1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // First, check if tail calls have been disabled in this function. 57 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 58 return false; 59 60 // Conservatively require the attributes of the call to match those of 61 // the return. Ignore following attributes because they don't affect the 62 // call sequence. 63 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 64 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 65 Attribute::DereferenceableOrNull, Attribute::NoAlias, 66 Attribute::NonNull}) 67 CallerAttrs.removeAttribute(Attr); 68 69 if (CallerAttrs.hasAttributes()) 70 return false; 71 72 // It's not safe to eliminate the sign / zero extension of the return value. 73 if (CallerAttrs.contains(Attribute::ZExt) || 74 CallerAttrs.contains(Attribute::SExt)) 75 return false; 76 77 // Check if the only use is a function return node. 78 return isUsedByReturnOnly(Node, Chain); 79 } 80 81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 82 const uint32_t *CallerPreservedMask, 83 const SmallVectorImpl<CCValAssign> &ArgLocs, 84 const SmallVectorImpl<SDValue> &OutVals) const { 85 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 86 const CCValAssign &ArgLoc = ArgLocs[I]; 87 if (!ArgLoc.isRegLoc()) 88 continue; 89 MCRegister Reg = ArgLoc.getLocReg(); 90 // Only look at callee saved registers. 91 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 92 continue; 93 // Check that we pass the value used for the caller. 94 // (We look for a CopyFromReg reading a virtual register that is used 95 // for the function live-in value of register Reg) 96 SDValue Value = OutVals[I]; 97 if (Value->getOpcode() != ISD::CopyFromReg) 98 return false; 99 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 100 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 101 return false; 102 } 103 return true; 104 } 105 106 /// Set CallLoweringInfo attribute flags based on a call instruction 107 /// and called function attributes. 108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 109 unsigned ArgIdx) { 110 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 111 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 112 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 113 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 114 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 115 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 116 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 117 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 118 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 119 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 120 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 121 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 122 Alignment = Call->getParamStackAlign(ArgIdx); 123 IndirectType = nullptr; 124 assert(IsByVal + IsPreallocated + IsInAlloca <= 1 && 125 "multiple ABI attributes?"); 126 if (IsByVal) { 127 IndirectType = Call->getParamByValType(ArgIdx); 128 if (!Alignment) 129 Alignment = Call->getParamAlign(ArgIdx); 130 } 131 if (IsPreallocated) 132 IndirectType = Call->getParamPreallocatedType(ArgIdx); 133 if (IsInAlloca) 134 IndirectType = Call->getParamInAllocaType(ArgIdx); 135 } 136 137 /// Generate a libcall taking the given operands as arguments and returning a 138 /// result of type RetVT. 139 std::pair<SDValue, SDValue> 140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 141 ArrayRef<SDValue> Ops, 142 MakeLibCallOptions CallOptions, 143 const SDLoc &dl, 144 SDValue InChain) const { 145 if (!InChain) 146 InChain = DAG.getEntryNode(); 147 148 TargetLowering::ArgListTy Args; 149 Args.reserve(Ops.size()); 150 151 TargetLowering::ArgListEntry Entry; 152 for (unsigned i = 0; i < Ops.size(); ++i) { 153 SDValue NewOp = Ops[i]; 154 Entry.Node = NewOp; 155 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 156 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 157 CallOptions.IsSExt); 158 Entry.IsZExt = !Entry.IsSExt; 159 160 if (CallOptions.IsSoften && 161 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 162 Entry.IsSExt = Entry.IsZExt = false; 163 } 164 Args.push_back(Entry); 165 } 166 167 if (LC == RTLIB::UNKNOWN_LIBCALL) 168 report_fatal_error("Unsupported library call operation!"); 169 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 170 getPointerTy(DAG.getDataLayout())); 171 172 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 173 TargetLowering::CallLoweringInfo CLI(DAG); 174 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 175 bool zeroExtend = !signExtend; 176 177 if (CallOptions.IsSoften && 178 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 179 signExtend = zeroExtend = false; 180 } 181 182 CLI.setDebugLoc(dl) 183 .setChain(InChain) 184 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 185 .setNoReturn(CallOptions.DoesNotReturn) 186 .setDiscardResult(!CallOptions.IsReturnValueUsed) 187 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 188 .setSExtResult(signExtend) 189 .setZExtResult(zeroExtend); 190 return LowerCallTo(CLI); 191 } 192 193 bool TargetLowering::findOptimalMemOpLowering( 194 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 195 unsigned SrcAS, const AttributeList &FuncAttributes) const { 196 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 197 return false; 198 199 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 200 201 if (VT == MVT::Other) { 202 // Use the largest integer type whose alignment constraints are satisfied. 203 // We only need to check DstAlign here as SrcAlign is always greater or 204 // equal to DstAlign (or zero). 205 VT = MVT::i64; 206 if (Op.isFixedDstAlign()) 207 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 208 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 209 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 210 assert(VT.isInteger()); 211 212 // Find the largest legal integer type. 213 MVT LVT = MVT::i64; 214 while (!isTypeLegal(LVT)) 215 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 216 assert(LVT.isInteger()); 217 218 // If the type we've chosen is larger than the largest legal integer type 219 // then use that instead. 220 if (VT.bitsGT(LVT)) 221 VT = LVT; 222 } 223 224 unsigned NumMemOps = 0; 225 uint64_t Size = Op.size(); 226 while (Size) { 227 unsigned VTSize = VT.getSizeInBits() / 8; 228 while (VTSize > Size) { 229 // For now, only use non-vector load / store's for the left-over pieces. 230 EVT NewVT = VT; 231 unsigned NewVTSize; 232 233 bool Found = false; 234 if (VT.isVector() || VT.isFloatingPoint()) { 235 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 236 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 237 isSafeMemOpType(NewVT.getSimpleVT())) 238 Found = true; 239 else if (NewVT == MVT::i64 && 240 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 241 isSafeMemOpType(MVT::f64)) { 242 // i64 is usually not legal on 32-bit targets, but f64 may be. 243 NewVT = MVT::f64; 244 Found = true; 245 } 246 } 247 248 if (!Found) { 249 do { 250 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 251 if (NewVT == MVT::i8) 252 break; 253 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 254 } 255 NewVTSize = NewVT.getSizeInBits() / 8; 256 257 // If the new VT cannot cover all of the remaining bits, then consider 258 // issuing a (or a pair of) unaligned and overlapping load / store. 259 bool Fast; 260 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 261 allowsMisalignedMemoryAccesses( 262 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 263 MachineMemOperand::MONone, &Fast) && 264 Fast) 265 VTSize = Size; 266 else { 267 VT = NewVT; 268 VTSize = NewVTSize; 269 } 270 } 271 272 if (++NumMemOps > Limit) 273 return false; 274 275 MemOps.push_back(VT); 276 Size -= VTSize; 277 } 278 279 return true; 280 } 281 282 /// Soften the operands of a comparison. This code is shared among BR_CC, 283 /// SELECT_CC, and SETCC handlers. 284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 285 SDValue &NewLHS, SDValue &NewRHS, 286 ISD::CondCode &CCCode, 287 const SDLoc &dl, const SDValue OldLHS, 288 const SDValue OldRHS) const { 289 SDValue Chain; 290 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 291 OldRHS, Chain); 292 } 293 294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 295 SDValue &NewLHS, SDValue &NewRHS, 296 ISD::CondCode &CCCode, 297 const SDLoc &dl, const SDValue OldLHS, 298 const SDValue OldRHS, 299 SDValue &Chain, 300 bool IsSignaling) const { 301 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 302 // not supporting it. We can update this code when libgcc provides such 303 // functions. 304 305 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 306 && "Unsupported setcc type!"); 307 308 // Expand into one or more soft-fp libcall(s). 309 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 310 bool ShouldInvertCC = false; 311 switch (CCCode) { 312 case ISD::SETEQ: 313 case ISD::SETOEQ: 314 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 315 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 316 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 317 break; 318 case ISD::SETNE: 319 case ISD::SETUNE: 320 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 321 (VT == MVT::f64) ? RTLIB::UNE_F64 : 322 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 323 break; 324 case ISD::SETGE: 325 case ISD::SETOGE: 326 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 327 (VT == MVT::f64) ? RTLIB::OGE_F64 : 328 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 329 break; 330 case ISD::SETLT: 331 case ISD::SETOLT: 332 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 333 (VT == MVT::f64) ? RTLIB::OLT_F64 : 334 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 335 break; 336 case ISD::SETLE: 337 case ISD::SETOLE: 338 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 339 (VT == MVT::f64) ? RTLIB::OLE_F64 : 340 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 341 break; 342 case ISD::SETGT: 343 case ISD::SETOGT: 344 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 345 (VT == MVT::f64) ? RTLIB::OGT_F64 : 346 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 347 break; 348 case ISD::SETO: 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUO: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 break; 356 case ISD::SETONE: 357 // SETONE = O && UNE 358 ShouldInvertCC = true; 359 LLVM_FALLTHROUGH; 360 case ISD::SETUEQ: 361 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 362 (VT == MVT::f64) ? RTLIB::UO_F64 : 363 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 364 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 365 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 366 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 367 break; 368 default: 369 // Invert CC for unordered comparisons 370 ShouldInvertCC = true; 371 switch (CCCode) { 372 case ISD::SETULT: 373 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 374 (VT == MVT::f64) ? RTLIB::OGE_F64 : 375 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 376 break; 377 case ISD::SETULE: 378 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 379 (VT == MVT::f64) ? RTLIB::OGT_F64 : 380 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 381 break; 382 case ISD::SETUGT: 383 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 384 (VT == MVT::f64) ? RTLIB::OLE_F64 : 385 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 386 break; 387 case ISD::SETUGE: 388 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 389 (VT == MVT::f64) ? RTLIB::OLT_F64 : 390 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 391 break; 392 default: llvm_unreachable("Do not know how to soften this setcc!"); 393 } 394 } 395 396 // Use the target specific return value for comparions lib calls. 397 EVT RetVT = getCmpLibcallReturnType(); 398 SDValue Ops[2] = {NewLHS, NewRHS}; 399 TargetLowering::MakeLibCallOptions CallOptions; 400 EVT OpsVT[2] = { OldLHS.getValueType(), 401 OldRHS.getValueType() }; 402 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 403 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 404 NewLHS = Call.first; 405 NewRHS = DAG.getConstant(0, dl, RetVT); 406 407 CCCode = getCmpLibcallCC(LC1); 408 if (ShouldInvertCC) { 409 assert(RetVT.isInteger()); 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 } 412 413 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 414 // Update Chain. 415 Chain = Call.second; 416 } else { 417 EVT SetCCVT = 418 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 419 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 420 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 421 CCCode = getCmpLibcallCC(LC2); 422 if (ShouldInvertCC) 423 CCCode = getSetCCInverse(CCCode, RetVT); 424 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 425 if (Chain) 426 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 427 Call2.second); 428 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 429 Tmp.getValueType(), Tmp, NewLHS); 430 NewRHS = SDValue(); 431 } 432 } 433 434 /// Return the entry encoding for a jump table in the current function. The 435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 436 unsigned TargetLowering::getJumpTableEncoding() const { 437 // In non-pic modes, just use the address of a block. 438 if (!isPositionIndependent()) 439 return MachineJumpTableInfo::EK_BlockAddress; 440 441 // In PIC mode, if the target supports a GPRel32 directive, use it. 442 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 443 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 444 445 // Otherwise, use a label difference. 446 return MachineJumpTableInfo::EK_LabelDifference32; 447 } 448 449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 450 SelectionDAG &DAG) const { 451 // If our PIC model is GP relative, use the global offset table as the base. 452 unsigned JTEncoding = getJumpTableEncoding(); 453 454 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 455 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 456 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 457 458 return Table; 459 } 460 461 /// This returns the relocation base for the given PIC jumptable, the same as 462 /// getPICJumpTableRelocBase, but as an MCExpr. 463 const MCExpr * 464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 465 unsigned JTI,MCContext &Ctx) const{ 466 // The normal PIC reloc base is the label at the start of the jump table. 467 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 468 } 469 470 bool 471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 472 const TargetMachine &TM = getTargetMachine(); 473 const GlobalValue *GV = GA->getGlobal(); 474 475 // If the address is not even local to this DSO we will have to load it from 476 // a got and then add the offset. 477 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 478 return false; 479 480 // If the code is position independent we will have to add a base register. 481 if (isPositionIndependent()) 482 return false; 483 484 // Otherwise we can do it. 485 return true; 486 } 487 488 //===----------------------------------------------------------------------===// 489 // Optimization Methods 490 //===----------------------------------------------------------------------===// 491 492 /// If the specified instruction has a constant integer operand and there are 493 /// bits set in that constant that are not demanded, then clear those bits and 494 /// return true. 495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 496 const APInt &DemandedBits, 497 const APInt &DemandedElts, 498 TargetLoweringOpt &TLO) const { 499 SDLoc DL(Op); 500 unsigned Opcode = Op.getOpcode(); 501 502 // Do target-specific constant optimization. 503 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 504 return TLO.New.getNode(); 505 506 // FIXME: ISD::SELECT, ISD::SELECT_CC 507 switch (Opcode) { 508 default: 509 break; 510 case ISD::XOR: 511 case ISD::AND: 512 case ISD::OR: { 513 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 514 if (!Op1C || Op1C->isOpaque()) 515 return false; 516 517 // If this is a 'not' op, don't touch it because that's a canonical form. 518 const APInt &C = Op1C->getAPIntValue(); 519 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 520 return false; 521 522 if (!C.isSubsetOf(DemandedBits)) { 523 EVT VT = Op.getValueType(); 524 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 525 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 526 return TLO.CombineTo(Op, NewOp); 527 } 528 529 break; 530 } 531 } 532 533 return false; 534 } 535 536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 537 const APInt &DemandedBits, 538 TargetLoweringOpt &TLO) const { 539 EVT VT = Op.getValueType(); 540 APInt DemandedElts = VT.isVector() 541 ? APInt::getAllOnes(VT.getVectorNumElements()) 542 : APInt(1, 1); 543 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 544 } 545 546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 548 /// generalized for targets with other types of implicit widening casts. 549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 550 const APInt &Demanded, 551 TargetLoweringOpt &TLO) const { 552 assert(Op.getNumOperands() == 2 && 553 "ShrinkDemandedOp only supports binary operators!"); 554 assert(Op.getNode()->getNumValues() == 1 && 555 "ShrinkDemandedOp only supports nodes with one result!"); 556 557 SelectionDAG &DAG = TLO.DAG; 558 SDLoc dl(Op); 559 560 // Early return, as this function cannot handle vector types. 561 if (Op.getValueType().isVector()) 562 return false; 563 564 // Don't do this if the node has another user, which may require the 565 // full value. 566 if (!Op.getNode()->hasOneUse()) 567 return false; 568 569 // Search for the smallest integer type with free casts to and from 570 // Op's type. For expedience, just check power-of-2 integer types. 571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 572 unsigned DemandedSize = Demanded.getActiveBits(); 573 unsigned SmallVTBits = DemandedSize; 574 if (!isPowerOf2_32(SmallVTBits)) 575 SmallVTBits = NextPowerOf2(SmallVTBits); 576 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 577 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 578 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 579 TLI.isZExtFree(SmallVT, Op.getValueType())) { 580 // We found a type with free casts. 581 SDValue X = DAG.getNode( 582 Op.getOpcode(), dl, SmallVT, 583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 584 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 585 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 586 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 587 return TLO.CombineTo(Op, Z); 588 } 589 } 590 return false; 591 } 592 593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 594 DAGCombinerInfo &DCI) const { 595 SelectionDAG &DAG = DCI.DAG; 596 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 597 !DCI.isBeforeLegalizeOps()); 598 KnownBits Known; 599 600 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 601 if (Simplified) { 602 DCI.AddToWorklist(Op.getNode()); 603 DCI.CommitTargetLoweringOpt(TLO); 604 } 605 return Simplified; 606 } 607 608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 609 KnownBits &Known, 610 TargetLoweringOpt &TLO, 611 unsigned Depth, 612 bool AssumeSingleUse) const { 613 EVT VT = Op.getValueType(); 614 615 // TODO: We can probably do more work on calculating the known bits and 616 // simplifying the operations for scalable vectors, but for now we just 617 // bail out. 618 if (VT.isScalableVector()) { 619 // Pretend we don't know anything for now. 620 Known = KnownBits(DemandedBits.getBitWidth()); 621 return false; 622 } 623 624 APInt DemandedElts = VT.isVector() 625 ? APInt::getAllOnes(VT.getVectorNumElements()) 626 : APInt(1, 1); 627 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 628 AssumeSingleUse); 629 } 630 631 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 632 // TODO: Under what circumstances can we create nodes? Constant folding? 633 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 634 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 635 SelectionDAG &DAG, unsigned Depth) const { 636 // Limit search depth. 637 if (Depth >= SelectionDAG::MaxRecursionDepth) 638 return SDValue(); 639 640 // Ignore UNDEFs. 641 if (Op.isUndef()) 642 return SDValue(); 643 644 // Not demanding any bits/elts from Op. 645 if (DemandedBits == 0 || DemandedElts == 0) 646 return DAG.getUNDEF(Op.getValueType()); 647 648 bool IsLE = DAG.getDataLayout().isLittleEndian(); 649 unsigned NumElts = DemandedElts.getBitWidth(); 650 unsigned BitWidth = DemandedBits.getBitWidth(); 651 KnownBits LHSKnown, RHSKnown; 652 switch (Op.getOpcode()) { 653 case ISD::BITCAST: { 654 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 655 EVT SrcVT = Src.getValueType(); 656 EVT DstVT = Op.getValueType(); 657 if (SrcVT == DstVT) 658 return Src; 659 660 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 661 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 662 if (NumSrcEltBits == NumDstEltBits) 663 if (SDValue V = SimplifyMultipleUseDemandedBits( 664 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 665 return DAG.getBitcast(DstVT, V); 666 667 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 668 unsigned Scale = NumDstEltBits / NumSrcEltBits; 669 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 670 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 671 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 672 for (unsigned i = 0; i != Scale; ++i) { 673 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 674 unsigned BitOffset = EltOffset * NumSrcEltBits; 675 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 676 if (!Sub.isZero()) { 677 DemandedSrcBits |= Sub; 678 for (unsigned j = 0; j != NumElts; ++j) 679 if (DemandedElts[j]) 680 DemandedSrcElts.setBit((j * Scale) + i); 681 } 682 } 683 684 if (SDValue V = SimplifyMultipleUseDemandedBits( 685 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 686 return DAG.getBitcast(DstVT, V); 687 } 688 689 // TODO - bigendian once we have test coverage. 690 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 691 unsigned Scale = NumSrcEltBits / NumDstEltBits; 692 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 693 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 694 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 695 for (unsigned i = 0; i != NumElts; ++i) 696 if (DemandedElts[i]) { 697 unsigned Offset = (i % Scale) * NumDstEltBits; 698 DemandedSrcBits.insertBits(DemandedBits, Offset); 699 DemandedSrcElts.setBit(i / Scale); 700 } 701 702 if (SDValue V = SimplifyMultipleUseDemandedBits( 703 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 704 return DAG.getBitcast(DstVT, V); 705 } 706 707 break; 708 } 709 case ISD::AND: { 710 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 711 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 712 713 // If all of the demanded bits are known 1 on one side, return the other. 714 // These bits cannot contribute to the result of the 'and' in this 715 // context. 716 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 717 return Op.getOperand(0); 718 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 719 return Op.getOperand(1); 720 break; 721 } 722 case ISD::OR: { 723 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 724 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 725 726 // If all of the demanded bits are known zero on one side, return the 727 // other. These bits cannot contribute to the result of the 'or' in this 728 // context. 729 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 730 return Op.getOperand(0); 731 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 732 return Op.getOperand(1); 733 break; 734 } 735 case ISD::XOR: { 736 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 737 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 738 739 // If all of the demanded bits are known zero on one side, return the 740 // other. 741 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 742 return Op.getOperand(0); 743 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 744 return Op.getOperand(1); 745 break; 746 } 747 case ISD::SHL: { 748 // If we are only demanding sign bits then we can use the shift source 749 // directly. 750 if (const APInt *MaxSA = 751 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 752 SDValue Op0 = Op.getOperand(0); 753 unsigned ShAmt = MaxSA->getZExtValue(); 754 unsigned NumSignBits = 755 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 756 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 757 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 758 return Op0; 759 } 760 break; 761 } 762 case ISD::SETCC: { 763 SDValue Op0 = Op.getOperand(0); 764 SDValue Op1 = Op.getOperand(1); 765 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 766 // If (1) we only need the sign-bit, (2) the setcc operands are the same 767 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 768 // -1, we may be able to bypass the setcc. 769 if (DemandedBits.isSignMask() && 770 Op0.getScalarValueSizeInBits() == BitWidth && 771 getBooleanContents(Op0.getValueType()) == 772 BooleanContent::ZeroOrNegativeOneBooleanContent) { 773 // If we're testing X < 0, then this compare isn't needed - just use X! 774 // FIXME: We're limiting to integer types here, but this should also work 775 // if we don't care about FP signed-zero. The use of SETLT with FP means 776 // that we don't care about NaNs. 777 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 778 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 779 return Op0; 780 } 781 break; 782 } 783 case ISD::SIGN_EXTEND_INREG: { 784 // If none of the extended bits are demanded, eliminate the sextinreg. 785 SDValue Op0 = Op.getOperand(0); 786 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 787 unsigned ExBits = ExVT.getScalarSizeInBits(); 788 if (DemandedBits.getActiveBits() <= ExBits) 789 return Op0; 790 // If the input is already sign extended, just drop the extension. 791 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 792 if (NumSignBits >= (BitWidth - ExBits + 1)) 793 return Op0; 794 break; 795 } 796 case ISD::ANY_EXTEND_VECTOR_INREG: 797 case ISD::SIGN_EXTEND_VECTOR_INREG: 798 case ISD::ZERO_EXTEND_VECTOR_INREG: { 799 // If we only want the lowest element and none of extended bits, then we can 800 // return the bitcasted source vector. 801 SDValue Src = Op.getOperand(0); 802 EVT SrcVT = Src.getValueType(); 803 EVT DstVT = Op.getValueType(); 804 if (IsLE && DemandedElts == 1 && 805 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 806 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 807 return DAG.getBitcast(DstVT, Src); 808 } 809 break; 810 } 811 case ISD::INSERT_VECTOR_ELT: { 812 // If we don't demand the inserted element, return the base vector. 813 SDValue Vec = Op.getOperand(0); 814 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 815 EVT VecVT = Vec.getValueType(); 816 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 817 !DemandedElts[CIdx->getZExtValue()]) 818 return Vec; 819 break; 820 } 821 case ISD::INSERT_SUBVECTOR: { 822 SDValue Vec = Op.getOperand(0); 823 SDValue Sub = Op.getOperand(1); 824 uint64_t Idx = Op.getConstantOperandVal(2); 825 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 826 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 827 // If we don't demand the inserted subvector, return the base vector. 828 if (DemandedSubElts == 0) 829 return Vec; 830 // If this simply widens the lowest subvector, see if we can do it earlier. 831 if (Idx == 0 && Vec.isUndef()) { 832 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 833 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 834 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 835 Op.getOperand(0), NewSub, Op.getOperand(2)); 836 } 837 break; 838 } 839 case ISD::VECTOR_SHUFFLE: { 840 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 841 842 // If all the demanded elts are from one operand and are inline, 843 // then we can use the operand directly. 844 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 845 for (unsigned i = 0; i != NumElts; ++i) { 846 int M = ShuffleMask[i]; 847 if (M < 0 || !DemandedElts[i]) 848 continue; 849 AllUndef = false; 850 IdentityLHS &= (M == (int)i); 851 IdentityRHS &= ((M - NumElts) == i); 852 } 853 854 if (AllUndef) 855 return DAG.getUNDEF(Op.getValueType()); 856 if (IdentityLHS) 857 return Op.getOperand(0); 858 if (IdentityRHS) 859 return Op.getOperand(1); 860 break; 861 } 862 default: 863 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 864 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 865 Op, DemandedBits, DemandedElts, DAG, Depth)) 866 return V; 867 break; 868 } 869 return SDValue(); 870 } 871 872 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 873 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 874 unsigned Depth) const { 875 EVT VT = Op.getValueType(); 876 APInt DemandedElts = VT.isVector() 877 ? APInt::getAllOnes(VT.getVectorNumElements()) 878 : APInt(1, 1); 879 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 880 Depth); 881 } 882 883 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 884 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 885 unsigned Depth) const { 886 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 887 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 888 Depth); 889 } 890 891 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 892 /// result of Op are ever used downstream. If we can use this information to 893 /// simplify Op, create a new simplified DAG node and return true, returning the 894 /// original and new nodes in Old and New. Otherwise, analyze the expression and 895 /// return a mask of Known bits for the expression (used to simplify the 896 /// caller). The Known bits may only be accurate for those bits in the 897 /// OriginalDemandedBits and OriginalDemandedElts. 898 bool TargetLowering::SimplifyDemandedBits( 899 SDValue Op, const APInt &OriginalDemandedBits, 900 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 901 unsigned Depth, bool AssumeSingleUse) const { 902 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 903 assert(Op.getScalarValueSizeInBits() == BitWidth && 904 "Mask size mismatches value type size!"); 905 906 // Don't know anything. 907 Known = KnownBits(BitWidth); 908 909 // TODO: We can probably do more work on calculating the known bits and 910 // simplifying the operations for scalable vectors, but for now we just 911 // bail out. 912 if (Op.getValueType().isScalableVector()) 913 return false; 914 915 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 916 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 917 assert((!Op.getValueType().isVector() || 918 NumElts == Op.getValueType().getVectorNumElements()) && 919 "Unexpected vector size"); 920 921 APInt DemandedBits = OriginalDemandedBits; 922 APInt DemandedElts = OriginalDemandedElts; 923 SDLoc dl(Op); 924 auto &DL = TLO.DAG.getDataLayout(); 925 926 // Undef operand. 927 if (Op.isUndef()) 928 return false; 929 930 if (Op.getOpcode() == ISD::Constant) { 931 // We know all of the bits for a constant! 932 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 933 return false; 934 } 935 936 if (Op.getOpcode() == ISD::ConstantFP) { 937 // We know all of the bits for a floating point constant! 938 Known = KnownBits::makeConstant( 939 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 940 return false; 941 } 942 943 // Other users may use these bits. 944 EVT VT = Op.getValueType(); 945 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 946 if (Depth != 0) { 947 // If not at the root, Just compute the Known bits to 948 // simplify things downstream. 949 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 950 return false; 951 } 952 // If this is the root being simplified, allow it to have multiple uses, 953 // just set the DemandedBits/Elts to all bits. 954 DemandedBits = APInt::getAllOnes(BitWidth); 955 DemandedElts = APInt::getAllOnes(NumElts); 956 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 957 // Not demanding any bits/elts from Op. 958 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 959 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 960 // Limit search depth. 961 return false; 962 } 963 964 KnownBits Known2; 965 switch (Op.getOpcode()) { 966 case ISD::TargetConstant: 967 llvm_unreachable("Can't simplify this node"); 968 case ISD::SCALAR_TO_VECTOR: { 969 if (!DemandedElts[0]) 970 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 971 972 KnownBits SrcKnown; 973 SDValue Src = Op.getOperand(0); 974 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 975 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 976 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 977 return true; 978 979 // Upper elements are undef, so only get the knownbits if we just demand 980 // the bottom element. 981 if (DemandedElts == 1) 982 Known = SrcKnown.anyextOrTrunc(BitWidth); 983 break; 984 } 985 case ISD::BUILD_VECTOR: 986 // Collect the known bits that are shared by every demanded element. 987 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 988 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 989 return false; // Don't fall through, will infinitely loop. 990 case ISD::LOAD: { 991 auto *LD = cast<LoadSDNode>(Op); 992 if (getTargetConstantFromLoad(LD)) { 993 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 994 return false; // Don't fall through, will infinitely loop. 995 } 996 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 997 // If this is a ZEXTLoad and we are looking at the loaded value. 998 EVT MemVT = LD->getMemoryVT(); 999 unsigned MemBits = MemVT.getScalarSizeInBits(); 1000 Known.Zero.setBitsFrom(MemBits); 1001 return false; // Don't fall through, will infinitely loop. 1002 } 1003 break; 1004 } 1005 case ISD::INSERT_VECTOR_ELT: { 1006 SDValue Vec = Op.getOperand(0); 1007 SDValue Scl = Op.getOperand(1); 1008 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1009 EVT VecVT = Vec.getValueType(); 1010 1011 // If index isn't constant, assume we need all vector elements AND the 1012 // inserted element. 1013 APInt DemandedVecElts(DemandedElts); 1014 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1015 unsigned Idx = CIdx->getZExtValue(); 1016 DemandedVecElts.clearBit(Idx); 1017 1018 // Inserted element is not required. 1019 if (!DemandedElts[Idx]) 1020 return TLO.CombineTo(Op, Vec); 1021 } 1022 1023 KnownBits KnownScl; 1024 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1025 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1026 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1027 return true; 1028 1029 Known = KnownScl.anyextOrTrunc(BitWidth); 1030 1031 KnownBits KnownVec; 1032 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1033 Depth + 1)) 1034 return true; 1035 1036 if (!!DemandedVecElts) 1037 Known = KnownBits::commonBits(Known, KnownVec); 1038 1039 return false; 1040 } 1041 case ISD::INSERT_SUBVECTOR: { 1042 // Demand any elements from the subvector and the remainder from the src its 1043 // inserted into. 1044 SDValue Src = Op.getOperand(0); 1045 SDValue Sub = Op.getOperand(1); 1046 uint64_t Idx = Op.getConstantOperandVal(2); 1047 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1048 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1049 APInt DemandedSrcElts = DemandedElts; 1050 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1051 1052 KnownBits KnownSub, KnownSrc; 1053 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1054 Depth + 1)) 1055 return true; 1056 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1057 Depth + 1)) 1058 return true; 1059 1060 Known.Zero.setAllBits(); 1061 Known.One.setAllBits(); 1062 if (!!DemandedSubElts) 1063 Known = KnownBits::commonBits(Known, KnownSub); 1064 if (!!DemandedSrcElts) 1065 Known = KnownBits::commonBits(Known, KnownSrc); 1066 1067 // Attempt to avoid multi-use src if we don't need anything from it. 1068 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1069 !DemandedSrcElts.isAllOnes()) { 1070 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1071 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1072 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1073 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1074 if (NewSub || NewSrc) { 1075 NewSub = NewSub ? NewSub : Sub; 1076 NewSrc = NewSrc ? NewSrc : Src; 1077 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1078 Op.getOperand(2)); 1079 return TLO.CombineTo(Op, NewOp); 1080 } 1081 } 1082 break; 1083 } 1084 case ISD::EXTRACT_SUBVECTOR: { 1085 // Offset the demanded elts by the subvector index. 1086 SDValue Src = Op.getOperand(0); 1087 if (Src.getValueType().isScalableVector()) 1088 break; 1089 uint64_t Idx = Op.getConstantOperandVal(1); 1090 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1091 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1092 1093 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1094 Depth + 1)) 1095 return true; 1096 1097 // Attempt to avoid multi-use src if we don't need anything from it. 1098 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1099 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1100 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1101 if (DemandedSrc) { 1102 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1103 Op.getOperand(1)); 1104 return TLO.CombineTo(Op, NewOp); 1105 } 1106 } 1107 break; 1108 } 1109 case ISD::CONCAT_VECTORS: { 1110 Known.Zero.setAllBits(); 1111 Known.One.setAllBits(); 1112 EVT SubVT = Op.getOperand(0).getValueType(); 1113 unsigned NumSubVecs = Op.getNumOperands(); 1114 unsigned NumSubElts = SubVT.getVectorNumElements(); 1115 for (unsigned i = 0; i != NumSubVecs; ++i) { 1116 APInt DemandedSubElts = 1117 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1118 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1119 Known2, TLO, Depth + 1)) 1120 return true; 1121 // Known bits are shared by every demanded subvector element. 1122 if (!!DemandedSubElts) 1123 Known = KnownBits::commonBits(Known, Known2); 1124 } 1125 break; 1126 } 1127 case ISD::VECTOR_SHUFFLE: { 1128 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1129 1130 // Collect demanded elements from shuffle operands.. 1131 APInt DemandedLHS(NumElts, 0); 1132 APInt DemandedRHS(NumElts, 0); 1133 for (unsigned i = 0; i != NumElts; ++i) { 1134 if (!DemandedElts[i]) 1135 continue; 1136 int M = ShuffleMask[i]; 1137 if (M < 0) { 1138 // For UNDEF elements, we don't know anything about the common state of 1139 // the shuffle result. 1140 DemandedLHS.clearAllBits(); 1141 DemandedRHS.clearAllBits(); 1142 break; 1143 } 1144 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1145 if (M < (int)NumElts) 1146 DemandedLHS.setBit(M); 1147 else 1148 DemandedRHS.setBit(M - NumElts); 1149 } 1150 1151 if (!!DemandedLHS || !!DemandedRHS) { 1152 SDValue Op0 = Op.getOperand(0); 1153 SDValue Op1 = Op.getOperand(1); 1154 1155 Known.Zero.setAllBits(); 1156 Known.One.setAllBits(); 1157 if (!!DemandedLHS) { 1158 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1159 Depth + 1)) 1160 return true; 1161 Known = KnownBits::commonBits(Known, Known2); 1162 } 1163 if (!!DemandedRHS) { 1164 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1165 Depth + 1)) 1166 return true; 1167 Known = KnownBits::commonBits(Known, Known2); 1168 } 1169 1170 // Attempt to avoid multi-use ops if we don't need anything from them. 1171 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1172 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1173 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1174 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1175 if (DemandedOp0 || DemandedOp1) { 1176 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1177 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1178 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1179 return TLO.CombineTo(Op, NewOp); 1180 } 1181 } 1182 break; 1183 } 1184 case ISD::AND: { 1185 SDValue Op0 = Op.getOperand(0); 1186 SDValue Op1 = Op.getOperand(1); 1187 1188 // If the RHS is a constant, check to see if the LHS would be zero without 1189 // using the bits from the RHS. Below, we use knowledge about the RHS to 1190 // simplify the LHS, here we're using information from the LHS to simplify 1191 // the RHS. 1192 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1193 // Do not increment Depth here; that can cause an infinite loop. 1194 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1195 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1196 if ((LHSKnown.Zero & DemandedBits) == 1197 (~RHSC->getAPIntValue() & DemandedBits)) 1198 return TLO.CombineTo(Op, Op0); 1199 1200 // If any of the set bits in the RHS are known zero on the LHS, shrink 1201 // the constant. 1202 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1203 DemandedElts, TLO)) 1204 return true; 1205 1206 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1207 // constant, but if this 'and' is only clearing bits that were just set by 1208 // the xor, then this 'and' can be eliminated by shrinking the mask of 1209 // the xor. For example, for a 32-bit X: 1210 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1211 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1212 LHSKnown.One == ~RHSC->getAPIntValue()) { 1213 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1214 return TLO.CombineTo(Op, Xor); 1215 } 1216 } 1217 1218 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1219 Depth + 1)) 1220 return true; 1221 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1222 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1223 Known2, TLO, Depth + 1)) 1224 return true; 1225 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1226 1227 // Attempt to avoid multi-use ops if we don't need anything from them. 1228 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1229 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1230 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1231 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1232 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1233 if (DemandedOp0 || DemandedOp1) { 1234 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1235 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1236 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1237 return TLO.CombineTo(Op, NewOp); 1238 } 1239 } 1240 1241 // If all of the demanded bits are known one on one side, return the other. 1242 // These bits cannot contribute to the result of the 'and'. 1243 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1244 return TLO.CombineTo(Op, Op0); 1245 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1246 return TLO.CombineTo(Op, Op1); 1247 // If all of the demanded bits in the inputs are known zeros, return zero. 1248 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1249 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1250 // If the RHS is a constant, see if we can simplify it. 1251 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1252 TLO)) 1253 return true; 1254 // If the operation can be done in a smaller type, do so. 1255 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1256 return true; 1257 1258 Known &= Known2; 1259 break; 1260 } 1261 case ISD::OR: { 1262 SDValue Op0 = Op.getOperand(0); 1263 SDValue Op1 = Op.getOperand(1); 1264 1265 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1266 Depth + 1)) 1267 return true; 1268 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1269 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1270 Known2, TLO, Depth + 1)) 1271 return true; 1272 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1273 1274 // Attempt to avoid multi-use ops if we don't need anything from them. 1275 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1276 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1277 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1278 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1279 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1280 if (DemandedOp0 || DemandedOp1) { 1281 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1282 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1283 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1284 return TLO.CombineTo(Op, NewOp); 1285 } 1286 } 1287 1288 // If all of the demanded bits are known zero on one side, return the other. 1289 // These bits cannot contribute to the result of the 'or'. 1290 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1291 return TLO.CombineTo(Op, Op0); 1292 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1293 return TLO.CombineTo(Op, Op1); 1294 // If the RHS is a constant, see if we can simplify it. 1295 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1296 return true; 1297 // If the operation can be done in a smaller type, do so. 1298 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1299 return true; 1300 1301 Known |= Known2; 1302 break; 1303 } 1304 case ISD::XOR: { 1305 SDValue Op0 = Op.getOperand(0); 1306 SDValue Op1 = Op.getOperand(1); 1307 1308 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1309 Depth + 1)) 1310 return true; 1311 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1312 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1313 Depth + 1)) 1314 return true; 1315 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1316 1317 // Attempt to avoid multi-use ops if we don't need anything from them. 1318 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1319 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1320 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1321 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1322 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1323 if (DemandedOp0 || DemandedOp1) { 1324 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1325 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1326 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1327 return TLO.CombineTo(Op, NewOp); 1328 } 1329 } 1330 1331 // If all of the demanded bits are known zero on one side, return the other. 1332 // These bits cannot contribute to the result of the 'xor'. 1333 if (DemandedBits.isSubsetOf(Known.Zero)) 1334 return TLO.CombineTo(Op, Op0); 1335 if (DemandedBits.isSubsetOf(Known2.Zero)) 1336 return TLO.CombineTo(Op, Op1); 1337 // If the operation can be done in a smaller type, do so. 1338 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1339 return true; 1340 1341 // If all of the unknown bits are known to be zero on one side or the other 1342 // turn this into an *inclusive* or. 1343 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1344 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1345 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1346 1347 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1348 if (C) { 1349 // If one side is a constant, and all of the set bits in the constant are 1350 // also known set on the other side, turn this into an AND, as we know 1351 // the bits will be cleared. 1352 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1353 // NB: it is okay if more bits are known than are requested 1354 if (C->getAPIntValue() == Known2.One) { 1355 SDValue ANDC = 1356 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1357 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1358 } 1359 1360 // If the RHS is a constant, see if we can change it. Don't alter a -1 1361 // constant because that's a 'not' op, and that is better for combining 1362 // and codegen. 1363 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1364 // We're flipping all demanded bits. Flip the undemanded bits too. 1365 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1366 return TLO.CombineTo(Op, New); 1367 } 1368 } 1369 1370 // If we can't turn this into a 'not', try to shrink the constant. 1371 if (!C || !C->isAllOnes()) 1372 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1373 return true; 1374 1375 Known ^= Known2; 1376 break; 1377 } 1378 case ISD::SELECT: 1379 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1380 Depth + 1)) 1381 return true; 1382 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1383 Depth + 1)) 1384 return true; 1385 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1386 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1387 1388 // If the operands are constants, see if we can simplify them. 1389 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1390 return true; 1391 1392 // Only known if known in both the LHS and RHS. 1393 Known = KnownBits::commonBits(Known, Known2); 1394 break; 1395 case ISD::SELECT_CC: 1396 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1397 Depth + 1)) 1398 return true; 1399 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1400 Depth + 1)) 1401 return true; 1402 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1403 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1404 1405 // If the operands are constants, see if we can simplify them. 1406 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1407 return true; 1408 1409 // Only known if known in both the LHS and RHS. 1410 Known = KnownBits::commonBits(Known, Known2); 1411 break; 1412 case ISD::SETCC: { 1413 SDValue Op0 = Op.getOperand(0); 1414 SDValue Op1 = Op.getOperand(1); 1415 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1416 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1417 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1418 // -1, we may be able to bypass the setcc. 1419 if (DemandedBits.isSignMask() && 1420 Op0.getScalarValueSizeInBits() == BitWidth && 1421 getBooleanContents(Op0.getValueType()) == 1422 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1423 // If we're testing X < 0, then this compare isn't needed - just use X! 1424 // FIXME: We're limiting to integer types here, but this should also work 1425 // if we don't care about FP signed-zero. The use of SETLT with FP means 1426 // that we don't care about NaNs. 1427 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1428 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1429 return TLO.CombineTo(Op, Op0); 1430 1431 // TODO: Should we check for other forms of sign-bit comparisons? 1432 // Examples: X <= -1, X >= 0 1433 } 1434 if (getBooleanContents(Op0.getValueType()) == 1435 TargetLowering::ZeroOrOneBooleanContent && 1436 BitWidth > 1) 1437 Known.Zero.setBitsFrom(1); 1438 break; 1439 } 1440 case ISD::SHL: { 1441 SDValue Op0 = Op.getOperand(0); 1442 SDValue Op1 = Op.getOperand(1); 1443 EVT ShiftVT = Op1.getValueType(); 1444 1445 if (const APInt *SA = 1446 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1447 unsigned ShAmt = SA->getZExtValue(); 1448 if (ShAmt == 0) 1449 return TLO.CombineTo(Op, Op0); 1450 1451 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1452 // single shift. We can do this if the bottom bits (which are shifted 1453 // out) are never demanded. 1454 // TODO - support non-uniform vector amounts. 1455 if (Op0.getOpcode() == ISD::SRL) { 1456 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1457 if (const APInt *SA2 = 1458 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1459 unsigned C1 = SA2->getZExtValue(); 1460 unsigned Opc = ISD::SHL; 1461 int Diff = ShAmt - C1; 1462 if (Diff < 0) { 1463 Diff = -Diff; 1464 Opc = ISD::SRL; 1465 } 1466 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1467 return TLO.CombineTo( 1468 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1469 } 1470 } 1471 } 1472 1473 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1474 // are not demanded. This will likely allow the anyext to be folded away. 1475 // TODO - support non-uniform vector amounts. 1476 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1477 SDValue InnerOp = Op0.getOperand(0); 1478 EVT InnerVT = InnerOp.getValueType(); 1479 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1480 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1481 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1482 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1483 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1484 ShTy = InnerVT; 1485 SDValue NarrowShl = 1486 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1487 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1488 return TLO.CombineTo( 1489 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1490 } 1491 1492 // Repeat the SHL optimization above in cases where an extension 1493 // intervenes: (shl (anyext (shr x, c1)), c2) to 1494 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1495 // aren't demanded (as above) and that the shifted upper c1 bits of 1496 // x aren't demanded. 1497 // TODO - support non-uniform vector amounts. 1498 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1499 InnerOp.hasOneUse()) { 1500 if (const APInt *SA2 = 1501 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1502 unsigned InnerShAmt = SA2->getZExtValue(); 1503 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1504 DemandedBits.getActiveBits() <= 1505 (InnerBits - InnerShAmt + ShAmt) && 1506 DemandedBits.countTrailingZeros() >= ShAmt) { 1507 SDValue NewSA = 1508 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1509 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1510 InnerOp.getOperand(0)); 1511 return TLO.CombineTo( 1512 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1513 } 1514 } 1515 } 1516 } 1517 1518 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1519 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1520 Depth + 1)) 1521 return true; 1522 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1523 Known.Zero <<= ShAmt; 1524 Known.One <<= ShAmt; 1525 // low bits known zero. 1526 Known.Zero.setLowBits(ShAmt); 1527 1528 // Try shrinking the operation as long as the shift amount will still be 1529 // in range. 1530 if ((ShAmt < DemandedBits.getActiveBits()) && 1531 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1532 return true; 1533 } 1534 1535 // If we are only demanding sign bits then we can use the shift source 1536 // directly. 1537 if (const APInt *MaxSA = 1538 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1539 unsigned ShAmt = MaxSA->getZExtValue(); 1540 unsigned NumSignBits = 1541 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1542 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1543 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1544 return TLO.CombineTo(Op, Op0); 1545 } 1546 break; 1547 } 1548 case ISD::SRL: { 1549 SDValue Op0 = Op.getOperand(0); 1550 SDValue Op1 = Op.getOperand(1); 1551 EVT ShiftVT = Op1.getValueType(); 1552 1553 if (const APInt *SA = 1554 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1555 unsigned ShAmt = SA->getZExtValue(); 1556 if (ShAmt == 0) 1557 return TLO.CombineTo(Op, Op0); 1558 1559 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1560 // single shift. We can do this if the top bits (which are shifted out) 1561 // are never demanded. 1562 // TODO - support non-uniform vector amounts. 1563 if (Op0.getOpcode() == ISD::SHL) { 1564 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1565 if (const APInt *SA2 = 1566 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1567 unsigned C1 = SA2->getZExtValue(); 1568 unsigned Opc = ISD::SRL; 1569 int Diff = ShAmt - C1; 1570 if (Diff < 0) { 1571 Diff = -Diff; 1572 Opc = ISD::SHL; 1573 } 1574 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1575 return TLO.CombineTo( 1576 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1577 } 1578 } 1579 } 1580 1581 APInt InDemandedMask = (DemandedBits << ShAmt); 1582 1583 // If the shift is exact, then it does demand the low bits (and knows that 1584 // they are zero). 1585 if (Op->getFlags().hasExact()) 1586 InDemandedMask.setLowBits(ShAmt); 1587 1588 // Compute the new bits that are at the top now. 1589 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1590 Depth + 1)) 1591 return true; 1592 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1593 Known.Zero.lshrInPlace(ShAmt); 1594 Known.One.lshrInPlace(ShAmt); 1595 // High bits known zero. 1596 Known.Zero.setHighBits(ShAmt); 1597 } 1598 break; 1599 } 1600 case ISD::SRA: { 1601 SDValue Op0 = Op.getOperand(0); 1602 SDValue Op1 = Op.getOperand(1); 1603 EVT ShiftVT = Op1.getValueType(); 1604 1605 // If we only want bits that already match the signbit then we don't need 1606 // to shift. 1607 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1608 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1609 NumHiDemandedBits) 1610 return TLO.CombineTo(Op, Op0); 1611 1612 // If this is an arithmetic shift right and only the low-bit is set, we can 1613 // always convert this into a logical shr, even if the shift amount is 1614 // variable. The low bit of the shift cannot be an input sign bit unless 1615 // the shift amount is >= the size of the datatype, which is undefined. 1616 if (DemandedBits.isOne()) 1617 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1618 1619 if (const APInt *SA = 1620 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1621 unsigned ShAmt = SA->getZExtValue(); 1622 if (ShAmt == 0) 1623 return TLO.CombineTo(Op, Op0); 1624 1625 APInt InDemandedMask = (DemandedBits << ShAmt); 1626 1627 // If the shift is exact, then it does demand the low bits (and knows that 1628 // they are zero). 1629 if (Op->getFlags().hasExact()) 1630 InDemandedMask.setLowBits(ShAmt); 1631 1632 // If any of the demanded bits are produced by the sign extension, we also 1633 // demand the input sign bit. 1634 if (DemandedBits.countLeadingZeros() < ShAmt) 1635 InDemandedMask.setSignBit(); 1636 1637 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1638 Depth + 1)) 1639 return true; 1640 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1641 Known.Zero.lshrInPlace(ShAmt); 1642 Known.One.lshrInPlace(ShAmt); 1643 1644 // If the input sign bit is known to be zero, or if none of the top bits 1645 // are demanded, turn this into an unsigned shift right. 1646 if (Known.Zero[BitWidth - ShAmt - 1] || 1647 DemandedBits.countLeadingZeros() >= ShAmt) { 1648 SDNodeFlags Flags; 1649 Flags.setExact(Op->getFlags().hasExact()); 1650 return TLO.CombineTo( 1651 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1652 } 1653 1654 int Log2 = DemandedBits.exactLogBase2(); 1655 if (Log2 >= 0) { 1656 // The bit must come from the sign. 1657 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1658 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1659 } 1660 1661 if (Known.One[BitWidth - ShAmt - 1]) 1662 // New bits are known one. 1663 Known.One.setHighBits(ShAmt); 1664 1665 // Attempt to avoid multi-use ops if we don't need anything from them. 1666 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1667 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1668 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1669 if (DemandedOp0) { 1670 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1671 return TLO.CombineTo(Op, NewOp); 1672 } 1673 } 1674 } 1675 break; 1676 } 1677 case ISD::FSHL: 1678 case ISD::FSHR: { 1679 SDValue Op0 = Op.getOperand(0); 1680 SDValue Op1 = Op.getOperand(1); 1681 SDValue Op2 = Op.getOperand(2); 1682 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1683 1684 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1685 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1686 1687 // For fshl, 0-shift returns the 1st arg. 1688 // For fshr, 0-shift returns the 2nd arg. 1689 if (Amt == 0) { 1690 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1691 Known, TLO, Depth + 1)) 1692 return true; 1693 break; 1694 } 1695 1696 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1697 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1698 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1699 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1700 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1701 Depth + 1)) 1702 return true; 1703 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1704 Depth + 1)) 1705 return true; 1706 1707 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1708 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1709 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1710 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1711 Known.One |= Known2.One; 1712 Known.Zero |= Known2.Zero; 1713 } 1714 1715 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1716 if (isPowerOf2_32(BitWidth)) { 1717 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1718 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1719 Known2, TLO, Depth + 1)) 1720 return true; 1721 } 1722 break; 1723 } 1724 case ISD::ROTL: 1725 case ISD::ROTR: { 1726 SDValue Op0 = Op.getOperand(0); 1727 SDValue Op1 = Op.getOperand(1); 1728 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1729 1730 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1731 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1732 return TLO.CombineTo(Op, Op0); 1733 1734 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1735 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1736 unsigned RevAmt = BitWidth - Amt; 1737 1738 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 1739 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 1740 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 1741 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1742 Depth + 1)) 1743 return true; 1744 1745 // rot*(x, 0) --> x 1746 if (Amt == 0) 1747 return TLO.CombineTo(Op, Op0); 1748 1749 // See if we don't demand either half of the rotated bits. 1750 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 1751 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 1752 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 1753 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 1754 } 1755 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 1756 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 1757 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 1758 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1759 } 1760 } 1761 1762 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1763 if (isPowerOf2_32(BitWidth)) { 1764 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1765 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1766 Depth + 1)) 1767 return true; 1768 } 1769 break; 1770 } 1771 case ISD::UMIN: { 1772 // Check if one arg is always less than (or equal) to the other arg. 1773 SDValue Op0 = Op.getOperand(0); 1774 SDValue Op1 = Op.getOperand(1); 1775 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1776 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1777 Known = KnownBits::umin(Known0, Known1); 1778 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1779 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1780 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1781 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1782 break; 1783 } 1784 case ISD::UMAX: { 1785 // Check if one arg is always greater than (or equal) to the other arg. 1786 SDValue Op0 = Op.getOperand(0); 1787 SDValue Op1 = Op.getOperand(1); 1788 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1789 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1790 Known = KnownBits::umax(Known0, Known1); 1791 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1792 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1793 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1794 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1795 break; 1796 } 1797 case ISD::BITREVERSE: { 1798 SDValue Src = Op.getOperand(0); 1799 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1800 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1801 Depth + 1)) 1802 return true; 1803 Known.One = Known2.One.reverseBits(); 1804 Known.Zero = Known2.Zero.reverseBits(); 1805 break; 1806 } 1807 case ISD::BSWAP: { 1808 SDValue Src = Op.getOperand(0); 1809 1810 // If the only bits demanded come from one byte of the bswap result, 1811 // just shift the input byte into position to eliminate the bswap. 1812 unsigned NLZ = DemandedBits.countLeadingZeros(); 1813 unsigned NTZ = DemandedBits.countTrailingZeros(); 1814 1815 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 1816 // we need all the bits down to bit 8. Likewise, round NLZ. If we 1817 // have 14 leading zeros, round to 8. 1818 NLZ &= ~7; 1819 NTZ &= ~7; 1820 // If we need exactly one byte, we can do this transformation. 1821 if (BitWidth - NLZ - NTZ == 8) { 1822 unsigned ResultBit = NTZ; 1823 unsigned InputBit = BitWidth - NTZ - 8; 1824 1825 // Replace this with either a left or right shift to get the byte into 1826 // the right place. 1827 unsigned ShiftOpcode = InputBit > ResultBit ? ISD::SRL : ISD::SHL; 1828 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 1829 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 1830 unsigned ShiftAmount = 1831 InputBit > ResultBit ? InputBit - ResultBit : ResultBit - InputBit; 1832 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 1833 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 1834 return TLO.CombineTo(Op, NewOp); 1835 } 1836 } 1837 1838 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1839 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1840 Depth + 1)) 1841 return true; 1842 Known.One = Known2.One.byteSwap(); 1843 Known.Zero = Known2.Zero.byteSwap(); 1844 break; 1845 } 1846 case ISD::CTPOP: { 1847 // If only 1 bit is demanded, replace with PARITY as long as we're before 1848 // op legalization. 1849 // FIXME: Limit to scalars for now. 1850 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 1851 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1852 Op.getOperand(0))); 1853 1854 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1855 break; 1856 } 1857 case ISD::SIGN_EXTEND_INREG: { 1858 SDValue Op0 = Op.getOperand(0); 1859 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1860 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1861 1862 // If we only care about the highest bit, don't bother shifting right. 1863 if (DemandedBits.isSignMask()) { 1864 unsigned MinSignedBits = 1865 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 1866 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 1867 // However if the input is already sign extended we expect the sign 1868 // extension to be dropped altogether later and do not simplify. 1869 if (!AlreadySignExtended) { 1870 // Compute the correct shift amount type, which must be getShiftAmountTy 1871 // for scalar types after legalization. 1872 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 1873 getShiftAmountTy(VT, DL)); 1874 return TLO.CombineTo(Op, 1875 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1876 } 1877 } 1878 1879 // If none of the extended bits are demanded, eliminate the sextinreg. 1880 if (DemandedBits.getActiveBits() <= ExVTBits) 1881 return TLO.CombineTo(Op, Op0); 1882 1883 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1884 1885 // Since the sign extended bits are demanded, we know that the sign 1886 // bit is demanded. 1887 InputDemandedBits.setBit(ExVTBits - 1); 1888 1889 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1890 return true; 1891 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1892 1893 // If the sign bit of the input is known set or clear, then we know the 1894 // top bits of the result. 1895 1896 // If the input sign bit is known zero, convert this into a zero extension. 1897 if (Known.Zero[ExVTBits - 1]) 1898 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1899 1900 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1901 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1902 Known.One.setBitsFrom(ExVTBits); 1903 Known.Zero &= Mask; 1904 } else { // Input sign bit unknown 1905 Known.Zero &= Mask; 1906 Known.One &= Mask; 1907 } 1908 break; 1909 } 1910 case ISD::BUILD_PAIR: { 1911 EVT HalfVT = Op.getOperand(0).getValueType(); 1912 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1913 1914 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1915 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1916 1917 KnownBits KnownLo, KnownHi; 1918 1919 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1920 return true; 1921 1922 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1923 return true; 1924 1925 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1926 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1927 1928 Known.One = KnownLo.One.zext(BitWidth) | 1929 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1930 break; 1931 } 1932 case ISD::ZERO_EXTEND: 1933 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1934 SDValue Src = Op.getOperand(0); 1935 EVT SrcVT = Src.getValueType(); 1936 unsigned InBits = SrcVT.getScalarSizeInBits(); 1937 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1938 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1939 1940 // If none of the top bits are demanded, convert this into an any_extend. 1941 if (DemandedBits.getActiveBits() <= InBits) { 1942 // If we only need the non-extended bits of the bottom element 1943 // then we can just bitcast to the result. 1944 if (IsLE && IsVecInReg && DemandedElts == 1 && 1945 VT.getSizeInBits() == SrcVT.getSizeInBits()) 1946 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1947 1948 unsigned Opc = 1949 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1950 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1951 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1952 } 1953 1954 APInt InDemandedBits = DemandedBits.trunc(InBits); 1955 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1956 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1957 Depth + 1)) 1958 return true; 1959 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1960 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1961 Known = Known.zext(BitWidth); 1962 1963 // Attempt to avoid multi-use ops if we don't need anything from them. 1964 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1965 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1966 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1967 break; 1968 } 1969 case ISD::SIGN_EXTEND: 1970 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1971 SDValue Src = Op.getOperand(0); 1972 EVT SrcVT = Src.getValueType(); 1973 unsigned InBits = SrcVT.getScalarSizeInBits(); 1974 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1975 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1976 1977 // If none of the top bits are demanded, convert this into an any_extend. 1978 if (DemandedBits.getActiveBits() <= InBits) { 1979 // If we only need the non-extended bits of the bottom element 1980 // then we can just bitcast to the result. 1981 if (IsLE && IsVecInReg && DemandedElts == 1 && 1982 VT.getSizeInBits() == SrcVT.getSizeInBits()) 1983 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1984 1985 unsigned Opc = 1986 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1987 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1988 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1989 } 1990 1991 APInt InDemandedBits = DemandedBits.trunc(InBits); 1992 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1993 1994 // Since some of the sign extended bits are demanded, we know that the sign 1995 // bit is demanded. 1996 InDemandedBits.setBit(InBits - 1); 1997 1998 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1999 Depth + 1)) 2000 return true; 2001 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2002 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2003 2004 // If the sign bit is known one, the top bits match. 2005 Known = Known.sext(BitWidth); 2006 2007 // If the sign bit is known zero, convert this to a zero extend. 2008 if (Known.isNonNegative()) { 2009 unsigned Opc = 2010 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2011 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2012 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2013 } 2014 2015 // Attempt to avoid multi-use ops if we don't need anything from them. 2016 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2017 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2018 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2019 break; 2020 } 2021 case ISD::ANY_EXTEND: 2022 case ISD::ANY_EXTEND_VECTOR_INREG: { 2023 SDValue Src = Op.getOperand(0); 2024 EVT SrcVT = Src.getValueType(); 2025 unsigned InBits = SrcVT.getScalarSizeInBits(); 2026 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2027 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2028 2029 // If we only need the bottom element then we can just bitcast. 2030 // TODO: Handle ANY_EXTEND? 2031 if (IsLE && IsVecInReg && DemandedElts == 1 && 2032 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2033 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2034 2035 APInt InDemandedBits = DemandedBits.trunc(InBits); 2036 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2037 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2038 Depth + 1)) 2039 return true; 2040 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2041 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2042 Known = Known.anyext(BitWidth); 2043 2044 // Attempt to avoid multi-use ops if we don't need anything from them. 2045 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2046 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2047 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2048 break; 2049 } 2050 case ISD::TRUNCATE: { 2051 SDValue Src = Op.getOperand(0); 2052 2053 // Simplify the input, using demanded bit information, and compute the known 2054 // zero/one bits live out. 2055 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2056 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2057 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2058 Depth + 1)) 2059 return true; 2060 Known = Known.trunc(BitWidth); 2061 2062 // Attempt to avoid multi-use ops if we don't need anything from them. 2063 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2064 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2065 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2066 2067 // If the input is only used by this truncate, see if we can shrink it based 2068 // on the known demanded bits. 2069 if (Src.getNode()->hasOneUse()) { 2070 switch (Src.getOpcode()) { 2071 default: 2072 break; 2073 case ISD::SRL: 2074 // Shrink SRL by a constant if none of the high bits shifted in are 2075 // demanded. 2076 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2077 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2078 // undesirable. 2079 break; 2080 2081 const APInt *ShAmtC = 2082 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2083 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2084 break; 2085 uint64_t ShVal = ShAmtC->getZExtValue(); 2086 2087 APInt HighBits = 2088 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2089 HighBits.lshrInPlace(ShVal); 2090 HighBits = HighBits.trunc(BitWidth); 2091 2092 if (!(HighBits & DemandedBits)) { 2093 // None of the shifted in bits are needed. Add a truncate of the 2094 // shift input, then shift it. 2095 SDValue NewShAmt = TLO.DAG.getConstant( 2096 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2097 SDValue NewTrunc = 2098 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2099 return TLO.CombineTo( 2100 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2101 } 2102 break; 2103 } 2104 } 2105 2106 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2107 break; 2108 } 2109 case ISD::AssertZext: { 2110 // AssertZext demands all of the high bits, plus any of the low bits 2111 // demanded by its users. 2112 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2113 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2114 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2115 TLO, Depth + 1)) 2116 return true; 2117 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2118 2119 Known.Zero |= ~InMask; 2120 break; 2121 } 2122 case ISD::EXTRACT_VECTOR_ELT: { 2123 SDValue Src = Op.getOperand(0); 2124 SDValue Idx = Op.getOperand(1); 2125 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2126 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2127 2128 if (SrcEltCnt.isScalable()) 2129 return false; 2130 2131 // Demand the bits from every vector element without a constant index. 2132 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2133 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2134 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2135 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2136 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2137 2138 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2139 // anything about the extended bits. 2140 APInt DemandedSrcBits = DemandedBits; 2141 if (BitWidth > EltBitWidth) 2142 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2143 2144 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2145 Depth + 1)) 2146 return true; 2147 2148 // Attempt to avoid multi-use ops if we don't need anything from them. 2149 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2150 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2151 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2152 SDValue NewOp = 2153 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2154 return TLO.CombineTo(Op, NewOp); 2155 } 2156 } 2157 2158 Known = Known2; 2159 if (BitWidth > EltBitWidth) 2160 Known = Known.anyext(BitWidth); 2161 break; 2162 } 2163 case ISD::BITCAST: { 2164 SDValue Src = Op.getOperand(0); 2165 EVT SrcVT = Src.getValueType(); 2166 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2167 2168 // If this is an FP->Int bitcast and if the sign bit is the only 2169 // thing demanded, turn this into a FGETSIGN. 2170 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2171 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2172 SrcVT.isFloatingPoint()) { 2173 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2174 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2175 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2176 SrcVT != MVT::f128) { 2177 // Cannot eliminate/lower SHL for f128 yet. 2178 EVT Ty = OpVTLegal ? VT : MVT::i32; 2179 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2180 // place. We expect the SHL to be eliminated by other optimizations. 2181 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2182 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2183 if (!OpVTLegal && OpVTSizeInBits > 32) 2184 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2185 unsigned ShVal = Op.getValueSizeInBits() - 1; 2186 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2187 return TLO.CombineTo(Op, 2188 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2189 } 2190 } 2191 2192 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2193 // Demand the elt/bit if any of the original elts/bits are demanded. 2194 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2195 unsigned Scale = BitWidth / NumSrcEltBits; 2196 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2197 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2198 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2199 for (unsigned i = 0; i != Scale; ++i) { 2200 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2201 unsigned BitOffset = EltOffset * NumSrcEltBits; 2202 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2203 if (!Sub.isZero()) { 2204 DemandedSrcBits |= Sub; 2205 for (unsigned j = 0; j != NumElts; ++j) 2206 if (DemandedElts[j]) 2207 DemandedSrcElts.setBit((j * Scale) + i); 2208 } 2209 } 2210 2211 APInt KnownSrcUndef, KnownSrcZero; 2212 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2213 KnownSrcZero, TLO, Depth + 1)) 2214 return true; 2215 2216 KnownBits KnownSrcBits; 2217 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2218 KnownSrcBits, TLO, Depth + 1)) 2219 return true; 2220 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2221 // TODO - bigendian once we have test coverage. 2222 unsigned Scale = NumSrcEltBits / BitWidth; 2223 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2224 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2225 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2226 for (unsigned i = 0; i != NumElts; ++i) 2227 if (DemandedElts[i]) { 2228 unsigned Offset = (i % Scale) * BitWidth; 2229 DemandedSrcBits.insertBits(DemandedBits, Offset); 2230 DemandedSrcElts.setBit(i / Scale); 2231 } 2232 2233 if (SrcVT.isVector()) { 2234 APInt KnownSrcUndef, KnownSrcZero; 2235 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2236 KnownSrcZero, TLO, Depth + 1)) 2237 return true; 2238 } 2239 2240 KnownBits KnownSrcBits; 2241 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2242 KnownSrcBits, TLO, Depth + 1)) 2243 return true; 2244 } 2245 2246 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2247 // recursive call where Known may be useful to the caller. 2248 if (Depth > 0) { 2249 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2250 return false; 2251 } 2252 break; 2253 } 2254 case ISD::ADD: 2255 case ISD::MUL: 2256 case ISD::SUB: { 2257 // Add, Sub, and Mul don't demand any bits in positions beyond that 2258 // of the highest bit demanded of them. 2259 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2260 SDNodeFlags Flags = Op.getNode()->getFlags(); 2261 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2262 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2263 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2264 Depth + 1) || 2265 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2266 Depth + 1) || 2267 // See if the operation should be performed at a smaller bit width. 2268 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2269 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2270 // Disable the nsw and nuw flags. We can no longer guarantee that we 2271 // won't wrap after simplification. 2272 Flags.setNoSignedWrap(false); 2273 Flags.setNoUnsignedWrap(false); 2274 SDValue NewOp = 2275 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2276 return TLO.CombineTo(Op, NewOp); 2277 } 2278 return true; 2279 } 2280 2281 // Attempt to avoid multi-use ops if we don't need anything from them. 2282 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2283 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2284 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2285 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2286 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2287 if (DemandedOp0 || DemandedOp1) { 2288 Flags.setNoSignedWrap(false); 2289 Flags.setNoUnsignedWrap(false); 2290 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2291 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2292 SDValue NewOp = 2293 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2294 return TLO.CombineTo(Op, NewOp); 2295 } 2296 } 2297 2298 // If we have a constant operand, we may be able to turn it into -1 if we 2299 // do not demand the high bits. This can make the constant smaller to 2300 // encode, allow more general folding, or match specialized instruction 2301 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2302 // is probably not useful (and could be detrimental). 2303 ConstantSDNode *C = isConstOrConstSplat(Op1); 2304 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2305 if (C && !C->isAllOnes() && !C->isOne() && 2306 (C->getAPIntValue() | HighMask).isAllOnes()) { 2307 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2308 // Disable the nsw and nuw flags. We can no longer guarantee that we 2309 // won't wrap after simplification. 2310 Flags.setNoSignedWrap(false); 2311 Flags.setNoUnsignedWrap(false); 2312 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2313 return TLO.CombineTo(Op, NewOp); 2314 } 2315 2316 LLVM_FALLTHROUGH; 2317 } 2318 default: 2319 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2320 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2321 Known, TLO, Depth)) 2322 return true; 2323 break; 2324 } 2325 2326 // Just use computeKnownBits to compute output bits. 2327 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2328 break; 2329 } 2330 2331 // If we know the value of all of the demanded bits, return this as a 2332 // constant. 2333 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2334 // Avoid folding to a constant if any OpaqueConstant is involved. 2335 const SDNode *N = Op.getNode(); 2336 for (SDNode *Op : 2337 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2338 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2339 if (C->isOpaque()) 2340 return false; 2341 } 2342 if (VT.isInteger()) 2343 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2344 if (VT.isFloatingPoint()) 2345 return TLO.CombineTo( 2346 Op, 2347 TLO.DAG.getConstantFP( 2348 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2349 } 2350 2351 return false; 2352 } 2353 2354 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2355 const APInt &DemandedElts, 2356 APInt &KnownUndef, 2357 APInt &KnownZero, 2358 DAGCombinerInfo &DCI) const { 2359 SelectionDAG &DAG = DCI.DAG; 2360 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2361 !DCI.isBeforeLegalizeOps()); 2362 2363 bool Simplified = 2364 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2365 if (Simplified) { 2366 DCI.AddToWorklist(Op.getNode()); 2367 DCI.CommitTargetLoweringOpt(TLO); 2368 } 2369 2370 return Simplified; 2371 } 2372 2373 /// Given a vector binary operation and known undefined elements for each input 2374 /// operand, compute whether each element of the output is undefined. 2375 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2376 const APInt &UndefOp0, 2377 const APInt &UndefOp1) { 2378 EVT VT = BO.getValueType(); 2379 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2380 "Vector binop only"); 2381 2382 EVT EltVT = VT.getVectorElementType(); 2383 unsigned NumElts = VT.getVectorNumElements(); 2384 assert(UndefOp0.getBitWidth() == NumElts && 2385 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2386 2387 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2388 const APInt &UndefVals) { 2389 if (UndefVals[Index]) 2390 return DAG.getUNDEF(EltVT); 2391 2392 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2393 // Try hard to make sure that the getNode() call is not creating temporary 2394 // nodes. Ignore opaque integers because they do not constant fold. 2395 SDValue Elt = BV->getOperand(Index); 2396 auto *C = dyn_cast<ConstantSDNode>(Elt); 2397 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2398 return Elt; 2399 } 2400 2401 return SDValue(); 2402 }; 2403 2404 APInt KnownUndef = APInt::getZero(NumElts); 2405 for (unsigned i = 0; i != NumElts; ++i) { 2406 // If both inputs for this element are either constant or undef and match 2407 // the element type, compute the constant/undef result for this element of 2408 // the vector. 2409 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2410 // not handle FP constants. The code within getNode() should be refactored 2411 // to avoid the danger of creating a bogus temporary node here. 2412 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2413 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2414 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2415 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2416 KnownUndef.setBit(i); 2417 } 2418 return KnownUndef; 2419 } 2420 2421 bool TargetLowering::SimplifyDemandedVectorElts( 2422 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2423 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2424 bool AssumeSingleUse) const { 2425 EVT VT = Op.getValueType(); 2426 unsigned Opcode = Op.getOpcode(); 2427 APInt DemandedElts = OriginalDemandedElts; 2428 unsigned NumElts = DemandedElts.getBitWidth(); 2429 assert(VT.isVector() && "Expected vector op"); 2430 2431 KnownUndef = KnownZero = APInt::getZero(NumElts); 2432 2433 // TODO: For now we assume we know nothing about scalable vectors. 2434 if (VT.isScalableVector()) 2435 return false; 2436 2437 assert(VT.getVectorNumElements() == NumElts && 2438 "Mask size mismatches value type element count!"); 2439 2440 // Undef operand. 2441 if (Op.isUndef()) { 2442 KnownUndef.setAllBits(); 2443 return false; 2444 } 2445 2446 // If Op has other users, assume that all elements are needed. 2447 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2448 DemandedElts.setAllBits(); 2449 2450 // Not demanding any elements from Op. 2451 if (DemandedElts == 0) { 2452 KnownUndef.setAllBits(); 2453 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2454 } 2455 2456 // Limit search depth. 2457 if (Depth >= SelectionDAG::MaxRecursionDepth) 2458 return false; 2459 2460 SDLoc DL(Op); 2461 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2462 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2463 2464 // Helper for demanding the specified elements and all the bits of both binary 2465 // operands. 2466 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2467 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2468 TLO.DAG, Depth + 1); 2469 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2470 TLO.DAG, Depth + 1); 2471 if (NewOp0 || NewOp1) { 2472 SDValue NewOp = TLO.DAG.getNode( 2473 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2474 return TLO.CombineTo(Op, NewOp); 2475 } 2476 return false; 2477 }; 2478 2479 switch (Opcode) { 2480 case ISD::SCALAR_TO_VECTOR: { 2481 if (!DemandedElts[0]) { 2482 KnownUndef.setAllBits(); 2483 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2484 } 2485 SDValue ScalarSrc = Op.getOperand(0); 2486 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2487 SDValue Src = ScalarSrc.getOperand(0); 2488 SDValue Idx = ScalarSrc.getOperand(1); 2489 EVT SrcVT = Src.getValueType(); 2490 2491 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2492 2493 if (SrcEltCnt.isScalable()) 2494 return false; 2495 2496 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2497 if (isNullConstant(Idx)) { 2498 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2499 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2500 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2501 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2502 TLO, Depth + 1)) 2503 return true; 2504 } 2505 } 2506 KnownUndef.setHighBits(NumElts - 1); 2507 break; 2508 } 2509 case ISD::BITCAST: { 2510 SDValue Src = Op.getOperand(0); 2511 EVT SrcVT = Src.getValueType(); 2512 2513 // We only handle vectors here. 2514 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2515 if (!SrcVT.isVector()) 2516 break; 2517 2518 // Fast handling of 'identity' bitcasts. 2519 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2520 if (NumSrcElts == NumElts) 2521 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2522 KnownZero, TLO, Depth + 1); 2523 2524 APInt SrcDemandedElts, SrcZero, SrcUndef; 2525 2526 // Bitcast from 'large element' src vector to 'small element' vector, we 2527 // must demand a source element if any DemandedElt maps to it. 2528 if ((NumElts % NumSrcElts) == 0) { 2529 unsigned Scale = NumElts / NumSrcElts; 2530 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2531 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2532 TLO, Depth + 1)) 2533 return true; 2534 2535 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2536 // of the large element. 2537 // TODO - bigendian once we have test coverage. 2538 if (IsLE) { 2539 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2540 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2541 for (unsigned i = 0; i != NumElts; ++i) 2542 if (DemandedElts[i]) { 2543 unsigned Ofs = (i % Scale) * EltSizeInBits; 2544 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2545 } 2546 2547 KnownBits Known; 2548 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2549 TLO, Depth + 1)) 2550 return true; 2551 } 2552 2553 // If the src element is zero/undef then all the output elements will be - 2554 // only demanded elements are guaranteed to be correct. 2555 for (unsigned i = 0; i != NumSrcElts; ++i) { 2556 if (SrcDemandedElts[i]) { 2557 if (SrcZero[i]) 2558 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2559 if (SrcUndef[i]) 2560 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2561 } 2562 } 2563 } 2564 2565 // Bitcast from 'small element' src vector to 'large element' vector, we 2566 // demand all smaller source elements covered by the larger demanded element 2567 // of this vector. 2568 if ((NumSrcElts % NumElts) == 0) { 2569 unsigned Scale = NumSrcElts / NumElts; 2570 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2571 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2572 TLO, Depth + 1)) 2573 return true; 2574 2575 // If all the src elements covering an output element are zero/undef, then 2576 // the output element will be as well, assuming it was demanded. 2577 for (unsigned i = 0; i != NumElts; ++i) { 2578 if (DemandedElts[i]) { 2579 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2580 KnownZero.setBit(i); 2581 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2582 KnownUndef.setBit(i); 2583 } 2584 } 2585 } 2586 break; 2587 } 2588 case ISD::BUILD_VECTOR: { 2589 // Check all elements and simplify any unused elements with UNDEF. 2590 if (!DemandedElts.isAllOnes()) { 2591 // Don't simplify BROADCASTS. 2592 if (llvm::any_of(Op->op_values(), 2593 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2594 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2595 bool Updated = false; 2596 for (unsigned i = 0; i != NumElts; ++i) { 2597 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2598 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2599 KnownUndef.setBit(i); 2600 Updated = true; 2601 } 2602 } 2603 if (Updated) 2604 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2605 } 2606 } 2607 for (unsigned i = 0; i != NumElts; ++i) { 2608 SDValue SrcOp = Op.getOperand(i); 2609 if (SrcOp.isUndef()) { 2610 KnownUndef.setBit(i); 2611 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2612 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2613 KnownZero.setBit(i); 2614 } 2615 } 2616 break; 2617 } 2618 case ISD::CONCAT_VECTORS: { 2619 EVT SubVT = Op.getOperand(0).getValueType(); 2620 unsigned NumSubVecs = Op.getNumOperands(); 2621 unsigned NumSubElts = SubVT.getVectorNumElements(); 2622 for (unsigned i = 0; i != NumSubVecs; ++i) { 2623 SDValue SubOp = Op.getOperand(i); 2624 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2625 APInt SubUndef, SubZero; 2626 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2627 Depth + 1)) 2628 return true; 2629 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2630 KnownZero.insertBits(SubZero, i * NumSubElts); 2631 } 2632 break; 2633 } 2634 case ISD::INSERT_SUBVECTOR: { 2635 // Demand any elements from the subvector and the remainder from the src its 2636 // inserted into. 2637 SDValue Src = Op.getOperand(0); 2638 SDValue Sub = Op.getOperand(1); 2639 uint64_t Idx = Op.getConstantOperandVal(2); 2640 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2641 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2642 APInt DemandedSrcElts = DemandedElts; 2643 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2644 2645 APInt SubUndef, SubZero; 2646 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2647 Depth + 1)) 2648 return true; 2649 2650 // If none of the src operand elements are demanded, replace it with undef. 2651 if (!DemandedSrcElts && !Src.isUndef()) 2652 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2653 TLO.DAG.getUNDEF(VT), Sub, 2654 Op.getOperand(2))); 2655 2656 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2657 TLO, Depth + 1)) 2658 return true; 2659 KnownUndef.insertBits(SubUndef, Idx); 2660 KnownZero.insertBits(SubZero, Idx); 2661 2662 // Attempt to avoid multi-use ops if we don't need anything from them. 2663 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2664 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2665 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2666 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2667 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2668 if (NewSrc || NewSub) { 2669 NewSrc = NewSrc ? NewSrc : Src; 2670 NewSub = NewSub ? NewSub : Sub; 2671 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2672 NewSub, Op.getOperand(2)); 2673 return TLO.CombineTo(Op, NewOp); 2674 } 2675 } 2676 break; 2677 } 2678 case ISD::EXTRACT_SUBVECTOR: { 2679 // Offset the demanded elts by the subvector index. 2680 SDValue Src = Op.getOperand(0); 2681 if (Src.getValueType().isScalableVector()) 2682 break; 2683 uint64_t Idx = Op.getConstantOperandVal(1); 2684 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2685 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2686 2687 APInt SrcUndef, SrcZero; 2688 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2689 Depth + 1)) 2690 return true; 2691 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2692 KnownZero = SrcZero.extractBits(NumElts, Idx); 2693 2694 // Attempt to avoid multi-use ops if we don't need anything from them. 2695 if (!DemandedElts.isAllOnes()) { 2696 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2697 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2698 if (NewSrc) { 2699 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2700 Op.getOperand(1)); 2701 return TLO.CombineTo(Op, NewOp); 2702 } 2703 } 2704 break; 2705 } 2706 case ISD::INSERT_VECTOR_ELT: { 2707 SDValue Vec = Op.getOperand(0); 2708 SDValue Scl = Op.getOperand(1); 2709 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2710 2711 // For a legal, constant insertion index, if we don't need this insertion 2712 // then strip it, else remove it from the demanded elts. 2713 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2714 unsigned Idx = CIdx->getZExtValue(); 2715 if (!DemandedElts[Idx]) 2716 return TLO.CombineTo(Op, Vec); 2717 2718 APInt DemandedVecElts(DemandedElts); 2719 DemandedVecElts.clearBit(Idx); 2720 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2721 KnownZero, TLO, Depth + 1)) 2722 return true; 2723 2724 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2725 2726 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2727 break; 2728 } 2729 2730 APInt VecUndef, VecZero; 2731 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2732 Depth + 1)) 2733 return true; 2734 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2735 break; 2736 } 2737 case ISD::VSELECT: { 2738 // Try to transform the select condition based on the current demanded 2739 // elements. 2740 // TODO: If a condition element is undef, we can choose from one arm of the 2741 // select (and if one arm is undef, then we can propagate that to the 2742 // result). 2743 // TODO - add support for constant vselect masks (see IR version of this). 2744 APInt UnusedUndef, UnusedZero; 2745 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2746 UnusedZero, TLO, Depth + 1)) 2747 return true; 2748 2749 // See if we can simplify either vselect operand. 2750 APInt DemandedLHS(DemandedElts); 2751 APInt DemandedRHS(DemandedElts); 2752 APInt UndefLHS, ZeroLHS; 2753 APInt UndefRHS, ZeroRHS; 2754 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2755 ZeroLHS, TLO, Depth + 1)) 2756 return true; 2757 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2758 ZeroRHS, TLO, Depth + 1)) 2759 return true; 2760 2761 KnownUndef = UndefLHS & UndefRHS; 2762 KnownZero = ZeroLHS & ZeroRHS; 2763 break; 2764 } 2765 case ISD::VECTOR_SHUFFLE: { 2766 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2767 2768 // Collect demanded elements from shuffle operands.. 2769 APInt DemandedLHS(NumElts, 0); 2770 APInt DemandedRHS(NumElts, 0); 2771 for (unsigned i = 0; i != NumElts; ++i) { 2772 int M = ShuffleMask[i]; 2773 if (M < 0 || !DemandedElts[i]) 2774 continue; 2775 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2776 if (M < (int)NumElts) 2777 DemandedLHS.setBit(M); 2778 else 2779 DemandedRHS.setBit(M - NumElts); 2780 } 2781 2782 // See if we can simplify either shuffle operand. 2783 APInt UndefLHS, ZeroLHS; 2784 APInt UndefRHS, ZeroRHS; 2785 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2786 ZeroLHS, TLO, Depth + 1)) 2787 return true; 2788 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2789 ZeroRHS, TLO, Depth + 1)) 2790 return true; 2791 2792 // Simplify mask using undef elements from LHS/RHS. 2793 bool Updated = false; 2794 bool IdentityLHS = true, IdentityRHS = true; 2795 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2796 for (unsigned i = 0; i != NumElts; ++i) { 2797 int &M = NewMask[i]; 2798 if (M < 0) 2799 continue; 2800 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2801 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2802 Updated = true; 2803 M = -1; 2804 } 2805 IdentityLHS &= (M < 0) || (M == (int)i); 2806 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2807 } 2808 2809 // Update legal shuffle masks based on demanded elements if it won't reduce 2810 // to Identity which can cause premature removal of the shuffle mask. 2811 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2812 SDValue LegalShuffle = 2813 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2814 NewMask, TLO.DAG); 2815 if (LegalShuffle) 2816 return TLO.CombineTo(Op, LegalShuffle); 2817 } 2818 2819 // Propagate undef/zero elements from LHS/RHS. 2820 for (unsigned i = 0; i != NumElts; ++i) { 2821 int M = ShuffleMask[i]; 2822 if (M < 0) { 2823 KnownUndef.setBit(i); 2824 } else if (M < (int)NumElts) { 2825 if (UndefLHS[M]) 2826 KnownUndef.setBit(i); 2827 if (ZeroLHS[M]) 2828 KnownZero.setBit(i); 2829 } else { 2830 if (UndefRHS[M - NumElts]) 2831 KnownUndef.setBit(i); 2832 if (ZeroRHS[M - NumElts]) 2833 KnownZero.setBit(i); 2834 } 2835 } 2836 break; 2837 } 2838 case ISD::ANY_EXTEND_VECTOR_INREG: 2839 case ISD::SIGN_EXTEND_VECTOR_INREG: 2840 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2841 APInt SrcUndef, SrcZero; 2842 SDValue Src = Op.getOperand(0); 2843 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2844 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2845 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2846 Depth + 1)) 2847 return true; 2848 KnownZero = SrcZero.zextOrTrunc(NumElts); 2849 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2850 2851 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2852 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2853 DemandedSrcElts == 1) { 2854 // aext - if we just need the bottom element then we can bitcast. 2855 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2856 } 2857 2858 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2859 // zext(undef) upper bits are guaranteed to be zero. 2860 if (DemandedElts.isSubsetOf(KnownUndef)) 2861 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2862 KnownUndef.clearAllBits(); 2863 2864 // zext - if we just need the bottom element then we can mask: 2865 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 2866 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 2867 Op->isOnlyUserOf(Src.getNode()) && 2868 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 2869 SDLoc DL(Op); 2870 EVT SrcVT = Src.getValueType(); 2871 EVT SrcSVT = SrcVT.getScalarType(); 2872 SmallVector<SDValue> MaskElts; 2873 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 2874 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 2875 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 2876 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 2877 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 2878 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 2879 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 2880 } 2881 } 2882 } 2883 break; 2884 } 2885 2886 // TODO: There are more binop opcodes that could be handled here - MIN, 2887 // MAX, saturated math, etc. 2888 case ISD::ADD: { 2889 SDValue Op0 = Op.getOperand(0); 2890 SDValue Op1 = Op.getOperand(1); 2891 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 2892 APInt UndefLHS, ZeroLHS; 2893 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2894 Depth + 1, /*AssumeSingleUse*/ true)) 2895 return true; 2896 } 2897 LLVM_FALLTHROUGH; 2898 } 2899 case ISD::OR: 2900 case ISD::XOR: 2901 case ISD::SUB: 2902 case ISD::FADD: 2903 case ISD::FSUB: 2904 case ISD::FMUL: 2905 case ISD::FDIV: 2906 case ISD::FREM: { 2907 SDValue Op0 = Op.getOperand(0); 2908 SDValue Op1 = Op.getOperand(1); 2909 2910 APInt UndefRHS, ZeroRHS; 2911 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2912 Depth + 1)) 2913 return true; 2914 APInt UndefLHS, ZeroLHS; 2915 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2916 Depth + 1)) 2917 return true; 2918 2919 KnownZero = ZeroLHS & ZeroRHS; 2920 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2921 2922 // Attempt to avoid multi-use ops if we don't need anything from them. 2923 // TODO - use KnownUndef to relax the demandedelts? 2924 if (!DemandedElts.isAllOnes()) 2925 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2926 return true; 2927 break; 2928 } 2929 case ISD::SHL: 2930 case ISD::SRL: 2931 case ISD::SRA: 2932 case ISD::ROTL: 2933 case ISD::ROTR: { 2934 SDValue Op0 = Op.getOperand(0); 2935 SDValue Op1 = Op.getOperand(1); 2936 2937 APInt UndefRHS, ZeroRHS; 2938 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2939 Depth + 1)) 2940 return true; 2941 APInt UndefLHS, ZeroLHS; 2942 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2943 Depth + 1)) 2944 return true; 2945 2946 KnownZero = ZeroLHS; 2947 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2948 2949 // Attempt to avoid multi-use ops if we don't need anything from them. 2950 // TODO - use KnownUndef to relax the demandedelts? 2951 if (!DemandedElts.isAllOnes()) 2952 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2953 return true; 2954 break; 2955 } 2956 case ISD::MUL: 2957 case ISD::AND: { 2958 SDValue Op0 = Op.getOperand(0); 2959 SDValue Op1 = Op.getOperand(1); 2960 2961 APInt SrcUndef, SrcZero; 2962 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2963 Depth + 1)) 2964 return true; 2965 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2966 TLO, Depth + 1)) 2967 return true; 2968 2969 // If either side has a zero element, then the result element is zero, even 2970 // if the other is an UNDEF. 2971 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2972 // and then handle 'and' nodes with the rest of the binop opcodes. 2973 KnownZero |= SrcZero; 2974 KnownUndef &= SrcUndef; 2975 KnownUndef &= ~KnownZero; 2976 2977 // Attempt to avoid multi-use ops if we don't need anything from them. 2978 // TODO - use KnownUndef to relax the demandedelts? 2979 if (!DemandedElts.isAllOnes()) 2980 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2981 return true; 2982 break; 2983 } 2984 case ISD::TRUNCATE: 2985 case ISD::SIGN_EXTEND: 2986 case ISD::ZERO_EXTEND: 2987 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2988 KnownZero, TLO, Depth + 1)) 2989 return true; 2990 2991 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2992 // zext(undef) upper bits are guaranteed to be zero. 2993 if (DemandedElts.isSubsetOf(KnownUndef)) 2994 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2995 KnownUndef.clearAllBits(); 2996 } 2997 break; 2998 default: { 2999 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3000 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3001 KnownZero, TLO, Depth)) 3002 return true; 3003 } else { 3004 KnownBits Known; 3005 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3006 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3007 TLO, Depth, AssumeSingleUse)) 3008 return true; 3009 } 3010 break; 3011 } 3012 } 3013 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3014 3015 // Constant fold all undef cases. 3016 // TODO: Handle zero cases as well. 3017 if (DemandedElts.isSubsetOf(KnownUndef)) 3018 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3019 3020 return false; 3021 } 3022 3023 /// Determine which of the bits specified in Mask are known to be either zero or 3024 /// one and return them in the Known. 3025 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3026 KnownBits &Known, 3027 const APInt &DemandedElts, 3028 const SelectionDAG &DAG, 3029 unsigned Depth) const { 3030 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3031 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3032 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3033 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3034 "Should use MaskedValueIsZero if you don't know whether Op" 3035 " is a target node!"); 3036 Known.resetAll(); 3037 } 3038 3039 void TargetLowering::computeKnownBitsForTargetInstr( 3040 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3041 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3042 unsigned Depth) const { 3043 Known.resetAll(); 3044 } 3045 3046 void TargetLowering::computeKnownBitsForFrameIndex( 3047 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3048 // The low bits are known zero if the pointer is aligned. 3049 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3050 } 3051 3052 Align TargetLowering::computeKnownAlignForTargetInstr( 3053 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3054 unsigned Depth) const { 3055 return Align(1); 3056 } 3057 3058 /// This method can be implemented by targets that want to expose additional 3059 /// information about sign bits to the DAG Combiner. 3060 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3061 const APInt &, 3062 const SelectionDAG &, 3063 unsigned Depth) const { 3064 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3065 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3066 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3067 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3068 "Should use ComputeNumSignBits if you don't know whether Op" 3069 " is a target node!"); 3070 return 1; 3071 } 3072 3073 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3074 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3075 const MachineRegisterInfo &MRI, unsigned Depth) const { 3076 return 1; 3077 } 3078 3079 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3080 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3081 TargetLoweringOpt &TLO, unsigned Depth) const { 3082 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3083 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3084 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3085 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3086 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3087 " is a target node!"); 3088 return false; 3089 } 3090 3091 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3092 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3093 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3094 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3095 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3096 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3097 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3098 "Should use SimplifyDemandedBits if you don't know whether Op" 3099 " is a target node!"); 3100 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3101 return false; 3102 } 3103 3104 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3105 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3106 SelectionDAG &DAG, unsigned Depth) const { 3107 assert( 3108 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3109 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3110 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3111 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3112 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3113 " is a target node!"); 3114 return SDValue(); 3115 } 3116 3117 SDValue 3118 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3119 SDValue N1, MutableArrayRef<int> Mask, 3120 SelectionDAG &DAG) const { 3121 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3122 if (!LegalMask) { 3123 std::swap(N0, N1); 3124 ShuffleVectorSDNode::commuteMask(Mask); 3125 LegalMask = isShuffleMaskLegal(Mask, VT); 3126 } 3127 3128 if (!LegalMask) 3129 return SDValue(); 3130 3131 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3132 } 3133 3134 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3135 return nullptr; 3136 } 3137 3138 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3139 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3140 bool PoisonOnly, unsigned Depth) const { 3141 assert( 3142 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3143 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3144 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3145 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3146 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3147 " is a target node!"); 3148 return false; 3149 } 3150 3151 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3152 const SelectionDAG &DAG, 3153 bool SNaN, 3154 unsigned Depth) const { 3155 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3156 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3157 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3158 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3159 "Should use isKnownNeverNaN if you don't know whether Op" 3160 " is a target node!"); 3161 return false; 3162 } 3163 3164 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3165 const APInt &DemandedElts, 3166 APInt &UndefElts, 3167 unsigned Depth) const { 3168 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3169 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3170 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3171 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3172 "Should use isSplatValue if you don't know whether Op" 3173 " is a target node!"); 3174 return false; 3175 } 3176 3177 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3178 // work with truncating build vectors and vectors with elements of less than 3179 // 8 bits. 3180 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3181 if (!N) 3182 return false; 3183 3184 APInt CVal; 3185 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3186 CVal = CN->getAPIntValue(); 3187 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3188 auto *CN = BV->getConstantSplatNode(); 3189 if (!CN) 3190 return false; 3191 3192 // If this is a truncating build vector, truncate the splat value. 3193 // Otherwise, we may fail to match the expected values below. 3194 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3195 CVal = CN->getAPIntValue(); 3196 if (BVEltWidth < CVal.getBitWidth()) 3197 CVal = CVal.trunc(BVEltWidth); 3198 } else { 3199 return false; 3200 } 3201 3202 switch (getBooleanContents(N->getValueType(0))) { 3203 case UndefinedBooleanContent: 3204 return CVal[0]; 3205 case ZeroOrOneBooleanContent: 3206 return CVal.isOne(); 3207 case ZeroOrNegativeOneBooleanContent: 3208 return CVal.isAllOnes(); 3209 } 3210 3211 llvm_unreachable("Invalid boolean contents"); 3212 } 3213 3214 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3215 if (!N) 3216 return false; 3217 3218 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3219 if (!CN) { 3220 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3221 if (!BV) 3222 return false; 3223 3224 // Only interested in constant splats, we don't care about undef 3225 // elements in identifying boolean constants and getConstantSplatNode 3226 // returns NULL if all ops are undef; 3227 CN = BV->getConstantSplatNode(); 3228 if (!CN) 3229 return false; 3230 } 3231 3232 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3233 return !CN->getAPIntValue()[0]; 3234 3235 return CN->isZero(); 3236 } 3237 3238 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3239 bool SExt) const { 3240 if (VT == MVT::i1) 3241 return N->isOne(); 3242 3243 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3244 switch (Cnt) { 3245 case TargetLowering::ZeroOrOneBooleanContent: 3246 // An extended value of 1 is always true, unless its original type is i1, 3247 // in which case it will be sign extended to -1. 3248 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3249 case TargetLowering::UndefinedBooleanContent: 3250 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3251 return N->isAllOnes() && SExt; 3252 } 3253 llvm_unreachable("Unexpected enumeration."); 3254 } 3255 3256 /// This helper function of SimplifySetCC tries to optimize the comparison when 3257 /// either operand of the SetCC node is a bitwise-and instruction. 3258 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3259 ISD::CondCode Cond, const SDLoc &DL, 3260 DAGCombinerInfo &DCI) const { 3261 // Match these patterns in any of their permutations: 3262 // (X & Y) == Y 3263 // (X & Y) != Y 3264 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3265 std::swap(N0, N1); 3266 3267 EVT OpVT = N0.getValueType(); 3268 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3269 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3270 return SDValue(); 3271 3272 SDValue X, Y; 3273 if (N0.getOperand(0) == N1) { 3274 X = N0.getOperand(1); 3275 Y = N0.getOperand(0); 3276 } else if (N0.getOperand(1) == N1) { 3277 X = N0.getOperand(0); 3278 Y = N0.getOperand(1); 3279 } else { 3280 return SDValue(); 3281 } 3282 3283 SelectionDAG &DAG = DCI.DAG; 3284 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3285 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3286 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3287 // Note that where Y is variable and is known to have at most one bit set 3288 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3289 // equivalent when Y == 0. 3290 assert(OpVT.isInteger()); 3291 Cond = ISD::getSetCCInverse(Cond, OpVT); 3292 if (DCI.isBeforeLegalizeOps() || 3293 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3294 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3295 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3296 // If the target supports an 'and-not' or 'and-complement' logic operation, 3297 // try to use that to make a comparison operation more efficient. 3298 // But don't do this transform if the mask is a single bit because there are 3299 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3300 // 'rlwinm' on PPC). 3301 3302 // Bail out if the compare operand that we want to turn into a zero is 3303 // already a zero (otherwise, infinite loop). 3304 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3305 if (YConst && YConst->isZero()) 3306 return SDValue(); 3307 3308 // Transform this into: ~X & Y == 0. 3309 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3310 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3311 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3312 } 3313 3314 return SDValue(); 3315 } 3316 3317 /// There are multiple IR patterns that could be checking whether certain 3318 /// truncation of a signed number would be lossy or not. The pattern which is 3319 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3320 /// We are looking for the following pattern: (KeptBits is a constant) 3321 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3322 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3323 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3324 /// We will unfold it into the natural trunc+sext pattern: 3325 /// ((%x << C) a>> C) dstcond %x 3326 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3327 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3328 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3329 const SDLoc &DL) const { 3330 // We must be comparing with a constant. 3331 ConstantSDNode *C1; 3332 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3333 return SDValue(); 3334 3335 // N0 should be: add %x, (1 << (KeptBits-1)) 3336 if (N0->getOpcode() != ISD::ADD) 3337 return SDValue(); 3338 3339 // And we must be 'add'ing a constant. 3340 ConstantSDNode *C01; 3341 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3342 return SDValue(); 3343 3344 SDValue X = N0->getOperand(0); 3345 EVT XVT = X.getValueType(); 3346 3347 // Validate constants ... 3348 3349 APInt I1 = C1->getAPIntValue(); 3350 3351 ISD::CondCode NewCond; 3352 if (Cond == ISD::CondCode::SETULT) { 3353 NewCond = ISD::CondCode::SETEQ; 3354 } else if (Cond == ISD::CondCode::SETULE) { 3355 NewCond = ISD::CondCode::SETEQ; 3356 // But need to 'canonicalize' the constant. 3357 I1 += 1; 3358 } else if (Cond == ISD::CondCode::SETUGT) { 3359 NewCond = ISD::CondCode::SETNE; 3360 // But need to 'canonicalize' the constant. 3361 I1 += 1; 3362 } else if (Cond == ISD::CondCode::SETUGE) { 3363 NewCond = ISD::CondCode::SETNE; 3364 } else 3365 return SDValue(); 3366 3367 APInt I01 = C01->getAPIntValue(); 3368 3369 auto checkConstants = [&I1, &I01]() -> bool { 3370 // Both of them must be power-of-two, and the constant from setcc is bigger. 3371 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3372 }; 3373 3374 if (checkConstants()) { 3375 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3376 } else { 3377 // What if we invert constants? (and the target predicate) 3378 I1.negate(); 3379 I01.negate(); 3380 assert(XVT.isInteger()); 3381 NewCond = getSetCCInverse(NewCond, XVT); 3382 if (!checkConstants()) 3383 return SDValue(); 3384 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3385 } 3386 3387 // They are power-of-two, so which bit is set? 3388 const unsigned KeptBits = I1.logBase2(); 3389 const unsigned KeptBitsMinusOne = I01.logBase2(); 3390 3391 // Magic! 3392 if (KeptBits != (KeptBitsMinusOne + 1)) 3393 return SDValue(); 3394 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3395 3396 // We don't want to do this in every single case. 3397 SelectionDAG &DAG = DCI.DAG; 3398 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3399 XVT, KeptBits)) 3400 return SDValue(); 3401 3402 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3403 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3404 3405 // Unfold into: ((%x << C) a>> C) cond %x 3406 // Where 'cond' will be either 'eq' or 'ne'. 3407 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3408 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3409 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3410 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3411 3412 return T2; 3413 } 3414 3415 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3416 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3417 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3418 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3419 assert(isConstOrConstSplat(N1C) && 3420 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3421 "Should be a comparison with 0."); 3422 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3423 "Valid only for [in]equality comparisons."); 3424 3425 unsigned NewShiftOpcode; 3426 SDValue X, C, Y; 3427 3428 SelectionDAG &DAG = DCI.DAG; 3429 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3430 3431 // Look for '(C l>>/<< Y)'. 3432 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3433 // The shift should be one-use. 3434 if (!V.hasOneUse()) 3435 return false; 3436 unsigned OldShiftOpcode = V.getOpcode(); 3437 switch (OldShiftOpcode) { 3438 case ISD::SHL: 3439 NewShiftOpcode = ISD::SRL; 3440 break; 3441 case ISD::SRL: 3442 NewShiftOpcode = ISD::SHL; 3443 break; 3444 default: 3445 return false; // must be a logical shift. 3446 } 3447 // We should be shifting a constant. 3448 // FIXME: best to use isConstantOrConstantVector(). 3449 C = V.getOperand(0); 3450 ConstantSDNode *CC = 3451 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3452 if (!CC) 3453 return false; 3454 Y = V.getOperand(1); 3455 3456 ConstantSDNode *XC = 3457 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3458 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3459 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3460 }; 3461 3462 // LHS of comparison should be an one-use 'and'. 3463 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3464 return SDValue(); 3465 3466 X = N0.getOperand(0); 3467 SDValue Mask = N0.getOperand(1); 3468 3469 // 'and' is commutative! 3470 if (!Match(Mask)) { 3471 std::swap(X, Mask); 3472 if (!Match(Mask)) 3473 return SDValue(); 3474 } 3475 3476 EVT VT = X.getValueType(); 3477 3478 // Produce: 3479 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3480 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3481 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3482 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3483 return T2; 3484 } 3485 3486 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3487 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3488 /// handle the commuted versions of these patterns. 3489 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3490 ISD::CondCode Cond, const SDLoc &DL, 3491 DAGCombinerInfo &DCI) const { 3492 unsigned BOpcode = N0.getOpcode(); 3493 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3494 "Unexpected binop"); 3495 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3496 3497 // (X + Y) == X --> Y == 0 3498 // (X - Y) == X --> Y == 0 3499 // (X ^ Y) == X --> Y == 0 3500 SelectionDAG &DAG = DCI.DAG; 3501 EVT OpVT = N0.getValueType(); 3502 SDValue X = N0.getOperand(0); 3503 SDValue Y = N0.getOperand(1); 3504 if (X == N1) 3505 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3506 3507 if (Y != N1) 3508 return SDValue(); 3509 3510 // (X + Y) == Y --> X == 0 3511 // (X ^ Y) == Y --> X == 0 3512 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3513 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3514 3515 // The shift would not be valid if the operands are boolean (i1). 3516 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3517 return SDValue(); 3518 3519 // (X - Y) == Y --> X == Y << 1 3520 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3521 !DCI.isBeforeLegalize()); 3522 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3523 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3524 if (!DCI.isCalledByLegalizer()) 3525 DCI.AddToWorklist(YShl1.getNode()); 3526 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3527 } 3528 3529 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3530 SDValue N0, const APInt &C1, 3531 ISD::CondCode Cond, const SDLoc &dl, 3532 SelectionDAG &DAG) { 3533 // Look through truncs that don't change the value of a ctpop. 3534 // FIXME: Add vector support? Need to be careful with setcc result type below. 3535 SDValue CTPOP = N0; 3536 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3537 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3538 CTPOP = N0.getOperand(0); 3539 3540 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3541 return SDValue(); 3542 3543 EVT CTVT = CTPOP.getValueType(); 3544 SDValue CTOp = CTPOP.getOperand(0); 3545 3546 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3547 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3548 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3549 return SDValue(); 3550 3551 // (ctpop x) u< 2 -> (x & x-1) == 0 3552 // (ctpop x) u> 1 -> (x & x-1) != 0 3553 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3554 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3555 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3556 return SDValue(); 3557 if (C1 == 0 && (Cond == ISD::SETULT)) 3558 return SDValue(); // This is handled elsewhere. 3559 3560 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3561 3562 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3563 SDValue Result = CTOp; 3564 for (unsigned i = 0; i < Passes; i++) { 3565 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3566 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3567 } 3568 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3569 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3570 } 3571 3572 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3573 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3574 // For scalars, keep CTPOP if it is legal or custom. 3575 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3576 return SDValue(); 3577 // This is based on X86's custom lowering for CTPOP which produces more 3578 // instructions than the expansion here. 3579 3580 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3581 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3582 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3583 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3584 assert(CTVT.isInteger()); 3585 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3586 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3587 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3588 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3589 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3590 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3591 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3592 } 3593 3594 return SDValue(); 3595 } 3596 3597 /// Try to simplify a setcc built with the specified operands and cc. If it is 3598 /// unable to simplify it, return a null SDValue. 3599 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3600 ISD::CondCode Cond, bool foldBooleans, 3601 DAGCombinerInfo &DCI, 3602 const SDLoc &dl) const { 3603 SelectionDAG &DAG = DCI.DAG; 3604 const DataLayout &Layout = DAG.getDataLayout(); 3605 EVT OpVT = N0.getValueType(); 3606 3607 // Constant fold or commute setcc. 3608 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3609 return Fold; 3610 3611 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3612 // TODO: Handle non-splat vector constants. All undef causes trouble. 3613 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3614 // infinite loop here when we encounter one. 3615 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3616 if (isConstOrConstSplat(N0) && 3617 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3618 (DCI.isBeforeLegalizeOps() || 3619 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3620 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3621 3622 // If we have a subtract with the same 2 non-constant operands as this setcc 3623 // -- but in reverse order -- then try to commute the operands of this setcc 3624 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3625 // instruction on some targets. 3626 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3627 (DCI.isBeforeLegalizeOps() || 3628 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3629 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3630 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3631 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3632 3633 if (auto *N1C = isConstOrConstSplat(N1)) { 3634 const APInt &C1 = N1C->getAPIntValue(); 3635 3636 // Optimize some CTPOP cases. 3637 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3638 return V; 3639 3640 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3641 // equality comparison, then we're just comparing whether X itself is 3642 // zero. 3643 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 3644 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3645 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3646 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3647 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3648 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3649 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3650 // (srl (ctlz x), 5) == 0 -> X != 0 3651 // (srl (ctlz x), 5) != 1 -> X != 0 3652 Cond = ISD::SETNE; 3653 } else { 3654 // (srl (ctlz x), 5) != 0 -> X == 0 3655 // (srl (ctlz x), 5) == 1 -> X == 0 3656 Cond = ISD::SETEQ; 3657 } 3658 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3659 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3660 Cond); 3661 } 3662 } 3663 } 3664 } 3665 3666 // FIXME: Support vectors. 3667 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3668 const APInt &C1 = N1C->getAPIntValue(); 3669 3670 // (zext x) == C --> x == (trunc C) 3671 // (sext x) == C --> x == (trunc C) 3672 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3673 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3674 unsigned MinBits = N0.getValueSizeInBits(); 3675 SDValue PreExt; 3676 bool Signed = false; 3677 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3678 // ZExt 3679 MinBits = N0->getOperand(0).getValueSizeInBits(); 3680 PreExt = N0->getOperand(0); 3681 } else if (N0->getOpcode() == ISD::AND) { 3682 // DAGCombine turns costly ZExts into ANDs 3683 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3684 if ((C->getAPIntValue()+1).isPowerOf2()) { 3685 MinBits = C->getAPIntValue().countTrailingOnes(); 3686 PreExt = N0->getOperand(0); 3687 } 3688 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3689 // SExt 3690 MinBits = N0->getOperand(0).getValueSizeInBits(); 3691 PreExt = N0->getOperand(0); 3692 Signed = true; 3693 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3694 // ZEXTLOAD / SEXTLOAD 3695 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3696 MinBits = LN0->getMemoryVT().getSizeInBits(); 3697 PreExt = N0; 3698 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3699 Signed = true; 3700 MinBits = LN0->getMemoryVT().getSizeInBits(); 3701 PreExt = N0; 3702 } 3703 } 3704 3705 // Figure out how many bits we need to preserve this constant. 3706 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 3707 3708 // Make sure we're not losing bits from the constant. 3709 if (MinBits > 0 && 3710 MinBits < C1.getBitWidth() && 3711 MinBits >= ReqdBits) { 3712 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3713 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3714 // Will get folded away. 3715 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3716 if (MinBits == 1 && C1 == 1) 3717 // Invert the condition. 3718 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3719 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3720 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3721 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3722 } 3723 3724 // If truncating the setcc operands is not desirable, we can still 3725 // simplify the expression in some cases: 3726 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3727 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3728 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3729 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3730 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3731 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3732 SDValue TopSetCC = N0->getOperand(0); 3733 unsigned N0Opc = N0->getOpcode(); 3734 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3735 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3736 TopSetCC.getOpcode() == ISD::SETCC && 3737 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3738 (isConstFalseVal(N1C) || 3739 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3740 3741 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 3742 (!N1C->isZero() && Cond == ISD::SETNE); 3743 3744 if (!Inverse) 3745 return TopSetCC; 3746 3747 ISD::CondCode InvCond = ISD::getSetCCInverse( 3748 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3749 TopSetCC.getOperand(0).getValueType()); 3750 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3751 TopSetCC.getOperand(1), 3752 InvCond); 3753 } 3754 } 3755 } 3756 3757 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3758 // equality or unsigned, and all 1 bits of the const are in the same 3759 // partial word, see if we can shorten the load. 3760 if (DCI.isBeforeLegalize() && 3761 !ISD::isSignedIntSetCC(Cond) && 3762 N0.getOpcode() == ISD::AND && C1 == 0 && 3763 N0.getNode()->hasOneUse() && 3764 isa<LoadSDNode>(N0.getOperand(0)) && 3765 N0.getOperand(0).getNode()->hasOneUse() && 3766 isa<ConstantSDNode>(N0.getOperand(1))) { 3767 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3768 APInt bestMask; 3769 unsigned bestWidth = 0, bestOffset = 0; 3770 if (Lod->isSimple() && Lod->isUnindexed()) { 3771 unsigned origWidth = N0.getValueSizeInBits(); 3772 unsigned maskWidth = origWidth; 3773 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3774 // 8 bits, but have to be careful... 3775 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3776 origWidth = Lod->getMemoryVT().getSizeInBits(); 3777 const APInt &Mask = N0.getConstantOperandAPInt(1); 3778 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3779 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3780 for (unsigned offset=0; offset<origWidth/width; offset++) { 3781 if (Mask.isSubsetOf(newMask)) { 3782 if (Layout.isLittleEndian()) 3783 bestOffset = (uint64_t)offset * (width/8); 3784 else 3785 bestOffset = (origWidth/width - offset - 1) * (width/8); 3786 bestMask = Mask.lshr(offset * (width/8) * 8); 3787 bestWidth = width; 3788 break; 3789 } 3790 newMask <<= width; 3791 } 3792 } 3793 } 3794 if (bestWidth) { 3795 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3796 if (newVT.isRound() && 3797 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3798 SDValue Ptr = Lod->getBasePtr(); 3799 if (bestOffset != 0) 3800 Ptr = 3801 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3802 SDValue NewLoad = 3803 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3804 Lod->getPointerInfo().getWithOffset(bestOffset), 3805 Lod->getOriginalAlign()); 3806 return DAG.getSetCC(dl, VT, 3807 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3808 DAG.getConstant(bestMask.trunc(bestWidth), 3809 dl, newVT)), 3810 DAG.getConstant(0LL, dl, newVT), Cond); 3811 } 3812 } 3813 } 3814 3815 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3816 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3817 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3818 3819 // If the comparison constant has bits in the upper part, the 3820 // zero-extended value could never match. 3821 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3822 C1.getBitWidth() - InSize))) { 3823 switch (Cond) { 3824 case ISD::SETUGT: 3825 case ISD::SETUGE: 3826 case ISD::SETEQ: 3827 return DAG.getConstant(0, dl, VT); 3828 case ISD::SETULT: 3829 case ISD::SETULE: 3830 case ISD::SETNE: 3831 return DAG.getConstant(1, dl, VT); 3832 case ISD::SETGT: 3833 case ISD::SETGE: 3834 // True if the sign bit of C1 is set. 3835 return DAG.getConstant(C1.isNegative(), dl, VT); 3836 case ISD::SETLT: 3837 case ISD::SETLE: 3838 // True if the sign bit of C1 isn't set. 3839 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3840 default: 3841 break; 3842 } 3843 } 3844 3845 // Otherwise, we can perform the comparison with the low bits. 3846 switch (Cond) { 3847 case ISD::SETEQ: 3848 case ISD::SETNE: 3849 case ISD::SETUGT: 3850 case ISD::SETUGE: 3851 case ISD::SETULT: 3852 case ISD::SETULE: { 3853 EVT newVT = N0.getOperand(0).getValueType(); 3854 if (DCI.isBeforeLegalizeOps() || 3855 (isOperationLegal(ISD::SETCC, newVT) && 3856 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3857 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3858 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3859 3860 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3861 NewConst, Cond); 3862 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3863 } 3864 break; 3865 } 3866 default: 3867 break; // todo, be more careful with signed comparisons 3868 } 3869 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3870 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3871 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3872 OpVT)) { 3873 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3874 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3875 EVT ExtDstTy = N0.getValueType(); 3876 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3877 3878 // If the constant doesn't fit into the number of bits for the source of 3879 // the sign extension, it is impossible for both sides to be equal. 3880 if (C1.getMinSignedBits() > ExtSrcTyBits) 3881 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3882 3883 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3884 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3885 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3886 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3887 DAG.getConstant(Imm, dl, ExtDstTy)); 3888 if (!DCI.isCalledByLegalizer()) 3889 DCI.AddToWorklist(ZextOp.getNode()); 3890 // Otherwise, make this a use of a zext. 3891 return DAG.getSetCC(dl, VT, ZextOp, 3892 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3893 } else if ((N1C->isZero() || N1C->isOne()) && 3894 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3895 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3896 if (N0.getOpcode() == ISD::SETCC && 3897 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3898 (N0.getValueType() == MVT::i1 || 3899 getBooleanContents(N0.getOperand(0).getValueType()) == 3900 ZeroOrOneBooleanContent)) { 3901 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3902 if (TrueWhenTrue) 3903 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3904 // Invert the condition. 3905 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3906 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3907 if (DCI.isBeforeLegalizeOps() || 3908 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3909 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3910 } 3911 3912 if ((N0.getOpcode() == ISD::XOR || 3913 (N0.getOpcode() == ISD::AND && 3914 N0.getOperand(0).getOpcode() == ISD::XOR && 3915 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3916 isOneConstant(N0.getOperand(1))) { 3917 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3918 // can only do this if the top bits are known zero. 3919 unsigned BitWidth = N0.getValueSizeInBits(); 3920 if (DAG.MaskedValueIsZero(N0, 3921 APInt::getHighBitsSet(BitWidth, 3922 BitWidth-1))) { 3923 // Okay, get the un-inverted input value. 3924 SDValue Val; 3925 if (N0.getOpcode() == ISD::XOR) { 3926 Val = N0.getOperand(0); 3927 } else { 3928 assert(N0.getOpcode() == ISD::AND && 3929 N0.getOperand(0).getOpcode() == ISD::XOR); 3930 // ((X^1)&1)^1 -> X & 1 3931 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3932 N0.getOperand(0).getOperand(0), 3933 N0.getOperand(1)); 3934 } 3935 3936 return DAG.getSetCC(dl, VT, Val, N1, 3937 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3938 } 3939 } else if (N1C->isOne()) { 3940 SDValue Op0 = N0; 3941 if (Op0.getOpcode() == ISD::TRUNCATE) 3942 Op0 = Op0.getOperand(0); 3943 3944 if ((Op0.getOpcode() == ISD::XOR) && 3945 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3946 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3947 SDValue XorLHS = Op0.getOperand(0); 3948 SDValue XorRHS = Op0.getOperand(1); 3949 // Ensure that the input setccs return an i1 type or 0/1 value. 3950 if (Op0.getValueType() == MVT::i1 || 3951 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3952 ZeroOrOneBooleanContent && 3953 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3954 ZeroOrOneBooleanContent)) { 3955 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3956 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3957 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3958 } 3959 } 3960 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 3961 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3962 if (Op0.getValueType().bitsGT(VT)) 3963 Op0 = DAG.getNode(ISD::AND, dl, VT, 3964 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3965 DAG.getConstant(1, dl, VT)); 3966 else if (Op0.getValueType().bitsLT(VT)) 3967 Op0 = DAG.getNode(ISD::AND, dl, VT, 3968 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3969 DAG.getConstant(1, dl, VT)); 3970 3971 return DAG.getSetCC(dl, VT, Op0, 3972 DAG.getConstant(0, dl, Op0.getValueType()), 3973 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3974 } 3975 if (Op0.getOpcode() == ISD::AssertZext && 3976 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3977 return DAG.getSetCC(dl, VT, Op0, 3978 DAG.getConstant(0, dl, Op0.getValueType()), 3979 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3980 } 3981 } 3982 3983 // Given: 3984 // icmp eq/ne (urem %x, %y), 0 3985 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3986 // icmp eq/ne %x, 0 3987 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 3988 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3989 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3990 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3991 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3992 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3993 } 3994 3995 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 3996 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 3997 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3998 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 3999 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4000 N1C && N1C->isAllOnes()) { 4001 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4002 DAG.getConstant(0, dl, OpVT), 4003 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4004 } 4005 4006 if (SDValue V = 4007 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4008 return V; 4009 } 4010 4011 // These simplifications apply to splat vectors as well. 4012 // TODO: Handle more splat vector cases. 4013 if (auto *N1C = isConstOrConstSplat(N1)) { 4014 const APInt &C1 = N1C->getAPIntValue(); 4015 4016 APInt MinVal, MaxVal; 4017 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4018 if (ISD::isSignedIntSetCC(Cond)) { 4019 MinVal = APInt::getSignedMinValue(OperandBitSize); 4020 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4021 } else { 4022 MinVal = APInt::getMinValue(OperandBitSize); 4023 MaxVal = APInt::getMaxValue(OperandBitSize); 4024 } 4025 4026 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4027 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4028 // X >= MIN --> true 4029 if (C1 == MinVal) 4030 return DAG.getBoolConstant(true, dl, VT, OpVT); 4031 4032 if (!VT.isVector()) { // TODO: Support this for vectors. 4033 // X >= C0 --> X > (C0 - 1) 4034 APInt C = C1 - 1; 4035 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4036 if ((DCI.isBeforeLegalizeOps() || 4037 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4038 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4039 isLegalICmpImmediate(C.getSExtValue())))) { 4040 return DAG.getSetCC(dl, VT, N0, 4041 DAG.getConstant(C, dl, N1.getValueType()), 4042 NewCC); 4043 } 4044 } 4045 } 4046 4047 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4048 // X <= MAX --> true 4049 if (C1 == MaxVal) 4050 return DAG.getBoolConstant(true, dl, VT, OpVT); 4051 4052 // X <= C0 --> X < (C0 + 1) 4053 if (!VT.isVector()) { // TODO: Support this for vectors. 4054 APInt C = C1 + 1; 4055 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4056 if ((DCI.isBeforeLegalizeOps() || 4057 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4058 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4059 isLegalICmpImmediate(C.getSExtValue())))) { 4060 return DAG.getSetCC(dl, VT, N0, 4061 DAG.getConstant(C, dl, N1.getValueType()), 4062 NewCC); 4063 } 4064 } 4065 } 4066 4067 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4068 if (C1 == MinVal) 4069 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4070 4071 // TODO: Support this for vectors after legalize ops. 4072 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4073 // Canonicalize setlt X, Max --> setne X, Max 4074 if (C1 == MaxVal) 4075 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4076 4077 // If we have setult X, 1, turn it into seteq X, 0 4078 if (C1 == MinVal+1) 4079 return DAG.getSetCC(dl, VT, N0, 4080 DAG.getConstant(MinVal, dl, N0.getValueType()), 4081 ISD::SETEQ); 4082 } 4083 } 4084 4085 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4086 if (C1 == MaxVal) 4087 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4088 4089 // TODO: Support this for vectors after legalize ops. 4090 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4091 // Canonicalize setgt X, Min --> setne X, Min 4092 if (C1 == MinVal) 4093 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4094 4095 // If we have setugt X, Max-1, turn it into seteq X, Max 4096 if (C1 == MaxVal-1) 4097 return DAG.getSetCC(dl, VT, N0, 4098 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4099 ISD::SETEQ); 4100 } 4101 } 4102 4103 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4104 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4105 if (C1.isZero()) 4106 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4107 VT, N0, N1, Cond, DCI, dl)) 4108 return CC; 4109 4110 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4111 // For example, when high 32-bits of i64 X are known clear: 4112 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4113 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4114 bool CmpZero = N1C->getAPIntValue().isZero(); 4115 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4116 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4117 // Match or(lo,shl(hi,bw/2)) pattern. 4118 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4119 unsigned EltBits = V.getScalarValueSizeInBits(); 4120 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4121 return false; 4122 SDValue LHS = V.getOperand(0); 4123 SDValue RHS = V.getOperand(1); 4124 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4125 // Unshifted element must have zero upperbits. 4126 if (RHS.getOpcode() == ISD::SHL && 4127 isa<ConstantSDNode>(RHS.getOperand(1)) && 4128 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4129 DAG.MaskedValueIsZero(LHS, HiBits)) { 4130 Lo = LHS; 4131 Hi = RHS.getOperand(0); 4132 return true; 4133 } 4134 if (LHS.getOpcode() == ISD::SHL && 4135 isa<ConstantSDNode>(LHS.getOperand(1)) && 4136 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4137 DAG.MaskedValueIsZero(RHS, HiBits)) { 4138 Lo = RHS; 4139 Hi = LHS.getOperand(0); 4140 return true; 4141 } 4142 return false; 4143 }; 4144 4145 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4146 unsigned EltBits = N0.getScalarValueSizeInBits(); 4147 unsigned HalfBits = EltBits / 2; 4148 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4149 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4150 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4151 SDValue NewN0 = 4152 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4153 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4154 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4155 }; 4156 4157 SDValue Lo, Hi; 4158 if (IsConcat(N0, Lo, Hi)) 4159 return MergeConcat(Lo, Hi); 4160 4161 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4162 SDValue Lo0, Lo1, Hi0, Hi1; 4163 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4164 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4165 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4166 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4167 } 4168 } 4169 } 4170 } 4171 4172 // If we have "setcc X, C0", check to see if we can shrink the immediate 4173 // by changing cc. 4174 // TODO: Support this for vectors after legalize ops. 4175 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4176 // SETUGT X, SINTMAX -> SETLT X, 0 4177 // SETUGE X, SINTMIN -> SETLT X, 0 4178 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4179 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4180 return DAG.getSetCC(dl, VT, N0, 4181 DAG.getConstant(0, dl, N1.getValueType()), 4182 ISD::SETLT); 4183 4184 // SETULT X, SINTMIN -> SETGT X, -1 4185 // SETULE X, SINTMAX -> SETGT X, -1 4186 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4187 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4188 return DAG.getSetCC(dl, VT, N0, 4189 DAG.getAllOnesConstant(dl, N1.getValueType()), 4190 ISD::SETGT); 4191 } 4192 } 4193 4194 // Back to non-vector simplifications. 4195 // TODO: Can we do these for vector splats? 4196 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4197 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4198 const APInt &C1 = N1C->getAPIntValue(); 4199 EVT ShValTy = N0.getValueType(); 4200 4201 // Fold bit comparisons when we can. This will result in an 4202 // incorrect value when boolean false is negative one, unless 4203 // the bitsize is 1 in which case the false value is the same 4204 // in practice regardless of the representation. 4205 if ((VT.getSizeInBits() == 1 || 4206 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4207 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4208 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4209 N0.getOpcode() == ISD::AND) { 4210 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4211 EVT ShiftTy = 4212 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4213 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4214 // Perform the xform if the AND RHS is a single bit. 4215 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4216 if (AndRHS->getAPIntValue().isPowerOf2() && 4217 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4218 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4219 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4220 DAG.getConstant(ShCt, dl, ShiftTy))); 4221 } 4222 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4223 // (X & 8) == 8 --> (X & 8) >> 3 4224 // Perform the xform if C1 is a single bit. 4225 unsigned ShCt = C1.logBase2(); 4226 if (C1.isPowerOf2() && 4227 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4228 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4229 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4230 DAG.getConstant(ShCt, dl, ShiftTy))); 4231 } 4232 } 4233 } 4234 } 4235 4236 if (C1.getMinSignedBits() <= 64 && 4237 !isLegalICmpImmediate(C1.getSExtValue())) { 4238 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4239 // (X & -256) == 256 -> (X >> 8) == 1 4240 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4241 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4242 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4243 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4244 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4245 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4246 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4247 SDValue Shift = 4248 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4249 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4250 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4251 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4252 } 4253 } 4254 } 4255 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4256 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4257 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4258 // X < 0x100000000 -> (X >> 32) < 1 4259 // X >= 0x100000000 -> (X >> 32) >= 1 4260 // X <= 0x0ffffffff -> (X >> 32) < 1 4261 // X > 0x0ffffffff -> (X >> 32) >= 1 4262 unsigned ShiftBits; 4263 APInt NewC = C1; 4264 ISD::CondCode NewCond = Cond; 4265 if (AdjOne) { 4266 ShiftBits = C1.countTrailingOnes(); 4267 NewC = NewC + 1; 4268 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4269 } else { 4270 ShiftBits = C1.countTrailingZeros(); 4271 } 4272 NewC.lshrInPlace(ShiftBits); 4273 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4274 isLegalICmpImmediate(NewC.getSExtValue()) && 4275 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4276 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4277 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4278 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4279 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4280 } 4281 } 4282 } 4283 } 4284 4285 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4286 auto *CFP = cast<ConstantFPSDNode>(N1); 4287 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4288 4289 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4290 // constant if knowing that the operand is non-nan is enough. We prefer to 4291 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4292 // materialize 0.0. 4293 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4294 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4295 4296 // setcc (fneg x), C -> setcc swap(pred) x, -C 4297 if (N0.getOpcode() == ISD::FNEG) { 4298 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4299 if (DCI.isBeforeLegalizeOps() || 4300 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4301 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4302 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4303 } 4304 } 4305 4306 // If the condition is not legal, see if we can find an equivalent one 4307 // which is legal. 4308 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4309 // If the comparison was an awkward floating-point == or != and one of 4310 // the comparison operands is infinity or negative infinity, convert the 4311 // condition to a less-awkward <= or >=. 4312 if (CFP->getValueAPF().isInfinity()) { 4313 bool IsNegInf = CFP->getValueAPF().isNegative(); 4314 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4315 switch (Cond) { 4316 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4317 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4318 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4319 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4320 default: break; 4321 } 4322 if (NewCond != ISD::SETCC_INVALID && 4323 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4324 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4325 } 4326 } 4327 } 4328 4329 if (N0 == N1) { 4330 // The sext(setcc()) => setcc() optimization relies on the appropriate 4331 // constant being emitted. 4332 assert(!N0.getValueType().isInteger() && 4333 "Integer types should be handled by FoldSetCC"); 4334 4335 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4336 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4337 if (UOF == 2) // FP operators that are undefined on NaNs. 4338 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4339 if (UOF == unsigned(EqTrue)) 4340 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4341 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4342 // if it is not already. 4343 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4344 if (NewCond != Cond && 4345 (DCI.isBeforeLegalizeOps() || 4346 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4347 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4348 } 4349 4350 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4351 N0.getValueType().isInteger()) { 4352 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4353 N0.getOpcode() == ISD::XOR) { 4354 // Simplify (X+Y) == (X+Z) --> Y == Z 4355 if (N0.getOpcode() == N1.getOpcode()) { 4356 if (N0.getOperand(0) == N1.getOperand(0)) 4357 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4358 if (N0.getOperand(1) == N1.getOperand(1)) 4359 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4360 if (isCommutativeBinOp(N0.getOpcode())) { 4361 // If X op Y == Y op X, try other combinations. 4362 if (N0.getOperand(0) == N1.getOperand(1)) 4363 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4364 Cond); 4365 if (N0.getOperand(1) == N1.getOperand(0)) 4366 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4367 Cond); 4368 } 4369 } 4370 4371 // If RHS is a legal immediate value for a compare instruction, we need 4372 // to be careful about increasing register pressure needlessly. 4373 bool LegalRHSImm = false; 4374 4375 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4376 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4377 // Turn (X+C1) == C2 --> X == C2-C1 4378 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4379 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4380 DAG.getConstant(RHSC->getAPIntValue()- 4381 LHSR->getAPIntValue(), 4382 dl, N0.getValueType()), Cond); 4383 } 4384 4385 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4386 if (N0.getOpcode() == ISD::XOR) 4387 // If we know that all of the inverted bits are zero, don't bother 4388 // performing the inversion. 4389 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4390 return 4391 DAG.getSetCC(dl, VT, N0.getOperand(0), 4392 DAG.getConstant(LHSR->getAPIntValue() ^ 4393 RHSC->getAPIntValue(), 4394 dl, N0.getValueType()), 4395 Cond); 4396 } 4397 4398 // Turn (C1-X) == C2 --> X == C1-C2 4399 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4400 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4401 return 4402 DAG.getSetCC(dl, VT, N0.getOperand(1), 4403 DAG.getConstant(SUBC->getAPIntValue() - 4404 RHSC->getAPIntValue(), 4405 dl, N0.getValueType()), 4406 Cond); 4407 } 4408 } 4409 4410 // Could RHSC fold directly into a compare? 4411 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4412 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4413 } 4414 4415 // (X+Y) == X --> Y == 0 and similar folds. 4416 // Don't do this if X is an immediate that can fold into a cmp 4417 // instruction and X+Y has other uses. It could be an induction variable 4418 // chain, and the transform would increase register pressure. 4419 if (!LegalRHSImm || N0.hasOneUse()) 4420 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4421 return V; 4422 } 4423 4424 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4425 N1.getOpcode() == ISD::XOR) 4426 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4427 return V; 4428 4429 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4430 return V; 4431 } 4432 4433 // Fold remainder of division by a constant. 4434 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4435 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4436 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4437 4438 // When division is cheap or optimizing for minimum size, 4439 // fall through to DIVREM creation by skipping this fold. 4440 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4441 if (N0.getOpcode() == ISD::UREM) { 4442 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4443 return Folded; 4444 } else if (N0.getOpcode() == ISD::SREM) { 4445 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4446 return Folded; 4447 } 4448 } 4449 } 4450 4451 // Fold away ALL boolean setcc's. 4452 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4453 SDValue Temp; 4454 switch (Cond) { 4455 default: llvm_unreachable("Unknown integer setcc!"); 4456 case ISD::SETEQ: // X == Y -> ~(X^Y) 4457 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4458 N0 = DAG.getNOT(dl, Temp, OpVT); 4459 if (!DCI.isCalledByLegalizer()) 4460 DCI.AddToWorklist(Temp.getNode()); 4461 break; 4462 case ISD::SETNE: // X != Y --> (X^Y) 4463 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4464 break; 4465 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4466 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4467 Temp = DAG.getNOT(dl, N0, OpVT); 4468 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4469 if (!DCI.isCalledByLegalizer()) 4470 DCI.AddToWorklist(Temp.getNode()); 4471 break; 4472 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4473 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4474 Temp = DAG.getNOT(dl, N1, OpVT); 4475 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4476 if (!DCI.isCalledByLegalizer()) 4477 DCI.AddToWorklist(Temp.getNode()); 4478 break; 4479 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4480 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4481 Temp = DAG.getNOT(dl, N0, OpVT); 4482 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4483 if (!DCI.isCalledByLegalizer()) 4484 DCI.AddToWorklist(Temp.getNode()); 4485 break; 4486 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4487 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4488 Temp = DAG.getNOT(dl, N1, OpVT); 4489 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4490 break; 4491 } 4492 if (VT.getScalarType() != MVT::i1) { 4493 if (!DCI.isCalledByLegalizer()) 4494 DCI.AddToWorklist(N0.getNode()); 4495 // FIXME: If running after legalize, we probably can't do this. 4496 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4497 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4498 } 4499 return N0; 4500 } 4501 4502 // Could not fold it. 4503 return SDValue(); 4504 } 4505 4506 /// Returns true (and the GlobalValue and the offset) if the node is a 4507 /// GlobalAddress + offset. 4508 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4509 int64_t &Offset) const { 4510 4511 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4512 4513 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4514 GA = GASD->getGlobal(); 4515 Offset += GASD->getOffset(); 4516 return true; 4517 } 4518 4519 if (N->getOpcode() == ISD::ADD) { 4520 SDValue N1 = N->getOperand(0); 4521 SDValue N2 = N->getOperand(1); 4522 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4523 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4524 Offset += V->getSExtValue(); 4525 return true; 4526 } 4527 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4528 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4529 Offset += V->getSExtValue(); 4530 return true; 4531 } 4532 } 4533 } 4534 4535 return false; 4536 } 4537 4538 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4539 DAGCombinerInfo &DCI) const { 4540 // Default implementation: no optimization. 4541 return SDValue(); 4542 } 4543 4544 //===----------------------------------------------------------------------===// 4545 // Inline Assembler Implementation Methods 4546 //===----------------------------------------------------------------------===// 4547 4548 TargetLowering::ConstraintType 4549 TargetLowering::getConstraintType(StringRef Constraint) const { 4550 unsigned S = Constraint.size(); 4551 4552 if (S == 1) { 4553 switch (Constraint[0]) { 4554 default: break; 4555 case 'r': 4556 return C_RegisterClass; 4557 case 'm': // memory 4558 case 'o': // offsetable 4559 case 'V': // not offsetable 4560 return C_Memory; 4561 case 'n': // Simple Integer 4562 case 'E': // Floating Point Constant 4563 case 'F': // Floating Point Constant 4564 return C_Immediate; 4565 case 'i': // Simple Integer or Relocatable Constant 4566 case 's': // Relocatable Constant 4567 case 'p': // Address. 4568 case 'X': // Allow ANY value. 4569 case 'I': // Target registers. 4570 case 'J': 4571 case 'K': 4572 case 'L': 4573 case 'M': 4574 case 'N': 4575 case 'O': 4576 case 'P': 4577 case '<': 4578 case '>': 4579 return C_Other; 4580 } 4581 } 4582 4583 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4584 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4585 return C_Memory; 4586 return C_Register; 4587 } 4588 return C_Unknown; 4589 } 4590 4591 /// Try to replace an X constraint, which matches anything, with another that 4592 /// has more specific requirements based on the type of the corresponding 4593 /// operand. 4594 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4595 if (ConstraintVT.isInteger()) 4596 return "r"; 4597 if (ConstraintVT.isFloatingPoint()) 4598 return "f"; // works for many targets 4599 return nullptr; 4600 } 4601 4602 SDValue TargetLowering::LowerAsmOutputForConstraint( 4603 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4604 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4605 return SDValue(); 4606 } 4607 4608 /// Lower the specified operand into the Ops vector. 4609 /// If it is invalid, don't add anything to Ops. 4610 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4611 std::string &Constraint, 4612 std::vector<SDValue> &Ops, 4613 SelectionDAG &DAG) const { 4614 4615 if (Constraint.length() > 1) return; 4616 4617 char ConstraintLetter = Constraint[0]; 4618 switch (ConstraintLetter) { 4619 default: break; 4620 case 'X': // Allows any operand 4621 case 'i': // Simple Integer or Relocatable Constant 4622 case 'n': // Simple Integer 4623 case 's': { // Relocatable Constant 4624 4625 ConstantSDNode *C; 4626 uint64_t Offset = 0; 4627 4628 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4629 // etc., since getelementpointer is variadic. We can't use 4630 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4631 // while in this case the GA may be furthest from the root node which is 4632 // likely an ISD::ADD. 4633 while (true) { 4634 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4635 // gcc prints these as sign extended. Sign extend value to 64 bits 4636 // now; without this it would get ZExt'd later in 4637 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4638 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4639 BooleanContent BCont = getBooleanContents(MVT::i64); 4640 ISD::NodeType ExtOpc = 4641 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4642 int64_t ExtVal = 4643 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4644 Ops.push_back( 4645 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4646 return; 4647 } 4648 if (ConstraintLetter != 'n') { 4649 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 4650 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4651 GA->getValueType(0), 4652 Offset + GA->getOffset())); 4653 return; 4654 } 4655 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 4656 Ops.push_back(DAG.getTargetBlockAddress( 4657 BA->getBlockAddress(), BA->getValueType(0), 4658 Offset + BA->getOffset(), BA->getTargetFlags())); 4659 return; 4660 } 4661 if (isa<BasicBlockSDNode>(Op)) { 4662 Ops.push_back(Op); 4663 return; 4664 } 4665 } 4666 const unsigned OpCode = Op.getOpcode(); 4667 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4668 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4669 Op = Op.getOperand(1); 4670 // Subtraction is not commutative. 4671 else if (OpCode == ISD::ADD && 4672 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4673 Op = Op.getOperand(0); 4674 else 4675 return; 4676 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4677 continue; 4678 } 4679 return; 4680 } 4681 break; 4682 } 4683 } 4684 } 4685 4686 std::pair<unsigned, const TargetRegisterClass *> 4687 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4688 StringRef Constraint, 4689 MVT VT) const { 4690 if (Constraint.empty() || Constraint[0] != '{') 4691 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4692 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4693 4694 // Remove the braces from around the name. 4695 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4696 4697 std::pair<unsigned, const TargetRegisterClass *> R = 4698 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4699 4700 // Figure out which register class contains this reg. 4701 for (const TargetRegisterClass *RC : RI->regclasses()) { 4702 // If none of the value types for this register class are valid, we 4703 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4704 if (!isLegalRC(*RI, *RC)) 4705 continue; 4706 4707 for (const MCPhysReg &PR : *RC) { 4708 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4709 std::pair<unsigned, const TargetRegisterClass *> S = 4710 std::make_pair(PR, RC); 4711 4712 // If this register class has the requested value type, return it, 4713 // otherwise keep searching and return the first class found 4714 // if no other is found which explicitly has the requested type. 4715 if (RI->isTypeLegalForClass(*RC, VT)) 4716 return S; 4717 if (!R.second) 4718 R = S; 4719 } 4720 } 4721 } 4722 4723 return R; 4724 } 4725 4726 //===----------------------------------------------------------------------===// 4727 // Constraint Selection. 4728 4729 /// Return true of this is an input operand that is a matching constraint like 4730 /// "4". 4731 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4732 assert(!ConstraintCode.empty() && "No known constraint!"); 4733 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4734 } 4735 4736 /// If this is an input matching constraint, this method returns the output 4737 /// operand it matches. 4738 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4739 assert(!ConstraintCode.empty() && "No known constraint!"); 4740 return atoi(ConstraintCode.c_str()); 4741 } 4742 4743 /// Split up the constraint string from the inline assembly value into the 4744 /// specific constraints and their prefixes, and also tie in the associated 4745 /// operand values. 4746 /// If this returns an empty vector, and if the constraint string itself 4747 /// isn't empty, there was an error parsing. 4748 TargetLowering::AsmOperandInfoVector 4749 TargetLowering::ParseConstraints(const DataLayout &DL, 4750 const TargetRegisterInfo *TRI, 4751 const CallBase &Call) const { 4752 /// Information about all of the constraints. 4753 AsmOperandInfoVector ConstraintOperands; 4754 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4755 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4756 4757 // Do a prepass over the constraints, canonicalizing them, and building up the 4758 // ConstraintOperands list. 4759 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4760 unsigned ResNo = 0; // ResNo - The result number of the next output. 4761 4762 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4763 ConstraintOperands.emplace_back(std::move(CI)); 4764 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4765 4766 // Update multiple alternative constraint count. 4767 if (OpInfo.multipleAlternatives.size() > maCount) 4768 maCount = OpInfo.multipleAlternatives.size(); 4769 4770 OpInfo.ConstraintVT = MVT::Other; 4771 4772 // Compute the value type for each operand. 4773 switch (OpInfo.Type) { 4774 case InlineAsm::isOutput: 4775 // Indirect outputs just consume an argument. 4776 if (OpInfo.isIndirect) { 4777 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 4778 break; 4779 } 4780 4781 // The return value of the call is this value. As such, there is no 4782 // corresponding argument. 4783 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4784 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4785 OpInfo.ConstraintVT = 4786 getSimpleValueType(DL, STy->getElementType(ResNo)); 4787 } else { 4788 assert(ResNo == 0 && "Asm only has one result!"); 4789 OpInfo.ConstraintVT = 4790 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 4791 } 4792 ++ResNo; 4793 break; 4794 case InlineAsm::isInput: 4795 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 4796 break; 4797 case InlineAsm::isClobber: 4798 // Nothing to do. 4799 break; 4800 } 4801 4802 if (OpInfo.CallOperandVal) { 4803 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4804 if (OpInfo.isIndirect) { 4805 OpTy = Call.getAttributes().getParamElementType(ArgNo); 4806 assert(OpTy && "Indirect opernad must have elementtype attribute"); 4807 } 4808 4809 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4810 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4811 if (STy->getNumElements() == 1) 4812 OpTy = STy->getElementType(0); 4813 4814 // If OpTy is not a single value, it may be a struct/union that we 4815 // can tile with integers. 4816 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4817 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4818 switch (BitSize) { 4819 default: break; 4820 case 1: 4821 case 8: 4822 case 16: 4823 case 32: 4824 case 64: 4825 case 128: 4826 OpInfo.ConstraintVT = 4827 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4828 break; 4829 } 4830 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4831 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4832 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4833 } else { 4834 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4835 } 4836 4837 ArgNo++; 4838 } 4839 } 4840 4841 // If we have multiple alternative constraints, select the best alternative. 4842 if (!ConstraintOperands.empty()) { 4843 if (maCount) { 4844 unsigned bestMAIndex = 0; 4845 int bestWeight = -1; 4846 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4847 int weight = -1; 4848 unsigned maIndex; 4849 // Compute the sums of the weights for each alternative, keeping track 4850 // of the best (highest weight) one so far. 4851 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4852 int weightSum = 0; 4853 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4854 cIndex != eIndex; ++cIndex) { 4855 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4856 if (OpInfo.Type == InlineAsm::isClobber) 4857 continue; 4858 4859 // If this is an output operand with a matching input operand, 4860 // look up the matching input. If their types mismatch, e.g. one 4861 // is an integer, the other is floating point, or their sizes are 4862 // different, flag it as an maCantMatch. 4863 if (OpInfo.hasMatchingInput()) { 4864 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4865 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4866 if ((OpInfo.ConstraintVT.isInteger() != 4867 Input.ConstraintVT.isInteger()) || 4868 (OpInfo.ConstraintVT.getSizeInBits() != 4869 Input.ConstraintVT.getSizeInBits())) { 4870 weightSum = -1; // Can't match. 4871 break; 4872 } 4873 } 4874 } 4875 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4876 if (weight == -1) { 4877 weightSum = -1; 4878 break; 4879 } 4880 weightSum += weight; 4881 } 4882 // Update best. 4883 if (weightSum > bestWeight) { 4884 bestWeight = weightSum; 4885 bestMAIndex = maIndex; 4886 } 4887 } 4888 4889 // Now select chosen alternative in each constraint. 4890 for (AsmOperandInfo &cInfo : ConstraintOperands) 4891 if (cInfo.Type != InlineAsm::isClobber) 4892 cInfo.selectAlternative(bestMAIndex); 4893 } 4894 } 4895 4896 // Check and hook up tied operands, choose constraint code to use. 4897 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4898 cIndex != eIndex; ++cIndex) { 4899 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4900 4901 // If this is an output operand with a matching input operand, look up the 4902 // matching input. If their types mismatch, e.g. one is an integer, the 4903 // other is floating point, or their sizes are different, flag it as an 4904 // error. 4905 if (OpInfo.hasMatchingInput()) { 4906 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4907 4908 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4909 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4910 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4911 OpInfo.ConstraintVT); 4912 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4913 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4914 Input.ConstraintVT); 4915 if ((OpInfo.ConstraintVT.isInteger() != 4916 Input.ConstraintVT.isInteger()) || 4917 (MatchRC.second != InputRC.second)) { 4918 report_fatal_error("Unsupported asm: input constraint" 4919 " with a matching output constraint of" 4920 " incompatible type!"); 4921 } 4922 } 4923 } 4924 } 4925 4926 return ConstraintOperands; 4927 } 4928 4929 /// Return an integer indicating how general CT is. 4930 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4931 switch (CT) { 4932 case TargetLowering::C_Immediate: 4933 case TargetLowering::C_Other: 4934 case TargetLowering::C_Unknown: 4935 return 0; 4936 case TargetLowering::C_Register: 4937 return 1; 4938 case TargetLowering::C_RegisterClass: 4939 return 2; 4940 case TargetLowering::C_Memory: 4941 return 3; 4942 } 4943 llvm_unreachable("Invalid constraint type"); 4944 } 4945 4946 /// Examine constraint type and operand type and determine a weight value. 4947 /// This object must already have been set up with the operand type 4948 /// and the current alternative constraint selected. 4949 TargetLowering::ConstraintWeight 4950 TargetLowering::getMultipleConstraintMatchWeight( 4951 AsmOperandInfo &info, int maIndex) const { 4952 InlineAsm::ConstraintCodeVector *rCodes; 4953 if (maIndex >= (int)info.multipleAlternatives.size()) 4954 rCodes = &info.Codes; 4955 else 4956 rCodes = &info.multipleAlternatives[maIndex].Codes; 4957 ConstraintWeight BestWeight = CW_Invalid; 4958 4959 // Loop over the options, keeping track of the most general one. 4960 for (const std::string &rCode : *rCodes) { 4961 ConstraintWeight weight = 4962 getSingleConstraintMatchWeight(info, rCode.c_str()); 4963 if (weight > BestWeight) 4964 BestWeight = weight; 4965 } 4966 4967 return BestWeight; 4968 } 4969 4970 /// Examine constraint type and operand type and determine a weight value. 4971 /// This object must already have been set up with the operand type 4972 /// and the current alternative constraint selected. 4973 TargetLowering::ConstraintWeight 4974 TargetLowering::getSingleConstraintMatchWeight( 4975 AsmOperandInfo &info, const char *constraint) const { 4976 ConstraintWeight weight = CW_Invalid; 4977 Value *CallOperandVal = info.CallOperandVal; 4978 // If we don't have a value, we can't do a match, 4979 // but allow it at the lowest weight. 4980 if (!CallOperandVal) 4981 return CW_Default; 4982 // Look at the constraint type. 4983 switch (*constraint) { 4984 case 'i': // immediate integer. 4985 case 'n': // immediate integer with a known value. 4986 if (isa<ConstantInt>(CallOperandVal)) 4987 weight = CW_Constant; 4988 break; 4989 case 's': // non-explicit intregal immediate. 4990 if (isa<GlobalValue>(CallOperandVal)) 4991 weight = CW_Constant; 4992 break; 4993 case 'E': // immediate float if host format. 4994 case 'F': // immediate float. 4995 if (isa<ConstantFP>(CallOperandVal)) 4996 weight = CW_Constant; 4997 break; 4998 case '<': // memory operand with autodecrement. 4999 case '>': // memory operand with autoincrement. 5000 case 'm': // memory operand. 5001 case 'o': // offsettable memory operand 5002 case 'V': // non-offsettable memory operand 5003 weight = CW_Memory; 5004 break; 5005 case 'r': // general register. 5006 case 'g': // general register, memory operand or immediate integer. 5007 // note: Clang converts "g" to "imr". 5008 if (CallOperandVal->getType()->isIntegerTy()) 5009 weight = CW_Register; 5010 break; 5011 case 'X': // any operand. 5012 default: 5013 weight = CW_Default; 5014 break; 5015 } 5016 return weight; 5017 } 5018 5019 /// If there are multiple different constraints that we could pick for this 5020 /// operand (e.g. "imr") try to pick the 'best' one. 5021 /// This is somewhat tricky: constraints fall into four classes: 5022 /// Other -> immediates and magic values 5023 /// Register -> one specific register 5024 /// RegisterClass -> a group of regs 5025 /// Memory -> memory 5026 /// Ideally, we would pick the most specific constraint possible: if we have 5027 /// something that fits into a register, we would pick it. The problem here 5028 /// is that if we have something that could either be in a register or in 5029 /// memory that use of the register could cause selection of *other* 5030 /// operands to fail: they might only succeed if we pick memory. Because of 5031 /// this the heuristic we use is: 5032 /// 5033 /// 1) If there is an 'other' constraint, and if the operand is valid for 5034 /// that constraint, use it. This makes us take advantage of 'i' 5035 /// constraints when available. 5036 /// 2) Otherwise, pick the most general constraint present. This prefers 5037 /// 'm' over 'r', for example. 5038 /// 5039 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5040 const TargetLowering &TLI, 5041 SDValue Op, SelectionDAG *DAG) { 5042 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5043 unsigned BestIdx = 0; 5044 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5045 int BestGenerality = -1; 5046 5047 // Loop over the options, keeping track of the most general one. 5048 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5049 TargetLowering::ConstraintType CType = 5050 TLI.getConstraintType(OpInfo.Codes[i]); 5051 5052 // Indirect 'other' or 'immediate' constraints are not allowed. 5053 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5054 CType == TargetLowering::C_Register || 5055 CType == TargetLowering::C_RegisterClass)) 5056 continue; 5057 5058 // If this is an 'other' or 'immediate' constraint, see if the operand is 5059 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5060 // the operand is an integer in the range [0..31] we want to use I (saving a 5061 // load of a register), otherwise we must use 'r'. 5062 if ((CType == TargetLowering::C_Other || 5063 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5064 assert(OpInfo.Codes[i].size() == 1 && 5065 "Unhandled multi-letter 'other' constraint"); 5066 std::vector<SDValue> ResultOps; 5067 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5068 ResultOps, *DAG); 5069 if (!ResultOps.empty()) { 5070 BestType = CType; 5071 BestIdx = i; 5072 break; 5073 } 5074 } 5075 5076 // Things with matching constraints can only be registers, per gcc 5077 // documentation. This mainly affects "g" constraints. 5078 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5079 continue; 5080 5081 // This constraint letter is more general than the previous one, use it. 5082 int Generality = getConstraintGenerality(CType); 5083 if (Generality > BestGenerality) { 5084 BestType = CType; 5085 BestIdx = i; 5086 BestGenerality = Generality; 5087 } 5088 } 5089 5090 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5091 OpInfo.ConstraintType = BestType; 5092 } 5093 5094 /// Determines the constraint code and constraint type to use for the specific 5095 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5096 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5097 SDValue Op, 5098 SelectionDAG *DAG) const { 5099 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5100 5101 // Single-letter constraints ('r') are very common. 5102 if (OpInfo.Codes.size() == 1) { 5103 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5104 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5105 } else { 5106 ChooseConstraint(OpInfo, *this, Op, DAG); 5107 } 5108 5109 // 'X' matches anything. 5110 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5111 // Constants are handled elsewhere. For Functions, the type here is the 5112 // type of the result, which is not what we want to look at; leave them 5113 // alone. 5114 Value *v = OpInfo.CallOperandVal; 5115 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5116 return; 5117 } 5118 5119 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5120 OpInfo.ConstraintCode = "i"; 5121 return; 5122 } 5123 5124 // Otherwise, try to resolve it to something we know about by looking at 5125 // the actual operand type. 5126 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5127 OpInfo.ConstraintCode = Repl; 5128 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5129 } 5130 } 5131 } 5132 5133 /// Given an exact SDIV by a constant, create a multiplication 5134 /// with the multiplicative inverse of the constant. 5135 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5136 const SDLoc &dl, SelectionDAG &DAG, 5137 SmallVectorImpl<SDNode *> &Created) { 5138 SDValue Op0 = N->getOperand(0); 5139 SDValue Op1 = N->getOperand(1); 5140 EVT VT = N->getValueType(0); 5141 EVT SVT = VT.getScalarType(); 5142 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5143 EVT ShSVT = ShVT.getScalarType(); 5144 5145 bool UseSRA = false; 5146 SmallVector<SDValue, 16> Shifts, Factors; 5147 5148 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5149 if (C->isZero()) 5150 return false; 5151 APInt Divisor = C->getAPIntValue(); 5152 unsigned Shift = Divisor.countTrailingZeros(); 5153 if (Shift) { 5154 Divisor.ashrInPlace(Shift); 5155 UseSRA = true; 5156 } 5157 // Calculate the multiplicative inverse, using Newton's method. 5158 APInt t; 5159 APInt Factor = Divisor; 5160 while ((t = Divisor * Factor) != 1) 5161 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5162 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5163 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5164 return true; 5165 }; 5166 5167 // Collect all magic values from the build vector. 5168 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5169 return SDValue(); 5170 5171 SDValue Shift, Factor; 5172 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5173 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5174 Factor = DAG.getBuildVector(VT, dl, Factors); 5175 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5176 assert(Shifts.size() == 1 && Factors.size() == 1 && 5177 "Expected matchUnaryPredicate to return one element for scalable " 5178 "vectors"); 5179 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5180 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5181 } else { 5182 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5183 Shift = Shifts[0]; 5184 Factor = Factors[0]; 5185 } 5186 5187 SDValue Res = Op0; 5188 5189 // Shift the value upfront if it is even, so the LSB is one. 5190 if (UseSRA) { 5191 // TODO: For UDIV use SRL instead of SRA. 5192 SDNodeFlags Flags; 5193 Flags.setExact(true); 5194 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5195 Created.push_back(Res.getNode()); 5196 } 5197 5198 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5199 } 5200 5201 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5202 SelectionDAG &DAG, 5203 SmallVectorImpl<SDNode *> &Created) const { 5204 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5205 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5206 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5207 return SDValue(N, 0); // Lower SDIV as SDIV 5208 return SDValue(); 5209 } 5210 5211 /// Given an ISD::SDIV node expressing a divide by constant, 5212 /// return a DAG expression to select that will generate the same value by 5213 /// multiplying by a magic number. 5214 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5215 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5216 bool IsAfterLegalization, 5217 SmallVectorImpl<SDNode *> &Created) const { 5218 SDLoc dl(N); 5219 EVT VT = N->getValueType(0); 5220 EVT SVT = VT.getScalarType(); 5221 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5222 EVT ShSVT = ShVT.getScalarType(); 5223 unsigned EltBits = VT.getScalarSizeInBits(); 5224 EVT MulVT; 5225 5226 // Check to see if we can do this. 5227 // FIXME: We should be more aggressive here. 5228 if (!isTypeLegal(VT)) { 5229 // Limit this to simple scalars for now. 5230 if (VT.isVector() || !VT.isSimple()) 5231 return SDValue(); 5232 5233 // If this type will be promoted to a large enough type with a legal 5234 // multiply operation, we can go ahead and do this transform. 5235 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5236 return SDValue(); 5237 5238 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5239 if (MulVT.getSizeInBits() < (2 * EltBits) || 5240 !isOperationLegal(ISD::MUL, MulVT)) 5241 return SDValue(); 5242 } 5243 5244 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5245 if (N->getFlags().hasExact()) 5246 return BuildExactSDIV(*this, N, dl, DAG, Created); 5247 5248 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5249 5250 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5251 if (C->isZero()) 5252 return false; 5253 5254 const APInt &Divisor = C->getAPIntValue(); 5255 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5256 int NumeratorFactor = 0; 5257 int ShiftMask = -1; 5258 5259 if (Divisor.isOne() || Divisor.isAllOnes()) { 5260 // If d is +1/-1, we just multiply the numerator by +1/-1. 5261 NumeratorFactor = Divisor.getSExtValue(); 5262 magics.Magic = 0; 5263 magics.ShiftAmount = 0; 5264 ShiftMask = 0; 5265 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5266 // If d > 0 and m < 0, add the numerator. 5267 NumeratorFactor = 1; 5268 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5269 // If d < 0 and m > 0, subtract the numerator. 5270 NumeratorFactor = -1; 5271 } 5272 5273 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5274 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5275 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5276 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5277 return true; 5278 }; 5279 5280 SDValue N0 = N->getOperand(0); 5281 SDValue N1 = N->getOperand(1); 5282 5283 // Collect the shifts / magic values from each element. 5284 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5285 return SDValue(); 5286 5287 SDValue MagicFactor, Factor, Shift, ShiftMask; 5288 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5289 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5290 Factor = DAG.getBuildVector(VT, dl, Factors); 5291 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5292 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5293 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5294 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5295 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5296 "Expected matchUnaryPredicate to return one element for scalable " 5297 "vectors"); 5298 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5299 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5300 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5301 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5302 } else { 5303 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5304 MagicFactor = MagicFactors[0]; 5305 Factor = Factors[0]; 5306 Shift = Shifts[0]; 5307 ShiftMask = ShiftMasks[0]; 5308 } 5309 5310 // Multiply the numerator (operand 0) by the magic value. 5311 // FIXME: We should support doing a MUL in a wider type. 5312 auto GetMULHS = [&](SDValue X, SDValue Y) { 5313 // If the type isn't legal, use a wider mul of the the type calculated 5314 // earlier. 5315 if (!isTypeLegal(VT)) { 5316 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5317 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5318 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5319 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5320 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5321 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5322 } 5323 5324 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5325 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5326 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5327 SDValue LoHi = 5328 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5329 return SDValue(LoHi.getNode(), 1); 5330 } 5331 return SDValue(); 5332 }; 5333 5334 SDValue Q = GetMULHS(N0, MagicFactor); 5335 if (!Q) 5336 return SDValue(); 5337 5338 Created.push_back(Q.getNode()); 5339 5340 // (Optionally) Add/subtract the numerator using Factor. 5341 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5342 Created.push_back(Factor.getNode()); 5343 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5344 Created.push_back(Q.getNode()); 5345 5346 // Shift right algebraic by shift value. 5347 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5348 Created.push_back(Q.getNode()); 5349 5350 // Extract the sign bit, mask it and add it to the quotient. 5351 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5352 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5353 Created.push_back(T.getNode()); 5354 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5355 Created.push_back(T.getNode()); 5356 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5357 } 5358 5359 /// Given an ISD::UDIV node expressing a divide by constant, 5360 /// return a DAG expression to select that will generate the same value by 5361 /// multiplying by a magic number. 5362 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5363 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5364 bool IsAfterLegalization, 5365 SmallVectorImpl<SDNode *> &Created) const { 5366 SDLoc dl(N); 5367 EVT VT = N->getValueType(0); 5368 EVT SVT = VT.getScalarType(); 5369 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5370 EVT ShSVT = ShVT.getScalarType(); 5371 unsigned EltBits = VT.getScalarSizeInBits(); 5372 EVT MulVT; 5373 5374 // Check to see if we can do this. 5375 // FIXME: We should be more aggressive here. 5376 if (!isTypeLegal(VT)) { 5377 // Limit this to simple scalars for now. 5378 if (VT.isVector() || !VT.isSimple()) 5379 return SDValue(); 5380 5381 // If this type will be promoted to a large enough type with a legal 5382 // multiply operation, we can go ahead and do this transform. 5383 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5384 return SDValue(); 5385 5386 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5387 if (MulVT.getSizeInBits() < (2 * EltBits) || 5388 !isOperationLegal(ISD::MUL, MulVT)) 5389 return SDValue(); 5390 } 5391 5392 bool UseNPQ = false; 5393 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5394 5395 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5396 if (C->isZero()) 5397 return false; 5398 // FIXME: We should use a narrower constant when the upper 5399 // bits are known to be zero. 5400 const APInt& Divisor = C->getAPIntValue(); 5401 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5402 unsigned PreShift = 0, PostShift = 0; 5403 5404 // If the divisor is even, we can avoid using the expensive fixup by 5405 // shifting the divided value upfront. 5406 if (magics.IsAdd != 0 && !Divisor[0]) { 5407 PreShift = Divisor.countTrailingZeros(); 5408 // Get magic number for the shifted divisor. 5409 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5410 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5411 } 5412 5413 APInt Magic = magics.Magic; 5414 5415 unsigned SelNPQ; 5416 if (magics.IsAdd == 0 || Divisor.isOne()) { 5417 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5418 "We shouldn't generate an undefined shift!"); 5419 PostShift = magics.ShiftAmount; 5420 SelNPQ = false; 5421 } else { 5422 PostShift = magics.ShiftAmount - 1; 5423 SelNPQ = true; 5424 } 5425 5426 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5427 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5428 NPQFactors.push_back( 5429 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5430 : APInt::getZero(EltBits), 5431 dl, SVT)); 5432 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5433 UseNPQ |= SelNPQ; 5434 return true; 5435 }; 5436 5437 SDValue N0 = N->getOperand(0); 5438 SDValue N1 = N->getOperand(1); 5439 5440 // Collect the shifts/magic values from each element. 5441 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5442 return SDValue(); 5443 5444 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5445 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5446 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5447 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5448 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5449 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5450 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5451 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5452 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5453 "Expected matchUnaryPredicate to return one for scalable vectors"); 5454 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5455 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5456 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5457 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5458 } else { 5459 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5460 PreShift = PreShifts[0]; 5461 MagicFactor = MagicFactors[0]; 5462 PostShift = PostShifts[0]; 5463 } 5464 5465 SDValue Q = N0; 5466 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5467 Created.push_back(Q.getNode()); 5468 5469 // FIXME: We should support doing a MUL in a wider type. 5470 auto GetMULHU = [&](SDValue X, SDValue Y) { 5471 // If the type isn't legal, use a wider mul of the the type calculated 5472 // earlier. 5473 if (!isTypeLegal(VT)) { 5474 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5475 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5476 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5477 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5478 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5479 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5480 } 5481 5482 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5483 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5484 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5485 SDValue LoHi = 5486 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5487 return SDValue(LoHi.getNode(), 1); 5488 } 5489 return SDValue(); // No mulhu or equivalent 5490 }; 5491 5492 // Multiply the numerator (operand 0) by the magic value. 5493 Q = GetMULHU(Q, MagicFactor); 5494 if (!Q) 5495 return SDValue(); 5496 5497 Created.push_back(Q.getNode()); 5498 5499 if (UseNPQ) { 5500 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5501 Created.push_back(NPQ.getNode()); 5502 5503 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5504 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5505 if (VT.isVector()) 5506 NPQ = GetMULHU(NPQ, NPQFactor); 5507 else 5508 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5509 5510 Created.push_back(NPQ.getNode()); 5511 5512 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5513 Created.push_back(Q.getNode()); 5514 } 5515 5516 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5517 Created.push_back(Q.getNode()); 5518 5519 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5520 5521 SDValue One = DAG.getConstant(1, dl, VT); 5522 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5523 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5524 } 5525 5526 /// If all values in Values that *don't* match the predicate are same 'splat' 5527 /// value, then replace all values with that splat value. 5528 /// Else, if AlternativeReplacement was provided, then replace all values that 5529 /// do match predicate with AlternativeReplacement value. 5530 static void 5531 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5532 std::function<bool(SDValue)> Predicate, 5533 SDValue AlternativeReplacement = SDValue()) { 5534 SDValue Replacement; 5535 // Is there a value for which the Predicate does *NOT* match? What is it? 5536 auto SplatValue = llvm::find_if_not(Values, Predicate); 5537 if (SplatValue != Values.end()) { 5538 // Does Values consist only of SplatValue's and values matching Predicate? 5539 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5540 return Value == *SplatValue || Predicate(Value); 5541 })) // Then we shall replace values matching predicate with SplatValue. 5542 Replacement = *SplatValue; 5543 } 5544 if (!Replacement) { 5545 // Oops, we did not find the "baseline" splat value. 5546 if (!AlternativeReplacement) 5547 return; // Nothing to do. 5548 // Let's replace with provided value then. 5549 Replacement = AlternativeReplacement; 5550 } 5551 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5552 } 5553 5554 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5555 /// where the divisor is constant and the comparison target is zero, 5556 /// return a DAG expression that will generate the same comparison result 5557 /// using only multiplications, additions and shifts/rotations. 5558 /// Ref: "Hacker's Delight" 10-17. 5559 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5560 SDValue CompTargetNode, 5561 ISD::CondCode Cond, 5562 DAGCombinerInfo &DCI, 5563 const SDLoc &DL) const { 5564 SmallVector<SDNode *, 5> Built; 5565 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5566 DCI, DL, Built)) { 5567 for (SDNode *N : Built) 5568 DCI.AddToWorklist(N); 5569 return Folded; 5570 } 5571 5572 return SDValue(); 5573 } 5574 5575 SDValue 5576 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5577 SDValue CompTargetNode, ISD::CondCode Cond, 5578 DAGCombinerInfo &DCI, const SDLoc &DL, 5579 SmallVectorImpl<SDNode *> &Created) const { 5580 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5581 // - D must be constant, with D = D0 * 2^K where D0 is odd 5582 // - P is the multiplicative inverse of D0 modulo 2^W 5583 // - Q = floor(((2^W) - 1) / D) 5584 // where W is the width of the common type of N and D. 5585 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5586 "Only applicable for (in)equality comparisons."); 5587 5588 SelectionDAG &DAG = DCI.DAG; 5589 5590 EVT VT = REMNode.getValueType(); 5591 EVT SVT = VT.getScalarType(); 5592 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5593 EVT ShSVT = ShVT.getScalarType(); 5594 5595 // If MUL is unavailable, we cannot proceed in any case. 5596 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5597 return SDValue(); 5598 5599 bool ComparingWithAllZeros = true; 5600 bool AllComparisonsWithNonZerosAreTautological = true; 5601 bool HadTautologicalLanes = false; 5602 bool AllLanesAreTautological = true; 5603 bool HadEvenDivisor = false; 5604 bool AllDivisorsArePowerOfTwo = true; 5605 bool HadTautologicalInvertedLanes = false; 5606 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5607 5608 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5609 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5610 if (CDiv->isZero()) 5611 return false; 5612 5613 const APInt &D = CDiv->getAPIntValue(); 5614 const APInt &Cmp = CCmp->getAPIntValue(); 5615 5616 ComparingWithAllZeros &= Cmp.isZero(); 5617 5618 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5619 // if C2 is not less than C1, the comparison is always false. 5620 // But we will only be able to produce the comparison that will give the 5621 // opposive tautological answer. So this lane would need to be fixed up. 5622 bool TautologicalInvertedLane = D.ule(Cmp); 5623 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5624 5625 // If all lanes are tautological (either all divisors are ones, or divisor 5626 // is not greater than the constant we are comparing with), 5627 // we will prefer to avoid the fold. 5628 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 5629 HadTautologicalLanes |= TautologicalLane; 5630 AllLanesAreTautological &= TautologicalLane; 5631 5632 // If we are comparing with non-zero, we need'll need to subtract said 5633 // comparison value from the LHS. But there is no point in doing that if 5634 // every lane where we are comparing with non-zero is tautological.. 5635 if (!Cmp.isZero()) 5636 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5637 5638 // Decompose D into D0 * 2^K 5639 unsigned K = D.countTrailingZeros(); 5640 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5641 APInt D0 = D.lshr(K); 5642 5643 // D is even if it has trailing zeros. 5644 HadEvenDivisor |= (K != 0); 5645 // D is a power-of-two if D0 is one. 5646 // If all divisors are power-of-two, we will prefer to avoid the fold. 5647 AllDivisorsArePowerOfTwo &= D0.isOne(); 5648 5649 // P = inv(D0, 2^W) 5650 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5651 unsigned W = D.getBitWidth(); 5652 APInt P = D0.zext(W + 1) 5653 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5654 .trunc(W); 5655 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5656 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5657 5658 // Q = floor((2^W - 1) u/ D) 5659 // R = ((2^W - 1) u% D) 5660 APInt Q, R; 5661 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 5662 5663 // If we are comparing with zero, then that comparison constant is okay, 5664 // else it may need to be one less than that. 5665 if (Cmp.ugt(R)) 5666 Q -= 1; 5667 5668 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5669 "We are expecting that K is always less than all-ones for ShSVT"); 5670 5671 // If the lane is tautological the result can be constant-folded. 5672 if (TautologicalLane) { 5673 // Set P and K amount to a bogus values so we can try to splat them. 5674 P = 0; 5675 K = -1; 5676 // And ensure that comparison constant is tautological, 5677 // it will always compare true/false. 5678 Q = -1; 5679 } 5680 5681 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5682 KAmts.push_back( 5683 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5684 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5685 return true; 5686 }; 5687 5688 SDValue N = REMNode.getOperand(0); 5689 SDValue D = REMNode.getOperand(1); 5690 5691 // Collect the values from each element. 5692 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5693 return SDValue(); 5694 5695 // If all lanes are tautological, the result can be constant-folded. 5696 if (AllLanesAreTautological) 5697 return SDValue(); 5698 5699 // If this is a urem by a powers-of-two, avoid the fold since it can be 5700 // best implemented as a bit test. 5701 if (AllDivisorsArePowerOfTwo) 5702 return SDValue(); 5703 5704 SDValue PVal, KVal, QVal; 5705 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5706 if (HadTautologicalLanes) { 5707 // Try to turn PAmts into a splat, since we don't care about the values 5708 // that are currently '0'. If we can't, just keep '0'`s. 5709 turnVectorIntoSplatVector(PAmts, isNullConstant); 5710 // Try to turn KAmts into a splat, since we don't care about the values 5711 // that are currently '-1'. If we can't, change them to '0'`s. 5712 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5713 DAG.getConstant(0, DL, ShSVT)); 5714 } 5715 5716 PVal = DAG.getBuildVector(VT, DL, PAmts); 5717 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5718 QVal = DAG.getBuildVector(VT, DL, QAmts); 5719 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5720 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 5721 "Expected matchBinaryPredicate to return one element for " 5722 "SPLAT_VECTORs"); 5723 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5724 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5725 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5726 } else { 5727 PVal = PAmts[0]; 5728 KVal = KAmts[0]; 5729 QVal = QAmts[0]; 5730 } 5731 5732 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5733 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5734 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5735 assert(CompTargetNode.getValueType() == N.getValueType() && 5736 "Expecting that the types on LHS and RHS of comparisons match."); 5737 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5738 } 5739 5740 // (mul N, P) 5741 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5742 Created.push_back(Op0.getNode()); 5743 5744 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5745 // divisors as a performance improvement, since rotating by 0 is a no-op. 5746 if (HadEvenDivisor) { 5747 // We need ROTR to do this. 5748 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5749 return SDValue(); 5750 // UREM: (rotr (mul N, P), K) 5751 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5752 Created.push_back(Op0.getNode()); 5753 } 5754 5755 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5756 SDValue NewCC = 5757 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5758 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5759 if (!HadTautologicalInvertedLanes) 5760 return NewCC; 5761 5762 // If any lanes previously compared always-false, the NewCC will give 5763 // always-true result for them, so we need to fixup those lanes. 5764 // Or the other way around for inequality predicate. 5765 assert(VT.isVector() && "Can/should only get here for vectors."); 5766 Created.push_back(NewCC.getNode()); 5767 5768 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5769 // if C2 is not less than C1, the comparison is always false. 5770 // But we have produced the comparison that will give the 5771 // opposive tautological answer. So these lanes would need to be fixed up. 5772 SDValue TautologicalInvertedChannels = 5773 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5774 Created.push_back(TautologicalInvertedChannels.getNode()); 5775 5776 // NOTE: we avoid letting illegal types through even if we're before legalize 5777 // ops – legalization has a hard time producing good code for this. 5778 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5779 // If we have a vector select, let's replace the comparison results in the 5780 // affected lanes with the correct tautological result. 5781 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5782 DL, SETCCVT, SETCCVT); 5783 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5784 Replacement, NewCC); 5785 } 5786 5787 // Else, we can just invert the comparison result in the appropriate lanes. 5788 // 5789 // NOTE: see the note above VSELECT above. 5790 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5791 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5792 TautologicalInvertedChannels); 5793 5794 return SDValue(); // Don't know how to lower. 5795 } 5796 5797 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5798 /// where the divisor is constant and the comparison target is zero, 5799 /// return a DAG expression that will generate the same comparison result 5800 /// using only multiplications, additions and shifts/rotations. 5801 /// Ref: "Hacker's Delight" 10-17. 5802 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5803 SDValue CompTargetNode, 5804 ISD::CondCode Cond, 5805 DAGCombinerInfo &DCI, 5806 const SDLoc &DL) const { 5807 SmallVector<SDNode *, 7> Built; 5808 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5809 DCI, DL, Built)) { 5810 assert(Built.size() <= 7 && "Max size prediction failed."); 5811 for (SDNode *N : Built) 5812 DCI.AddToWorklist(N); 5813 return Folded; 5814 } 5815 5816 return SDValue(); 5817 } 5818 5819 SDValue 5820 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5821 SDValue CompTargetNode, ISD::CondCode Cond, 5822 DAGCombinerInfo &DCI, const SDLoc &DL, 5823 SmallVectorImpl<SDNode *> &Created) const { 5824 // Fold: 5825 // (seteq/ne (srem N, D), 0) 5826 // To: 5827 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5828 // 5829 // - D must be constant, with D = D0 * 2^K where D0 is odd 5830 // - P is the multiplicative inverse of D0 modulo 2^W 5831 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5832 // - Q = floor((2 * A) / (2^K)) 5833 // where W is the width of the common type of N and D. 5834 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5835 "Only applicable for (in)equality comparisons."); 5836 5837 SelectionDAG &DAG = DCI.DAG; 5838 5839 EVT VT = REMNode.getValueType(); 5840 EVT SVT = VT.getScalarType(); 5841 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5842 EVT ShSVT = ShVT.getScalarType(); 5843 5844 // If we are after ops legalization, and MUL is unavailable, we can not 5845 // proceed. 5846 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5847 return SDValue(); 5848 5849 // TODO: Could support comparing with non-zero too. 5850 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5851 if (!CompTarget || !CompTarget->isZero()) 5852 return SDValue(); 5853 5854 bool HadIntMinDivisor = false; 5855 bool HadOneDivisor = false; 5856 bool AllDivisorsAreOnes = true; 5857 bool HadEvenDivisor = false; 5858 bool NeedToApplyOffset = false; 5859 bool AllDivisorsArePowerOfTwo = true; 5860 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5861 5862 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5863 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5864 if (C->isZero()) 5865 return false; 5866 5867 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5868 5869 // WARNING: this fold is only valid for positive divisors! 5870 APInt D = C->getAPIntValue(); 5871 if (D.isNegative()) 5872 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5873 5874 HadIntMinDivisor |= D.isMinSignedValue(); 5875 5876 // If all divisors are ones, we will prefer to avoid the fold. 5877 HadOneDivisor |= D.isOne(); 5878 AllDivisorsAreOnes &= D.isOne(); 5879 5880 // Decompose D into D0 * 2^K 5881 unsigned K = D.countTrailingZeros(); 5882 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5883 APInt D0 = D.lshr(K); 5884 5885 if (!D.isMinSignedValue()) { 5886 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5887 // we don't care about this lane in this fold, we'll special-handle it. 5888 HadEvenDivisor |= (K != 0); 5889 } 5890 5891 // D is a power-of-two if D0 is one. This includes INT_MIN. 5892 // If all divisors are power-of-two, we will prefer to avoid the fold. 5893 AllDivisorsArePowerOfTwo &= D0.isOne(); 5894 5895 // P = inv(D0, 2^W) 5896 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5897 unsigned W = D.getBitWidth(); 5898 APInt P = D0.zext(W + 1) 5899 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5900 .trunc(W); 5901 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5902 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5903 5904 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5905 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5906 A.clearLowBits(K); 5907 5908 if (!D.isMinSignedValue()) { 5909 // If divisor INT_MIN, then we don't care about this lane in this fold, 5910 // we'll special-handle it. 5911 NeedToApplyOffset |= A != 0; 5912 } 5913 5914 // Q = floor((2 * A) / (2^K)) 5915 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5916 5917 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 5918 "We are expecting that A is always less than all-ones for SVT"); 5919 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5920 "We are expecting that K is always less than all-ones for ShSVT"); 5921 5922 // If the divisor is 1 the result can be constant-folded. Likewise, we 5923 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5924 if (D.isOne()) { 5925 // Set P, A and K to a bogus values so we can try to splat them. 5926 P = 0; 5927 A = -1; 5928 K = -1; 5929 5930 // x ?% 1 == 0 <--> true <--> x u<= -1 5931 Q = -1; 5932 } 5933 5934 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5935 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5936 KAmts.push_back( 5937 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5938 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5939 return true; 5940 }; 5941 5942 SDValue N = REMNode.getOperand(0); 5943 SDValue D = REMNode.getOperand(1); 5944 5945 // Collect the values from each element. 5946 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5947 return SDValue(); 5948 5949 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5950 if (AllDivisorsAreOnes) 5951 return SDValue(); 5952 5953 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5954 // since it can be best implemented as a bit test. 5955 if (AllDivisorsArePowerOfTwo) 5956 return SDValue(); 5957 5958 SDValue PVal, AVal, KVal, QVal; 5959 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5960 if (HadOneDivisor) { 5961 // Try to turn PAmts into a splat, since we don't care about the values 5962 // that are currently '0'. If we can't, just keep '0'`s. 5963 turnVectorIntoSplatVector(PAmts, isNullConstant); 5964 // Try to turn AAmts into a splat, since we don't care about the 5965 // values that are currently '-1'. If we can't, change them to '0'`s. 5966 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5967 DAG.getConstant(0, DL, SVT)); 5968 // Try to turn KAmts into a splat, since we don't care about the values 5969 // that are currently '-1'. If we can't, change them to '0'`s. 5970 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5971 DAG.getConstant(0, DL, ShSVT)); 5972 } 5973 5974 PVal = DAG.getBuildVector(VT, DL, PAmts); 5975 AVal = DAG.getBuildVector(VT, DL, AAmts); 5976 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5977 QVal = DAG.getBuildVector(VT, DL, QAmts); 5978 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5979 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 5980 QAmts.size() == 1 && 5981 "Expected matchUnaryPredicate to return one element for scalable " 5982 "vectors"); 5983 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5984 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 5985 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5986 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5987 } else { 5988 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 5989 PVal = PAmts[0]; 5990 AVal = AAmts[0]; 5991 KVal = KAmts[0]; 5992 QVal = QAmts[0]; 5993 } 5994 5995 // (mul N, P) 5996 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5997 Created.push_back(Op0.getNode()); 5998 5999 if (NeedToApplyOffset) { 6000 // We need ADD to do this. 6001 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6002 return SDValue(); 6003 6004 // (add (mul N, P), A) 6005 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6006 Created.push_back(Op0.getNode()); 6007 } 6008 6009 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6010 // divisors as a performance improvement, since rotating by 0 is a no-op. 6011 if (HadEvenDivisor) { 6012 // We need ROTR to do this. 6013 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6014 return SDValue(); 6015 // SREM: (rotr (add (mul N, P), A), K) 6016 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6017 Created.push_back(Op0.getNode()); 6018 } 6019 6020 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6021 SDValue Fold = 6022 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6023 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6024 6025 // If we didn't have lanes with INT_MIN divisor, then we're done. 6026 if (!HadIntMinDivisor) 6027 return Fold; 6028 6029 // That fold is only valid for positive divisors. Which effectively means, 6030 // it is invalid for INT_MIN divisors. So if we have such a lane, 6031 // we must fix-up results for said lanes. 6032 assert(VT.isVector() && "Can/should only get here for vectors."); 6033 6034 // NOTE: we avoid letting illegal types through even if we're before legalize 6035 // ops – legalization has a hard time producing good code for the code that 6036 // follows. 6037 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6038 !isOperationLegalOrCustom(ISD::AND, VT) || 6039 !isOperationLegalOrCustom(Cond, VT) || 6040 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6041 return SDValue(); 6042 6043 Created.push_back(Fold.getNode()); 6044 6045 SDValue IntMin = DAG.getConstant( 6046 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6047 SDValue IntMax = DAG.getConstant( 6048 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6049 SDValue Zero = 6050 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6051 6052 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6053 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6054 Created.push_back(DivisorIsIntMin.getNode()); 6055 6056 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6057 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6058 Created.push_back(Masked.getNode()); 6059 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6060 Created.push_back(MaskedIsZero.getNode()); 6061 6062 // To produce final result we need to blend 2 vectors: 'SetCC' and 6063 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6064 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6065 // constant-folded, select can get lowered to a shuffle with constant mask. 6066 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6067 MaskedIsZero, Fold); 6068 6069 return Blended; 6070 } 6071 6072 bool TargetLowering:: 6073 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6074 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6075 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6076 "be a constant integer"); 6077 return true; 6078 } 6079 6080 return false; 6081 } 6082 6083 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6084 const DenormalMode &Mode) const { 6085 SDLoc DL(Op); 6086 EVT VT = Op.getValueType(); 6087 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6088 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6089 // Testing it with denormal inputs to avoid wrong estimate. 6090 if (Mode.Input == DenormalMode::IEEE) { 6091 // This is specifically a check for the handling of denormal inputs, 6092 // not the result. 6093 6094 // Test = fabs(X) < SmallestNormal 6095 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6096 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6097 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6098 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6099 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6100 } 6101 // Test = X == 0.0 6102 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6103 } 6104 6105 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6106 bool LegalOps, bool OptForSize, 6107 NegatibleCost &Cost, 6108 unsigned Depth) const { 6109 // fneg is removable even if it has multiple uses. 6110 if (Op.getOpcode() == ISD::FNEG) { 6111 Cost = NegatibleCost::Cheaper; 6112 return Op.getOperand(0); 6113 } 6114 6115 // Don't recurse exponentially. 6116 if (Depth > SelectionDAG::MaxRecursionDepth) 6117 return SDValue(); 6118 6119 // Pre-increment recursion depth for use in recursive calls. 6120 ++Depth; 6121 const SDNodeFlags Flags = Op->getFlags(); 6122 const TargetOptions &Options = DAG.getTarget().Options; 6123 EVT VT = Op.getValueType(); 6124 unsigned Opcode = Op.getOpcode(); 6125 6126 // Don't allow anything with multiple uses unless we know it is free. 6127 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6128 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6129 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6130 if (!IsFreeExtend) 6131 return SDValue(); 6132 } 6133 6134 auto RemoveDeadNode = [&](SDValue N) { 6135 if (N && N.getNode()->use_empty()) 6136 DAG.RemoveDeadNode(N.getNode()); 6137 }; 6138 6139 SDLoc DL(Op); 6140 6141 // Because getNegatedExpression can delete nodes we need a handle to keep 6142 // temporary nodes alive in case the recursion manages to create an identical 6143 // node. 6144 std::list<HandleSDNode> Handles; 6145 6146 switch (Opcode) { 6147 case ISD::ConstantFP: { 6148 // Don't invert constant FP values after legalization unless the target says 6149 // the negated constant is legal. 6150 bool IsOpLegal = 6151 isOperationLegal(ISD::ConstantFP, VT) || 6152 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6153 OptForSize); 6154 6155 if (LegalOps && !IsOpLegal) 6156 break; 6157 6158 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6159 V.changeSign(); 6160 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6161 6162 // If we already have the use of the negated floating constant, it is free 6163 // to negate it even it has multiple uses. 6164 if (!Op.hasOneUse() && CFP.use_empty()) 6165 break; 6166 Cost = NegatibleCost::Neutral; 6167 return CFP; 6168 } 6169 case ISD::BUILD_VECTOR: { 6170 // Only permit BUILD_VECTOR of constants. 6171 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6172 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6173 })) 6174 break; 6175 6176 bool IsOpLegal = 6177 (isOperationLegal(ISD::ConstantFP, VT) && 6178 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6179 llvm::all_of(Op->op_values(), [&](SDValue N) { 6180 return N.isUndef() || 6181 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6182 OptForSize); 6183 }); 6184 6185 if (LegalOps && !IsOpLegal) 6186 break; 6187 6188 SmallVector<SDValue, 4> Ops; 6189 for (SDValue C : Op->op_values()) { 6190 if (C.isUndef()) { 6191 Ops.push_back(C); 6192 continue; 6193 } 6194 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6195 V.changeSign(); 6196 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6197 } 6198 Cost = NegatibleCost::Neutral; 6199 return DAG.getBuildVector(VT, DL, Ops); 6200 } 6201 case ISD::FADD: { 6202 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6203 break; 6204 6205 // After operation legalization, it might not be legal to create new FSUBs. 6206 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6207 break; 6208 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6209 6210 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6211 NegatibleCost CostX = NegatibleCost::Expensive; 6212 SDValue NegX = 6213 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6214 // Prevent this node from being deleted by the next call. 6215 if (NegX) 6216 Handles.emplace_back(NegX); 6217 6218 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6219 NegatibleCost CostY = NegatibleCost::Expensive; 6220 SDValue NegY = 6221 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6222 6223 // We're done with the handles. 6224 Handles.clear(); 6225 6226 // Negate the X if its cost is less or equal than Y. 6227 if (NegX && (CostX <= CostY)) { 6228 Cost = CostX; 6229 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6230 if (NegY != N) 6231 RemoveDeadNode(NegY); 6232 return N; 6233 } 6234 6235 // Negate the Y if it is not expensive. 6236 if (NegY) { 6237 Cost = CostY; 6238 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6239 if (NegX != N) 6240 RemoveDeadNode(NegX); 6241 return N; 6242 } 6243 break; 6244 } 6245 case ISD::FSUB: { 6246 // We can't turn -(A-B) into B-A when we honor signed zeros. 6247 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6248 break; 6249 6250 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6251 // fold (fneg (fsub 0, Y)) -> Y 6252 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6253 if (C->isZero()) { 6254 Cost = NegatibleCost::Cheaper; 6255 return Y; 6256 } 6257 6258 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6259 Cost = NegatibleCost::Neutral; 6260 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6261 } 6262 case ISD::FMUL: 6263 case ISD::FDIV: { 6264 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6265 6266 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6267 NegatibleCost CostX = NegatibleCost::Expensive; 6268 SDValue NegX = 6269 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6270 // Prevent this node from being deleted by the next call. 6271 if (NegX) 6272 Handles.emplace_back(NegX); 6273 6274 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6275 NegatibleCost CostY = NegatibleCost::Expensive; 6276 SDValue NegY = 6277 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6278 6279 // We're done with the handles. 6280 Handles.clear(); 6281 6282 // Negate the X if its cost is less or equal than Y. 6283 if (NegX && (CostX <= CostY)) { 6284 Cost = CostX; 6285 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6286 if (NegY != N) 6287 RemoveDeadNode(NegY); 6288 return N; 6289 } 6290 6291 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6292 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6293 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6294 break; 6295 6296 // Negate the Y if it is not expensive. 6297 if (NegY) { 6298 Cost = CostY; 6299 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6300 if (NegX != N) 6301 RemoveDeadNode(NegX); 6302 return N; 6303 } 6304 break; 6305 } 6306 case ISD::FMA: 6307 case ISD::FMAD: { 6308 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6309 break; 6310 6311 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6312 NegatibleCost CostZ = NegatibleCost::Expensive; 6313 SDValue NegZ = 6314 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6315 // Give up if fail to negate the Z. 6316 if (!NegZ) 6317 break; 6318 6319 // Prevent this node from being deleted by the next two calls. 6320 Handles.emplace_back(NegZ); 6321 6322 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6323 NegatibleCost CostX = NegatibleCost::Expensive; 6324 SDValue NegX = 6325 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6326 // Prevent this node from being deleted by the next call. 6327 if (NegX) 6328 Handles.emplace_back(NegX); 6329 6330 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6331 NegatibleCost CostY = NegatibleCost::Expensive; 6332 SDValue NegY = 6333 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6334 6335 // We're done with the handles. 6336 Handles.clear(); 6337 6338 // Negate the X if its cost is less or equal than Y. 6339 if (NegX && (CostX <= CostY)) { 6340 Cost = std::min(CostX, CostZ); 6341 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6342 if (NegY != N) 6343 RemoveDeadNode(NegY); 6344 return N; 6345 } 6346 6347 // Negate the Y if it is not expensive. 6348 if (NegY) { 6349 Cost = std::min(CostY, CostZ); 6350 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6351 if (NegX != N) 6352 RemoveDeadNode(NegX); 6353 return N; 6354 } 6355 break; 6356 } 6357 6358 case ISD::FP_EXTEND: 6359 case ISD::FSIN: 6360 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6361 OptForSize, Cost, Depth)) 6362 return DAG.getNode(Opcode, DL, VT, NegV); 6363 break; 6364 case ISD::FP_ROUND: 6365 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6366 OptForSize, Cost, Depth)) 6367 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6368 break; 6369 } 6370 6371 return SDValue(); 6372 } 6373 6374 //===----------------------------------------------------------------------===// 6375 // Legalization Utilities 6376 //===----------------------------------------------------------------------===// 6377 6378 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6379 SDValue LHS, SDValue RHS, 6380 SmallVectorImpl<SDValue> &Result, 6381 EVT HiLoVT, SelectionDAG &DAG, 6382 MulExpansionKind Kind, SDValue LL, 6383 SDValue LH, SDValue RL, SDValue RH) const { 6384 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6385 Opcode == ISD::SMUL_LOHI); 6386 6387 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6388 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6389 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6390 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6391 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6392 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6393 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6394 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6395 6396 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6397 return false; 6398 6399 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6400 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6401 6402 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6403 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6404 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6405 6406 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6407 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6408 bool Signed) -> bool { 6409 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6410 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6411 Hi = SDValue(Lo.getNode(), 1); 6412 return true; 6413 } 6414 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6415 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6416 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6417 return true; 6418 } 6419 return false; 6420 }; 6421 6422 SDValue Lo, Hi; 6423 6424 if (!LL.getNode() && !RL.getNode() && 6425 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6426 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6427 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6428 } 6429 6430 if (!LL.getNode()) 6431 return false; 6432 6433 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6434 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6435 DAG.MaskedValueIsZero(RHS, HighMask)) { 6436 // The inputs are both zero-extended. 6437 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6438 Result.push_back(Lo); 6439 Result.push_back(Hi); 6440 if (Opcode != ISD::MUL) { 6441 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6442 Result.push_back(Zero); 6443 Result.push_back(Zero); 6444 } 6445 return true; 6446 } 6447 } 6448 6449 if (!VT.isVector() && Opcode == ISD::MUL && 6450 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6451 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6452 // The input values are both sign-extended. 6453 // TODO non-MUL case? 6454 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6455 Result.push_back(Lo); 6456 Result.push_back(Hi); 6457 return true; 6458 } 6459 } 6460 6461 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6462 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6463 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6464 6465 if (!LH.getNode() && !RH.getNode() && 6466 isOperationLegalOrCustom(ISD::SRL, VT) && 6467 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6468 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6469 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6470 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6471 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6472 } 6473 6474 if (!LH.getNode()) 6475 return false; 6476 6477 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6478 return false; 6479 6480 Result.push_back(Lo); 6481 6482 if (Opcode == ISD::MUL) { 6483 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6484 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6485 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6486 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6487 Result.push_back(Hi); 6488 return true; 6489 } 6490 6491 // Compute the full width result. 6492 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6493 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6494 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6495 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6496 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6497 }; 6498 6499 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6500 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6501 return false; 6502 6503 // This is effectively the add part of a multiply-add of half-sized operands, 6504 // so it cannot overflow. 6505 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6506 6507 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6508 return false; 6509 6510 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6511 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6512 6513 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6514 isOperationLegalOrCustom(ISD::ADDE, VT)); 6515 if (UseGlue) 6516 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6517 Merge(Lo, Hi)); 6518 else 6519 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6520 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6521 6522 SDValue Carry = Next.getValue(1); 6523 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6524 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6525 6526 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6527 return false; 6528 6529 if (UseGlue) 6530 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6531 Carry); 6532 else 6533 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6534 Zero, Carry); 6535 6536 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6537 6538 if (Opcode == ISD::SMUL_LOHI) { 6539 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6540 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6541 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6542 6543 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6544 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6545 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6546 } 6547 6548 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6549 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6550 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6551 return true; 6552 } 6553 6554 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6555 SelectionDAG &DAG, MulExpansionKind Kind, 6556 SDValue LL, SDValue LH, SDValue RL, 6557 SDValue RH) const { 6558 SmallVector<SDValue, 2> Result; 6559 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6560 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6561 DAG, Kind, LL, LH, RL, RH); 6562 if (Ok) { 6563 assert(Result.size() == 2); 6564 Lo = Result[0]; 6565 Hi = Result[1]; 6566 } 6567 return Ok; 6568 } 6569 6570 // Check that (every element of) Z is undef or not an exact multiple of BW. 6571 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6572 return ISD::matchUnaryPredicate( 6573 Z, 6574 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6575 true); 6576 } 6577 6578 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 6579 SelectionDAG &DAG) const { 6580 EVT VT = Node->getValueType(0); 6581 6582 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6583 !isOperationLegalOrCustom(ISD::SRL, VT) || 6584 !isOperationLegalOrCustom(ISD::SUB, VT) || 6585 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6586 return SDValue(); 6587 6588 SDValue X = Node->getOperand(0); 6589 SDValue Y = Node->getOperand(1); 6590 SDValue Z = Node->getOperand(2); 6591 6592 unsigned BW = VT.getScalarSizeInBits(); 6593 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6594 SDLoc DL(SDValue(Node, 0)); 6595 6596 EVT ShVT = Z.getValueType(); 6597 6598 // If a funnel shift in the other direction is more supported, use it. 6599 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6600 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6601 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6602 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6603 // fshl X, Y, Z -> fshr X, Y, -Z 6604 // fshr X, Y, Z -> fshl X, Y, -Z 6605 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6606 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6607 } else { 6608 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6609 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6610 SDValue One = DAG.getConstant(1, DL, ShVT); 6611 if (IsFSHL) { 6612 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6613 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6614 } else { 6615 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6616 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6617 } 6618 Z = DAG.getNOT(DL, Z, ShVT); 6619 } 6620 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6621 } 6622 6623 SDValue ShX, ShY; 6624 SDValue ShAmt, InvShAmt; 6625 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6626 // fshl: X << C | Y >> (BW - C) 6627 // fshr: X << (BW - C) | Y >> C 6628 // where C = Z % BW is not zero 6629 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6630 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6631 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6632 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6633 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6634 } else { 6635 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6636 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6637 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6638 if (isPowerOf2_32(BW)) { 6639 // Z % BW -> Z & (BW - 1) 6640 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6641 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6642 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6643 } else { 6644 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6645 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6646 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6647 } 6648 6649 SDValue One = DAG.getConstant(1, DL, ShVT); 6650 if (IsFSHL) { 6651 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6652 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6653 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6654 } else { 6655 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6656 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6657 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6658 } 6659 } 6660 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6661 } 6662 6663 // TODO: Merge with expandFunnelShift. 6664 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6665 SelectionDAG &DAG) const { 6666 EVT VT = Node->getValueType(0); 6667 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6668 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6669 SDValue Op0 = Node->getOperand(0); 6670 SDValue Op1 = Node->getOperand(1); 6671 SDLoc DL(SDValue(Node, 0)); 6672 6673 EVT ShVT = Op1.getValueType(); 6674 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6675 6676 // If a rotate in the other direction is more supported, use it. 6677 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6678 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6679 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6680 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6681 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 6682 } 6683 6684 if (!AllowVectorOps && VT.isVector() && 6685 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6686 !isOperationLegalOrCustom(ISD::SRL, VT) || 6687 !isOperationLegalOrCustom(ISD::SUB, VT) || 6688 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6689 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6690 return SDValue(); 6691 6692 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6693 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6694 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6695 SDValue ShVal; 6696 SDValue HsVal; 6697 if (isPowerOf2_32(EltSizeInBits)) { 6698 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6699 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6700 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6701 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6702 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6703 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6704 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6705 } else { 6706 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6707 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6708 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6709 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6710 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6711 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6712 SDValue One = DAG.getConstant(1, DL, ShVT); 6713 HsVal = 6714 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6715 } 6716 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6717 } 6718 6719 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6720 SelectionDAG &DAG) const { 6721 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6722 EVT VT = Node->getValueType(0); 6723 unsigned VTBits = VT.getScalarSizeInBits(); 6724 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6725 6726 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6727 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6728 SDValue ShOpLo = Node->getOperand(0); 6729 SDValue ShOpHi = Node->getOperand(1); 6730 SDValue ShAmt = Node->getOperand(2); 6731 EVT ShAmtVT = ShAmt.getValueType(); 6732 EVT ShAmtCCVT = 6733 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6734 SDLoc dl(Node); 6735 6736 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6737 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6738 // away during isel. 6739 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6740 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6741 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6742 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6743 : DAG.getConstant(0, dl, VT); 6744 6745 SDValue Tmp2, Tmp3; 6746 if (IsSHL) { 6747 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6748 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6749 } else { 6750 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6751 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6752 } 6753 6754 // If the shift amount is larger or equal than the width of a part we don't 6755 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 6756 // values for large shift amounts. 6757 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6758 DAG.getConstant(VTBits, dl, ShAmtVT)); 6759 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 6760 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 6761 6762 if (IsSHL) { 6763 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6764 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6765 } else { 6766 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6767 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6768 } 6769 } 6770 6771 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6772 SelectionDAG &DAG) const { 6773 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6774 SDValue Src = Node->getOperand(OpNo); 6775 EVT SrcVT = Src.getValueType(); 6776 EVT DstVT = Node->getValueType(0); 6777 SDLoc dl(SDValue(Node, 0)); 6778 6779 // FIXME: Only f32 to i64 conversions are supported. 6780 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6781 return false; 6782 6783 if (Node->isStrictFPOpcode()) 6784 // When a NaN is converted to an integer a trap is allowed. We can't 6785 // use this expansion here because it would eliminate that trap. Other 6786 // traps are also allowed and cannot be eliminated. See 6787 // IEEE 754-2008 sec 5.8. 6788 return false; 6789 6790 // Expand f32 -> i64 conversion 6791 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6792 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6793 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6794 EVT IntVT = SrcVT.changeTypeToInteger(); 6795 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6796 6797 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6798 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6799 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6800 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6801 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6802 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6803 6804 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6805 6806 SDValue ExponentBits = DAG.getNode( 6807 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6808 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6809 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6810 6811 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6812 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6813 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6814 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6815 6816 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6817 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6818 DAG.getConstant(0x00800000, dl, IntVT)); 6819 6820 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6821 6822 R = DAG.getSelectCC( 6823 dl, Exponent, ExponentLoBit, 6824 DAG.getNode(ISD::SHL, dl, DstVT, R, 6825 DAG.getZExtOrTrunc( 6826 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6827 dl, IntShVT)), 6828 DAG.getNode(ISD::SRL, dl, DstVT, R, 6829 DAG.getZExtOrTrunc( 6830 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6831 dl, IntShVT)), 6832 ISD::SETGT); 6833 6834 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6835 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6836 6837 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6838 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6839 return true; 6840 } 6841 6842 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6843 SDValue &Chain, 6844 SelectionDAG &DAG) const { 6845 SDLoc dl(SDValue(Node, 0)); 6846 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6847 SDValue Src = Node->getOperand(OpNo); 6848 6849 EVT SrcVT = Src.getValueType(); 6850 EVT DstVT = Node->getValueType(0); 6851 EVT SetCCVT = 6852 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6853 EVT DstSetCCVT = 6854 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6855 6856 // Only expand vector types if we have the appropriate vector bit operations. 6857 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6858 ISD::FP_TO_SINT; 6859 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6860 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6861 return false; 6862 6863 // If the maximum float value is smaller then the signed integer range, 6864 // the destination signmask can't be represented by the float, so we can 6865 // just use FP_TO_SINT directly. 6866 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6867 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 6868 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6869 if (APFloat::opOverflow & 6870 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6871 if (Node->isStrictFPOpcode()) { 6872 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6873 { Node->getOperand(0), Src }); 6874 Chain = Result.getValue(1); 6875 } else 6876 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6877 return true; 6878 } 6879 6880 // Don't expand it if there isn't cheap fsub instruction. 6881 if (!isOperationLegalOrCustom( 6882 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6883 return false; 6884 6885 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6886 SDValue Sel; 6887 6888 if (Node->isStrictFPOpcode()) { 6889 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6890 Node->getOperand(0), /*IsSignaling*/ true); 6891 Chain = Sel.getValue(1); 6892 } else { 6893 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6894 } 6895 6896 bool Strict = Node->isStrictFPOpcode() || 6897 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6898 6899 if (Strict) { 6900 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6901 // signmask then offset (the result of which should be fully representable). 6902 // Sel = Src < 0x8000000000000000 6903 // FltOfs = select Sel, 0, 0x8000000000000000 6904 // IntOfs = select Sel, 0, 0x8000000000000000 6905 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6906 6907 // TODO: Should any fast-math-flags be set for the FSUB? 6908 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6909 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6910 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6911 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6912 DAG.getConstant(0, dl, DstVT), 6913 DAG.getConstant(SignMask, dl, DstVT)); 6914 SDValue SInt; 6915 if (Node->isStrictFPOpcode()) { 6916 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6917 { Chain, Src, FltOfs }); 6918 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6919 { Val.getValue(1), Val }); 6920 Chain = SInt.getValue(1); 6921 } else { 6922 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6923 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6924 } 6925 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6926 } else { 6927 // Expand based on maximum range of FP_TO_SINT: 6928 // True = fp_to_sint(Src) 6929 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6930 // Result = select (Src < 0x8000000000000000), True, False 6931 6932 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6933 // TODO: Should any fast-math-flags be set for the FSUB? 6934 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6935 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6936 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6937 DAG.getConstant(SignMask, dl, DstVT)); 6938 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6939 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6940 } 6941 return true; 6942 } 6943 6944 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6945 SDValue &Chain, 6946 SelectionDAG &DAG) const { 6947 // This transform is not correct for converting 0 when rounding mode is set 6948 // to round toward negative infinity which will produce -0.0. So disable under 6949 // strictfp. 6950 if (Node->isStrictFPOpcode()) 6951 return false; 6952 6953 SDValue Src = Node->getOperand(0); 6954 EVT SrcVT = Src.getValueType(); 6955 EVT DstVT = Node->getValueType(0); 6956 6957 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6958 return false; 6959 6960 // Only expand vector types if we have the appropriate vector bit operations. 6961 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6962 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6963 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6964 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6965 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6966 return false; 6967 6968 SDLoc dl(SDValue(Node, 0)); 6969 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6970 6971 // Implementation of unsigned i64 to f64 following the algorithm in 6972 // __floatundidf in compiler_rt. This implementation performs rounding 6973 // correctly in all rounding modes with the exception of converting 0 6974 // when rounding toward negative infinity. In that case the fsub will produce 6975 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 6976 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6977 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6978 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6979 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6980 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6981 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6982 6983 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6984 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6985 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6986 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6987 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6988 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6989 SDValue HiSub = 6990 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6991 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6992 return true; 6993 } 6994 6995 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6996 SelectionDAG &DAG) const { 6997 SDLoc dl(Node); 6998 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6999 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7000 EVT VT = Node->getValueType(0); 7001 7002 if (VT.isScalableVector()) 7003 report_fatal_error( 7004 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7005 7006 if (isOperationLegalOrCustom(NewOp, VT)) { 7007 SDValue Quiet0 = Node->getOperand(0); 7008 SDValue Quiet1 = Node->getOperand(1); 7009 7010 if (!Node->getFlags().hasNoNaNs()) { 7011 // Insert canonicalizes if it's possible we need to quiet to get correct 7012 // sNaN behavior. 7013 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7014 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7015 Node->getFlags()); 7016 } 7017 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7018 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7019 Node->getFlags()); 7020 } 7021 } 7022 7023 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7024 } 7025 7026 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7027 // instead if there are no NaNs. 7028 if (Node->getFlags().hasNoNaNs()) { 7029 unsigned IEEE2018Op = 7030 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7031 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7032 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7033 Node->getOperand(1), Node->getFlags()); 7034 } 7035 } 7036 7037 // If none of the above worked, but there are no NaNs, then expand to 7038 // a compare/select sequence. This is required for correctness since 7039 // InstCombine might have canonicalized a fcmp+select sequence to a 7040 // FMINNUM/FMAXNUM node. If we were to fall through to the default 7041 // expansion to libcall, we might introduce a link-time dependency 7042 // on libm into a file that originally did not have one. 7043 if (Node->getFlags().hasNoNaNs()) { 7044 ISD::CondCode Pred = 7045 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7046 SDValue Op1 = Node->getOperand(0); 7047 SDValue Op2 = Node->getOperand(1); 7048 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 7049 // Copy FMF flags, but always set the no-signed-zeros flag 7050 // as this is implied by the FMINNUM/FMAXNUM semantics. 7051 SDNodeFlags Flags = Node->getFlags(); 7052 Flags.setNoSignedZeros(true); 7053 SelCC->setFlags(Flags); 7054 return SelCC; 7055 } 7056 7057 return SDValue(); 7058 } 7059 7060 // Only expand vector types if we have the appropriate vector bit operations. 7061 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7062 assert(VT.isVector() && "Expected vector type"); 7063 unsigned Len = VT.getScalarSizeInBits(); 7064 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7065 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7066 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7067 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7068 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7069 } 7070 7071 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7072 SDLoc dl(Node); 7073 EVT VT = Node->getValueType(0); 7074 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7075 SDValue Op = Node->getOperand(0); 7076 unsigned Len = VT.getScalarSizeInBits(); 7077 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7078 7079 // TODO: Add support for irregular type lengths. 7080 if (!(Len <= 128 && Len % 8 == 0)) 7081 return SDValue(); 7082 7083 // Only expand vector types if we have the appropriate vector bit operations. 7084 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7085 return SDValue(); 7086 7087 // This is the "best" algorithm from 7088 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7089 SDValue Mask55 = 7090 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7091 SDValue Mask33 = 7092 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7093 SDValue Mask0F = 7094 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7095 SDValue Mask01 = 7096 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7097 7098 // v = v - ((v >> 1) & 0x55555555...) 7099 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7100 DAG.getNode(ISD::AND, dl, VT, 7101 DAG.getNode(ISD::SRL, dl, VT, Op, 7102 DAG.getConstant(1, dl, ShVT)), 7103 Mask55)); 7104 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7105 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7106 DAG.getNode(ISD::AND, dl, VT, 7107 DAG.getNode(ISD::SRL, dl, VT, Op, 7108 DAG.getConstant(2, dl, ShVT)), 7109 Mask33)); 7110 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7111 Op = DAG.getNode(ISD::AND, dl, VT, 7112 DAG.getNode(ISD::ADD, dl, VT, Op, 7113 DAG.getNode(ISD::SRL, dl, VT, Op, 7114 DAG.getConstant(4, dl, ShVT))), 7115 Mask0F); 7116 // v = (v * 0x01010101...) >> (Len - 8) 7117 if (Len > 8) 7118 Op = 7119 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7120 DAG.getConstant(Len - 8, dl, ShVT)); 7121 7122 return Op; 7123 } 7124 7125 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7126 SDLoc dl(Node); 7127 EVT VT = Node->getValueType(0); 7128 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7129 SDValue Op = Node->getOperand(0); 7130 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7131 7132 // If the non-ZERO_UNDEF version is supported we can use that instead. 7133 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7134 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7135 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7136 7137 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7138 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7139 EVT SetCCVT = 7140 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7141 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7142 SDValue Zero = DAG.getConstant(0, dl, VT); 7143 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7144 return DAG.getSelect(dl, VT, SrcIsZero, 7145 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7146 } 7147 7148 // Only expand vector types if we have the appropriate vector bit operations. 7149 // This includes the operations needed to expand CTPOP if it isn't supported. 7150 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7151 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7152 !canExpandVectorCTPOP(*this, VT)) || 7153 !isOperationLegalOrCustom(ISD::SRL, VT) || 7154 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7155 return SDValue(); 7156 7157 // for now, we do this: 7158 // x = x | (x >> 1); 7159 // x = x | (x >> 2); 7160 // ... 7161 // x = x | (x >>16); 7162 // x = x | (x >>32); // for 64-bit input 7163 // return popcount(~x); 7164 // 7165 // Ref: "Hacker's Delight" by Henry Warren 7166 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7167 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7168 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7169 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7170 } 7171 Op = DAG.getNOT(dl, Op, VT); 7172 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7173 } 7174 7175 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7176 SDLoc dl(Node); 7177 EVT VT = Node->getValueType(0); 7178 SDValue Op = Node->getOperand(0); 7179 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7180 7181 // If the non-ZERO_UNDEF version is supported we can use that instead. 7182 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7183 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7184 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7185 7186 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7187 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7188 EVT SetCCVT = 7189 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7190 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7191 SDValue Zero = DAG.getConstant(0, dl, VT); 7192 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7193 return DAG.getSelect(dl, VT, SrcIsZero, 7194 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7195 } 7196 7197 // Only expand vector types if we have the appropriate vector bit operations. 7198 // This includes the operations needed to expand CTPOP if it isn't supported. 7199 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7200 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7201 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7202 !canExpandVectorCTPOP(*this, VT)) || 7203 !isOperationLegalOrCustom(ISD::SUB, VT) || 7204 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7205 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7206 return SDValue(); 7207 7208 // for now, we use: { return popcount(~x & (x - 1)); } 7209 // unless the target has ctlz but not ctpop, in which case we use: 7210 // { return 32 - nlz(~x & (x-1)); } 7211 // Ref: "Hacker's Delight" by Henry Warren 7212 SDValue Tmp = DAG.getNode( 7213 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7214 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7215 7216 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7217 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7218 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7219 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7220 } 7221 7222 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7223 } 7224 7225 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7226 bool IsNegative) const { 7227 SDLoc dl(N); 7228 EVT VT = N->getValueType(0); 7229 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7230 SDValue Op = N->getOperand(0); 7231 7232 // abs(x) -> smax(x,sub(0,x)) 7233 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7234 isOperationLegal(ISD::SMAX, VT)) { 7235 SDValue Zero = DAG.getConstant(0, dl, VT); 7236 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7237 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7238 } 7239 7240 // abs(x) -> umin(x,sub(0,x)) 7241 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7242 isOperationLegal(ISD::UMIN, VT)) { 7243 SDValue Zero = DAG.getConstant(0, dl, VT); 7244 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7245 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7246 } 7247 7248 // 0 - abs(x) -> smin(x, sub(0,x)) 7249 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7250 isOperationLegal(ISD::SMIN, VT)) { 7251 SDValue Zero = DAG.getConstant(0, dl, VT); 7252 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7253 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7254 } 7255 7256 // Only expand vector types if we have the appropriate vector operations. 7257 if (VT.isVector() && 7258 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7259 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7260 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7261 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7262 return SDValue(); 7263 7264 SDValue Shift = 7265 DAG.getNode(ISD::SRA, dl, VT, Op, 7266 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7267 if (!IsNegative) { 7268 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7269 return DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7270 } 7271 7272 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7273 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7274 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7275 } 7276 7277 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7278 SDLoc dl(N); 7279 EVT VT = N->getValueType(0); 7280 SDValue Op = N->getOperand(0); 7281 7282 if (!VT.isSimple()) 7283 return SDValue(); 7284 7285 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7286 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7287 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7288 default: 7289 return SDValue(); 7290 case MVT::i16: 7291 // Use a rotate by 8. This can be further expanded if necessary. 7292 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7293 case MVT::i32: 7294 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7295 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7296 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7297 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7298 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7299 DAG.getConstant(0xFF0000, dl, VT)); 7300 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7301 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7302 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7303 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7304 case MVT::i64: 7305 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7306 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7307 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7308 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7309 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7310 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7311 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7312 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7313 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7314 DAG.getConstant(255ULL<<48, dl, VT)); 7315 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7316 DAG.getConstant(255ULL<<40, dl, VT)); 7317 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7318 DAG.getConstant(255ULL<<32, dl, VT)); 7319 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7320 DAG.getConstant(255ULL<<24, dl, VT)); 7321 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7322 DAG.getConstant(255ULL<<16, dl, VT)); 7323 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7324 DAG.getConstant(255ULL<<8 , dl, VT)); 7325 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7326 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7327 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7328 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7329 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7330 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7331 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7332 } 7333 } 7334 7335 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7336 SDLoc dl(N); 7337 EVT VT = N->getValueType(0); 7338 SDValue Op = N->getOperand(0); 7339 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7340 unsigned Sz = VT.getScalarSizeInBits(); 7341 7342 SDValue Tmp, Tmp2, Tmp3; 7343 7344 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7345 // and finally the i1 pairs. 7346 // TODO: We can easily support i4/i2 legal types if any target ever does. 7347 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7348 // Create the masks - repeating the pattern every byte. 7349 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7350 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7351 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7352 7353 // BSWAP if the type is wider than a single byte. 7354 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7355 7356 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 7357 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 7358 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 7359 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 7360 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7361 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7362 7363 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 7364 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 7365 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 7366 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 7367 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7368 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7369 7370 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 7371 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 7372 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 7373 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 7374 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7375 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7376 return Tmp; 7377 } 7378 7379 Tmp = DAG.getConstant(0, dl, VT); 7380 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7381 if (I < J) 7382 Tmp2 = 7383 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7384 else 7385 Tmp2 = 7386 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7387 7388 APInt Shift(Sz, 1); 7389 Shift <<= J; 7390 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7391 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7392 } 7393 7394 return Tmp; 7395 } 7396 7397 std::pair<SDValue, SDValue> 7398 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7399 SelectionDAG &DAG) const { 7400 SDLoc SL(LD); 7401 SDValue Chain = LD->getChain(); 7402 SDValue BasePTR = LD->getBasePtr(); 7403 EVT SrcVT = LD->getMemoryVT(); 7404 EVT DstVT = LD->getValueType(0); 7405 ISD::LoadExtType ExtType = LD->getExtensionType(); 7406 7407 if (SrcVT.isScalableVector()) 7408 report_fatal_error("Cannot scalarize scalable vector loads"); 7409 7410 unsigned NumElem = SrcVT.getVectorNumElements(); 7411 7412 EVT SrcEltVT = SrcVT.getScalarType(); 7413 EVT DstEltVT = DstVT.getScalarType(); 7414 7415 // A vector must always be stored in memory as-is, i.e. without any padding 7416 // between the elements, since various code depend on it, e.g. in the 7417 // handling of a bitcast of a vector type to int, which may be done with a 7418 // vector store followed by an integer load. A vector that does not have 7419 // elements that are byte-sized must therefore be stored as an integer 7420 // built out of the extracted vector elements. 7421 if (!SrcEltVT.isByteSized()) { 7422 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7423 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7424 7425 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7426 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7427 7428 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7429 SDValue SrcEltBitMask = DAG.getConstant( 7430 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7431 7432 // Load the whole vector and avoid masking off the top bits as it makes 7433 // the codegen worse. 7434 SDValue Load = 7435 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7436 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7437 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7438 7439 SmallVector<SDValue, 8> Vals; 7440 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7441 unsigned ShiftIntoIdx = 7442 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7443 SDValue ShiftAmount = 7444 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7445 LoadVT, SL, /*LegalTypes=*/false); 7446 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7447 SDValue Elt = 7448 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7449 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7450 7451 if (ExtType != ISD::NON_EXTLOAD) { 7452 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7453 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7454 } 7455 7456 Vals.push_back(Scalar); 7457 } 7458 7459 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7460 return std::make_pair(Value, Load.getValue(1)); 7461 } 7462 7463 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7464 assert(SrcEltVT.isByteSized()); 7465 7466 SmallVector<SDValue, 8> Vals; 7467 SmallVector<SDValue, 8> LoadChains; 7468 7469 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7470 SDValue ScalarLoad = 7471 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7472 LD->getPointerInfo().getWithOffset(Idx * Stride), 7473 SrcEltVT, LD->getOriginalAlign(), 7474 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7475 7476 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7477 7478 Vals.push_back(ScalarLoad.getValue(0)); 7479 LoadChains.push_back(ScalarLoad.getValue(1)); 7480 } 7481 7482 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7483 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7484 7485 return std::make_pair(Value, NewChain); 7486 } 7487 7488 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7489 SelectionDAG &DAG) const { 7490 SDLoc SL(ST); 7491 7492 SDValue Chain = ST->getChain(); 7493 SDValue BasePtr = ST->getBasePtr(); 7494 SDValue Value = ST->getValue(); 7495 EVT StVT = ST->getMemoryVT(); 7496 7497 if (StVT.isScalableVector()) 7498 report_fatal_error("Cannot scalarize scalable vector stores"); 7499 7500 // The type of the data we want to save 7501 EVT RegVT = Value.getValueType(); 7502 EVT RegSclVT = RegVT.getScalarType(); 7503 7504 // The type of data as saved in memory. 7505 EVT MemSclVT = StVT.getScalarType(); 7506 7507 unsigned NumElem = StVT.getVectorNumElements(); 7508 7509 // A vector must always be stored in memory as-is, i.e. without any padding 7510 // between the elements, since various code depend on it, e.g. in the 7511 // handling of a bitcast of a vector type to int, which may be done with a 7512 // vector store followed by an integer load. A vector that does not have 7513 // elements that are byte-sized must therefore be stored as an integer 7514 // built out of the extracted vector elements. 7515 if (!MemSclVT.isByteSized()) { 7516 unsigned NumBits = StVT.getSizeInBits(); 7517 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7518 7519 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7520 7521 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7522 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7523 DAG.getVectorIdxConstant(Idx, SL)); 7524 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7525 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7526 unsigned ShiftIntoIdx = 7527 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7528 SDValue ShiftAmount = 7529 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7530 SDValue ShiftedElt = 7531 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7532 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7533 } 7534 7535 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7536 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7537 ST->getAAInfo()); 7538 } 7539 7540 // Store Stride in bytes 7541 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7542 assert(Stride && "Zero stride!"); 7543 // Extract each of the elements from the original vector and save them into 7544 // memory individually. 7545 SmallVector<SDValue, 8> Stores; 7546 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7547 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7548 DAG.getVectorIdxConstant(Idx, SL)); 7549 7550 SDValue Ptr = 7551 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7552 7553 // This scalar TruncStore may be illegal, but we legalize it later. 7554 SDValue Store = DAG.getTruncStore( 7555 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7556 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7557 ST->getAAInfo()); 7558 7559 Stores.push_back(Store); 7560 } 7561 7562 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7563 } 7564 7565 std::pair<SDValue, SDValue> 7566 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7567 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7568 "unaligned indexed loads not implemented!"); 7569 SDValue Chain = LD->getChain(); 7570 SDValue Ptr = LD->getBasePtr(); 7571 EVT VT = LD->getValueType(0); 7572 EVT LoadedVT = LD->getMemoryVT(); 7573 SDLoc dl(LD); 7574 auto &MF = DAG.getMachineFunction(); 7575 7576 if (VT.isFloatingPoint() || VT.isVector()) { 7577 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7578 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7579 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7580 LoadedVT.isVector()) { 7581 // Scalarize the load and let the individual components be handled. 7582 return scalarizeVectorLoad(LD, DAG); 7583 } 7584 7585 // Expand to a (misaligned) integer load of the same size, 7586 // then bitconvert to floating point or vector. 7587 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7588 LD->getMemOperand()); 7589 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7590 if (LoadedVT != VT) 7591 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7592 ISD::ANY_EXTEND, dl, VT, Result); 7593 7594 return std::make_pair(Result, newLoad.getValue(1)); 7595 } 7596 7597 // Copy the value to a (aligned) stack slot using (unaligned) integer 7598 // loads and stores, then do a (aligned) load from the stack slot. 7599 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7600 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7601 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7602 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7603 7604 // Make sure the stack slot is also aligned for the register type. 7605 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7606 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7607 SmallVector<SDValue, 8> Stores; 7608 SDValue StackPtr = StackBase; 7609 unsigned Offset = 0; 7610 7611 EVT PtrVT = Ptr.getValueType(); 7612 EVT StackPtrVT = StackPtr.getValueType(); 7613 7614 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7615 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7616 7617 // Do all but one copies using the full register width. 7618 for (unsigned i = 1; i < NumRegs; i++) { 7619 // Load one integer register's worth from the original location. 7620 SDValue Load = DAG.getLoad( 7621 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7622 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7623 LD->getAAInfo()); 7624 // Follow the load with a store to the stack slot. Remember the store. 7625 Stores.push_back(DAG.getStore( 7626 Load.getValue(1), dl, Load, StackPtr, 7627 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7628 // Increment the pointers. 7629 Offset += RegBytes; 7630 7631 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7632 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7633 } 7634 7635 // The last copy may be partial. Do an extending load. 7636 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7637 8 * (LoadedBytes - Offset)); 7638 SDValue Load = 7639 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7640 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7641 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7642 LD->getAAInfo()); 7643 // Follow the load with a store to the stack slot. Remember the store. 7644 // On big-endian machines this requires a truncating store to ensure 7645 // that the bits end up in the right place. 7646 Stores.push_back(DAG.getTruncStore( 7647 Load.getValue(1), dl, Load, StackPtr, 7648 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7649 7650 // The order of the stores doesn't matter - say it with a TokenFactor. 7651 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7652 7653 // Finally, perform the original load only redirected to the stack slot. 7654 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7655 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7656 LoadedVT); 7657 7658 // Callers expect a MERGE_VALUES node. 7659 return std::make_pair(Load, TF); 7660 } 7661 7662 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7663 "Unaligned load of unsupported type."); 7664 7665 // Compute the new VT that is half the size of the old one. This is an 7666 // integer MVT. 7667 unsigned NumBits = LoadedVT.getSizeInBits(); 7668 EVT NewLoadedVT; 7669 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7670 NumBits >>= 1; 7671 7672 Align Alignment = LD->getOriginalAlign(); 7673 unsigned IncrementSize = NumBits / 8; 7674 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7675 7676 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7677 if (HiExtType == ISD::NON_EXTLOAD) 7678 HiExtType = ISD::ZEXTLOAD; 7679 7680 // Load the value in two parts 7681 SDValue Lo, Hi; 7682 if (DAG.getDataLayout().isLittleEndian()) { 7683 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7684 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7685 LD->getAAInfo()); 7686 7687 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7688 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7689 LD->getPointerInfo().getWithOffset(IncrementSize), 7690 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7691 LD->getAAInfo()); 7692 } else { 7693 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7694 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7695 LD->getAAInfo()); 7696 7697 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7698 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7699 LD->getPointerInfo().getWithOffset(IncrementSize), 7700 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7701 LD->getAAInfo()); 7702 } 7703 7704 // aggregate the two parts 7705 SDValue ShiftAmount = 7706 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7707 DAG.getDataLayout())); 7708 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7709 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7710 7711 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7712 Hi.getValue(1)); 7713 7714 return std::make_pair(Result, TF); 7715 } 7716 7717 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7718 SelectionDAG &DAG) const { 7719 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7720 "unaligned indexed stores not implemented!"); 7721 SDValue Chain = ST->getChain(); 7722 SDValue Ptr = ST->getBasePtr(); 7723 SDValue Val = ST->getValue(); 7724 EVT VT = Val.getValueType(); 7725 Align Alignment = ST->getOriginalAlign(); 7726 auto &MF = DAG.getMachineFunction(); 7727 EVT StoreMemVT = ST->getMemoryVT(); 7728 7729 SDLoc dl(ST); 7730 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7731 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7732 if (isTypeLegal(intVT)) { 7733 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7734 StoreMemVT.isVector()) { 7735 // Scalarize the store and let the individual components be handled. 7736 SDValue Result = scalarizeVectorStore(ST, DAG); 7737 return Result; 7738 } 7739 // Expand to a bitconvert of the value to the integer type of the 7740 // same size, then a (misaligned) int store. 7741 // FIXME: Does not handle truncating floating point stores! 7742 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7743 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7744 Alignment, ST->getMemOperand()->getFlags()); 7745 return Result; 7746 } 7747 // Do a (aligned) store to a stack slot, then copy from the stack slot 7748 // to the final destination using (unaligned) integer loads and stores. 7749 MVT RegVT = getRegisterType( 7750 *DAG.getContext(), 7751 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7752 EVT PtrVT = Ptr.getValueType(); 7753 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7754 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7755 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7756 7757 // Make sure the stack slot is also aligned for the register type. 7758 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7759 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7760 7761 // Perform the original store, only redirected to the stack slot. 7762 SDValue Store = DAG.getTruncStore( 7763 Chain, dl, Val, StackPtr, 7764 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7765 7766 EVT StackPtrVT = StackPtr.getValueType(); 7767 7768 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7769 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7770 SmallVector<SDValue, 8> Stores; 7771 unsigned Offset = 0; 7772 7773 // Do all but one copies using the full register width. 7774 for (unsigned i = 1; i < NumRegs; i++) { 7775 // Load one integer register's worth from the stack slot. 7776 SDValue Load = DAG.getLoad( 7777 RegVT, dl, Store, StackPtr, 7778 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7779 // Store it to the final location. Remember the store. 7780 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7781 ST->getPointerInfo().getWithOffset(Offset), 7782 ST->getOriginalAlign(), 7783 ST->getMemOperand()->getFlags())); 7784 // Increment the pointers. 7785 Offset += RegBytes; 7786 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7787 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7788 } 7789 7790 // The last store may be partial. Do a truncating store. On big-endian 7791 // machines this requires an extending load from the stack slot to ensure 7792 // that the bits are in the right place. 7793 EVT LoadMemVT = 7794 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7795 7796 // Load from the stack slot. 7797 SDValue Load = DAG.getExtLoad( 7798 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7799 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7800 7801 Stores.push_back( 7802 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7803 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7804 ST->getOriginalAlign(), 7805 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7806 // The order of the stores doesn't matter - say it with a TokenFactor. 7807 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7808 return Result; 7809 } 7810 7811 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7812 "Unaligned store of unknown type."); 7813 // Get the half-size VT 7814 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7815 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7816 unsigned IncrementSize = NumBits / 8; 7817 7818 // Divide the stored value in two parts. 7819 SDValue ShiftAmount = DAG.getConstant( 7820 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7821 SDValue Lo = Val; 7822 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7823 7824 // Store the two parts 7825 SDValue Store1, Store2; 7826 Store1 = DAG.getTruncStore(Chain, dl, 7827 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7828 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7829 ST->getMemOperand()->getFlags()); 7830 7831 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7832 Store2 = DAG.getTruncStore( 7833 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7834 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7835 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7836 7837 SDValue Result = 7838 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7839 return Result; 7840 } 7841 7842 SDValue 7843 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7844 const SDLoc &DL, EVT DataVT, 7845 SelectionDAG &DAG, 7846 bool IsCompressedMemory) const { 7847 SDValue Increment; 7848 EVT AddrVT = Addr.getValueType(); 7849 EVT MaskVT = Mask.getValueType(); 7850 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7851 "Incompatible types of Data and Mask"); 7852 if (IsCompressedMemory) { 7853 if (DataVT.isScalableVector()) 7854 report_fatal_error( 7855 "Cannot currently handle compressed memory with scalable vectors"); 7856 // Incrementing the pointer according to number of '1's in the mask. 7857 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7858 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7859 if (MaskIntVT.getSizeInBits() < 32) { 7860 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7861 MaskIntVT = MVT::i32; 7862 } 7863 7864 // Count '1's with POPCNT. 7865 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7866 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7867 // Scale is an element size in bytes. 7868 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7869 AddrVT); 7870 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7871 } else if (DataVT.isScalableVector()) { 7872 Increment = DAG.getVScale(DL, AddrVT, 7873 APInt(AddrVT.getFixedSizeInBits(), 7874 DataVT.getStoreSize().getKnownMinSize())); 7875 } else 7876 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7877 7878 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7879 } 7880 7881 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 7882 EVT VecVT, const SDLoc &dl, 7883 ElementCount SubEC) { 7884 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 7885 "Cannot index a scalable vector within a fixed-width vector"); 7886 7887 unsigned NElts = VecVT.getVectorMinNumElements(); 7888 unsigned NumSubElts = SubEC.getKnownMinValue(); 7889 EVT IdxVT = Idx.getValueType(); 7890 7891 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 7892 // If this is a constant index and we know the value plus the number of the 7893 // elements in the subvector minus one is less than the minimum number of 7894 // elements then it's safe to return Idx. 7895 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 7896 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 7897 return Idx; 7898 SDValue VS = 7899 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 7900 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 7901 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 7902 DAG.getConstant(NumSubElts, dl, IdxVT)); 7903 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7904 } 7905 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 7906 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 7907 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7908 DAG.getConstant(Imm, dl, IdxVT)); 7909 } 7910 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 7911 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7912 DAG.getConstant(MaxIndex, dl, IdxVT)); 7913 } 7914 7915 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7916 SDValue VecPtr, EVT VecVT, 7917 SDValue Index) const { 7918 return getVectorSubVecPointer( 7919 DAG, VecPtr, VecVT, 7920 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 7921 Index); 7922 } 7923 7924 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 7925 SDValue VecPtr, EVT VecVT, 7926 EVT SubVecVT, 7927 SDValue Index) const { 7928 SDLoc dl(Index); 7929 // Make sure the index type is big enough to compute in. 7930 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7931 7932 EVT EltVT = VecVT.getVectorElementType(); 7933 7934 // Calculate the element offset and add it to the pointer. 7935 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7936 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7937 "Converting bits to bytes lost precision"); 7938 assert(SubVecVT.getVectorElementType() == EltVT && 7939 "Sub-vector must be a vector with matching element type"); 7940 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 7941 SubVecVT.getVectorElementCount()); 7942 7943 EVT IdxVT = Index.getValueType(); 7944 if (SubVecVT.isScalableVector()) 7945 Index = 7946 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7947 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 7948 7949 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7950 DAG.getConstant(EltSize, dl, IdxVT)); 7951 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7952 } 7953 7954 //===----------------------------------------------------------------------===// 7955 // Implementation of Emulated TLS Model 7956 //===----------------------------------------------------------------------===// 7957 7958 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7959 SelectionDAG &DAG) const { 7960 // Access to address of TLS varialbe xyz is lowered to a function call: 7961 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7962 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7963 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7964 SDLoc dl(GA); 7965 7966 ArgListTy Args; 7967 ArgListEntry Entry; 7968 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7969 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7970 StringRef EmuTlsVarName(NameString); 7971 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7972 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7973 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7974 Entry.Ty = VoidPtrType; 7975 Args.push_back(Entry); 7976 7977 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7978 7979 TargetLowering::CallLoweringInfo CLI(DAG); 7980 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7981 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7982 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7983 7984 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7985 // At last for X86 targets, maybe good for other targets too? 7986 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7987 MFI.setAdjustsStack(true); // Is this only for X86 target? 7988 MFI.setHasCalls(true); 7989 7990 assert((GA->getOffset() == 0) && 7991 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7992 return CallResult.first; 7993 } 7994 7995 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7996 SelectionDAG &DAG) const { 7997 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7998 if (!isCtlzFast()) 7999 return SDValue(); 8000 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8001 SDLoc dl(Op); 8002 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8003 if (C->isZero() && CC == ISD::SETEQ) { 8004 EVT VT = Op.getOperand(0).getValueType(); 8005 SDValue Zext = Op.getOperand(0); 8006 if (VT.bitsLT(MVT::i32)) { 8007 VT = MVT::i32; 8008 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8009 } 8010 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8011 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8012 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8013 DAG.getConstant(Log2b, dl, MVT::i32)); 8014 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8015 } 8016 } 8017 return SDValue(); 8018 } 8019 8020 // Convert redundant addressing modes (e.g. scaling is redundant 8021 // when accessing bytes). 8022 ISD::MemIndexType 8023 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 8024 SDValue Offsets) const { 8025 bool IsScaledIndex = 8026 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 8027 bool IsSignedIndex = 8028 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 8029 8030 // Scaling is unimportant for bytes, canonicalize to unscaled. 8031 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) 8032 return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 8033 8034 return IndexType; 8035 } 8036 8037 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8038 SDValue Op0 = Node->getOperand(0); 8039 SDValue Op1 = Node->getOperand(1); 8040 EVT VT = Op0.getValueType(); 8041 unsigned Opcode = Node->getOpcode(); 8042 SDLoc DL(Node); 8043 8044 // umin(x,y) -> sub(x,usubsat(x,y)) 8045 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8046 isOperationLegal(ISD::USUBSAT, VT)) { 8047 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8048 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8049 } 8050 8051 // umax(x,y) -> add(x,usubsat(y,x)) 8052 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8053 isOperationLegal(ISD::USUBSAT, VT)) { 8054 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8055 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8056 } 8057 8058 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8059 ISD::CondCode CC; 8060 switch (Opcode) { 8061 default: llvm_unreachable("How did we get here?"); 8062 case ISD::SMAX: CC = ISD::SETGT; break; 8063 case ISD::SMIN: CC = ISD::SETLT; break; 8064 case ISD::UMAX: CC = ISD::SETUGT; break; 8065 case ISD::UMIN: CC = ISD::SETULT; break; 8066 } 8067 8068 // FIXME: Should really try to split the vector in case it's legal on a 8069 // subvector. 8070 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8071 return DAG.UnrollVectorOp(Node); 8072 8073 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8074 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8075 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8076 } 8077 8078 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8079 unsigned Opcode = Node->getOpcode(); 8080 SDValue LHS = Node->getOperand(0); 8081 SDValue RHS = Node->getOperand(1); 8082 EVT VT = LHS.getValueType(); 8083 SDLoc dl(Node); 8084 8085 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8086 assert(VT.isInteger() && "Expected operands to be integers"); 8087 8088 // usub.sat(a, b) -> umax(a, b) - b 8089 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8090 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8091 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8092 } 8093 8094 // uadd.sat(a, b) -> umin(a, ~b) + b 8095 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8096 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8097 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8098 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8099 } 8100 8101 unsigned OverflowOp; 8102 switch (Opcode) { 8103 case ISD::SADDSAT: 8104 OverflowOp = ISD::SADDO; 8105 break; 8106 case ISD::UADDSAT: 8107 OverflowOp = ISD::UADDO; 8108 break; 8109 case ISD::SSUBSAT: 8110 OverflowOp = ISD::SSUBO; 8111 break; 8112 case ISD::USUBSAT: 8113 OverflowOp = ISD::USUBO; 8114 break; 8115 default: 8116 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8117 "addition or subtraction node."); 8118 } 8119 8120 // FIXME: Should really try to split the vector in case it's legal on a 8121 // subvector. 8122 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8123 return DAG.UnrollVectorOp(Node); 8124 8125 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8126 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8127 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8128 SDValue SumDiff = Result.getValue(0); 8129 SDValue Overflow = Result.getValue(1); 8130 SDValue Zero = DAG.getConstant(0, dl, VT); 8131 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8132 8133 if (Opcode == ISD::UADDSAT) { 8134 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8135 // (LHS + RHS) | OverflowMask 8136 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8137 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8138 } 8139 // Overflow ? 0xffff.... : (LHS + RHS) 8140 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8141 } 8142 8143 if (Opcode == ISD::USUBSAT) { 8144 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8145 // (LHS - RHS) & ~OverflowMask 8146 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8147 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8148 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8149 } 8150 // Overflow ? 0 : (LHS - RHS) 8151 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8152 } 8153 8154 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8155 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8156 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8157 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8158 DAG.getConstant(BitWidth - 1, dl, VT)); 8159 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8160 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8161 } 8162 8163 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8164 unsigned Opcode = Node->getOpcode(); 8165 bool IsSigned = Opcode == ISD::SSHLSAT; 8166 SDValue LHS = Node->getOperand(0); 8167 SDValue RHS = Node->getOperand(1); 8168 EVT VT = LHS.getValueType(); 8169 SDLoc dl(Node); 8170 8171 assert((Node->getOpcode() == ISD::SSHLSAT || 8172 Node->getOpcode() == ISD::USHLSAT) && 8173 "Expected a SHLSAT opcode"); 8174 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8175 assert(VT.isInteger() && "Expected operands to be integers"); 8176 8177 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8178 8179 unsigned BW = VT.getScalarSizeInBits(); 8180 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8181 SDValue Orig = 8182 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8183 8184 SDValue SatVal; 8185 if (IsSigned) { 8186 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8187 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8188 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8189 SatMin, SatMax, ISD::SETLT); 8190 } else { 8191 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8192 } 8193 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8194 8195 return Result; 8196 } 8197 8198 SDValue 8199 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8200 assert((Node->getOpcode() == ISD::SMULFIX || 8201 Node->getOpcode() == ISD::UMULFIX || 8202 Node->getOpcode() == ISD::SMULFIXSAT || 8203 Node->getOpcode() == ISD::UMULFIXSAT) && 8204 "Expected a fixed point multiplication opcode"); 8205 8206 SDLoc dl(Node); 8207 SDValue LHS = Node->getOperand(0); 8208 SDValue RHS = Node->getOperand(1); 8209 EVT VT = LHS.getValueType(); 8210 unsigned Scale = Node->getConstantOperandVal(2); 8211 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8212 Node->getOpcode() == ISD::UMULFIXSAT); 8213 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8214 Node->getOpcode() == ISD::SMULFIXSAT); 8215 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8216 unsigned VTSize = VT.getScalarSizeInBits(); 8217 8218 if (!Scale) { 8219 // [us]mul.fix(a, b, 0) -> mul(a, b) 8220 if (!Saturating) { 8221 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8222 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8223 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8224 SDValue Result = 8225 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8226 SDValue Product = Result.getValue(0); 8227 SDValue Overflow = Result.getValue(1); 8228 SDValue Zero = DAG.getConstant(0, dl, VT); 8229 8230 APInt MinVal = APInt::getSignedMinValue(VTSize); 8231 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8232 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8233 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8234 // Xor the inputs, if resulting sign bit is 0 the product will be 8235 // positive, else negative. 8236 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8237 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8238 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8239 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8240 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8241 SDValue Result = 8242 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8243 SDValue Product = Result.getValue(0); 8244 SDValue Overflow = Result.getValue(1); 8245 8246 APInt MaxVal = APInt::getMaxValue(VTSize); 8247 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8248 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8249 } 8250 } 8251 8252 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8253 "Expected scale to be less than the number of bits if signed or at " 8254 "most the number of bits if unsigned."); 8255 assert(LHS.getValueType() == RHS.getValueType() && 8256 "Expected both operands to be the same type"); 8257 8258 // Get the upper and lower bits of the result. 8259 SDValue Lo, Hi; 8260 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8261 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8262 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8263 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8264 Lo = Result.getValue(0); 8265 Hi = Result.getValue(1); 8266 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8267 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8268 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8269 } else if (VT.isVector()) { 8270 return SDValue(); 8271 } else { 8272 report_fatal_error("Unable to expand fixed point multiplication."); 8273 } 8274 8275 if (Scale == VTSize) 8276 // Result is just the top half since we'd be shifting by the width of the 8277 // operand. Overflow impossible so this works for both UMULFIX and 8278 // UMULFIXSAT. 8279 return Hi; 8280 8281 // The result will need to be shifted right by the scale since both operands 8282 // are scaled. The result is given to us in 2 halves, so we only want part of 8283 // both in the result. 8284 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8285 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8286 DAG.getConstant(Scale, dl, ShiftTy)); 8287 if (!Saturating) 8288 return Result; 8289 8290 if (!Signed) { 8291 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8292 // widened multiplication) aren't all zeroes. 8293 8294 // Saturate to max if ((Hi >> Scale) != 0), 8295 // which is the same as if (Hi > ((1 << Scale) - 1)) 8296 APInt MaxVal = APInt::getMaxValue(VTSize); 8297 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8298 dl, VT); 8299 Result = DAG.getSelectCC(dl, Hi, LowMask, 8300 DAG.getConstant(MaxVal, dl, VT), Result, 8301 ISD::SETUGT); 8302 8303 return Result; 8304 } 8305 8306 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8307 // widened multiplication) aren't all ones or all zeroes. 8308 8309 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8310 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8311 8312 if (Scale == 0) { 8313 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8314 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8315 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8316 // Saturated to SatMin if wide product is negative, and SatMax if wide 8317 // product is positive ... 8318 SDValue Zero = DAG.getConstant(0, dl, VT); 8319 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8320 ISD::SETLT); 8321 // ... but only if we overflowed. 8322 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8323 } 8324 8325 // We handled Scale==0 above so all the bits to examine is in Hi. 8326 8327 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8328 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8329 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8330 dl, VT); 8331 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8332 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8333 // which is the same as if (HI < (-1 << (Scale - 1)) 8334 SDValue HighMask = 8335 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8336 dl, VT); 8337 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8338 return Result; 8339 } 8340 8341 SDValue 8342 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8343 SDValue LHS, SDValue RHS, 8344 unsigned Scale, SelectionDAG &DAG) const { 8345 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8346 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8347 "Expected a fixed point division opcode"); 8348 8349 EVT VT = LHS.getValueType(); 8350 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8351 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8352 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8353 8354 // If there is enough room in the type to upscale the LHS or downscale the 8355 // RHS before the division, we can perform it in this type without having to 8356 // resize. For signed operations, the LHS headroom is the number of 8357 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8358 // The headroom for the RHS is the number of trailing zeroes. 8359 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8360 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8361 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8362 8363 // For signed saturating operations, we need to be able to detect true integer 8364 // division overflow; that is, when you have MIN / -EPS. However, this 8365 // is undefined behavior and if we emit divisions that could take such 8366 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8367 // example). 8368 // Avoid this by requiring an extra bit so that we never get this case. 8369 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8370 // signed saturating division, we need to emit a whopping 32-bit division. 8371 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8372 return SDValue(); 8373 8374 unsigned LHSShift = std::min(LHSLead, Scale); 8375 unsigned RHSShift = Scale - LHSShift; 8376 8377 // At this point, we know that if we shift the LHS up by LHSShift and the 8378 // RHS down by RHSShift, we can emit a regular division with a final scaling 8379 // factor of Scale. 8380 8381 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8382 if (LHSShift) 8383 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8384 DAG.getConstant(LHSShift, dl, ShiftTy)); 8385 if (RHSShift) 8386 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8387 DAG.getConstant(RHSShift, dl, ShiftTy)); 8388 8389 SDValue Quot; 8390 if (Signed) { 8391 // For signed operations, if the resulting quotient is negative and the 8392 // remainder is nonzero, subtract 1 from the quotient to round towards 8393 // negative infinity. 8394 SDValue Rem; 8395 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8396 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8397 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8398 if (isTypeLegal(VT) && 8399 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8400 Quot = DAG.getNode(ISD::SDIVREM, dl, 8401 DAG.getVTList(VT, VT), 8402 LHS, RHS); 8403 Rem = Quot.getValue(1); 8404 Quot = Quot.getValue(0); 8405 } else { 8406 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8407 LHS, RHS); 8408 Rem = DAG.getNode(ISD::SREM, dl, VT, 8409 LHS, RHS); 8410 } 8411 SDValue Zero = DAG.getConstant(0, dl, VT); 8412 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8413 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8414 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8415 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8416 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8417 DAG.getConstant(1, dl, VT)); 8418 Quot = DAG.getSelect(dl, VT, 8419 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8420 Sub1, Quot); 8421 } else 8422 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8423 LHS, RHS); 8424 8425 return Quot; 8426 } 8427 8428 void TargetLowering::expandUADDSUBO( 8429 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8430 SDLoc dl(Node); 8431 SDValue LHS = Node->getOperand(0); 8432 SDValue RHS = Node->getOperand(1); 8433 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8434 8435 // If ADD/SUBCARRY is legal, use that instead. 8436 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8437 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8438 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8439 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8440 { LHS, RHS, CarryIn }); 8441 Result = SDValue(NodeCarry.getNode(), 0); 8442 Overflow = SDValue(NodeCarry.getNode(), 1); 8443 return; 8444 } 8445 8446 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8447 LHS.getValueType(), LHS, RHS); 8448 8449 EVT ResultType = Node->getValueType(1); 8450 EVT SetCCType = getSetCCResultType( 8451 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8452 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8453 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8454 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8455 } 8456 8457 void TargetLowering::expandSADDSUBO( 8458 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8459 SDLoc dl(Node); 8460 SDValue LHS = Node->getOperand(0); 8461 SDValue RHS = Node->getOperand(1); 8462 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8463 8464 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8465 LHS.getValueType(), LHS, RHS); 8466 8467 EVT ResultType = Node->getValueType(1); 8468 EVT OType = getSetCCResultType( 8469 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8470 8471 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8472 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8473 if (isOperationLegal(OpcSat, LHS.getValueType())) { 8474 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8475 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8476 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8477 return; 8478 } 8479 8480 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8481 8482 // For an addition, the result should be less than one of the operands (LHS) 8483 // if and only if the other operand (RHS) is negative, otherwise there will 8484 // be overflow. 8485 // For a subtraction, the result should be less than one of the operands 8486 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8487 // otherwise there will be overflow. 8488 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8489 SDValue ConditionRHS = 8490 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8491 8492 Overflow = DAG.getBoolExtOrTrunc( 8493 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8494 ResultType, ResultType); 8495 } 8496 8497 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8498 SDValue &Overflow, SelectionDAG &DAG) const { 8499 SDLoc dl(Node); 8500 EVT VT = Node->getValueType(0); 8501 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8502 SDValue LHS = Node->getOperand(0); 8503 SDValue RHS = Node->getOperand(1); 8504 bool isSigned = Node->getOpcode() == ISD::SMULO; 8505 8506 // For power-of-two multiplications we can use a simpler shift expansion. 8507 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8508 const APInt &C = RHSC->getAPIntValue(); 8509 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8510 if (C.isPowerOf2()) { 8511 // smulo(x, signed_min) is same as umulo(x, signed_min). 8512 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8513 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8514 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8515 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8516 Overflow = DAG.getSetCC(dl, SetCCVT, 8517 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8518 dl, VT, Result, ShiftAmt), 8519 LHS, ISD::SETNE); 8520 return true; 8521 } 8522 } 8523 8524 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8525 if (VT.isVector()) 8526 WideVT = 8527 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 8528 8529 SDValue BottomHalf; 8530 SDValue TopHalf; 8531 static const unsigned Ops[2][3] = 8532 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8533 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8534 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8535 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8536 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8537 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8538 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8539 RHS); 8540 TopHalf = BottomHalf.getValue(1); 8541 } else if (isTypeLegal(WideVT)) { 8542 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8543 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8544 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8545 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8546 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8547 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8548 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8549 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8550 } else { 8551 if (VT.isVector()) 8552 return false; 8553 8554 // We can fall back to a libcall with an illegal type for the MUL if we 8555 // have a libcall big enough. 8556 // Also, we can fall back to a division in some cases, but that's a big 8557 // performance hit in the general case. 8558 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8559 if (WideVT == MVT::i16) 8560 LC = RTLIB::MUL_I16; 8561 else if (WideVT == MVT::i32) 8562 LC = RTLIB::MUL_I32; 8563 else if (WideVT == MVT::i64) 8564 LC = RTLIB::MUL_I64; 8565 else if (WideVT == MVT::i128) 8566 LC = RTLIB::MUL_I128; 8567 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8568 8569 SDValue HiLHS; 8570 SDValue HiRHS; 8571 if (isSigned) { 8572 // The high part is obtained by SRA'ing all but one of the bits of low 8573 // part. 8574 unsigned LoSize = VT.getFixedSizeInBits(); 8575 HiLHS = 8576 DAG.getNode(ISD::SRA, dl, VT, LHS, 8577 DAG.getConstant(LoSize - 1, dl, 8578 getPointerTy(DAG.getDataLayout()))); 8579 HiRHS = 8580 DAG.getNode(ISD::SRA, dl, VT, RHS, 8581 DAG.getConstant(LoSize - 1, dl, 8582 getPointerTy(DAG.getDataLayout()))); 8583 } else { 8584 HiLHS = DAG.getConstant(0, dl, VT); 8585 HiRHS = DAG.getConstant(0, dl, VT); 8586 } 8587 8588 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8589 // pre-lowered to the correct types. This all depends upon WideVT not 8590 // being a legal type for the architecture and thus has to be split to 8591 // two arguments. 8592 SDValue Ret; 8593 TargetLowering::MakeLibCallOptions CallOptions; 8594 CallOptions.setSExt(isSigned); 8595 CallOptions.setIsPostTypeLegalization(true); 8596 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8597 // Halves of WideVT are packed into registers in different order 8598 // depending on platform endianness. This is usually handled by 8599 // the C calling convention, but we can't defer to it in 8600 // the legalizer. 8601 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8602 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8603 } else { 8604 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8605 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8606 } 8607 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8608 "Ret value is a collection of constituent nodes holding result."); 8609 if (DAG.getDataLayout().isLittleEndian()) { 8610 // Same as above. 8611 BottomHalf = Ret.getOperand(0); 8612 TopHalf = Ret.getOperand(1); 8613 } else { 8614 BottomHalf = Ret.getOperand(1); 8615 TopHalf = Ret.getOperand(0); 8616 } 8617 } 8618 8619 Result = BottomHalf; 8620 if (isSigned) { 8621 SDValue ShiftAmt = DAG.getConstant( 8622 VT.getScalarSizeInBits() - 1, dl, 8623 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8624 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8625 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8626 } else { 8627 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8628 DAG.getConstant(0, dl, VT), ISD::SETNE); 8629 } 8630 8631 // Truncate the result if SetCC returns a larger type than needed. 8632 EVT RType = Node->getValueType(1); 8633 if (RType.bitsLT(Overflow.getValueType())) 8634 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8635 8636 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8637 "Unexpected result type for S/UMULO legalization"); 8638 return true; 8639 } 8640 8641 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8642 SDLoc dl(Node); 8643 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8644 SDValue Op = Node->getOperand(0); 8645 EVT VT = Op.getValueType(); 8646 8647 if (VT.isScalableVector()) 8648 report_fatal_error( 8649 "Expanding reductions for scalable vectors is undefined."); 8650 8651 // Try to use a shuffle reduction for power of two vectors. 8652 if (VT.isPow2VectorType()) { 8653 while (VT.getVectorNumElements() > 1) { 8654 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8655 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8656 break; 8657 8658 SDValue Lo, Hi; 8659 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8660 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8661 VT = HalfVT; 8662 } 8663 } 8664 8665 EVT EltVT = VT.getVectorElementType(); 8666 unsigned NumElts = VT.getVectorNumElements(); 8667 8668 SmallVector<SDValue, 8> Ops; 8669 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8670 8671 SDValue Res = Ops[0]; 8672 for (unsigned i = 1; i < NumElts; i++) 8673 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8674 8675 // Result type may be wider than element type. 8676 if (EltVT != Node->getValueType(0)) 8677 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8678 return Res; 8679 } 8680 8681 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8682 SDLoc dl(Node); 8683 SDValue AccOp = Node->getOperand(0); 8684 SDValue VecOp = Node->getOperand(1); 8685 SDNodeFlags Flags = Node->getFlags(); 8686 8687 EVT VT = VecOp.getValueType(); 8688 EVT EltVT = VT.getVectorElementType(); 8689 8690 if (VT.isScalableVector()) 8691 report_fatal_error( 8692 "Expanding reductions for scalable vectors is undefined."); 8693 8694 unsigned NumElts = VT.getVectorNumElements(); 8695 8696 SmallVector<SDValue, 8> Ops; 8697 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8698 8699 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8700 8701 SDValue Res = AccOp; 8702 for (unsigned i = 0; i < NumElts; i++) 8703 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8704 8705 return Res; 8706 } 8707 8708 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8709 SelectionDAG &DAG) const { 8710 EVT VT = Node->getValueType(0); 8711 SDLoc dl(Node); 8712 bool isSigned = Node->getOpcode() == ISD::SREM; 8713 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8714 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8715 SDValue Dividend = Node->getOperand(0); 8716 SDValue Divisor = Node->getOperand(1); 8717 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8718 SDVTList VTs = DAG.getVTList(VT, VT); 8719 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8720 return true; 8721 } 8722 if (isOperationLegalOrCustom(DivOpc, VT)) { 8723 // X % Y -> X-X/Y*Y 8724 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8725 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8726 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8727 return true; 8728 } 8729 return false; 8730 } 8731 8732 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8733 SelectionDAG &DAG) const { 8734 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8735 SDLoc dl(SDValue(Node, 0)); 8736 SDValue Src = Node->getOperand(0); 8737 8738 // DstVT is the result type, while SatVT is the size to which we saturate 8739 EVT SrcVT = Src.getValueType(); 8740 EVT DstVT = Node->getValueType(0); 8741 8742 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8743 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8744 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8745 assert(SatWidth <= DstWidth && 8746 "Expected saturation width smaller than result width"); 8747 8748 // Determine minimum and maximum integer values and their corresponding 8749 // floating-point values. 8750 APInt MinInt, MaxInt; 8751 if (IsSigned) { 8752 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8753 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8754 } else { 8755 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8756 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8757 } 8758 8759 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8760 // libcall emission cannot handle this. Large result types will fail. 8761 if (SrcVT == MVT::f16) { 8762 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8763 SrcVT = Src.getValueType(); 8764 } 8765 8766 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8767 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8768 8769 APFloat::opStatus MinStatus = 8770 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8771 APFloat::opStatus MaxStatus = 8772 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8773 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8774 !(MaxStatus & APFloat::opStatus::opInexact); 8775 8776 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8777 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8778 8779 // If the integer bounds are exactly representable as floats and min/max are 8780 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8781 // of comparisons and selects. 8782 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8783 isOperationLegal(ISD::FMAXNUM, SrcVT); 8784 if (AreExactFloatBounds && MinMaxLegal) { 8785 SDValue Clamped = Src; 8786 8787 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8788 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8789 // Clamp by MaxFloat from above. NaN cannot occur. 8790 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8791 // Convert clamped value to integer. 8792 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8793 dl, DstVT, Clamped); 8794 8795 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8796 // which will cast to zero. 8797 if (!IsSigned) 8798 return FpToInt; 8799 8800 // Otherwise, select 0 if Src is NaN. 8801 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8802 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8803 ISD::CondCode::SETUO); 8804 } 8805 8806 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8807 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8808 8809 // Result of direct conversion. The assumption here is that the operation is 8810 // non-trapping and it's fine to apply it to an out-of-range value if we 8811 // select it away later. 8812 SDValue FpToInt = 8813 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8814 8815 SDValue Select = FpToInt; 8816 8817 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8818 // MinInt if Src is NaN. 8819 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8820 ISD::CondCode::SETULT); 8821 // If Src OGT MaxFloat, select MaxInt. 8822 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8823 ISD::CondCode::SETOGT); 8824 8825 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8826 // is already zero. 8827 if (!IsSigned) 8828 return Select; 8829 8830 // Otherwise, select 0 if Src is NaN. 8831 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8832 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8833 } 8834 8835 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8836 SelectionDAG &DAG) const { 8837 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8838 assert(Node->getValueType(0).isScalableVector() && 8839 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8840 8841 EVT VT = Node->getValueType(0); 8842 SDValue V1 = Node->getOperand(0); 8843 SDValue V2 = Node->getOperand(1); 8844 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8845 SDLoc DL(Node); 8846 8847 // Expand through memory thusly: 8848 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8849 // Store V1, Ptr 8850 // Store V2, Ptr + sizeof(V1) 8851 // If (Imm < 0) 8852 // TrailingElts = -Imm 8853 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8854 // else 8855 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8856 // Res = Load Ptr 8857 8858 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8859 8860 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8861 VT.getVectorElementCount() * 2); 8862 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8863 EVT PtrVT = StackPtr.getValueType(); 8864 auto &MF = DAG.getMachineFunction(); 8865 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8866 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8867 8868 // Store the lo part of CONCAT_VECTORS(V1, V2) 8869 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8870 // Store the hi part of CONCAT_VECTORS(V1, V2) 8871 SDValue OffsetToV2 = DAG.getVScale( 8872 DL, PtrVT, 8873 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8874 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8875 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8876 8877 if (Imm >= 0) { 8878 // Load back the required element. getVectorElementPointer takes care of 8879 // clamping the index if it's out-of-bounds. 8880 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8881 // Load the spliced result 8882 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8883 MachinePointerInfo::getUnknownStack(MF)); 8884 } 8885 8886 uint64_t TrailingElts = -Imm; 8887 8888 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8889 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8890 SDValue TrailingBytes = 8891 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8892 8893 if (TrailingElts > VT.getVectorMinNumElements()) { 8894 SDValue VLBytes = DAG.getVScale( 8895 DL, PtrVT, 8896 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8897 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8898 } 8899 8900 // Calculate the start address of the spliced result. 8901 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8902 8903 // Load the spliced result 8904 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8905 MachinePointerInfo::getUnknownStack(MF)); 8906 } 8907 8908 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8909 SDValue &LHS, SDValue &RHS, 8910 SDValue &CC, bool &NeedInvert, 8911 const SDLoc &dl, SDValue &Chain, 8912 bool IsSignaling) const { 8913 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8914 MVT OpVT = LHS.getSimpleValueType(); 8915 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8916 NeedInvert = false; 8917 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8918 default: 8919 llvm_unreachable("Unknown condition code action!"); 8920 case TargetLowering::Legal: 8921 // Nothing to do. 8922 break; 8923 case TargetLowering::Expand: { 8924 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8925 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8926 std::swap(LHS, RHS); 8927 CC = DAG.getCondCode(InvCC); 8928 return true; 8929 } 8930 // Swapping operands didn't work. Try inverting the condition. 8931 bool NeedSwap = false; 8932 InvCC = getSetCCInverse(CCCode, OpVT); 8933 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8934 // If inverting the condition is not enough, try swapping operands 8935 // on top of it. 8936 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8937 NeedSwap = true; 8938 } 8939 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8940 CC = DAG.getCondCode(InvCC); 8941 NeedInvert = true; 8942 if (NeedSwap) 8943 std::swap(LHS, RHS); 8944 return true; 8945 } 8946 8947 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8948 unsigned Opc = 0; 8949 switch (CCCode) { 8950 default: 8951 llvm_unreachable("Don't know how to expand this condition!"); 8952 case ISD::SETUO: 8953 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8954 CC1 = ISD::SETUNE; 8955 CC2 = ISD::SETUNE; 8956 Opc = ISD::OR; 8957 break; 8958 } 8959 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8960 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 8961 NeedInvert = true; 8962 LLVM_FALLTHROUGH; 8963 case ISD::SETO: 8964 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8965 "If SETO is expanded, SETOEQ must be legal!"); 8966 CC1 = ISD::SETOEQ; 8967 CC2 = ISD::SETOEQ; 8968 Opc = ISD::AND; 8969 break; 8970 case ISD::SETONE: 8971 case ISD::SETUEQ: 8972 // If the SETUO or SETO CC isn't legal, we might be able to use 8973 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 8974 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 8975 // the operands. 8976 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8977 if (!TLI.isCondCodeLegal(CC2, OpVT) && 8978 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 8979 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 8980 CC1 = ISD::SETOGT; 8981 CC2 = ISD::SETOLT; 8982 Opc = ISD::OR; 8983 NeedInvert = ((unsigned)CCCode & 0x8U); 8984 break; 8985 } 8986 LLVM_FALLTHROUGH; 8987 case ISD::SETOEQ: 8988 case ISD::SETOGT: 8989 case ISD::SETOGE: 8990 case ISD::SETOLT: 8991 case ISD::SETOLE: 8992 case ISD::SETUNE: 8993 case ISD::SETUGT: 8994 case ISD::SETUGE: 8995 case ISD::SETULT: 8996 case ISD::SETULE: 8997 // If we are floating point, assign and break, otherwise fall through. 8998 if (!OpVT.isInteger()) { 8999 // We can use the 4th bit to tell if we are the unordered 9000 // or ordered version of the opcode. 9001 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9002 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9003 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9004 break; 9005 } 9006 // Fallthrough if we are unsigned integer. 9007 LLVM_FALLTHROUGH; 9008 case ISD::SETLE: 9009 case ISD::SETGT: 9010 case ISD::SETGE: 9011 case ISD::SETLT: 9012 case ISD::SETNE: 9013 case ISD::SETEQ: 9014 // If all combinations of inverting the condition and swapping operands 9015 // didn't work then we have no means to expand the condition. 9016 llvm_unreachable("Don't know how to expand this condition!"); 9017 } 9018 9019 SDValue SetCC1, SetCC2; 9020 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9021 // If we aren't the ordered or unorder operation, 9022 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9023 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9024 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9025 } else { 9026 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9027 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9028 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9029 } 9030 if (Chain) 9031 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9032 SetCC2.getValue(1)); 9033 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9034 RHS = SDValue(); 9035 CC = SDValue(); 9036 return true; 9037 } 9038 } 9039 return false; 9040 } 9041