1694       }
1695 
1696       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1697       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1698       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1699       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1700       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1701                                Depth + 1))
1702         return true;
1703       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1704                                Depth + 1))
1705         return true;
1706 
1707       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1708       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1709       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1710       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1711       Known.One |= Known2.One;
1712       Known.Zero |= Known2.Zero;
1713     }
1714 
1715     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1716     if (isPowerOf2_32(BitWidth)) {
1717       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1718       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1719                                Known2, TLO, Depth + 1))
1720         return true;
1721     }
1722     break;
1723   }
1724   case ISD::ROTL:
1725   case ISD::ROTR: {
1726     SDValue Op0 = Op.getOperand(0);
1727     SDValue Op1 = Op.getOperand(1);
1728     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1729 
1730     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1731     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1732       return TLO.CombineTo(Op, Op0);
1733 
1734     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1735       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1736       unsigned RevAmt = BitWidth - Amt;
1737 
1738       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1739       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1740       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1741       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1742                                Depth + 1))
1743         return true;
1744 
1745       // rot*(x, 0) --> x
1746       if (Amt == 0)
1747         return TLO.CombineTo(Op, Op0);
1748 
1749       // See if we don't demand either half of the rotated bits.
1750       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1751           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1752         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1753         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1754       }
1755       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1756           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1757         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1758         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1759       }
1760     }
1761 
1762     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1763     if (isPowerOf2_32(BitWidth)) {
1764       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1765       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1766                                Depth + 1))
1767         return true;
1768     }
1769     break;
1770   }
1771   case ISD::UMIN: {
1772     // Check if one arg is always less than (or equal) to the other arg.
1773     SDValue Op0 = Op.getOperand(0);
1774     SDValue Op1 = Op.getOperand(1);
1775     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1776     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1777     Known = KnownBits::umin(Known0, Known1);
1778     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1779       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1780     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1781       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1782     break;
1783   }
1784   case ISD::UMAX: {
1785     // Check if one arg is always greater than (or equal) to the other arg.
1786     SDValue Op0 = Op.getOperand(0);
1787     SDValue Op1 = Op.getOperand(1);
1788     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1789     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1790     Known = KnownBits::umax(Known0, Known1);
1791     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1792       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1793     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1794       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1795     break;
1796   }
1797   case ISD::BITREVERSE: {
1798     SDValue Src = Op.getOperand(0);
1799     APInt DemandedSrcBits = DemandedBits.reverseBits();
1800     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1801                              Depth + 1))
1802       return true;
1803     Known.One = Known2.One.reverseBits();
1804     Known.Zero = Known2.Zero.reverseBits();
1805     break;
1806   }
1807   case ISD::BSWAP: {
1808     SDValue Src = Op.getOperand(0);
1809 
1810     // If the only bits demanded come from one byte of the bswap result,
1811     // just shift the input byte into position to eliminate the bswap.
1812     unsigned NLZ = DemandedBits.countLeadingZeros();
1813     unsigned NTZ = DemandedBits.countTrailingZeros();
1814 
1815     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
1816     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
1817     // have 14 leading zeros, round to 8.
1818     NLZ &= ~7;
1819     NTZ &= ~7;
1820     // If we need exactly one byte, we can do this transformation.
1821     if (BitWidth - NLZ - NTZ == 8) {
1822       unsigned ResultBit = NTZ;
1823       unsigned InputBit = BitWidth - NTZ - 8;
1824 
1825       // Replace this with either a left or right shift to get the byte into
1826       // the right place.
1827       unsigned ShiftOpcode = InputBit > ResultBit ? ISD::SRL : ISD::SHL;
1828       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
1829         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
1830         unsigned ShiftAmount =
1831             InputBit > ResultBit ? InputBit - ResultBit : ResultBit - InputBit;
1832         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
1833         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
1834         return TLO.CombineTo(Op, NewOp);
1835       }
1836     }
1837 
1838     APInt DemandedSrcBits = DemandedBits.byteSwap();
1839     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1840                              Depth + 1))
1841       return true;
1842     Known.One = Known2.One.byteSwap();
1843     Known.Zero = Known2.Zero.byteSwap();
1844     break;
1845   }
1846   case ISD::CTPOP: {
1847     // If only 1 bit is demanded, replace with PARITY as long as we're before
1848     // op legalization.
1849     // FIXME: Limit to scalars for now.
1850     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
1851       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1852                                                Op.getOperand(0)));
1853 
1854     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1855     break;
1856   }
1857   case ISD::SIGN_EXTEND_INREG: {
1858     SDValue Op0 = Op.getOperand(0);
1859     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1860     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1861 
1862     // If we only care about the highest bit, don't bother shifting right.
1863     if (DemandedBits.isSignMask()) {
1864       unsigned MinSignedBits =
1865           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
1866       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
1867       // However if the input is already sign extended we expect the sign
1868       // extension to be dropped altogether later and do not simplify.
1869       if (!AlreadySignExtended) {
1870         // Compute the correct shift amount type, which must be getShiftAmountTy
1871         // for scalar types after legalization.
1872         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
1873                                                getShiftAmountTy(VT, DL));
1874         return TLO.CombineTo(Op,
1875                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1876       }
1877     }
1878 
1879     // If none of the extended bits are demanded, eliminate the sextinreg.
1880     if (DemandedBits.getActiveBits() <= ExVTBits)
1881       return TLO.CombineTo(Op, Op0);
1882 
1883     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1884 
1885     // Since the sign extended bits are demanded, we know that the sign
1886     // bit is demanded.
1887     InputDemandedBits.setBit(ExVTBits - 1);
1888 
1889     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1890       return true;
1891     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1892 
1893     // If the sign bit of the input is known set or clear, then we know the
1894     // top bits of the result.
1895 
1896     // If the input sign bit is known zero, convert this into a zero extension.
1897     if (Known.Zero[ExVTBits - 1])
1898       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1899 
1900     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1901     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1902       Known.One.setBitsFrom(ExVTBits);
1903       Known.Zero &= Mask;
1904     } else { // Input sign bit unknown
1905       Known.Zero &= Mask;
1906       Known.One &= Mask;
1907     }
1908     break;
1909   }
1910   case ISD::BUILD_PAIR: {
1911     EVT HalfVT = Op.getOperand(0).getValueType();
1912     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1913 
1914     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1915     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1916 
1917     KnownBits KnownLo, KnownHi;
1918 
1919     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1920       return true;
1921 
1922     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1923       return true;
1924 
1925     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1926                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1927 
1928     Known.One = KnownLo.One.zext(BitWidth) |
1929                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1930     break;
1931   }
1932   case ISD::ZERO_EXTEND:
1933   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1934     SDValue Src = Op.getOperand(0);
1935     EVT SrcVT = Src.getValueType();
1936     unsigned InBits = SrcVT.getScalarSizeInBits();
1937     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1938     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1939 
1940     // If none of the top bits are demanded, convert this into an any_extend.
1941     if (DemandedBits.getActiveBits() <= InBits) {
1942       // If we only need the non-extended bits of the bottom element
1943       // then we can just bitcast to the result.
1944       if (IsLE && IsVecInReg && DemandedElts == 1 &&
1945           VT.getSizeInBits() == SrcVT.getSizeInBits())
1946         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1947 
1948       unsigned Opc =
1949           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1950       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1951         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1952     }
1953 
1954     APInt InDemandedBits = DemandedBits.trunc(InBits);
1955     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1956     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1957                              Depth + 1))
1958       return true;
1959     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1960     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1961     Known = Known.zext(BitWidth);
1962 
1963     // Attempt to avoid multi-use ops if we don't need anything from them.
1964     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1965             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1966       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1967     break;
1968   }
1969   case ISD::SIGN_EXTEND:
1970   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1971     SDValue Src = Op.getOperand(0);
1972     EVT SrcVT = Src.getValueType();
1973     unsigned InBits = SrcVT.getScalarSizeInBits();
1974     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1975     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1976 
1977     // If none of the top bits are demanded, convert this into an any_extend.
1978     if (DemandedBits.getActiveBits() <= InBits) {
1979       // If we only need the non-extended bits of the bottom element
1980       // then we can just bitcast to the result.
1981       if (IsLE && IsVecInReg && DemandedElts == 1 &&
1982           VT.getSizeInBits() == SrcVT.getSizeInBits())
1983         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1984 
1985       unsigned Opc =
1986           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1987       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1988         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1989     }
1990 
1991     APInt InDemandedBits = DemandedBits.trunc(InBits);
1992     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1993 
1994     // Since some of the sign extended bits are demanded, we know that the sign
1995     // bit is demanded.
1996     InDemandedBits.setBit(InBits - 1);
1997 
1998     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1999                              Depth + 1))
2000       return true;
2001     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2002     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2003 
2004     // If the sign bit is known one, the top bits match.
2005     Known = Known.sext(BitWidth);
2006 
2007     // If the sign bit is known zero, convert this to a zero extend.
2008     if (Known.isNonNegative()) {
2009       unsigned Opc =
2010           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2011       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2012         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2013     }
2014 
2015     // Attempt to avoid multi-use ops if we don't need anything from them.
2016     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2017             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2018       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2019     break;
2020   }
2021   case ISD::ANY_EXTEND:
2022   case ISD::ANY_EXTEND_VECTOR_INREG: {
2023     SDValue Src = Op.getOperand(0);
2024     EVT SrcVT = Src.getValueType();
2025     unsigned InBits = SrcVT.getScalarSizeInBits();
2026     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2027     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2028 
2029     // If we only need the bottom element then we can just bitcast.
2030     // TODO: Handle ANY_EXTEND?
2031     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2032         VT.getSizeInBits() == SrcVT.getSizeInBits())
2033       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2034 
2035     APInt InDemandedBits = DemandedBits.trunc(InBits);
2036     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2037     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2038                              Depth + 1))
2039       return true;
2040     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2041     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2042     Known = Known.anyext(BitWidth);
2043 
2044     // Attempt to avoid multi-use ops if we don't need anything from them.
2045     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2046             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2047       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2048     break;
2049   }
2050   case ISD::TRUNCATE: {
2051     SDValue Src = Op.getOperand(0);
2052 
2053     // Simplify the input, using demanded bit information, and compute the known
2054     // zero/one bits live out.
2055     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2056     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2057     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2058                              Depth + 1))
2059       return true;
2060     Known = Known.trunc(BitWidth);
2061 
2062     // Attempt to avoid multi-use ops if we don't need anything from them.
2063     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2064             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2065       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2066 
2067     // If the input is only used by this truncate, see if we can shrink it based
2068     // on the known demanded bits.
2069     if (Src.getNode()->hasOneUse()) {
2070       switch (Src.getOpcode()) {
2071       default:
2072         break;
2073       case ISD::SRL:
2074         // Shrink SRL by a constant if none of the high bits shifted in are
2075         // demanded.
2076         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2077           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2078           // undesirable.
2079           break;
2080 
2081         const APInt *ShAmtC =
2082             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2083         if (!ShAmtC || ShAmtC->uge(BitWidth))
2084           break;
2085         uint64_t ShVal = ShAmtC->getZExtValue();
2086 
2087         APInt HighBits =
2088             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2089         HighBits.lshrInPlace(ShVal);
2090         HighBits = HighBits.trunc(BitWidth);
2091 
2092         if (!(HighBits & DemandedBits)) {
2093           // None of the shifted in bits are needed.  Add a truncate of the
2094           // shift input, then shift it.
2095           SDValue NewShAmt = TLO.DAG.getConstant(
2096               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2097           SDValue NewTrunc =
2098               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2099           return TLO.CombineTo(
2100               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2101         }
2102         break;
2103       }
2104     }
2105 
2106     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2107     break;
2108   }
2109   case ISD::AssertZext: {
2110     // AssertZext demands all of the high bits, plus any of the low bits
2111     // demanded by its users.
2112     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2113     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2114     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2115                              TLO, Depth + 1))
2116       return true;
2117     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2118 
2119     Known.Zero |= ~InMask;
2120     break;
2121   }
2122   case ISD::EXTRACT_VECTOR_ELT: {
2123     SDValue Src = Op.getOperand(0);
2124     SDValue Idx = Op.getOperand(1);
2125     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2126     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2127 
2128     if (SrcEltCnt.isScalable())
2129       return false;
2130 
2131     // Demand the bits from every vector element without a constant index.
2132     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2133     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2134     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2135       if (CIdx->getAPIntValue().ult(NumSrcElts))
2136         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2137 
2138     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2139     // anything about the extended bits.
2140     APInt DemandedSrcBits = DemandedBits;
2141     if (BitWidth > EltBitWidth)
2142       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2143 
2144     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2145                              Depth + 1))
2146       return true;
2147 
2148     // Attempt to avoid multi-use ops if we don't need anything from them.
2149     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2150       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2151               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2152         SDValue NewOp =
2153             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2154         return TLO.CombineTo(Op, NewOp);
2155       }
2156     }
2157 
2158     Known = Known2;
2159     if (BitWidth > EltBitWidth)
2160       Known = Known.anyext(BitWidth);
2161     break;
2162   }
2163   case ISD::BITCAST: {
2164     SDValue Src = Op.getOperand(0);
2165     EVT SrcVT = Src.getValueType();
2166     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2167 
2168     // If this is an FP->Int bitcast and if the sign bit is the only
2169     // thing demanded, turn this into a FGETSIGN.
2170     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2171         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2172         SrcVT.isFloatingPoint()) {
2173       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2174       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2175       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2176           SrcVT != MVT::f128) {
2177         // Cannot eliminate/lower SHL for f128 yet.
2178         EVT Ty = OpVTLegal ? VT : MVT::i32;
2179         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2180         // place.  We expect the SHL to be eliminated by other optimizations.
2181         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2182         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2183         if (!OpVTLegal && OpVTSizeInBits > 32)
2184           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2185         unsigned ShVal = Op.getValueSizeInBits() - 1;
2186         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2187         return TLO.CombineTo(Op,
2188                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2189       }
2190     }
2191 
2192     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2193     // Demand the elt/bit if any of the original elts/bits are demanded.
2194     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2195       unsigned Scale = BitWidth / NumSrcEltBits;
2196       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2197       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2198       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2199       for (unsigned i = 0; i != Scale; ++i) {
2200         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2201         unsigned BitOffset = EltOffset * NumSrcEltBits;
2202         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2203         if (!Sub.isZero()) {
2204           DemandedSrcBits |= Sub;
2205           for (unsigned j = 0; j != NumElts; ++j)
2206             if (DemandedElts[j])
2207               DemandedSrcElts.setBit((j * Scale) + i);
2208         }
2209       }
2210 
2211       APInt KnownSrcUndef, KnownSrcZero;
2212       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2213                                      KnownSrcZero, TLO, Depth + 1))
2214         return true;
2215 
2216       KnownBits KnownSrcBits;
2217       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2218                                KnownSrcBits, TLO, Depth + 1))
2219         return true;
2220     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2221       // TODO - bigendian once we have test coverage.
2222       unsigned Scale = NumSrcEltBits / BitWidth;
2223       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2224       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2225       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2226       for (unsigned i = 0; i != NumElts; ++i)
2227         if (DemandedElts[i]) {
2228           unsigned Offset = (i % Scale) * BitWidth;
2229           DemandedSrcBits.insertBits(DemandedBits, Offset);
2230           DemandedSrcElts.setBit(i / Scale);
2231         }
2232 
2233       if (SrcVT.isVector()) {
2234         APInt KnownSrcUndef, KnownSrcZero;
2235         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2236                                        KnownSrcZero, TLO, Depth + 1))
2237           return true;
2238       }
2239 
2240       KnownBits KnownSrcBits;
2241       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2242                                KnownSrcBits, TLO, Depth + 1))
2243         return true;
2244     }
2245 
2246     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2247     // recursive call where Known may be useful to the caller.
2248     if (Depth > 0) {
2249       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2250       return false;
2251     }
2252     break;
2253   }
2254   case ISD::ADD:
2255   case ISD::MUL:
2256   case ISD::SUB: {
2257     // Add, Sub, and Mul don't demand any bits in positions beyond that
2258     // of the highest bit demanded of them.
2259     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2260     SDNodeFlags Flags = Op.getNode()->getFlags();
2261     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2262     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2263     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2264                              Depth + 1) ||
2265         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2266                              Depth + 1) ||
2267         // See if the operation should be performed at a smaller bit width.
2268         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2269       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2270         // Disable the nsw and nuw flags. We can no longer guarantee that we
2271         // won't wrap after simplification.
2272         Flags.setNoSignedWrap(false);
2273         Flags.setNoUnsignedWrap(false);
2274         SDValue NewOp =
2275             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2276         return TLO.CombineTo(Op, NewOp);
2277       }
2278       return true;
2279     }
2280 
2281     // Attempt to avoid multi-use ops if we don't need anything from them.
2282     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2283       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2284           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2285       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2286           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2287       if (DemandedOp0 || DemandedOp1) {
2288         Flags.setNoSignedWrap(false);
2289         Flags.setNoUnsignedWrap(false);
2290         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2291         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2292         SDValue NewOp =
2293             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2294         return TLO.CombineTo(Op, NewOp);
2295       }
2296     }
2297 
2298     // If we have a constant operand, we may be able to turn it into -1 if we
2299     // do not demand the high bits. This can make the constant smaller to
2300     // encode, allow more general folding, or match specialized instruction
2301     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2302     // is probably not useful (and could be detrimental).
2303     ConstantSDNode *C = isConstOrConstSplat(Op1);
2304     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2305     if (C && !C->isAllOnes() && !C->isOne() &&
2306         (C->getAPIntValue() | HighMask).isAllOnes()) {
2307       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2308       // Disable the nsw and nuw flags. We can no longer guarantee that we
2309       // won't wrap after simplification.
2310       Flags.setNoSignedWrap(false);
2311       Flags.setNoUnsignedWrap(false);
2312       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2313       return TLO.CombineTo(Op, NewOp);
2314     }
2315 
2316     LLVM_FALLTHROUGH;
2317   }
2318   default:
2319     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2320       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2321                                             Known, TLO, Depth))
2322         return true;
2323       break;
2324     }
2325 
2326     // Just use computeKnownBits to compute output bits.
2327     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2328     break;
2329   }
2330 
2331   // If we know the value of all of the demanded bits, return this as a
2332   // constant.
2333   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2334     // Avoid folding to a constant if any OpaqueConstant is involved.
2335     const SDNode *N = Op.getNode();
2336     for (SDNode *Op :
2337          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2338       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2339         if (C->isOpaque())
2340           return false;
2341     }
2342     if (VT.isInteger())
2343       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2344     if (VT.isFloatingPoint())
2345       return TLO.CombineTo(
2346           Op,
2347           TLO.DAG.getConstantFP(
2348               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2349   }
2350 
2351   return false;
2352 }
2353 
2354 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2355                                                 const APInt &DemandedElts,
2356                                                 APInt &KnownUndef,
2357                                                 APInt &KnownZero,
2358                                                 DAGCombinerInfo &DCI) const {
2359   SelectionDAG &DAG = DCI.DAG;
2360   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2361                         !DCI.isBeforeLegalizeOps());
2362 
2363   bool Simplified =
2364       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2365   if (Simplified) {
2366     DCI.AddToWorklist(Op.getNode());
2367     DCI.CommitTargetLoweringOpt(TLO);
2368   }
2369 
2370   return Simplified;
2371 }
2372 
2373 /// Given a vector binary operation and known undefined elements for each input
2374 /// operand, compute whether each element of the output is undefined.
2375 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2376                                          const APInt &UndefOp0,
2377                                          const APInt &UndefOp1) {
2378   EVT VT = BO.getValueType();
2379   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2380          "Vector binop only");
2381 
2382   EVT EltVT = VT.getVectorElementType();
2383   unsigned NumElts = VT.getVectorNumElements();
2384   assert(UndefOp0.getBitWidth() == NumElts &&
2385          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2386 
2387   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2388                                    const APInt &UndefVals) {
2389     if (UndefVals[Index])
2390       return DAG.getUNDEF(EltVT);
2391 
2392     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2393       // Try hard to make sure that the getNode() call is not creating temporary
2394       // nodes. Ignore opaque integers because they do not constant fold.
2395       SDValue Elt = BV->getOperand(Index);
2396       auto *C = dyn_cast<ConstantSDNode>(Elt);
2397       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2398         return Elt;
2399     }
2400 
2401     return SDValue();
2402   };
2403 
2404   APInt KnownUndef = APInt::getZero(NumElts);
2405   for (unsigned i = 0; i != NumElts; ++i) {
2406     // If both inputs for this element are either constant or undef and match
2407     // the element type, compute the constant/undef result for this element of
2408     // the vector.
2409     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2410     // not handle FP constants. The code within getNode() should be refactored
2411     // to avoid the danger of creating a bogus temporary node here.
2412     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2413     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2414     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2415       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2416         KnownUndef.setBit(i);
2417   }
2418   return KnownUndef;
2419 }
2420 
2421 bool TargetLowering::SimplifyDemandedVectorElts(
2422     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2423     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2424     bool AssumeSingleUse) const {
2425   EVT VT = Op.getValueType();
2426   unsigned Opcode = Op.getOpcode();
2427   APInt DemandedElts = OriginalDemandedElts;
2428   unsigned NumElts = DemandedElts.getBitWidth();
2429   assert(VT.isVector() && "Expected vector op");
2430 
2431   KnownUndef = KnownZero = APInt::getZero(NumElts);
2432 
2433   // TODO: For now we assume we know nothing about scalable vectors.
2434   if (VT.isScalableVector())
2435     return false;
2436 
2437   assert(VT.getVectorNumElements() == NumElts &&
2438          "Mask size mismatches value type element count!");
2439 
2440   // Undef operand.
2441   if (Op.isUndef()) {
2442     KnownUndef.setAllBits();
2443     return false;
2444   }
2445 
2446   // If Op has other users, assume that all elements are needed.
2447   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2448     DemandedElts.setAllBits();
2449 
2450   // Not demanding any elements from Op.
2451   if (DemandedElts == 0) {
2452     KnownUndef.setAllBits();
2453     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2454   }
2455 
2456   // Limit search depth.
2457   if (Depth >= SelectionDAG::MaxRecursionDepth)
2458     return false;
2459 
2460   SDLoc DL(Op);
2461   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2462   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2463 
2464   // Helper for demanding the specified elements and all the bits of both binary
2465   // operands.
2466   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2467     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2468                                                            TLO.DAG, Depth + 1);
2469     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2470                                                            TLO.DAG, Depth + 1);
2471     if (NewOp0 || NewOp1) {
2472       SDValue NewOp = TLO.DAG.getNode(
2473           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2474       return TLO.CombineTo(Op, NewOp);
2475     }
2476     return false;
2477   };
2478 
2479   switch (Opcode) {
2480   case ISD::SCALAR_TO_VECTOR: {
2481     if (!DemandedElts[0]) {
2482       KnownUndef.setAllBits();
2483       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2484     }
2485     SDValue ScalarSrc = Op.getOperand(0);
2486     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2487       SDValue Src = ScalarSrc.getOperand(0);
2488       SDValue Idx = ScalarSrc.getOperand(1);
2489       EVT SrcVT = Src.getValueType();
2490 
2491       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2492 
2493       if (SrcEltCnt.isScalable())
2494         return false;
2495 
2496       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2497       if (isNullConstant(Idx)) {
2498         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2499         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2500         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2501         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2502                                        TLO, Depth + 1))
2503           return true;
2504       }
2505     }
2506     KnownUndef.setHighBits(NumElts - 1);
2507     break;
2508   }
2509   case ISD::BITCAST: {
2510     SDValue Src = Op.getOperand(0);
2511     EVT SrcVT = Src.getValueType();
2512 
2513     // We only handle vectors here.
2514     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2515     if (!SrcVT.isVector())
2516       break;
2517 
2518     // Fast handling of 'identity' bitcasts.
2519     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2520     if (NumSrcElts == NumElts)
2521       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2522                                         KnownZero, TLO, Depth + 1);
2523 
2524     APInt SrcDemandedElts, SrcZero, SrcUndef;
2525 
2526     // Bitcast from 'large element' src vector to 'small element' vector, we
2527     // must demand a source element if any DemandedElt maps to it.
2528     if ((NumElts % NumSrcElts) == 0) {
2529       unsigned Scale = NumElts / NumSrcElts;
2530       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2531       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2532                                      TLO, Depth + 1))
2533         return true;
2534 
2535       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2536       // of the large element.
2537       // TODO - bigendian once we have test coverage.
2538       if (IsLE) {
2539         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2540         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2541         for (unsigned i = 0; i != NumElts; ++i)
2542           if (DemandedElts[i]) {
2543             unsigned Ofs = (i % Scale) * EltSizeInBits;
2544             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2545           }
2546 
2547         KnownBits Known;
2548         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2549                                  TLO, Depth + 1))
2550           return true;
2551       }
2552 
2553       // If the src element is zero/undef then all the output elements will be -
2554       // only demanded elements are guaranteed to be correct.
2555       for (unsigned i = 0; i != NumSrcElts; ++i) {
2556         if (SrcDemandedElts[i]) {
2557           if (SrcZero[i])
2558             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2559           if (SrcUndef[i])
2560             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2561         }
2562       }
2563     }
2564 
2565     // Bitcast from 'small element' src vector to 'large element' vector, we
2566     // demand all smaller source elements covered by the larger demanded element
2567     // of this vector.
2568     if ((NumSrcElts % NumElts) == 0) {
2569       unsigned Scale = NumSrcElts / NumElts;
2570       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2571       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2572                                      TLO, Depth + 1))
2573         return true;
2574 
2575       // If all the src elements covering an output element are zero/undef, then
2576       // the output element will be as well, assuming it was demanded.
2577       for (unsigned i = 0; i != NumElts; ++i) {
2578         if (DemandedElts[i]) {
2579           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2580             KnownZero.setBit(i);
2581           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2582             KnownUndef.setBit(i);
2583         }
2584       }
2585     }
2586     break;
2587   }
2588   case ISD::BUILD_VECTOR: {
2589     // Check all elements and simplify any unused elements with UNDEF.
2590     if (!DemandedElts.isAllOnes()) {
2591       // Don't simplify BROADCASTS.
2592       if (llvm::any_of(Op->op_values(),
2593                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2594         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2595         bool Updated = false;
2596         for (unsigned i = 0; i != NumElts; ++i) {
2597           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2598             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2599             KnownUndef.setBit(i);
2600             Updated = true;
2601           }
2602         }
2603         if (Updated)
2604           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2605       }
2606     }
2607     for (unsigned i = 0; i != NumElts; ++i) {
2608       SDValue SrcOp = Op.getOperand(i);
2609       if (SrcOp.isUndef()) {
2610         KnownUndef.setBit(i);
2611       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2612                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2613         KnownZero.setBit(i);
2614       }
2615     }
2616     break;
2617   }
2618   case ISD::CONCAT_VECTORS: {
2619     EVT SubVT = Op.getOperand(0).getValueType();
2620     unsigned NumSubVecs = Op.getNumOperands();
2621     unsigned NumSubElts = SubVT.getVectorNumElements();
2622     for (unsigned i = 0; i != NumSubVecs; ++i) {
2623       SDValue SubOp = Op.getOperand(i);
2624       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2625       APInt SubUndef, SubZero;
2626       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2627                                      Depth + 1))
2628         return true;
2629       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2630       KnownZero.insertBits(SubZero, i * NumSubElts);
2631     }
2632     break;
2633   }
2634   case ISD::INSERT_SUBVECTOR: {
2635     // Demand any elements from the subvector and the remainder from the src its
2636     // inserted into.
2637     SDValue Src = Op.getOperand(0);
2638     SDValue Sub = Op.getOperand(1);
2639     uint64_t Idx = Op.getConstantOperandVal(2);
2640     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2641     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2642     APInt DemandedSrcElts = DemandedElts;
2643     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2644 
2645     APInt SubUndef, SubZero;
2646     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2647                                    Depth + 1))
2648       return true;
2649 
2650     // If none of the src operand elements are demanded, replace it with undef.
2651     if (!DemandedSrcElts && !Src.isUndef())
2652       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2653                                                TLO.DAG.getUNDEF(VT), Sub,
2654                                                Op.getOperand(2)));
2655 
2656     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2657                                    TLO, Depth + 1))
2658       return true;
2659     KnownUndef.insertBits(SubUndef, Idx);
2660     KnownZero.insertBits(SubZero, Idx);
2661 
2662     // Attempt to avoid multi-use ops if we don't need anything from them.
2663     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2664       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2665           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2666       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2667           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2668       if (NewSrc || NewSub) {
2669         NewSrc = NewSrc ? NewSrc : Src;
2670         NewSub = NewSub ? NewSub : Sub;
2671         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2672                                         NewSub, Op.getOperand(2));
2673         return TLO.CombineTo(Op, NewOp);
2674       }
2675     }
2676     break;
2677   }
2678   case ISD::EXTRACT_SUBVECTOR: {
2679     // Offset the demanded elts by the subvector index.
2680     SDValue Src = Op.getOperand(0);
2681     if (Src.getValueType().isScalableVector())
2682       break;
2683     uint64_t Idx = Op.getConstantOperandVal(1);
2684     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2685     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2686 
2687     APInt SrcUndef, SrcZero;
2688     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2689                                    Depth + 1))
2690       return true;
2691     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2692     KnownZero = SrcZero.extractBits(NumElts, Idx);
2693 
2694     // Attempt to avoid multi-use ops if we don't need anything from them.
2695     if (!DemandedElts.isAllOnes()) {
2696       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2697           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2698       if (NewSrc) {
2699         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2700                                         Op.getOperand(1));
2701         return TLO.CombineTo(Op, NewOp);
2702       }
2703     }
2704     break;
2705   }
2706   case ISD::INSERT_VECTOR_ELT: {
2707     SDValue Vec = Op.getOperand(0);
2708     SDValue Scl = Op.getOperand(1);
2709     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2710 
2711     // For a legal, constant insertion index, if we don't need this insertion
2712     // then strip it, else remove it from the demanded elts.
2713     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2714       unsigned Idx = CIdx->getZExtValue();
2715       if (!DemandedElts[Idx])
2716         return TLO.CombineTo(Op, Vec);
2717 
2718       APInt DemandedVecElts(DemandedElts);
2719       DemandedVecElts.clearBit(Idx);
2720       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2721                                      KnownZero, TLO, Depth + 1))
2722         return true;
2723 
2724       KnownUndef.setBitVal(Idx, Scl.isUndef());
2725 
2726       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2727       break;
2728     }
2729 
2730     APInt VecUndef, VecZero;
2731     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2732                                    Depth + 1))
2733       return true;
2734     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2735     break;
2736   }
2737   case ISD::VSELECT: {
2738     // Try to transform the select condition based on the current demanded
2739     // elements.
2740     // TODO: If a condition element is undef, we can choose from one arm of the
2741     //       select (and if one arm is undef, then we can propagate that to the
2742     //       result).
2743     // TODO - add support for constant vselect masks (see IR version of this).
2744     APInt UnusedUndef, UnusedZero;
2745     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2746                                    UnusedZero, TLO, Depth + 1))
2747       return true;
2748 
2749     // See if we can simplify either vselect operand.
2750     APInt DemandedLHS(DemandedElts);
2751     APInt DemandedRHS(DemandedElts);
2752     APInt UndefLHS, ZeroLHS;
2753     APInt UndefRHS, ZeroRHS;
2754     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2755                                    ZeroLHS, TLO, Depth + 1))
2756       return true;
2757     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2758                                    ZeroRHS, TLO, Depth + 1))
2759       return true;
2760 
2761     KnownUndef = UndefLHS & UndefRHS;
2762     KnownZero = ZeroLHS & ZeroRHS;
2763     break;
2764   }
2765   case ISD::VECTOR_SHUFFLE: {
2766     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2767 
2768     // Collect demanded elements from shuffle operands..
2769     APInt DemandedLHS(NumElts, 0);
2770     APInt DemandedRHS(NumElts, 0);
2771     for (unsigned i = 0; i != NumElts; ++i) {
2772       int M = ShuffleMask[i];
2773       if (M < 0 || !DemandedElts[i])
2774         continue;
2775       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2776       if (M < (int)NumElts)
2777         DemandedLHS.setBit(M);
2778       else
2779         DemandedRHS.setBit(M - NumElts);
2780     }
2781 
2782     // See if we can simplify either shuffle operand.
2783     APInt UndefLHS, ZeroLHS;
2784     APInt UndefRHS, ZeroRHS;
2785     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2786                                    ZeroLHS, TLO, Depth + 1))
2787       return true;
2788     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2789                                    ZeroRHS, TLO, Depth + 1))
2790       return true;
2791 
2792     // Simplify mask using undef elements from LHS/RHS.
2793     bool Updated = false;
2794     bool IdentityLHS = true, IdentityRHS = true;
2795     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2796     for (unsigned i = 0; i != NumElts; ++i) {
2797       int &M = NewMask[i];
2798       if (M < 0)
2799         continue;
2800       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2801           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2802         Updated = true;
2803         M = -1;
2804       }
2805       IdentityLHS &= (M < 0) || (M == (int)i);
2806       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2807     }
2808 
2809     // Update legal shuffle masks based on demanded elements if it won't reduce
2810     // to Identity which can cause premature removal of the shuffle mask.
2811     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2812       SDValue LegalShuffle =
2813           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2814                                   NewMask, TLO.DAG);
2815       if (LegalShuffle)
2816         return TLO.CombineTo(Op, LegalShuffle);
2817     }
2818 
2819     // Propagate undef/zero elements from LHS/RHS.
2820     for (unsigned i = 0; i != NumElts; ++i) {
2821       int M = ShuffleMask[i];
2822       if (M < 0) {
2823         KnownUndef.setBit(i);
2824       } else if (M < (int)NumElts) {
2825         if (UndefLHS[M])
2826           KnownUndef.setBit(i);
2827         if (ZeroLHS[M])
2828           KnownZero.setBit(i);
2829       } else {
2830         if (UndefRHS[M - NumElts])
2831           KnownUndef.setBit(i);
2832         if (ZeroRHS[M - NumElts])
2833           KnownZero.setBit(i);
2834       }
2835     }
2836     break;
2837   }
2838   case ISD::ANY_EXTEND_VECTOR_INREG:
2839   case ISD::SIGN_EXTEND_VECTOR_INREG:
2840   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2841     APInt SrcUndef, SrcZero;
2842     SDValue Src = Op.getOperand(0);
2843     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2844     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2845     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2846                                    Depth + 1))
2847       return true;
2848     KnownZero = SrcZero.zextOrTrunc(NumElts);
2849     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2850 
2851     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2852         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2853         DemandedSrcElts == 1) {
2854       // aext - if we just need the bottom element then we can bitcast.
2855       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2856     }
2857 
2858     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2859       // zext(undef) upper bits are guaranteed to be zero.
2860       if (DemandedElts.isSubsetOf(KnownUndef))
2861         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2862       KnownUndef.clearAllBits();
2863 
2864       // zext - if we just need the bottom element then we can mask:
2865       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
2866       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
2867           Op->isOnlyUserOf(Src.getNode()) &&
2868           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
2869         SDLoc DL(Op);
2870         EVT SrcVT = Src.getValueType();
2871         EVT SrcSVT = SrcVT.getScalarType();
2872         SmallVector<SDValue> MaskElts;
2873         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
2874         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
2875         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
2876         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
2877                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
2878           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
2879           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
2880         }
2881       }
2882     }
2883     break;
2884   }
2885 
2886   // TODO: There are more binop opcodes that could be handled here - MIN,
2887   // MAX, saturated math, etc.
2888   case ISD::ADD: {
2889     SDValue Op0 = Op.getOperand(0);
2890     SDValue Op1 = Op.getOperand(1);
2891     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
2892       APInt UndefLHS, ZeroLHS;
2893       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2894                                      Depth + 1, /*AssumeSingleUse*/ true))
2895         return true;
2896     }
2897     LLVM_FALLTHROUGH;
2898   }
2899   case ISD::OR:
2900   case ISD::XOR:
2901   case ISD::SUB:
2902   case ISD::FADD:
2903   case ISD::FSUB:
2904   case ISD::FMUL:
2905   case ISD::FDIV:
2906   case ISD::FREM: {
2907     SDValue Op0 = Op.getOperand(0);
2908     SDValue Op1 = Op.getOperand(1);
2909 
2910     APInt UndefRHS, ZeroRHS;
2911     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2912                                    Depth + 1))
2913       return true;
2914     APInt UndefLHS, ZeroLHS;
2915     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2916                                    Depth + 1))
2917       return true;
2918 
2919     KnownZero = ZeroLHS & ZeroRHS;
2920     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2921 
2922     // Attempt to avoid multi-use ops if we don't need anything from them.
2923     // TODO - use KnownUndef to relax the demandedelts?
2924     if (!DemandedElts.isAllOnes())
2925       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2926         return true;
2927     break;
2928   }
2929   case ISD::SHL:
2930   case ISD::SRL:
2931   case ISD::SRA:
2932   case ISD::ROTL:
2933   case ISD::ROTR: {
2934     SDValue Op0 = Op.getOperand(0);
2935     SDValue Op1 = Op.getOperand(1);
2936 
2937     APInt UndefRHS, ZeroRHS;
2938     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2939                                    Depth + 1))
2940       return true;
2941     APInt UndefLHS, ZeroLHS;
2942     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2943                                    Depth + 1))
2944       return true;
2945 
2946     KnownZero = ZeroLHS;
2947     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2948 
2949     // Attempt to avoid multi-use ops if we don't need anything from them.
2950     // TODO - use KnownUndef to relax the demandedelts?
2951     if (!DemandedElts.isAllOnes())
2952       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2953         return true;
2954     break;
2955   }
2956   case ISD::MUL:
2957   case ISD::AND: {
2958     SDValue Op0 = Op.getOperand(0);
2959     SDValue Op1 = Op.getOperand(1);
2960 
2961     APInt SrcUndef, SrcZero;
2962     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2963                                    Depth + 1))
2964       return true;
2965     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2966                                    TLO, Depth + 1))
2967       return true;
2968 
2969     // If either side has a zero element, then the result element is zero, even
2970     // if the other is an UNDEF.
2971     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2972     // and then handle 'and' nodes with the rest of the binop opcodes.
2973     KnownZero |= SrcZero;
2974     KnownUndef &= SrcUndef;
2975     KnownUndef &= ~KnownZero;
2976 
2977     // Attempt to avoid multi-use ops if we don't need anything from them.
2978     // TODO - use KnownUndef to relax the demandedelts?
2979     if (!DemandedElts.isAllOnes())
2980       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2981         return true;
2982     break;
2983   }
2984   case ISD::TRUNCATE:
2985   case ISD::SIGN_EXTEND:
2986   case ISD::ZERO_EXTEND:
2987     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2988                                    KnownZero, TLO, Depth + 1))
2989       return true;
2990 
2991     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2992       // zext(undef) upper bits are guaranteed to be zero.
2993       if (DemandedElts.isSubsetOf(KnownUndef))
2994         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2995       KnownUndef.clearAllBits();
2996     }
2997     break;
2998   default: {
2999     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3000       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3001                                                   KnownZero, TLO, Depth))
3002         return true;
3003     } else {
3004       KnownBits Known;
3005       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3006       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3007                                TLO, Depth, AssumeSingleUse))
3008         return true;
3009     }
3010     break;
3011   }
3012   }
3013   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3014 
3015   // Constant fold all undef cases.
3016   // TODO: Handle zero cases as well.
3017   if (DemandedElts.isSubsetOf(KnownUndef))
3018     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3019 
3020   return false;
3021 }
3022 
3023 /// Determine which of the bits specified in Mask are known to be either zero or
3024 /// one and return them in the Known.
3025 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3026                                                    KnownBits &Known,
3027                                                    const APInt &DemandedElts,
3028                                                    const SelectionDAG &DAG,
3029                                                    unsigned Depth) const {
3030   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3031           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3032           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3033           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3034          "Should use MaskedValueIsZero if you don't know whether Op"
3035          " is a target node!");
3036   Known.resetAll();
3037 }
3038 
3039 void TargetLowering::computeKnownBitsForTargetInstr(
3040     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3041     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3042     unsigned Depth) const {
3043   Known.resetAll();
3044 }
3045 
3046 void TargetLowering::computeKnownBitsForFrameIndex(
3047   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3048   // The low bits are known zero if the pointer is aligned.
3049   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3050 }
3051 
3052 Align TargetLowering::computeKnownAlignForTargetInstr(
3053   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3054   unsigned Depth) const {
3055   return Align(1);
3056 }
3057 
3058 /// This method can be implemented by targets that want to expose additional
3059 /// information about sign bits to the DAG Combiner.
3060 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3061                                                          const APInt &,
3062                                                          const SelectionDAG &,
3063                                                          unsigned Depth) const {
3064   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3065           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3066           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3067           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3068          "Should use ComputeNumSignBits if you don't know whether Op"
3069          " is a target node!");
3070   return 1;
3071 }
3072 
3073 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3074   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3075   const MachineRegisterInfo &MRI, unsigned Depth) const {
3076   return 1;
3077 }
3078 
3079 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3080     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3081     TargetLoweringOpt &TLO, unsigned Depth) const {
3082   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3083           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3084           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3085           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3086          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3087          " is a target node!");
3088   return false;
3089 }
3090 
3091 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3092     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3093     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3094   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3095           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3096           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3097           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3098          "Should use SimplifyDemandedBits if you don't know whether Op"
3099          " is a target node!");
3100   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3101   return false;
3102 }
3103 
3104 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3105     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3106     SelectionDAG &DAG, unsigned Depth) const {
3107   assert(
3108       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3109        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3110        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3111        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3112       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3113       " is a target node!");
3114   return SDValue();
3115 }
3116 
3117 SDValue
3118 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3119                                         SDValue N1, MutableArrayRef<int> Mask,
3120                                         SelectionDAG &DAG) const {
3121   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3122   if (!LegalMask) {
3123     std::swap(N0, N1);
3124     ShuffleVectorSDNode::commuteMask(Mask);
3125     LegalMask = isShuffleMaskLegal(Mask, VT);
3126   }
3127 
3128   if (!LegalMask)
3129     return SDValue();
3130 
3131   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3132 }
3133 
3134 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3135   return nullptr;
3136 }
3137 
3138 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3139     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3140     bool PoisonOnly, unsigned Depth) const {
3141   assert(
3142       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3143        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3144        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3145        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3146       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3147       " is a target node!");
3148   return false;
3149 }
3150 
3151 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3152                                                   const SelectionDAG &DAG,
3153                                                   bool SNaN,
3154                                                   unsigned Depth) const {
3155   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3156           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3157           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3158           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3159          "Should use isKnownNeverNaN if you don't know whether Op"
3160          " is a target node!");
3161   return false;
3162 }
3163 
3164 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3165                                                const APInt &DemandedElts,
3166                                                APInt &UndefElts,
3167                                                unsigned Depth) const {
3168   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3169           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3170           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3171           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3172          "Should use isSplatValue if you don't know whether Op"
3173          " is a target node!");
3174   return false;
3175 }
3176 
3177 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3178 // work with truncating build vectors and vectors with elements of less than
3179 // 8 bits.
3180 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3181   if (!N)
3182     return false;
3183 
3184   APInt CVal;
3185   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3186     CVal = CN->getAPIntValue();
3187   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3188     auto *CN = BV->getConstantSplatNode();
3189     if (!CN)
3190       return false;
3191 
3192     // If this is a truncating build vector, truncate the splat value.
3193     // Otherwise, we may fail to match the expected values below.
3194     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3195     CVal = CN->getAPIntValue();
3196     if (BVEltWidth < CVal.getBitWidth())
3197       CVal = CVal.trunc(BVEltWidth);
3198   } else {
3199     return false;
3200   }
3201 
3202   switch (getBooleanContents(N->getValueType(0))) {
3203   case UndefinedBooleanContent:
3204     return CVal[0];
3205   case ZeroOrOneBooleanContent:
3206     return CVal.isOne();
3207   case ZeroOrNegativeOneBooleanContent:
3208     return CVal.isAllOnes();
3209   }
3210 
3211   llvm_unreachable("Invalid boolean contents");
3212 }
3213 
3214 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3215   if (!N)
3216     return false;
3217 
3218   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3219   if (!CN) {
3220     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3221     if (!BV)
3222       return false;
3223 
3224     // Only interested in constant splats, we don't care about undef
3225     // elements in identifying boolean constants and getConstantSplatNode
3226     // returns NULL if all ops are undef;
3227     CN = BV->getConstantSplatNode();
3228     if (!CN)
3229       return false;
3230   }
3231 
3232   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3233     return !CN->getAPIntValue()[0];
3234 
3235   return CN->isZero();
3236 }
3237 
3238 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3239                                        bool SExt) const {
3240   if (VT == MVT::i1)
3241     return N->isOne();
3242 
3243   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3244   switch (Cnt) {
3245   case TargetLowering::ZeroOrOneBooleanContent:
3246     // An extended value of 1 is always true, unless its original type is i1,
3247     // in which case it will be sign extended to -1.
3248     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3249   case TargetLowering::UndefinedBooleanContent:
3250   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3251     return N->isAllOnes() && SExt;
3252   }
3253   llvm_unreachable("Unexpected enumeration.");
3254 }
3255 
3256 /// This helper function of SimplifySetCC tries to optimize the comparison when
3257 /// either operand of the SetCC node is a bitwise-and instruction.
3258 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3259                                          ISD::CondCode Cond, const SDLoc &DL,
3260                                          DAGCombinerInfo &DCI) const {
3261   // Match these patterns in any of their permutations:
3262   // (X & Y) == Y
3263   // (X & Y) != Y
3264   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3265     std::swap(N0, N1);
3266 
3267   EVT OpVT = N0.getValueType();
3268   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3269       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3270     return SDValue();
3271 
3272   SDValue X, Y;
3273   if (N0.getOperand(0) == N1) {
3274     X = N0.getOperand(1);
3275     Y = N0.getOperand(0);
3276   } else if (N0.getOperand(1) == N1) {
3277     X = N0.getOperand(0);
3278     Y = N0.getOperand(1);
3279   } else {
3280     return SDValue();
3281   }
3282 
3283   SelectionDAG &DAG = DCI.DAG;
3284   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3285   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3286     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3287     // Note that where Y is variable and is known to have at most one bit set
3288     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3289     // equivalent when Y == 0.
3290     assert(OpVT.isInteger());
3291     Cond = ISD::getSetCCInverse(Cond, OpVT);
3292     if (DCI.isBeforeLegalizeOps() ||
3293         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3294       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3295   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3296     // If the target supports an 'and-not' or 'and-complement' logic operation,
3297     // try to use that to make a comparison operation more efficient.
3298     // But don't do this transform if the mask is a single bit because there are
3299     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3300     // 'rlwinm' on PPC).
3301 
3302     // Bail out if the compare operand that we want to turn into a zero is
3303     // already a zero (otherwise, infinite loop).
3304     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3305     if (YConst && YConst->isZero())
3306       return SDValue();
3307 
3308     // Transform this into: ~X & Y == 0.
3309     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3310     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3311     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3312   }
3313 
3314   return SDValue();
3315 }
3316 
3317 /// There are multiple IR patterns that could be checking whether certain
3318 /// truncation of a signed number would be lossy or not. The pattern which is
3319 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3320 /// We are looking for the following pattern: (KeptBits is a constant)
3321 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3322 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3323 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3324 /// We will unfold it into the natural trunc+sext pattern:
3325 ///   ((%x << C) a>> C) dstcond %x
3326 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3327 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3328     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3329     const SDLoc &DL) const {
3330   // We must be comparing with a constant.
3331   ConstantSDNode *C1;
3332   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3333     return SDValue();
3334 
3335   // N0 should be:  add %x, (1 << (KeptBits-1))
3336   if (N0->getOpcode() != ISD::ADD)
3337     return SDValue();
3338 
3339   // And we must be 'add'ing a constant.
3340   ConstantSDNode *C01;
3341   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3342     return SDValue();
3343 
3344   SDValue X = N0->getOperand(0);
3345   EVT XVT = X.getValueType();
3346 
3347   // Validate constants ...
3348 
3349   APInt I1 = C1->getAPIntValue();
3350 
3351   ISD::CondCode NewCond;
3352   if (Cond == ISD::CondCode::SETULT) {
3353     NewCond = ISD::CondCode::SETEQ;
3354   } else if (Cond == ISD::CondCode::SETULE) {
3355     NewCond = ISD::CondCode::SETEQ;
3356     // But need to 'canonicalize' the constant.
3357     I1 += 1;
3358   } else if (Cond == ISD::CondCode::SETUGT) {
3359     NewCond = ISD::CondCode::SETNE;
3360     // But need to 'canonicalize' the constant.
3361     I1 += 1;
3362   } else if (Cond == ISD::CondCode::SETUGE) {
3363     NewCond = ISD::CondCode::SETNE;
3364   } else
3365     return SDValue();
3366 
3367   APInt I01 = C01->getAPIntValue();
3368 
3369   auto checkConstants = [&I1, &I01]() -> bool {
3370     // Both of them must be power-of-two, and the constant from setcc is bigger.
3371     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3372   };
3373 
3374   if (checkConstants()) {
3375     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3376   } else {
3377     // What if we invert constants? (and the target predicate)
3378     I1.negate();
3379     I01.negate();
3380     assert(XVT.isInteger());
3381     NewCond = getSetCCInverse(NewCond, XVT);
3382     if (!checkConstants())
3383       return SDValue();
3384     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3385   }
3386 
3387   // They are power-of-two, so which bit is set?
3388   const unsigned KeptBits = I1.logBase2();
3389   const unsigned KeptBitsMinusOne = I01.logBase2();
3390 
3391   // Magic!
3392   if (KeptBits != (KeptBitsMinusOne + 1))
3393     return SDValue();
3394   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3395 
3396   // We don't want to do this in every single case.
3397   SelectionDAG &DAG = DCI.DAG;
3398   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3399           XVT, KeptBits))
3400     return SDValue();
3401 
3402   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3403   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3404 
3405   // Unfold into:  ((%x << C) a>> C) cond %x
3406   // Where 'cond' will be either 'eq' or 'ne'.
3407   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3408   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3409   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3410   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3411 
3412   return T2;
3413 }
3414 
3415 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3416 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3417     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3418     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3419   assert(isConstOrConstSplat(N1C) &&
3420          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3421          "Should be a comparison with 0.");
3422   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3423          "Valid only for [in]equality comparisons.");
3424 
3425   unsigned NewShiftOpcode;
3426   SDValue X, C, Y;
3427 
3428   SelectionDAG &DAG = DCI.DAG;
3429   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3430 
3431   // Look for '(C l>>/<< Y)'.
3432   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3433     // The shift should be one-use.
3434     if (!V.hasOneUse())
3435       return false;
3436     unsigned OldShiftOpcode = V.getOpcode();
3437     switch (OldShiftOpcode) {
3438     case ISD::SHL:
3439       NewShiftOpcode = ISD::SRL;
3440       break;
3441     case ISD::SRL:
3442       NewShiftOpcode = ISD::SHL;
3443       break;
3444     default:
3445       return false; // must be a logical shift.
3446     }
3447     // We should be shifting a constant.
3448     // FIXME: best to use isConstantOrConstantVector().
3449     C = V.getOperand(0);
3450     ConstantSDNode *CC =
3451         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3452     if (!CC)
3453       return false;
3454     Y = V.getOperand(1);
3455 
3456     ConstantSDNode *XC =
3457         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3458     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3459         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3460   };
3461 
3462   // LHS of comparison should be an one-use 'and'.
3463   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3464     return SDValue();
3465 
3466   X = N0.getOperand(0);
3467   SDValue Mask = N0.getOperand(1);
3468 
3469   // 'and' is commutative!
3470   if (!Match(Mask)) {
3471     std::swap(X, Mask);
3472     if (!Match(Mask))
3473       return SDValue();
3474   }
3475 
3476   EVT VT = X.getValueType();
3477 
3478   // Produce:
3479   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3480   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3481   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3482   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3483   return T2;
3484 }
3485 
3486 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3487 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3488 /// handle the commuted versions of these patterns.
3489 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3490                                            ISD::CondCode Cond, const SDLoc &DL,
3491                                            DAGCombinerInfo &DCI) const {
3492   unsigned BOpcode = N0.getOpcode();
3493   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3494          "Unexpected binop");
3495   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3496 
3497   // (X + Y) == X --> Y == 0
3498   // (X - Y) == X --> Y == 0
3499   // (X ^ Y) == X --> Y == 0
3500   SelectionDAG &DAG = DCI.DAG;
3501   EVT OpVT = N0.getValueType();
3502   SDValue X = N0.getOperand(0);
3503   SDValue Y = N0.getOperand(1);
3504   if (X == N1)
3505     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3506 
3507   if (Y != N1)
3508     return SDValue();
3509 
3510   // (X + Y) == Y --> X == 0
3511   // (X ^ Y) == Y --> X == 0
3512   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3513     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3514 
3515   // The shift would not be valid if the operands are boolean (i1).
3516   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3517     return SDValue();
3518 
3519   // (X - Y) == Y --> X == Y << 1
3520   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3521                                  !DCI.isBeforeLegalize());
3522   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3523   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3524   if (!DCI.isCalledByLegalizer())
3525     DCI.AddToWorklist(YShl1.getNode());
3526   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3527 }
3528 
3529 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3530                                       SDValue N0, const APInt &C1,
3531                                       ISD::CondCode Cond, const SDLoc &dl,
3532                                       SelectionDAG &DAG) {
3533   // Look through truncs that don't change the value of a ctpop.
3534   // FIXME: Add vector support? Need to be careful with setcc result type below.
3535   SDValue CTPOP = N0;
3536   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3537       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3538     CTPOP = N0.getOperand(0);
3539 
3540   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3541     return SDValue();
3542 
3543   EVT CTVT = CTPOP.getValueType();
3544   SDValue CTOp = CTPOP.getOperand(0);
3545 
3546   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3547   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3548   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3549     return SDValue();
3550 
3551   // (ctpop x) u< 2 -> (x & x-1) == 0
3552   // (ctpop x) u> 1 -> (x & x-1) != 0
3553   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3554     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3555     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3556       return SDValue();
3557     if (C1 == 0 && (Cond == ISD::SETULT))
3558       return SDValue(); // This is handled elsewhere.
3559 
3560     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3561 
3562     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3563     SDValue Result = CTOp;
3564     for (unsigned i = 0; i < Passes; i++) {
3565       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3566       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3567     }
3568     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3569     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3570   }
3571 
3572   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3573   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3574     // For scalars, keep CTPOP if it is legal or custom.
3575     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3576       return SDValue();
3577     // This is based on X86's custom lowering for CTPOP which produces more
3578     // instructions than the expansion here.
3579 
3580     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3581     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3582     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3583     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3584     assert(CTVT.isInteger());
3585     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3586     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3587     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3588     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3589     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3590     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3591     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3592   }
3593 
3594   return SDValue();
3595 }
3596 
3597 /// Try to simplify a setcc built with the specified operands and cc. If it is
3598 /// unable to simplify it, return a null SDValue.
3599 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3600                                       ISD::CondCode Cond, bool foldBooleans,
3601                                       DAGCombinerInfo &DCI,
3602                                       const SDLoc &dl) const {
3603   SelectionDAG &DAG = DCI.DAG;
3604   const DataLayout &Layout = DAG.getDataLayout();
3605   EVT OpVT = N0.getValueType();
3606 
3607   // Constant fold or commute setcc.
3608   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3609     return Fold;
3610 
3611   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3612   // TODO: Handle non-splat vector constants. All undef causes trouble.
3613   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3614   // infinite loop here when we encounter one.
3615   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3616   if (isConstOrConstSplat(N0) &&
3617       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3618       (DCI.isBeforeLegalizeOps() ||
3619        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3620     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3621 
3622   // If we have a subtract with the same 2 non-constant operands as this setcc
3623   // -- but in reverse order -- then try to commute the operands of this setcc
3624   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3625   // instruction on some targets.
3626   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3627       (DCI.isBeforeLegalizeOps() ||
3628        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3629       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3630       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3631     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3632 
3633   if (auto *N1C = isConstOrConstSplat(N1)) {
3634     const APInt &C1 = N1C->getAPIntValue();
3635 
3636     // Optimize some CTPOP cases.
3637     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3638       return V;
3639 
3640     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3641     // equality comparison, then we're just comparing whether X itself is
3642     // zero.
3643     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
3644         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3645         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3646       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3647         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3648             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3649           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3650             // (srl (ctlz x), 5) == 0  -> X != 0
3651             // (srl (ctlz x), 5) != 1  -> X != 0
3652             Cond = ISD::SETNE;
3653           } else {
3654             // (srl (ctlz x), 5) != 0  -> X == 0
3655             // (srl (ctlz x), 5) == 1  -> X == 0
3656             Cond = ISD::SETEQ;
3657           }
3658           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3659           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3660                               Cond);
3661         }
3662       }
3663     }
3664   }
3665 
3666   // FIXME: Support vectors.
3667   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3668     const APInt &C1 = N1C->getAPIntValue();
3669 
3670     // (zext x) == C --> x == (trunc C)
3671     // (sext x) == C --> x == (trunc C)
3672     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3673         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3674       unsigned MinBits = N0.getValueSizeInBits();
3675       SDValue PreExt;
3676       bool Signed = false;
3677       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3678         // ZExt
3679         MinBits = N0->getOperand(0).getValueSizeInBits();
3680         PreExt = N0->getOperand(0);
3681       } else if (N0->getOpcode() == ISD::AND) {
3682         // DAGCombine turns costly ZExts into ANDs
3683         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3684           if ((C->getAPIntValue()+1).isPowerOf2()) {
3685             MinBits = C->getAPIntValue().countTrailingOnes();
3686             PreExt = N0->getOperand(0);
3687           }
3688       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3689         // SExt
3690         MinBits = N0->getOperand(0).getValueSizeInBits();
3691         PreExt = N0->getOperand(0);
3692         Signed = true;
3693       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3694         // ZEXTLOAD / SEXTLOAD
3695         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3696           MinBits = LN0->getMemoryVT().getSizeInBits();
3697           PreExt = N0;
3698         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3699           Signed = true;
3700           MinBits = LN0->getMemoryVT().getSizeInBits();
3701           PreExt = N0;
3702         }
3703       }
3704 
3705       // Figure out how many bits we need to preserve this constant.
3706       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
3707 
3708       // Make sure we're not losing bits from the constant.
3709       if (MinBits > 0 &&
3710           MinBits < C1.getBitWidth() &&
3711           MinBits >= ReqdBits) {
3712         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3713         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3714           // Will get folded away.
3715           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3716           if (MinBits == 1 && C1 == 1)
3717             // Invert the condition.
3718             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3719                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3720           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3721           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3722         }
3723 
3724         // If truncating the setcc operands is not desirable, we can still
3725         // simplify the expression in some cases:
3726         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3727         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3728         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3729         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3730         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3731         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3732         SDValue TopSetCC = N0->getOperand(0);
3733         unsigned N0Opc = N0->getOpcode();
3734         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3735         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3736             TopSetCC.getOpcode() == ISD::SETCC &&
3737             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3738             (isConstFalseVal(N1C) ||
3739              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3740 
3741           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
3742                          (!N1C->isZero() && Cond == ISD::SETNE);
3743 
3744           if (!Inverse)
3745             return TopSetCC;
3746 
3747           ISD::CondCode InvCond = ISD::getSetCCInverse(
3748               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3749               TopSetCC.getOperand(0).getValueType());
3750           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3751                                       TopSetCC.getOperand(1),
3752                                       InvCond);
3753         }
3754       }
3755     }
3756 
3757     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3758     // equality or unsigned, and all 1 bits of the const are in the same
3759     // partial word, see if we can shorten the load.
3760     if (DCI.isBeforeLegalize() &&
3761         !ISD::isSignedIntSetCC(Cond) &&
3762         N0.getOpcode() == ISD::AND && C1 == 0 &&
3763         N0.getNode()->hasOneUse() &&
3764         isa<LoadSDNode>(N0.getOperand(0)) &&
3765         N0.getOperand(0).getNode()->hasOneUse() &&
3766         isa<ConstantSDNode>(N0.getOperand(1))) {
3767       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3768       APInt bestMask;
3769       unsigned bestWidth = 0, bestOffset = 0;
3770       if (Lod->isSimple() && Lod->isUnindexed()) {
3771         unsigned origWidth = N0.getValueSizeInBits();
3772         unsigned maskWidth = origWidth;
3773         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3774         // 8 bits, but have to be careful...
3775         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3776           origWidth = Lod->getMemoryVT().getSizeInBits();
3777         const APInt &Mask = N0.getConstantOperandAPInt(1);
3778         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3779           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3780           for (unsigned offset=0; offset<origWidth/width; offset++) {
3781             if (Mask.isSubsetOf(newMask)) {
3782               if (Layout.isLittleEndian())
3783                 bestOffset = (uint64_t)offset * (width/8);
3784               else
3785                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3786               bestMask = Mask.lshr(offset * (width/8) * 8);
3787               bestWidth = width;
3788               break;
3789             }
3790             newMask <<= width;
3791           }
3792         }
3793       }
3794       if (bestWidth) {
3795         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3796         if (newVT.isRound() &&
3797             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3798           SDValue Ptr = Lod->getBasePtr();
3799           if (bestOffset != 0)
3800             Ptr =
3801                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3802           SDValue NewLoad =
3803               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3804                           Lod->getPointerInfo().getWithOffset(bestOffset),
3805                           Lod->getOriginalAlign());
3806           return DAG.getSetCC(dl, VT,
3807                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3808                                       DAG.getConstant(bestMask.trunc(bestWidth),
3809                                                       dl, newVT)),
3810                               DAG.getConstant(0LL, dl, newVT), Cond);
3811         }
3812       }
3813     }
3814 
3815     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3816     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3817       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3818 
3819       // If the comparison constant has bits in the upper part, the
3820       // zero-extended value could never match.
3821       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3822                                               C1.getBitWidth() - InSize))) {
3823         switch (Cond) {
3824         case ISD::SETUGT:
3825         case ISD::SETUGE:
3826         case ISD::SETEQ:
3827           return DAG.getConstant(0, dl, VT);
3828         case ISD::SETULT:
3829         case ISD::SETULE:
3830         case ISD::SETNE:
3831           return DAG.getConstant(1, dl, VT);
3832         case ISD::SETGT:
3833         case ISD::SETGE:
3834           // True if the sign bit of C1 is set.
3835           return DAG.getConstant(C1.isNegative(), dl, VT);
3836         case ISD::SETLT:
3837         case ISD::SETLE:
3838           // True if the sign bit of C1 isn't set.
3839           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3840         default:
3841           break;
3842         }
3843       }
3844 
3845       // Otherwise, we can perform the comparison with the low bits.
3846       switch (Cond) {
3847       case ISD::SETEQ:
3848       case ISD::SETNE:
3849       case ISD::SETUGT:
3850       case ISD::SETUGE:
3851       case ISD::SETULT:
3852       case ISD::SETULE: {
3853         EVT newVT = N0.getOperand(0).getValueType();
3854         if (DCI.isBeforeLegalizeOps() ||
3855             (isOperationLegal(ISD::SETCC, newVT) &&
3856              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3857           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3858           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3859 
3860           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3861                                           NewConst, Cond);
3862           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3863         }
3864         break;
3865       }
3866       default:
3867         break; // todo, be more careful with signed comparisons
3868       }
3869     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3870                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3871                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3872                                       OpVT)) {
3873       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3874       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3875       EVT ExtDstTy = N0.getValueType();
3876       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3877 
3878       // If the constant doesn't fit into the number of bits for the source of
3879       // the sign extension, it is impossible for both sides to be equal.
3880       if (C1.getMinSignedBits() > ExtSrcTyBits)
3881         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3882 
3883       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
3884              ExtDstTy != ExtSrcTy && "Unexpected types!");
3885       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3886       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3887                                    DAG.getConstant(Imm, dl, ExtDstTy));
3888       if (!DCI.isCalledByLegalizer())
3889         DCI.AddToWorklist(ZextOp.getNode());
3890       // Otherwise, make this a use of a zext.
3891       return DAG.getSetCC(dl, VT, ZextOp,
3892                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3893     } else if ((N1C->isZero() || N1C->isOne()) &&
3894                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3895       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3896       if (N0.getOpcode() == ISD::SETCC &&
3897           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3898           (N0.getValueType() == MVT::i1 ||
3899            getBooleanContents(N0.getOperand(0).getValueType()) ==
3900                        ZeroOrOneBooleanContent)) {
3901         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3902         if (TrueWhenTrue)
3903           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3904         // Invert the condition.
3905         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3906         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3907         if (DCI.isBeforeLegalizeOps() ||
3908             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3909           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3910       }
3911 
3912       if ((N0.getOpcode() == ISD::XOR ||
3913            (N0.getOpcode() == ISD::AND &&
3914             N0.getOperand(0).getOpcode() == ISD::XOR &&
3915             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3916           isOneConstant(N0.getOperand(1))) {
3917         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3918         // can only do this if the top bits are known zero.
3919         unsigned BitWidth = N0.getValueSizeInBits();
3920         if (DAG.MaskedValueIsZero(N0,
3921                                   APInt::getHighBitsSet(BitWidth,
3922                                                         BitWidth-1))) {
3923           // Okay, get the un-inverted input value.
3924           SDValue Val;
3925           if (N0.getOpcode() == ISD::XOR) {
3926             Val = N0.getOperand(0);
3927           } else {
3928             assert(N0.getOpcode() == ISD::AND &&
3929                     N0.getOperand(0).getOpcode() == ISD::XOR);
3930             // ((X^1)&1)^1 -> X & 1
3931             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3932                               N0.getOperand(0).getOperand(0),
3933                               N0.getOperand(1));
3934           }
3935 
3936           return DAG.getSetCC(dl, VT, Val, N1,
3937                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3938         }
3939       } else if (N1C->isOne()) {
3940         SDValue Op0 = N0;
3941         if (Op0.getOpcode() == ISD::TRUNCATE)
3942           Op0 = Op0.getOperand(0);
3943 
3944         if ((Op0.getOpcode() == ISD::XOR) &&
3945             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3946             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3947           SDValue XorLHS = Op0.getOperand(0);
3948           SDValue XorRHS = Op0.getOperand(1);
3949           // Ensure that the input setccs return an i1 type or 0/1 value.
3950           if (Op0.getValueType() == MVT::i1 ||
3951               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3952                       ZeroOrOneBooleanContent &&
3953                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3954                         ZeroOrOneBooleanContent)) {
3955             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3956             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3957             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3958           }
3959         }
3960         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
3961           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3962           if (Op0.getValueType().bitsGT(VT))
3963             Op0 = DAG.getNode(ISD::AND, dl, VT,
3964                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3965                           DAG.getConstant(1, dl, VT));
3966           else if (Op0.getValueType().bitsLT(VT))
3967             Op0 = DAG.getNode(ISD::AND, dl, VT,
3968                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3969                         DAG.getConstant(1, dl, VT));
3970 
3971           return DAG.getSetCC(dl, VT, Op0,
3972                               DAG.getConstant(0, dl, Op0.getValueType()),
3973                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3974         }
3975         if (Op0.getOpcode() == ISD::AssertZext &&
3976             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3977           return DAG.getSetCC(dl, VT, Op0,
3978                               DAG.getConstant(0, dl, Op0.getValueType()),
3979                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3980       }
3981     }
3982 
3983     // Given:
3984     //   icmp eq/ne (urem %x, %y), 0
3985     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3986     //   icmp eq/ne %x, 0
3987     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
3988         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3989       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3990       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3991       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3992         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3993     }
3994 
3995     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
3996     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
3997     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3998         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
3999         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4000         N1C && N1C->isAllOnes()) {
4001       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4002                           DAG.getConstant(0, dl, OpVT),
4003                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4004     }
4005 
4006     if (SDValue V =
4007             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4008       return V;
4009   }
4010 
4011   // These simplifications apply to splat vectors as well.
4012   // TODO: Handle more splat vector cases.
4013   if (auto *N1C = isConstOrConstSplat(N1)) {
4014     const APInt &C1 = N1C->getAPIntValue();
4015 
4016     APInt MinVal, MaxVal;
4017     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4018     if (ISD::isSignedIntSetCC(Cond)) {
4019       MinVal = APInt::getSignedMinValue(OperandBitSize);
4020       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4021     } else {
4022       MinVal = APInt::getMinValue(OperandBitSize);
4023       MaxVal = APInt::getMaxValue(OperandBitSize);
4024     }
4025 
4026     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4027     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4028       // X >= MIN --> true
4029       if (C1 == MinVal)
4030         return DAG.getBoolConstant(true, dl, VT, OpVT);
4031 
4032       if (!VT.isVector()) { // TODO: Support this for vectors.
4033         // X >= C0 --> X > (C0 - 1)
4034         APInt C = C1 - 1;
4035         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4036         if ((DCI.isBeforeLegalizeOps() ||
4037              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4038             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4039                                   isLegalICmpImmediate(C.getSExtValue())))) {
4040           return DAG.getSetCC(dl, VT, N0,
4041                               DAG.getConstant(C, dl, N1.getValueType()),
4042                               NewCC);
4043         }
4044       }
4045     }
4046 
4047     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4048       // X <= MAX --> true
4049       if (C1 == MaxVal)
4050         return DAG.getBoolConstant(true, dl, VT, OpVT);
4051 
4052       // X <= C0 --> X < (C0 + 1)
4053       if (!VT.isVector()) { // TODO: Support this for vectors.
4054         APInt C = C1 + 1;
4055         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4056         if ((DCI.isBeforeLegalizeOps() ||
4057              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4058             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4059                                   isLegalICmpImmediate(C.getSExtValue())))) {
4060           return DAG.getSetCC(dl, VT, N0,
4061                               DAG.getConstant(C, dl, N1.getValueType()),
4062                               NewCC);
4063         }
4064       }
4065     }
4066 
4067     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4068       if (C1 == MinVal)
4069         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4070 
4071       // TODO: Support this for vectors after legalize ops.
4072       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4073         // Canonicalize setlt X, Max --> setne X, Max
4074         if (C1 == MaxVal)
4075           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4076 
4077         // If we have setult X, 1, turn it into seteq X, 0
4078         if (C1 == MinVal+1)
4079           return DAG.getSetCC(dl, VT, N0,
4080                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4081                               ISD::SETEQ);
4082       }
4083     }
4084 
4085     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4086       if (C1 == MaxVal)
4087         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4088 
4089       // TODO: Support this for vectors after legalize ops.
4090       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4091         // Canonicalize setgt X, Min --> setne X, Min
4092         if (C1 == MinVal)
4093           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4094 
4095         // If we have setugt X, Max-1, turn it into seteq X, Max
4096         if (C1 == MaxVal-1)
4097           return DAG.getSetCC(dl, VT, N0,
4098                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4099                               ISD::SETEQ);
4100       }
4101     }
4102 
4103     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4104       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4105       if (C1.isZero())
4106         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4107                 VT, N0, N1, Cond, DCI, dl))
4108           return CC;
4109 
4110       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4111       // For example, when high 32-bits of i64 X are known clear:
4112       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4113       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4114       bool CmpZero = N1C->getAPIntValue().isZero();
4115       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4116       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4117         // Match or(lo,shl(hi,bw/2)) pattern.
4118         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4119           unsigned EltBits = V.getScalarValueSizeInBits();
4120           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4121             return false;
4122           SDValue LHS = V.getOperand(0);
4123           SDValue RHS = V.getOperand(1);
4124           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4125           // Unshifted element must have zero upperbits.
4126           if (RHS.getOpcode() == ISD::SHL &&
4127               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4128               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4129               DAG.MaskedValueIsZero(LHS, HiBits)) {
4130             Lo = LHS;
4131             Hi = RHS.getOperand(0);
4132             return true;
4133           }
4134           if (LHS.getOpcode() == ISD::SHL &&
4135               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4136               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4137               DAG.MaskedValueIsZero(RHS, HiBits)) {
4138             Lo = RHS;
4139             Hi = LHS.getOperand(0);
4140             return true;
4141           }
4142           return false;
4143         };
4144 
4145         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4146           unsigned EltBits = N0.getScalarValueSizeInBits();
4147           unsigned HalfBits = EltBits / 2;
4148           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4149           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4150           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4151           SDValue NewN0 =
4152               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4153           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4154           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4155         };
4156 
4157         SDValue Lo, Hi;
4158         if (IsConcat(N0, Lo, Hi))
4159           return MergeConcat(Lo, Hi);
4160 
4161         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4162           SDValue Lo0, Lo1, Hi0, Hi1;
4163           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4164               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4165             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4166                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4167           }
4168         }
4169       }
4170     }
4171 
4172     // If we have "setcc X, C0", check to see if we can shrink the immediate
4173     // by changing cc.
4174     // TODO: Support this for vectors after legalize ops.
4175     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4176       // SETUGT X, SINTMAX  -> SETLT X, 0
4177       // SETUGE X, SINTMIN -> SETLT X, 0
4178       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4179           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4180         return DAG.getSetCC(dl, VT, N0,
4181                             DAG.getConstant(0, dl, N1.getValueType()),
4182                             ISD::SETLT);
4183 
4184       // SETULT X, SINTMIN  -> SETGT X, -1
4185       // SETULE X, SINTMAX  -> SETGT X, -1
4186       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4187           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4188         return DAG.getSetCC(dl, VT, N0,
4189                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4190                             ISD::SETGT);
4191     }
4192   }
4193 
4194   // Back to non-vector simplifications.
4195   // TODO: Can we do these for vector splats?
4196   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4197     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4198     const APInt &C1 = N1C->getAPIntValue();
4199     EVT ShValTy = N0.getValueType();
4200 
4201     // Fold bit comparisons when we can. This will result in an
4202     // incorrect value when boolean false is negative one, unless
4203     // the bitsize is 1 in which case the false value is the same
4204     // in practice regardless of the representation.
4205     if ((VT.getSizeInBits() == 1 ||
4206          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4207         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4208         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4209         N0.getOpcode() == ISD::AND) {
4210       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4211         EVT ShiftTy =
4212             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4213         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4214           // Perform the xform if the AND RHS is a single bit.
4215           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4216           if (AndRHS->getAPIntValue().isPowerOf2() &&
4217               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4218             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4219                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4220                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4221           }
4222         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4223           // (X & 8) == 8  -->  (X & 8) >> 3
4224           // Perform the xform if C1 is a single bit.
4225           unsigned ShCt = C1.logBase2();
4226           if (C1.isPowerOf2() &&
4227               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4228             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4229                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4230                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4231           }
4232         }
4233       }
4234     }
4235 
4236     if (C1.getMinSignedBits() <= 64 &&
4237         !isLegalICmpImmediate(C1.getSExtValue())) {
4238       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4239       // (X & -256) == 256 -> (X >> 8) == 1
4240       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4241           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4242         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4243           const APInt &AndRHSC = AndRHS->getAPIntValue();
4244           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4245             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4246             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4247               SDValue Shift =
4248                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4249                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4250               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4251               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4252             }
4253           }
4254         }
4255       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4256                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4257         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4258         // X <  0x100000000 -> (X >> 32) <  1
4259         // X >= 0x100000000 -> (X >> 32) >= 1
4260         // X <= 0x0ffffffff -> (X >> 32) <  1
4261         // X >  0x0ffffffff -> (X >> 32) >= 1
4262         unsigned ShiftBits;
4263         APInt NewC = C1;
4264         ISD::CondCode NewCond = Cond;
4265         if (AdjOne) {
4266           ShiftBits = C1.countTrailingOnes();
4267           NewC = NewC + 1;
4268           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4269         } else {
4270           ShiftBits = C1.countTrailingZeros();
4271         }
4272         NewC.lshrInPlace(ShiftBits);
4273         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4274             isLegalICmpImmediate(NewC.getSExtValue()) &&
4275             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4276           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4277                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4278           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4279           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4280         }
4281       }
4282     }
4283   }
4284 
4285   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4286     auto *CFP = cast<ConstantFPSDNode>(N1);
4287     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4288 
4289     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4290     // constant if knowing that the operand is non-nan is enough.  We prefer to
4291     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4292     // materialize 0.0.
4293     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4294       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4295 
4296     // setcc (fneg x), C -> setcc swap(pred) x, -C
4297     if (N0.getOpcode() == ISD::FNEG) {
4298       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4299       if (DCI.isBeforeLegalizeOps() ||
4300           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4301         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4302         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4303       }
4304     }
4305 
4306     // If the condition is not legal, see if we can find an equivalent one
4307     // which is legal.
4308     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4309       // If the comparison was an awkward floating-point == or != and one of
4310       // the comparison operands is infinity or negative infinity, convert the
4311       // condition to a less-awkward <= or >=.
4312       if (CFP->getValueAPF().isInfinity()) {
4313         bool IsNegInf = CFP->getValueAPF().isNegative();
4314         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4315         switch (Cond) {
4316         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4317         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4318         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4319         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4320         default: break;
4321         }
4322         if (NewCond != ISD::SETCC_INVALID &&
4323             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4324           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4325       }
4326     }
4327   }
4328 
4329   if (N0 == N1) {
4330     // The sext(setcc()) => setcc() optimization relies on the appropriate
4331     // constant being emitted.
4332     assert(!N0.getValueType().isInteger() &&
4333            "Integer types should be handled by FoldSetCC");
4334 
4335     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4336     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4337     if (UOF == 2) // FP operators that are undefined on NaNs.
4338       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4339     if (UOF == unsigned(EqTrue))
4340       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4341     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4342     // if it is not already.
4343     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4344     if (NewCond != Cond &&
4345         (DCI.isBeforeLegalizeOps() ||
4346                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4347       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4348   }
4349 
4350   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4351       N0.getValueType().isInteger()) {
4352     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4353         N0.getOpcode() == ISD::XOR) {
4354       // Simplify (X+Y) == (X+Z) -->  Y == Z
4355       if (N0.getOpcode() == N1.getOpcode()) {
4356         if (N0.getOperand(0) == N1.getOperand(0))
4357           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4358         if (N0.getOperand(1) == N1.getOperand(1))
4359           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4360         if (isCommutativeBinOp(N0.getOpcode())) {
4361           // If X op Y == Y op X, try other combinations.
4362           if (N0.getOperand(0) == N1.getOperand(1))
4363             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4364                                 Cond);
4365           if (N0.getOperand(1) == N1.getOperand(0))
4366             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4367                                 Cond);
4368         }
4369       }
4370 
4371       // If RHS is a legal immediate value for a compare instruction, we need
4372       // to be careful about increasing register pressure needlessly.
4373       bool LegalRHSImm = false;
4374 
4375       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4376         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4377           // Turn (X+C1) == C2 --> X == C2-C1
4378           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4379             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4380                                 DAG.getConstant(RHSC->getAPIntValue()-
4381                                                 LHSR->getAPIntValue(),
4382                                 dl, N0.getValueType()), Cond);
4383           }
4384 
4385           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4386           if (N0.getOpcode() == ISD::XOR)
4387             // If we know that all of the inverted bits are zero, don't bother
4388             // performing the inversion.
4389             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4390               return
4391                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4392                              DAG.getConstant(LHSR->getAPIntValue() ^
4393                                                RHSC->getAPIntValue(),
4394                                              dl, N0.getValueType()),
4395                              Cond);
4396         }
4397 
4398         // Turn (C1-X) == C2 --> X == C1-C2
4399         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4400           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4401             return
4402               DAG.getSetCC(dl, VT, N0.getOperand(1),
4403                            DAG.getConstant(SUBC->getAPIntValue() -
4404                                              RHSC->getAPIntValue(),
4405                                            dl, N0.getValueType()),
4406                            Cond);
4407           }
4408         }
4409 
4410         // Could RHSC fold directly into a compare?
4411         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4412           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4413       }
4414 
4415       // (X+Y) == X --> Y == 0 and similar folds.
4416       // Don't do this if X is an immediate that can fold into a cmp
4417       // instruction and X+Y has other uses. It could be an induction variable
4418       // chain, and the transform would increase register pressure.
4419       if (!LegalRHSImm || N0.hasOneUse())
4420         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4421           return V;
4422     }
4423 
4424     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4425         N1.getOpcode() == ISD::XOR)
4426       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4427         return V;
4428 
4429     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4430       return V;
4431   }
4432 
4433   // Fold remainder of division by a constant.
4434   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4435       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4436     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4437 
4438     // When division is cheap or optimizing for minimum size,
4439     // fall through to DIVREM creation by skipping this fold.
4440     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4441       if (N0.getOpcode() == ISD::UREM) {
4442         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4443           return Folded;
4444       } else if (N0.getOpcode() == ISD::SREM) {
4445         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4446           return Folded;
4447       }
4448     }
4449   }
4450 
4451   // Fold away ALL boolean setcc's.
4452   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4453     SDValue Temp;
4454     switch (Cond) {
4455     default: llvm_unreachable("Unknown integer setcc!");
4456     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4457       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4458       N0 = DAG.getNOT(dl, Temp, OpVT);
4459       if (!DCI.isCalledByLegalizer())
4460         DCI.AddToWorklist(Temp.getNode());
4461       break;
4462     case ISD::SETNE:  // X != Y   -->  (X^Y)
4463       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4464       break;
4465     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4466     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4467       Temp = DAG.getNOT(dl, N0, OpVT);
4468       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4469       if (!DCI.isCalledByLegalizer())
4470         DCI.AddToWorklist(Temp.getNode());
4471       break;
4472     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4473     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4474       Temp = DAG.getNOT(dl, N1, OpVT);
4475       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4476       if (!DCI.isCalledByLegalizer())
4477         DCI.AddToWorklist(Temp.getNode());
4478       break;
4479     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4480     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4481       Temp = DAG.getNOT(dl, N0, OpVT);
4482       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4483       if (!DCI.isCalledByLegalizer())
4484         DCI.AddToWorklist(Temp.getNode());
4485       break;
4486     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4487     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4488       Temp = DAG.getNOT(dl, N1, OpVT);
4489       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4490       break;
4491     }
4492     if (VT.getScalarType() != MVT::i1) {
4493       if (!DCI.isCalledByLegalizer())
4494         DCI.AddToWorklist(N0.getNode());
4495       // FIXME: If running after legalize, we probably can't do this.
4496       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4497       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4498     }
4499     return N0;
4500   }
4501 
4502   // Could not fold it.
4503   return SDValue();
4504 }
4505 
4506 /// Returns true (and the GlobalValue and the offset) if the node is a
4507 /// GlobalAddress + offset.
4508 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4509                                     int64_t &Offset) const {
4510 
4511   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4512 
4513   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4514     GA = GASD->getGlobal();
4515     Offset += GASD->getOffset();
4516     return true;
4517   }
4518 
4519   if (N->getOpcode() == ISD::ADD) {
4520     SDValue N1 = N->getOperand(0);
4521     SDValue N2 = N->getOperand(1);
4522     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4523       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4524         Offset += V->getSExtValue();
4525         return true;
4526       }
4527     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4528       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4529         Offset += V->getSExtValue();
4530         return true;
4531       }
4532     }
4533   }
4534 
4535   return false;
4536 }
4537 
4538 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4539                                           DAGCombinerInfo &DCI) const {
4540   // Default implementation: no optimization.
4541   return SDValue();
4542 }
4543 
4544 //===----------------------------------------------------------------------===//
4545 //  Inline Assembler Implementation Methods
4546 //===----------------------------------------------------------------------===//
4547 
4548 TargetLowering::ConstraintType
4549 TargetLowering::getConstraintType(StringRef Constraint) const {
4550   unsigned S = Constraint.size();
4551 
4552   if (S == 1) {
4553     switch (Constraint[0]) {
4554     default: break;
4555     case 'r':
4556       return C_RegisterClass;
4557     case 'm': // memory
4558     case 'o': // offsetable
4559     case 'V': // not offsetable
4560       return C_Memory;
4561     case 'n': // Simple Integer
4562     case 'E': // Floating Point Constant
4563     case 'F': // Floating Point Constant
4564       return C_Immediate;
4565     case 'i': // Simple Integer or Relocatable Constant
4566     case 's': // Relocatable Constant
4567     case 'p': // Address.
4568     case 'X': // Allow ANY value.
4569     case 'I': // Target registers.
4570     case 'J':
4571     case 'K':
4572     case 'L':
4573     case 'M':
4574     case 'N':
4575     case 'O':
4576     case 'P':
4577     case '<':
4578     case '>':
4579       return C_Other;
4580     }
4581   }
4582 
4583   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4584     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4585       return C_Memory;
4586     return C_Register;
4587   }
4588   return C_Unknown;
4589 }
4590 
4591 /// Try to replace an X constraint, which matches anything, with another that
4592 /// has more specific requirements based on the type of the corresponding
4593 /// operand.
4594 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4595   if (ConstraintVT.isInteger())
4596     return "r";
4597   if (ConstraintVT.isFloatingPoint())
4598     return "f"; // works for many targets
4599   return nullptr;
4600 }
4601 
4602 SDValue TargetLowering::LowerAsmOutputForConstraint(
4603     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4604     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4605   return SDValue();
4606 }
4607 
4608 /// Lower the specified operand into the Ops vector.
4609 /// If it is invalid, don't add anything to Ops.
4610 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4611                                                   std::string &Constraint,
4612                                                   std::vector<SDValue> &Ops,
4613                                                   SelectionDAG &DAG) const {
4614 
4615   if (Constraint.length() > 1) return;
4616 
4617   char ConstraintLetter = Constraint[0];
4618   switch (ConstraintLetter) {
4619   default: break;
4620   case 'X':    // Allows any operand
4621   case 'i':    // Simple Integer or Relocatable Constant
4622   case 'n':    // Simple Integer
4623   case 's': {  // Relocatable Constant
4624 
4625     ConstantSDNode *C;
4626     uint64_t Offset = 0;
4627 
4628     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4629     // etc., since getelementpointer is variadic. We can't use
4630     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4631     // while in this case the GA may be furthest from the root node which is
4632     // likely an ISD::ADD.
4633     while (true) {
4634       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4635         // gcc prints these as sign extended.  Sign extend value to 64 bits
4636         // now; without this it would get ZExt'd later in
4637         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4638         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4639         BooleanContent BCont = getBooleanContents(MVT::i64);
4640         ISD::NodeType ExtOpc =
4641             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4642         int64_t ExtVal =
4643             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4644         Ops.push_back(
4645             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4646         return;
4647       }
4648       if (ConstraintLetter != 'n') {
4649         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4650           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4651                                                    GA->getValueType(0),
4652                                                    Offset + GA->getOffset()));
4653           return;
4654         }
4655         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
4656           Ops.push_back(DAG.getTargetBlockAddress(
4657               BA->getBlockAddress(), BA->getValueType(0),
4658               Offset + BA->getOffset(), BA->getTargetFlags()));
4659           return;
4660         }
4661         if (isa<BasicBlockSDNode>(Op)) {
4662           Ops.push_back(Op);
4663           return;
4664         }
4665       }
4666       const unsigned OpCode = Op.getOpcode();
4667       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4668         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4669           Op = Op.getOperand(1);
4670         // Subtraction is not commutative.
4671         else if (OpCode == ISD::ADD &&
4672                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4673           Op = Op.getOperand(0);
4674         else
4675           return;
4676         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4677         continue;
4678       }
4679       return;
4680     }
4681     break;
4682   }
4683   }
4684 }
4685 
4686 std::pair<unsigned, const TargetRegisterClass *>
4687 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4688                                              StringRef Constraint,
4689                                              MVT VT) const {
4690   if (Constraint.empty() || Constraint[0] != '{')
4691     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4692   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4693 
4694   // Remove the braces from around the name.
4695   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4696 
4697   std::pair<unsigned, const TargetRegisterClass *> R =
4698       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4699 
4700   // Figure out which register class contains this reg.
4701   for (const TargetRegisterClass *RC : RI->regclasses()) {
4702     // If none of the value types for this register class are valid, we
4703     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4704     if (!isLegalRC(*RI, *RC))
4705       continue;
4706 
4707     for (const MCPhysReg &PR : *RC) {
4708       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
4709         std::pair<unsigned, const TargetRegisterClass *> S =
4710             std::make_pair(PR, RC);
4711 
4712         // If this register class has the requested value type, return it,
4713         // otherwise keep searching and return the first class found
4714         // if no other is found which explicitly has the requested type.
4715         if (RI->isTypeLegalForClass(*RC, VT))
4716           return S;
4717         if (!R.second)
4718           R = S;
4719       }
4720     }
4721   }
4722 
4723   return R;
4724 }
4725 
4726 //===----------------------------------------------------------------------===//
4727 // Constraint Selection.
4728 
4729 /// Return true of this is an input operand that is a matching constraint like
4730 /// "4".
4731 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4732   assert(!ConstraintCode.empty() && "No known constraint!");
4733   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4734 }
4735 
4736 /// If this is an input matching constraint, this method returns the output
4737 /// operand it matches.
4738 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4739   assert(!ConstraintCode.empty() && "No known constraint!");
4740   return atoi(ConstraintCode.c_str());
4741 }
4742 
4743 /// Split up the constraint string from the inline assembly value into the
4744 /// specific constraints and their prefixes, and also tie in the associated
4745 /// operand values.
4746 /// If this returns an empty vector, and if the constraint string itself
4747 /// isn't empty, there was an error parsing.
4748 TargetLowering::AsmOperandInfoVector
4749 TargetLowering::ParseConstraints(const DataLayout &DL,
4750                                  const TargetRegisterInfo *TRI,
4751                                  const CallBase &Call) const {
4752   /// Information about all of the constraints.
4753   AsmOperandInfoVector ConstraintOperands;
4754   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4755   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4756 
4757   // Do a prepass over the constraints, canonicalizing them, and building up the
4758   // ConstraintOperands list.
4759   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4760   unsigned ResNo = 0; // ResNo - The result number of the next output.
4761 
4762   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4763     ConstraintOperands.emplace_back(std::move(CI));
4764     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4765 
4766     // Update multiple alternative constraint count.
4767     if (OpInfo.multipleAlternatives.size() > maCount)
4768       maCount = OpInfo.multipleAlternatives.size();
4769 
4770     OpInfo.ConstraintVT = MVT::Other;
4771 
4772     // Compute the value type for each operand.
4773     switch (OpInfo.Type) {
4774     case InlineAsm::isOutput:
4775       // Indirect outputs just consume an argument.
4776       if (OpInfo.isIndirect) {
4777         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
4778         break;
4779       }
4780 
4781       // The return value of the call is this value.  As such, there is no
4782       // corresponding argument.
4783       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4784       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4785         OpInfo.ConstraintVT =
4786             getSimpleValueType(DL, STy->getElementType(ResNo));
4787       } else {
4788         assert(ResNo == 0 && "Asm only has one result!");
4789         OpInfo.ConstraintVT =
4790             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
4791       }
4792       ++ResNo;
4793       break;
4794     case InlineAsm::isInput:
4795       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
4796       break;
4797     case InlineAsm::isClobber:
4798       // Nothing to do.
4799       break;
4800     }
4801 
4802     if (OpInfo.CallOperandVal) {
4803       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4804       if (OpInfo.isIndirect) {
4805         OpTy = Call.getAttributes().getParamElementType(ArgNo);
4806         assert(OpTy && "Indirect opernad must have elementtype attribute");
4807       }
4808 
4809       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4810       if (StructType *STy = dyn_cast<StructType>(OpTy))
4811         if (STy->getNumElements() == 1)
4812           OpTy = STy->getElementType(0);
4813 
4814       // If OpTy is not a single value, it may be a struct/union that we
4815       // can tile with integers.
4816       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4817         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4818         switch (BitSize) {
4819         default: break;
4820         case 1:
4821         case 8:
4822         case 16:
4823         case 32:
4824         case 64:
4825         case 128:
4826           OpInfo.ConstraintVT =
4827               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4828           break;
4829         }
4830       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4831         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4832         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4833       } else {
4834         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4835       }
4836 
4837       ArgNo++;
4838     }
4839   }
4840 
4841   // If we have multiple alternative constraints, select the best alternative.
4842   if (!ConstraintOperands.empty()) {
4843     if (maCount) {
4844       unsigned bestMAIndex = 0;
4845       int bestWeight = -1;
4846       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4847       int weight = -1;
4848       unsigned maIndex;
4849       // Compute the sums of the weights for each alternative, keeping track
4850       // of the best (highest weight) one so far.
4851       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4852         int weightSum = 0;
4853         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4854              cIndex != eIndex; ++cIndex) {
4855           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4856           if (OpInfo.Type == InlineAsm::isClobber)
4857             continue;
4858 
4859           // If this is an output operand with a matching input operand,
4860           // look up the matching input. If their types mismatch, e.g. one
4861           // is an integer, the other is floating point, or their sizes are
4862           // different, flag it as an maCantMatch.
4863           if (OpInfo.hasMatchingInput()) {
4864             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4865             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4866               if ((OpInfo.ConstraintVT.isInteger() !=
4867                    Input.ConstraintVT.isInteger()) ||
4868                   (OpInfo.ConstraintVT.getSizeInBits() !=
4869                    Input.ConstraintVT.getSizeInBits())) {
4870                 weightSum = -1; // Can't match.
4871                 break;
4872               }
4873             }
4874           }
4875           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4876           if (weight == -1) {
4877             weightSum = -1;
4878             break;
4879           }
4880           weightSum += weight;
4881         }
4882         // Update best.
4883         if (weightSum > bestWeight) {
4884           bestWeight = weightSum;
4885           bestMAIndex = maIndex;
4886         }
4887       }
4888 
4889       // Now select chosen alternative in each constraint.
4890       for (AsmOperandInfo &cInfo : ConstraintOperands)
4891         if (cInfo.Type != InlineAsm::isClobber)
4892           cInfo.selectAlternative(bestMAIndex);
4893     }
4894   }
4895 
4896   // Check and hook up tied operands, choose constraint code to use.
4897   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4898        cIndex != eIndex; ++cIndex) {
4899     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4900 
4901     // If this is an output operand with a matching input operand, look up the
4902     // matching input. If their types mismatch, e.g. one is an integer, the
4903     // other is floating point, or their sizes are different, flag it as an
4904     // error.
4905     if (OpInfo.hasMatchingInput()) {
4906       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4907 
4908       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4909         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4910             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4911                                          OpInfo.ConstraintVT);
4912         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4913             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4914                                          Input.ConstraintVT);
4915         if ((OpInfo.ConstraintVT.isInteger() !=
4916              Input.ConstraintVT.isInteger()) ||
4917             (MatchRC.second != InputRC.second)) {
4918           report_fatal_error("Unsupported asm: input constraint"
4919                              " with a matching output constraint of"
4920                              " incompatible type!");
4921         }
4922       }
4923     }
4924   }
4925 
4926   return ConstraintOperands;
4927 }
4928 
4929 /// Return an integer indicating how general CT is.
4930 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4931   switch (CT) {
4932   case TargetLowering::C_Immediate:
4933   case TargetLowering::C_Other:
4934   case TargetLowering::C_Unknown:
4935     return 0;
4936   case TargetLowering::C_Register:
4937     return 1;
4938   case TargetLowering::C_RegisterClass:
4939     return 2;
4940   case TargetLowering::C_Memory:
4941     return 3;
4942   }
4943   llvm_unreachable("Invalid constraint type");
4944 }
4945 
4946 /// Examine constraint type and operand type and determine a weight value.
4947 /// This object must already have been set up with the operand type
4948 /// and the current alternative constraint selected.
4949 TargetLowering::ConstraintWeight
4950   TargetLowering::getMultipleConstraintMatchWeight(
4951     AsmOperandInfo &info, int maIndex) const {
4952   InlineAsm::ConstraintCodeVector *rCodes;
4953   if (maIndex >= (int)info.multipleAlternatives.size())
4954     rCodes = &info.Codes;
4955   else
4956     rCodes = &info.multipleAlternatives[maIndex].Codes;
4957   ConstraintWeight BestWeight = CW_Invalid;
4958 
4959   // Loop over the options, keeping track of the most general one.
4960   for (const std::string &rCode : *rCodes) {
4961     ConstraintWeight weight =
4962         getSingleConstraintMatchWeight(info, rCode.c_str());
4963     if (weight > BestWeight)
4964       BestWeight = weight;
4965   }
4966 
4967   return BestWeight;
4968 }
4969 
4970 /// Examine constraint type and operand type and determine a weight value.
4971 /// This object must already have been set up with the operand type
4972 /// and the current alternative constraint selected.
4973 TargetLowering::ConstraintWeight
4974   TargetLowering::getSingleConstraintMatchWeight(
4975     AsmOperandInfo &info, const char *constraint) const {
4976   ConstraintWeight weight = CW_Invalid;
4977   Value *CallOperandVal = info.CallOperandVal;
4978     // If we don't have a value, we can't do a match,
4979     // but allow it at the lowest weight.
4980   if (!CallOperandVal)
4981     return CW_Default;
4982   // Look at the constraint type.
4983   switch (*constraint) {
4984     case 'i': // immediate integer.
4985     case 'n': // immediate integer with a known value.
4986       if (isa<ConstantInt>(CallOperandVal))
4987         weight = CW_Constant;
4988       break;
4989     case 's': // non-explicit intregal immediate.
4990       if (isa<GlobalValue>(CallOperandVal))
4991         weight = CW_Constant;
4992       break;
4993     case 'E': // immediate float if host format.
4994     case 'F': // immediate float.
4995       if (isa<ConstantFP>(CallOperandVal))
4996         weight = CW_Constant;
4997       break;
4998     case '<': // memory operand with autodecrement.
4999     case '>': // memory operand with autoincrement.
5000     case 'm': // memory operand.
5001     case 'o': // offsettable memory operand
5002     case 'V': // non-offsettable memory operand
5003       weight = CW_Memory;
5004       break;
5005     case 'r': // general register.
5006     case 'g': // general register, memory operand or immediate integer.
5007               // note: Clang converts "g" to "imr".
5008       if (CallOperandVal->getType()->isIntegerTy())
5009         weight = CW_Register;
5010       break;
5011     case 'X': // any operand.
5012   default:
5013     weight = CW_Default;
5014     break;
5015   }
5016   return weight;
5017 }
5018 
5019 /// If there are multiple different constraints that we could pick for this
5020 /// operand (e.g. "imr") try to pick the 'best' one.
5021 /// This is somewhat tricky: constraints fall into four classes:
5022 ///    Other         -> immediates and magic values
5023 ///    Register      -> one specific register
5024 ///    RegisterClass -> a group of regs
5025 ///    Memory        -> memory
5026 /// Ideally, we would pick the most specific constraint possible: if we have
5027 /// something that fits into a register, we would pick it.  The problem here
5028 /// is that if we have something that could either be in a register or in
5029 /// memory that use of the register could cause selection of *other*
5030 /// operands to fail: they might only succeed if we pick memory.  Because of
5031 /// this the heuristic we use is:
5032 ///
5033 ///  1) If there is an 'other' constraint, and if the operand is valid for
5034 ///     that constraint, use it.  This makes us take advantage of 'i'
5035 ///     constraints when available.
5036 ///  2) Otherwise, pick the most general constraint present.  This prefers
5037 ///     'm' over 'r', for example.
5038 ///
5039 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5040                              const TargetLowering &TLI,
5041                              SDValue Op, SelectionDAG *DAG) {
5042   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5043   unsigned BestIdx = 0;
5044   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5045   int BestGenerality = -1;
5046 
5047   // Loop over the options, keeping track of the most general one.
5048   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5049     TargetLowering::ConstraintType CType =
5050       TLI.getConstraintType(OpInfo.Codes[i]);
5051 
5052     // Indirect 'other' or 'immediate' constraints are not allowed.
5053     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5054                                CType == TargetLowering::C_Register ||
5055                                CType == TargetLowering::C_RegisterClass))
5056       continue;
5057 
5058     // If this is an 'other' or 'immediate' constraint, see if the operand is
5059     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5060     // the operand is an integer in the range [0..31] we want to use I (saving a
5061     // load of a register), otherwise we must use 'r'.
5062     if ((CType == TargetLowering::C_Other ||
5063          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5064       assert(OpInfo.Codes[i].size() == 1 &&
5065              "Unhandled multi-letter 'other' constraint");
5066       std::vector<SDValue> ResultOps;
5067       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5068                                        ResultOps, *DAG);
5069       if (!ResultOps.empty()) {
5070         BestType = CType;
5071         BestIdx = i;
5072         break;
5073       }
5074     }
5075 
5076     // Things with matching constraints can only be registers, per gcc
5077     // documentation.  This mainly affects "g" constraints.
5078     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5079       continue;
5080 
5081     // This constraint letter is more general than the previous one, use it.
5082     int Generality = getConstraintGenerality(CType);
5083     if (Generality > BestGenerality) {
5084       BestType = CType;
5085       BestIdx = i;
5086       BestGenerality = Generality;
5087     }
5088   }
5089 
5090   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5091   OpInfo.ConstraintType = BestType;
5092 }
5093 
5094 /// Determines the constraint code and constraint type to use for the specific
5095 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5096 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5097                                             SDValue Op,
5098                                             SelectionDAG *DAG) const {
5099   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5100 
5101   // Single-letter constraints ('r') are very common.
5102   if (OpInfo.Codes.size() == 1) {
5103     OpInfo.ConstraintCode = OpInfo.Codes[0];
5104     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5105   } else {
5106     ChooseConstraint(OpInfo, *this, Op, DAG);
5107   }
5108 
5109   // 'X' matches anything.
5110   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5111     // Constants are handled elsewhere.  For Functions, the type here is the
5112     // type of the result, which is not what we want to look at; leave them
5113     // alone.
5114     Value *v = OpInfo.CallOperandVal;
5115     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5116       return;
5117     }
5118 
5119     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5120       OpInfo.ConstraintCode = "i";
5121       return;
5122     }
5123 
5124     // Otherwise, try to resolve it to something we know about by looking at
5125     // the actual operand type.
5126     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5127       OpInfo.ConstraintCode = Repl;
5128       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5129     }
5130   }
5131 }
5132 
5133 /// Given an exact SDIV by a constant, create a multiplication
5134 /// with the multiplicative inverse of the constant.
5135 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5136                               const SDLoc &dl, SelectionDAG &DAG,
5137                               SmallVectorImpl<SDNode *> &Created) {
5138   SDValue Op0 = N->getOperand(0);
5139   SDValue Op1 = N->getOperand(1);
5140   EVT VT = N->getValueType(0);
5141   EVT SVT = VT.getScalarType();
5142   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5143   EVT ShSVT = ShVT.getScalarType();
5144 
5145   bool UseSRA = false;
5146   SmallVector<SDValue, 16> Shifts, Factors;
5147 
5148   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5149     if (C->isZero())
5150       return false;
5151     APInt Divisor = C->getAPIntValue();
5152     unsigned Shift = Divisor.countTrailingZeros();
5153     if (Shift) {
5154       Divisor.ashrInPlace(Shift);
5155       UseSRA = true;
5156     }
5157     // Calculate the multiplicative inverse, using Newton's method.
5158     APInt t;
5159     APInt Factor = Divisor;
5160     while ((t = Divisor * Factor) != 1)
5161       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5162     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5163     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5164     return true;
5165   };
5166 
5167   // Collect all magic values from the build vector.
5168   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5169     return SDValue();
5170 
5171   SDValue Shift, Factor;
5172   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5173     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5174     Factor = DAG.getBuildVector(VT, dl, Factors);
5175   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5176     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5177            "Expected matchUnaryPredicate to return one element for scalable "
5178            "vectors");
5179     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5180     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5181   } else {
5182     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5183     Shift = Shifts[0];
5184     Factor = Factors[0];
5185   }
5186 
5187   SDValue Res = Op0;
5188 
5189   // Shift the value upfront if it is even, so the LSB is one.
5190   if (UseSRA) {
5191     // TODO: For UDIV use SRL instead of SRA.
5192     SDNodeFlags Flags;
5193     Flags.setExact(true);
5194     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5195     Created.push_back(Res.getNode());
5196   }
5197 
5198   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5199 }
5200 
5201 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5202                               SelectionDAG &DAG,
5203                               SmallVectorImpl<SDNode *> &Created) const {
5204   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5205   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5206   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5207     return SDValue(N, 0); // Lower SDIV as SDIV
5208   return SDValue();
5209 }
5210 
5211 /// Given an ISD::SDIV node expressing a divide by constant,
5212 /// return a DAG expression to select that will generate the same value by
5213 /// multiplying by a magic number.
5214 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5215 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5216                                   bool IsAfterLegalization,
5217                                   SmallVectorImpl<SDNode *> &Created) const {
5218   SDLoc dl(N);
5219   EVT VT = N->getValueType(0);
5220   EVT SVT = VT.getScalarType();
5221   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5222   EVT ShSVT = ShVT.getScalarType();
5223   unsigned EltBits = VT.getScalarSizeInBits();
5224   EVT MulVT;
5225 
5226   // Check to see if we can do this.
5227   // FIXME: We should be more aggressive here.
5228   if (!isTypeLegal(VT)) {
5229     // Limit this to simple scalars for now.
5230     if (VT.isVector() || !VT.isSimple())
5231       return SDValue();
5232 
5233     // If this type will be promoted to a large enough type with a legal
5234     // multiply operation, we can go ahead and do this transform.
5235     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5236       return SDValue();
5237 
5238     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5239     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5240         !isOperationLegal(ISD::MUL, MulVT))
5241       return SDValue();
5242   }
5243 
5244   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5245   if (N->getFlags().hasExact())
5246     return BuildExactSDIV(*this, N, dl, DAG, Created);
5247 
5248   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5249 
5250   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5251     if (C->isZero())
5252       return false;
5253 
5254     const APInt &Divisor = C->getAPIntValue();
5255     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5256     int NumeratorFactor = 0;
5257     int ShiftMask = -1;
5258 
5259     if (Divisor.isOne() || Divisor.isAllOnes()) {
5260       // If d is +1/-1, we just multiply the numerator by +1/-1.
5261       NumeratorFactor = Divisor.getSExtValue();
5262       magics.Magic = 0;
5263       magics.ShiftAmount = 0;
5264       ShiftMask = 0;
5265     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5266       // If d > 0 and m < 0, add the numerator.
5267       NumeratorFactor = 1;
5268     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5269       // If d < 0 and m > 0, subtract the numerator.
5270       NumeratorFactor = -1;
5271     }
5272 
5273     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5274     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5275     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5276     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5277     return true;
5278   };
5279 
5280   SDValue N0 = N->getOperand(0);
5281   SDValue N1 = N->getOperand(1);
5282 
5283   // Collect the shifts / magic values from each element.
5284   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5285     return SDValue();
5286 
5287   SDValue MagicFactor, Factor, Shift, ShiftMask;
5288   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5289     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5290     Factor = DAG.getBuildVector(VT, dl, Factors);
5291     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5292     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5293   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5294     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5295            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5296            "Expected matchUnaryPredicate to return one element for scalable "
5297            "vectors");
5298     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5299     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5300     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5301     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5302   } else {
5303     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5304     MagicFactor = MagicFactors[0];
5305     Factor = Factors[0];
5306     Shift = Shifts[0];
5307     ShiftMask = ShiftMasks[0];
5308   }
5309 
5310   // Multiply the numerator (operand 0) by the magic value.
5311   // FIXME: We should support doing a MUL in a wider type.
5312   auto GetMULHS = [&](SDValue X, SDValue Y) {
5313     // If the type isn't legal, use a wider mul of the the type calculated
5314     // earlier.
5315     if (!isTypeLegal(VT)) {
5316       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5317       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5318       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5319       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5320                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5321       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5322     }
5323 
5324     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5325       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5326     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5327       SDValue LoHi =
5328           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5329       return SDValue(LoHi.getNode(), 1);
5330     }
5331     return SDValue();
5332   };
5333 
5334   SDValue Q = GetMULHS(N0, MagicFactor);
5335   if (!Q)
5336     return SDValue();
5337 
5338   Created.push_back(Q.getNode());
5339 
5340   // (Optionally) Add/subtract the numerator using Factor.
5341   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5342   Created.push_back(Factor.getNode());
5343   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5344   Created.push_back(Q.getNode());
5345 
5346   // Shift right algebraic by shift value.
5347   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5348   Created.push_back(Q.getNode());
5349 
5350   // Extract the sign bit, mask it and add it to the quotient.
5351   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5352   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5353   Created.push_back(T.getNode());
5354   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5355   Created.push_back(T.getNode());
5356   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5357 }
5358 
5359 /// Given an ISD::UDIV node expressing a divide by constant,
5360 /// return a DAG expression to select that will generate the same value by
5361 /// multiplying by a magic number.
5362 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5363 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5364                                   bool IsAfterLegalization,
5365                                   SmallVectorImpl<SDNode *> &Created) const {
5366   SDLoc dl(N);
5367   EVT VT = N->getValueType(0);
5368   EVT SVT = VT.getScalarType();
5369   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5370   EVT ShSVT = ShVT.getScalarType();
5371   unsigned EltBits = VT.getScalarSizeInBits();
5372   EVT MulVT;
5373 
5374   // Check to see if we can do this.
5375   // FIXME: We should be more aggressive here.
5376   if (!isTypeLegal(VT)) {
5377     // Limit this to simple scalars for now.
5378     if (VT.isVector() || !VT.isSimple())
5379       return SDValue();
5380 
5381     // If this type will be promoted to a large enough type with a legal
5382     // multiply operation, we can go ahead and do this transform.
5383     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5384       return SDValue();
5385 
5386     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5387     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5388         !isOperationLegal(ISD::MUL, MulVT))
5389       return SDValue();
5390   }
5391 
5392   bool UseNPQ = false;
5393   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5394 
5395   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5396     if (C->isZero())
5397       return false;
5398     // FIXME: We should use a narrower constant when the upper
5399     // bits are known to be zero.
5400     const APInt& Divisor = C->getAPIntValue();
5401     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5402     unsigned PreShift = 0, PostShift = 0;
5403 
5404     // If the divisor is even, we can avoid using the expensive fixup by
5405     // shifting the divided value upfront.
5406     if (magics.IsAdd != 0 && !Divisor[0]) {
5407       PreShift = Divisor.countTrailingZeros();
5408       // Get magic number for the shifted divisor.
5409       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5410       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5411     }
5412 
5413     APInt Magic = magics.Magic;
5414 
5415     unsigned SelNPQ;
5416     if (magics.IsAdd == 0 || Divisor.isOne()) {
5417       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5418              "We shouldn't generate an undefined shift!");
5419       PostShift = magics.ShiftAmount;
5420       SelNPQ = false;
5421     } else {
5422       PostShift = magics.ShiftAmount - 1;
5423       SelNPQ = true;
5424     }
5425 
5426     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5427     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5428     NPQFactors.push_back(
5429         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5430                                : APInt::getZero(EltBits),
5431                         dl, SVT));
5432     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5433     UseNPQ |= SelNPQ;
5434     return true;
5435   };
5436 
5437   SDValue N0 = N->getOperand(0);
5438   SDValue N1 = N->getOperand(1);
5439 
5440   // Collect the shifts/magic values from each element.
5441   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5442     return SDValue();
5443 
5444   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5445   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5446     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5447     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5448     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5449     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5450   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5451     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5452            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5453            "Expected matchUnaryPredicate to return one for scalable vectors");
5454     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5455     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5456     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5457     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5458   } else {
5459     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5460     PreShift = PreShifts[0];
5461     MagicFactor = MagicFactors[0];
5462     PostShift = PostShifts[0];
5463   }
5464 
5465   SDValue Q = N0;
5466   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5467   Created.push_back(Q.getNode());
5468 
5469   // FIXME: We should support doing a MUL in a wider type.
5470   auto GetMULHU = [&](SDValue X, SDValue Y) {
5471     // If the type isn't legal, use a wider mul of the the type calculated
5472     // earlier.
5473     if (!isTypeLegal(VT)) {
5474       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5475       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5476       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5477       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5478                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5479       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5480     }
5481 
5482     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5483       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5484     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5485       SDValue LoHi =
5486           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5487       return SDValue(LoHi.getNode(), 1);
5488     }
5489     return SDValue(); // No mulhu or equivalent
5490   };
5491 
5492   // Multiply the numerator (operand 0) by the magic value.
5493   Q = GetMULHU(Q, MagicFactor);
5494   if (!Q)
5495     return SDValue();
5496 
5497   Created.push_back(Q.getNode());
5498 
5499   if (UseNPQ) {
5500     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5501     Created.push_back(NPQ.getNode());
5502 
5503     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5504     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5505     if (VT.isVector())
5506       NPQ = GetMULHU(NPQ, NPQFactor);
5507     else
5508       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5509 
5510     Created.push_back(NPQ.getNode());
5511 
5512     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5513     Created.push_back(Q.getNode());
5514   }
5515 
5516   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5517   Created.push_back(Q.getNode());
5518 
5519   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5520 
5521   SDValue One = DAG.getConstant(1, dl, VT);
5522   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5523   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5524 }
5525 
5526 /// If all values in Values that *don't* match the predicate are same 'splat'
5527 /// value, then replace all values with that splat value.
5528 /// Else, if AlternativeReplacement was provided, then replace all values that
5529 /// do match predicate with AlternativeReplacement value.
5530 static void
5531 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5532                           std::function<bool(SDValue)> Predicate,
5533                           SDValue AlternativeReplacement = SDValue()) {
5534   SDValue Replacement;
5535   // Is there a value for which the Predicate does *NOT* match? What is it?
5536   auto SplatValue = llvm::find_if_not(Values, Predicate);
5537   if (SplatValue != Values.end()) {
5538     // Does Values consist only of SplatValue's and values matching Predicate?
5539     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5540           return Value == *SplatValue || Predicate(Value);
5541         })) // Then we shall replace values matching predicate with SplatValue.
5542       Replacement = *SplatValue;
5543   }
5544   if (!Replacement) {
5545     // Oops, we did not find the "baseline" splat value.
5546     if (!AlternativeReplacement)
5547       return; // Nothing to do.
5548     // Let's replace with provided value then.
5549     Replacement = AlternativeReplacement;
5550   }
5551   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5552 }
5553 
5554 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5555 /// where the divisor is constant and the comparison target is zero,
5556 /// return a DAG expression that will generate the same comparison result
5557 /// using only multiplications, additions and shifts/rotations.
5558 /// Ref: "Hacker's Delight" 10-17.
5559 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5560                                         SDValue CompTargetNode,
5561                                         ISD::CondCode Cond,
5562                                         DAGCombinerInfo &DCI,
5563                                         const SDLoc &DL) const {
5564   SmallVector<SDNode *, 5> Built;
5565   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5566                                          DCI, DL, Built)) {
5567     for (SDNode *N : Built)
5568       DCI.AddToWorklist(N);
5569     return Folded;
5570   }
5571 
5572   return SDValue();
5573 }
5574 
5575 SDValue
5576 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5577                                   SDValue CompTargetNode, ISD::CondCode Cond,
5578                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5579                                   SmallVectorImpl<SDNode *> &Created) const {
5580   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5581   // - D must be constant, with D = D0 * 2^K where D0 is odd
5582   // - P is the multiplicative inverse of D0 modulo 2^W
5583   // - Q = floor(((2^W) - 1) / D)
5584   // where W is the width of the common type of N and D.
5585   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5586          "Only applicable for (in)equality comparisons.");
5587 
5588   SelectionDAG &DAG = DCI.DAG;
5589 
5590   EVT VT = REMNode.getValueType();
5591   EVT SVT = VT.getScalarType();
5592   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5593   EVT ShSVT = ShVT.getScalarType();
5594 
5595   // If MUL is unavailable, we cannot proceed in any case.
5596   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5597     return SDValue();
5598 
5599   bool ComparingWithAllZeros = true;
5600   bool AllComparisonsWithNonZerosAreTautological = true;
5601   bool HadTautologicalLanes = false;
5602   bool AllLanesAreTautological = true;
5603   bool HadEvenDivisor = false;
5604   bool AllDivisorsArePowerOfTwo = true;
5605   bool HadTautologicalInvertedLanes = false;
5606   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5607 
5608   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5609     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5610     if (CDiv->isZero())
5611       return false;
5612 
5613     const APInt &D = CDiv->getAPIntValue();
5614     const APInt &Cmp = CCmp->getAPIntValue();
5615 
5616     ComparingWithAllZeros &= Cmp.isZero();
5617 
5618     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5619     // if C2 is not less than C1, the comparison is always false.
5620     // But we will only be able to produce the comparison that will give the
5621     // opposive tautological answer. So this lane would need to be fixed up.
5622     bool TautologicalInvertedLane = D.ule(Cmp);
5623     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5624 
5625     // If all lanes are tautological (either all divisors are ones, or divisor
5626     // is not greater than the constant we are comparing with),
5627     // we will prefer to avoid the fold.
5628     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
5629     HadTautologicalLanes |= TautologicalLane;
5630     AllLanesAreTautological &= TautologicalLane;
5631 
5632     // If we are comparing with non-zero, we need'll need  to subtract said
5633     // comparison value from the LHS. But there is no point in doing that if
5634     // every lane where we are comparing with non-zero is tautological..
5635     if (!Cmp.isZero())
5636       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5637 
5638     // Decompose D into D0 * 2^K
5639     unsigned K = D.countTrailingZeros();
5640     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5641     APInt D0 = D.lshr(K);
5642 
5643     // D is even if it has trailing zeros.
5644     HadEvenDivisor |= (K != 0);
5645     // D is a power-of-two if D0 is one.
5646     // If all divisors are power-of-two, we will prefer to avoid the fold.
5647     AllDivisorsArePowerOfTwo &= D0.isOne();
5648 
5649     // P = inv(D0, 2^W)
5650     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5651     unsigned W = D.getBitWidth();
5652     APInt P = D0.zext(W + 1)
5653                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5654                   .trunc(W);
5655     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5656     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
5657 
5658     // Q = floor((2^W - 1) u/ D)
5659     // R = ((2^W - 1) u% D)
5660     APInt Q, R;
5661     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
5662 
5663     // If we are comparing with zero, then that comparison constant is okay,
5664     // else it may need to be one less than that.
5665     if (Cmp.ugt(R))
5666       Q -= 1;
5667 
5668     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5669            "We are expecting that K is always less than all-ones for ShSVT");
5670 
5671     // If the lane is tautological the result can be constant-folded.
5672     if (TautologicalLane) {
5673       // Set P and K amount to a bogus values so we can try to splat them.
5674       P = 0;
5675       K = -1;
5676       // And ensure that comparison constant is tautological,
5677       // it will always compare true/false.
5678       Q = -1;
5679     }
5680 
5681     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5682     KAmts.push_back(
5683         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5684     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5685     return true;
5686   };
5687 
5688   SDValue N = REMNode.getOperand(0);
5689   SDValue D = REMNode.getOperand(1);
5690 
5691   // Collect the values from each element.
5692   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5693     return SDValue();
5694 
5695   // If all lanes are tautological, the result can be constant-folded.
5696   if (AllLanesAreTautological)
5697     return SDValue();
5698 
5699   // If this is a urem by a powers-of-two, avoid the fold since it can be
5700   // best implemented as a bit test.
5701   if (AllDivisorsArePowerOfTwo)
5702     return SDValue();
5703 
5704   SDValue PVal, KVal, QVal;
5705   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5706     if (HadTautologicalLanes) {
5707       // Try to turn PAmts into a splat, since we don't care about the values
5708       // that are currently '0'. If we can't, just keep '0'`s.
5709       turnVectorIntoSplatVector(PAmts, isNullConstant);
5710       // Try to turn KAmts into a splat, since we don't care about the values
5711       // that are currently '-1'. If we can't, change them to '0'`s.
5712       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5713                                 DAG.getConstant(0, DL, ShSVT));
5714     }
5715 
5716     PVal = DAG.getBuildVector(VT, DL, PAmts);
5717     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5718     QVal = DAG.getBuildVector(VT, DL, QAmts);
5719   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5720     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
5721            "Expected matchBinaryPredicate to return one element for "
5722            "SPLAT_VECTORs");
5723     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5724     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5725     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5726   } else {
5727     PVal = PAmts[0];
5728     KVal = KAmts[0];
5729     QVal = QAmts[0];
5730   }
5731 
5732   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5733     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5734       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5735     assert(CompTargetNode.getValueType() == N.getValueType() &&
5736            "Expecting that the types on LHS and RHS of comparisons match.");
5737     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5738   }
5739 
5740   // (mul N, P)
5741   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5742   Created.push_back(Op0.getNode());
5743 
5744   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5745   // divisors as a performance improvement, since rotating by 0 is a no-op.
5746   if (HadEvenDivisor) {
5747     // We need ROTR to do this.
5748     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5749       return SDValue();
5750     // UREM: (rotr (mul N, P), K)
5751     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5752     Created.push_back(Op0.getNode());
5753   }
5754 
5755   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5756   SDValue NewCC =
5757       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5758                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5759   if (!HadTautologicalInvertedLanes)
5760     return NewCC;
5761 
5762   // If any lanes previously compared always-false, the NewCC will give
5763   // always-true result for them, so we need to fixup those lanes.
5764   // Or the other way around for inequality predicate.
5765   assert(VT.isVector() && "Can/should only get here for vectors.");
5766   Created.push_back(NewCC.getNode());
5767 
5768   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5769   // if C2 is not less than C1, the comparison is always false.
5770   // But we have produced the comparison that will give the
5771   // opposive tautological answer. So these lanes would need to be fixed up.
5772   SDValue TautologicalInvertedChannels =
5773       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5774   Created.push_back(TautologicalInvertedChannels.getNode());
5775 
5776   // NOTE: we avoid letting illegal types through even if we're before legalize
5777   // ops – legalization has a hard time producing good code for this.
5778   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5779     // If we have a vector select, let's replace the comparison results in the
5780     // affected lanes with the correct tautological result.
5781     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5782                                               DL, SETCCVT, SETCCVT);
5783     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5784                        Replacement, NewCC);
5785   }
5786 
5787   // Else, we can just invert the comparison result in the appropriate lanes.
5788   //
5789   // NOTE: see the note above VSELECT above.
5790   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5791     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5792                        TautologicalInvertedChannels);
5793 
5794   return SDValue(); // Don't know how to lower.
5795 }
5796 
5797 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5798 /// where the divisor is constant and the comparison target is zero,
5799 /// return a DAG expression that will generate the same comparison result
5800 /// using only multiplications, additions and shifts/rotations.
5801 /// Ref: "Hacker's Delight" 10-17.
5802 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5803                                         SDValue CompTargetNode,
5804                                         ISD::CondCode Cond,
5805                                         DAGCombinerInfo &DCI,
5806                                         const SDLoc &DL) const {
5807   SmallVector<SDNode *, 7> Built;
5808   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5809                                          DCI, DL, Built)) {
5810     assert(Built.size() <= 7 && "Max size prediction failed.");
5811     for (SDNode *N : Built)
5812       DCI.AddToWorklist(N);
5813     return Folded;
5814   }
5815 
5816   return SDValue();
5817 }
5818 
5819 SDValue
5820 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5821                                   SDValue CompTargetNode, ISD::CondCode Cond,
5822                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5823                                   SmallVectorImpl<SDNode *> &Created) const {
5824   // Fold:
5825   //   (seteq/ne (srem N, D), 0)
5826   // To:
5827   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5828   //
5829   // - D must be constant, with D = D0 * 2^K where D0 is odd
5830   // - P is the multiplicative inverse of D0 modulo 2^W
5831   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5832   // - Q = floor((2 * A) / (2^K))
5833   // where W is the width of the common type of N and D.
5834   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5835          "Only applicable for (in)equality comparisons.");
5836 
5837   SelectionDAG &DAG = DCI.DAG;
5838 
5839   EVT VT = REMNode.getValueType();
5840   EVT SVT = VT.getScalarType();
5841   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5842   EVT ShSVT = ShVT.getScalarType();
5843 
5844   // If we are after ops legalization, and MUL is unavailable, we can not
5845   // proceed.
5846   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5847     return SDValue();
5848 
5849   // TODO: Could support comparing with non-zero too.
5850   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5851   if (!CompTarget || !CompTarget->isZero())
5852     return SDValue();
5853 
5854   bool HadIntMinDivisor = false;
5855   bool HadOneDivisor = false;
5856   bool AllDivisorsAreOnes = true;
5857   bool HadEvenDivisor = false;
5858   bool NeedToApplyOffset = false;
5859   bool AllDivisorsArePowerOfTwo = true;
5860   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5861 
5862   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5863     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5864     if (C->isZero())
5865       return false;
5866 
5867     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5868 
5869     // WARNING: this fold is only valid for positive divisors!
5870     APInt D = C->getAPIntValue();
5871     if (D.isNegative())
5872       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5873 
5874     HadIntMinDivisor |= D.isMinSignedValue();
5875 
5876     // If all divisors are ones, we will prefer to avoid the fold.
5877     HadOneDivisor |= D.isOne();
5878     AllDivisorsAreOnes &= D.isOne();
5879 
5880     // Decompose D into D0 * 2^K
5881     unsigned K = D.countTrailingZeros();
5882     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5883     APInt D0 = D.lshr(K);
5884 
5885     if (!D.isMinSignedValue()) {
5886       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5887       // we don't care about this lane in this fold, we'll special-handle it.
5888       HadEvenDivisor |= (K != 0);
5889     }
5890 
5891     // D is a power-of-two if D0 is one. This includes INT_MIN.
5892     // If all divisors are power-of-two, we will prefer to avoid the fold.
5893     AllDivisorsArePowerOfTwo &= D0.isOne();
5894 
5895     // P = inv(D0, 2^W)
5896     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5897     unsigned W = D.getBitWidth();
5898     APInt P = D0.zext(W + 1)
5899                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5900                   .trunc(W);
5901     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5902     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
5903 
5904     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5905     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5906     A.clearLowBits(K);
5907 
5908     if (!D.isMinSignedValue()) {
5909       // If divisor INT_MIN, then we don't care about this lane in this fold,
5910       // we'll special-handle it.
5911       NeedToApplyOffset |= A != 0;
5912     }
5913 
5914     // Q = floor((2 * A) / (2^K))
5915     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5916 
5917     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
5918            "We are expecting that A is always less than all-ones for SVT");
5919     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5920            "We are expecting that K is always less than all-ones for ShSVT");
5921 
5922     // If the divisor is 1 the result can be constant-folded. Likewise, we
5923     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5924     if (D.isOne()) {
5925       // Set P, A and K to a bogus values so we can try to splat them.
5926       P = 0;
5927       A = -1;
5928       K = -1;
5929 
5930       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5931       Q = -1;
5932     }
5933 
5934     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5935     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5936     KAmts.push_back(
5937         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5938     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5939     return true;
5940   };
5941 
5942   SDValue N = REMNode.getOperand(0);
5943   SDValue D = REMNode.getOperand(1);
5944 
5945   // Collect the values from each element.
5946   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5947     return SDValue();
5948 
5949   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5950   if (AllDivisorsAreOnes)
5951     return SDValue();
5952 
5953   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5954   // since it can be best implemented as a bit test.
5955   if (AllDivisorsArePowerOfTwo)
5956     return SDValue();
5957 
5958   SDValue PVal, AVal, KVal, QVal;
5959   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5960     if (HadOneDivisor) {
5961       // Try to turn PAmts into a splat, since we don't care about the values
5962       // that are currently '0'. If we can't, just keep '0'`s.
5963       turnVectorIntoSplatVector(PAmts, isNullConstant);
5964       // Try to turn AAmts into a splat, since we don't care about the
5965       // values that are currently '-1'. If we can't, change them to '0'`s.
5966       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5967                                 DAG.getConstant(0, DL, SVT));
5968       // Try to turn KAmts into a splat, since we don't care about the values
5969       // that are currently '-1'. If we can't, change them to '0'`s.
5970       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5971                                 DAG.getConstant(0, DL, ShSVT));
5972     }
5973 
5974     PVal = DAG.getBuildVector(VT, DL, PAmts);
5975     AVal = DAG.getBuildVector(VT, DL, AAmts);
5976     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5977     QVal = DAG.getBuildVector(VT, DL, QAmts);
5978   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5979     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
5980            QAmts.size() == 1 &&
5981            "Expected matchUnaryPredicate to return one element for scalable "
5982            "vectors");
5983     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5984     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
5985     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5986     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5987   } else {
5988     assert(isa<ConstantSDNode>(D) && "Expected a constant");
5989     PVal = PAmts[0];
5990     AVal = AAmts[0];
5991     KVal = KAmts[0];
5992     QVal = QAmts[0];
5993   }
5994 
5995   // (mul N, P)
5996   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5997   Created.push_back(Op0.getNode());
5998 
5999   if (NeedToApplyOffset) {
6000     // We need ADD to do this.
6001     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6002       return SDValue();
6003 
6004     // (add (mul N, P), A)
6005     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6006     Created.push_back(Op0.getNode());
6007   }
6008 
6009   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6010   // divisors as a performance improvement, since rotating by 0 is a no-op.
6011   if (HadEvenDivisor) {
6012     // We need ROTR to do this.
6013     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6014       return SDValue();
6015     // SREM: (rotr (add (mul N, P), A), K)
6016     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6017     Created.push_back(Op0.getNode());
6018   }
6019 
6020   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6021   SDValue Fold =
6022       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6023                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6024 
6025   // If we didn't have lanes with INT_MIN divisor, then we're done.
6026   if (!HadIntMinDivisor)
6027     return Fold;
6028 
6029   // That fold is only valid for positive divisors. Which effectively means,
6030   // it is invalid for INT_MIN divisors. So if we have such a lane,
6031   // we must fix-up results for said lanes.
6032   assert(VT.isVector() && "Can/should only get here for vectors.");
6033 
6034   // NOTE: we avoid letting illegal types through even if we're before legalize
6035   // ops – legalization has a hard time producing good code for the code that
6036   // follows.
6037   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6038       !isOperationLegalOrCustom(ISD::AND, VT) ||
6039       !isOperationLegalOrCustom(Cond, VT) ||
6040       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6041     return SDValue();
6042 
6043   Created.push_back(Fold.getNode());
6044 
6045   SDValue IntMin = DAG.getConstant(
6046       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6047   SDValue IntMax = DAG.getConstant(
6048       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6049   SDValue Zero =
6050       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6051 
6052   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6053   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6054   Created.push_back(DivisorIsIntMin.getNode());
6055 
6056   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6057   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6058   Created.push_back(Masked.getNode());
6059   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6060   Created.push_back(MaskedIsZero.getNode());
6061 
6062   // To produce final result we need to blend 2 vectors: 'SetCC' and
6063   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6064   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6065   // constant-folded, select can get lowered to a shuffle with constant mask.
6066   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6067                                 MaskedIsZero, Fold);
6068 
6069   return Blended;
6070 }
6071 
6072 bool TargetLowering::
6073 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6074   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6075     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6076                                 "be a constant integer");
6077     return true;
6078   }
6079 
6080   return false;
6081 }
6082 
6083 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6084                                          const DenormalMode &Mode) const {
6085   SDLoc DL(Op);
6086   EVT VT = Op.getValueType();
6087   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6088   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6089   // Testing it with denormal inputs to avoid wrong estimate.
6090   if (Mode.Input == DenormalMode::IEEE) {
6091     // This is specifically a check for the handling of denormal inputs,
6092     // not the result.
6093 
6094     // Test = fabs(X) < SmallestNormal
6095     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6096     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6097     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6098     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6099     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6100   }
6101   // Test = X == 0.0
6102   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6103 }
6104 
6105 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6106                                              bool LegalOps, bool OptForSize,
6107                                              NegatibleCost &Cost,
6108                                              unsigned Depth) const {
6109   // fneg is removable even if it has multiple uses.
6110   if (Op.getOpcode() == ISD::FNEG) {
6111     Cost = NegatibleCost::Cheaper;
6112     return Op.getOperand(0);
6113   }
6114 
6115   // Don't recurse exponentially.
6116   if (Depth > SelectionDAG::MaxRecursionDepth)
6117     return SDValue();
6118 
6119   // Pre-increment recursion depth for use in recursive calls.
6120   ++Depth;
6121   const SDNodeFlags Flags = Op->getFlags();
6122   const TargetOptions &Options = DAG.getTarget().Options;
6123   EVT VT = Op.getValueType();
6124   unsigned Opcode = Op.getOpcode();
6125 
6126   // Don't allow anything with multiple uses unless we know it is free.
6127   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6128     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6129                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6130     if (!IsFreeExtend)
6131       return SDValue();
6132   }
6133 
6134   auto RemoveDeadNode = [&](SDValue N) {
6135     if (N && N.getNode()->use_empty())
6136       DAG.RemoveDeadNode(N.getNode());
6137   };
6138 
6139   SDLoc DL(Op);
6140 
6141   // Because getNegatedExpression can delete nodes we need a handle to keep
6142   // temporary nodes alive in case the recursion manages to create an identical
6143   // node.
6144   std::list<HandleSDNode> Handles;
6145 
6146   switch (Opcode) {
6147   case ISD::ConstantFP: {
6148     // Don't invert constant FP values after legalization unless the target says
6149     // the negated constant is legal.
6150     bool IsOpLegal =
6151         isOperationLegal(ISD::ConstantFP, VT) ||
6152         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6153                      OptForSize);
6154 
6155     if (LegalOps && !IsOpLegal)
6156       break;
6157 
6158     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6159     V.changeSign();
6160     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6161 
6162     // If we already have the use of the negated floating constant, it is free
6163     // to negate it even it has multiple uses.
6164     if (!Op.hasOneUse() && CFP.use_empty())
6165       break;
6166     Cost = NegatibleCost::Neutral;
6167     return CFP;
6168   }
6169   case ISD::BUILD_VECTOR: {
6170     // Only permit BUILD_VECTOR of constants.
6171     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6172           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6173         }))
6174       break;
6175 
6176     bool IsOpLegal =
6177         (isOperationLegal(ISD::ConstantFP, VT) &&
6178          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6179         llvm::all_of(Op->op_values(), [&](SDValue N) {
6180           return N.isUndef() ||
6181                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6182                               OptForSize);
6183         });
6184 
6185     if (LegalOps && !IsOpLegal)
6186       break;
6187 
6188     SmallVector<SDValue, 4> Ops;
6189     for (SDValue C : Op->op_values()) {
6190       if (C.isUndef()) {
6191         Ops.push_back(C);
6192         continue;
6193       }
6194       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6195       V.changeSign();
6196       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6197     }
6198     Cost = NegatibleCost::Neutral;
6199     return DAG.getBuildVector(VT, DL, Ops);
6200   }
6201   case ISD::FADD: {
6202     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6203       break;
6204 
6205     // After operation legalization, it might not be legal to create new FSUBs.
6206     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6207       break;
6208     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6209 
6210     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6211     NegatibleCost CostX = NegatibleCost::Expensive;
6212     SDValue NegX =
6213         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6214     // Prevent this node from being deleted by the next call.
6215     if (NegX)
6216       Handles.emplace_back(NegX);
6217 
6218     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6219     NegatibleCost CostY = NegatibleCost::Expensive;
6220     SDValue NegY =
6221         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6222 
6223     // We're done with the handles.
6224     Handles.clear();
6225 
6226     // Negate the X if its cost is less or equal than Y.
6227     if (NegX && (CostX <= CostY)) {
6228       Cost = CostX;
6229       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6230       if (NegY != N)
6231         RemoveDeadNode(NegY);
6232       return N;
6233     }
6234 
6235     // Negate the Y if it is not expensive.
6236     if (NegY) {
6237       Cost = CostY;
6238       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6239       if (NegX != N)
6240         RemoveDeadNode(NegX);
6241       return N;
6242     }
6243     break;
6244   }
6245   case ISD::FSUB: {
6246     // We can't turn -(A-B) into B-A when we honor signed zeros.
6247     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6248       break;
6249 
6250     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6251     // fold (fneg (fsub 0, Y)) -> Y
6252     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6253       if (C->isZero()) {
6254         Cost = NegatibleCost::Cheaper;
6255         return Y;
6256       }
6257 
6258     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6259     Cost = NegatibleCost::Neutral;
6260     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6261   }
6262   case ISD::FMUL:
6263   case ISD::FDIV: {
6264     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6265 
6266     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6267     NegatibleCost CostX = NegatibleCost::Expensive;
6268     SDValue NegX =
6269         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6270     // Prevent this node from being deleted by the next call.
6271     if (NegX)
6272       Handles.emplace_back(NegX);
6273 
6274     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6275     NegatibleCost CostY = NegatibleCost::Expensive;
6276     SDValue NegY =
6277         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6278 
6279     // We're done with the handles.
6280     Handles.clear();
6281 
6282     // Negate the X if its cost is less or equal than Y.
6283     if (NegX && (CostX <= CostY)) {
6284       Cost = CostX;
6285       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6286       if (NegY != N)
6287         RemoveDeadNode(NegY);
6288       return N;
6289     }
6290 
6291     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6292     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6293       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6294         break;
6295 
6296     // Negate the Y if it is not expensive.
6297     if (NegY) {
6298       Cost = CostY;
6299       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6300       if (NegX != N)
6301         RemoveDeadNode(NegX);
6302       return N;
6303     }
6304     break;
6305   }
6306   case ISD::FMA:
6307   case ISD::FMAD: {
6308     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6309       break;
6310 
6311     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6312     NegatibleCost CostZ = NegatibleCost::Expensive;
6313     SDValue NegZ =
6314         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6315     // Give up if fail to negate the Z.
6316     if (!NegZ)
6317       break;
6318 
6319     // Prevent this node from being deleted by the next two calls.
6320     Handles.emplace_back(NegZ);
6321 
6322     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6323     NegatibleCost CostX = NegatibleCost::Expensive;
6324     SDValue NegX =
6325         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6326     // Prevent this node from being deleted by the next call.
6327     if (NegX)
6328       Handles.emplace_back(NegX);
6329 
6330     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6331     NegatibleCost CostY = NegatibleCost::Expensive;
6332     SDValue NegY =
6333         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6334 
6335     // We're done with the handles.
6336     Handles.clear();
6337 
6338     // Negate the X if its cost is less or equal than Y.
6339     if (NegX && (CostX <= CostY)) {
6340       Cost = std::min(CostX, CostZ);
6341       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6342       if (NegY != N)
6343         RemoveDeadNode(NegY);
6344       return N;
6345     }
6346 
6347     // Negate the Y if it is not expensive.
6348     if (NegY) {
6349       Cost = std::min(CostY, CostZ);
6350       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6351       if (NegX != N)
6352         RemoveDeadNode(NegX);
6353       return N;
6354     }
6355     break;
6356   }
6357 
6358   case ISD::FP_EXTEND:
6359   case ISD::FSIN:
6360     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6361                                             OptForSize, Cost, Depth))
6362       return DAG.getNode(Opcode, DL, VT, NegV);
6363     break;
6364   case ISD::FP_ROUND:
6365     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6366                                             OptForSize, Cost, Depth))
6367       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6368     break;
6369   }
6370 
6371   return SDValue();
6372 }
6373 
6374 //===----------------------------------------------------------------------===//
6375 // Legalization Utilities
6376 //===----------------------------------------------------------------------===//
6377 
6378 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6379                                     SDValue LHS, SDValue RHS,
6380                                     SmallVectorImpl<SDValue> &Result,
6381                                     EVT HiLoVT, SelectionDAG &DAG,
6382                                     MulExpansionKind Kind, SDValue LL,
6383                                     SDValue LH, SDValue RL, SDValue RH) const {
6384   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6385          Opcode == ISD::SMUL_LOHI);
6386 
6387   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6388                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6389   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6390                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6391   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6392                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6393   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6394                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6395 
6396   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6397     return false;
6398 
6399   unsigned OuterBitSize = VT.getScalarSizeInBits();
6400   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6401 
6402   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6403   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6404          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6405 
6406   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6407   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6408                           bool Signed) -> bool {
6409     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6410       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6411       Hi = SDValue(Lo.getNode(), 1);
6412       return true;
6413     }
6414     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6415       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6416       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6417       return true;
6418     }
6419     return false;
6420   };
6421 
6422   SDValue Lo, Hi;
6423 
6424   if (!LL.getNode() && !RL.getNode() &&
6425       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6426     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6427     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6428   }
6429 
6430   if (!LL.getNode())
6431     return false;
6432 
6433   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6434   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6435       DAG.MaskedValueIsZero(RHS, HighMask)) {
6436     // The inputs are both zero-extended.
6437     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6438       Result.push_back(Lo);
6439       Result.push_back(Hi);
6440       if (Opcode != ISD::MUL) {
6441         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6442         Result.push_back(Zero);
6443         Result.push_back(Zero);
6444       }
6445       return true;
6446     }
6447   }
6448 
6449   if (!VT.isVector() && Opcode == ISD::MUL &&
6450       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6451       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6452     // The input values are both sign-extended.
6453     // TODO non-MUL case?
6454     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6455       Result.push_back(Lo);
6456       Result.push_back(Hi);
6457       return true;
6458     }
6459   }
6460 
6461   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6462   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6463   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6464 
6465   if (!LH.getNode() && !RH.getNode() &&
6466       isOperationLegalOrCustom(ISD::SRL, VT) &&
6467       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6468     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6469     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6470     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6471     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6472   }
6473 
6474   if (!LH.getNode())
6475     return false;
6476 
6477   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6478     return false;
6479 
6480   Result.push_back(Lo);
6481 
6482   if (Opcode == ISD::MUL) {
6483     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6484     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6485     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6486     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6487     Result.push_back(Hi);
6488     return true;
6489   }
6490 
6491   // Compute the full width result.
6492   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6493     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6494     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6495     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6496     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6497   };
6498 
6499   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6500   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6501     return false;
6502 
6503   // This is effectively the add part of a multiply-add of half-sized operands,
6504   // so it cannot overflow.
6505   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6506 
6507   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6508     return false;
6509 
6510   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6511   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6512 
6513   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6514                   isOperationLegalOrCustom(ISD::ADDE, VT));
6515   if (UseGlue)
6516     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6517                        Merge(Lo, Hi));
6518   else
6519     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6520                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6521 
6522   SDValue Carry = Next.getValue(1);
6523   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6524   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6525 
6526   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6527     return false;
6528 
6529   if (UseGlue)
6530     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6531                      Carry);
6532   else
6533     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6534                      Zero, Carry);
6535 
6536   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6537 
6538   if (Opcode == ISD::SMUL_LOHI) {
6539     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6540                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6541     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6542 
6543     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6544                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6545     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6546   }
6547 
6548   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6549   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6550   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6551   return true;
6552 }
6553 
6554 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6555                                SelectionDAG &DAG, MulExpansionKind Kind,
6556                                SDValue LL, SDValue LH, SDValue RL,
6557                                SDValue RH) const {
6558   SmallVector<SDValue, 2> Result;
6559   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6560                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6561                            DAG, Kind, LL, LH, RL, RH);
6562   if (Ok) {
6563     assert(Result.size() == 2);
6564     Lo = Result[0];
6565     Hi = Result[1];
6566   }
6567   return Ok;
6568 }
6569 
6570 // Check that (every element of) Z is undef or not an exact multiple of BW.
6571 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6572   return ISD::matchUnaryPredicate(
6573       Z,
6574       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6575       true);
6576 }
6577 
6578 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
6579                                           SelectionDAG &DAG) const {
6580   EVT VT = Node->getValueType(0);
6581 
6582   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6583                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6584                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6585                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6586     return SDValue();
6587 
6588   SDValue X = Node->getOperand(0);
6589   SDValue Y = Node->getOperand(1);
6590   SDValue Z = Node->getOperand(2);
6591 
6592   unsigned BW = VT.getScalarSizeInBits();
6593   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6594   SDLoc DL(SDValue(Node, 0));
6595 
6596   EVT ShVT = Z.getValueType();
6597 
6598   // If a funnel shift in the other direction is more supported, use it.
6599   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6600   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6601       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6602     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6603       // fshl X, Y, Z -> fshr X, Y, -Z
6604       // fshr X, Y, Z -> fshl X, Y, -Z
6605       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6606       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6607     } else {
6608       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6609       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6610       SDValue One = DAG.getConstant(1, DL, ShVT);
6611       if (IsFSHL) {
6612         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6613         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6614       } else {
6615         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6616         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6617       }
6618       Z = DAG.getNOT(DL, Z, ShVT);
6619     }
6620     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6621   }
6622 
6623   SDValue ShX, ShY;
6624   SDValue ShAmt, InvShAmt;
6625   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6626     // fshl: X << C | Y >> (BW - C)
6627     // fshr: X << (BW - C) | Y >> C
6628     // where C = Z % BW is not zero
6629     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6630     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6631     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6632     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6633     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6634   } else {
6635     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6636     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6637     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6638     if (isPowerOf2_32(BW)) {
6639       // Z % BW -> Z & (BW - 1)
6640       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6641       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6642       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6643     } else {
6644       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6645       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6646       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6647     }
6648 
6649     SDValue One = DAG.getConstant(1, DL, ShVT);
6650     if (IsFSHL) {
6651       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6652       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6653       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6654     } else {
6655       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6656       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6657       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6658     }
6659   }
6660   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6661 }
6662 
6663 // TODO: Merge with expandFunnelShift.
6664 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6665                                   SelectionDAG &DAG) const {
6666   EVT VT = Node->getValueType(0);
6667   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6668   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6669   SDValue Op0 = Node->getOperand(0);
6670   SDValue Op1 = Node->getOperand(1);
6671   SDLoc DL(SDValue(Node, 0));
6672 
6673   EVT ShVT = Op1.getValueType();
6674   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6675 
6676   // If a rotate in the other direction is more supported, use it.
6677   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6678   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6679       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6680     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6681     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
6682   }
6683 
6684   if (!AllowVectorOps && VT.isVector() &&
6685       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6686        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6687        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6688        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6689        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6690     return SDValue();
6691 
6692   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6693   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6694   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6695   SDValue ShVal;
6696   SDValue HsVal;
6697   if (isPowerOf2_32(EltSizeInBits)) {
6698     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6699     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6700     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6701     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6702     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6703     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6704     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6705   } else {
6706     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6707     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6708     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6709     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6710     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6711     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6712     SDValue One = DAG.getConstant(1, DL, ShVT);
6713     HsVal =
6714         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6715   }
6716   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6717 }
6718 
6719 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
6720                                       SelectionDAG &DAG) const {
6721   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
6722   EVT VT = Node->getValueType(0);
6723   unsigned VTBits = VT.getScalarSizeInBits();
6724   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
6725 
6726   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
6727   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
6728   SDValue ShOpLo = Node->getOperand(0);
6729   SDValue ShOpHi = Node->getOperand(1);
6730   SDValue ShAmt = Node->getOperand(2);
6731   EVT ShAmtVT = ShAmt.getValueType();
6732   EVT ShAmtCCVT =
6733       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
6734   SDLoc dl(Node);
6735 
6736   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
6737   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
6738   // away during isel.
6739   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6740                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
6741   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6742                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
6743                        : DAG.getConstant(0, dl, VT);
6744 
6745   SDValue Tmp2, Tmp3;
6746   if (IsSHL) {
6747     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
6748     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
6749   } else {
6750     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
6751     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
6752   }
6753 
6754   // If the shift amount is larger or equal than the width of a part we don't
6755   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
6756   // values for large shift amounts.
6757   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6758                                 DAG.getConstant(VTBits, dl, ShAmtVT));
6759   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
6760                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
6761 
6762   if (IsSHL) {
6763     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6764     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6765   } else {
6766     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6767     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6768   }
6769 }
6770 
6771 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6772                                       SelectionDAG &DAG) const {
6773   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6774   SDValue Src = Node->getOperand(OpNo);
6775   EVT SrcVT = Src.getValueType();
6776   EVT DstVT = Node->getValueType(0);
6777   SDLoc dl(SDValue(Node, 0));
6778 
6779   // FIXME: Only f32 to i64 conversions are supported.
6780   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6781     return false;
6782 
6783   if (Node->isStrictFPOpcode())
6784     // When a NaN is converted to an integer a trap is allowed. We can't
6785     // use this expansion here because it would eliminate that trap. Other
6786     // traps are also allowed and cannot be eliminated. See
6787     // IEEE 754-2008 sec 5.8.
6788     return false;
6789 
6790   // Expand f32 -> i64 conversion
6791   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6792   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6793   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6794   EVT IntVT = SrcVT.changeTypeToInteger();
6795   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6796 
6797   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6798   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6799   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6800   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6801   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6802   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6803 
6804   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6805 
6806   SDValue ExponentBits = DAG.getNode(
6807       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6808       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6809   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6810 
6811   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6812                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6813                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6814   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6815 
6816   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6817                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6818                           DAG.getConstant(0x00800000, dl, IntVT));
6819 
6820   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6821 
6822   R = DAG.getSelectCC(
6823       dl, Exponent, ExponentLoBit,
6824       DAG.getNode(ISD::SHL, dl, DstVT, R,
6825                   DAG.getZExtOrTrunc(
6826                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6827                       dl, IntShVT)),
6828       DAG.getNode(ISD::SRL, dl, DstVT, R,
6829                   DAG.getZExtOrTrunc(
6830                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6831                       dl, IntShVT)),
6832       ISD::SETGT);
6833 
6834   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6835                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6836 
6837   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6838                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6839   return true;
6840 }
6841 
6842 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6843                                       SDValue &Chain,
6844                                       SelectionDAG &DAG) const {
6845   SDLoc dl(SDValue(Node, 0));
6846   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6847   SDValue Src = Node->getOperand(OpNo);
6848 
6849   EVT SrcVT = Src.getValueType();
6850   EVT DstVT = Node->getValueType(0);
6851   EVT SetCCVT =
6852       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6853   EVT DstSetCCVT =
6854       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6855 
6856   // Only expand vector types if we have the appropriate vector bit operations.
6857   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6858                                                    ISD::FP_TO_SINT;
6859   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6860                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6861     return false;
6862 
6863   // If the maximum float value is smaller then the signed integer range,
6864   // the destination signmask can't be represented by the float, so we can
6865   // just use FP_TO_SINT directly.
6866   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6867   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
6868   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6869   if (APFloat::opOverflow &
6870       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6871     if (Node->isStrictFPOpcode()) {
6872       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6873                            { Node->getOperand(0), Src });
6874       Chain = Result.getValue(1);
6875     } else
6876       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6877     return true;
6878   }
6879 
6880   // Don't expand it if there isn't cheap fsub instruction.
6881   if (!isOperationLegalOrCustom(
6882           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6883     return false;
6884 
6885   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6886   SDValue Sel;
6887 
6888   if (Node->isStrictFPOpcode()) {
6889     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6890                        Node->getOperand(0), /*IsSignaling*/ true);
6891     Chain = Sel.getValue(1);
6892   } else {
6893     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6894   }
6895 
6896   bool Strict = Node->isStrictFPOpcode() ||
6897                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6898 
6899   if (Strict) {
6900     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6901     // signmask then offset (the result of which should be fully representable).
6902     // Sel = Src < 0x8000000000000000
6903     // FltOfs = select Sel, 0, 0x8000000000000000
6904     // IntOfs = select Sel, 0, 0x8000000000000000
6905     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6906 
6907     // TODO: Should any fast-math-flags be set for the FSUB?
6908     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6909                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6910     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6911     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6912                                    DAG.getConstant(0, dl, DstVT),
6913                                    DAG.getConstant(SignMask, dl, DstVT));
6914     SDValue SInt;
6915     if (Node->isStrictFPOpcode()) {
6916       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6917                                 { Chain, Src, FltOfs });
6918       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6919                          { Val.getValue(1), Val });
6920       Chain = SInt.getValue(1);
6921     } else {
6922       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6923       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6924     }
6925     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6926   } else {
6927     // Expand based on maximum range of FP_TO_SINT:
6928     // True = fp_to_sint(Src)
6929     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6930     // Result = select (Src < 0x8000000000000000), True, False
6931 
6932     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6933     // TODO: Should any fast-math-flags be set for the FSUB?
6934     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6935                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6936     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6937                         DAG.getConstant(SignMask, dl, DstVT));
6938     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6939     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6940   }
6941   return true;
6942 }
6943 
6944 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6945                                       SDValue &Chain,
6946                                       SelectionDAG &DAG) const {
6947   // This transform is not correct for converting 0 when rounding mode is set
6948   // to round toward negative infinity which will produce -0.0. So disable under
6949   // strictfp.
6950   if (Node->isStrictFPOpcode())
6951     return false;
6952 
6953   SDValue Src = Node->getOperand(0);
6954   EVT SrcVT = Src.getValueType();
6955   EVT DstVT = Node->getValueType(0);
6956 
6957   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6958     return false;
6959 
6960   // Only expand vector types if we have the appropriate vector bit operations.
6961   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6962                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6963                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6964                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6965                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6966     return false;
6967 
6968   SDLoc dl(SDValue(Node, 0));
6969   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6970 
6971   // Implementation of unsigned i64 to f64 following the algorithm in
6972   // __floatundidf in compiler_rt.  This implementation performs rounding
6973   // correctly in all rounding modes with the exception of converting 0
6974   // when rounding toward negative infinity. In that case the fsub will produce
6975   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6976   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6977   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6978       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6979   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6980   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6981   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6982 
6983   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6984   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6985   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6986   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6987   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6988   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6989   SDValue HiSub =
6990       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6991   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6992   return true;
6993 }
6994 
6995 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6996                                               SelectionDAG &DAG) const {
6997   SDLoc dl(Node);
6998   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6999     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7000   EVT VT = Node->getValueType(0);
7001 
7002   if (VT.isScalableVector())
7003     report_fatal_error(
7004         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7005 
7006   if (isOperationLegalOrCustom(NewOp, VT)) {
7007     SDValue Quiet0 = Node->getOperand(0);
7008     SDValue Quiet1 = Node->getOperand(1);
7009 
7010     if (!Node->getFlags().hasNoNaNs()) {
7011       // Insert canonicalizes if it's possible we need to quiet to get correct
7012       // sNaN behavior.
7013       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7014         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7015                              Node->getFlags());
7016       }
7017       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7018         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7019                              Node->getFlags());
7020       }
7021     }
7022 
7023     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7024   }
7025 
7026   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7027   // instead if there are no NaNs.
7028   if (Node->getFlags().hasNoNaNs()) {
7029     unsigned IEEE2018Op =
7030         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7031     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7032       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7033                          Node->getOperand(1), Node->getFlags());
7034     }
7035   }
7036 
7037   // If none of the above worked, but there are no NaNs, then expand to
7038   // a compare/select sequence.  This is required for correctness since
7039   // InstCombine might have canonicalized a fcmp+select sequence to a
7040   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
7041   // expansion to libcall, we might introduce a link-time dependency
7042   // on libm into a file that originally did not have one.
7043   if (Node->getFlags().hasNoNaNs()) {
7044     ISD::CondCode Pred =
7045         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7046     SDValue Op1 = Node->getOperand(0);
7047     SDValue Op2 = Node->getOperand(1);
7048     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
7049     // Copy FMF flags, but always set the no-signed-zeros flag
7050     // as this is implied by the FMINNUM/FMAXNUM semantics.
7051     SDNodeFlags Flags = Node->getFlags();
7052     Flags.setNoSignedZeros(true);
7053     SelCC->setFlags(Flags);
7054     return SelCC;
7055   }
7056 
7057   return SDValue();
7058 }
7059 
7060 // Only expand vector types if we have the appropriate vector bit operations.
7061 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7062   assert(VT.isVector() && "Expected vector type");
7063   unsigned Len = VT.getScalarSizeInBits();
7064   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7065          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7066          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7067          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7068          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7069 }
7070 
7071 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7072   SDLoc dl(Node);
7073   EVT VT = Node->getValueType(0);
7074   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7075   SDValue Op = Node->getOperand(0);
7076   unsigned Len = VT.getScalarSizeInBits();
7077   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7078 
7079   // TODO: Add support for irregular type lengths.
7080   if (!(Len <= 128 && Len % 8 == 0))
7081     return SDValue();
7082 
7083   // Only expand vector types if we have the appropriate vector bit operations.
7084   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7085     return SDValue();
7086 
7087   // This is the "best" algorithm from
7088   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7089   SDValue Mask55 =
7090       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7091   SDValue Mask33 =
7092       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7093   SDValue Mask0F =
7094       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7095   SDValue Mask01 =
7096       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7097 
7098   // v = v - ((v >> 1) & 0x55555555...)
7099   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7100                    DAG.getNode(ISD::AND, dl, VT,
7101                                DAG.getNode(ISD::SRL, dl, VT, Op,
7102                                            DAG.getConstant(1, dl, ShVT)),
7103                                Mask55));
7104   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7105   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7106                    DAG.getNode(ISD::AND, dl, VT,
7107                                DAG.getNode(ISD::SRL, dl, VT, Op,
7108                                            DAG.getConstant(2, dl, ShVT)),
7109                                Mask33));
7110   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7111   Op = DAG.getNode(ISD::AND, dl, VT,
7112                    DAG.getNode(ISD::ADD, dl, VT, Op,
7113                                DAG.getNode(ISD::SRL, dl, VT, Op,
7114                                            DAG.getConstant(4, dl, ShVT))),
7115                    Mask0F);
7116   // v = (v * 0x01010101...) >> (Len - 8)
7117   if (Len > 8)
7118     Op =
7119         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7120                     DAG.getConstant(Len - 8, dl, ShVT));
7121 
7122   return Op;
7123 }
7124 
7125 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7126   SDLoc dl(Node);
7127   EVT VT = Node->getValueType(0);
7128   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7129   SDValue Op = Node->getOperand(0);
7130   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7131 
7132   // If the non-ZERO_UNDEF version is supported we can use that instead.
7133   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7134       isOperationLegalOrCustom(ISD::CTLZ, VT))
7135     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7136 
7137   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7138   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7139     EVT SetCCVT =
7140         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7141     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7142     SDValue Zero = DAG.getConstant(0, dl, VT);
7143     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7144     return DAG.getSelect(dl, VT, SrcIsZero,
7145                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7146   }
7147 
7148   // Only expand vector types if we have the appropriate vector bit operations.
7149   // This includes the operations needed to expand CTPOP if it isn't supported.
7150   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7151                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7152                          !canExpandVectorCTPOP(*this, VT)) ||
7153                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7154                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7155     return SDValue();
7156 
7157   // for now, we do this:
7158   // x = x | (x >> 1);
7159   // x = x | (x >> 2);
7160   // ...
7161   // x = x | (x >>16);
7162   // x = x | (x >>32); // for 64-bit input
7163   // return popcount(~x);
7164   //
7165   // Ref: "Hacker's Delight" by Henry Warren
7166   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7167     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7168     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7169                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7170   }
7171   Op = DAG.getNOT(dl, Op, VT);
7172   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7173 }
7174 
7175 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7176   SDLoc dl(Node);
7177   EVT VT = Node->getValueType(0);
7178   SDValue Op = Node->getOperand(0);
7179   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7180 
7181   // If the non-ZERO_UNDEF version is supported we can use that instead.
7182   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7183       isOperationLegalOrCustom(ISD::CTTZ, VT))
7184     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7185 
7186   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7187   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7188     EVT SetCCVT =
7189         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7190     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7191     SDValue Zero = DAG.getConstant(0, dl, VT);
7192     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7193     return DAG.getSelect(dl, VT, SrcIsZero,
7194                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7195   }
7196 
7197   // Only expand vector types if we have the appropriate vector bit operations.
7198   // This includes the operations needed to expand CTPOP if it isn't supported.
7199   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7200                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7201                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7202                          !canExpandVectorCTPOP(*this, VT)) ||
7203                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7204                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7205                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7206     return SDValue();
7207 
7208   // for now, we use: { return popcount(~x & (x - 1)); }
7209   // unless the target has ctlz but not ctpop, in which case we use:
7210   // { return 32 - nlz(~x & (x-1)); }
7211   // Ref: "Hacker's Delight" by Henry Warren
7212   SDValue Tmp = DAG.getNode(
7213       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7214       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7215 
7216   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7217   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7218     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7219                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7220   }
7221 
7222   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7223 }
7224 
7225 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7226                                   bool IsNegative) const {
7227   SDLoc dl(N);
7228   EVT VT = N->getValueType(0);
7229   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7230   SDValue Op = N->getOperand(0);
7231 
7232   // abs(x) -> smax(x,sub(0,x))
7233   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7234       isOperationLegal(ISD::SMAX, VT)) {
7235     SDValue Zero = DAG.getConstant(0, dl, VT);
7236     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7237                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7238   }
7239 
7240   // abs(x) -> umin(x,sub(0,x))
7241   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7242       isOperationLegal(ISD::UMIN, VT)) {
7243     SDValue Zero = DAG.getConstant(0, dl, VT);
7244     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7245                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7246   }
7247 
7248   // 0 - abs(x) -> smin(x, sub(0,x))
7249   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7250       isOperationLegal(ISD::SMIN, VT)) {
7251     SDValue Zero = DAG.getConstant(0, dl, VT);
7252     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7253                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7254   }
7255 
7256   // Only expand vector types if we have the appropriate vector operations.
7257   if (VT.isVector() &&
7258       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7259        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7260        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7261        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7262     return SDValue();
7263 
7264   SDValue Shift =
7265       DAG.getNode(ISD::SRA, dl, VT, Op,
7266                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7267   if (!IsNegative) {
7268     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7269     return DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7270   }
7271 
7272   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7273   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7274   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7275 }
7276 
7277 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7278   SDLoc dl(N);
7279   EVT VT = N->getValueType(0);
7280   SDValue Op = N->getOperand(0);
7281 
7282   if (!VT.isSimple())
7283     return SDValue();
7284 
7285   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7286   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7287   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7288   default:
7289     return SDValue();
7290   case MVT::i16:
7291     // Use a rotate by 8. This can be further expanded if necessary.
7292     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7293   case MVT::i32:
7294     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7295     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7296     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7297     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7298     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7299                        DAG.getConstant(0xFF0000, dl, VT));
7300     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7301     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7302     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7303     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7304   case MVT::i64:
7305     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7306     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7307     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7308     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7309     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7310     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7311     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7312     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7313     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7314                        DAG.getConstant(255ULL<<48, dl, VT));
7315     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7316                        DAG.getConstant(255ULL<<40, dl, VT));
7317     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7318                        DAG.getConstant(255ULL<<32, dl, VT));
7319     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7320                        DAG.getConstant(255ULL<<24, dl, VT));
7321     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7322                        DAG.getConstant(255ULL<<16, dl, VT));
7323     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7324                        DAG.getConstant(255ULL<<8 , dl, VT));
7325     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7326     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7327     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7328     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7329     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7330     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7331     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7332   }
7333 }
7334 
7335 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7336   SDLoc dl(N);
7337   EVT VT = N->getValueType(0);
7338   SDValue Op = N->getOperand(0);
7339   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7340   unsigned Sz = VT.getScalarSizeInBits();
7341 
7342   SDValue Tmp, Tmp2, Tmp3;
7343 
7344   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7345   // and finally the i1 pairs.
7346   // TODO: We can easily support i4/i2 legal types if any target ever does.
7347   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7348     // Create the masks - repeating the pattern every byte.
7349     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7350     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7351     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7352 
7353     // BSWAP if the type is wider than a single byte.
7354     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7355 
7356     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7357     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7358     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7359     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7360     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7361     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7362 
7363     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
7364     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
7365     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
7366     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
7367     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7368     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7369 
7370     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
7371     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
7372     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
7373     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
7374     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7375     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7376     return Tmp;
7377   }
7378 
7379   Tmp = DAG.getConstant(0, dl, VT);
7380   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7381     if (I < J)
7382       Tmp2 =
7383           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7384     else
7385       Tmp2 =
7386           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7387 
7388     APInt Shift(Sz, 1);
7389     Shift <<= J;
7390     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7391     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7392   }
7393 
7394   return Tmp;
7395 }
7396 
7397 std::pair<SDValue, SDValue>
7398 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7399                                     SelectionDAG &DAG) const {
7400   SDLoc SL(LD);
7401   SDValue Chain = LD->getChain();
7402   SDValue BasePTR = LD->getBasePtr();
7403   EVT SrcVT = LD->getMemoryVT();
7404   EVT DstVT = LD->getValueType(0);
7405   ISD::LoadExtType ExtType = LD->getExtensionType();
7406 
7407   if (SrcVT.isScalableVector())
7408     report_fatal_error("Cannot scalarize scalable vector loads");
7409 
7410   unsigned NumElem = SrcVT.getVectorNumElements();
7411 
7412   EVT SrcEltVT = SrcVT.getScalarType();
7413   EVT DstEltVT = DstVT.getScalarType();
7414 
7415   // A vector must always be stored in memory as-is, i.e. without any padding
7416   // between the elements, since various code depend on it, e.g. in the
7417   // handling of a bitcast of a vector type to int, which may be done with a
7418   // vector store followed by an integer load. A vector that does not have
7419   // elements that are byte-sized must therefore be stored as an integer
7420   // built out of the extracted vector elements.
7421   if (!SrcEltVT.isByteSized()) {
7422     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7423     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7424 
7425     unsigned NumSrcBits = SrcVT.getSizeInBits();
7426     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7427 
7428     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7429     SDValue SrcEltBitMask = DAG.getConstant(
7430         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7431 
7432     // Load the whole vector and avoid masking off the top bits as it makes
7433     // the codegen worse.
7434     SDValue Load =
7435         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7436                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7437                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7438 
7439     SmallVector<SDValue, 8> Vals;
7440     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7441       unsigned ShiftIntoIdx =
7442           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7443       SDValue ShiftAmount =
7444           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7445                                      LoadVT, SL, /*LegalTypes=*/false);
7446       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7447       SDValue Elt =
7448           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7449       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7450 
7451       if (ExtType != ISD::NON_EXTLOAD) {
7452         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7453         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7454       }
7455 
7456       Vals.push_back(Scalar);
7457     }
7458 
7459     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7460     return std::make_pair(Value, Load.getValue(1));
7461   }
7462 
7463   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7464   assert(SrcEltVT.isByteSized());
7465 
7466   SmallVector<SDValue, 8> Vals;
7467   SmallVector<SDValue, 8> LoadChains;
7468 
7469   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7470     SDValue ScalarLoad =
7471         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7472                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7473                        SrcEltVT, LD->getOriginalAlign(),
7474                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7475 
7476     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7477 
7478     Vals.push_back(ScalarLoad.getValue(0));
7479     LoadChains.push_back(ScalarLoad.getValue(1));
7480   }
7481 
7482   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7483   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7484 
7485   return std::make_pair(Value, NewChain);
7486 }
7487 
7488 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7489                                              SelectionDAG &DAG) const {
7490   SDLoc SL(ST);
7491 
7492   SDValue Chain = ST->getChain();
7493   SDValue BasePtr = ST->getBasePtr();
7494   SDValue Value = ST->getValue();
7495   EVT StVT = ST->getMemoryVT();
7496 
7497   if (StVT.isScalableVector())
7498     report_fatal_error("Cannot scalarize scalable vector stores");
7499 
7500   // The type of the data we want to save
7501   EVT RegVT = Value.getValueType();
7502   EVT RegSclVT = RegVT.getScalarType();
7503 
7504   // The type of data as saved in memory.
7505   EVT MemSclVT = StVT.getScalarType();
7506 
7507   unsigned NumElem = StVT.getVectorNumElements();
7508 
7509   // A vector must always be stored in memory as-is, i.e. without any padding
7510   // between the elements, since various code depend on it, e.g. in the
7511   // handling of a bitcast of a vector type to int, which may be done with a
7512   // vector store followed by an integer load. A vector that does not have
7513   // elements that are byte-sized must therefore be stored as an integer
7514   // built out of the extracted vector elements.
7515   if (!MemSclVT.isByteSized()) {
7516     unsigned NumBits = StVT.getSizeInBits();
7517     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7518 
7519     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7520 
7521     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7522       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7523                                 DAG.getVectorIdxConstant(Idx, SL));
7524       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7525       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7526       unsigned ShiftIntoIdx =
7527           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7528       SDValue ShiftAmount =
7529           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7530       SDValue ShiftedElt =
7531           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7532       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7533     }
7534 
7535     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7536                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7537                         ST->getAAInfo());
7538   }
7539 
7540   // Store Stride in bytes
7541   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7542   assert(Stride && "Zero stride!");
7543   // Extract each of the elements from the original vector and save them into
7544   // memory individually.
7545   SmallVector<SDValue, 8> Stores;
7546   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7547     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7548                               DAG.getVectorIdxConstant(Idx, SL));
7549 
7550     SDValue Ptr =
7551         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7552 
7553     // This scalar TruncStore may be illegal, but we legalize it later.
7554     SDValue Store = DAG.getTruncStore(
7555         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7556         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7557         ST->getAAInfo());
7558 
7559     Stores.push_back(Store);
7560   }
7561 
7562   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7563 }
7564 
7565 std::pair<SDValue, SDValue>
7566 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7567   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7568          "unaligned indexed loads not implemented!");
7569   SDValue Chain = LD->getChain();
7570   SDValue Ptr = LD->getBasePtr();
7571   EVT VT = LD->getValueType(0);
7572   EVT LoadedVT = LD->getMemoryVT();
7573   SDLoc dl(LD);
7574   auto &MF = DAG.getMachineFunction();
7575 
7576   if (VT.isFloatingPoint() || VT.isVector()) {
7577     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7578     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7579       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7580           LoadedVT.isVector()) {
7581         // Scalarize the load and let the individual components be handled.
7582         return scalarizeVectorLoad(LD, DAG);
7583       }
7584 
7585       // Expand to a (misaligned) integer load of the same size,
7586       // then bitconvert to floating point or vector.
7587       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7588                                     LD->getMemOperand());
7589       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7590       if (LoadedVT != VT)
7591         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7592                              ISD::ANY_EXTEND, dl, VT, Result);
7593 
7594       return std::make_pair(Result, newLoad.getValue(1));
7595     }
7596 
7597     // Copy the value to a (aligned) stack slot using (unaligned) integer
7598     // loads and stores, then do a (aligned) load from the stack slot.
7599     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7600     unsigned LoadedBytes = LoadedVT.getStoreSize();
7601     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7602     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7603 
7604     // Make sure the stack slot is also aligned for the register type.
7605     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7606     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7607     SmallVector<SDValue, 8> Stores;
7608     SDValue StackPtr = StackBase;
7609     unsigned Offset = 0;
7610 
7611     EVT PtrVT = Ptr.getValueType();
7612     EVT StackPtrVT = StackPtr.getValueType();
7613 
7614     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7615     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7616 
7617     // Do all but one copies using the full register width.
7618     for (unsigned i = 1; i < NumRegs; i++) {
7619       // Load one integer register's worth from the original location.
7620       SDValue Load = DAG.getLoad(
7621           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7622           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7623           LD->getAAInfo());
7624       // Follow the load with a store to the stack slot.  Remember the store.
7625       Stores.push_back(DAG.getStore(
7626           Load.getValue(1), dl, Load, StackPtr,
7627           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7628       // Increment the pointers.
7629       Offset += RegBytes;
7630 
7631       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7632       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7633     }
7634 
7635     // The last copy may be partial.  Do an extending load.
7636     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7637                                   8 * (LoadedBytes - Offset));
7638     SDValue Load =
7639         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7640                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7641                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7642                        LD->getAAInfo());
7643     // Follow the load with a store to the stack slot.  Remember the store.
7644     // On big-endian machines this requires a truncating store to ensure
7645     // that the bits end up in the right place.
7646     Stores.push_back(DAG.getTruncStore(
7647         Load.getValue(1), dl, Load, StackPtr,
7648         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7649 
7650     // The order of the stores doesn't matter - say it with a TokenFactor.
7651     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7652 
7653     // Finally, perform the original load only redirected to the stack slot.
7654     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7655                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7656                           LoadedVT);
7657 
7658     // Callers expect a MERGE_VALUES node.
7659     return std::make_pair(Load, TF);
7660   }
7661 
7662   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7663          "Unaligned load of unsupported type.");
7664 
7665   // Compute the new VT that is half the size of the old one.  This is an
7666   // integer MVT.
7667   unsigned NumBits = LoadedVT.getSizeInBits();
7668   EVT NewLoadedVT;
7669   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7670   NumBits >>= 1;
7671 
7672   Align Alignment = LD->getOriginalAlign();
7673   unsigned IncrementSize = NumBits / 8;
7674   ISD::LoadExtType HiExtType = LD->getExtensionType();
7675 
7676   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7677   if (HiExtType == ISD::NON_EXTLOAD)
7678     HiExtType = ISD::ZEXTLOAD;
7679 
7680   // Load the value in two parts
7681   SDValue Lo, Hi;
7682   if (DAG.getDataLayout().isLittleEndian()) {
7683     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7684                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7685                         LD->getAAInfo());
7686 
7687     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7688     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7689                         LD->getPointerInfo().getWithOffset(IncrementSize),
7690                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7691                         LD->getAAInfo());
7692   } else {
7693     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7694                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7695                         LD->getAAInfo());
7696 
7697     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7698     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7699                         LD->getPointerInfo().getWithOffset(IncrementSize),
7700                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7701                         LD->getAAInfo());
7702   }
7703 
7704   // aggregate the two parts
7705   SDValue ShiftAmount =
7706       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7707                                                     DAG.getDataLayout()));
7708   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7709   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7710 
7711   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7712                              Hi.getValue(1));
7713 
7714   return std::make_pair(Result, TF);
7715 }
7716 
7717 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7718                                              SelectionDAG &DAG) const {
7719   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7720          "unaligned indexed stores not implemented!");
7721   SDValue Chain = ST->getChain();
7722   SDValue Ptr = ST->getBasePtr();
7723   SDValue Val = ST->getValue();
7724   EVT VT = Val.getValueType();
7725   Align Alignment = ST->getOriginalAlign();
7726   auto &MF = DAG.getMachineFunction();
7727   EVT StoreMemVT = ST->getMemoryVT();
7728 
7729   SDLoc dl(ST);
7730   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7731     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7732     if (isTypeLegal(intVT)) {
7733       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7734           StoreMemVT.isVector()) {
7735         // Scalarize the store and let the individual components be handled.
7736         SDValue Result = scalarizeVectorStore(ST, DAG);
7737         return Result;
7738       }
7739       // Expand to a bitconvert of the value to the integer type of the
7740       // same size, then a (misaligned) int store.
7741       // FIXME: Does not handle truncating floating point stores!
7742       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7743       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7744                             Alignment, ST->getMemOperand()->getFlags());
7745       return Result;
7746     }
7747     // Do a (aligned) store to a stack slot, then copy from the stack slot
7748     // to the final destination using (unaligned) integer loads and stores.
7749     MVT RegVT = getRegisterType(
7750         *DAG.getContext(),
7751         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7752     EVT PtrVT = Ptr.getValueType();
7753     unsigned StoredBytes = StoreMemVT.getStoreSize();
7754     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7755     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7756 
7757     // Make sure the stack slot is also aligned for the register type.
7758     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7759     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7760 
7761     // Perform the original store, only redirected to the stack slot.
7762     SDValue Store = DAG.getTruncStore(
7763         Chain, dl, Val, StackPtr,
7764         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7765 
7766     EVT StackPtrVT = StackPtr.getValueType();
7767 
7768     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7769     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7770     SmallVector<SDValue, 8> Stores;
7771     unsigned Offset = 0;
7772 
7773     // Do all but one copies using the full register width.
7774     for (unsigned i = 1; i < NumRegs; i++) {
7775       // Load one integer register's worth from the stack slot.
7776       SDValue Load = DAG.getLoad(
7777           RegVT, dl, Store, StackPtr,
7778           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7779       // Store it to the final location.  Remember the store.
7780       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7781                                     ST->getPointerInfo().getWithOffset(Offset),
7782                                     ST->getOriginalAlign(),
7783                                     ST->getMemOperand()->getFlags()));
7784       // Increment the pointers.
7785       Offset += RegBytes;
7786       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7787       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7788     }
7789 
7790     // The last store may be partial.  Do a truncating store.  On big-endian
7791     // machines this requires an extending load from the stack slot to ensure
7792     // that the bits are in the right place.
7793     EVT LoadMemVT =
7794         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7795 
7796     // Load from the stack slot.
7797     SDValue Load = DAG.getExtLoad(
7798         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7799         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7800 
7801     Stores.push_back(
7802         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7803                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7804                           ST->getOriginalAlign(),
7805                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7806     // The order of the stores doesn't matter - say it with a TokenFactor.
7807     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7808     return Result;
7809   }
7810 
7811   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7812          "Unaligned store of unknown type.");
7813   // Get the half-size VT
7814   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7815   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7816   unsigned IncrementSize = NumBits / 8;
7817 
7818   // Divide the stored value in two parts.
7819   SDValue ShiftAmount = DAG.getConstant(
7820       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7821   SDValue Lo = Val;
7822   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7823 
7824   // Store the two parts
7825   SDValue Store1, Store2;
7826   Store1 = DAG.getTruncStore(Chain, dl,
7827                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7828                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7829                              ST->getMemOperand()->getFlags());
7830 
7831   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7832   Store2 = DAG.getTruncStore(
7833       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7834       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7835       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7836 
7837   SDValue Result =
7838       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7839   return Result;
7840 }
7841 
7842 SDValue
7843 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7844                                        const SDLoc &DL, EVT DataVT,
7845                                        SelectionDAG &DAG,
7846                                        bool IsCompressedMemory) const {
7847   SDValue Increment;
7848   EVT AddrVT = Addr.getValueType();
7849   EVT MaskVT = Mask.getValueType();
7850   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7851          "Incompatible types of Data and Mask");
7852   if (IsCompressedMemory) {
7853     if (DataVT.isScalableVector())
7854       report_fatal_error(
7855           "Cannot currently handle compressed memory with scalable vectors");
7856     // Incrementing the pointer according to number of '1's in the mask.
7857     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7858     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7859     if (MaskIntVT.getSizeInBits() < 32) {
7860       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7861       MaskIntVT = MVT::i32;
7862     }
7863 
7864     // Count '1's with POPCNT.
7865     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7866     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7867     // Scale is an element size in bytes.
7868     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7869                                     AddrVT);
7870     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7871   } else if (DataVT.isScalableVector()) {
7872     Increment = DAG.getVScale(DL, AddrVT,
7873                               APInt(AddrVT.getFixedSizeInBits(),
7874                                     DataVT.getStoreSize().getKnownMinSize()));
7875   } else
7876     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7877 
7878   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7879 }
7880 
7881 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
7882                                        EVT VecVT, const SDLoc &dl,
7883                                        ElementCount SubEC) {
7884   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
7885          "Cannot index a scalable vector within a fixed-width vector");
7886 
7887   unsigned NElts = VecVT.getVectorMinNumElements();
7888   unsigned NumSubElts = SubEC.getKnownMinValue();
7889   EVT IdxVT = Idx.getValueType();
7890 
7891   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
7892     // If this is a constant index and we know the value plus the number of the
7893     // elements in the subvector minus one is less than the minimum number of
7894     // elements then it's safe to return Idx.
7895     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
7896       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
7897         return Idx;
7898     SDValue VS =
7899         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
7900     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
7901     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
7902                               DAG.getConstant(NumSubElts, dl, IdxVT));
7903     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7904   }
7905   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
7906     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
7907     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7908                        DAG.getConstant(Imm, dl, IdxVT));
7909   }
7910   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
7911   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7912                      DAG.getConstant(MaxIndex, dl, IdxVT));
7913 }
7914 
7915 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7916                                                 SDValue VecPtr, EVT VecVT,
7917                                                 SDValue Index) const {
7918   return getVectorSubVecPointer(
7919       DAG, VecPtr, VecVT,
7920       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
7921       Index);
7922 }
7923 
7924 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
7925                                                SDValue VecPtr, EVT VecVT,
7926                                                EVT SubVecVT,
7927                                                SDValue Index) const {
7928   SDLoc dl(Index);
7929   // Make sure the index type is big enough to compute in.
7930   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7931 
7932   EVT EltVT = VecVT.getVectorElementType();
7933 
7934   // Calculate the element offset and add it to the pointer.
7935   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7936   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7937          "Converting bits to bytes lost precision");
7938   assert(SubVecVT.getVectorElementType() == EltVT &&
7939          "Sub-vector must be a vector with matching element type");
7940   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
7941                                   SubVecVT.getVectorElementCount());
7942 
7943   EVT IdxVT = Index.getValueType();
7944   if (SubVecVT.isScalableVector())
7945     Index =
7946         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7947                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
7948 
7949   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7950                       DAG.getConstant(EltSize, dl, IdxVT));
7951   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7952 }
7953 
7954 //===----------------------------------------------------------------------===//
7955 // Implementation of Emulated TLS Model
7956 //===----------------------------------------------------------------------===//
7957 
7958 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7959                                                 SelectionDAG &DAG) const {
7960   // Access to address of TLS varialbe xyz is lowered to a function call:
7961   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7962   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7963   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7964   SDLoc dl(GA);
7965 
7966   ArgListTy Args;
7967   ArgListEntry Entry;
7968   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7969   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7970   StringRef EmuTlsVarName(NameString);
7971   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7972   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7973   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7974   Entry.Ty = VoidPtrType;
7975   Args.push_back(Entry);
7976 
7977   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7978 
7979   TargetLowering::CallLoweringInfo CLI(DAG);
7980   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7981   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7982   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7983 
7984   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7985   // At last for X86 targets, maybe good for other targets too?
7986   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7987   MFI.setAdjustsStack(true); // Is this only for X86 target?
7988   MFI.setHasCalls(true);
7989 
7990   assert((GA->getOffset() == 0) &&
7991          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7992   return CallResult.first;
7993 }
7994 
7995 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7996                                                 SelectionDAG &DAG) const {
7997   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7998   if (!isCtlzFast())
7999     return SDValue();
8000   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8001   SDLoc dl(Op);
8002   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8003     if (C->isZero() && CC == ISD::SETEQ) {
8004       EVT VT = Op.getOperand(0).getValueType();
8005       SDValue Zext = Op.getOperand(0);
8006       if (VT.bitsLT(MVT::i32)) {
8007         VT = MVT::i32;
8008         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8009       }
8010       unsigned Log2b = Log2_32(VT.getSizeInBits());
8011       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8012       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8013                                 DAG.getConstant(Log2b, dl, MVT::i32));
8014       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8015     }
8016   }
8017   return SDValue();
8018 }
8019 
8020 // Convert redundant addressing modes (e.g. scaling is redundant
8021 // when accessing bytes).
8022 ISD::MemIndexType
8023 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
8024                                       SDValue Offsets) const {
8025   bool IsScaledIndex =
8026       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
8027   bool IsSignedIndex =
8028       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
8029 
8030   // Scaling is unimportant for bytes, canonicalize to unscaled.
8031   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8)
8032     return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
8033 
8034   return IndexType;
8035 }
8036 
8037 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8038   SDValue Op0 = Node->getOperand(0);
8039   SDValue Op1 = Node->getOperand(1);
8040   EVT VT = Op0.getValueType();
8041   unsigned Opcode = Node->getOpcode();
8042   SDLoc DL(Node);
8043 
8044   // umin(x,y) -> sub(x,usubsat(x,y))
8045   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8046       isOperationLegal(ISD::USUBSAT, VT)) {
8047     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8048                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8049   }
8050 
8051   // umax(x,y) -> add(x,usubsat(y,x))
8052   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8053       isOperationLegal(ISD::USUBSAT, VT)) {
8054     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8055                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8056   }
8057 
8058   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8059   ISD::CondCode CC;
8060   switch (Opcode) {
8061   default: llvm_unreachable("How did we get here?");
8062   case ISD::SMAX: CC = ISD::SETGT; break;
8063   case ISD::SMIN: CC = ISD::SETLT; break;
8064   case ISD::UMAX: CC = ISD::SETUGT; break;
8065   case ISD::UMIN: CC = ISD::SETULT; break;
8066   }
8067 
8068   // FIXME: Should really try to split the vector in case it's legal on a
8069   // subvector.
8070   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8071     return DAG.UnrollVectorOp(Node);
8072 
8073   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8074   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8075   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8076 }
8077 
8078 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8079   unsigned Opcode = Node->getOpcode();
8080   SDValue LHS = Node->getOperand(0);
8081   SDValue RHS = Node->getOperand(1);
8082   EVT VT = LHS.getValueType();
8083   SDLoc dl(Node);
8084 
8085   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8086   assert(VT.isInteger() && "Expected operands to be integers");
8087 
8088   // usub.sat(a, b) -> umax(a, b) - b
8089   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8090     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8091     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8092   }
8093 
8094   // uadd.sat(a, b) -> umin(a, ~b) + b
8095   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8096     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8097     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8098     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8099   }
8100 
8101   unsigned OverflowOp;
8102   switch (Opcode) {
8103   case ISD::SADDSAT:
8104     OverflowOp = ISD::SADDO;
8105     break;
8106   case ISD::UADDSAT:
8107     OverflowOp = ISD::UADDO;
8108     break;
8109   case ISD::SSUBSAT:
8110     OverflowOp = ISD::SSUBO;
8111     break;
8112   case ISD::USUBSAT:
8113     OverflowOp = ISD::USUBO;
8114     break;
8115   default:
8116     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8117                      "addition or subtraction node.");
8118   }
8119 
8120   // FIXME: Should really try to split the vector in case it's legal on a
8121   // subvector.
8122   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8123     return DAG.UnrollVectorOp(Node);
8124 
8125   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8126   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8127   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8128   SDValue SumDiff = Result.getValue(0);
8129   SDValue Overflow = Result.getValue(1);
8130   SDValue Zero = DAG.getConstant(0, dl, VT);
8131   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8132 
8133   if (Opcode == ISD::UADDSAT) {
8134     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8135       // (LHS + RHS) | OverflowMask
8136       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8137       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8138     }
8139     // Overflow ? 0xffff.... : (LHS + RHS)
8140     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8141   }
8142 
8143   if (Opcode == ISD::USUBSAT) {
8144     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8145       // (LHS - RHS) & ~OverflowMask
8146       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8147       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8148       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8149     }
8150     // Overflow ? 0 : (LHS - RHS)
8151     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8152   }
8153 
8154   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8155   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8156   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8157   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8158                               DAG.getConstant(BitWidth - 1, dl, VT));
8159   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8160   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8161 }
8162 
8163 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8164   unsigned Opcode = Node->getOpcode();
8165   bool IsSigned = Opcode == ISD::SSHLSAT;
8166   SDValue LHS = Node->getOperand(0);
8167   SDValue RHS = Node->getOperand(1);
8168   EVT VT = LHS.getValueType();
8169   SDLoc dl(Node);
8170 
8171   assert((Node->getOpcode() == ISD::SSHLSAT ||
8172           Node->getOpcode() == ISD::USHLSAT) &&
8173           "Expected a SHLSAT opcode");
8174   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8175   assert(VT.isInteger() && "Expected operands to be integers");
8176 
8177   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8178 
8179   unsigned BW = VT.getScalarSizeInBits();
8180   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8181   SDValue Orig =
8182       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8183 
8184   SDValue SatVal;
8185   if (IsSigned) {
8186     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8187     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8188     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8189                              SatMin, SatMax, ISD::SETLT);
8190   } else {
8191     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8192   }
8193   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8194 
8195   return Result;
8196 }
8197 
8198 SDValue
8199 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8200   assert((Node->getOpcode() == ISD::SMULFIX ||
8201           Node->getOpcode() == ISD::UMULFIX ||
8202           Node->getOpcode() == ISD::SMULFIXSAT ||
8203           Node->getOpcode() == ISD::UMULFIXSAT) &&
8204          "Expected a fixed point multiplication opcode");
8205 
8206   SDLoc dl(Node);
8207   SDValue LHS = Node->getOperand(0);
8208   SDValue RHS = Node->getOperand(1);
8209   EVT VT = LHS.getValueType();
8210   unsigned Scale = Node->getConstantOperandVal(2);
8211   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8212                      Node->getOpcode() == ISD::UMULFIXSAT);
8213   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8214                  Node->getOpcode() == ISD::SMULFIXSAT);
8215   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8216   unsigned VTSize = VT.getScalarSizeInBits();
8217 
8218   if (!Scale) {
8219     // [us]mul.fix(a, b, 0) -> mul(a, b)
8220     if (!Saturating) {
8221       if (isOperationLegalOrCustom(ISD::MUL, VT))
8222         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8223     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8224       SDValue Result =
8225           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8226       SDValue Product = Result.getValue(0);
8227       SDValue Overflow = Result.getValue(1);
8228       SDValue Zero = DAG.getConstant(0, dl, VT);
8229 
8230       APInt MinVal = APInt::getSignedMinValue(VTSize);
8231       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8232       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8233       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8234       // Xor the inputs, if resulting sign bit is 0 the product will be
8235       // positive, else negative.
8236       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8237       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8238       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8239       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8240     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8241       SDValue Result =
8242           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8243       SDValue Product = Result.getValue(0);
8244       SDValue Overflow = Result.getValue(1);
8245 
8246       APInt MaxVal = APInt::getMaxValue(VTSize);
8247       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8248       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8249     }
8250   }
8251 
8252   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8253          "Expected scale to be less than the number of bits if signed or at "
8254          "most the number of bits if unsigned.");
8255   assert(LHS.getValueType() == RHS.getValueType() &&
8256          "Expected both operands to be the same type");
8257 
8258   // Get the upper and lower bits of the result.
8259   SDValue Lo, Hi;
8260   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8261   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8262   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8263     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8264     Lo = Result.getValue(0);
8265     Hi = Result.getValue(1);
8266   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8267     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8268     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8269   } else if (VT.isVector()) {
8270     return SDValue();
8271   } else {
8272     report_fatal_error("Unable to expand fixed point multiplication.");
8273   }
8274 
8275   if (Scale == VTSize)
8276     // Result is just the top half since we'd be shifting by the width of the
8277     // operand. Overflow impossible so this works for both UMULFIX and
8278     // UMULFIXSAT.
8279     return Hi;
8280 
8281   // The result will need to be shifted right by the scale since both operands
8282   // are scaled. The result is given to us in 2 halves, so we only want part of
8283   // both in the result.
8284   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8285   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8286                                DAG.getConstant(Scale, dl, ShiftTy));
8287   if (!Saturating)
8288     return Result;
8289 
8290   if (!Signed) {
8291     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8292     // widened multiplication) aren't all zeroes.
8293 
8294     // Saturate to max if ((Hi >> Scale) != 0),
8295     // which is the same as if (Hi > ((1 << Scale) - 1))
8296     APInt MaxVal = APInt::getMaxValue(VTSize);
8297     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8298                                       dl, VT);
8299     Result = DAG.getSelectCC(dl, Hi, LowMask,
8300                              DAG.getConstant(MaxVal, dl, VT), Result,
8301                              ISD::SETUGT);
8302 
8303     return Result;
8304   }
8305 
8306   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8307   // widened multiplication) aren't all ones or all zeroes.
8308 
8309   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8310   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8311 
8312   if (Scale == 0) {
8313     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8314                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8315     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8316     // Saturated to SatMin if wide product is negative, and SatMax if wide
8317     // product is positive ...
8318     SDValue Zero = DAG.getConstant(0, dl, VT);
8319     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8320                                                ISD::SETLT);
8321     // ... but only if we overflowed.
8322     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8323   }
8324 
8325   //  We handled Scale==0 above so all the bits to examine is in Hi.
8326 
8327   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8328   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8329   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8330                                     dl, VT);
8331   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8332   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8333   // which is the same as if (HI < (-1 << (Scale - 1))
8334   SDValue HighMask =
8335       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8336                       dl, VT);
8337   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8338   return Result;
8339 }
8340 
8341 SDValue
8342 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8343                                     SDValue LHS, SDValue RHS,
8344                                     unsigned Scale, SelectionDAG &DAG) const {
8345   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8346           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8347          "Expected a fixed point division opcode");
8348 
8349   EVT VT = LHS.getValueType();
8350   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8351   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8352   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8353 
8354   // If there is enough room in the type to upscale the LHS or downscale the
8355   // RHS before the division, we can perform it in this type without having to
8356   // resize. For signed operations, the LHS headroom is the number of
8357   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8358   // The headroom for the RHS is the number of trailing zeroes.
8359   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8360                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8361   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8362 
8363   // For signed saturating operations, we need to be able to detect true integer
8364   // division overflow; that is, when you have MIN / -EPS. However, this
8365   // is undefined behavior and if we emit divisions that could take such
8366   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8367   // example).
8368   // Avoid this by requiring an extra bit so that we never get this case.
8369   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8370   // signed saturating division, we need to emit a whopping 32-bit division.
8371   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8372     return SDValue();
8373 
8374   unsigned LHSShift = std::min(LHSLead, Scale);
8375   unsigned RHSShift = Scale - LHSShift;
8376 
8377   // At this point, we know that if we shift the LHS up by LHSShift and the
8378   // RHS down by RHSShift, we can emit a regular division with a final scaling
8379   // factor of Scale.
8380 
8381   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8382   if (LHSShift)
8383     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8384                       DAG.getConstant(LHSShift, dl, ShiftTy));
8385   if (RHSShift)
8386     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8387                       DAG.getConstant(RHSShift, dl, ShiftTy));
8388 
8389   SDValue Quot;
8390   if (Signed) {
8391     // For signed operations, if the resulting quotient is negative and the
8392     // remainder is nonzero, subtract 1 from the quotient to round towards
8393     // negative infinity.
8394     SDValue Rem;
8395     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8396     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8397     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8398     if (isTypeLegal(VT) &&
8399         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8400       Quot = DAG.getNode(ISD::SDIVREM, dl,
8401                          DAG.getVTList(VT, VT),
8402                          LHS, RHS);
8403       Rem = Quot.getValue(1);
8404       Quot = Quot.getValue(0);
8405     } else {
8406       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8407                          LHS, RHS);
8408       Rem = DAG.getNode(ISD::SREM, dl, VT,
8409                         LHS, RHS);
8410     }
8411     SDValue Zero = DAG.getConstant(0, dl, VT);
8412     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8413     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8414     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8415     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8416     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8417                                DAG.getConstant(1, dl, VT));
8418     Quot = DAG.getSelect(dl, VT,
8419                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8420                          Sub1, Quot);
8421   } else
8422     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8423                        LHS, RHS);
8424 
8425   return Quot;
8426 }
8427 
8428 void TargetLowering::expandUADDSUBO(
8429     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8430   SDLoc dl(Node);
8431   SDValue LHS = Node->getOperand(0);
8432   SDValue RHS = Node->getOperand(1);
8433   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8434 
8435   // If ADD/SUBCARRY is legal, use that instead.
8436   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8437   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8438     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8439     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8440                                     { LHS, RHS, CarryIn });
8441     Result = SDValue(NodeCarry.getNode(), 0);
8442     Overflow = SDValue(NodeCarry.getNode(), 1);
8443     return;
8444   }
8445 
8446   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8447                             LHS.getValueType(), LHS, RHS);
8448 
8449   EVT ResultType = Node->getValueType(1);
8450   EVT SetCCType = getSetCCResultType(
8451       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8452   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8453   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8454   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8455 }
8456 
8457 void TargetLowering::expandSADDSUBO(
8458     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8459   SDLoc dl(Node);
8460   SDValue LHS = Node->getOperand(0);
8461   SDValue RHS = Node->getOperand(1);
8462   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8463 
8464   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8465                             LHS.getValueType(), LHS, RHS);
8466 
8467   EVT ResultType = Node->getValueType(1);
8468   EVT OType = getSetCCResultType(
8469       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8470 
8471   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8472   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8473   if (isOperationLegal(OpcSat, LHS.getValueType())) {
8474     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8475     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8476     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8477     return;
8478   }
8479 
8480   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8481 
8482   // For an addition, the result should be less than one of the operands (LHS)
8483   // if and only if the other operand (RHS) is negative, otherwise there will
8484   // be overflow.
8485   // For a subtraction, the result should be less than one of the operands
8486   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8487   // otherwise there will be overflow.
8488   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8489   SDValue ConditionRHS =
8490       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8491 
8492   Overflow = DAG.getBoolExtOrTrunc(
8493       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8494       ResultType, ResultType);
8495 }
8496 
8497 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8498                                 SDValue &Overflow, SelectionDAG &DAG) const {
8499   SDLoc dl(Node);
8500   EVT VT = Node->getValueType(0);
8501   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8502   SDValue LHS = Node->getOperand(0);
8503   SDValue RHS = Node->getOperand(1);
8504   bool isSigned = Node->getOpcode() == ISD::SMULO;
8505 
8506   // For power-of-two multiplications we can use a simpler shift expansion.
8507   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8508     const APInt &C = RHSC->getAPIntValue();
8509     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8510     if (C.isPowerOf2()) {
8511       // smulo(x, signed_min) is same as umulo(x, signed_min).
8512       bool UseArithShift = isSigned && !C.isMinSignedValue();
8513       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8514       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8515       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8516       Overflow = DAG.getSetCC(dl, SetCCVT,
8517           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8518                       dl, VT, Result, ShiftAmt),
8519           LHS, ISD::SETNE);
8520       return true;
8521     }
8522   }
8523 
8524   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8525   if (VT.isVector())
8526     WideVT =
8527         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
8528 
8529   SDValue BottomHalf;
8530   SDValue TopHalf;
8531   static const unsigned Ops[2][3] =
8532       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8533         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8534   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8535     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8536     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8537   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8538     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8539                              RHS);
8540     TopHalf = BottomHalf.getValue(1);
8541   } else if (isTypeLegal(WideVT)) {
8542     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8543     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8544     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8545     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8546     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8547         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8548     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8549                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8550   } else {
8551     if (VT.isVector())
8552       return false;
8553 
8554     // We can fall back to a libcall with an illegal type for the MUL if we
8555     // have a libcall big enough.
8556     // Also, we can fall back to a division in some cases, but that's a big
8557     // performance hit in the general case.
8558     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8559     if (WideVT == MVT::i16)
8560       LC = RTLIB::MUL_I16;
8561     else if (WideVT == MVT::i32)
8562       LC = RTLIB::MUL_I32;
8563     else if (WideVT == MVT::i64)
8564       LC = RTLIB::MUL_I64;
8565     else if (WideVT == MVT::i128)
8566       LC = RTLIB::MUL_I128;
8567     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8568 
8569     SDValue HiLHS;
8570     SDValue HiRHS;
8571     if (isSigned) {
8572       // The high part is obtained by SRA'ing all but one of the bits of low
8573       // part.
8574       unsigned LoSize = VT.getFixedSizeInBits();
8575       HiLHS =
8576           DAG.getNode(ISD::SRA, dl, VT, LHS,
8577                       DAG.getConstant(LoSize - 1, dl,
8578                                       getPointerTy(DAG.getDataLayout())));
8579       HiRHS =
8580           DAG.getNode(ISD::SRA, dl, VT, RHS,
8581                       DAG.getConstant(LoSize - 1, dl,
8582                                       getPointerTy(DAG.getDataLayout())));
8583     } else {
8584         HiLHS = DAG.getConstant(0, dl, VT);
8585         HiRHS = DAG.getConstant(0, dl, VT);
8586     }
8587 
8588     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8589     // pre-lowered to the correct types. This all depends upon WideVT not
8590     // being a legal type for the architecture and thus has to be split to
8591     // two arguments.
8592     SDValue Ret;
8593     TargetLowering::MakeLibCallOptions CallOptions;
8594     CallOptions.setSExt(isSigned);
8595     CallOptions.setIsPostTypeLegalization(true);
8596     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8597       // Halves of WideVT are packed into registers in different order
8598       // depending on platform endianness. This is usually handled by
8599       // the C calling convention, but we can't defer to it in
8600       // the legalizer.
8601       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8602       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8603     } else {
8604       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8605       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8606     }
8607     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8608            "Ret value is a collection of constituent nodes holding result.");
8609     if (DAG.getDataLayout().isLittleEndian()) {
8610       // Same as above.
8611       BottomHalf = Ret.getOperand(0);
8612       TopHalf = Ret.getOperand(1);
8613     } else {
8614       BottomHalf = Ret.getOperand(1);
8615       TopHalf = Ret.getOperand(0);
8616     }
8617   }
8618 
8619   Result = BottomHalf;
8620   if (isSigned) {
8621     SDValue ShiftAmt = DAG.getConstant(
8622         VT.getScalarSizeInBits() - 1, dl,
8623         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8624     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8625     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8626   } else {
8627     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8628                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8629   }
8630 
8631   // Truncate the result if SetCC returns a larger type than needed.
8632   EVT RType = Node->getValueType(1);
8633   if (RType.bitsLT(Overflow.getValueType()))
8634     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8635 
8636   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8637          "Unexpected result type for S/UMULO legalization");
8638   return true;
8639 }
8640 
8641 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8642   SDLoc dl(Node);
8643   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8644   SDValue Op = Node->getOperand(0);
8645   EVT VT = Op.getValueType();
8646 
8647   if (VT.isScalableVector())
8648     report_fatal_error(
8649         "Expanding reductions for scalable vectors is undefined.");
8650 
8651   // Try to use a shuffle reduction for power of two vectors.
8652   if (VT.isPow2VectorType()) {
8653     while (VT.getVectorNumElements() > 1) {
8654       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8655       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8656         break;
8657 
8658       SDValue Lo, Hi;
8659       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8660       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8661       VT = HalfVT;
8662     }
8663   }
8664 
8665   EVT EltVT = VT.getVectorElementType();
8666   unsigned NumElts = VT.getVectorNumElements();
8667 
8668   SmallVector<SDValue, 8> Ops;
8669   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8670 
8671   SDValue Res = Ops[0];
8672   for (unsigned i = 1; i < NumElts; i++)
8673     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8674 
8675   // Result type may be wider than element type.
8676   if (EltVT != Node->getValueType(0))
8677     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8678   return Res;
8679 }
8680 
8681 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8682   SDLoc dl(Node);
8683   SDValue AccOp = Node->getOperand(0);
8684   SDValue VecOp = Node->getOperand(1);
8685   SDNodeFlags Flags = Node->getFlags();
8686 
8687   EVT VT = VecOp.getValueType();
8688   EVT EltVT = VT.getVectorElementType();
8689 
8690   if (VT.isScalableVector())
8691     report_fatal_error(
8692         "Expanding reductions for scalable vectors is undefined.");
8693 
8694   unsigned NumElts = VT.getVectorNumElements();
8695 
8696   SmallVector<SDValue, 8> Ops;
8697   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8698 
8699   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8700 
8701   SDValue Res = AccOp;
8702   for (unsigned i = 0; i < NumElts; i++)
8703     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8704 
8705   return Res;
8706 }
8707 
8708 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8709                                SelectionDAG &DAG) const {
8710   EVT VT = Node->getValueType(0);
8711   SDLoc dl(Node);
8712   bool isSigned = Node->getOpcode() == ISD::SREM;
8713   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8714   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8715   SDValue Dividend = Node->getOperand(0);
8716   SDValue Divisor = Node->getOperand(1);
8717   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8718     SDVTList VTs = DAG.getVTList(VT, VT);
8719     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8720     return true;
8721   }
8722   if (isOperationLegalOrCustom(DivOpc, VT)) {
8723     // X % Y -> X-X/Y*Y
8724     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8725     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8726     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8727     return true;
8728   }
8729   return false;
8730 }
8731 
8732 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8733                                             SelectionDAG &DAG) const {
8734   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8735   SDLoc dl(SDValue(Node, 0));
8736   SDValue Src = Node->getOperand(0);
8737 
8738   // DstVT is the result type, while SatVT is the size to which we saturate
8739   EVT SrcVT = Src.getValueType();
8740   EVT DstVT = Node->getValueType(0);
8741 
8742   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
8743   unsigned SatWidth = SatVT.getScalarSizeInBits();
8744   unsigned DstWidth = DstVT.getScalarSizeInBits();
8745   assert(SatWidth <= DstWidth &&
8746          "Expected saturation width smaller than result width");
8747 
8748   // Determine minimum and maximum integer values and their corresponding
8749   // floating-point values.
8750   APInt MinInt, MaxInt;
8751   if (IsSigned) {
8752     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8753     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8754   } else {
8755     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8756     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8757   }
8758 
8759   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8760   // libcall emission cannot handle this. Large result types will fail.
8761   if (SrcVT == MVT::f16) {
8762     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8763     SrcVT = Src.getValueType();
8764   }
8765 
8766   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8767   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8768 
8769   APFloat::opStatus MinStatus =
8770       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8771   APFloat::opStatus MaxStatus =
8772       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8773   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8774                              !(MaxStatus & APFloat::opStatus::opInexact);
8775 
8776   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8777   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8778 
8779   // If the integer bounds are exactly representable as floats and min/max are
8780   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8781   // of comparisons and selects.
8782   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8783                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8784   if (AreExactFloatBounds && MinMaxLegal) {
8785     SDValue Clamped = Src;
8786 
8787     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8788     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8789     // Clamp by MaxFloat from above. NaN cannot occur.
8790     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8791     // Convert clamped value to integer.
8792     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8793                                   dl, DstVT, Clamped);
8794 
8795     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8796     // which will cast to zero.
8797     if (!IsSigned)
8798       return FpToInt;
8799 
8800     // Otherwise, select 0 if Src is NaN.
8801     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8802     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8803                            ISD::CondCode::SETUO);
8804   }
8805 
8806   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8807   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8808 
8809   // Result of direct conversion. The assumption here is that the operation is
8810   // non-trapping and it's fine to apply it to an out-of-range value if we
8811   // select it away later.
8812   SDValue FpToInt =
8813       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8814 
8815   SDValue Select = FpToInt;
8816 
8817   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8818   // MinInt if Src is NaN.
8819   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8820                            ISD::CondCode::SETULT);
8821   // If Src OGT MaxFloat, select MaxInt.
8822   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8823                            ISD::CondCode::SETOGT);
8824 
8825   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8826   // is already zero.
8827   if (!IsSigned)
8828     return Select;
8829 
8830   // Otherwise, select 0 if Src is NaN.
8831   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8832   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8833 }
8834 
8835 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
8836                                            SelectionDAG &DAG) const {
8837   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
8838   assert(Node->getValueType(0).isScalableVector() &&
8839          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
8840 
8841   EVT VT = Node->getValueType(0);
8842   SDValue V1 = Node->getOperand(0);
8843   SDValue V2 = Node->getOperand(1);
8844   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
8845   SDLoc DL(Node);
8846 
8847   // Expand through memory thusly:
8848   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
8849   //  Store V1, Ptr
8850   //  Store V2, Ptr + sizeof(V1)
8851   //  If (Imm < 0)
8852   //    TrailingElts = -Imm
8853   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
8854   //  else
8855   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
8856   //  Res = Load Ptr
8857 
8858   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
8859 
8860   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8861                                VT.getVectorElementCount() * 2);
8862   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
8863   EVT PtrVT = StackPtr.getValueType();
8864   auto &MF = DAG.getMachineFunction();
8865   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8866   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
8867 
8868   // Store the lo part of CONCAT_VECTORS(V1, V2)
8869   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
8870   // Store the hi part of CONCAT_VECTORS(V1, V2)
8871   SDValue OffsetToV2 = DAG.getVScale(
8872       DL, PtrVT,
8873       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8874   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
8875   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
8876 
8877   if (Imm >= 0) {
8878     // Load back the required element. getVectorElementPointer takes care of
8879     // clamping the index if it's out-of-bounds.
8880     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
8881     // Load the spliced result
8882     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
8883                        MachinePointerInfo::getUnknownStack(MF));
8884   }
8885 
8886   uint64_t TrailingElts = -Imm;
8887 
8888   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
8889   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
8890   SDValue TrailingBytes =
8891       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
8892 
8893   if (TrailingElts > VT.getVectorMinNumElements()) {
8894     SDValue VLBytes = DAG.getVScale(
8895         DL, PtrVT,
8896         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8897     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
8898   }
8899 
8900   // Calculate the start address of the spliced result.
8901   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
8902 
8903   // Load the spliced result
8904   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
8905                      MachinePointerInfo::getUnknownStack(MF));
8906 }
8907 
8908 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
8909                                            SDValue &LHS, SDValue &RHS,
8910                                            SDValue &CC, bool &NeedInvert,
8911                                            const SDLoc &dl, SDValue &Chain,
8912                                            bool IsSignaling) const {
8913   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8914   MVT OpVT = LHS.getSimpleValueType();
8915   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
8916   NeedInvert = false;
8917   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
8918   default:
8919     llvm_unreachable("Unknown condition code action!");
8920   case TargetLowering::Legal:
8921     // Nothing to do.
8922     break;
8923   case TargetLowering::Expand: {
8924     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
8925     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8926       std::swap(LHS, RHS);
8927       CC = DAG.getCondCode(InvCC);
8928       return true;
8929     }
8930     // Swapping operands didn't work. Try inverting the condition.
8931     bool NeedSwap = false;
8932     InvCC = getSetCCInverse(CCCode, OpVT);
8933     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8934       // If inverting the condition is not enough, try swapping operands
8935       // on top of it.
8936       InvCC = ISD::getSetCCSwappedOperands(InvCC);
8937       NeedSwap = true;
8938     }
8939     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8940       CC = DAG.getCondCode(InvCC);
8941       NeedInvert = true;
8942       if (NeedSwap)
8943         std::swap(LHS, RHS);
8944       return true;
8945     }
8946 
8947     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
8948     unsigned Opc = 0;
8949     switch (CCCode) {
8950     default:
8951       llvm_unreachable("Don't know how to expand this condition!");
8952     case ISD::SETUO:
8953       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
8954         CC1 = ISD::SETUNE;
8955         CC2 = ISD::SETUNE;
8956         Opc = ISD::OR;
8957         break;
8958       }
8959       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8960              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
8961       NeedInvert = true;
8962       LLVM_FALLTHROUGH;
8963     case ISD::SETO:
8964       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8965              "If SETO is expanded, SETOEQ must be legal!");
8966       CC1 = ISD::SETOEQ;
8967       CC2 = ISD::SETOEQ;
8968       Opc = ISD::AND;
8969       break;
8970     case ISD::SETONE:
8971     case ISD::SETUEQ:
8972       // If the SETUO or SETO CC isn't legal, we might be able to use
8973       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
8974       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
8975       // the operands.
8976       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8977       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
8978           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
8979            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
8980         CC1 = ISD::SETOGT;
8981         CC2 = ISD::SETOLT;
8982         Opc = ISD::OR;
8983         NeedInvert = ((unsigned)CCCode & 0x8U);
8984         break;
8985       }
8986       LLVM_FALLTHROUGH;
8987     case ISD::SETOEQ:
8988     case ISD::SETOGT:
8989     case ISD::SETOGE:
8990     case ISD::SETOLT:
8991     case ISD::SETOLE:
8992     case ISD::SETUNE:
8993     case ISD::SETUGT:
8994     case ISD::SETUGE:
8995     case ISD::SETULT:
8996     case ISD::SETULE:
8997       // If we are floating point, assign and break, otherwise fall through.
8998       if (!OpVT.isInteger()) {
8999         // We can use the 4th bit to tell if we are the unordered
9000         // or ordered version of the opcode.
9001         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9002         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9003         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9004         break;
9005       }
9006       // Fallthrough if we are unsigned integer.
9007       LLVM_FALLTHROUGH;
9008     case ISD::SETLE:
9009     case ISD::SETGT:
9010     case ISD::SETGE:
9011     case ISD::SETLT:
9012     case ISD::SETNE:
9013     case ISD::SETEQ:
9014       // If all combinations of inverting the condition and swapping operands
9015       // didn't work then we have no means to expand the condition.
9016       llvm_unreachable("Don't know how to expand this condition!");
9017     }
9018 
9019     SDValue SetCC1, SetCC2;
9020     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9021       // If we aren't the ordered or unorder operation,
9022       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9023       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9024       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9025     } else {
9026       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9027       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9028       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9029     }
9030     if (Chain)
9031       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9032                           SetCC2.getValue(1));
9033     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9034     RHS = SDValue();
9035     CC = SDValue();
9036     return true;
9037   }
9038   }
9039   return false;
9040 }
9041