1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/CodeGenCommonISel.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineJumpTableInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore following attributes because they don't affect the 61 // call sequence. 62 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 63 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 64 Attribute::DereferenceableOrNull, Attribute::NoAlias, 65 Attribute::NonNull, Attribute::NoUndef}) 66 CallerAttrs.removeAttribute(Attr); 67 68 if (CallerAttrs.hasAttributes()) 69 return false; 70 71 // It's not safe to eliminate the sign / zero extension of the return value. 72 if (CallerAttrs.contains(Attribute::ZExt) || 73 CallerAttrs.contains(Attribute::SExt)) 74 return false; 75 76 // Check if the only use is a function return node. 77 return isUsedByReturnOnly(Node, Chain); 78 } 79 80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 81 const uint32_t *CallerPreservedMask, 82 const SmallVectorImpl<CCValAssign> &ArgLocs, 83 const SmallVectorImpl<SDValue> &OutVals) const { 84 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 85 const CCValAssign &ArgLoc = ArgLocs[I]; 86 if (!ArgLoc.isRegLoc()) 87 continue; 88 MCRegister Reg = ArgLoc.getLocReg(); 89 // Only look at callee saved registers. 90 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 91 continue; 92 // Check that we pass the value used for the caller. 93 // (We look for a CopyFromReg reading a virtual register that is used 94 // for the function live-in value of register Reg) 95 SDValue Value = OutVals[I]; 96 if (Value->getOpcode() == ISD::AssertZext) 97 Value = Value.getOperand(0); 98 if (Value->getOpcode() != ISD::CopyFromReg) 99 return false; 100 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 101 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 102 return false; 103 } 104 return true; 105 } 106 107 /// Set CallLoweringInfo attribute flags based on a call instruction 108 /// and called function attributes. 109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 110 unsigned ArgIdx) { 111 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 112 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 113 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 114 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 115 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 116 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 117 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 118 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 119 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 120 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 121 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 122 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 123 Alignment = Call->getParamStackAlign(ArgIdx); 124 IndirectType = nullptr; 125 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 126 "multiple ABI attributes?"); 127 if (IsByVal) { 128 IndirectType = Call->getParamByValType(ArgIdx); 129 if (!Alignment) 130 Alignment = Call->getParamAlign(ArgIdx); 131 } 132 if (IsPreallocated) 133 IndirectType = Call->getParamPreallocatedType(ArgIdx); 134 if (IsInAlloca) 135 IndirectType = Call->getParamInAllocaType(ArgIdx); 136 if (IsSRet) 137 IndirectType = Call->getParamStructRetType(ArgIdx); 138 } 139 140 /// Generate a libcall taking the given operands as arguments and returning a 141 /// result of type RetVT. 142 std::pair<SDValue, SDValue> 143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 144 ArrayRef<SDValue> Ops, 145 MakeLibCallOptions CallOptions, 146 const SDLoc &dl, 147 SDValue InChain) const { 148 if (!InChain) 149 InChain = DAG.getEntryNode(); 150 151 TargetLowering::ArgListTy Args; 152 Args.reserve(Ops.size()); 153 154 TargetLowering::ArgListEntry Entry; 155 for (unsigned i = 0; i < Ops.size(); ++i) { 156 SDValue NewOp = Ops[i]; 157 Entry.Node = NewOp; 158 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 159 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 160 CallOptions.IsSExt); 161 Entry.IsZExt = !Entry.IsSExt; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 165 Entry.IsSExt = Entry.IsZExt = false; 166 } 167 Args.push_back(Entry); 168 } 169 170 if (LC == RTLIB::UNKNOWN_LIBCALL) 171 report_fatal_error("Unsupported library call operation!"); 172 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 173 getPointerTy(DAG.getDataLayout())); 174 175 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 176 TargetLowering::CallLoweringInfo CLI(DAG); 177 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 178 bool zeroExtend = !signExtend; 179 180 if (CallOptions.IsSoften && 181 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 182 signExtend = zeroExtend = false; 183 } 184 185 CLI.setDebugLoc(dl) 186 .setChain(InChain) 187 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 188 .setNoReturn(CallOptions.DoesNotReturn) 189 .setDiscardResult(!CallOptions.IsReturnValueUsed) 190 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 191 .setSExtResult(signExtend) 192 .setZExtResult(zeroExtend); 193 return LowerCallTo(CLI); 194 } 195 196 bool TargetLowering::findOptimalMemOpLowering( 197 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 198 unsigned SrcAS, const AttributeList &FuncAttributes) const { 199 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() && 200 Op.getSrcAlign() < Op.getDstAlign()) 201 return false; 202 203 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 204 205 if (VT == MVT::Other) { 206 // Use the largest integer type whose alignment constraints are satisfied. 207 // We only need to check DstAlign here as SrcAlign is always greater or 208 // equal to DstAlign (or zero). 209 VT = MVT::i64; 210 if (Op.isFixedDstAlign()) 211 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 212 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 213 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 214 assert(VT.isInteger()); 215 216 // Find the largest legal integer type. 217 MVT LVT = MVT::i64; 218 while (!isTypeLegal(LVT)) 219 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 220 assert(LVT.isInteger()); 221 222 // If the type we've chosen is larger than the largest legal integer type 223 // then use that instead. 224 if (VT.bitsGT(LVT)) 225 VT = LVT; 226 } 227 228 unsigned NumMemOps = 0; 229 uint64_t Size = Op.size(); 230 while (Size) { 231 unsigned VTSize = VT.getSizeInBits() / 8; 232 while (VTSize > Size) { 233 // For now, only use non-vector load / store's for the left-over pieces. 234 EVT NewVT = VT; 235 unsigned NewVTSize; 236 237 bool Found = false; 238 if (VT.isVector() || VT.isFloatingPoint()) { 239 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 240 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 241 isSafeMemOpType(NewVT.getSimpleVT())) 242 Found = true; 243 else if (NewVT == MVT::i64 && 244 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 245 isSafeMemOpType(MVT::f64)) { 246 // i64 is usually not legal on 32-bit targets, but f64 may be. 247 NewVT = MVT::f64; 248 Found = true; 249 } 250 } 251 252 if (!Found) { 253 do { 254 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 255 if (NewVT == MVT::i8) 256 break; 257 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 258 } 259 NewVTSize = NewVT.getSizeInBits() / 8; 260 261 // If the new VT cannot cover all of the remaining bits, then consider 262 // issuing a (or a pair of) unaligned and overlapping load / store. 263 bool Fast; 264 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 265 allowsMisalignedMemoryAccesses( 266 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 267 MachineMemOperand::MONone, &Fast) && 268 Fast) 269 VTSize = Size; 270 else { 271 VT = NewVT; 272 VTSize = NewVTSize; 273 } 274 } 275 276 if (++NumMemOps > Limit) 277 return false; 278 279 MemOps.push_back(VT); 280 Size -= VTSize; 281 } 282 283 return true; 284 } 285 286 /// Soften the operands of a comparison. This code is shared among BR_CC, 287 /// SELECT_CC, and SETCC handlers. 288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 289 SDValue &NewLHS, SDValue &NewRHS, 290 ISD::CondCode &CCCode, 291 const SDLoc &dl, const SDValue OldLHS, 292 const SDValue OldRHS) const { 293 SDValue Chain; 294 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 295 OldRHS, Chain); 296 } 297 298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 299 SDValue &NewLHS, SDValue &NewRHS, 300 ISD::CondCode &CCCode, 301 const SDLoc &dl, const SDValue OldLHS, 302 const SDValue OldRHS, 303 SDValue &Chain, 304 bool IsSignaling) const { 305 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 306 // not supporting it. We can update this code when libgcc provides such 307 // functions. 308 309 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 310 && "Unsupported setcc type!"); 311 312 // Expand into one or more soft-fp libcall(s). 313 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 314 bool ShouldInvertCC = false; 315 switch (CCCode) { 316 case ISD::SETEQ: 317 case ISD::SETOEQ: 318 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 319 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 320 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 321 break; 322 case ISD::SETNE: 323 case ISD::SETUNE: 324 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 325 (VT == MVT::f64) ? RTLIB::UNE_F64 : 326 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 327 break; 328 case ISD::SETGE: 329 case ISD::SETOGE: 330 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 331 (VT == MVT::f64) ? RTLIB::OGE_F64 : 332 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 333 break; 334 case ISD::SETLT: 335 case ISD::SETOLT: 336 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 337 (VT == MVT::f64) ? RTLIB::OLT_F64 : 338 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 339 break; 340 case ISD::SETLE: 341 case ISD::SETOLE: 342 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 343 (VT == MVT::f64) ? RTLIB::OLE_F64 : 344 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 345 break; 346 case ISD::SETGT: 347 case ISD::SETOGT: 348 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 349 (VT == MVT::f64) ? RTLIB::OGT_F64 : 350 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 351 break; 352 case ISD::SETO: 353 ShouldInvertCC = true; 354 LLVM_FALLTHROUGH; 355 case ISD::SETUO: 356 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 357 (VT == MVT::f64) ? RTLIB::UO_F64 : 358 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 359 break; 360 case ISD::SETONE: 361 // SETONE = O && UNE 362 ShouldInvertCC = true; 363 LLVM_FALLTHROUGH; 364 case ISD::SETUEQ: 365 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 366 (VT == MVT::f64) ? RTLIB::UO_F64 : 367 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 368 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 369 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 370 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 371 break; 372 default: 373 // Invert CC for unordered comparisons 374 ShouldInvertCC = true; 375 switch (CCCode) { 376 case ISD::SETULT: 377 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 378 (VT == MVT::f64) ? RTLIB::OGE_F64 : 379 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 380 break; 381 case ISD::SETULE: 382 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 383 (VT == MVT::f64) ? RTLIB::OGT_F64 : 384 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 385 break; 386 case ISD::SETUGT: 387 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 388 (VT == MVT::f64) ? RTLIB::OLE_F64 : 389 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 390 break; 391 case ISD::SETUGE: 392 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 393 (VT == MVT::f64) ? RTLIB::OLT_F64 : 394 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 395 break; 396 default: llvm_unreachable("Do not know how to soften this setcc!"); 397 } 398 } 399 400 // Use the target specific return value for comparions lib calls. 401 EVT RetVT = getCmpLibcallReturnType(); 402 SDValue Ops[2] = {NewLHS, NewRHS}; 403 TargetLowering::MakeLibCallOptions CallOptions; 404 EVT OpsVT[2] = { OldLHS.getValueType(), 405 OldRHS.getValueType() }; 406 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 407 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 408 NewLHS = Call.first; 409 NewRHS = DAG.getConstant(0, dl, RetVT); 410 411 CCCode = getCmpLibcallCC(LC1); 412 if (ShouldInvertCC) { 413 assert(RetVT.isInteger()); 414 CCCode = getSetCCInverse(CCCode, RetVT); 415 } 416 417 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 418 // Update Chain. 419 Chain = Call.second; 420 } else { 421 EVT SetCCVT = 422 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 423 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 424 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 425 CCCode = getCmpLibcallCC(LC2); 426 if (ShouldInvertCC) 427 CCCode = getSetCCInverse(CCCode, RetVT); 428 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 429 if (Chain) 430 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 431 Call2.second); 432 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 433 Tmp.getValueType(), Tmp, NewLHS); 434 NewRHS = SDValue(); 435 } 436 } 437 438 /// Return the entry encoding for a jump table in the current function. The 439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 440 unsigned TargetLowering::getJumpTableEncoding() const { 441 // In non-pic modes, just use the address of a block. 442 if (!isPositionIndependent()) 443 return MachineJumpTableInfo::EK_BlockAddress; 444 445 // In PIC mode, if the target supports a GPRel32 directive, use it. 446 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 447 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 448 449 // Otherwise, use a label difference. 450 return MachineJumpTableInfo::EK_LabelDifference32; 451 } 452 453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 454 SelectionDAG &DAG) const { 455 // If our PIC model is GP relative, use the global offset table as the base. 456 unsigned JTEncoding = getJumpTableEncoding(); 457 458 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 459 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 460 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 461 462 return Table; 463 } 464 465 /// This returns the relocation base for the given PIC jumptable, the same as 466 /// getPICJumpTableRelocBase, but as an MCExpr. 467 const MCExpr * 468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 469 unsigned JTI,MCContext &Ctx) const{ 470 // The normal PIC reloc base is the label at the start of the jump table. 471 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 472 } 473 474 bool 475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 476 const TargetMachine &TM = getTargetMachine(); 477 const GlobalValue *GV = GA->getGlobal(); 478 479 // If the address is not even local to this DSO we will have to load it from 480 // a got and then add the offset. 481 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 482 return false; 483 484 // If the code is position independent we will have to add a base register. 485 if (isPositionIndependent()) 486 return false; 487 488 // Otherwise we can do it. 489 return true; 490 } 491 492 //===----------------------------------------------------------------------===// 493 // Optimization Methods 494 //===----------------------------------------------------------------------===// 495 496 /// If the specified instruction has a constant integer operand and there are 497 /// bits set in that constant that are not demanded, then clear those bits and 498 /// return true. 499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 500 const APInt &DemandedBits, 501 const APInt &DemandedElts, 502 TargetLoweringOpt &TLO) const { 503 SDLoc DL(Op); 504 unsigned Opcode = Op.getOpcode(); 505 506 // Do target-specific constant optimization. 507 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 508 return TLO.New.getNode(); 509 510 // FIXME: ISD::SELECT, ISD::SELECT_CC 511 switch (Opcode) { 512 default: 513 break; 514 case ISD::XOR: 515 case ISD::AND: 516 case ISD::OR: { 517 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 518 if (!Op1C || Op1C->isOpaque()) 519 return false; 520 521 // If this is a 'not' op, don't touch it because that's a canonical form. 522 const APInt &C = Op1C->getAPIntValue(); 523 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 524 return false; 525 526 if (!C.isSubsetOf(DemandedBits)) { 527 EVT VT = Op.getValueType(); 528 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 529 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 530 return TLO.CombineTo(Op, NewOp); 531 } 532 533 break; 534 } 535 } 536 537 return false; 538 } 539 540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 541 const APInt &DemandedBits, 542 TargetLoweringOpt &TLO) const { 543 EVT VT = Op.getValueType(); 544 APInt DemandedElts = VT.isVector() 545 ? APInt::getAllOnes(VT.getVectorNumElements()) 546 : APInt(1, 1); 547 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 548 } 549 550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 552 /// generalized for targets with other types of implicit widening casts. 553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 554 const APInt &Demanded, 555 TargetLoweringOpt &TLO) const { 556 assert(Op.getNumOperands() == 2 && 557 "ShrinkDemandedOp only supports binary operators!"); 558 assert(Op.getNode()->getNumValues() == 1 && 559 "ShrinkDemandedOp only supports nodes with one result!"); 560 561 SelectionDAG &DAG = TLO.DAG; 562 SDLoc dl(Op); 563 564 // Early return, as this function cannot handle vector types. 565 if (Op.getValueType().isVector()) 566 return false; 567 568 // Don't do this if the node has another user, which may require the 569 // full value. 570 if (!Op.getNode()->hasOneUse()) 571 return false; 572 573 // Search for the smallest integer type with free casts to and from 574 // Op's type. For expedience, just check power-of-2 integer types. 575 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 576 unsigned DemandedSize = Demanded.getActiveBits(); 577 unsigned SmallVTBits = DemandedSize; 578 if (!isPowerOf2_32(SmallVTBits)) 579 SmallVTBits = NextPowerOf2(SmallVTBits); 580 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 581 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 582 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 583 TLI.isZExtFree(SmallVT, Op.getValueType())) { 584 // We found a type with free casts. 585 SDValue X = DAG.getNode( 586 Op.getOpcode(), dl, SmallVT, 587 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 588 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 589 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 590 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 591 return TLO.CombineTo(Op, Z); 592 } 593 } 594 return false; 595 } 596 597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 598 DAGCombinerInfo &DCI) const { 599 SelectionDAG &DAG = DCI.DAG; 600 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 601 !DCI.isBeforeLegalizeOps()); 602 KnownBits Known; 603 604 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 605 if (Simplified) { 606 DCI.AddToWorklist(Op.getNode()); 607 DCI.CommitTargetLoweringOpt(TLO); 608 } 609 return Simplified; 610 } 611 612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 613 const APInt &DemandedElts, 614 DAGCombinerInfo &DCI) const { 615 SelectionDAG &DAG = DCI.DAG; 616 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 617 !DCI.isBeforeLegalizeOps()); 618 KnownBits Known; 619 620 bool Simplified = 621 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 622 if (Simplified) { 623 DCI.AddToWorklist(Op.getNode()); 624 DCI.CommitTargetLoweringOpt(TLO); 625 } 626 return Simplified; 627 } 628 629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 630 KnownBits &Known, 631 TargetLoweringOpt &TLO, 632 unsigned Depth, 633 bool AssumeSingleUse) const { 634 EVT VT = Op.getValueType(); 635 636 // TODO: We can probably do more work on calculating the known bits and 637 // simplifying the operations for scalable vectors, but for now we just 638 // bail out. 639 if (VT.isScalableVector()) { 640 // Pretend we don't know anything for now. 641 Known = KnownBits(DemandedBits.getBitWidth()); 642 return false; 643 } 644 645 APInt DemandedElts = VT.isVector() 646 ? APInt::getAllOnes(VT.getVectorNumElements()) 647 : APInt(1, 1); 648 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 649 AssumeSingleUse); 650 } 651 652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 653 // TODO: Under what circumstances can we create nodes? Constant folding? 654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 655 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 656 SelectionDAG &DAG, unsigned Depth) const { 657 // Limit search depth. 658 if (Depth >= SelectionDAG::MaxRecursionDepth) 659 return SDValue(); 660 661 // Ignore UNDEFs. 662 if (Op.isUndef()) 663 return SDValue(); 664 665 // Not demanding any bits/elts from Op. 666 if (DemandedBits == 0 || DemandedElts == 0) 667 return DAG.getUNDEF(Op.getValueType()); 668 669 bool IsLE = DAG.getDataLayout().isLittleEndian(); 670 unsigned NumElts = DemandedElts.getBitWidth(); 671 unsigned BitWidth = DemandedBits.getBitWidth(); 672 KnownBits LHSKnown, RHSKnown; 673 switch (Op.getOpcode()) { 674 case ISD::BITCAST: { 675 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 676 EVT SrcVT = Src.getValueType(); 677 EVT DstVT = Op.getValueType(); 678 if (SrcVT == DstVT) 679 return Src; 680 681 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 682 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 683 if (NumSrcEltBits == NumDstEltBits) 684 if (SDValue V = SimplifyMultipleUseDemandedBits( 685 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 686 return DAG.getBitcast(DstVT, V); 687 688 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 689 unsigned Scale = NumDstEltBits / NumSrcEltBits; 690 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 691 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 692 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 693 for (unsigned i = 0; i != Scale; ++i) { 694 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 695 unsigned BitOffset = EltOffset * NumSrcEltBits; 696 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 697 if (!Sub.isZero()) { 698 DemandedSrcBits |= Sub; 699 for (unsigned j = 0; j != NumElts; ++j) 700 if (DemandedElts[j]) 701 DemandedSrcElts.setBit((j * Scale) + i); 702 } 703 } 704 705 if (SDValue V = SimplifyMultipleUseDemandedBits( 706 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 707 return DAG.getBitcast(DstVT, V); 708 } 709 710 // TODO - bigendian once we have test coverage. 711 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 712 unsigned Scale = NumSrcEltBits / NumDstEltBits; 713 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 714 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 715 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 716 for (unsigned i = 0; i != NumElts; ++i) 717 if (DemandedElts[i]) { 718 unsigned Offset = (i % Scale) * NumDstEltBits; 719 DemandedSrcBits.insertBits(DemandedBits, Offset); 720 DemandedSrcElts.setBit(i / Scale); 721 } 722 723 if (SDValue V = SimplifyMultipleUseDemandedBits( 724 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 725 return DAG.getBitcast(DstVT, V); 726 } 727 728 break; 729 } 730 case ISD::AND: { 731 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 732 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 733 734 // If all of the demanded bits are known 1 on one side, return the other. 735 // These bits cannot contribute to the result of the 'and' in this 736 // context. 737 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 738 return Op.getOperand(0); 739 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 740 return Op.getOperand(1); 741 break; 742 } 743 case ISD::OR: { 744 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 745 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 746 747 // If all of the demanded bits are known zero on one side, return the 748 // other. These bits cannot contribute to the result of the 'or' in this 749 // context. 750 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 751 return Op.getOperand(0); 752 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 753 return Op.getOperand(1); 754 break; 755 } 756 case ISD::XOR: { 757 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 758 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 759 760 // If all of the demanded bits are known zero on one side, return the 761 // other. 762 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 763 return Op.getOperand(0); 764 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 765 return Op.getOperand(1); 766 break; 767 } 768 case ISD::SHL: { 769 // If we are only demanding sign bits then we can use the shift source 770 // directly. 771 if (const APInt *MaxSA = 772 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 773 SDValue Op0 = Op.getOperand(0); 774 unsigned ShAmt = MaxSA->getZExtValue(); 775 unsigned NumSignBits = 776 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 777 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 778 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 779 return Op0; 780 } 781 break; 782 } 783 case ISD::SETCC: { 784 SDValue Op0 = Op.getOperand(0); 785 SDValue Op1 = Op.getOperand(1); 786 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 787 // If (1) we only need the sign-bit, (2) the setcc operands are the same 788 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 789 // -1, we may be able to bypass the setcc. 790 if (DemandedBits.isSignMask() && 791 Op0.getScalarValueSizeInBits() == BitWidth && 792 getBooleanContents(Op0.getValueType()) == 793 BooleanContent::ZeroOrNegativeOneBooleanContent) { 794 // If we're testing X < 0, then this compare isn't needed - just use X! 795 // FIXME: We're limiting to integer types here, but this should also work 796 // if we don't care about FP signed-zero. The use of SETLT with FP means 797 // that we don't care about NaNs. 798 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 799 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 800 return Op0; 801 } 802 break; 803 } 804 case ISD::SIGN_EXTEND_INREG: { 805 // If none of the extended bits are demanded, eliminate the sextinreg. 806 SDValue Op0 = Op.getOperand(0); 807 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 808 unsigned ExBits = ExVT.getScalarSizeInBits(); 809 if (DemandedBits.getActiveBits() <= ExBits) 810 return Op0; 811 // If the input is already sign extended, just drop the extension. 812 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 813 if (NumSignBits >= (BitWidth - ExBits + 1)) 814 return Op0; 815 break; 816 } 817 case ISD::ANY_EXTEND_VECTOR_INREG: 818 case ISD::SIGN_EXTEND_VECTOR_INREG: 819 case ISD::ZERO_EXTEND_VECTOR_INREG: { 820 // If we only want the lowest element and none of extended bits, then we can 821 // return the bitcasted source vector. 822 SDValue Src = Op.getOperand(0); 823 EVT SrcVT = Src.getValueType(); 824 EVT DstVT = Op.getValueType(); 825 if (IsLE && DemandedElts == 1 && 826 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 827 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 828 return DAG.getBitcast(DstVT, Src); 829 } 830 break; 831 } 832 case ISD::INSERT_VECTOR_ELT: { 833 // If we don't demand the inserted element, return the base vector. 834 SDValue Vec = Op.getOperand(0); 835 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 836 EVT VecVT = Vec.getValueType(); 837 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 838 !DemandedElts[CIdx->getZExtValue()]) 839 return Vec; 840 break; 841 } 842 case ISD::INSERT_SUBVECTOR: { 843 SDValue Vec = Op.getOperand(0); 844 SDValue Sub = Op.getOperand(1); 845 uint64_t Idx = Op.getConstantOperandVal(2); 846 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 847 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 848 // If we don't demand the inserted subvector, return the base vector. 849 if (DemandedSubElts == 0) 850 return Vec; 851 // If this simply widens the lowest subvector, see if we can do it earlier. 852 if (Idx == 0 && Vec.isUndef()) { 853 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 854 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 855 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 856 Op.getOperand(0), NewSub, Op.getOperand(2)); 857 } 858 break; 859 } 860 case ISD::VECTOR_SHUFFLE: { 861 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 862 863 // If all the demanded elts are from one operand and are inline, 864 // then we can use the operand directly. 865 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 866 for (unsigned i = 0; i != NumElts; ++i) { 867 int M = ShuffleMask[i]; 868 if (M < 0 || !DemandedElts[i]) 869 continue; 870 AllUndef = false; 871 IdentityLHS &= (M == (int)i); 872 IdentityRHS &= ((M - NumElts) == i); 873 } 874 875 if (AllUndef) 876 return DAG.getUNDEF(Op.getValueType()); 877 if (IdentityLHS) 878 return Op.getOperand(0); 879 if (IdentityRHS) 880 return Op.getOperand(1); 881 break; 882 } 883 default: 884 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 885 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 886 Op, DemandedBits, DemandedElts, DAG, Depth)) 887 return V; 888 break; 889 } 890 return SDValue(); 891 } 892 893 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 894 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 895 unsigned Depth) const { 896 EVT VT = Op.getValueType(); 897 APInt DemandedElts = VT.isVector() 898 ? APInt::getAllOnes(VT.getVectorNumElements()) 899 : APInt(1, 1); 900 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 901 Depth); 902 } 903 904 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 905 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 906 unsigned Depth) const { 907 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 908 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 909 Depth); 910 } 911 912 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 913 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 914 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG, 915 const TargetLowering &TLI, 916 const APInt &DemandedBits, 917 const APInt &DemandedElts, 918 unsigned Depth) { 919 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 920 "SRL or SRA node is required here!"); 921 // Is the right shift using an immediate value of 1? 922 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 923 if (!N1C || !N1C->isOne()) 924 return SDValue(); 925 926 // We are looking for an avgfloor 927 // add(ext, ext) 928 // or one of these as a avgceil 929 // add(add(ext, ext), 1) 930 // add(add(ext, 1), ext) 931 // add(ext, add(ext, 1)) 932 SDValue Add = Op.getOperand(0); 933 if (Add.getOpcode() != ISD::ADD) 934 return SDValue(); 935 936 SDValue ExtOpA = Add.getOperand(0); 937 SDValue ExtOpB = Add.getOperand(1); 938 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) { 939 ConstantSDNode *ConstOp; 940 if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) && 941 ConstOp->isOne()) { 942 ExtOpA = Op2; 943 ExtOpB = Op3; 944 return true; 945 } 946 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 947 ConstOp->isOne()) { 948 ExtOpA = Op1; 949 ExtOpB = Op3; 950 return true; 951 } 952 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 953 ConstOp->isOne()) { 954 ExtOpA = Op1; 955 ExtOpB = Op2; 956 return true; 957 } 958 return false; 959 }; 960 bool IsCeil = 961 (ExtOpA.getOpcode() == ISD::ADD && 962 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) || 963 (ExtOpB.getOpcode() == ISD::ADD && 964 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA)); 965 966 // If the shift is signed (sra): 967 // - Needs >= 2 sign bit for both operands. 968 // - Needs >= 2 zero bits. 969 // If the shift is unsigned (srl): 970 // - Needs >= 1 zero bit for both operands. 971 // - Needs 1 demanded bit zero and >= 2 sign bits. 972 unsigned ShiftOpc = Op.getOpcode(); 973 bool IsSigned = false; 974 unsigned KnownBits; 975 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 976 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 977 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 978 unsigned NumZeroA = 979 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 980 unsigned NumZeroB = 981 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 982 unsigned NumZero = std::min(NumZeroA, NumZeroB); 983 984 switch (ShiftOpc) { 985 default: 986 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 987 case ISD::SRA: { 988 if (NumZero >= 2 && NumSigned < NumZero) { 989 IsSigned = false; 990 KnownBits = NumZero; 991 break; 992 } 993 if (NumSigned >= 1) { 994 IsSigned = true; 995 KnownBits = NumSigned; 996 break; 997 } 998 return SDValue(); 999 } 1000 case ISD::SRL: { 1001 if (NumZero >= 1 && NumSigned < NumZero) { 1002 IsSigned = false; 1003 KnownBits = NumZero; 1004 break; 1005 } 1006 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1007 IsSigned = true; 1008 KnownBits = NumSigned; 1009 break; 1010 } 1011 return SDValue(); 1012 } 1013 } 1014 1015 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1016 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1017 1018 // Find the smallest power-2 type that is legal for this vector size and 1019 // operation, given the original type size and the number of known sign/zero 1020 // bits. 1021 EVT VT = Op.getValueType(); 1022 unsigned MinWidth = 1023 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1024 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth)); 1025 if (VT.isVector()) 1026 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1027 if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT)) 1028 return SDValue(); 1029 1030 SDLoc DL(Op); 1031 SDValue ResultAVG = 1032 DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA), 1033 DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB)); 1034 return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT, 1035 ResultAVG); 1036 } 1037 1038 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1039 /// result of Op are ever used downstream. If we can use this information to 1040 /// simplify Op, create a new simplified DAG node and return true, returning the 1041 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1042 /// return a mask of Known bits for the expression (used to simplify the 1043 /// caller). The Known bits may only be accurate for those bits in the 1044 /// OriginalDemandedBits and OriginalDemandedElts. 1045 bool TargetLowering::SimplifyDemandedBits( 1046 SDValue Op, const APInt &OriginalDemandedBits, 1047 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1048 unsigned Depth, bool AssumeSingleUse) const { 1049 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1050 assert(Op.getScalarValueSizeInBits() == BitWidth && 1051 "Mask size mismatches value type size!"); 1052 1053 // Don't know anything. 1054 Known = KnownBits(BitWidth); 1055 1056 // TODO: We can probably do more work on calculating the known bits and 1057 // simplifying the operations for scalable vectors, but for now we just 1058 // bail out. 1059 if (Op.getValueType().isScalableVector()) 1060 return false; 1061 1062 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1063 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1064 assert((!Op.getValueType().isVector() || 1065 NumElts == Op.getValueType().getVectorNumElements()) && 1066 "Unexpected vector size"); 1067 1068 APInt DemandedBits = OriginalDemandedBits; 1069 APInt DemandedElts = OriginalDemandedElts; 1070 SDLoc dl(Op); 1071 auto &DL = TLO.DAG.getDataLayout(); 1072 1073 // Undef operand. 1074 if (Op.isUndef()) 1075 return false; 1076 1077 if (Op.getOpcode() == ISD::Constant) { 1078 // We know all of the bits for a constant! 1079 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 1080 return false; 1081 } 1082 1083 if (Op.getOpcode() == ISD::ConstantFP) { 1084 // We know all of the bits for a floating point constant! 1085 Known = KnownBits::makeConstant( 1086 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1087 return false; 1088 } 1089 1090 // Other users may use these bits. 1091 EVT VT = Op.getValueType(); 1092 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 1093 if (Depth != 0) { 1094 // If not at the root, Just compute the Known bits to 1095 // simplify things downstream. 1096 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1097 return false; 1098 } 1099 // If this is the root being simplified, allow it to have multiple uses, 1100 // just set the DemandedBits/Elts to all bits. 1101 DemandedBits = APInt::getAllOnes(BitWidth); 1102 DemandedElts = APInt::getAllOnes(NumElts); 1103 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1104 // Not demanding any bits/elts from Op. 1105 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1106 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1107 // Limit search depth. 1108 return false; 1109 } 1110 1111 KnownBits Known2; 1112 switch (Op.getOpcode()) { 1113 case ISD::TargetConstant: 1114 llvm_unreachable("Can't simplify this node"); 1115 case ISD::SCALAR_TO_VECTOR: { 1116 if (!DemandedElts[0]) 1117 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1118 1119 KnownBits SrcKnown; 1120 SDValue Src = Op.getOperand(0); 1121 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1122 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth); 1123 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1124 return true; 1125 1126 // Upper elements are undef, so only get the knownbits if we just demand 1127 // the bottom element. 1128 if (DemandedElts == 1) 1129 Known = SrcKnown.anyextOrTrunc(BitWidth); 1130 break; 1131 } 1132 case ISD::BUILD_VECTOR: 1133 // Collect the known bits that are shared by every demanded element. 1134 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1135 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1136 return false; // Don't fall through, will infinitely loop. 1137 case ISD::LOAD: { 1138 auto *LD = cast<LoadSDNode>(Op); 1139 if (getTargetConstantFromLoad(LD)) { 1140 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1141 return false; // Don't fall through, will infinitely loop. 1142 } 1143 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1144 // If this is a ZEXTLoad and we are looking at the loaded value. 1145 EVT MemVT = LD->getMemoryVT(); 1146 unsigned MemBits = MemVT.getScalarSizeInBits(); 1147 Known.Zero.setBitsFrom(MemBits); 1148 return false; // Don't fall through, will infinitely loop. 1149 } 1150 break; 1151 } 1152 case ISD::INSERT_VECTOR_ELT: { 1153 SDValue Vec = Op.getOperand(0); 1154 SDValue Scl = Op.getOperand(1); 1155 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1156 EVT VecVT = Vec.getValueType(); 1157 1158 // If index isn't constant, assume we need all vector elements AND the 1159 // inserted element. 1160 APInt DemandedVecElts(DemandedElts); 1161 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1162 unsigned Idx = CIdx->getZExtValue(); 1163 DemandedVecElts.clearBit(Idx); 1164 1165 // Inserted element is not required. 1166 if (!DemandedElts[Idx]) 1167 return TLO.CombineTo(Op, Vec); 1168 } 1169 1170 KnownBits KnownScl; 1171 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1172 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1173 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1174 return true; 1175 1176 Known = KnownScl.anyextOrTrunc(BitWidth); 1177 1178 KnownBits KnownVec; 1179 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1180 Depth + 1)) 1181 return true; 1182 1183 if (!!DemandedVecElts) 1184 Known = KnownBits::commonBits(Known, KnownVec); 1185 1186 return false; 1187 } 1188 case ISD::INSERT_SUBVECTOR: { 1189 // Demand any elements from the subvector and the remainder from the src its 1190 // inserted into. 1191 SDValue Src = Op.getOperand(0); 1192 SDValue Sub = Op.getOperand(1); 1193 uint64_t Idx = Op.getConstantOperandVal(2); 1194 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1195 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1196 APInt DemandedSrcElts = DemandedElts; 1197 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1198 1199 KnownBits KnownSub, KnownSrc; 1200 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1201 Depth + 1)) 1202 return true; 1203 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1204 Depth + 1)) 1205 return true; 1206 1207 Known.Zero.setAllBits(); 1208 Known.One.setAllBits(); 1209 if (!!DemandedSubElts) 1210 Known = KnownBits::commonBits(Known, KnownSub); 1211 if (!!DemandedSrcElts) 1212 Known = KnownBits::commonBits(Known, KnownSrc); 1213 1214 // Attempt to avoid multi-use src if we don't need anything from it. 1215 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1216 !DemandedSrcElts.isAllOnes()) { 1217 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1218 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1219 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1220 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1221 if (NewSub || NewSrc) { 1222 NewSub = NewSub ? NewSub : Sub; 1223 NewSrc = NewSrc ? NewSrc : Src; 1224 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1225 Op.getOperand(2)); 1226 return TLO.CombineTo(Op, NewOp); 1227 } 1228 } 1229 break; 1230 } 1231 case ISD::EXTRACT_SUBVECTOR: { 1232 // Offset the demanded elts by the subvector index. 1233 SDValue Src = Op.getOperand(0); 1234 if (Src.getValueType().isScalableVector()) 1235 break; 1236 uint64_t Idx = Op.getConstantOperandVal(1); 1237 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1238 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 1239 1240 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1241 Depth + 1)) 1242 return true; 1243 1244 // Attempt to avoid multi-use src if we don't need anything from it. 1245 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1246 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1247 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1248 if (DemandedSrc) { 1249 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1250 Op.getOperand(1)); 1251 return TLO.CombineTo(Op, NewOp); 1252 } 1253 } 1254 break; 1255 } 1256 case ISD::CONCAT_VECTORS: { 1257 Known.Zero.setAllBits(); 1258 Known.One.setAllBits(); 1259 EVT SubVT = Op.getOperand(0).getValueType(); 1260 unsigned NumSubVecs = Op.getNumOperands(); 1261 unsigned NumSubElts = SubVT.getVectorNumElements(); 1262 for (unsigned i = 0; i != NumSubVecs; ++i) { 1263 APInt DemandedSubElts = 1264 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1265 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1266 Known2, TLO, Depth + 1)) 1267 return true; 1268 // Known bits are shared by every demanded subvector element. 1269 if (!!DemandedSubElts) 1270 Known = KnownBits::commonBits(Known, Known2); 1271 } 1272 break; 1273 } 1274 case ISD::VECTOR_SHUFFLE: { 1275 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1276 1277 // Collect demanded elements from shuffle operands.. 1278 APInt DemandedLHS(NumElts, 0); 1279 APInt DemandedRHS(NumElts, 0); 1280 for (unsigned i = 0; i != NumElts; ++i) { 1281 if (!DemandedElts[i]) 1282 continue; 1283 int M = ShuffleMask[i]; 1284 if (M < 0) { 1285 // For UNDEF elements, we don't know anything about the common state of 1286 // the shuffle result. 1287 DemandedLHS.clearAllBits(); 1288 DemandedRHS.clearAllBits(); 1289 break; 1290 } 1291 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1292 if (M < (int)NumElts) 1293 DemandedLHS.setBit(M); 1294 else 1295 DemandedRHS.setBit(M - NumElts); 1296 } 1297 1298 if (!!DemandedLHS || !!DemandedRHS) { 1299 SDValue Op0 = Op.getOperand(0); 1300 SDValue Op1 = Op.getOperand(1); 1301 1302 Known.Zero.setAllBits(); 1303 Known.One.setAllBits(); 1304 if (!!DemandedLHS) { 1305 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1306 Depth + 1)) 1307 return true; 1308 Known = KnownBits::commonBits(Known, Known2); 1309 } 1310 if (!!DemandedRHS) { 1311 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1312 Depth + 1)) 1313 return true; 1314 Known = KnownBits::commonBits(Known, Known2); 1315 } 1316 1317 // Attempt to avoid multi-use ops if we don't need anything from them. 1318 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1319 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1320 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1321 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1322 if (DemandedOp0 || DemandedOp1) { 1323 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1324 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1325 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1326 return TLO.CombineTo(Op, NewOp); 1327 } 1328 } 1329 break; 1330 } 1331 case ISD::AND: { 1332 SDValue Op0 = Op.getOperand(0); 1333 SDValue Op1 = Op.getOperand(1); 1334 1335 // If the RHS is a constant, check to see if the LHS would be zero without 1336 // using the bits from the RHS. Below, we use knowledge about the RHS to 1337 // simplify the LHS, here we're using information from the LHS to simplify 1338 // the RHS. 1339 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1340 // Do not increment Depth here; that can cause an infinite loop. 1341 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1342 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1343 if ((LHSKnown.Zero & DemandedBits) == 1344 (~RHSC->getAPIntValue() & DemandedBits)) 1345 return TLO.CombineTo(Op, Op0); 1346 1347 // If any of the set bits in the RHS are known zero on the LHS, shrink 1348 // the constant. 1349 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1350 DemandedElts, TLO)) 1351 return true; 1352 1353 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1354 // constant, but if this 'and' is only clearing bits that were just set by 1355 // the xor, then this 'and' can be eliminated by shrinking the mask of 1356 // the xor. For example, for a 32-bit X: 1357 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1358 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1359 LHSKnown.One == ~RHSC->getAPIntValue()) { 1360 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1361 return TLO.CombineTo(Op, Xor); 1362 } 1363 } 1364 1365 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1366 Depth + 1)) 1367 return true; 1368 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1369 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1370 Known2, TLO, Depth + 1)) 1371 return true; 1372 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1373 1374 // Attempt to avoid multi-use ops if we don't need anything from them. 1375 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1376 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1377 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1378 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1379 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1380 if (DemandedOp0 || DemandedOp1) { 1381 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1382 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1383 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1384 return TLO.CombineTo(Op, NewOp); 1385 } 1386 } 1387 1388 // If all of the demanded bits are known one on one side, return the other. 1389 // These bits cannot contribute to the result of the 'and'. 1390 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1391 return TLO.CombineTo(Op, Op0); 1392 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1393 return TLO.CombineTo(Op, Op1); 1394 // If all of the demanded bits in the inputs are known zeros, return zero. 1395 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1396 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1397 // If the RHS is a constant, see if we can simplify it. 1398 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1399 TLO)) 1400 return true; 1401 // If the operation can be done in a smaller type, do so. 1402 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1403 return true; 1404 1405 Known &= Known2; 1406 break; 1407 } 1408 case ISD::OR: { 1409 SDValue Op0 = Op.getOperand(0); 1410 SDValue Op1 = Op.getOperand(1); 1411 1412 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1413 Depth + 1)) 1414 return true; 1415 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1416 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1417 Known2, TLO, Depth + 1)) 1418 return true; 1419 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1420 1421 // Attempt to avoid multi-use ops if we don't need anything from them. 1422 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1423 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1424 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1425 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1426 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1427 if (DemandedOp0 || DemandedOp1) { 1428 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1429 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1430 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1431 return TLO.CombineTo(Op, NewOp); 1432 } 1433 } 1434 1435 // If all of the demanded bits are known zero on one side, return the other. 1436 // These bits cannot contribute to the result of the 'or'. 1437 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1438 return TLO.CombineTo(Op, Op0); 1439 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1440 return TLO.CombineTo(Op, Op1); 1441 // If the RHS is a constant, see if we can simplify it. 1442 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1443 return true; 1444 // If the operation can be done in a smaller type, do so. 1445 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1446 return true; 1447 1448 Known |= Known2; 1449 break; 1450 } 1451 case ISD::XOR: { 1452 SDValue Op0 = Op.getOperand(0); 1453 SDValue Op1 = Op.getOperand(1); 1454 1455 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1456 Depth + 1)) 1457 return true; 1458 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1459 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1460 Depth + 1)) 1461 return true; 1462 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1463 1464 // Attempt to avoid multi-use ops if we don't need anything from them. 1465 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1466 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1467 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1468 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1469 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1470 if (DemandedOp0 || DemandedOp1) { 1471 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1472 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1473 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1474 return TLO.CombineTo(Op, NewOp); 1475 } 1476 } 1477 1478 // If all of the demanded bits are known zero on one side, return the other. 1479 // These bits cannot contribute to the result of the 'xor'. 1480 if (DemandedBits.isSubsetOf(Known.Zero)) 1481 return TLO.CombineTo(Op, Op0); 1482 if (DemandedBits.isSubsetOf(Known2.Zero)) 1483 return TLO.CombineTo(Op, Op1); 1484 // If the operation can be done in a smaller type, do so. 1485 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1486 return true; 1487 1488 // If all of the unknown bits are known to be zero on one side or the other 1489 // turn this into an *inclusive* or. 1490 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1491 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1492 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1493 1494 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1495 if (C) { 1496 // If one side is a constant, and all of the set bits in the constant are 1497 // also known set on the other side, turn this into an AND, as we know 1498 // the bits will be cleared. 1499 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1500 // NB: it is okay if more bits are known than are requested 1501 if (C->getAPIntValue() == Known2.One) { 1502 SDValue ANDC = 1503 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1504 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1505 } 1506 1507 // If the RHS is a constant, see if we can change it. Don't alter a -1 1508 // constant because that's a 'not' op, and that is better for combining 1509 // and codegen. 1510 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1511 // We're flipping all demanded bits. Flip the undemanded bits too. 1512 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1513 return TLO.CombineTo(Op, New); 1514 } 1515 } 1516 1517 // If we can't turn this into a 'not', try to shrink the constant. 1518 if (!C || !C->isAllOnes()) 1519 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1520 return true; 1521 1522 Known ^= Known2; 1523 break; 1524 } 1525 case ISD::SELECT: 1526 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1527 Depth + 1)) 1528 return true; 1529 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1530 Depth + 1)) 1531 return true; 1532 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1533 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1534 1535 // If the operands are constants, see if we can simplify them. 1536 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1537 return true; 1538 1539 // Only known if known in both the LHS and RHS. 1540 Known = KnownBits::commonBits(Known, Known2); 1541 break; 1542 case ISD::VSELECT: 1543 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1544 Known, TLO, Depth + 1)) 1545 return true; 1546 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1547 Known2, TLO, Depth + 1)) 1548 return true; 1549 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1550 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1551 1552 // Only known if known in both the LHS and RHS. 1553 Known = KnownBits::commonBits(Known, Known2); 1554 break; 1555 case ISD::SELECT_CC: 1556 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1557 Depth + 1)) 1558 return true; 1559 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1560 Depth + 1)) 1561 return true; 1562 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1563 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1564 1565 // If the operands are constants, see if we can simplify them. 1566 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1567 return true; 1568 1569 // Only known if known in both the LHS and RHS. 1570 Known = KnownBits::commonBits(Known, Known2); 1571 break; 1572 case ISD::SETCC: { 1573 SDValue Op0 = Op.getOperand(0); 1574 SDValue Op1 = Op.getOperand(1); 1575 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1576 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1577 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1578 // -1, we may be able to bypass the setcc. 1579 if (DemandedBits.isSignMask() && 1580 Op0.getScalarValueSizeInBits() == BitWidth && 1581 getBooleanContents(Op0.getValueType()) == 1582 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1583 // If we're testing X < 0, then this compare isn't needed - just use X! 1584 // FIXME: We're limiting to integer types here, but this should also work 1585 // if we don't care about FP signed-zero. The use of SETLT with FP means 1586 // that we don't care about NaNs. 1587 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1588 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1589 return TLO.CombineTo(Op, Op0); 1590 1591 // TODO: Should we check for other forms of sign-bit comparisons? 1592 // Examples: X <= -1, X >= 0 1593 } 1594 if (getBooleanContents(Op0.getValueType()) == 1595 TargetLowering::ZeroOrOneBooleanContent && 1596 BitWidth > 1) 1597 Known.Zero.setBitsFrom(1); 1598 break; 1599 } 1600 case ISD::SHL: { 1601 SDValue Op0 = Op.getOperand(0); 1602 SDValue Op1 = Op.getOperand(1); 1603 EVT ShiftVT = Op1.getValueType(); 1604 1605 if (const APInt *SA = 1606 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1607 unsigned ShAmt = SA->getZExtValue(); 1608 if (ShAmt == 0) 1609 return TLO.CombineTo(Op, Op0); 1610 1611 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1612 // single shift. We can do this if the bottom bits (which are shifted 1613 // out) are never demanded. 1614 // TODO - support non-uniform vector amounts. 1615 if (Op0.getOpcode() == ISD::SRL) { 1616 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1617 if (const APInt *SA2 = 1618 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1619 unsigned C1 = SA2->getZExtValue(); 1620 unsigned Opc = ISD::SHL; 1621 int Diff = ShAmt - C1; 1622 if (Diff < 0) { 1623 Diff = -Diff; 1624 Opc = ISD::SRL; 1625 } 1626 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1627 return TLO.CombineTo( 1628 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1629 } 1630 } 1631 } 1632 1633 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1634 // are not demanded. This will likely allow the anyext to be folded away. 1635 // TODO - support non-uniform vector amounts. 1636 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1637 SDValue InnerOp = Op0.getOperand(0); 1638 EVT InnerVT = InnerOp.getValueType(); 1639 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1640 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1641 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1642 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1643 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1644 ShTy = InnerVT; 1645 SDValue NarrowShl = 1646 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1647 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1648 return TLO.CombineTo( 1649 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1650 } 1651 1652 // Repeat the SHL optimization above in cases where an extension 1653 // intervenes: (shl (anyext (shr x, c1)), c2) to 1654 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1655 // aren't demanded (as above) and that the shifted upper c1 bits of 1656 // x aren't demanded. 1657 // TODO - support non-uniform vector amounts. 1658 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1659 InnerOp.hasOneUse()) { 1660 if (const APInt *SA2 = 1661 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1662 unsigned InnerShAmt = SA2->getZExtValue(); 1663 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1664 DemandedBits.getActiveBits() <= 1665 (InnerBits - InnerShAmt + ShAmt) && 1666 DemandedBits.countTrailingZeros() >= ShAmt) { 1667 SDValue NewSA = 1668 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1669 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1670 InnerOp.getOperand(0)); 1671 return TLO.CombineTo( 1672 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1673 } 1674 } 1675 } 1676 } 1677 1678 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1679 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1680 Depth + 1)) 1681 return true; 1682 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1683 Known.Zero <<= ShAmt; 1684 Known.One <<= ShAmt; 1685 // low bits known zero. 1686 Known.Zero.setLowBits(ShAmt); 1687 1688 // Attempt to avoid multi-use ops if we don't need anything from them. 1689 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1690 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1691 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1692 if (DemandedOp0) { 1693 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1); 1694 return TLO.CombineTo(Op, NewOp); 1695 } 1696 } 1697 1698 // Try shrinking the operation as long as the shift amount will still be 1699 // in range. 1700 if ((ShAmt < DemandedBits.getActiveBits()) && 1701 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1702 return true; 1703 } 1704 1705 // If we are only demanding sign bits then we can use the shift source 1706 // directly. 1707 if (const APInt *MaxSA = 1708 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1709 unsigned ShAmt = MaxSA->getZExtValue(); 1710 unsigned NumSignBits = 1711 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1712 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1713 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1714 return TLO.CombineTo(Op, Op0); 1715 } 1716 break; 1717 } 1718 case ISD::SRL: { 1719 SDValue Op0 = Op.getOperand(0); 1720 SDValue Op1 = Op.getOperand(1); 1721 EVT ShiftVT = Op1.getValueType(); 1722 1723 // Try to match AVG patterns. 1724 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1725 DemandedElts, Depth + 1)) 1726 return TLO.CombineTo(Op, AVG); 1727 1728 if (const APInt *SA = 1729 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1730 unsigned ShAmt = SA->getZExtValue(); 1731 if (ShAmt == 0) 1732 return TLO.CombineTo(Op, Op0); 1733 1734 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1735 // single shift. We can do this if the top bits (which are shifted out) 1736 // are never demanded. 1737 // TODO - support non-uniform vector amounts. 1738 if (Op0.getOpcode() == ISD::SHL) { 1739 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1740 if (const APInt *SA2 = 1741 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1742 unsigned C1 = SA2->getZExtValue(); 1743 unsigned Opc = ISD::SRL; 1744 int Diff = ShAmt - C1; 1745 if (Diff < 0) { 1746 Diff = -Diff; 1747 Opc = ISD::SHL; 1748 } 1749 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1750 return TLO.CombineTo( 1751 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1752 } 1753 } 1754 } 1755 1756 APInt InDemandedMask = (DemandedBits << ShAmt); 1757 1758 // If the shift is exact, then it does demand the low bits (and knows that 1759 // they are zero). 1760 if (Op->getFlags().hasExact()) 1761 InDemandedMask.setLowBits(ShAmt); 1762 1763 // Compute the new bits that are at the top now. 1764 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1765 Depth + 1)) 1766 return true; 1767 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1768 Known.Zero.lshrInPlace(ShAmt); 1769 Known.One.lshrInPlace(ShAmt); 1770 // High bits known zero. 1771 Known.Zero.setHighBits(ShAmt); 1772 } 1773 break; 1774 } 1775 case ISD::SRA: { 1776 SDValue Op0 = Op.getOperand(0); 1777 SDValue Op1 = Op.getOperand(1); 1778 EVT ShiftVT = Op1.getValueType(); 1779 1780 // If we only want bits that already match the signbit then we don't need 1781 // to shift. 1782 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1783 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1784 NumHiDemandedBits) 1785 return TLO.CombineTo(Op, Op0); 1786 1787 // If this is an arithmetic shift right and only the low-bit is set, we can 1788 // always convert this into a logical shr, even if the shift amount is 1789 // variable. The low bit of the shift cannot be an input sign bit unless 1790 // the shift amount is >= the size of the datatype, which is undefined. 1791 if (DemandedBits.isOne()) 1792 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1793 1794 // Try to match AVG patterns. 1795 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1796 DemandedElts, Depth + 1)) 1797 return TLO.CombineTo(Op, AVG); 1798 1799 if (const APInt *SA = 1800 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1801 unsigned ShAmt = SA->getZExtValue(); 1802 if (ShAmt == 0) 1803 return TLO.CombineTo(Op, Op0); 1804 1805 APInt InDemandedMask = (DemandedBits << ShAmt); 1806 1807 // If the shift is exact, then it does demand the low bits (and knows that 1808 // they are zero). 1809 if (Op->getFlags().hasExact()) 1810 InDemandedMask.setLowBits(ShAmt); 1811 1812 // If any of the demanded bits are produced by the sign extension, we also 1813 // demand the input sign bit. 1814 if (DemandedBits.countLeadingZeros() < ShAmt) 1815 InDemandedMask.setSignBit(); 1816 1817 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1818 Depth + 1)) 1819 return true; 1820 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1821 Known.Zero.lshrInPlace(ShAmt); 1822 Known.One.lshrInPlace(ShAmt); 1823 1824 // If the input sign bit is known to be zero, or if none of the top bits 1825 // are demanded, turn this into an unsigned shift right. 1826 if (Known.Zero[BitWidth - ShAmt - 1] || 1827 DemandedBits.countLeadingZeros() >= ShAmt) { 1828 SDNodeFlags Flags; 1829 Flags.setExact(Op->getFlags().hasExact()); 1830 return TLO.CombineTo( 1831 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1832 } 1833 1834 int Log2 = DemandedBits.exactLogBase2(); 1835 if (Log2 >= 0) { 1836 // The bit must come from the sign. 1837 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1838 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1839 } 1840 1841 if (Known.One[BitWidth - ShAmt - 1]) 1842 // New bits are known one. 1843 Known.One.setHighBits(ShAmt); 1844 1845 // Attempt to avoid multi-use ops if we don't need anything from them. 1846 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1847 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1848 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1849 if (DemandedOp0) { 1850 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1851 return TLO.CombineTo(Op, NewOp); 1852 } 1853 } 1854 } 1855 break; 1856 } 1857 case ISD::FSHL: 1858 case ISD::FSHR: { 1859 SDValue Op0 = Op.getOperand(0); 1860 SDValue Op1 = Op.getOperand(1); 1861 SDValue Op2 = Op.getOperand(2); 1862 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1863 1864 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1865 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1866 1867 // For fshl, 0-shift returns the 1st arg. 1868 // For fshr, 0-shift returns the 2nd arg. 1869 if (Amt == 0) { 1870 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1871 Known, TLO, Depth + 1)) 1872 return true; 1873 break; 1874 } 1875 1876 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1877 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1878 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1879 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1880 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1881 Depth + 1)) 1882 return true; 1883 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1884 Depth + 1)) 1885 return true; 1886 1887 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1888 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1889 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1890 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1891 Known.One |= Known2.One; 1892 Known.Zero |= Known2.Zero; 1893 1894 // Attempt to avoid multi-use ops if we don't need anything from them. 1895 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() || 1896 !DemandedElts.isAllOnes()) { 1897 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1898 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1); 1899 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1900 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1); 1901 if (DemandedOp0 || DemandedOp1) { 1902 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0; 1903 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1; 1904 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0, 1905 DemandedOp1, Op2); 1906 return TLO.CombineTo(Op, NewOp); 1907 } 1908 } 1909 } 1910 1911 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1912 if (isPowerOf2_32(BitWidth)) { 1913 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1914 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1915 Known2, TLO, Depth + 1)) 1916 return true; 1917 } 1918 break; 1919 } 1920 case ISD::ROTL: 1921 case ISD::ROTR: { 1922 SDValue Op0 = Op.getOperand(0); 1923 SDValue Op1 = Op.getOperand(1); 1924 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1925 1926 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1927 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1928 return TLO.CombineTo(Op, Op0); 1929 1930 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1931 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1932 unsigned RevAmt = BitWidth - Amt; 1933 1934 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 1935 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 1936 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 1937 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1938 Depth + 1)) 1939 return true; 1940 1941 // rot*(x, 0) --> x 1942 if (Amt == 0) 1943 return TLO.CombineTo(Op, Op0); 1944 1945 // See if we don't demand either half of the rotated bits. 1946 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 1947 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 1948 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 1949 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 1950 } 1951 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 1952 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 1953 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 1954 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1955 } 1956 } 1957 1958 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1959 if (isPowerOf2_32(BitWidth)) { 1960 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1961 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1962 Depth + 1)) 1963 return true; 1964 } 1965 break; 1966 } 1967 case ISD::UMIN: { 1968 // Check if one arg is always less than (or equal) to the other arg. 1969 SDValue Op0 = Op.getOperand(0); 1970 SDValue Op1 = Op.getOperand(1); 1971 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1972 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1973 Known = KnownBits::umin(Known0, Known1); 1974 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1975 return TLO.CombineTo(Op, *IsULE ? Op0 : Op1); 1976 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1977 return TLO.CombineTo(Op, *IsULT ? Op0 : Op1); 1978 break; 1979 } 1980 case ISD::UMAX: { 1981 // Check if one arg is always greater than (or equal) to the other arg. 1982 SDValue Op0 = Op.getOperand(0); 1983 SDValue Op1 = Op.getOperand(1); 1984 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1985 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1986 Known = KnownBits::umax(Known0, Known1); 1987 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1988 return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1); 1989 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1990 return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1); 1991 break; 1992 } 1993 case ISD::BITREVERSE: { 1994 SDValue Src = Op.getOperand(0); 1995 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1996 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1997 Depth + 1)) 1998 return true; 1999 Known.One = Known2.One.reverseBits(); 2000 Known.Zero = Known2.Zero.reverseBits(); 2001 break; 2002 } 2003 case ISD::BSWAP: { 2004 SDValue Src = Op.getOperand(0); 2005 2006 // If the only bits demanded come from one byte of the bswap result, 2007 // just shift the input byte into position to eliminate the bswap. 2008 unsigned NLZ = DemandedBits.countLeadingZeros(); 2009 unsigned NTZ = DemandedBits.countTrailingZeros(); 2010 2011 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 2012 // we need all the bits down to bit 8. Likewise, round NLZ. If we 2013 // have 14 leading zeros, round to 8. 2014 NLZ = alignDown(NLZ, 8); 2015 NTZ = alignDown(NTZ, 8); 2016 // If we need exactly one byte, we can do this transformation. 2017 if (BitWidth - NLZ - NTZ == 8) { 2018 // Replace this with either a left or right shift to get the byte into 2019 // the right place. 2020 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 2021 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 2022 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 2023 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 2024 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 2025 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 2026 return TLO.CombineTo(Op, NewOp); 2027 } 2028 } 2029 2030 APInt DemandedSrcBits = DemandedBits.byteSwap(); 2031 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2032 Depth + 1)) 2033 return true; 2034 Known.One = Known2.One.byteSwap(); 2035 Known.Zero = Known2.Zero.byteSwap(); 2036 break; 2037 } 2038 case ISD::CTPOP: { 2039 // If only 1 bit is demanded, replace with PARITY as long as we're before 2040 // op legalization. 2041 // FIXME: Limit to scalars for now. 2042 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2043 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2044 Op.getOperand(0))); 2045 2046 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2047 break; 2048 } 2049 case ISD::SIGN_EXTEND_INREG: { 2050 SDValue Op0 = Op.getOperand(0); 2051 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2052 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2053 2054 // If we only care about the highest bit, don't bother shifting right. 2055 if (DemandedBits.isSignMask()) { 2056 unsigned MinSignedBits = 2057 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2058 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2059 // However if the input is already sign extended we expect the sign 2060 // extension to be dropped altogether later and do not simplify. 2061 if (!AlreadySignExtended) { 2062 // Compute the correct shift amount type, which must be getShiftAmountTy 2063 // for scalar types after legalization. 2064 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 2065 getShiftAmountTy(VT, DL)); 2066 return TLO.CombineTo(Op, 2067 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2068 } 2069 } 2070 2071 // If none of the extended bits are demanded, eliminate the sextinreg. 2072 if (DemandedBits.getActiveBits() <= ExVTBits) 2073 return TLO.CombineTo(Op, Op0); 2074 2075 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2076 2077 // Since the sign extended bits are demanded, we know that the sign 2078 // bit is demanded. 2079 InputDemandedBits.setBit(ExVTBits - 1); 2080 2081 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO, 2082 Depth + 1)) 2083 return true; 2084 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2085 2086 // If the sign bit of the input is known set or clear, then we know the 2087 // top bits of the result. 2088 2089 // If the input sign bit is known zero, convert this into a zero extension. 2090 if (Known.Zero[ExVTBits - 1]) 2091 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2092 2093 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2094 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2095 Known.One.setBitsFrom(ExVTBits); 2096 Known.Zero &= Mask; 2097 } else { // Input sign bit unknown 2098 Known.Zero &= Mask; 2099 Known.One &= Mask; 2100 } 2101 break; 2102 } 2103 case ISD::BUILD_PAIR: { 2104 EVT HalfVT = Op.getOperand(0).getValueType(); 2105 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2106 2107 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2108 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2109 2110 KnownBits KnownLo, KnownHi; 2111 2112 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2113 return true; 2114 2115 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2116 return true; 2117 2118 Known.Zero = KnownLo.Zero.zext(BitWidth) | 2119 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 2120 2121 Known.One = KnownLo.One.zext(BitWidth) | 2122 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 2123 break; 2124 } 2125 case ISD::ZERO_EXTEND: 2126 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2127 SDValue Src = Op.getOperand(0); 2128 EVT SrcVT = Src.getValueType(); 2129 unsigned InBits = SrcVT.getScalarSizeInBits(); 2130 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2131 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2132 2133 // If none of the top bits are demanded, convert this into an any_extend. 2134 if (DemandedBits.getActiveBits() <= InBits) { 2135 // If we only need the non-extended bits of the bottom element 2136 // then we can just bitcast to the result. 2137 if (IsLE && IsVecInReg && DemandedElts == 1 && 2138 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2139 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2140 2141 unsigned Opc = 2142 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2143 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2144 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2145 } 2146 2147 APInt InDemandedBits = DemandedBits.trunc(InBits); 2148 APInt InDemandedElts = DemandedElts.zext(InElts); 2149 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2150 Depth + 1)) 2151 return true; 2152 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2153 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2154 Known = Known.zext(BitWidth); 2155 2156 // Attempt to avoid multi-use ops if we don't need anything from them. 2157 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2158 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2159 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2160 break; 2161 } 2162 case ISD::SIGN_EXTEND: 2163 case ISD::SIGN_EXTEND_VECTOR_INREG: { 2164 SDValue Src = Op.getOperand(0); 2165 EVT SrcVT = Src.getValueType(); 2166 unsigned InBits = SrcVT.getScalarSizeInBits(); 2167 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2168 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2169 2170 // If none of the top bits are demanded, convert this into an any_extend. 2171 if (DemandedBits.getActiveBits() <= InBits) { 2172 // If we only need the non-extended bits of the bottom element 2173 // then we can just bitcast to the result. 2174 if (IsLE && IsVecInReg && DemandedElts == 1 && 2175 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2176 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2177 2178 unsigned Opc = 2179 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2180 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2181 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2182 } 2183 2184 APInt InDemandedBits = DemandedBits.trunc(InBits); 2185 APInt InDemandedElts = DemandedElts.zext(InElts); 2186 2187 // Since some of the sign extended bits are demanded, we know that the sign 2188 // bit is demanded. 2189 InDemandedBits.setBit(InBits - 1); 2190 2191 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2192 Depth + 1)) 2193 return true; 2194 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2195 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2196 2197 // If the sign bit is known one, the top bits match. 2198 Known = Known.sext(BitWidth); 2199 2200 // If the sign bit is known zero, convert this to a zero extend. 2201 if (Known.isNonNegative()) { 2202 unsigned Opc = 2203 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2204 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2205 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2206 } 2207 2208 // Attempt to avoid multi-use ops if we don't need anything from them. 2209 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2210 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2211 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2212 break; 2213 } 2214 case ISD::ANY_EXTEND: 2215 case ISD::ANY_EXTEND_VECTOR_INREG: { 2216 SDValue Src = Op.getOperand(0); 2217 EVT SrcVT = Src.getValueType(); 2218 unsigned InBits = SrcVT.getScalarSizeInBits(); 2219 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2220 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2221 2222 // If we only need the bottom element then we can just bitcast. 2223 // TODO: Handle ANY_EXTEND? 2224 if (IsLE && IsVecInReg && DemandedElts == 1 && 2225 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2226 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2227 2228 APInt InDemandedBits = DemandedBits.trunc(InBits); 2229 APInt InDemandedElts = DemandedElts.zext(InElts); 2230 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2231 Depth + 1)) 2232 return true; 2233 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2234 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2235 Known = Known.anyext(BitWidth); 2236 2237 // Attempt to avoid multi-use ops if we don't need anything from them. 2238 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2239 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2240 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2241 break; 2242 } 2243 case ISD::TRUNCATE: { 2244 SDValue Src = Op.getOperand(0); 2245 2246 // Simplify the input, using demanded bit information, and compute the known 2247 // zero/one bits live out. 2248 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2249 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2250 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2251 Depth + 1)) 2252 return true; 2253 Known = Known.trunc(BitWidth); 2254 2255 // Attempt to avoid multi-use ops if we don't need anything from them. 2256 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2257 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2258 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2259 2260 // If the input is only used by this truncate, see if we can shrink it based 2261 // on the known demanded bits. 2262 if (Src.getNode()->hasOneUse()) { 2263 switch (Src.getOpcode()) { 2264 default: 2265 break; 2266 case ISD::SRL: 2267 // Shrink SRL by a constant if none of the high bits shifted in are 2268 // demanded. 2269 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2270 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2271 // undesirable. 2272 break; 2273 2274 const APInt *ShAmtC = 2275 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2276 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2277 break; 2278 uint64_t ShVal = ShAmtC->getZExtValue(); 2279 2280 APInt HighBits = 2281 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2282 HighBits.lshrInPlace(ShVal); 2283 HighBits = HighBits.trunc(BitWidth); 2284 2285 if (!(HighBits & DemandedBits)) { 2286 // None of the shifted in bits are needed. Add a truncate of the 2287 // shift input, then shift it. 2288 SDValue NewShAmt = TLO.DAG.getConstant( 2289 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2290 SDValue NewTrunc = 2291 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2292 return TLO.CombineTo( 2293 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2294 } 2295 break; 2296 } 2297 } 2298 2299 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2300 break; 2301 } 2302 case ISD::AssertZext: { 2303 // AssertZext demands all of the high bits, plus any of the low bits 2304 // demanded by its users. 2305 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2306 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2307 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2308 TLO, Depth + 1)) 2309 return true; 2310 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2311 2312 Known.Zero |= ~InMask; 2313 break; 2314 } 2315 case ISD::EXTRACT_VECTOR_ELT: { 2316 SDValue Src = Op.getOperand(0); 2317 SDValue Idx = Op.getOperand(1); 2318 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2319 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2320 2321 if (SrcEltCnt.isScalable()) 2322 return false; 2323 2324 // Demand the bits from every vector element without a constant index. 2325 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2326 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2327 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2328 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2329 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2330 2331 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2332 // anything about the extended bits. 2333 APInt DemandedSrcBits = DemandedBits; 2334 if (BitWidth > EltBitWidth) 2335 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2336 2337 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2338 Depth + 1)) 2339 return true; 2340 2341 // Attempt to avoid multi-use ops if we don't need anything from them. 2342 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2343 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2344 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2345 SDValue NewOp = 2346 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2347 return TLO.CombineTo(Op, NewOp); 2348 } 2349 } 2350 2351 Known = Known2; 2352 if (BitWidth > EltBitWidth) 2353 Known = Known.anyext(BitWidth); 2354 break; 2355 } 2356 case ISD::BITCAST: { 2357 SDValue Src = Op.getOperand(0); 2358 EVT SrcVT = Src.getValueType(); 2359 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2360 2361 // If this is an FP->Int bitcast and if the sign bit is the only 2362 // thing demanded, turn this into a FGETSIGN. 2363 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2364 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2365 SrcVT.isFloatingPoint()) { 2366 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2367 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2368 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2369 SrcVT != MVT::f128) { 2370 // Cannot eliminate/lower SHL for f128 yet. 2371 EVT Ty = OpVTLegal ? VT : MVT::i32; 2372 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2373 // place. We expect the SHL to be eliminated by other optimizations. 2374 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2375 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2376 if (!OpVTLegal && OpVTSizeInBits > 32) 2377 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2378 unsigned ShVal = Op.getValueSizeInBits() - 1; 2379 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2380 return TLO.CombineTo(Op, 2381 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2382 } 2383 } 2384 2385 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2386 // Demand the elt/bit if any of the original elts/bits are demanded. 2387 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2388 unsigned Scale = BitWidth / NumSrcEltBits; 2389 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2390 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2391 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2392 for (unsigned i = 0; i != Scale; ++i) { 2393 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2394 unsigned BitOffset = EltOffset * NumSrcEltBits; 2395 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2396 if (!Sub.isZero()) { 2397 DemandedSrcBits |= Sub; 2398 for (unsigned j = 0; j != NumElts; ++j) 2399 if (DemandedElts[j]) 2400 DemandedSrcElts.setBit((j * Scale) + i); 2401 } 2402 } 2403 2404 APInt KnownSrcUndef, KnownSrcZero; 2405 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2406 KnownSrcZero, TLO, Depth + 1)) 2407 return true; 2408 2409 KnownBits KnownSrcBits; 2410 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2411 KnownSrcBits, TLO, Depth + 1)) 2412 return true; 2413 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2414 // TODO - bigendian once we have test coverage. 2415 unsigned Scale = NumSrcEltBits / BitWidth; 2416 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2417 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2418 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2419 for (unsigned i = 0; i != NumElts; ++i) 2420 if (DemandedElts[i]) { 2421 unsigned Offset = (i % Scale) * BitWidth; 2422 DemandedSrcBits.insertBits(DemandedBits, Offset); 2423 DemandedSrcElts.setBit(i / Scale); 2424 } 2425 2426 if (SrcVT.isVector()) { 2427 APInt KnownSrcUndef, KnownSrcZero; 2428 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2429 KnownSrcZero, TLO, Depth + 1)) 2430 return true; 2431 } 2432 2433 KnownBits KnownSrcBits; 2434 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2435 KnownSrcBits, TLO, Depth + 1)) 2436 return true; 2437 } 2438 2439 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2440 // recursive call where Known may be useful to the caller. 2441 if (Depth > 0) { 2442 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2443 return false; 2444 } 2445 break; 2446 } 2447 case ISD::MUL: 2448 if (DemandedBits.isPowerOf2()) { 2449 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2450 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2451 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2452 unsigned CTZ = DemandedBits.countTrailingZeros(); 2453 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2454 if (C && C->getAPIntValue().countTrailingZeros() == CTZ) { 2455 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2456 SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy); 2457 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2458 return TLO.CombineTo(Op, Shl); 2459 } 2460 } 2461 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2462 // X * X is odd iff X is odd. 2463 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2464 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2465 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2466 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2467 return TLO.CombineTo(Op, And1); 2468 } 2469 LLVM_FALLTHROUGH; 2470 case ISD::ADD: 2471 case ISD::SUB: { 2472 // Add, Sub, and Mul don't demand any bits in positions beyond that 2473 // of the highest bit demanded of them. 2474 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2475 SDNodeFlags Flags = Op.getNode()->getFlags(); 2476 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2477 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2478 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2479 Depth + 1) || 2480 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2481 Depth + 1) || 2482 // See if the operation should be performed at a smaller bit width. 2483 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2484 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2485 // Disable the nsw and nuw flags. We can no longer guarantee that we 2486 // won't wrap after simplification. 2487 Flags.setNoSignedWrap(false); 2488 Flags.setNoUnsignedWrap(false); 2489 SDValue NewOp = 2490 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2491 return TLO.CombineTo(Op, NewOp); 2492 } 2493 return true; 2494 } 2495 2496 // Attempt to avoid multi-use ops if we don't need anything from them. 2497 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2498 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2499 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2500 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2501 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2502 if (DemandedOp0 || DemandedOp1) { 2503 Flags.setNoSignedWrap(false); 2504 Flags.setNoUnsignedWrap(false); 2505 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2506 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2507 SDValue NewOp = 2508 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2509 return TLO.CombineTo(Op, NewOp); 2510 } 2511 } 2512 2513 // If we have a constant operand, we may be able to turn it into -1 if we 2514 // do not demand the high bits. This can make the constant smaller to 2515 // encode, allow more general folding, or match specialized instruction 2516 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2517 // is probably not useful (and could be detrimental). 2518 ConstantSDNode *C = isConstOrConstSplat(Op1); 2519 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2520 if (C && !C->isAllOnes() && !C->isOne() && 2521 (C->getAPIntValue() | HighMask).isAllOnes()) { 2522 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2523 // Disable the nsw and nuw flags. We can no longer guarantee that we 2524 // won't wrap after simplification. 2525 Flags.setNoSignedWrap(false); 2526 Flags.setNoUnsignedWrap(false); 2527 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2528 return TLO.CombineTo(Op, NewOp); 2529 } 2530 2531 // Match a multiply with a disguised negated-power-of-2 and convert to a 2532 // an equivalent shift-left amount. 2533 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2534 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2535 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2536 return 0; 2537 2538 // Don't touch opaque constants. Also, ignore zero and power-of-2 2539 // multiplies. Those will get folded later. 2540 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2541 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2542 !MulC->getAPIntValue().isPowerOf2()) { 2543 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2544 if (UnmaskedC.isNegatedPowerOf2()) 2545 return (-UnmaskedC).logBase2(); 2546 } 2547 return 0; 2548 }; 2549 2550 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) { 2551 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2552 SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy); 2553 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2554 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl); 2555 return TLO.CombineTo(Op, Res); 2556 }; 2557 2558 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2559 if (Op.getOpcode() == ISD::ADD) { 2560 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2561 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2562 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt); 2563 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2564 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2565 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt); 2566 } 2567 if (Op.getOpcode() == ISD::SUB) { 2568 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2569 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2570 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt); 2571 } 2572 } 2573 2574 LLVM_FALLTHROUGH; 2575 } 2576 default: 2577 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2578 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2579 Known, TLO, Depth)) 2580 return true; 2581 break; 2582 } 2583 2584 // Just use computeKnownBits to compute output bits. 2585 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2586 break; 2587 } 2588 2589 // If we know the value of all of the demanded bits, return this as a 2590 // constant. 2591 if (!isTargetCanonicalConstantNode(Op) && 2592 DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2593 // Avoid folding to a constant if any OpaqueConstant is involved. 2594 const SDNode *N = Op.getNode(); 2595 for (SDNode *Op : 2596 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2597 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2598 if (C->isOpaque()) 2599 return false; 2600 } 2601 if (VT.isInteger()) 2602 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2603 if (VT.isFloatingPoint()) 2604 return TLO.CombineTo( 2605 Op, 2606 TLO.DAG.getConstantFP( 2607 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2608 } 2609 2610 return false; 2611 } 2612 2613 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2614 const APInt &DemandedElts, 2615 DAGCombinerInfo &DCI) const { 2616 SelectionDAG &DAG = DCI.DAG; 2617 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2618 !DCI.isBeforeLegalizeOps()); 2619 2620 APInt KnownUndef, KnownZero; 2621 bool Simplified = 2622 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2623 if (Simplified) { 2624 DCI.AddToWorklist(Op.getNode()); 2625 DCI.CommitTargetLoweringOpt(TLO); 2626 } 2627 2628 return Simplified; 2629 } 2630 2631 /// Given a vector binary operation and known undefined elements for each input 2632 /// operand, compute whether each element of the output is undefined. 2633 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2634 const APInt &UndefOp0, 2635 const APInt &UndefOp1) { 2636 EVT VT = BO.getValueType(); 2637 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2638 "Vector binop only"); 2639 2640 EVT EltVT = VT.getVectorElementType(); 2641 unsigned NumElts = VT.getVectorNumElements(); 2642 assert(UndefOp0.getBitWidth() == NumElts && 2643 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2644 2645 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2646 const APInt &UndefVals) { 2647 if (UndefVals[Index]) 2648 return DAG.getUNDEF(EltVT); 2649 2650 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2651 // Try hard to make sure that the getNode() call is not creating temporary 2652 // nodes. Ignore opaque integers because they do not constant fold. 2653 SDValue Elt = BV->getOperand(Index); 2654 auto *C = dyn_cast<ConstantSDNode>(Elt); 2655 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2656 return Elt; 2657 } 2658 2659 return SDValue(); 2660 }; 2661 2662 APInt KnownUndef = APInt::getZero(NumElts); 2663 for (unsigned i = 0; i != NumElts; ++i) { 2664 // If both inputs for this element are either constant or undef and match 2665 // the element type, compute the constant/undef result for this element of 2666 // the vector. 2667 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2668 // not handle FP constants. The code within getNode() should be refactored 2669 // to avoid the danger of creating a bogus temporary node here. 2670 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2671 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2672 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2673 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2674 KnownUndef.setBit(i); 2675 } 2676 return KnownUndef; 2677 } 2678 2679 bool TargetLowering::SimplifyDemandedVectorElts( 2680 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2681 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2682 bool AssumeSingleUse) const { 2683 EVT VT = Op.getValueType(); 2684 unsigned Opcode = Op.getOpcode(); 2685 APInt DemandedElts = OriginalDemandedElts; 2686 unsigned NumElts = DemandedElts.getBitWidth(); 2687 assert(VT.isVector() && "Expected vector op"); 2688 2689 KnownUndef = KnownZero = APInt::getZero(NumElts); 2690 2691 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 2692 if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO)) 2693 return false; 2694 2695 // TODO: For now we assume we know nothing about scalable vectors. 2696 if (VT.isScalableVector()) 2697 return false; 2698 2699 assert(VT.getVectorNumElements() == NumElts && 2700 "Mask size mismatches value type element count!"); 2701 2702 // Undef operand. 2703 if (Op.isUndef()) { 2704 KnownUndef.setAllBits(); 2705 return false; 2706 } 2707 2708 // If Op has other users, assume that all elements are needed. 2709 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2710 DemandedElts.setAllBits(); 2711 2712 // Not demanding any elements from Op. 2713 if (DemandedElts == 0) { 2714 KnownUndef.setAllBits(); 2715 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2716 } 2717 2718 // Limit search depth. 2719 if (Depth >= SelectionDAG::MaxRecursionDepth) 2720 return false; 2721 2722 SDLoc DL(Op); 2723 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2724 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2725 2726 // Helper for demanding the specified elements and all the bits of both binary 2727 // operands. 2728 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2729 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2730 TLO.DAG, Depth + 1); 2731 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2732 TLO.DAG, Depth + 1); 2733 if (NewOp0 || NewOp1) { 2734 SDValue NewOp = TLO.DAG.getNode( 2735 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2736 return TLO.CombineTo(Op, NewOp); 2737 } 2738 return false; 2739 }; 2740 2741 switch (Opcode) { 2742 case ISD::SCALAR_TO_VECTOR: { 2743 if (!DemandedElts[0]) { 2744 KnownUndef.setAllBits(); 2745 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2746 } 2747 SDValue ScalarSrc = Op.getOperand(0); 2748 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2749 SDValue Src = ScalarSrc.getOperand(0); 2750 SDValue Idx = ScalarSrc.getOperand(1); 2751 EVT SrcVT = Src.getValueType(); 2752 2753 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2754 2755 if (SrcEltCnt.isScalable()) 2756 return false; 2757 2758 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2759 if (isNullConstant(Idx)) { 2760 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2761 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2762 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2763 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2764 TLO, Depth + 1)) 2765 return true; 2766 } 2767 } 2768 KnownUndef.setHighBits(NumElts - 1); 2769 break; 2770 } 2771 case ISD::BITCAST: { 2772 SDValue Src = Op.getOperand(0); 2773 EVT SrcVT = Src.getValueType(); 2774 2775 // We only handle vectors here. 2776 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2777 if (!SrcVT.isVector()) 2778 break; 2779 2780 // Fast handling of 'identity' bitcasts. 2781 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2782 if (NumSrcElts == NumElts) 2783 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2784 KnownZero, TLO, Depth + 1); 2785 2786 APInt SrcDemandedElts, SrcZero, SrcUndef; 2787 2788 // Bitcast from 'large element' src vector to 'small element' vector, we 2789 // must demand a source element if any DemandedElt maps to it. 2790 if ((NumElts % NumSrcElts) == 0) { 2791 unsigned Scale = NumElts / NumSrcElts; 2792 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2793 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2794 TLO, Depth + 1)) 2795 return true; 2796 2797 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2798 // of the large element. 2799 // TODO - bigendian once we have test coverage. 2800 if (IsLE) { 2801 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2802 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2803 for (unsigned i = 0; i != NumElts; ++i) 2804 if (DemandedElts[i]) { 2805 unsigned Ofs = (i % Scale) * EltSizeInBits; 2806 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2807 } 2808 2809 KnownBits Known; 2810 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2811 TLO, Depth + 1)) 2812 return true; 2813 2814 // The bitcast has split each wide element into a number of 2815 // narrow subelements. We have just computed the Known bits 2816 // for wide elements. See if element splitting results in 2817 // some subelements being zero. Only for demanded elements! 2818 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { 2819 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits) 2820 .isAllOnes()) 2821 continue; 2822 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { 2823 unsigned Elt = Scale * SrcElt + SubElt; 2824 if (DemandedElts[Elt]) 2825 KnownZero.setBit(Elt); 2826 } 2827 } 2828 } 2829 2830 // If the src element is zero/undef then all the output elements will be - 2831 // only demanded elements are guaranteed to be correct. 2832 for (unsigned i = 0; i != NumSrcElts; ++i) { 2833 if (SrcDemandedElts[i]) { 2834 if (SrcZero[i]) 2835 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2836 if (SrcUndef[i]) 2837 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2838 } 2839 } 2840 } 2841 2842 // Bitcast from 'small element' src vector to 'large element' vector, we 2843 // demand all smaller source elements covered by the larger demanded element 2844 // of this vector. 2845 if ((NumSrcElts % NumElts) == 0) { 2846 unsigned Scale = NumSrcElts / NumElts; 2847 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2848 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2849 TLO, Depth + 1)) 2850 return true; 2851 2852 // If all the src elements covering an output element are zero/undef, then 2853 // the output element will be as well, assuming it was demanded. 2854 for (unsigned i = 0; i != NumElts; ++i) { 2855 if (DemandedElts[i]) { 2856 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2857 KnownZero.setBit(i); 2858 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2859 KnownUndef.setBit(i); 2860 } 2861 } 2862 } 2863 break; 2864 } 2865 case ISD::BUILD_VECTOR: { 2866 // Check all elements and simplify any unused elements with UNDEF. 2867 if (!DemandedElts.isAllOnes()) { 2868 // Don't simplify BROADCASTS. 2869 if (llvm::any_of(Op->op_values(), 2870 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2871 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2872 bool Updated = false; 2873 for (unsigned i = 0; i != NumElts; ++i) { 2874 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2875 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2876 KnownUndef.setBit(i); 2877 Updated = true; 2878 } 2879 } 2880 if (Updated) 2881 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2882 } 2883 } 2884 for (unsigned i = 0; i != NumElts; ++i) { 2885 SDValue SrcOp = Op.getOperand(i); 2886 if (SrcOp.isUndef()) { 2887 KnownUndef.setBit(i); 2888 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2889 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2890 KnownZero.setBit(i); 2891 } 2892 } 2893 break; 2894 } 2895 case ISD::CONCAT_VECTORS: { 2896 EVT SubVT = Op.getOperand(0).getValueType(); 2897 unsigned NumSubVecs = Op.getNumOperands(); 2898 unsigned NumSubElts = SubVT.getVectorNumElements(); 2899 for (unsigned i = 0; i != NumSubVecs; ++i) { 2900 SDValue SubOp = Op.getOperand(i); 2901 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2902 APInt SubUndef, SubZero; 2903 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2904 Depth + 1)) 2905 return true; 2906 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2907 KnownZero.insertBits(SubZero, i * NumSubElts); 2908 } 2909 2910 // Attempt to avoid multi-use ops if we don't need anything from them. 2911 if (!DemandedElts.isAllOnes()) { 2912 bool FoundNewSub = false; 2913 SmallVector<SDValue, 2> DemandedSubOps; 2914 for (unsigned i = 0; i != NumSubVecs; ++i) { 2915 SDValue SubOp = Op.getOperand(i); 2916 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2917 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts( 2918 SubOp, SubElts, TLO.DAG, Depth + 1); 2919 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp); 2920 FoundNewSub = NewSubOp ? true : FoundNewSub; 2921 } 2922 if (FoundNewSub) { 2923 SDValue NewOp = 2924 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps); 2925 return TLO.CombineTo(Op, NewOp); 2926 } 2927 } 2928 break; 2929 } 2930 case ISD::INSERT_SUBVECTOR: { 2931 // Demand any elements from the subvector and the remainder from the src its 2932 // inserted into. 2933 SDValue Src = Op.getOperand(0); 2934 SDValue Sub = Op.getOperand(1); 2935 uint64_t Idx = Op.getConstantOperandVal(2); 2936 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2937 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2938 APInt DemandedSrcElts = DemandedElts; 2939 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2940 2941 APInt SubUndef, SubZero; 2942 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2943 Depth + 1)) 2944 return true; 2945 2946 // If none of the src operand elements are demanded, replace it with undef. 2947 if (!DemandedSrcElts && !Src.isUndef()) 2948 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2949 TLO.DAG.getUNDEF(VT), Sub, 2950 Op.getOperand(2))); 2951 2952 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2953 TLO, Depth + 1)) 2954 return true; 2955 KnownUndef.insertBits(SubUndef, Idx); 2956 KnownZero.insertBits(SubZero, Idx); 2957 2958 // Attempt to avoid multi-use ops if we don't need anything from them. 2959 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2960 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2961 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2962 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2963 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2964 if (NewSrc || NewSub) { 2965 NewSrc = NewSrc ? NewSrc : Src; 2966 NewSub = NewSub ? NewSub : Sub; 2967 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2968 NewSub, Op.getOperand(2)); 2969 return TLO.CombineTo(Op, NewOp); 2970 } 2971 } 2972 break; 2973 } 2974 case ISD::EXTRACT_SUBVECTOR: { 2975 // Offset the demanded elts by the subvector index. 2976 SDValue Src = Op.getOperand(0); 2977 if (Src.getValueType().isScalableVector()) 2978 break; 2979 uint64_t Idx = Op.getConstantOperandVal(1); 2980 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2981 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 2982 2983 APInt SrcUndef, SrcZero; 2984 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2985 Depth + 1)) 2986 return true; 2987 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2988 KnownZero = SrcZero.extractBits(NumElts, Idx); 2989 2990 // Attempt to avoid multi-use ops if we don't need anything from them. 2991 if (!DemandedElts.isAllOnes()) { 2992 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2993 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2994 if (NewSrc) { 2995 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2996 Op.getOperand(1)); 2997 return TLO.CombineTo(Op, NewOp); 2998 } 2999 } 3000 break; 3001 } 3002 case ISD::INSERT_VECTOR_ELT: { 3003 SDValue Vec = Op.getOperand(0); 3004 SDValue Scl = Op.getOperand(1); 3005 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3006 3007 // For a legal, constant insertion index, if we don't need this insertion 3008 // then strip it, else remove it from the demanded elts. 3009 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 3010 unsigned Idx = CIdx->getZExtValue(); 3011 if (!DemandedElts[Idx]) 3012 return TLO.CombineTo(Op, Vec); 3013 3014 APInt DemandedVecElts(DemandedElts); 3015 DemandedVecElts.clearBit(Idx); 3016 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 3017 KnownZero, TLO, Depth + 1)) 3018 return true; 3019 3020 KnownUndef.setBitVal(Idx, Scl.isUndef()); 3021 3022 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 3023 break; 3024 } 3025 3026 APInt VecUndef, VecZero; 3027 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 3028 Depth + 1)) 3029 return true; 3030 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 3031 break; 3032 } 3033 case ISD::VSELECT: { 3034 // Try to transform the select condition based on the current demanded 3035 // elements. 3036 // TODO: If a condition element is undef, we can choose from one arm of the 3037 // select (and if one arm is undef, then we can propagate that to the 3038 // result). 3039 // TODO - add support for constant vselect masks (see IR version of this). 3040 APInt UnusedUndef, UnusedZero; 3041 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 3042 UnusedZero, TLO, Depth + 1)) 3043 return true; 3044 3045 // See if we can simplify either vselect operand. 3046 APInt DemandedLHS(DemandedElts); 3047 APInt DemandedRHS(DemandedElts); 3048 APInt UndefLHS, ZeroLHS; 3049 APInt UndefRHS, ZeroRHS; 3050 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 3051 ZeroLHS, TLO, Depth + 1)) 3052 return true; 3053 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 3054 ZeroRHS, TLO, Depth + 1)) 3055 return true; 3056 3057 KnownUndef = UndefLHS & UndefRHS; 3058 KnownZero = ZeroLHS & ZeroRHS; 3059 break; 3060 } 3061 case ISD::VECTOR_SHUFFLE: { 3062 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 3063 3064 // Collect demanded elements from shuffle operands.. 3065 APInt DemandedLHS(NumElts, 0); 3066 APInt DemandedRHS(NumElts, 0); 3067 for (unsigned i = 0; i != NumElts; ++i) { 3068 int M = ShuffleMask[i]; 3069 if (M < 0 || !DemandedElts[i]) 3070 continue; 3071 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 3072 if (M < (int)NumElts) 3073 DemandedLHS.setBit(M); 3074 else 3075 DemandedRHS.setBit(M - NumElts); 3076 } 3077 3078 // See if we can simplify either shuffle operand. 3079 APInt UndefLHS, ZeroLHS; 3080 APInt UndefRHS, ZeroRHS; 3081 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 3082 ZeroLHS, TLO, Depth + 1)) 3083 return true; 3084 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 3085 ZeroRHS, TLO, Depth + 1)) 3086 return true; 3087 3088 // Simplify mask using undef elements from LHS/RHS. 3089 bool Updated = false; 3090 bool IdentityLHS = true, IdentityRHS = true; 3091 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 3092 for (unsigned i = 0; i != NumElts; ++i) { 3093 int &M = NewMask[i]; 3094 if (M < 0) 3095 continue; 3096 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3097 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3098 Updated = true; 3099 M = -1; 3100 } 3101 IdentityLHS &= (M < 0) || (M == (int)i); 3102 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3103 } 3104 3105 // Update legal shuffle masks based on demanded elements if it won't reduce 3106 // to Identity which can cause premature removal of the shuffle mask. 3107 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3108 SDValue LegalShuffle = 3109 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 3110 NewMask, TLO.DAG); 3111 if (LegalShuffle) 3112 return TLO.CombineTo(Op, LegalShuffle); 3113 } 3114 3115 // Propagate undef/zero elements from LHS/RHS. 3116 for (unsigned i = 0; i != NumElts; ++i) { 3117 int M = ShuffleMask[i]; 3118 if (M < 0) { 3119 KnownUndef.setBit(i); 3120 } else if (M < (int)NumElts) { 3121 if (UndefLHS[M]) 3122 KnownUndef.setBit(i); 3123 if (ZeroLHS[M]) 3124 KnownZero.setBit(i); 3125 } else { 3126 if (UndefRHS[M - NumElts]) 3127 KnownUndef.setBit(i); 3128 if (ZeroRHS[M - NumElts]) 3129 KnownZero.setBit(i); 3130 } 3131 } 3132 break; 3133 } 3134 case ISD::ANY_EXTEND_VECTOR_INREG: 3135 case ISD::SIGN_EXTEND_VECTOR_INREG: 3136 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3137 APInt SrcUndef, SrcZero; 3138 SDValue Src = Op.getOperand(0); 3139 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3140 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 3141 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3142 Depth + 1)) 3143 return true; 3144 KnownZero = SrcZero.zextOrTrunc(NumElts); 3145 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3146 3147 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3148 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3149 DemandedSrcElts == 1) { 3150 // aext - if we just need the bottom element then we can bitcast. 3151 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3152 } 3153 3154 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3155 // zext(undef) upper bits are guaranteed to be zero. 3156 if (DemandedElts.isSubsetOf(KnownUndef)) 3157 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3158 KnownUndef.clearAllBits(); 3159 3160 // zext - if we just need the bottom element then we can mask: 3161 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3162 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3163 Op->isOnlyUserOf(Src.getNode()) && 3164 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3165 SDLoc DL(Op); 3166 EVT SrcVT = Src.getValueType(); 3167 EVT SrcSVT = SrcVT.getScalarType(); 3168 SmallVector<SDValue> MaskElts; 3169 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3170 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3171 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3172 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3173 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3174 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3175 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3176 } 3177 } 3178 } 3179 break; 3180 } 3181 3182 // TODO: There are more binop opcodes that could be handled here - MIN, 3183 // MAX, saturated math, etc. 3184 case ISD::ADD: { 3185 SDValue Op0 = Op.getOperand(0); 3186 SDValue Op1 = Op.getOperand(1); 3187 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3188 APInt UndefLHS, ZeroLHS; 3189 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3190 Depth + 1, /*AssumeSingleUse*/ true)) 3191 return true; 3192 } 3193 LLVM_FALLTHROUGH; 3194 } 3195 case ISD::OR: 3196 case ISD::XOR: 3197 case ISD::SUB: 3198 case ISD::FADD: 3199 case ISD::FSUB: 3200 case ISD::FMUL: 3201 case ISD::FDIV: 3202 case ISD::FREM: { 3203 SDValue Op0 = Op.getOperand(0); 3204 SDValue Op1 = Op.getOperand(1); 3205 3206 APInt UndefRHS, ZeroRHS; 3207 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3208 Depth + 1)) 3209 return true; 3210 APInt UndefLHS, ZeroLHS; 3211 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3212 Depth + 1)) 3213 return true; 3214 3215 KnownZero = ZeroLHS & ZeroRHS; 3216 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3217 3218 // Attempt to avoid multi-use ops if we don't need anything from them. 3219 // TODO - use KnownUndef to relax the demandedelts? 3220 if (!DemandedElts.isAllOnes()) 3221 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3222 return true; 3223 break; 3224 } 3225 case ISD::SHL: 3226 case ISD::SRL: 3227 case ISD::SRA: 3228 case ISD::ROTL: 3229 case ISD::ROTR: { 3230 SDValue Op0 = Op.getOperand(0); 3231 SDValue Op1 = Op.getOperand(1); 3232 3233 APInt UndefRHS, ZeroRHS; 3234 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3235 Depth + 1)) 3236 return true; 3237 APInt UndefLHS, ZeroLHS; 3238 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3239 Depth + 1)) 3240 return true; 3241 3242 KnownZero = ZeroLHS; 3243 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3244 3245 // Attempt to avoid multi-use ops if we don't need anything from them. 3246 // TODO - use KnownUndef to relax the demandedelts? 3247 if (!DemandedElts.isAllOnes()) 3248 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3249 return true; 3250 break; 3251 } 3252 case ISD::MUL: 3253 case ISD::AND: { 3254 SDValue Op0 = Op.getOperand(0); 3255 SDValue Op1 = Op.getOperand(1); 3256 3257 APInt SrcUndef, SrcZero; 3258 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3259 Depth + 1)) 3260 return true; 3261 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 3262 TLO, Depth + 1)) 3263 return true; 3264 3265 // If either side has a zero element, then the result element is zero, even 3266 // if the other is an UNDEF. 3267 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3268 // and then handle 'and' nodes with the rest of the binop opcodes. 3269 KnownZero |= SrcZero; 3270 KnownUndef &= SrcUndef; 3271 KnownUndef &= ~KnownZero; 3272 3273 // Attempt to avoid multi-use ops if we don't need anything from them. 3274 // TODO - use KnownUndef to relax the demandedelts? 3275 if (!DemandedElts.isAllOnes()) 3276 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3277 return true; 3278 break; 3279 } 3280 case ISD::TRUNCATE: 3281 case ISD::SIGN_EXTEND: 3282 case ISD::ZERO_EXTEND: 3283 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3284 KnownZero, TLO, Depth + 1)) 3285 return true; 3286 3287 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3288 // zext(undef) upper bits are guaranteed to be zero. 3289 if (DemandedElts.isSubsetOf(KnownUndef)) 3290 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3291 KnownUndef.clearAllBits(); 3292 } 3293 break; 3294 default: { 3295 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3296 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3297 KnownZero, TLO, Depth)) 3298 return true; 3299 } else { 3300 KnownBits Known; 3301 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3302 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3303 TLO, Depth, AssumeSingleUse)) 3304 return true; 3305 } 3306 break; 3307 } 3308 } 3309 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3310 3311 // Constant fold all undef cases. 3312 // TODO: Handle zero cases as well. 3313 if (DemandedElts.isSubsetOf(KnownUndef)) 3314 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3315 3316 return false; 3317 } 3318 3319 /// Determine which of the bits specified in Mask are known to be either zero or 3320 /// one and return them in the Known. 3321 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3322 KnownBits &Known, 3323 const APInt &DemandedElts, 3324 const SelectionDAG &DAG, 3325 unsigned Depth) const { 3326 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3327 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3328 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3329 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3330 "Should use MaskedValueIsZero if you don't know whether Op" 3331 " is a target node!"); 3332 Known.resetAll(); 3333 } 3334 3335 void TargetLowering::computeKnownBitsForTargetInstr( 3336 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3337 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3338 unsigned Depth) const { 3339 Known.resetAll(); 3340 } 3341 3342 void TargetLowering::computeKnownBitsForFrameIndex( 3343 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3344 // The low bits are known zero if the pointer is aligned. 3345 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3346 } 3347 3348 Align TargetLowering::computeKnownAlignForTargetInstr( 3349 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3350 unsigned Depth) const { 3351 return Align(1); 3352 } 3353 3354 /// This method can be implemented by targets that want to expose additional 3355 /// information about sign bits to the DAG Combiner. 3356 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3357 const APInt &, 3358 const SelectionDAG &, 3359 unsigned Depth) const { 3360 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3361 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3362 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3363 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3364 "Should use ComputeNumSignBits if you don't know whether Op" 3365 " is a target node!"); 3366 return 1; 3367 } 3368 3369 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3370 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3371 const MachineRegisterInfo &MRI, unsigned Depth) const { 3372 return 1; 3373 } 3374 3375 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3376 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3377 TargetLoweringOpt &TLO, unsigned Depth) const { 3378 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3379 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3380 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3381 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3382 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3383 " is a target node!"); 3384 return false; 3385 } 3386 3387 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3388 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3389 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3390 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3391 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3392 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3393 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3394 "Should use SimplifyDemandedBits if you don't know whether Op" 3395 " is a target node!"); 3396 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3397 return false; 3398 } 3399 3400 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3401 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3402 SelectionDAG &DAG, unsigned Depth) const { 3403 assert( 3404 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3405 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3406 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3407 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3408 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3409 " is a target node!"); 3410 return SDValue(); 3411 } 3412 3413 SDValue 3414 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3415 SDValue N1, MutableArrayRef<int> Mask, 3416 SelectionDAG &DAG) const { 3417 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3418 if (!LegalMask) { 3419 std::swap(N0, N1); 3420 ShuffleVectorSDNode::commuteMask(Mask); 3421 LegalMask = isShuffleMaskLegal(Mask, VT); 3422 } 3423 3424 if (!LegalMask) 3425 return SDValue(); 3426 3427 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3428 } 3429 3430 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3431 return nullptr; 3432 } 3433 3434 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3435 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3436 bool PoisonOnly, unsigned Depth) const { 3437 assert( 3438 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3439 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3440 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3441 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3442 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3443 " is a target node!"); 3444 return false; 3445 } 3446 3447 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3448 const SelectionDAG &DAG, 3449 bool SNaN, 3450 unsigned Depth) const { 3451 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3452 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3453 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3454 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3455 "Should use isKnownNeverNaN if you don't know whether Op" 3456 " is a target node!"); 3457 return false; 3458 } 3459 3460 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3461 const APInt &DemandedElts, 3462 APInt &UndefElts, 3463 unsigned Depth) const { 3464 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3465 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3466 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3467 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3468 "Should use isSplatValue if you don't know whether Op" 3469 " is a target node!"); 3470 return false; 3471 } 3472 3473 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3474 // work with truncating build vectors and vectors with elements of less than 3475 // 8 bits. 3476 bool TargetLowering::isConstTrueVal(SDValue N) const { 3477 if (!N) 3478 return false; 3479 3480 unsigned EltWidth; 3481 APInt CVal; 3482 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3483 /*AllowTruncation=*/true)) { 3484 CVal = CN->getAPIntValue(); 3485 EltWidth = N.getValueType().getScalarSizeInBits(); 3486 } else 3487 return false; 3488 3489 // If this is a truncating splat, truncate the splat value. 3490 // Otherwise, we may fail to match the expected values below. 3491 if (EltWidth < CVal.getBitWidth()) 3492 CVal = CVal.trunc(EltWidth); 3493 3494 switch (getBooleanContents(N.getValueType())) { 3495 case UndefinedBooleanContent: 3496 return CVal[0]; 3497 case ZeroOrOneBooleanContent: 3498 return CVal.isOne(); 3499 case ZeroOrNegativeOneBooleanContent: 3500 return CVal.isAllOnes(); 3501 } 3502 3503 llvm_unreachable("Invalid boolean contents"); 3504 } 3505 3506 bool TargetLowering::isConstFalseVal(SDValue N) const { 3507 if (!N) 3508 return false; 3509 3510 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3511 if (!CN) { 3512 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3513 if (!BV) 3514 return false; 3515 3516 // Only interested in constant splats, we don't care about undef 3517 // elements in identifying boolean constants and getConstantSplatNode 3518 // returns NULL if all ops are undef; 3519 CN = BV->getConstantSplatNode(); 3520 if (!CN) 3521 return false; 3522 } 3523 3524 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3525 return !CN->getAPIntValue()[0]; 3526 3527 return CN->isZero(); 3528 } 3529 3530 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3531 bool SExt) const { 3532 if (VT == MVT::i1) 3533 return N->isOne(); 3534 3535 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3536 switch (Cnt) { 3537 case TargetLowering::ZeroOrOneBooleanContent: 3538 // An extended value of 1 is always true, unless its original type is i1, 3539 // in which case it will be sign extended to -1. 3540 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3541 case TargetLowering::UndefinedBooleanContent: 3542 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3543 return N->isAllOnes() && SExt; 3544 } 3545 llvm_unreachable("Unexpected enumeration."); 3546 } 3547 3548 /// This helper function of SimplifySetCC tries to optimize the comparison when 3549 /// either operand of the SetCC node is a bitwise-and instruction. 3550 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3551 ISD::CondCode Cond, const SDLoc &DL, 3552 DAGCombinerInfo &DCI) const { 3553 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3554 std::swap(N0, N1); 3555 3556 SelectionDAG &DAG = DCI.DAG; 3557 EVT OpVT = N0.getValueType(); 3558 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3559 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3560 return SDValue(); 3561 3562 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3563 // iff everything but LSB is known zero: 3564 if (Cond == ISD::SETNE && isNullConstant(N1) && 3565 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3566 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3567 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3568 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3569 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3570 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3571 } 3572 3573 // Match these patterns in any of their permutations: 3574 // (X & Y) == Y 3575 // (X & Y) != Y 3576 SDValue X, Y; 3577 if (N0.getOperand(0) == N1) { 3578 X = N0.getOperand(1); 3579 Y = N0.getOperand(0); 3580 } else if (N0.getOperand(1) == N1) { 3581 X = N0.getOperand(0); 3582 Y = N0.getOperand(1); 3583 } else { 3584 return SDValue(); 3585 } 3586 3587 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3588 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3589 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3590 // Note that where Y is variable and is known to have at most one bit set 3591 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3592 // equivalent when Y == 0. 3593 assert(OpVT.isInteger()); 3594 Cond = ISD::getSetCCInverse(Cond, OpVT); 3595 if (DCI.isBeforeLegalizeOps() || 3596 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3597 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3598 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3599 // If the target supports an 'and-not' or 'and-complement' logic operation, 3600 // try to use that to make a comparison operation more efficient. 3601 // But don't do this transform if the mask is a single bit because there are 3602 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3603 // 'rlwinm' on PPC). 3604 3605 // Bail out if the compare operand that we want to turn into a zero is 3606 // already a zero (otherwise, infinite loop). 3607 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3608 if (YConst && YConst->isZero()) 3609 return SDValue(); 3610 3611 // Transform this into: ~X & Y == 0. 3612 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3613 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3614 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3615 } 3616 3617 return SDValue(); 3618 } 3619 3620 /// There are multiple IR patterns that could be checking whether certain 3621 /// truncation of a signed number would be lossy or not. The pattern which is 3622 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3623 /// We are looking for the following pattern: (KeptBits is a constant) 3624 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3625 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3626 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3627 /// We will unfold it into the natural trunc+sext pattern: 3628 /// ((%x << C) a>> C) dstcond %x 3629 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3630 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3631 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3632 const SDLoc &DL) const { 3633 // We must be comparing with a constant. 3634 ConstantSDNode *C1; 3635 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3636 return SDValue(); 3637 3638 // N0 should be: add %x, (1 << (KeptBits-1)) 3639 if (N0->getOpcode() != ISD::ADD) 3640 return SDValue(); 3641 3642 // And we must be 'add'ing a constant. 3643 ConstantSDNode *C01; 3644 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3645 return SDValue(); 3646 3647 SDValue X = N0->getOperand(0); 3648 EVT XVT = X.getValueType(); 3649 3650 // Validate constants ... 3651 3652 APInt I1 = C1->getAPIntValue(); 3653 3654 ISD::CondCode NewCond; 3655 if (Cond == ISD::CondCode::SETULT) { 3656 NewCond = ISD::CondCode::SETEQ; 3657 } else if (Cond == ISD::CondCode::SETULE) { 3658 NewCond = ISD::CondCode::SETEQ; 3659 // But need to 'canonicalize' the constant. 3660 I1 += 1; 3661 } else if (Cond == ISD::CondCode::SETUGT) { 3662 NewCond = ISD::CondCode::SETNE; 3663 // But need to 'canonicalize' the constant. 3664 I1 += 1; 3665 } else if (Cond == ISD::CondCode::SETUGE) { 3666 NewCond = ISD::CondCode::SETNE; 3667 } else 3668 return SDValue(); 3669 3670 APInt I01 = C01->getAPIntValue(); 3671 3672 auto checkConstants = [&I1, &I01]() -> bool { 3673 // Both of them must be power-of-two, and the constant from setcc is bigger. 3674 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3675 }; 3676 3677 if (checkConstants()) { 3678 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3679 } else { 3680 // What if we invert constants? (and the target predicate) 3681 I1.negate(); 3682 I01.negate(); 3683 assert(XVT.isInteger()); 3684 NewCond = getSetCCInverse(NewCond, XVT); 3685 if (!checkConstants()) 3686 return SDValue(); 3687 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3688 } 3689 3690 // They are power-of-two, so which bit is set? 3691 const unsigned KeptBits = I1.logBase2(); 3692 const unsigned KeptBitsMinusOne = I01.logBase2(); 3693 3694 // Magic! 3695 if (KeptBits != (KeptBitsMinusOne + 1)) 3696 return SDValue(); 3697 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3698 3699 // We don't want to do this in every single case. 3700 SelectionDAG &DAG = DCI.DAG; 3701 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3702 XVT, KeptBits)) 3703 return SDValue(); 3704 3705 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3706 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3707 3708 // Unfold into: ((%x << C) a>> C) cond %x 3709 // Where 'cond' will be either 'eq' or 'ne'. 3710 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3711 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3712 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3713 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3714 3715 return T2; 3716 } 3717 3718 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3719 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3720 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3721 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3722 assert(isConstOrConstSplat(N1C) && 3723 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3724 "Should be a comparison with 0."); 3725 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3726 "Valid only for [in]equality comparisons."); 3727 3728 unsigned NewShiftOpcode; 3729 SDValue X, C, Y; 3730 3731 SelectionDAG &DAG = DCI.DAG; 3732 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3733 3734 // Look for '(C l>>/<< Y)'. 3735 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3736 // The shift should be one-use. 3737 if (!V.hasOneUse()) 3738 return false; 3739 unsigned OldShiftOpcode = V.getOpcode(); 3740 switch (OldShiftOpcode) { 3741 case ISD::SHL: 3742 NewShiftOpcode = ISD::SRL; 3743 break; 3744 case ISD::SRL: 3745 NewShiftOpcode = ISD::SHL; 3746 break; 3747 default: 3748 return false; // must be a logical shift. 3749 } 3750 // We should be shifting a constant. 3751 // FIXME: best to use isConstantOrConstantVector(). 3752 C = V.getOperand(0); 3753 ConstantSDNode *CC = 3754 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3755 if (!CC) 3756 return false; 3757 Y = V.getOperand(1); 3758 3759 ConstantSDNode *XC = 3760 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3761 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3762 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3763 }; 3764 3765 // LHS of comparison should be an one-use 'and'. 3766 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3767 return SDValue(); 3768 3769 X = N0.getOperand(0); 3770 SDValue Mask = N0.getOperand(1); 3771 3772 // 'and' is commutative! 3773 if (!Match(Mask)) { 3774 std::swap(X, Mask); 3775 if (!Match(Mask)) 3776 return SDValue(); 3777 } 3778 3779 EVT VT = X.getValueType(); 3780 3781 // Produce: 3782 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3783 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3784 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3785 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3786 return T2; 3787 } 3788 3789 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3790 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3791 /// handle the commuted versions of these patterns. 3792 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3793 ISD::CondCode Cond, const SDLoc &DL, 3794 DAGCombinerInfo &DCI) const { 3795 unsigned BOpcode = N0.getOpcode(); 3796 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3797 "Unexpected binop"); 3798 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3799 3800 // (X + Y) == X --> Y == 0 3801 // (X - Y) == X --> Y == 0 3802 // (X ^ Y) == X --> Y == 0 3803 SelectionDAG &DAG = DCI.DAG; 3804 EVT OpVT = N0.getValueType(); 3805 SDValue X = N0.getOperand(0); 3806 SDValue Y = N0.getOperand(1); 3807 if (X == N1) 3808 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3809 3810 if (Y != N1) 3811 return SDValue(); 3812 3813 // (X + Y) == Y --> X == 0 3814 // (X ^ Y) == Y --> X == 0 3815 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3816 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3817 3818 // The shift would not be valid if the operands are boolean (i1). 3819 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3820 return SDValue(); 3821 3822 // (X - Y) == Y --> X == Y << 1 3823 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3824 !DCI.isBeforeLegalize()); 3825 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3826 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3827 if (!DCI.isCalledByLegalizer()) 3828 DCI.AddToWorklist(YShl1.getNode()); 3829 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3830 } 3831 3832 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3833 SDValue N0, const APInt &C1, 3834 ISD::CondCode Cond, const SDLoc &dl, 3835 SelectionDAG &DAG) { 3836 // Look through truncs that don't change the value of a ctpop. 3837 // FIXME: Add vector support? Need to be careful with setcc result type below. 3838 SDValue CTPOP = N0; 3839 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3840 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3841 CTPOP = N0.getOperand(0); 3842 3843 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3844 return SDValue(); 3845 3846 EVT CTVT = CTPOP.getValueType(); 3847 SDValue CTOp = CTPOP.getOperand(0); 3848 3849 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3850 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3851 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3852 return SDValue(); 3853 3854 // (ctpop x) u< 2 -> (x & x-1) == 0 3855 // (ctpop x) u> 1 -> (x & x-1) != 0 3856 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3857 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3858 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3859 return SDValue(); 3860 if (C1 == 0 && (Cond == ISD::SETULT)) 3861 return SDValue(); // This is handled elsewhere. 3862 3863 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3864 3865 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3866 SDValue Result = CTOp; 3867 for (unsigned i = 0; i < Passes; i++) { 3868 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3869 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3870 } 3871 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3872 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3873 } 3874 3875 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3876 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3877 // For scalars, keep CTPOP if it is legal or custom. 3878 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3879 return SDValue(); 3880 // This is based on X86's custom lowering for CTPOP which produces more 3881 // instructions than the expansion here. 3882 3883 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3884 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3885 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3886 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3887 assert(CTVT.isInteger()); 3888 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3889 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3890 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3891 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3892 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3893 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3894 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3895 } 3896 3897 return SDValue(); 3898 } 3899 3900 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 3901 ISD::CondCode Cond, const SDLoc &dl, 3902 SelectionDAG &DAG) { 3903 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 3904 return SDValue(); 3905 3906 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 3907 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 3908 return SDValue(); 3909 3910 auto getRotateSource = [](SDValue X) { 3911 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 3912 return X.getOperand(0); 3913 return SDValue(); 3914 }; 3915 3916 // Peek through a rotated value compared against 0 or -1: 3917 // (rot X, Y) == 0/-1 --> X == 0/-1 3918 // (rot X, Y) != 0/-1 --> X != 0/-1 3919 if (SDValue R = getRotateSource(N0)) 3920 return DAG.getSetCC(dl, VT, R, N1, Cond); 3921 3922 // Peek through an 'or' of a rotated value compared against 0: 3923 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 3924 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 3925 // 3926 // TODO: Add the 'and' with -1 sibling. 3927 // TODO: Recurse through a series of 'or' ops to find the rotate. 3928 EVT OpVT = N0.getValueType(); 3929 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 3930 if (SDValue R = getRotateSource(N0.getOperand(0))) { 3931 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 3932 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3933 } 3934 if (SDValue R = getRotateSource(N0.getOperand(1))) { 3935 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 3936 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3937 } 3938 } 3939 3940 return SDValue(); 3941 } 3942 3943 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, 3944 ISD::CondCode Cond, const SDLoc &dl, 3945 SelectionDAG &DAG) { 3946 // If we are testing for all-bits-clear, we might be able to do that with 3947 // less shifting since bit-order does not matter. 3948 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 3949 return SDValue(); 3950 3951 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 3952 if (!C1 || !C1->isZero()) 3953 return SDValue(); 3954 3955 if (!N0.hasOneUse() || 3956 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR)) 3957 return SDValue(); 3958 3959 unsigned BitWidth = N0.getScalarValueSizeInBits(); 3960 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2)); 3961 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 3962 return SDValue(); 3963 3964 // Canonicalize fshr as fshl to reduce pattern-matching. 3965 unsigned ShAmt = ShAmtC->getZExtValue(); 3966 if (N0.getOpcode() == ISD::FSHR) 3967 ShAmt = BitWidth - ShAmt; 3968 3969 // Match an 'or' with a specific operand 'Other' in either commuted variant. 3970 SDValue X, Y; 3971 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) { 3972 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse()) 3973 return false; 3974 if (Or.getOperand(0) == Other) { 3975 X = Or.getOperand(0); 3976 Y = Or.getOperand(1); 3977 return true; 3978 } 3979 if (Or.getOperand(1) == Other) { 3980 X = Or.getOperand(1); 3981 Y = Or.getOperand(0); 3982 return true; 3983 } 3984 return false; 3985 }; 3986 3987 EVT OpVT = N0.getValueType(); 3988 EVT ShAmtVT = N0.getOperand(2).getValueType(); 3989 SDValue F0 = N0.getOperand(0); 3990 SDValue F1 = N0.getOperand(1); 3991 if (matchOr(F0, F1)) { 3992 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0 3993 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT); 3994 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt); 3995 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 3996 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3997 } 3998 if (matchOr(F1, F0)) { 3999 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0 4000 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT); 4001 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt); 4002 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4003 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4004 } 4005 4006 return SDValue(); 4007 } 4008 4009 /// Try to simplify a setcc built with the specified operands and cc. If it is 4010 /// unable to simplify it, return a null SDValue. 4011 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 4012 ISD::CondCode Cond, bool foldBooleans, 4013 DAGCombinerInfo &DCI, 4014 const SDLoc &dl) const { 4015 SelectionDAG &DAG = DCI.DAG; 4016 const DataLayout &Layout = DAG.getDataLayout(); 4017 EVT OpVT = N0.getValueType(); 4018 4019 // Constant fold or commute setcc. 4020 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 4021 return Fold; 4022 4023 bool N0ConstOrSplat = 4024 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4025 bool N1ConstOrSplat = 4026 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4027 4028 // Ensure that the constant occurs on the RHS and fold constant comparisons. 4029 // TODO: Handle non-splat vector constants. All undef causes trouble. 4030 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 4031 // infinite loop here when we encounter one. 4032 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 4033 if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) && 4034 (DCI.isBeforeLegalizeOps() || 4035 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 4036 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4037 4038 // If we have a subtract with the same 2 non-constant operands as this setcc 4039 // -- but in reverse order -- then try to commute the operands of this setcc 4040 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 4041 // instruction on some targets. 4042 if (!N0ConstOrSplat && !N1ConstOrSplat && 4043 (DCI.isBeforeLegalizeOps() || 4044 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 4045 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 4046 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 4047 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4048 4049 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 4050 return V; 4051 4052 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG)) 4053 return V; 4054 4055 if (auto *N1C = isConstOrConstSplat(N1)) { 4056 const APInt &C1 = N1C->getAPIntValue(); 4057 4058 // Optimize some CTPOP cases. 4059 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 4060 return V; 4061 4062 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 4063 // equality comparison, then we're just comparing whether X itself is 4064 // zero. 4065 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 4066 N0.getOperand(0).getOpcode() == ISD::CTLZ && 4067 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 4068 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 4069 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4070 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 4071 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 4072 // (srl (ctlz x), 5) == 0 -> X != 0 4073 // (srl (ctlz x), 5) != 1 -> X != 0 4074 Cond = ISD::SETNE; 4075 } else { 4076 // (srl (ctlz x), 5) != 0 -> X == 0 4077 // (srl (ctlz x), 5) == 1 -> X == 0 4078 Cond = ISD::SETEQ; 4079 } 4080 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 4081 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 4082 Cond); 4083 } 4084 } 4085 } 4086 } 4087 4088 // FIXME: Support vectors. 4089 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4090 const APInt &C1 = N1C->getAPIntValue(); 4091 4092 // (zext x) == C --> x == (trunc C) 4093 // (sext x) == C --> x == (trunc C) 4094 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4095 DCI.isBeforeLegalize() && N0->hasOneUse()) { 4096 unsigned MinBits = N0.getValueSizeInBits(); 4097 SDValue PreExt; 4098 bool Signed = false; 4099 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 4100 // ZExt 4101 MinBits = N0->getOperand(0).getValueSizeInBits(); 4102 PreExt = N0->getOperand(0); 4103 } else if (N0->getOpcode() == ISD::AND) { 4104 // DAGCombine turns costly ZExts into ANDs 4105 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 4106 if ((C->getAPIntValue()+1).isPowerOf2()) { 4107 MinBits = C->getAPIntValue().countTrailingOnes(); 4108 PreExt = N0->getOperand(0); 4109 } 4110 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 4111 // SExt 4112 MinBits = N0->getOperand(0).getValueSizeInBits(); 4113 PreExt = N0->getOperand(0); 4114 Signed = true; 4115 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 4116 // ZEXTLOAD / SEXTLOAD 4117 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 4118 MinBits = LN0->getMemoryVT().getSizeInBits(); 4119 PreExt = N0; 4120 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 4121 Signed = true; 4122 MinBits = LN0->getMemoryVT().getSizeInBits(); 4123 PreExt = N0; 4124 } 4125 } 4126 4127 // Figure out how many bits we need to preserve this constant. 4128 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 4129 4130 // Make sure we're not losing bits from the constant. 4131 if (MinBits > 0 && 4132 MinBits < C1.getBitWidth() && 4133 MinBits >= ReqdBits) { 4134 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 4135 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 4136 // Will get folded away. 4137 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 4138 if (MinBits == 1 && C1 == 1) 4139 // Invert the condition. 4140 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 4141 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4142 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 4143 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 4144 } 4145 4146 // If truncating the setcc operands is not desirable, we can still 4147 // simplify the expression in some cases: 4148 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 4149 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 4150 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 4151 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 4152 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 4153 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 4154 SDValue TopSetCC = N0->getOperand(0); 4155 unsigned N0Opc = N0->getOpcode(); 4156 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4157 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4158 TopSetCC.getOpcode() == ISD::SETCC && 4159 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4160 (isConstFalseVal(N1) || 4161 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4162 4163 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4164 (!N1C->isZero() && Cond == ISD::SETNE); 4165 4166 if (!Inverse) 4167 return TopSetCC; 4168 4169 ISD::CondCode InvCond = ISD::getSetCCInverse( 4170 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4171 TopSetCC.getOperand(0).getValueType()); 4172 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4173 TopSetCC.getOperand(1), 4174 InvCond); 4175 } 4176 } 4177 } 4178 4179 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4180 // equality or unsigned, and all 1 bits of the const are in the same 4181 // partial word, see if we can shorten the load. 4182 if (DCI.isBeforeLegalize() && 4183 !ISD::isSignedIntSetCC(Cond) && 4184 N0.getOpcode() == ISD::AND && C1 == 0 && 4185 N0.getNode()->hasOneUse() && 4186 isa<LoadSDNode>(N0.getOperand(0)) && 4187 N0.getOperand(0).getNode()->hasOneUse() && 4188 isa<ConstantSDNode>(N0.getOperand(1))) { 4189 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4190 APInt bestMask; 4191 unsigned bestWidth = 0, bestOffset = 0; 4192 if (Lod->isSimple() && Lod->isUnindexed()) { 4193 unsigned origWidth = N0.getValueSizeInBits(); 4194 unsigned maskWidth = origWidth; 4195 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4196 // 8 bits, but have to be careful... 4197 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4198 origWidth = Lod->getMemoryVT().getSizeInBits(); 4199 const APInt &Mask = N0.getConstantOperandAPInt(1); 4200 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 4201 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4202 for (unsigned offset=0; offset<origWidth/width; offset++) { 4203 if (Mask.isSubsetOf(newMask)) { 4204 if (Layout.isLittleEndian()) 4205 bestOffset = (uint64_t)offset * (width/8); 4206 else 4207 bestOffset = (origWidth/width - offset - 1) * (width/8); 4208 bestMask = Mask.lshr(offset * (width/8) * 8); 4209 bestWidth = width; 4210 break; 4211 } 4212 newMask <<= width; 4213 } 4214 } 4215 } 4216 if (bestWidth) { 4217 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4218 if (newVT.isRound() && 4219 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 4220 SDValue Ptr = Lod->getBasePtr(); 4221 if (bestOffset != 0) 4222 Ptr = 4223 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 4224 SDValue NewLoad = 4225 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4226 Lod->getPointerInfo().getWithOffset(bestOffset), 4227 Lod->getOriginalAlign()); 4228 return DAG.getSetCC(dl, VT, 4229 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4230 DAG.getConstant(bestMask.trunc(bestWidth), 4231 dl, newVT)), 4232 DAG.getConstant(0LL, dl, newVT), Cond); 4233 } 4234 } 4235 } 4236 4237 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4238 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4239 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4240 4241 // If the comparison constant has bits in the upper part, the 4242 // zero-extended value could never match. 4243 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4244 C1.getBitWidth() - InSize))) { 4245 switch (Cond) { 4246 case ISD::SETUGT: 4247 case ISD::SETUGE: 4248 case ISD::SETEQ: 4249 return DAG.getConstant(0, dl, VT); 4250 case ISD::SETULT: 4251 case ISD::SETULE: 4252 case ISD::SETNE: 4253 return DAG.getConstant(1, dl, VT); 4254 case ISD::SETGT: 4255 case ISD::SETGE: 4256 // True if the sign bit of C1 is set. 4257 return DAG.getConstant(C1.isNegative(), dl, VT); 4258 case ISD::SETLT: 4259 case ISD::SETLE: 4260 // True if the sign bit of C1 isn't set. 4261 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4262 default: 4263 break; 4264 } 4265 } 4266 4267 // Otherwise, we can perform the comparison with the low bits. 4268 switch (Cond) { 4269 case ISD::SETEQ: 4270 case ISD::SETNE: 4271 case ISD::SETUGT: 4272 case ISD::SETUGE: 4273 case ISD::SETULT: 4274 case ISD::SETULE: { 4275 EVT newVT = N0.getOperand(0).getValueType(); 4276 if (DCI.isBeforeLegalizeOps() || 4277 (isOperationLegal(ISD::SETCC, newVT) && 4278 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 4279 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4280 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4281 4282 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4283 NewConst, Cond); 4284 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4285 } 4286 break; 4287 } 4288 default: 4289 break; // todo, be more careful with signed comparisons 4290 } 4291 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4292 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4293 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4294 OpVT)) { 4295 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4296 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4297 EVT ExtDstTy = N0.getValueType(); 4298 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4299 4300 // If the constant doesn't fit into the number of bits for the source of 4301 // the sign extension, it is impossible for both sides to be equal. 4302 if (C1.getMinSignedBits() > ExtSrcTyBits) 4303 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4304 4305 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4306 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4307 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4308 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4309 DAG.getConstant(Imm, dl, ExtDstTy)); 4310 if (!DCI.isCalledByLegalizer()) 4311 DCI.AddToWorklist(ZextOp.getNode()); 4312 // Otherwise, make this a use of a zext. 4313 return DAG.getSetCC(dl, VT, ZextOp, 4314 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4315 } else if ((N1C->isZero() || N1C->isOne()) && 4316 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4317 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 4318 if (N0.getOpcode() == ISD::SETCC && 4319 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4320 (N0.getValueType() == MVT::i1 || 4321 getBooleanContents(N0.getOperand(0).getValueType()) == 4322 ZeroOrOneBooleanContent)) { 4323 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4324 if (TrueWhenTrue) 4325 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4326 // Invert the condition. 4327 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4328 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4329 if (DCI.isBeforeLegalizeOps() || 4330 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4331 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4332 } 4333 4334 if ((N0.getOpcode() == ISD::XOR || 4335 (N0.getOpcode() == ISD::AND && 4336 N0.getOperand(0).getOpcode() == ISD::XOR && 4337 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4338 isOneConstant(N0.getOperand(1))) { 4339 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4340 // can only do this if the top bits are known zero. 4341 unsigned BitWidth = N0.getValueSizeInBits(); 4342 if (DAG.MaskedValueIsZero(N0, 4343 APInt::getHighBitsSet(BitWidth, 4344 BitWidth-1))) { 4345 // Okay, get the un-inverted input value. 4346 SDValue Val; 4347 if (N0.getOpcode() == ISD::XOR) { 4348 Val = N0.getOperand(0); 4349 } else { 4350 assert(N0.getOpcode() == ISD::AND && 4351 N0.getOperand(0).getOpcode() == ISD::XOR); 4352 // ((X^1)&1)^1 -> X & 1 4353 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4354 N0.getOperand(0).getOperand(0), 4355 N0.getOperand(1)); 4356 } 4357 4358 return DAG.getSetCC(dl, VT, Val, N1, 4359 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4360 } 4361 } else if (N1C->isOne()) { 4362 SDValue Op0 = N0; 4363 if (Op0.getOpcode() == ISD::TRUNCATE) 4364 Op0 = Op0.getOperand(0); 4365 4366 if ((Op0.getOpcode() == ISD::XOR) && 4367 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4368 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4369 SDValue XorLHS = Op0.getOperand(0); 4370 SDValue XorRHS = Op0.getOperand(1); 4371 // Ensure that the input setccs return an i1 type or 0/1 value. 4372 if (Op0.getValueType() == MVT::i1 || 4373 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4374 ZeroOrOneBooleanContent && 4375 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4376 ZeroOrOneBooleanContent)) { 4377 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4378 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4379 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4380 } 4381 } 4382 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4383 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4384 if (Op0.getValueType().bitsGT(VT)) 4385 Op0 = DAG.getNode(ISD::AND, dl, VT, 4386 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4387 DAG.getConstant(1, dl, VT)); 4388 else if (Op0.getValueType().bitsLT(VT)) 4389 Op0 = DAG.getNode(ISD::AND, dl, VT, 4390 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4391 DAG.getConstant(1, dl, VT)); 4392 4393 return DAG.getSetCC(dl, VT, Op0, 4394 DAG.getConstant(0, dl, Op0.getValueType()), 4395 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4396 } 4397 if (Op0.getOpcode() == ISD::AssertZext && 4398 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4399 return DAG.getSetCC(dl, VT, Op0, 4400 DAG.getConstant(0, dl, Op0.getValueType()), 4401 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4402 } 4403 } 4404 4405 // Given: 4406 // icmp eq/ne (urem %x, %y), 0 4407 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4408 // icmp eq/ne %x, 0 4409 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4410 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4411 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4412 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4413 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4414 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4415 } 4416 4417 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4418 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4419 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4420 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4421 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4422 N1C && N1C->isAllOnes()) { 4423 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4424 DAG.getConstant(0, dl, OpVT), 4425 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4426 } 4427 4428 if (SDValue V = 4429 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4430 return V; 4431 } 4432 4433 // These simplifications apply to splat vectors as well. 4434 // TODO: Handle more splat vector cases. 4435 if (auto *N1C = isConstOrConstSplat(N1)) { 4436 const APInt &C1 = N1C->getAPIntValue(); 4437 4438 APInt MinVal, MaxVal; 4439 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4440 if (ISD::isSignedIntSetCC(Cond)) { 4441 MinVal = APInt::getSignedMinValue(OperandBitSize); 4442 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4443 } else { 4444 MinVal = APInt::getMinValue(OperandBitSize); 4445 MaxVal = APInt::getMaxValue(OperandBitSize); 4446 } 4447 4448 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4449 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4450 // X >= MIN --> true 4451 if (C1 == MinVal) 4452 return DAG.getBoolConstant(true, dl, VT, OpVT); 4453 4454 if (!VT.isVector()) { // TODO: Support this for vectors. 4455 // X >= C0 --> X > (C0 - 1) 4456 APInt C = C1 - 1; 4457 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4458 if ((DCI.isBeforeLegalizeOps() || 4459 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4460 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4461 isLegalICmpImmediate(C.getSExtValue())))) { 4462 return DAG.getSetCC(dl, VT, N0, 4463 DAG.getConstant(C, dl, N1.getValueType()), 4464 NewCC); 4465 } 4466 } 4467 } 4468 4469 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4470 // X <= MAX --> true 4471 if (C1 == MaxVal) 4472 return DAG.getBoolConstant(true, dl, VT, OpVT); 4473 4474 // X <= C0 --> X < (C0 + 1) 4475 if (!VT.isVector()) { // TODO: Support this for vectors. 4476 APInt C = C1 + 1; 4477 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4478 if ((DCI.isBeforeLegalizeOps() || 4479 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4480 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4481 isLegalICmpImmediate(C.getSExtValue())))) { 4482 return DAG.getSetCC(dl, VT, N0, 4483 DAG.getConstant(C, dl, N1.getValueType()), 4484 NewCC); 4485 } 4486 } 4487 } 4488 4489 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4490 if (C1 == MinVal) 4491 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4492 4493 // TODO: Support this for vectors after legalize ops. 4494 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4495 // Canonicalize setlt X, Max --> setne X, Max 4496 if (C1 == MaxVal) 4497 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4498 4499 // If we have setult X, 1, turn it into seteq X, 0 4500 if (C1 == MinVal+1) 4501 return DAG.getSetCC(dl, VT, N0, 4502 DAG.getConstant(MinVal, dl, N0.getValueType()), 4503 ISD::SETEQ); 4504 } 4505 } 4506 4507 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4508 if (C1 == MaxVal) 4509 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4510 4511 // TODO: Support this for vectors after legalize ops. 4512 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4513 // Canonicalize setgt X, Min --> setne X, Min 4514 if (C1 == MinVal) 4515 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4516 4517 // If we have setugt X, Max-1, turn it into seteq X, Max 4518 if (C1 == MaxVal-1) 4519 return DAG.getSetCC(dl, VT, N0, 4520 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4521 ISD::SETEQ); 4522 } 4523 } 4524 4525 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4526 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4527 if (C1.isZero()) 4528 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4529 VT, N0, N1, Cond, DCI, dl)) 4530 return CC; 4531 4532 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4533 // For example, when high 32-bits of i64 X are known clear: 4534 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4535 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4536 bool CmpZero = N1C->getAPIntValue().isZero(); 4537 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4538 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4539 // Match or(lo,shl(hi,bw/2)) pattern. 4540 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4541 unsigned EltBits = V.getScalarValueSizeInBits(); 4542 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4543 return false; 4544 SDValue LHS = V.getOperand(0); 4545 SDValue RHS = V.getOperand(1); 4546 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4547 // Unshifted element must have zero upperbits. 4548 if (RHS.getOpcode() == ISD::SHL && 4549 isa<ConstantSDNode>(RHS.getOperand(1)) && 4550 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4551 DAG.MaskedValueIsZero(LHS, HiBits)) { 4552 Lo = LHS; 4553 Hi = RHS.getOperand(0); 4554 return true; 4555 } 4556 if (LHS.getOpcode() == ISD::SHL && 4557 isa<ConstantSDNode>(LHS.getOperand(1)) && 4558 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4559 DAG.MaskedValueIsZero(RHS, HiBits)) { 4560 Lo = RHS; 4561 Hi = LHS.getOperand(0); 4562 return true; 4563 } 4564 return false; 4565 }; 4566 4567 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4568 unsigned EltBits = N0.getScalarValueSizeInBits(); 4569 unsigned HalfBits = EltBits / 2; 4570 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4571 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4572 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4573 SDValue NewN0 = 4574 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4575 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4576 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4577 }; 4578 4579 SDValue Lo, Hi; 4580 if (IsConcat(N0, Lo, Hi)) 4581 return MergeConcat(Lo, Hi); 4582 4583 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4584 SDValue Lo0, Lo1, Hi0, Hi1; 4585 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4586 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4587 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4588 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4589 } 4590 } 4591 } 4592 } 4593 4594 // If we have "setcc X, C0", check to see if we can shrink the immediate 4595 // by changing cc. 4596 // TODO: Support this for vectors after legalize ops. 4597 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4598 // SETUGT X, SINTMAX -> SETLT X, 0 4599 // SETUGE X, SINTMIN -> SETLT X, 0 4600 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4601 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4602 return DAG.getSetCC(dl, VT, N0, 4603 DAG.getConstant(0, dl, N1.getValueType()), 4604 ISD::SETLT); 4605 4606 // SETULT X, SINTMIN -> SETGT X, -1 4607 // SETULE X, SINTMAX -> SETGT X, -1 4608 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4609 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4610 return DAG.getSetCC(dl, VT, N0, 4611 DAG.getAllOnesConstant(dl, N1.getValueType()), 4612 ISD::SETGT); 4613 } 4614 } 4615 4616 // Back to non-vector simplifications. 4617 // TODO: Can we do these for vector splats? 4618 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4619 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4620 const APInt &C1 = N1C->getAPIntValue(); 4621 EVT ShValTy = N0.getValueType(); 4622 4623 // Fold bit comparisons when we can. This will result in an 4624 // incorrect value when boolean false is negative one, unless 4625 // the bitsize is 1 in which case the false value is the same 4626 // in practice regardless of the representation. 4627 if ((VT.getSizeInBits() == 1 || 4628 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4629 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4630 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4631 N0.getOpcode() == ISD::AND) { 4632 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4633 EVT ShiftTy = 4634 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4635 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4636 // Perform the xform if the AND RHS is a single bit. 4637 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4638 if (AndRHS->getAPIntValue().isPowerOf2() && 4639 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4640 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4641 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4642 DAG.getConstant(ShCt, dl, ShiftTy))); 4643 } 4644 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4645 // (X & 8) == 8 --> (X & 8) >> 3 4646 // Perform the xform if C1 is a single bit. 4647 unsigned ShCt = C1.logBase2(); 4648 if (C1.isPowerOf2() && 4649 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4650 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4651 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4652 DAG.getConstant(ShCt, dl, ShiftTy))); 4653 } 4654 } 4655 } 4656 } 4657 4658 if (C1.getMinSignedBits() <= 64 && 4659 !isLegalICmpImmediate(C1.getSExtValue())) { 4660 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4661 // (X & -256) == 256 -> (X >> 8) == 1 4662 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4663 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4664 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4665 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4666 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4667 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4668 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4669 SDValue Shift = 4670 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4671 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4672 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4673 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4674 } 4675 } 4676 } 4677 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4678 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4679 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4680 // X < 0x100000000 -> (X >> 32) < 1 4681 // X >= 0x100000000 -> (X >> 32) >= 1 4682 // X <= 0x0ffffffff -> (X >> 32) < 1 4683 // X > 0x0ffffffff -> (X >> 32) >= 1 4684 unsigned ShiftBits; 4685 APInt NewC = C1; 4686 ISD::CondCode NewCond = Cond; 4687 if (AdjOne) { 4688 ShiftBits = C1.countTrailingOnes(); 4689 NewC = NewC + 1; 4690 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4691 } else { 4692 ShiftBits = C1.countTrailingZeros(); 4693 } 4694 NewC.lshrInPlace(ShiftBits); 4695 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4696 isLegalICmpImmediate(NewC.getSExtValue()) && 4697 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4698 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4699 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4700 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4701 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4702 } 4703 } 4704 } 4705 } 4706 4707 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4708 auto *CFP = cast<ConstantFPSDNode>(N1); 4709 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4710 4711 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4712 // constant if knowing that the operand is non-nan is enough. We prefer to 4713 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4714 // materialize 0.0. 4715 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4716 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4717 4718 // setcc (fneg x), C -> setcc swap(pred) x, -C 4719 if (N0.getOpcode() == ISD::FNEG) { 4720 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4721 if (DCI.isBeforeLegalizeOps() || 4722 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4723 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4724 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4725 } 4726 } 4727 4728 // If the condition is not legal, see if we can find an equivalent one 4729 // which is legal. 4730 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4731 // If the comparison was an awkward floating-point == or != and one of 4732 // the comparison operands is infinity or negative infinity, convert the 4733 // condition to a less-awkward <= or >=. 4734 if (CFP->getValueAPF().isInfinity()) { 4735 bool IsNegInf = CFP->getValueAPF().isNegative(); 4736 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4737 switch (Cond) { 4738 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4739 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4740 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4741 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4742 default: break; 4743 } 4744 if (NewCond != ISD::SETCC_INVALID && 4745 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4746 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4747 } 4748 } 4749 } 4750 4751 if (N0 == N1) { 4752 // The sext(setcc()) => setcc() optimization relies on the appropriate 4753 // constant being emitted. 4754 assert(!N0.getValueType().isInteger() && 4755 "Integer types should be handled by FoldSetCC"); 4756 4757 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4758 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4759 if (UOF == 2) // FP operators that are undefined on NaNs. 4760 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4761 if (UOF == unsigned(EqTrue)) 4762 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4763 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4764 // if it is not already. 4765 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4766 if (NewCond != Cond && 4767 (DCI.isBeforeLegalizeOps() || 4768 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4769 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4770 } 4771 4772 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4773 N0.getValueType().isInteger()) { 4774 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4775 N0.getOpcode() == ISD::XOR) { 4776 // Simplify (X+Y) == (X+Z) --> Y == Z 4777 if (N0.getOpcode() == N1.getOpcode()) { 4778 if (N0.getOperand(0) == N1.getOperand(0)) 4779 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4780 if (N0.getOperand(1) == N1.getOperand(1)) 4781 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4782 if (isCommutativeBinOp(N0.getOpcode())) { 4783 // If X op Y == Y op X, try other combinations. 4784 if (N0.getOperand(0) == N1.getOperand(1)) 4785 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4786 Cond); 4787 if (N0.getOperand(1) == N1.getOperand(0)) 4788 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4789 Cond); 4790 } 4791 } 4792 4793 // If RHS is a legal immediate value for a compare instruction, we need 4794 // to be careful about increasing register pressure needlessly. 4795 bool LegalRHSImm = false; 4796 4797 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4798 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4799 // Turn (X+C1) == C2 --> X == C2-C1 4800 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) 4801 return DAG.getSetCC( 4802 dl, VT, N0.getOperand(0), 4803 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(), 4804 dl, N0.getValueType()), 4805 Cond); 4806 4807 // Turn (X^C1) == C2 --> X == C1^C2 4808 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) 4809 return DAG.getSetCC( 4810 dl, VT, N0.getOperand(0), 4811 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), 4812 dl, N0.getValueType()), 4813 Cond); 4814 } 4815 4816 // Turn (C1-X) == C2 --> X == C1-C2 4817 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) 4818 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) 4819 return DAG.getSetCC( 4820 dl, VT, N0.getOperand(1), 4821 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), 4822 dl, N0.getValueType()), 4823 Cond); 4824 4825 // Could RHSC fold directly into a compare? 4826 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4827 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4828 } 4829 4830 // (X+Y) == X --> Y == 0 and similar folds. 4831 // Don't do this if X is an immediate that can fold into a cmp 4832 // instruction and X+Y has other uses. It could be an induction variable 4833 // chain, and the transform would increase register pressure. 4834 if (!LegalRHSImm || N0.hasOneUse()) 4835 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4836 return V; 4837 } 4838 4839 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4840 N1.getOpcode() == ISD::XOR) 4841 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4842 return V; 4843 4844 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4845 return V; 4846 } 4847 4848 // Fold remainder of division by a constant. 4849 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4850 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4851 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4852 4853 // When division is cheap or optimizing for minimum size, 4854 // fall through to DIVREM creation by skipping this fold. 4855 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4856 if (N0.getOpcode() == ISD::UREM) { 4857 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4858 return Folded; 4859 } else if (N0.getOpcode() == ISD::SREM) { 4860 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4861 return Folded; 4862 } 4863 } 4864 } 4865 4866 // Fold away ALL boolean setcc's. 4867 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4868 SDValue Temp; 4869 switch (Cond) { 4870 default: llvm_unreachable("Unknown integer setcc!"); 4871 case ISD::SETEQ: // X == Y -> ~(X^Y) 4872 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4873 N0 = DAG.getNOT(dl, Temp, OpVT); 4874 if (!DCI.isCalledByLegalizer()) 4875 DCI.AddToWorklist(Temp.getNode()); 4876 break; 4877 case ISD::SETNE: // X != Y --> (X^Y) 4878 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4879 break; 4880 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4881 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4882 Temp = DAG.getNOT(dl, N0, OpVT); 4883 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4884 if (!DCI.isCalledByLegalizer()) 4885 DCI.AddToWorklist(Temp.getNode()); 4886 break; 4887 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4888 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4889 Temp = DAG.getNOT(dl, N1, OpVT); 4890 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4891 if (!DCI.isCalledByLegalizer()) 4892 DCI.AddToWorklist(Temp.getNode()); 4893 break; 4894 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4895 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4896 Temp = DAG.getNOT(dl, N0, OpVT); 4897 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4898 if (!DCI.isCalledByLegalizer()) 4899 DCI.AddToWorklist(Temp.getNode()); 4900 break; 4901 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4902 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4903 Temp = DAG.getNOT(dl, N1, OpVT); 4904 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4905 break; 4906 } 4907 if (VT.getScalarType() != MVT::i1) { 4908 if (!DCI.isCalledByLegalizer()) 4909 DCI.AddToWorklist(N0.getNode()); 4910 // FIXME: If running after legalize, we probably can't do this. 4911 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4912 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4913 } 4914 return N0; 4915 } 4916 4917 // Could not fold it. 4918 return SDValue(); 4919 } 4920 4921 /// Returns true (and the GlobalValue and the offset) if the node is a 4922 /// GlobalAddress + offset. 4923 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4924 int64_t &Offset) const { 4925 4926 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4927 4928 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4929 GA = GASD->getGlobal(); 4930 Offset += GASD->getOffset(); 4931 return true; 4932 } 4933 4934 if (N->getOpcode() == ISD::ADD) { 4935 SDValue N1 = N->getOperand(0); 4936 SDValue N2 = N->getOperand(1); 4937 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4938 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4939 Offset += V->getSExtValue(); 4940 return true; 4941 } 4942 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4943 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4944 Offset += V->getSExtValue(); 4945 return true; 4946 } 4947 } 4948 } 4949 4950 return false; 4951 } 4952 4953 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4954 DAGCombinerInfo &DCI) const { 4955 // Default implementation: no optimization. 4956 return SDValue(); 4957 } 4958 4959 //===----------------------------------------------------------------------===// 4960 // Inline Assembler Implementation Methods 4961 //===----------------------------------------------------------------------===// 4962 4963 TargetLowering::ConstraintType 4964 TargetLowering::getConstraintType(StringRef Constraint) const { 4965 unsigned S = Constraint.size(); 4966 4967 if (S == 1) { 4968 switch (Constraint[0]) { 4969 default: break; 4970 case 'r': 4971 return C_RegisterClass; 4972 case 'm': // memory 4973 case 'o': // offsetable 4974 case 'V': // not offsetable 4975 return C_Memory; 4976 case 'p': // Address. 4977 return C_Address; 4978 case 'n': // Simple Integer 4979 case 'E': // Floating Point Constant 4980 case 'F': // Floating Point Constant 4981 return C_Immediate; 4982 case 'i': // Simple Integer or Relocatable Constant 4983 case 's': // Relocatable Constant 4984 case 'X': // Allow ANY value. 4985 case 'I': // Target registers. 4986 case 'J': 4987 case 'K': 4988 case 'L': 4989 case 'M': 4990 case 'N': 4991 case 'O': 4992 case 'P': 4993 case '<': 4994 case '>': 4995 return C_Other; 4996 } 4997 } 4998 4999 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 5000 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 5001 return C_Memory; 5002 return C_Register; 5003 } 5004 return C_Unknown; 5005 } 5006 5007 /// Try to replace an X constraint, which matches anything, with another that 5008 /// has more specific requirements based on the type of the corresponding 5009 /// operand. 5010 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 5011 if (ConstraintVT.isInteger()) 5012 return "r"; 5013 if (ConstraintVT.isFloatingPoint()) 5014 return "f"; // works for many targets 5015 return nullptr; 5016 } 5017 5018 SDValue TargetLowering::LowerAsmOutputForConstraint( 5019 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 5020 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 5021 return SDValue(); 5022 } 5023 5024 /// Lower the specified operand into the Ops vector. 5025 /// If it is invalid, don't add anything to Ops. 5026 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5027 std::string &Constraint, 5028 std::vector<SDValue> &Ops, 5029 SelectionDAG &DAG) const { 5030 5031 if (Constraint.length() > 1) return; 5032 5033 char ConstraintLetter = Constraint[0]; 5034 switch (ConstraintLetter) { 5035 default: break; 5036 case 'X': // Allows any operand 5037 case 'i': // Simple Integer or Relocatable Constant 5038 case 'n': // Simple Integer 5039 case 's': { // Relocatable Constant 5040 5041 ConstantSDNode *C; 5042 uint64_t Offset = 0; 5043 5044 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 5045 // etc., since getelementpointer is variadic. We can't use 5046 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 5047 // while in this case the GA may be furthest from the root node which is 5048 // likely an ISD::ADD. 5049 while (true) { 5050 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 5051 // gcc prints these as sign extended. Sign extend value to 64 bits 5052 // now; without this it would get ZExt'd later in 5053 // ScheduleDAGSDNodes::EmitNode, which is very generic. 5054 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 5055 BooleanContent BCont = getBooleanContents(MVT::i64); 5056 ISD::NodeType ExtOpc = 5057 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 5058 int64_t ExtVal = 5059 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 5060 Ops.push_back( 5061 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 5062 return; 5063 } 5064 if (ConstraintLetter != 'n') { 5065 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5066 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 5067 GA->getValueType(0), 5068 Offset + GA->getOffset())); 5069 return; 5070 } 5071 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 5072 Ops.push_back(DAG.getTargetBlockAddress( 5073 BA->getBlockAddress(), BA->getValueType(0), 5074 Offset + BA->getOffset(), BA->getTargetFlags())); 5075 return; 5076 } 5077 if (isa<BasicBlockSDNode>(Op)) { 5078 Ops.push_back(Op); 5079 return; 5080 } 5081 } 5082 const unsigned OpCode = Op.getOpcode(); 5083 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 5084 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 5085 Op = Op.getOperand(1); 5086 // Subtraction is not commutative. 5087 else if (OpCode == ISD::ADD && 5088 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 5089 Op = Op.getOperand(0); 5090 else 5091 return; 5092 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 5093 continue; 5094 } 5095 return; 5096 } 5097 break; 5098 } 5099 } 5100 } 5101 5102 std::pair<unsigned, const TargetRegisterClass *> 5103 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 5104 StringRef Constraint, 5105 MVT VT) const { 5106 if (Constraint.empty() || Constraint[0] != '{') 5107 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 5108 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 5109 5110 // Remove the braces from around the name. 5111 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 5112 5113 std::pair<unsigned, const TargetRegisterClass *> R = 5114 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 5115 5116 // Figure out which register class contains this reg. 5117 for (const TargetRegisterClass *RC : RI->regclasses()) { 5118 // If none of the value types for this register class are valid, we 5119 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5120 if (!isLegalRC(*RI, *RC)) 5121 continue; 5122 5123 for (const MCPhysReg &PR : *RC) { 5124 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 5125 std::pair<unsigned, const TargetRegisterClass *> S = 5126 std::make_pair(PR, RC); 5127 5128 // If this register class has the requested value type, return it, 5129 // otherwise keep searching and return the first class found 5130 // if no other is found which explicitly has the requested type. 5131 if (RI->isTypeLegalForClass(*RC, VT)) 5132 return S; 5133 if (!R.second) 5134 R = S; 5135 } 5136 } 5137 } 5138 5139 return R; 5140 } 5141 5142 //===----------------------------------------------------------------------===// 5143 // Constraint Selection. 5144 5145 /// Return true of this is an input operand that is a matching constraint like 5146 /// "4". 5147 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 5148 assert(!ConstraintCode.empty() && "No known constraint!"); 5149 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 5150 } 5151 5152 /// If this is an input matching constraint, this method returns the output 5153 /// operand it matches. 5154 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5155 assert(!ConstraintCode.empty() && "No known constraint!"); 5156 return atoi(ConstraintCode.c_str()); 5157 } 5158 5159 /// Split up the constraint string from the inline assembly value into the 5160 /// specific constraints and their prefixes, and also tie in the associated 5161 /// operand values. 5162 /// If this returns an empty vector, and if the constraint string itself 5163 /// isn't empty, there was an error parsing. 5164 TargetLowering::AsmOperandInfoVector 5165 TargetLowering::ParseConstraints(const DataLayout &DL, 5166 const TargetRegisterInfo *TRI, 5167 const CallBase &Call) const { 5168 /// Information about all of the constraints. 5169 AsmOperandInfoVector ConstraintOperands; 5170 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5171 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5172 5173 // Do a prepass over the constraints, canonicalizing them, and building up the 5174 // ConstraintOperands list. 5175 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5176 unsigned ResNo = 0; // ResNo - The result number of the next output. 5177 5178 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5179 ConstraintOperands.emplace_back(std::move(CI)); 5180 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5181 5182 // Update multiple alternative constraint count. 5183 if (OpInfo.multipleAlternatives.size() > maCount) 5184 maCount = OpInfo.multipleAlternatives.size(); 5185 5186 OpInfo.ConstraintVT = MVT::Other; 5187 5188 // Compute the value type for each operand. 5189 switch (OpInfo.Type) { 5190 case InlineAsm::isOutput: 5191 // Indirect outputs just consume an argument. 5192 if (OpInfo.isIndirect) { 5193 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5194 break; 5195 } 5196 5197 // The return value of the call is this value. As such, there is no 5198 // corresponding argument. 5199 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5200 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 5201 OpInfo.ConstraintVT = 5202 getSimpleValueType(DL, STy->getElementType(ResNo)); 5203 } else { 5204 assert(ResNo == 0 && "Asm only has one result!"); 5205 OpInfo.ConstraintVT = 5206 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5207 } 5208 ++ResNo; 5209 break; 5210 case InlineAsm::isInput: 5211 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5212 break; 5213 case InlineAsm::isClobber: 5214 // Nothing to do. 5215 break; 5216 } 5217 5218 if (OpInfo.CallOperandVal) { 5219 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5220 if (OpInfo.isIndirect) { 5221 OpTy = Call.getParamElementType(ArgNo); 5222 assert(OpTy && "Indirect operand must have elementtype attribute"); 5223 } 5224 5225 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5226 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5227 if (STy->getNumElements() == 1) 5228 OpTy = STy->getElementType(0); 5229 5230 // If OpTy is not a single value, it may be a struct/union that we 5231 // can tile with integers. 5232 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5233 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5234 switch (BitSize) { 5235 default: break; 5236 case 1: 5237 case 8: 5238 case 16: 5239 case 32: 5240 case 64: 5241 case 128: 5242 OpInfo.ConstraintVT = 5243 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 5244 break; 5245 } 5246 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 5247 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 5248 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 5249 } else { 5250 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 5251 } 5252 5253 ArgNo++; 5254 } 5255 } 5256 5257 // If we have multiple alternative constraints, select the best alternative. 5258 if (!ConstraintOperands.empty()) { 5259 if (maCount) { 5260 unsigned bestMAIndex = 0; 5261 int bestWeight = -1; 5262 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5263 int weight = -1; 5264 unsigned maIndex; 5265 // Compute the sums of the weights for each alternative, keeping track 5266 // of the best (highest weight) one so far. 5267 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5268 int weightSum = 0; 5269 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5270 cIndex != eIndex; ++cIndex) { 5271 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5272 if (OpInfo.Type == InlineAsm::isClobber) 5273 continue; 5274 5275 // If this is an output operand with a matching input operand, 5276 // look up the matching input. If their types mismatch, e.g. one 5277 // is an integer, the other is floating point, or their sizes are 5278 // different, flag it as an maCantMatch. 5279 if (OpInfo.hasMatchingInput()) { 5280 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5281 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5282 if ((OpInfo.ConstraintVT.isInteger() != 5283 Input.ConstraintVT.isInteger()) || 5284 (OpInfo.ConstraintVT.getSizeInBits() != 5285 Input.ConstraintVT.getSizeInBits())) { 5286 weightSum = -1; // Can't match. 5287 break; 5288 } 5289 } 5290 } 5291 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5292 if (weight == -1) { 5293 weightSum = -1; 5294 break; 5295 } 5296 weightSum += weight; 5297 } 5298 // Update best. 5299 if (weightSum > bestWeight) { 5300 bestWeight = weightSum; 5301 bestMAIndex = maIndex; 5302 } 5303 } 5304 5305 // Now select chosen alternative in each constraint. 5306 for (AsmOperandInfo &cInfo : ConstraintOperands) 5307 if (cInfo.Type != InlineAsm::isClobber) 5308 cInfo.selectAlternative(bestMAIndex); 5309 } 5310 } 5311 5312 // Check and hook up tied operands, choose constraint code to use. 5313 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5314 cIndex != eIndex; ++cIndex) { 5315 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5316 5317 // If this is an output operand with a matching input operand, look up the 5318 // matching input. If their types mismatch, e.g. one is an integer, the 5319 // other is floating point, or their sizes are different, flag it as an 5320 // error. 5321 if (OpInfo.hasMatchingInput()) { 5322 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5323 5324 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5325 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5326 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5327 OpInfo.ConstraintVT); 5328 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5329 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5330 Input.ConstraintVT); 5331 if ((OpInfo.ConstraintVT.isInteger() != 5332 Input.ConstraintVT.isInteger()) || 5333 (MatchRC.second != InputRC.second)) { 5334 report_fatal_error("Unsupported asm: input constraint" 5335 " with a matching output constraint of" 5336 " incompatible type!"); 5337 } 5338 } 5339 } 5340 } 5341 5342 return ConstraintOperands; 5343 } 5344 5345 /// Return an integer indicating how general CT is. 5346 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 5347 switch (CT) { 5348 case TargetLowering::C_Immediate: 5349 case TargetLowering::C_Other: 5350 case TargetLowering::C_Unknown: 5351 return 0; 5352 case TargetLowering::C_Register: 5353 return 1; 5354 case TargetLowering::C_RegisterClass: 5355 return 2; 5356 case TargetLowering::C_Memory: 5357 case TargetLowering::C_Address: 5358 return 3; 5359 } 5360 llvm_unreachable("Invalid constraint type"); 5361 } 5362 5363 /// Examine constraint type and operand type and determine a weight value. 5364 /// This object must already have been set up with the operand type 5365 /// and the current alternative constraint selected. 5366 TargetLowering::ConstraintWeight 5367 TargetLowering::getMultipleConstraintMatchWeight( 5368 AsmOperandInfo &info, int maIndex) const { 5369 InlineAsm::ConstraintCodeVector *rCodes; 5370 if (maIndex >= (int)info.multipleAlternatives.size()) 5371 rCodes = &info.Codes; 5372 else 5373 rCodes = &info.multipleAlternatives[maIndex].Codes; 5374 ConstraintWeight BestWeight = CW_Invalid; 5375 5376 // Loop over the options, keeping track of the most general one. 5377 for (const std::string &rCode : *rCodes) { 5378 ConstraintWeight weight = 5379 getSingleConstraintMatchWeight(info, rCode.c_str()); 5380 if (weight > BestWeight) 5381 BestWeight = weight; 5382 } 5383 5384 return BestWeight; 5385 } 5386 5387 /// Examine constraint type and operand type and determine a weight value. 5388 /// This object must already have been set up with the operand type 5389 /// and the current alternative constraint selected. 5390 TargetLowering::ConstraintWeight 5391 TargetLowering::getSingleConstraintMatchWeight( 5392 AsmOperandInfo &info, const char *constraint) const { 5393 ConstraintWeight weight = CW_Invalid; 5394 Value *CallOperandVal = info.CallOperandVal; 5395 // If we don't have a value, we can't do a match, 5396 // but allow it at the lowest weight. 5397 if (!CallOperandVal) 5398 return CW_Default; 5399 // Look at the constraint type. 5400 switch (*constraint) { 5401 case 'i': // immediate integer. 5402 case 'n': // immediate integer with a known value. 5403 if (isa<ConstantInt>(CallOperandVal)) 5404 weight = CW_Constant; 5405 break; 5406 case 's': // non-explicit intregal immediate. 5407 if (isa<GlobalValue>(CallOperandVal)) 5408 weight = CW_Constant; 5409 break; 5410 case 'E': // immediate float if host format. 5411 case 'F': // immediate float. 5412 if (isa<ConstantFP>(CallOperandVal)) 5413 weight = CW_Constant; 5414 break; 5415 case '<': // memory operand with autodecrement. 5416 case '>': // memory operand with autoincrement. 5417 case 'm': // memory operand. 5418 case 'o': // offsettable memory operand 5419 case 'V': // non-offsettable memory operand 5420 weight = CW_Memory; 5421 break; 5422 case 'r': // general register. 5423 case 'g': // general register, memory operand or immediate integer. 5424 // note: Clang converts "g" to "imr". 5425 if (CallOperandVal->getType()->isIntegerTy()) 5426 weight = CW_Register; 5427 break; 5428 case 'X': // any operand. 5429 default: 5430 weight = CW_Default; 5431 break; 5432 } 5433 return weight; 5434 } 5435 5436 /// If there are multiple different constraints that we could pick for this 5437 /// operand (e.g. "imr") try to pick the 'best' one. 5438 /// This is somewhat tricky: constraints fall into four classes: 5439 /// Other -> immediates and magic values 5440 /// Register -> one specific register 5441 /// RegisterClass -> a group of regs 5442 /// Memory -> memory 5443 /// Ideally, we would pick the most specific constraint possible: if we have 5444 /// something that fits into a register, we would pick it. The problem here 5445 /// is that if we have something that could either be in a register or in 5446 /// memory that use of the register could cause selection of *other* 5447 /// operands to fail: they might only succeed if we pick memory. Because of 5448 /// this the heuristic we use is: 5449 /// 5450 /// 1) If there is an 'other' constraint, and if the operand is valid for 5451 /// that constraint, use it. This makes us take advantage of 'i' 5452 /// constraints when available. 5453 /// 2) Otherwise, pick the most general constraint present. This prefers 5454 /// 'm' over 'r', for example. 5455 /// 5456 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5457 const TargetLowering &TLI, 5458 SDValue Op, SelectionDAG *DAG) { 5459 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5460 unsigned BestIdx = 0; 5461 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5462 int BestGenerality = -1; 5463 5464 // Loop over the options, keeping track of the most general one. 5465 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5466 TargetLowering::ConstraintType CType = 5467 TLI.getConstraintType(OpInfo.Codes[i]); 5468 5469 // Indirect 'other' or 'immediate' constraints are not allowed. 5470 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5471 CType == TargetLowering::C_Register || 5472 CType == TargetLowering::C_RegisterClass)) 5473 continue; 5474 5475 // If this is an 'other' or 'immediate' constraint, see if the operand is 5476 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5477 // the operand is an integer in the range [0..31] we want to use I (saving a 5478 // load of a register), otherwise we must use 'r'. 5479 if ((CType == TargetLowering::C_Other || 5480 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5481 assert(OpInfo.Codes[i].size() == 1 && 5482 "Unhandled multi-letter 'other' constraint"); 5483 std::vector<SDValue> ResultOps; 5484 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5485 ResultOps, *DAG); 5486 if (!ResultOps.empty()) { 5487 BestType = CType; 5488 BestIdx = i; 5489 break; 5490 } 5491 } 5492 5493 // Things with matching constraints can only be registers, per gcc 5494 // documentation. This mainly affects "g" constraints. 5495 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5496 continue; 5497 5498 // This constraint letter is more general than the previous one, use it. 5499 int Generality = getConstraintGenerality(CType); 5500 if (Generality > BestGenerality) { 5501 BestType = CType; 5502 BestIdx = i; 5503 BestGenerality = Generality; 5504 } 5505 } 5506 5507 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5508 OpInfo.ConstraintType = BestType; 5509 } 5510 5511 /// Determines the constraint code and constraint type to use for the specific 5512 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5513 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5514 SDValue Op, 5515 SelectionDAG *DAG) const { 5516 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5517 5518 // Single-letter constraints ('r') are very common. 5519 if (OpInfo.Codes.size() == 1) { 5520 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5521 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5522 } else { 5523 ChooseConstraint(OpInfo, *this, Op, DAG); 5524 } 5525 5526 // 'X' matches anything. 5527 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5528 // Constants are handled elsewhere. For Functions, the type here is the 5529 // type of the result, which is not what we want to look at; leave them 5530 // alone. 5531 Value *v = OpInfo.CallOperandVal; 5532 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5533 return; 5534 } 5535 5536 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5537 OpInfo.ConstraintCode = "i"; 5538 return; 5539 } 5540 5541 // Otherwise, try to resolve it to something we know about by looking at 5542 // the actual operand type. 5543 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5544 OpInfo.ConstraintCode = Repl; 5545 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5546 } 5547 } 5548 } 5549 5550 /// Given an exact SDIV by a constant, create a multiplication 5551 /// with the multiplicative inverse of the constant. 5552 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5553 const SDLoc &dl, SelectionDAG &DAG, 5554 SmallVectorImpl<SDNode *> &Created) { 5555 SDValue Op0 = N->getOperand(0); 5556 SDValue Op1 = N->getOperand(1); 5557 EVT VT = N->getValueType(0); 5558 EVT SVT = VT.getScalarType(); 5559 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5560 EVT ShSVT = ShVT.getScalarType(); 5561 5562 bool UseSRA = false; 5563 SmallVector<SDValue, 16> Shifts, Factors; 5564 5565 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5566 if (C->isZero()) 5567 return false; 5568 APInt Divisor = C->getAPIntValue(); 5569 unsigned Shift = Divisor.countTrailingZeros(); 5570 if (Shift) { 5571 Divisor.ashrInPlace(Shift); 5572 UseSRA = true; 5573 } 5574 // Calculate the multiplicative inverse, using Newton's method. 5575 APInt t; 5576 APInt Factor = Divisor; 5577 while ((t = Divisor * Factor) != 1) 5578 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5579 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5580 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5581 return true; 5582 }; 5583 5584 // Collect all magic values from the build vector. 5585 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5586 return SDValue(); 5587 5588 SDValue Shift, Factor; 5589 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5590 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5591 Factor = DAG.getBuildVector(VT, dl, Factors); 5592 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5593 assert(Shifts.size() == 1 && Factors.size() == 1 && 5594 "Expected matchUnaryPredicate to return one element for scalable " 5595 "vectors"); 5596 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5597 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5598 } else { 5599 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5600 Shift = Shifts[0]; 5601 Factor = Factors[0]; 5602 } 5603 5604 SDValue Res = Op0; 5605 5606 // Shift the value upfront if it is even, so the LSB is one. 5607 if (UseSRA) { 5608 // TODO: For UDIV use SRL instead of SRA. 5609 SDNodeFlags Flags; 5610 Flags.setExact(true); 5611 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5612 Created.push_back(Res.getNode()); 5613 } 5614 5615 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5616 } 5617 5618 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5619 SelectionDAG &DAG, 5620 SmallVectorImpl<SDNode *> &Created) const { 5621 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5622 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5623 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5624 return SDValue(N, 0); // Lower SDIV as SDIV 5625 return SDValue(); 5626 } 5627 5628 SDValue 5629 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, 5630 SelectionDAG &DAG, 5631 SmallVectorImpl<SDNode *> &Created) const { 5632 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5633 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5634 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5635 return SDValue(N, 0); // Lower SREM as SREM 5636 return SDValue(); 5637 } 5638 5639 /// Given an ISD::SDIV node expressing a divide by constant, 5640 /// return a DAG expression to select that will generate the same value by 5641 /// multiplying by a magic number. 5642 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5643 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5644 bool IsAfterLegalization, 5645 SmallVectorImpl<SDNode *> &Created) const { 5646 SDLoc dl(N); 5647 EVT VT = N->getValueType(0); 5648 EVT SVT = VT.getScalarType(); 5649 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5650 EVT ShSVT = ShVT.getScalarType(); 5651 unsigned EltBits = VT.getScalarSizeInBits(); 5652 EVT MulVT; 5653 5654 // Check to see if we can do this. 5655 // FIXME: We should be more aggressive here. 5656 if (!isTypeLegal(VT)) { 5657 // Limit this to simple scalars for now. 5658 if (VT.isVector() || !VT.isSimple()) 5659 return SDValue(); 5660 5661 // If this type will be promoted to a large enough type with a legal 5662 // multiply operation, we can go ahead and do this transform. 5663 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5664 return SDValue(); 5665 5666 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5667 if (MulVT.getSizeInBits() < (2 * EltBits) || 5668 !isOperationLegal(ISD::MUL, MulVT)) 5669 return SDValue(); 5670 } 5671 5672 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5673 if (N->getFlags().hasExact()) 5674 return BuildExactSDIV(*this, N, dl, DAG, Created); 5675 5676 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5677 5678 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5679 if (C->isZero()) 5680 return false; 5681 5682 const APInt &Divisor = C->getAPIntValue(); 5683 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5684 int NumeratorFactor = 0; 5685 int ShiftMask = -1; 5686 5687 if (Divisor.isOne() || Divisor.isAllOnes()) { 5688 // If d is +1/-1, we just multiply the numerator by +1/-1. 5689 NumeratorFactor = Divisor.getSExtValue(); 5690 magics.Magic = 0; 5691 magics.ShiftAmount = 0; 5692 ShiftMask = 0; 5693 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5694 // If d > 0 and m < 0, add the numerator. 5695 NumeratorFactor = 1; 5696 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5697 // If d < 0 and m > 0, subtract the numerator. 5698 NumeratorFactor = -1; 5699 } 5700 5701 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5702 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5703 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5704 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5705 return true; 5706 }; 5707 5708 SDValue N0 = N->getOperand(0); 5709 SDValue N1 = N->getOperand(1); 5710 5711 // Collect the shifts / magic values from each element. 5712 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5713 return SDValue(); 5714 5715 SDValue MagicFactor, Factor, Shift, ShiftMask; 5716 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5717 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5718 Factor = DAG.getBuildVector(VT, dl, Factors); 5719 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5720 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5721 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5722 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5723 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5724 "Expected matchUnaryPredicate to return one element for scalable " 5725 "vectors"); 5726 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5727 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5728 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5729 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5730 } else { 5731 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5732 MagicFactor = MagicFactors[0]; 5733 Factor = Factors[0]; 5734 Shift = Shifts[0]; 5735 ShiftMask = ShiftMasks[0]; 5736 } 5737 5738 // Multiply the numerator (operand 0) by the magic value. 5739 // FIXME: We should support doing a MUL in a wider type. 5740 auto GetMULHS = [&](SDValue X, SDValue Y) { 5741 // If the type isn't legal, use a wider mul of the the type calculated 5742 // earlier. 5743 if (!isTypeLegal(VT)) { 5744 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5745 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5746 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5747 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5748 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5749 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5750 } 5751 5752 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5753 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5754 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5755 SDValue LoHi = 5756 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5757 return SDValue(LoHi.getNode(), 1); 5758 } 5759 return SDValue(); 5760 }; 5761 5762 SDValue Q = GetMULHS(N0, MagicFactor); 5763 if (!Q) 5764 return SDValue(); 5765 5766 Created.push_back(Q.getNode()); 5767 5768 // (Optionally) Add/subtract the numerator using Factor. 5769 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5770 Created.push_back(Factor.getNode()); 5771 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5772 Created.push_back(Q.getNode()); 5773 5774 // Shift right algebraic by shift value. 5775 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5776 Created.push_back(Q.getNode()); 5777 5778 // Extract the sign bit, mask it and add it to the quotient. 5779 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5780 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5781 Created.push_back(T.getNode()); 5782 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5783 Created.push_back(T.getNode()); 5784 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5785 } 5786 5787 /// Given an ISD::UDIV node expressing a divide by constant, 5788 /// return a DAG expression to select that will generate the same value by 5789 /// multiplying by a magic number. 5790 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5791 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5792 bool IsAfterLegalization, 5793 SmallVectorImpl<SDNode *> &Created) const { 5794 SDLoc dl(N); 5795 EVT VT = N->getValueType(0); 5796 EVT SVT = VT.getScalarType(); 5797 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5798 EVT ShSVT = ShVT.getScalarType(); 5799 unsigned EltBits = VT.getScalarSizeInBits(); 5800 EVT MulVT; 5801 5802 // Check to see if we can do this. 5803 // FIXME: We should be more aggressive here. 5804 if (!isTypeLegal(VT)) { 5805 // Limit this to simple scalars for now. 5806 if (VT.isVector() || !VT.isSimple()) 5807 return SDValue(); 5808 5809 // If this type will be promoted to a large enough type with a legal 5810 // multiply operation, we can go ahead and do this transform. 5811 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5812 return SDValue(); 5813 5814 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5815 if (MulVT.getSizeInBits() < (2 * EltBits) || 5816 !isOperationLegal(ISD::MUL, MulVT)) 5817 return SDValue(); 5818 } 5819 5820 bool UseNPQ = false; 5821 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5822 5823 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5824 if (C->isZero()) 5825 return false; 5826 // FIXME: We should use a narrower constant when the upper 5827 // bits are known to be zero. 5828 const APInt& Divisor = C->getAPIntValue(); 5829 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5830 unsigned PreShift = 0, PostShift = 0; 5831 5832 // If the divisor is even, we can avoid using the expensive fixup by 5833 // shifting the divided value upfront. 5834 if (magics.IsAdd != 0 && !Divisor[0]) { 5835 PreShift = Divisor.countTrailingZeros(); 5836 // Get magic number for the shifted divisor. 5837 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5838 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5839 } 5840 5841 APInt Magic = magics.Magic; 5842 5843 unsigned SelNPQ; 5844 if (magics.IsAdd == 0 || Divisor.isOne()) { 5845 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5846 "We shouldn't generate an undefined shift!"); 5847 PostShift = magics.ShiftAmount; 5848 SelNPQ = false; 5849 } else { 5850 PostShift = magics.ShiftAmount - 1; 5851 SelNPQ = true; 5852 } 5853 5854 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5855 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5856 NPQFactors.push_back( 5857 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5858 : APInt::getZero(EltBits), 5859 dl, SVT)); 5860 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5861 UseNPQ |= SelNPQ; 5862 return true; 5863 }; 5864 5865 SDValue N0 = N->getOperand(0); 5866 SDValue N1 = N->getOperand(1); 5867 5868 // Collect the shifts/magic values from each element. 5869 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5870 return SDValue(); 5871 5872 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5873 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5874 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5875 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5876 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5877 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5878 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5879 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5880 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5881 "Expected matchUnaryPredicate to return one for scalable vectors"); 5882 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5883 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5884 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5885 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5886 } else { 5887 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5888 PreShift = PreShifts[0]; 5889 MagicFactor = MagicFactors[0]; 5890 PostShift = PostShifts[0]; 5891 } 5892 5893 SDValue Q = N0; 5894 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5895 Created.push_back(Q.getNode()); 5896 5897 // FIXME: We should support doing a MUL in a wider type. 5898 auto GetMULHU = [&](SDValue X, SDValue Y) { 5899 // If the type isn't legal, use a wider mul of the the type calculated 5900 // earlier. 5901 if (!isTypeLegal(VT)) { 5902 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5903 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5904 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5905 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5906 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5907 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5908 } 5909 5910 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5911 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5912 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5913 SDValue LoHi = 5914 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5915 return SDValue(LoHi.getNode(), 1); 5916 } 5917 return SDValue(); // No mulhu or equivalent 5918 }; 5919 5920 // Multiply the numerator (operand 0) by the magic value. 5921 Q = GetMULHU(Q, MagicFactor); 5922 if (!Q) 5923 return SDValue(); 5924 5925 Created.push_back(Q.getNode()); 5926 5927 if (UseNPQ) { 5928 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5929 Created.push_back(NPQ.getNode()); 5930 5931 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5932 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5933 if (VT.isVector()) 5934 NPQ = GetMULHU(NPQ, NPQFactor); 5935 else 5936 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5937 5938 Created.push_back(NPQ.getNode()); 5939 5940 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5941 Created.push_back(Q.getNode()); 5942 } 5943 5944 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5945 Created.push_back(Q.getNode()); 5946 5947 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5948 5949 SDValue One = DAG.getConstant(1, dl, VT); 5950 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5951 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5952 } 5953 5954 /// If all values in Values that *don't* match the predicate are same 'splat' 5955 /// value, then replace all values with that splat value. 5956 /// Else, if AlternativeReplacement was provided, then replace all values that 5957 /// do match predicate with AlternativeReplacement value. 5958 static void 5959 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5960 std::function<bool(SDValue)> Predicate, 5961 SDValue AlternativeReplacement = SDValue()) { 5962 SDValue Replacement; 5963 // Is there a value for which the Predicate does *NOT* match? What is it? 5964 auto SplatValue = llvm::find_if_not(Values, Predicate); 5965 if (SplatValue != Values.end()) { 5966 // Does Values consist only of SplatValue's and values matching Predicate? 5967 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5968 return Value == *SplatValue || Predicate(Value); 5969 })) // Then we shall replace values matching predicate with SplatValue. 5970 Replacement = *SplatValue; 5971 } 5972 if (!Replacement) { 5973 // Oops, we did not find the "baseline" splat value. 5974 if (!AlternativeReplacement) 5975 return; // Nothing to do. 5976 // Let's replace with provided value then. 5977 Replacement = AlternativeReplacement; 5978 } 5979 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5980 } 5981 5982 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5983 /// where the divisor is constant and the comparison target is zero, 5984 /// return a DAG expression that will generate the same comparison result 5985 /// using only multiplications, additions and shifts/rotations. 5986 /// Ref: "Hacker's Delight" 10-17. 5987 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5988 SDValue CompTargetNode, 5989 ISD::CondCode Cond, 5990 DAGCombinerInfo &DCI, 5991 const SDLoc &DL) const { 5992 SmallVector<SDNode *, 5> Built; 5993 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5994 DCI, DL, Built)) { 5995 for (SDNode *N : Built) 5996 DCI.AddToWorklist(N); 5997 return Folded; 5998 } 5999 6000 return SDValue(); 6001 } 6002 6003 SDValue 6004 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 6005 SDValue CompTargetNode, ISD::CondCode Cond, 6006 DAGCombinerInfo &DCI, const SDLoc &DL, 6007 SmallVectorImpl<SDNode *> &Created) const { 6008 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 6009 // - D must be constant, with D = D0 * 2^K where D0 is odd 6010 // - P is the multiplicative inverse of D0 modulo 2^W 6011 // - Q = floor(((2^W) - 1) / D) 6012 // where W is the width of the common type of N and D. 6013 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6014 "Only applicable for (in)equality comparisons."); 6015 6016 SelectionDAG &DAG = DCI.DAG; 6017 6018 EVT VT = REMNode.getValueType(); 6019 EVT SVT = VT.getScalarType(); 6020 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6021 EVT ShSVT = ShVT.getScalarType(); 6022 6023 // If MUL is unavailable, we cannot proceed in any case. 6024 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6025 return SDValue(); 6026 6027 bool ComparingWithAllZeros = true; 6028 bool AllComparisonsWithNonZerosAreTautological = true; 6029 bool HadTautologicalLanes = false; 6030 bool AllLanesAreTautological = true; 6031 bool HadEvenDivisor = false; 6032 bool AllDivisorsArePowerOfTwo = true; 6033 bool HadTautologicalInvertedLanes = false; 6034 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 6035 6036 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 6037 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6038 if (CDiv->isZero()) 6039 return false; 6040 6041 const APInt &D = CDiv->getAPIntValue(); 6042 const APInt &Cmp = CCmp->getAPIntValue(); 6043 6044 ComparingWithAllZeros &= Cmp.isZero(); 6045 6046 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6047 // if C2 is not less than C1, the comparison is always false. 6048 // But we will only be able to produce the comparison that will give the 6049 // opposive tautological answer. So this lane would need to be fixed up. 6050 bool TautologicalInvertedLane = D.ule(Cmp); 6051 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 6052 6053 // If all lanes are tautological (either all divisors are ones, or divisor 6054 // is not greater than the constant we are comparing with), 6055 // we will prefer to avoid the fold. 6056 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 6057 HadTautologicalLanes |= TautologicalLane; 6058 AllLanesAreTautological &= TautologicalLane; 6059 6060 // If we are comparing with non-zero, we need'll need to subtract said 6061 // comparison value from the LHS. But there is no point in doing that if 6062 // every lane where we are comparing with non-zero is tautological.. 6063 if (!Cmp.isZero()) 6064 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 6065 6066 // Decompose D into D0 * 2^K 6067 unsigned K = D.countTrailingZeros(); 6068 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6069 APInt D0 = D.lshr(K); 6070 6071 // D is even if it has trailing zeros. 6072 HadEvenDivisor |= (K != 0); 6073 // D is a power-of-two if D0 is one. 6074 // If all divisors are power-of-two, we will prefer to avoid the fold. 6075 AllDivisorsArePowerOfTwo &= D0.isOne(); 6076 6077 // P = inv(D0, 2^W) 6078 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6079 unsigned W = D.getBitWidth(); 6080 APInt P = D0.zext(W + 1) 6081 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6082 .trunc(W); 6083 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6084 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6085 6086 // Q = floor((2^W - 1) u/ D) 6087 // R = ((2^W - 1) u% D) 6088 APInt Q, R; 6089 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 6090 6091 // If we are comparing with zero, then that comparison constant is okay, 6092 // else it may need to be one less than that. 6093 if (Cmp.ugt(R)) 6094 Q -= 1; 6095 6096 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6097 "We are expecting that K is always less than all-ones for ShSVT"); 6098 6099 // If the lane is tautological the result can be constant-folded. 6100 if (TautologicalLane) { 6101 // Set P and K amount to a bogus values so we can try to splat them. 6102 P = 0; 6103 K = -1; 6104 // And ensure that comparison constant is tautological, 6105 // it will always compare true/false. 6106 Q = -1; 6107 } 6108 6109 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6110 KAmts.push_back( 6111 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6112 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6113 return true; 6114 }; 6115 6116 SDValue N = REMNode.getOperand(0); 6117 SDValue D = REMNode.getOperand(1); 6118 6119 // Collect the values from each element. 6120 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 6121 return SDValue(); 6122 6123 // If all lanes are tautological, the result can be constant-folded. 6124 if (AllLanesAreTautological) 6125 return SDValue(); 6126 6127 // If this is a urem by a powers-of-two, avoid the fold since it can be 6128 // best implemented as a bit test. 6129 if (AllDivisorsArePowerOfTwo) 6130 return SDValue(); 6131 6132 SDValue PVal, KVal, QVal; 6133 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6134 if (HadTautologicalLanes) { 6135 // Try to turn PAmts into a splat, since we don't care about the values 6136 // that are currently '0'. If we can't, just keep '0'`s. 6137 turnVectorIntoSplatVector(PAmts, isNullConstant); 6138 // Try to turn KAmts into a splat, since we don't care about the values 6139 // that are currently '-1'. If we can't, change them to '0'`s. 6140 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6141 DAG.getConstant(0, DL, ShSVT)); 6142 } 6143 6144 PVal = DAG.getBuildVector(VT, DL, PAmts); 6145 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6146 QVal = DAG.getBuildVector(VT, DL, QAmts); 6147 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6148 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 6149 "Expected matchBinaryPredicate to return one element for " 6150 "SPLAT_VECTORs"); 6151 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6152 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6153 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6154 } else { 6155 PVal = PAmts[0]; 6156 KVal = KAmts[0]; 6157 QVal = QAmts[0]; 6158 } 6159 6160 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 6161 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 6162 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 6163 assert(CompTargetNode.getValueType() == N.getValueType() && 6164 "Expecting that the types on LHS and RHS of comparisons match."); 6165 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6166 } 6167 6168 // (mul N, P) 6169 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6170 Created.push_back(Op0.getNode()); 6171 6172 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6173 // divisors as a performance improvement, since rotating by 0 is a no-op. 6174 if (HadEvenDivisor) { 6175 // We need ROTR to do this. 6176 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6177 return SDValue(); 6178 // UREM: (rotr (mul N, P), K) 6179 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6180 Created.push_back(Op0.getNode()); 6181 } 6182 6183 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6184 SDValue NewCC = 6185 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6186 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6187 if (!HadTautologicalInvertedLanes) 6188 return NewCC; 6189 6190 // If any lanes previously compared always-false, the NewCC will give 6191 // always-true result for them, so we need to fixup those lanes. 6192 // Or the other way around for inequality predicate. 6193 assert(VT.isVector() && "Can/should only get here for vectors."); 6194 Created.push_back(NewCC.getNode()); 6195 6196 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6197 // if C2 is not less than C1, the comparison is always false. 6198 // But we have produced the comparison that will give the 6199 // opposive tautological answer. So these lanes would need to be fixed up. 6200 SDValue TautologicalInvertedChannels = 6201 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6202 Created.push_back(TautologicalInvertedChannels.getNode()); 6203 6204 // NOTE: we avoid letting illegal types through even if we're before legalize 6205 // ops – legalization has a hard time producing good code for this. 6206 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6207 // If we have a vector select, let's replace the comparison results in the 6208 // affected lanes with the correct tautological result. 6209 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6210 DL, SETCCVT, SETCCVT); 6211 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6212 Replacement, NewCC); 6213 } 6214 6215 // Else, we can just invert the comparison result in the appropriate lanes. 6216 // 6217 // NOTE: see the note above VSELECT above. 6218 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6219 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6220 TautologicalInvertedChannels); 6221 6222 return SDValue(); // Don't know how to lower. 6223 } 6224 6225 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6226 /// where the divisor is constant and the comparison target is zero, 6227 /// return a DAG expression that will generate the same comparison result 6228 /// using only multiplications, additions and shifts/rotations. 6229 /// Ref: "Hacker's Delight" 10-17. 6230 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6231 SDValue CompTargetNode, 6232 ISD::CondCode Cond, 6233 DAGCombinerInfo &DCI, 6234 const SDLoc &DL) const { 6235 SmallVector<SDNode *, 7> Built; 6236 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6237 DCI, DL, Built)) { 6238 assert(Built.size() <= 7 && "Max size prediction failed."); 6239 for (SDNode *N : Built) 6240 DCI.AddToWorklist(N); 6241 return Folded; 6242 } 6243 6244 return SDValue(); 6245 } 6246 6247 SDValue 6248 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6249 SDValue CompTargetNode, ISD::CondCode Cond, 6250 DAGCombinerInfo &DCI, const SDLoc &DL, 6251 SmallVectorImpl<SDNode *> &Created) const { 6252 // Fold: 6253 // (seteq/ne (srem N, D), 0) 6254 // To: 6255 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6256 // 6257 // - D must be constant, with D = D0 * 2^K where D0 is odd 6258 // - P is the multiplicative inverse of D0 modulo 2^W 6259 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6260 // - Q = floor((2 * A) / (2^K)) 6261 // where W is the width of the common type of N and D. 6262 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6263 "Only applicable for (in)equality comparisons."); 6264 6265 SelectionDAG &DAG = DCI.DAG; 6266 6267 EVT VT = REMNode.getValueType(); 6268 EVT SVT = VT.getScalarType(); 6269 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6270 EVT ShSVT = ShVT.getScalarType(); 6271 6272 // If we are after ops legalization, and MUL is unavailable, we can not 6273 // proceed. 6274 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6275 return SDValue(); 6276 6277 // TODO: Could support comparing with non-zero too. 6278 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 6279 if (!CompTarget || !CompTarget->isZero()) 6280 return SDValue(); 6281 6282 bool HadIntMinDivisor = false; 6283 bool HadOneDivisor = false; 6284 bool AllDivisorsAreOnes = true; 6285 bool HadEvenDivisor = false; 6286 bool NeedToApplyOffset = false; 6287 bool AllDivisorsArePowerOfTwo = true; 6288 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 6289 6290 auto BuildSREMPattern = [&](ConstantSDNode *C) { 6291 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6292 if (C->isZero()) 6293 return false; 6294 6295 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 6296 6297 // WARNING: this fold is only valid for positive divisors! 6298 APInt D = C->getAPIntValue(); 6299 if (D.isNegative()) 6300 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 6301 6302 HadIntMinDivisor |= D.isMinSignedValue(); 6303 6304 // If all divisors are ones, we will prefer to avoid the fold. 6305 HadOneDivisor |= D.isOne(); 6306 AllDivisorsAreOnes &= D.isOne(); 6307 6308 // Decompose D into D0 * 2^K 6309 unsigned K = D.countTrailingZeros(); 6310 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6311 APInt D0 = D.lshr(K); 6312 6313 if (!D.isMinSignedValue()) { 6314 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 6315 // we don't care about this lane in this fold, we'll special-handle it. 6316 HadEvenDivisor |= (K != 0); 6317 } 6318 6319 // D is a power-of-two if D0 is one. This includes INT_MIN. 6320 // If all divisors are power-of-two, we will prefer to avoid the fold. 6321 AllDivisorsArePowerOfTwo &= D0.isOne(); 6322 6323 // P = inv(D0, 2^W) 6324 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6325 unsigned W = D.getBitWidth(); 6326 APInt P = D0.zext(W + 1) 6327 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6328 .trunc(W); 6329 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6330 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6331 6332 // A = floor((2^(W - 1) - 1) / D0) & -2^K 6333 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 6334 A.clearLowBits(K); 6335 6336 if (!D.isMinSignedValue()) { 6337 // If divisor INT_MIN, then we don't care about this lane in this fold, 6338 // we'll special-handle it. 6339 NeedToApplyOffset |= A != 0; 6340 } 6341 6342 // Q = floor((2 * A) / (2^K)) 6343 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 6344 6345 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 6346 "We are expecting that A is always less than all-ones for SVT"); 6347 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6348 "We are expecting that K is always less than all-ones for ShSVT"); 6349 6350 // If the divisor is 1 the result can be constant-folded. Likewise, we 6351 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 6352 if (D.isOne()) { 6353 // Set P, A and K to a bogus values so we can try to splat them. 6354 P = 0; 6355 A = -1; 6356 K = -1; 6357 6358 // x ?% 1 == 0 <--> true <--> x u<= -1 6359 Q = -1; 6360 } 6361 6362 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6363 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 6364 KAmts.push_back( 6365 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6366 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6367 return true; 6368 }; 6369 6370 SDValue N = REMNode.getOperand(0); 6371 SDValue D = REMNode.getOperand(1); 6372 6373 // Collect the values from each element. 6374 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 6375 return SDValue(); 6376 6377 // If this is a srem by a one, avoid the fold since it can be constant-folded. 6378 if (AllDivisorsAreOnes) 6379 return SDValue(); 6380 6381 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 6382 // since it can be best implemented as a bit test. 6383 if (AllDivisorsArePowerOfTwo) 6384 return SDValue(); 6385 6386 SDValue PVal, AVal, KVal, QVal; 6387 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6388 if (HadOneDivisor) { 6389 // Try to turn PAmts into a splat, since we don't care about the values 6390 // that are currently '0'. If we can't, just keep '0'`s. 6391 turnVectorIntoSplatVector(PAmts, isNullConstant); 6392 // Try to turn AAmts into a splat, since we don't care about the 6393 // values that are currently '-1'. If we can't, change them to '0'`s. 6394 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 6395 DAG.getConstant(0, DL, SVT)); 6396 // Try to turn KAmts into a splat, since we don't care about the values 6397 // that are currently '-1'. If we can't, change them to '0'`s. 6398 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6399 DAG.getConstant(0, DL, ShSVT)); 6400 } 6401 6402 PVal = DAG.getBuildVector(VT, DL, PAmts); 6403 AVal = DAG.getBuildVector(VT, DL, AAmts); 6404 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6405 QVal = DAG.getBuildVector(VT, DL, QAmts); 6406 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6407 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6408 QAmts.size() == 1 && 6409 "Expected matchUnaryPredicate to return one element for scalable " 6410 "vectors"); 6411 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6412 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6413 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6414 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6415 } else { 6416 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6417 PVal = PAmts[0]; 6418 AVal = AAmts[0]; 6419 KVal = KAmts[0]; 6420 QVal = QAmts[0]; 6421 } 6422 6423 // (mul N, P) 6424 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6425 Created.push_back(Op0.getNode()); 6426 6427 if (NeedToApplyOffset) { 6428 // We need ADD to do this. 6429 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6430 return SDValue(); 6431 6432 // (add (mul N, P), A) 6433 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6434 Created.push_back(Op0.getNode()); 6435 } 6436 6437 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6438 // divisors as a performance improvement, since rotating by 0 is a no-op. 6439 if (HadEvenDivisor) { 6440 // We need ROTR to do this. 6441 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6442 return SDValue(); 6443 // SREM: (rotr (add (mul N, P), A), K) 6444 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6445 Created.push_back(Op0.getNode()); 6446 } 6447 6448 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6449 SDValue Fold = 6450 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6451 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6452 6453 // If we didn't have lanes with INT_MIN divisor, then we're done. 6454 if (!HadIntMinDivisor) 6455 return Fold; 6456 6457 // That fold is only valid for positive divisors. Which effectively means, 6458 // it is invalid for INT_MIN divisors. So if we have such a lane, 6459 // we must fix-up results for said lanes. 6460 assert(VT.isVector() && "Can/should only get here for vectors."); 6461 6462 // NOTE: we avoid letting illegal types through even if we're before legalize 6463 // ops – legalization has a hard time producing good code for the code that 6464 // follows. 6465 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6466 !isOperationLegalOrCustom(ISD::AND, VT) || 6467 !isOperationLegalOrCustom(Cond, VT) || 6468 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6469 return SDValue(); 6470 6471 Created.push_back(Fold.getNode()); 6472 6473 SDValue IntMin = DAG.getConstant( 6474 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6475 SDValue IntMax = DAG.getConstant( 6476 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6477 SDValue Zero = 6478 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6479 6480 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6481 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6482 Created.push_back(DivisorIsIntMin.getNode()); 6483 6484 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6485 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6486 Created.push_back(Masked.getNode()); 6487 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6488 Created.push_back(MaskedIsZero.getNode()); 6489 6490 // To produce final result we need to blend 2 vectors: 'SetCC' and 6491 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6492 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6493 // constant-folded, select can get lowered to a shuffle with constant mask. 6494 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6495 MaskedIsZero, Fold); 6496 6497 return Blended; 6498 } 6499 6500 bool TargetLowering:: 6501 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6502 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6503 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6504 "be a constant integer"); 6505 return true; 6506 } 6507 6508 return false; 6509 } 6510 6511 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6512 const DenormalMode &Mode) const { 6513 SDLoc DL(Op); 6514 EVT VT = Op.getValueType(); 6515 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6516 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6517 // Testing it with denormal inputs to avoid wrong estimate. 6518 if (Mode.Input == DenormalMode::IEEE) { 6519 // This is specifically a check for the handling of denormal inputs, 6520 // not the result. 6521 6522 // Test = fabs(X) < SmallestNormal 6523 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6524 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6525 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6526 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6527 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6528 } 6529 // Test = X == 0.0 6530 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6531 } 6532 6533 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6534 bool LegalOps, bool OptForSize, 6535 NegatibleCost &Cost, 6536 unsigned Depth) const { 6537 // fneg is removable even if it has multiple uses. 6538 if (Op.getOpcode() == ISD::FNEG) { 6539 Cost = NegatibleCost::Cheaper; 6540 return Op.getOperand(0); 6541 } 6542 6543 // Don't recurse exponentially. 6544 if (Depth > SelectionDAG::MaxRecursionDepth) 6545 return SDValue(); 6546 6547 // Pre-increment recursion depth for use in recursive calls. 6548 ++Depth; 6549 const SDNodeFlags Flags = Op->getFlags(); 6550 const TargetOptions &Options = DAG.getTarget().Options; 6551 EVT VT = Op.getValueType(); 6552 unsigned Opcode = Op.getOpcode(); 6553 6554 // Don't allow anything with multiple uses unless we know it is free. 6555 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6556 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6557 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6558 if (!IsFreeExtend) 6559 return SDValue(); 6560 } 6561 6562 auto RemoveDeadNode = [&](SDValue N) { 6563 if (N && N.getNode()->use_empty()) 6564 DAG.RemoveDeadNode(N.getNode()); 6565 }; 6566 6567 SDLoc DL(Op); 6568 6569 // Because getNegatedExpression can delete nodes we need a handle to keep 6570 // temporary nodes alive in case the recursion manages to create an identical 6571 // node. 6572 std::list<HandleSDNode> Handles; 6573 6574 switch (Opcode) { 6575 case ISD::ConstantFP: { 6576 // Don't invert constant FP values after legalization unless the target says 6577 // the negated constant is legal. 6578 bool IsOpLegal = 6579 isOperationLegal(ISD::ConstantFP, VT) || 6580 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6581 OptForSize); 6582 6583 if (LegalOps && !IsOpLegal) 6584 break; 6585 6586 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6587 V.changeSign(); 6588 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6589 6590 // If we already have the use of the negated floating constant, it is free 6591 // to negate it even it has multiple uses. 6592 if (!Op.hasOneUse() && CFP.use_empty()) 6593 break; 6594 Cost = NegatibleCost::Neutral; 6595 return CFP; 6596 } 6597 case ISD::BUILD_VECTOR: { 6598 // Only permit BUILD_VECTOR of constants. 6599 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6600 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6601 })) 6602 break; 6603 6604 bool IsOpLegal = 6605 (isOperationLegal(ISD::ConstantFP, VT) && 6606 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6607 llvm::all_of(Op->op_values(), [&](SDValue N) { 6608 return N.isUndef() || 6609 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6610 OptForSize); 6611 }); 6612 6613 if (LegalOps && !IsOpLegal) 6614 break; 6615 6616 SmallVector<SDValue, 4> Ops; 6617 for (SDValue C : Op->op_values()) { 6618 if (C.isUndef()) { 6619 Ops.push_back(C); 6620 continue; 6621 } 6622 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6623 V.changeSign(); 6624 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6625 } 6626 Cost = NegatibleCost::Neutral; 6627 return DAG.getBuildVector(VT, DL, Ops); 6628 } 6629 case ISD::FADD: { 6630 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6631 break; 6632 6633 // After operation legalization, it might not be legal to create new FSUBs. 6634 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6635 break; 6636 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6637 6638 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6639 NegatibleCost CostX = NegatibleCost::Expensive; 6640 SDValue NegX = 6641 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6642 // Prevent this node from being deleted by the next call. 6643 if (NegX) 6644 Handles.emplace_back(NegX); 6645 6646 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6647 NegatibleCost CostY = NegatibleCost::Expensive; 6648 SDValue NegY = 6649 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6650 6651 // We're done with the handles. 6652 Handles.clear(); 6653 6654 // Negate the X if its cost is less or equal than Y. 6655 if (NegX && (CostX <= CostY)) { 6656 Cost = CostX; 6657 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6658 if (NegY != N) 6659 RemoveDeadNode(NegY); 6660 return N; 6661 } 6662 6663 // Negate the Y if it is not expensive. 6664 if (NegY) { 6665 Cost = CostY; 6666 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6667 if (NegX != N) 6668 RemoveDeadNode(NegX); 6669 return N; 6670 } 6671 break; 6672 } 6673 case ISD::FSUB: { 6674 // We can't turn -(A-B) into B-A when we honor signed zeros. 6675 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6676 break; 6677 6678 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6679 // fold (fneg (fsub 0, Y)) -> Y 6680 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6681 if (C->isZero()) { 6682 Cost = NegatibleCost::Cheaper; 6683 return Y; 6684 } 6685 6686 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6687 Cost = NegatibleCost::Neutral; 6688 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6689 } 6690 case ISD::FMUL: 6691 case ISD::FDIV: { 6692 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6693 6694 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6695 NegatibleCost CostX = NegatibleCost::Expensive; 6696 SDValue NegX = 6697 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6698 // Prevent this node from being deleted by the next call. 6699 if (NegX) 6700 Handles.emplace_back(NegX); 6701 6702 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6703 NegatibleCost CostY = NegatibleCost::Expensive; 6704 SDValue NegY = 6705 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6706 6707 // We're done with the handles. 6708 Handles.clear(); 6709 6710 // Negate the X if its cost is less or equal than Y. 6711 if (NegX && (CostX <= CostY)) { 6712 Cost = CostX; 6713 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6714 if (NegY != N) 6715 RemoveDeadNode(NegY); 6716 return N; 6717 } 6718 6719 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6720 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6721 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6722 break; 6723 6724 // Negate the Y if it is not expensive. 6725 if (NegY) { 6726 Cost = CostY; 6727 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6728 if (NegX != N) 6729 RemoveDeadNode(NegX); 6730 return N; 6731 } 6732 break; 6733 } 6734 case ISD::FMA: 6735 case ISD::FMAD: { 6736 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6737 break; 6738 6739 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6740 NegatibleCost CostZ = NegatibleCost::Expensive; 6741 SDValue NegZ = 6742 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6743 // Give up if fail to negate the Z. 6744 if (!NegZ) 6745 break; 6746 6747 // Prevent this node from being deleted by the next two calls. 6748 Handles.emplace_back(NegZ); 6749 6750 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6751 NegatibleCost CostX = NegatibleCost::Expensive; 6752 SDValue NegX = 6753 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6754 // Prevent this node from being deleted by the next call. 6755 if (NegX) 6756 Handles.emplace_back(NegX); 6757 6758 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6759 NegatibleCost CostY = NegatibleCost::Expensive; 6760 SDValue NegY = 6761 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6762 6763 // We're done with the handles. 6764 Handles.clear(); 6765 6766 // Negate the X if its cost is less or equal than Y. 6767 if (NegX && (CostX <= CostY)) { 6768 Cost = std::min(CostX, CostZ); 6769 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6770 if (NegY != N) 6771 RemoveDeadNode(NegY); 6772 return N; 6773 } 6774 6775 // Negate the Y if it is not expensive. 6776 if (NegY) { 6777 Cost = std::min(CostY, CostZ); 6778 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6779 if (NegX != N) 6780 RemoveDeadNode(NegX); 6781 return N; 6782 } 6783 break; 6784 } 6785 6786 case ISD::FP_EXTEND: 6787 case ISD::FSIN: 6788 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6789 OptForSize, Cost, Depth)) 6790 return DAG.getNode(Opcode, DL, VT, NegV); 6791 break; 6792 case ISD::FP_ROUND: 6793 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6794 OptForSize, Cost, Depth)) 6795 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6796 break; 6797 } 6798 6799 return SDValue(); 6800 } 6801 6802 //===----------------------------------------------------------------------===// 6803 // Legalization Utilities 6804 //===----------------------------------------------------------------------===// 6805 6806 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6807 SDValue LHS, SDValue RHS, 6808 SmallVectorImpl<SDValue> &Result, 6809 EVT HiLoVT, SelectionDAG &DAG, 6810 MulExpansionKind Kind, SDValue LL, 6811 SDValue LH, SDValue RL, SDValue RH) const { 6812 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6813 Opcode == ISD::SMUL_LOHI); 6814 6815 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6816 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6817 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6818 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6819 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6820 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6821 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6822 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6823 6824 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6825 return false; 6826 6827 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6828 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6829 6830 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6831 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6832 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6833 6834 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6835 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6836 bool Signed) -> bool { 6837 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6838 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6839 Hi = SDValue(Lo.getNode(), 1); 6840 return true; 6841 } 6842 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6843 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6844 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6845 return true; 6846 } 6847 return false; 6848 }; 6849 6850 SDValue Lo, Hi; 6851 6852 if (!LL.getNode() && !RL.getNode() && 6853 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6854 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6855 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6856 } 6857 6858 if (!LL.getNode()) 6859 return false; 6860 6861 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6862 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6863 DAG.MaskedValueIsZero(RHS, HighMask)) { 6864 // The inputs are both zero-extended. 6865 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6866 Result.push_back(Lo); 6867 Result.push_back(Hi); 6868 if (Opcode != ISD::MUL) { 6869 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6870 Result.push_back(Zero); 6871 Result.push_back(Zero); 6872 } 6873 return true; 6874 } 6875 } 6876 6877 if (!VT.isVector() && Opcode == ISD::MUL && 6878 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6879 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6880 // The input values are both sign-extended. 6881 // TODO non-MUL case? 6882 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6883 Result.push_back(Lo); 6884 Result.push_back(Hi); 6885 return true; 6886 } 6887 } 6888 6889 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6890 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6891 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6892 6893 if (!LH.getNode() && !RH.getNode() && 6894 isOperationLegalOrCustom(ISD::SRL, VT) && 6895 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6896 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6897 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6898 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6899 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6900 } 6901 6902 if (!LH.getNode()) 6903 return false; 6904 6905 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6906 return false; 6907 6908 Result.push_back(Lo); 6909 6910 if (Opcode == ISD::MUL) { 6911 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6912 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6913 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6914 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6915 Result.push_back(Hi); 6916 return true; 6917 } 6918 6919 // Compute the full width result. 6920 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6921 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6922 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6923 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6924 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6925 }; 6926 6927 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6928 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6929 return false; 6930 6931 // This is effectively the add part of a multiply-add of half-sized operands, 6932 // so it cannot overflow. 6933 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6934 6935 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6936 return false; 6937 6938 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6939 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6940 6941 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6942 isOperationLegalOrCustom(ISD::ADDE, VT)); 6943 if (UseGlue) 6944 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6945 Merge(Lo, Hi)); 6946 else 6947 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6948 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6949 6950 SDValue Carry = Next.getValue(1); 6951 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6952 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6953 6954 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6955 return false; 6956 6957 if (UseGlue) 6958 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6959 Carry); 6960 else 6961 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6962 Zero, Carry); 6963 6964 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6965 6966 if (Opcode == ISD::SMUL_LOHI) { 6967 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6968 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6969 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6970 6971 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6972 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6973 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6974 } 6975 6976 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6977 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6978 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6979 return true; 6980 } 6981 6982 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6983 SelectionDAG &DAG, MulExpansionKind Kind, 6984 SDValue LL, SDValue LH, SDValue RL, 6985 SDValue RH) const { 6986 SmallVector<SDValue, 2> Result; 6987 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6988 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6989 DAG, Kind, LL, LH, RL, RH); 6990 if (Ok) { 6991 assert(Result.size() == 2); 6992 Lo = Result[0]; 6993 Hi = Result[1]; 6994 } 6995 return Ok; 6996 } 6997 6998 // Check that (every element of) Z is undef or not an exact multiple of BW. 6999 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 7000 return ISD::matchUnaryPredicate( 7001 Z, 7002 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 7003 true); 7004 } 7005 7006 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 7007 SelectionDAG &DAG) const { 7008 EVT VT = Node->getValueType(0); 7009 7010 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 7011 !isOperationLegalOrCustom(ISD::SRL, VT) || 7012 !isOperationLegalOrCustom(ISD::SUB, VT) || 7013 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7014 return SDValue(); 7015 7016 SDValue X = Node->getOperand(0); 7017 SDValue Y = Node->getOperand(1); 7018 SDValue Z = Node->getOperand(2); 7019 7020 unsigned BW = VT.getScalarSizeInBits(); 7021 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 7022 SDLoc DL(SDValue(Node, 0)); 7023 7024 EVT ShVT = Z.getValueType(); 7025 7026 // If a funnel shift in the other direction is more supported, use it. 7027 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 7028 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7029 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 7030 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7031 // fshl X, Y, Z -> fshr X, Y, -Z 7032 // fshr X, Y, Z -> fshl X, Y, -Z 7033 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7034 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 7035 } else { 7036 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 7037 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 7038 SDValue One = DAG.getConstant(1, DL, ShVT); 7039 if (IsFSHL) { 7040 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7041 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 7042 } else { 7043 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7044 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 7045 } 7046 Z = DAG.getNOT(DL, Z, ShVT); 7047 } 7048 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 7049 } 7050 7051 SDValue ShX, ShY; 7052 SDValue ShAmt, InvShAmt; 7053 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7054 // fshl: X << C | Y >> (BW - C) 7055 // fshr: X << (BW - C) | Y >> C 7056 // where C = Z % BW is not zero 7057 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7058 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7059 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 7060 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 7061 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 7062 } else { 7063 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7064 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7065 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 7066 if (isPowerOf2_32(BW)) { 7067 // Z % BW -> Z & (BW - 1) 7068 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 7069 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 7070 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 7071 } else { 7072 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7073 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7074 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 7075 } 7076 7077 SDValue One = DAG.getConstant(1, DL, ShVT); 7078 if (IsFSHL) { 7079 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 7080 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 7081 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 7082 } else { 7083 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 7084 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 7085 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 7086 } 7087 } 7088 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 7089 } 7090 7091 // TODO: Merge with expandFunnelShift. 7092 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 7093 SelectionDAG &DAG) const { 7094 EVT VT = Node->getValueType(0); 7095 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 7096 bool IsLeft = Node->getOpcode() == ISD::ROTL; 7097 SDValue Op0 = Node->getOperand(0); 7098 SDValue Op1 = Node->getOperand(1); 7099 SDLoc DL(SDValue(Node, 0)); 7100 7101 EVT ShVT = Op1.getValueType(); 7102 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7103 7104 // If a rotate in the other direction is more supported, use it. 7105 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 7106 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7107 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 7108 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7109 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 7110 } 7111 7112 if (!AllowVectorOps && VT.isVector() && 7113 (!isOperationLegalOrCustom(ISD::SHL, VT) || 7114 !isOperationLegalOrCustom(ISD::SRL, VT) || 7115 !isOperationLegalOrCustom(ISD::SUB, VT) || 7116 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 7117 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 7118 return SDValue(); 7119 7120 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 7121 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 7122 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 7123 SDValue ShVal; 7124 SDValue HsVal; 7125 if (isPowerOf2_32(EltSizeInBits)) { 7126 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 7127 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 7128 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7129 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 7130 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7131 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 7132 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 7133 } else { 7134 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 7135 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 7136 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 7137 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 7138 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7139 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 7140 SDValue One = DAG.getConstant(1, DL, ShVT); 7141 HsVal = 7142 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 7143 } 7144 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 7145 } 7146 7147 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 7148 SelectionDAG &DAG) const { 7149 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 7150 EVT VT = Node->getValueType(0); 7151 unsigned VTBits = VT.getScalarSizeInBits(); 7152 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 7153 7154 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 7155 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 7156 SDValue ShOpLo = Node->getOperand(0); 7157 SDValue ShOpHi = Node->getOperand(1); 7158 SDValue ShAmt = Node->getOperand(2); 7159 EVT ShAmtVT = ShAmt.getValueType(); 7160 EVT ShAmtCCVT = 7161 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 7162 SDLoc dl(Node); 7163 7164 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 7165 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 7166 // away during isel. 7167 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7168 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 7169 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 7170 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 7171 : DAG.getConstant(0, dl, VT); 7172 7173 SDValue Tmp2, Tmp3; 7174 if (IsSHL) { 7175 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 7176 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 7177 } else { 7178 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 7179 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 7180 } 7181 7182 // If the shift amount is larger or equal than the width of a part we don't 7183 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 7184 // values for large shift amounts. 7185 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7186 DAG.getConstant(VTBits, dl, ShAmtVT)); 7187 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 7188 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 7189 7190 if (IsSHL) { 7191 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7192 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7193 } else { 7194 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7195 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7196 } 7197 } 7198 7199 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 7200 SelectionDAG &DAG) const { 7201 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7202 SDValue Src = Node->getOperand(OpNo); 7203 EVT SrcVT = Src.getValueType(); 7204 EVT DstVT = Node->getValueType(0); 7205 SDLoc dl(SDValue(Node, 0)); 7206 7207 // FIXME: Only f32 to i64 conversions are supported. 7208 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 7209 return false; 7210 7211 if (Node->isStrictFPOpcode()) 7212 // When a NaN is converted to an integer a trap is allowed. We can't 7213 // use this expansion here because it would eliminate that trap. Other 7214 // traps are also allowed and cannot be eliminated. See 7215 // IEEE 754-2008 sec 5.8. 7216 return false; 7217 7218 // Expand f32 -> i64 conversion 7219 // This algorithm comes from compiler-rt's implementation of fixsfdi: 7220 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 7221 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 7222 EVT IntVT = SrcVT.changeTypeToInteger(); 7223 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 7224 7225 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 7226 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 7227 SDValue Bias = DAG.getConstant(127, dl, IntVT); 7228 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 7229 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 7230 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 7231 7232 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 7233 7234 SDValue ExponentBits = DAG.getNode( 7235 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 7236 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 7237 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 7238 7239 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 7240 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 7241 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 7242 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 7243 7244 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 7245 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 7246 DAG.getConstant(0x00800000, dl, IntVT)); 7247 7248 R = DAG.getZExtOrTrunc(R, dl, DstVT); 7249 7250 R = DAG.getSelectCC( 7251 dl, Exponent, ExponentLoBit, 7252 DAG.getNode(ISD::SHL, dl, DstVT, R, 7253 DAG.getZExtOrTrunc( 7254 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 7255 dl, IntShVT)), 7256 DAG.getNode(ISD::SRL, dl, DstVT, R, 7257 DAG.getZExtOrTrunc( 7258 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 7259 dl, IntShVT)), 7260 ISD::SETGT); 7261 7262 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 7263 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 7264 7265 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 7266 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 7267 return true; 7268 } 7269 7270 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 7271 SDValue &Chain, 7272 SelectionDAG &DAG) const { 7273 SDLoc dl(SDValue(Node, 0)); 7274 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7275 SDValue Src = Node->getOperand(OpNo); 7276 7277 EVT SrcVT = Src.getValueType(); 7278 EVT DstVT = Node->getValueType(0); 7279 EVT SetCCVT = 7280 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 7281 EVT DstSetCCVT = 7282 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 7283 7284 // Only expand vector types if we have the appropriate vector bit operations. 7285 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 7286 ISD::FP_TO_SINT; 7287 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 7288 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 7289 return false; 7290 7291 // If the maximum float value is smaller then the signed integer range, 7292 // the destination signmask can't be represented by the float, so we can 7293 // just use FP_TO_SINT directly. 7294 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 7295 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 7296 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 7297 if (APFloat::opOverflow & 7298 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 7299 if (Node->isStrictFPOpcode()) { 7300 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7301 { Node->getOperand(0), Src }); 7302 Chain = Result.getValue(1); 7303 } else 7304 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7305 return true; 7306 } 7307 7308 // Don't expand it if there isn't cheap fsub instruction. 7309 if (!isOperationLegalOrCustom( 7310 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 7311 return false; 7312 7313 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 7314 SDValue Sel; 7315 7316 if (Node->isStrictFPOpcode()) { 7317 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 7318 Node->getOperand(0), /*IsSignaling*/ true); 7319 Chain = Sel.getValue(1); 7320 } else { 7321 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 7322 } 7323 7324 bool Strict = Node->isStrictFPOpcode() || 7325 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 7326 7327 if (Strict) { 7328 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 7329 // signmask then offset (the result of which should be fully representable). 7330 // Sel = Src < 0x8000000000000000 7331 // FltOfs = select Sel, 0, 0x8000000000000000 7332 // IntOfs = select Sel, 0, 0x8000000000000000 7333 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 7334 7335 // TODO: Should any fast-math-flags be set for the FSUB? 7336 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 7337 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 7338 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7339 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 7340 DAG.getConstant(0, dl, DstVT), 7341 DAG.getConstant(SignMask, dl, DstVT)); 7342 SDValue SInt; 7343 if (Node->isStrictFPOpcode()) { 7344 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 7345 { Chain, Src, FltOfs }); 7346 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7347 { Val.getValue(1), Val }); 7348 Chain = SInt.getValue(1); 7349 } else { 7350 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 7351 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 7352 } 7353 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 7354 } else { 7355 // Expand based on maximum range of FP_TO_SINT: 7356 // True = fp_to_sint(Src) 7357 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 7358 // Result = select (Src < 0x8000000000000000), True, False 7359 7360 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7361 // TODO: Should any fast-math-flags be set for the FSUB? 7362 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 7363 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 7364 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 7365 DAG.getConstant(SignMask, dl, DstVT)); 7366 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7367 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 7368 } 7369 return true; 7370 } 7371 7372 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 7373 SDValue &Chain, 7374 SelectionDAG &DAG) const { 7375 // This transform is not correct for converting 0 when rounding mode is set 7376 // to round toward negative infinity which will produce -0.0. So disable under 7377 // strictfp. 7378 if (Node->isStrictFPOpcode()) 7379 return false; 7380 7381 SDValue Src = Node->getOperand(0); 7382 EVT SrcVT = Src.getValueType(); 7383 EVT DstVT = Node->getValueType(0); 7384 7385 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 7386 return false; 7387 7388 // Only expand vector types if we have the appropriate vector bit operations. 7389 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 7390 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 7391 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 7392 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 7393 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 7394 return false; 7395 7396 SDLoc dl(SDValue(Node, 0)); 7397 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 7398 7399 // Implementation of unsigned i64 to f64 following the algorithm in 7400 // __floatundidf in compiler_rt. This implementation performs rounding 7401 // correctly in all rounding modes with the exception of converting 0 7402 // when rounding toward negative infinity. In that case the fsub will produce 7403 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 7404 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7405 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7406 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7407 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7408 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7409 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7410 7411 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7412 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7413 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7414 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7415 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7416 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7417 SDValue HiSub = 7418 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7419 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7420 return true; 7421 } 7422 7423 SDValue 7424 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, 7425 SelectionDAG &DAG) const { 7426 unsigned Opcode = Node->getOpcode(); 7427 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || 7428 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && 7429 "Wrong opcode"); 7430 7431 if (Node->getFlags().hasNoNaNs()) { 7432 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7433 SDValue Op1 = Node->getOperand(0); 7434 SDValue Op2 = Node->getOperand(1); 7435 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); 7436 // Copy FMF flags, but always set the no-signed-zeros flag 7437 // as this is implied by the FMINNUM/FMAXNUM semantics. 7438 SDNodeFlags Flags = Node->getFlags(); 7439 Flags.setNoSignedZeros(true); 7440 SelCC->setFlags(Flags); 7441 return SelCC; 7442 } 7443 7444 return SDValue(); 7445 } 7446 7447 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7448 SelectionDAG &DAG) const { 7449 SDLoc dl(Node); 7450 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7451 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7452 EVT VT = Node->getValueType(0); 7453 7454 if (VT.isScalableVector()) 7455 report_fatal_error( 7456 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7457 7458 if (isOperationLegalOrCustom(NewOp, VT)) { 7459 SDValue Quiet0 = Node->getOperand(0); 7460 SDValue Quiet1 = Node->getOperand(1); 7461 7462 if (!Node->getFlags().hasNoNaNs()) { 7463 // Insert canonicalizes if it's possible we need to quiet to get correct 7464 // sNaN behavior. 7465 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7466 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7467 Node->getFlags()); 7468 } 7469 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7470 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7471 Node->getFlags()); 7472 } 7473 } 7474 7475 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7476 } 7477 7478 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7479 // instead if there are no NaNs. 7480 if (Node->getFlags().hasNoNaNs()) { 7481 unsigned IEEE2018Op = 7482 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7483 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7484 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7485 Node->getOperand(1), Node->getFlags()); 7486 } 7487 } 7488 7489 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) 7490 return SelCC; 7491 7492 return SDValue(); 7493 } 7494 7495 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op, 7496 unsigned Test, SDNodeFlags Flags, 7497 const SDLoc &DL, 7498 SelectionDAG &DAG) const { 7499 EVT OperandVT = Op.getValueType(); 7500 assert(OperandVT.isFloatingPoint()); 7501 7502 // Degenerated cases. 7503 if (Test == 0) 7504 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT); 7505 if ((Test & fcAllFlags) == fcAllFlags) 7506 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT); 7507 7508 // PPC double double is a pair of doubles, of which the higher part determines 7509 // the value class. 7510 if (OperandVT == MVT::ppcf128) { 7511 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op, 7512 DAG.getConstant(1, DL, MVT::i32)); 7513 OperandVT = MVT::f64; 7514 } 7515 7516 // Some checks may be represented as inversion of simpler check, for example 7517 // "inf|normal|subnormal|zero" => !"nan". 7518 bool IsInverted = false; 7519 if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) { 7520 IsInverted = true; 7521 Test = InvertedCheck; 7522 } 7523 7524 // Floating-point type properties. 7525 EVT ScalarFloatVT = OperandVT.getScalarType(); 7526 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext()); 7527 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics(); 7528 bool IsF80 = (ScalarFloatVT == MVT::f80); 7529 7530 // Some checks can be implemented using float comparisons, if floating point 7531 // exceptions are ignored. 7532 if (Flags.hasNoFPExcept() && 7533 isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) { 7534 if (Test == fcZero) 7535 return DAG.getSetCC(DL, ResultVT, Op, 7536 DAG.getConstantFP(0.0, DL, OperandVT), 7537 IsInverted ? ISD::SETUNE : ISD::SETOEQ); 7538 if (Test == fcNan) 7539 return DAG.getSetCC(DL, ResultVT, Op, Op, 7540 IsInverted ? ISD::SETO : ISD::SETUO); 7541 } 7542 7543 // In the general case use integer operations. 7544 unsigned BitSize = OperandVT.getScalarSizeInBits(); 7545 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize); 7546 if (OperandVT.isVector()) 7547 IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT, 7548 OperandVT.getVectorElementCount()); 7549 SDValue OpAsInt = DAG.getBitcast(IntVT, Op); 7550 7551 // Various masks. 7552 APInt SignBit = APInt::getSignMask(BitSize); 7553 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. 7554 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. 7555 const unsigned ExplicitIntBitInF80 = 63; 7556 APInt ExpMask = Inf; 7557 if (IsF80) 7558 ExpMask.clearBit(ExplicitIntBitInF80); 7559 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; 7560 APInt QNaNBitMask = 7561 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); 7562 APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits()); 7563 7564 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT); 7565 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT); 7566 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT); 7567 SDValue ZeroV = DAG.getConstant(0, DL, IntVT); 7568 SDValue InfV = DAG.getConstant(Inf, DL, IntVT); 7569 SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT); 7570 7571 SDValue Res; 7572 const auto appendResult = [&](SDValue PartialRes) { 7573 if (PartialRes) { 7574 if (Res) 7575 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes); 7576 else 7577 Res = PartialRes; 7578 } 7579 }; 7580 7581 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set. 7582 const auto getIntBitIsSet = [&]() -> SDValue { 7583 if (!IntBitIsSetV) { 7584 APInt IntBitMask(BitSize, 0); 7585 IntBitMask.setBit(ExplicitIntBitInF80); 7586 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT); 7587 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV); 7588 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE); 7589 } 7590 return IntBitIsSetV; 7591 }; 7592 7593 // Split the value into sign bit and absolute value. 7594 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV); 7595 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt, 7596 DAG.getConstant(0.0, DL, IntVT), ISD::SETLT); 7597 7598 // Tests that involve more than one class should be processed first. 7599 SDValue PartialRes; 7600 7601 if (IsF80) 7602 ; // Detect finite numbers of f80 by checking individual classes because 7603 // they have different settings of the explicit integer bit. 7604 else if ((Test & fcFinite) == fcFinite) { 7605 // finite(V) ==> abs(V) < exp_mask 7606 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 7607 Test &= ~fcFinite; 7608 } else if ((Test & fcFinite) == fcPosFinite) { 7609 // finite(V) && V > 0 ==> V < exp_mask 7610 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT); 7611 Test &= ~fcPosFinite; 7612 } else if ((Test & fcFinite) == fcNegFinite) { 7613 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1 7614 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 7615 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7616 Test &= ~fcNegFinite; 7617 } 7618 appendResult(PartialRes); 7619 7620 // Check for individual classes. 7621 7622 if (unsigned PartialCheck = Test & fcZero) { 7623 if (PartialCheck == fcPosZero) 7624 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ); 7625 else if (PartialCheck == fcZero) 7626 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ); 7627 else // ISD::fcNegZero 7628 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ); 7629 appendResult(PartialRes); 7630 } 7631 7632 if (unsigned PartialCheck = Test & fcInf) { 7633 if (PartialCheck == fcPosInf) 7634 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ); 7635 else if (PartialCheck == fcInf) 7636 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ); 7637 else { // ISD::fcNegInf 7638 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); 7639 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT); 7640 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ); 7641 } 7642 appendResult(PartialRes); 7643 } 7644 7645 if (unsigned PartialCheck = Test & fcNan) { 7646 APInt InfWithQnanBit = Inf | QNaNBitMask; 7647 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT); 7648 if (PartialCheck == fcNan) { 7649 // isnan(V) ==> abs(V) > int(inf) 7650 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 7651 if (IsF80) { 7652 // Recognize unsupported values as NaNs for compatibility with glibc. 7653 // In them (exp(V)==0) == int_bit. 7654 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV); 7655 SDValue ExpIsZero = 7656 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 7657 SDValue IsPseudo = 7658 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ); 7659 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo); 7660 } 7661 } else if (PartialCheck == fcQNan) { 7662 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit) 7663 PartialRes = 7664 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE); 7665 } else { // ISD::fcSNan 7666 // issignaling(V) ==> abs(V) > unsigned(Inf) && 7667 // abs(V) < (unsigned(Inf) | quiet_bit) 7668 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 7669 SDValue IsNotQnan = 7670 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT); 7671 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan); 7672 } 7673 appendResult(PartialRes); 7674 } 7675 7676 if (unsigned PartialCheck = Test & fcSubnormal) { 7677 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set) 7678 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set) 7679 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV; 7680 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT); 7681 SDValue VMinusOneV = 7682 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT)); 7683 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT); 7684 if (PartialCheck == fcNegSubnormal) 7685 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7686 appendResult(PartialRes); 7687 } 7688 7689 if (unsigned PartialCheck = Test & fcNormal) { 7690 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1)) 7691 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); 7692 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT); 7693 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV); 7694 APInt ExpLimit = ExpMask - ExpLSB; 7695 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT); 7696 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT); 7697 if (PartialCheck == fcNegNormal) 7698 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7699 else if (PartialCheck == fcPosNormal) { 7700 SDValue PosSignV = 7701 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask); 7702 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV); 7703 } 7704 if (IsF80) 7705 PartialRes = 7706 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet()); 7707 appendResult(PartialRes); 7708 } 7709 7710 if (!Res) 7711 return DAG.getConstant(IsInverted, DL, ResultVT); 7712 if (IsInverted) 7713 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask); 7714 return Res; 7715 } 7716 7717 // Only expand vector types if we have the appropriate vector bit operations. 7718 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7719 assert(VT.isVector() && "Expected vector type"); 7720 unsigned Len = VT.getScalarSizeInBits(); 7721 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7722 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7723 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7724 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7725 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7726 } 7727 7728 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7729 SDLoc dl(Node); 7730 EVT VT = Node->getValueType(0); 7731 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7732 SDValue Op = Node->getOperand(0); 7733 unsigned Len = VT.getScalarSizeInBits(); 7734 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7735 7736 // TODO: Add support for irregular type lengths. 7737 if (!(Len <= 128 && Len % 8 == 0)) 7738 return SDValue(); 7739 7740 // Only expand vector types if we have the appropriate vector bit operations. 7741 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7742 return SDValue(); 7743 7744 // This is the "best" algorithm from 7745 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7746 SDValue Mask55 = 7747 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7748 SDValue Mask33 = 7749 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7750 SDValue Mask0F = 7751 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7752 7753 // v = v - ((v >> 1) & 0x55555555...) 7754 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7755 DAG.getNode(ISD::AND, dl, VT, 7756 DAG.getNode(ISD::SRL, dl, VT, Op, 7757 DAG.getConstant(1, dl, ShVT)), 7758 Mask55)); 7759 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7760 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7761 DAG.getNode(ISD::AND, dl, VT, 7762 DAG.getNode(ISD::SRL, dl, VT, Op, 7763 DAG.getConstant(2, dl, ShVT)), 7764 Mask33)); 7765 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7766 Op = DAG.getNode(ISD::AND, dl, VT, 7767 DAG.getNode(ISD::ADD, dl, VT, Op, 7768 DAG.getNode(ISD::SRL, dl, VT, Op, 7769 DAG.getConstant(4, dl, ShVT))), 7770 Mask0F); 7771 7772 if (Len <= 8) 7773 return Op; 7774 7775 // Avoid the multiply if we only have 2 bytes to add. 7776 // TODO: Only doing this for scalars because vectors weren't as obviously 7777 // improved. 7778 if (Len == 16 && !VT.isVector()) { 7779 // v = (v + (v >> 8)) & 0x00FF; 7780 return DAG.getNode(ISD::AND, dl, VT, 7781 DAG.getNode(ISD::ADD, dl, VT, Op, 7782 DAG.getNode(ISD::SRL, dl, VT, Op, 7783 DAG.getConstant(8, dl, ShVT))), 7784 DAG.getConstant(0xFF, dl, VT)); 7785 } 7786 7787 // v = (v * 0x01010101...) >> (Len - 8) 7788 SDValue Mask01 = 7789 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7790 return DAG.getNode(ISD::SRL, dl, VT, 7791 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7792 DAG.getConstant(Len - 8, dl, ShVT)); 7793 } 7794 7795 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7796 SDLoc dl(Node); 7797 EVT VT = Node->getValueType(0); 7798 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7799 SDValue Op = Node->getOperand(0); 7800 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7801 7802 // If the non-ZERO_UNDEF version is supported we can use that instead. 7803 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7804 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7805 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7806 7807 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7808 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7809 EVT SetCCVT = 7810 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7811 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7812 SDValue Zero = DAG.getConstant(0, dl, VT); 7813 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7814 return DAG.getSelect(dl, VT, SrcIsZero, 7815 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7816 } 7817 7818 // Only expand vector types if we have the appropriate vector bit operations. 7819 // This includes the operations needed to expand CTPOP if it isn't supported. 7820 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7821 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7822 !canExpandVectorCTPOP(*this, VT)) || 7823 !isOperationLegalOrCustom(ISD::SRL, VT) || 7824 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7825 return SDValue(); 7826 7827 // for now, we do this: 7828 // x = x | (x >> 1); 7829 // x = x | (x >> 2); 7830 // ... 7831 // x = x | (x >>16); 7832 // x = x | (x >>32); // for 64-bit input 7833 // return popcount(~x); 7834 // 7835 // Ref: "Hacker's Delight" by Henry Warren 7836 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7837 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7838 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7839 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7840 } 7841 Op = DAG.getNOT(dl, Op, VT); 7842 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7843 } 7844 7845 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7846 SDLoc dl(Node); 7847 EVT VT = Node->getValueType(0); 7848 SDValue Op = Node->getOperand(0); 7849 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7850 7851 // If the non-ZERO_UNDEF version is supported we can use that instead. 7852 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7853 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7854 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7855 7856 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7857 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7858 EVT SetCCVT = 7859 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7860 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7861 SDValue Zero = DAG.getConstant(0, dl, VT); 7862 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7863 return DAG.getSelect(dl, VT, SrcIsZero, 7864 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7865 } 7866 7867 // Only expand vector types if we have the appropriate vector bit operations. 7868 // This includes the operations needed to expand CTPOP if it isn't supported. 7869 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7870 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7871 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7872 !canExpandVectorCTPOP(*this, VT)) || 7873 !isOperationLegalOrCustom(ISD::SUB, VT) || 7874 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7875 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7876 return SDValue(); 7877 7878 // for now, we use: { return popcount(~x & (x - 1)); } 7879 // unless the target has ctlz but not ctpop, in which case we use: 7880 // { return 32 - nlz(~x & (x-1)); } 7881 // Ref: "Hacker's Delight" by Henry Warren 7882 SDValue Tmp = DAG.getNode( 7883 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7884 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7885 7886 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7887 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7888 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7889 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7890 } 7891 7892 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7893 } 7894 7895 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7896 bool IsNegative) const { 7897 SDLoc dl(N); 7898 EVT VT = N->getValueType(0); 7899 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7900 SDValue Op = N->getOperand(0); 7901 7902 // abs(x) -> smax(x,sub(0,x)) 7903 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7904 isOperationLegal(ISD::SMAX, VT)) { 7905 SDValue Zero = DAG.getConstant(0, dl, VT); 7906 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7907 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7908 } 7909 7910 // abs(x) -> umin(x,sub(0,x)) 7911 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7912 isOperationLegal(ISD::UMIN, VT)) { 7913 SDValue Zero = DAG.getConstant(0, dl, VT); 7914 Op = DAG.getFreeze(Op); 7915 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7916 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7917 } 7918 7919 // 0 - abs(x) -> smin(x, sub(0,x)) 7920 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7921 isOperationLegal(ISD::SMIN, VT)) { 7922 Op = DAG.getFreeze(Op); 7923 SDValue Zero = DAG.getConstant(0, dl, VT); 7924 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7925 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7926 } 7927 7928 // Only expand vector types if we have the appropriate vector operations. 7929 if (VT.isVector() && 7930 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7931 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7932 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7933 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7934 return SDValue(); 7935 7936 Op = DAG.getFreeze(Op); 7937 SDValue Shift = 7938 DAG.getNode(ISD::SRA, dl, VT, Op, 7939 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7940 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7941 7942 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 7943 if (!IsNegative) 7944 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 7945 7946 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7947 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7948 } 7949 7950 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7951 SDLoc dl(N); 7952 EVT VT = N->getValueType(0); 7953 SDValue Op = N->getOperand(0); 7954 7955 if (!VT.isSimple()) 7956 return SDValue(); 7957 7958 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7959 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7960 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7961 default: 7962 return SDValue(); 7963 case MVT::i16: 7964 // Use a rotate by 8. This can be further expanded if necessary. 7965 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7966 case MVT::i32: 7967 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7968 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7969 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7970 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7971 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7972 DAG.getConstant(0xFF0000, dl, VT)); 7973 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7974 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7975 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7976 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7977 case MVT::i64: 7978 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7979 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7980 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7981 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7982 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7983 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7984 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7985 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7986 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7987 DAG.getConstant(255ULL<<48, dl, VT)); 7988 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7989 DAG.getConstant(255ULL<<40, dl, VT)); 7990 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7991 DAG.getConstant(255ULL<<32, dl, VT)); 7992 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7993 DAG.getConstant(255ULL<<24, dl, VT)); 7994 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7995 DAG.getConstant(255ULL<<16, dl, VT)); 7996 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7997 DAG.getConstant(255ULL<<8 , dl, VT)); 7998 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7999 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 8000 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 8001 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 8002 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 8003 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 8004 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 8005 } 8006 } 8007 8008 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 8009 SDLoc dl(N); 8010 EVT VT = N->getValueType(0); 8011 SDValue Op = N->getOperand(0); 8012 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8013 unsigned Sz = VT.getScalarSizeInBits(); 8014 8015 SDValue Tmp, Tmp2, Tmp3; 8016 8017 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 8018 // and finally the i1 pairs. 8019 // TODO: We can easily support i4/i2 legal types if any target ever does. 8020 if (Sz >= 8 && isPowerOf2_32(Sz)) { 8021 // Create the masks - repeating the pattern every byte. 8022 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 8023 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 8024 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 8025 8026 // BSWAP if the type is wider than a single byte. 8027 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 8028 8029 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 8030 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 8031 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 8032 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 8033 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 8034 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8035 8036 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 8037 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 8038 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 8039 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 8040 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 8041 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8042 8043 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 8044 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 8045 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 8046 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 8047 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 8048 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8049 return Tmp; 8050 } 8051 8052 Tmp = DAG.getConstant(0, dl, VT); 8053 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 8054 if (I < J) 8055 Tmp2 = 8056 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 8057 else 8058 Tmp2 = 8059 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 8060 8061 APInt Shift(Sz, 1); 8062 Shift <<= J; 8063 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 8064 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 8065 } 8066 8067 return Tmp; 8068 } 8069 8070 std::pair<SDValue, SDValue> 8071 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 8072 SelectionDAG &DAG) const { 8073 SDLoc SL(LD); 8074 SDValue Chain = LD->getChain(); 8075 SDValue BasePTR = LD->getBasePtr(); 8076 EVT SrcVT = LD->getMemoryVT(); 8077 EVT DstVT = LD->getValueType(0); 8078 ISD::LoadExtType ExtType = LD->getExtensionType(); 8079 8080 if (SrcVT.isScalableVector()) 8081 report_fatal_error("Cannot scalarize scalable vector loads"); 8082 8083 unsigned NumElem = SrcVT.getVectorNumElements(); 8084 8085 EVT SrcEltVT = SrcVT.getScalarType(); 8086 EVT DstEltVT = DstVT.getScalarType(); 8087 8088 // A vector must always be stored in memory as-is, i.e. without any padding 8089 // between the elements, since various code depend on it, e.g. in the 8090 // handling of a bitcast of a vector type to int, which may be done with a 8091 // vector store followed by an integer load. A vector that does not have 8092 // elements that are byte-sized must therefore be stored as an integer 8093 // built out of the extracted vector elements. 8094 if (!SrcEltVT.isByteSized()) { 8095 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 8096 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 8097 8098 unsigned NumSrcBits = SrcVT.getSizeInBits(); 8099 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 8100 8101 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 8102 SDValue SrcEltBitMask = DAG.getConstant( 8103 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 8104 8105 // Load the whole vector and avoid masking off the top bits as it makes 8106 // the codegen worse. 8107 SDValue Load = 8108 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 8109 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 8110 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 8111 8112 SmallVector<SDValue, 8> Vals; 8113 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8114 unsigned ShiftIntoIdx = 8115 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 8116 SDValue ShiftAmount = 8117 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 8118 LoadVT, SL, /*LegalTypes=*/false); 8119 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 8120 SDValue Elt = 8121 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 8122 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 8123 8124 if (ExtType != ISD::NON_EXTLOAD) { 8125 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 8126 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 8127 } 8128 8129 Vals.push_back(Scalar); 8130 } 8131 8132 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 8133 return std::make_pair(Value, Load.getValue(1)); 8134 } 8135 8136 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 8137 assert(SrcEltVT.isByteSized()); 8138 8139 SmallVector<SDValue, 8> Vals; 8140 SmallVector<SDValue, 8> LoadChains; 8141 8142 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8143 SDValue ScalarLoad = 8144 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 8145 LD->getPointerInfo().getWithOffset(Idx * Stride), 8146 SrcEltVT, LD->getOriginalAlign(), 8147 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 8148 8149 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 8150 8151 Vals.push_back(ScalarLoad.getValue(0)); 8152 LoadChains.push_back(ScalarLoad.getValue(1)); 8153 } 8154 8155 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 8156 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 8157 8158 return std::make_pair(Value, NewChain); 8159 } 8160 8161 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 8162 SelectionDAG &DAG) const { 8163 SDLoc SL(ST); 8164 8165 SDValue Chain = ST->getChain(); 8166 SDValue BasePtr = ST->getBasePtr(); 8167 SDValue Value = ST->getValue(); 8168 EVT StVT = ST->getMemoryVT(); 8169 8170 if (StVT.isScalableVector()) 8171 report_fatal_error("Cannot scalarize scalable vector stores"); 8172 8173 // The type of the data we want to save 8174 EVT RegVT = Value.getValueType(); 8175 EVT RegSclVT = RegVT.getScalarType(); 8176 8177 // The type of data as saved in memory. 8178 EVT MemSclVT = StVT.getScalarType(); 8179 8180 unsigned NumElem = StVT.getVectorNumElements(); 8181 8182 // A vector must always be stored in memory as-is, i.e. without any padding 8183 // between the elements, since various code depend on it, e.g. in the 8184 // handling of a bitcast of a vector type to int, which may be done with a 8185 // vector store followed by an integer load. A vector that does not have 8186 // elements that are byte-sized must therefore be stored as an integer 8187 // built out of the extracted vector elements. 8188 if (!MemSclVT.isByteSized()) { 8189 unsigned NumBits = StVT.getSizeInBits(); 8190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 8191 8192 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 8193 8194 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8195 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 8196 DAG.getVectorIdxConstant(Idx, SL)); 8197 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 8198 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 8199 unsigned ShiftIntoIdx = 8200 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 8201 SDValue ShiftAmount = 8202 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 8203 SDValue ShiftedElt = 8204 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 8205 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 8206 } 8207 8208 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 8209 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 8210 ST->getAAInfo()); 8211 } 8212 8213 // Store Stride in bytes 8214 unsigned Stride = MemSclVT.getSizeInBits() / 8; 8215 assert(Stride && "Zero stride!"); 8216 // Extract each of the elements from the original vector and save them into 8217 // memory individually. 8218 SmallVector<SDValue, 8> Stores; 8219 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8220 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 8221 DAG.getVectorIdxConstant(Idx, SL)); 8222 8223 SDValue Ptr = 8224 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 8225 8226 // This scalar TruncStore may be illegal, but we legalize it later. 8227 SDValue Store = DAG.getTruncStore( 8228 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 8229 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 8230 ST->getAAInfo()); 8231 8232 Stores.push_back(Store); 8233 } 8234 8235 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 8236 } 8237 8238 std::pair<SDValue, SDValue> 8239 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 8240 assert(LD->getAddressingMode() == ISD::UNINDEXED && 8241 "unaligned indexed loads not implemented!"); 8242 SDValue Chain = LD->getChain(); 8243 SDValue Ptr = LD->getBasePtr(); 8244 EVT VT = LD->getValueType(0); 8245 EVT LoadedVT = LD->getMemoryVT(); 8246 SDLoc dl(LD); 8247 auto &MF = DAG.getMachineFunction(); 8248 8249 if (VT.isFloatingPoint() || VT.isVector()) { 8250 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 8251 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 8252 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 8253 LoadedVT.isVector()) { 8254 // Scalarize the load and let the individual components be handled. 8255 return scalarizeVectorLoad(LD, DAG); 8256 } 8257 8258 // Expand to a (misaligned) integer load of the same size, 8259 // then bitconvert to floating point or vector. 8260 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 8261 LD->getMemOperand()); 8262 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 8263 if (LoadedVT != VT) 8264 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 8265 ISD::ANY_EXTEND, dl, VT, Result); 8266 8267 return std::make_pair(Result, newLoad.getValue(1)); 8268 } 8269 8270 // Copy the value to a (aligned) stack slot using (unaligned) integer 8271 // loads and stores, then do a (aligned) load from the stack slot. 8272 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 8273 unsigned LoadedBytes = LoadedVT.getStoreSize(); 8274 unsigned RegBytes = RegVT.getSizeInBits() / 8; 8275 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 8276 8277 // Make sure the stack slot is also aligned for the register type. 8278 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 8279 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 8280 SmallVector<SDValue, 8> Stores; 8281 SDValue StackPtr = StackBase; 8282 unsigned Offset = 0; 8283 8284 EVT PtrVT = Ptr.getValueType(); 8285 EVT StackPtrVT = StackPtr.getValueType(); 8286 8287 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 8288 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 8289 8290 // Do all but one copies using the full register width. 8291 for (unsigned i = 1; i < NumRegs; i++) { 8292 // Load one integer register's worth from the original location. 8293 SDValue Load = DAG.getLoad( 8294 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 8295 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 8296 LD->getAAInfo()); 8297 // Follow the load with a store to the stack slot. Remember the store. 8298 Stores.push_back(DAG.getStore( 8299 Load.getValue(1), dl, Load, StackPtr, 8300 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 8301 // Increment the pointers. 8302 Offset += RegBytes; 8303 8304 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 8305 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 8306 } 8307 8308 // The last copy may be partial. Do an extending load. 8309 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8310 8 * (LoadedBytes - Offset)); 8311 SDValue Load = 8312 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 8313 LD->getPointerInfo().getWithOffset(Offset), MemVT, 8314 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 8315 LD->getAAInfo()); 8316 // Follow the load with a store to the stack slot. Remember the store. 8317 // On big-endian machines this requires a truncating store to ensure 8318 // that the bits end up in the right place. 8319 Stores.push_back(DAG.getTruncStore( 8320 Load.getValue(1), dl, Load, StackPtr, 8321 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 8322 8323 // The order of the stores doesn't matter - say it with a TokenFactor. 8324 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8325 8326 // Finally, perform the original load only redirected to the stack slot. 8327 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 8328 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 8329 LoadedVT); 8330 8331 // Callers expect a MERGE_VALUES node. 8332 return std::make_pair(Load, TF); 8333 } 8334 8335 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 8336 "Unaligned load of unsupported type."); 8337 8338 // Compute the new VT that is half the size of the old one. This is an 8339 // integer MVT. 8340 unsigned NumBits = LoadedVT.getSizeInBits(); 8341 EVT NewLoadedVT; 8342 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 8343 NumBits >>= 1; 8344 8345 Align Alignment = LD->getOriginalAlign(); 8346 unsigned IncrementSize = NumBits / 8; 8347 ISD::LoadExtType HiExtType = LD->getExtensionType(); 8348 8349 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 8350 if (HiExtType == ISD::NON_EXTLOAD) 8351 HiExtType = ISD::ZEXTLOAD; 8352 8353 // Load the value in two parts 8354 SDValue Lo, Hi; 8355 if (DAG.getDataLayout().isLittleEndian()) { 8356 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 8357 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8358 LD->getAAInfo()); 8359 8360 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8361 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 8362 LD->getPointerInfo().getWithOffset(IncrementSize), 8363 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8364 LD->getAAInfo()); 8365 } else { 8366 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 8367 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8368 LD->getAAInfo()); 8369 8370 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8371 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 8372 LD->getPointerInfo().getWithOffset(IncrementSize), 8373 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8374 LD->getAAInfo()); 8375 } 8376 8377 // aggregate the two parts 8378 SDValue ShiftAmount = 8379 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 8380 DAG.getDataLayout())); 8381 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 8382 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 8383 8384 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 8385 Hi.getValue(1)); 8386 8387 return std::make_pair(Result, TF); 8388 } 8389 8390 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 8391 SelectionDAG &DAG) const { 8392 assert(ST->getAddressingMode() == ISD::UNINDEXED && 8393 "unaligned indexed stores not implemented!"); 8394 SDValue Chain = ST->getChain(); 8395 SDValue Ptr = ST->getBasePtr(); 8396 SDValue Val = ST->getValue(); 8397 EVT VT = Val.getValueType(); 8398 Align Alignment = ST->getOriginalAlign(); 8399 auto &MF = DAG.getMachineFunction(); 8400 EVT StoreMemVT = ST->getMemoryVT(); 8401 8402 SDLoc dl(ST); 8403 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 8404 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 8405 if (isTypeLegal(intVT)) { 8406 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 8407 StoreMemVT.isVector()) { 8408 // Scalarize the store and let the individual components be handled. 8409 SDValue Result = scalarizeVectorStore(ST, DAG); 8410 return Result; 8411 } 8412 // Expand to a bitconvert of the value to the integer type of the 8413 // same size, then a (misaligned) int store. 8414 // FIXME: Does not handle truncating floating point stores! 8415 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 8416 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 8417 Alignment, ST->getMemOperand()->getFlags()); 8418 return Result; 8419 } 8420 // Do a (aligned) store to a stack slot, then copy from the stack slot 8421 // to the final destination using (unaligned) integer loads and stores. 8422 MVT RegVT = getRegisterType( 8423 *DAG.getContext(), 8424 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 8425 EVT PtrVT = Ptr.getValueType(); 8426 unsigned StoredBytes = StoreMemVT.getStoreSize(); 8427 unsigned RegBytes = RegVT.getSizeInBits() / 8; 8428 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 8429 8430 // Make sure the stack slot is also aligned for the register type. 8431 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 8432 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8433 8434 // Perform the original store, only redirected to the stack slot. 8435 SDValue Store = DAG.getTruncStore( 8436 Chain, dl, Val, StackPtr, 8437 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 8438 8439 EVT StackPtrVT = StackPtr.getValueType(); 8440 8441 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 8442 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 8443 SmallVector<SDValue, 8> Stores; 8444 unsigned Offset = 0; 8445 8446 // Do all but one copies using the full register width. 8447 for (unsigned i = 1; i < NumRegs; i++) { 8448 // Load one integer register's worth from the stack slot. 8449 SDValue Load = DAG.getLoad( 8450 RegVT, dl, Store, StackPtr, 8451 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 8452 // Store it to the final location. Remember the store. 8453 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 8454 ST->getPointerInfo().getWithOffset(Offset), 8455 ST->getOriginalAlign(), 8456 ST->getMemOperand()->getFlags())); 8457 // Increment the pointers. 8458 Offset += RegBytes; 8459 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 8460 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 8461 } 8462 8463 // The last store may be partial. Do a truncating store. On big-endian 8464 // machines this requires an extending load from the stack slot to ensure 8465 // that the bits are in the right place. 8466 EVT LoadMemVT = 8467 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 8468 8469 // Load from the stack slot. 8470 SDValue Load = DAG.getExtLoad( 8471 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 8472 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 8473 8474 Stores.push_back( 8475 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 8476 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 8477 ST->getOriginalAlign(), 8478 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 8479 // The order of the stores doesn't matter - say it with a TokenFactor. 8480 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8481 return Result; 8482 } 8483 8484 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 8485 "Unaligned store of unknown type."); 8486 // Get the half-size VT 8487 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 8488 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 8489 unsigned IncrementSize = NumBits / 8; 8490 8491 // Divide the stored value in two parts. 8492 SDValue ShiftAmount = DAG.getConstant( 8493 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 8494 SDValue Lo = Val; 8495 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 8496 8497 // Store the two parts 8498 SDValue Store1, Store2; 8499 Store1 = DAG.getTruncStore(Chain, dl, 8500 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 8501 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 8502 ST->getMemOperand()->getFlags()); 8503 8504 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8505 Store2 = DAG.getTruncStore( 8506 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 8507 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 8508 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 8509 8510 SDValue Result = 8511 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 8512 return Result; 8513 } 8514 8515 SDValue 8516 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 8517 const SDLoc &DL, EVT DataVT, 8518 SelectionDAG &DAG, 8519 bool IsCompressedMemory) const { 8520 SDValue Increment; 8521 EVT AddrVT = Addr.getValueType(); 8522 EVT MaskVT = Mask.getValueType(); 8523 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 8524 "Incompatible types of Data and Mask"); 8525 if (IsCompressedMemory) { 8526 if (DataVT.isScalableVector()) 8527 report_fatal_error( 8528 "Cannot currently handle compressed memory with scalable vectors"); 8529 // Incrementing the pointer according to number of '1's in the mask. 8530 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 8531 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 8532 if (MaskIntVT.getSizeInBits() < 32) { 8533 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 8534 MaskIntVT = MVT::i32; 8535 } 8536 8537 // Count '1's with POPCNT. 8538 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 8539 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 8540 // Scale is an element size in bytes. 8541 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 8542 AddrVT); 8543 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 8544 } else if (DataVT.isScalableVector()) { 8545 Increment = DAG.getVScale(DL, AddrVT, 8546 APInt(AddrVT.getFixedSizeInBits(), 8547 DataVT.getStoreSize().getKnownMinSize())); 8548 } else 8549 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 8550 8551 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 8552 } 8553 8554 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 8555 EVT VecVT, const SDLoc &dl, 8556 ElementCount SubEC) { 8557 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 8558 "Cannot index a scalable vector within a fixed-width vector"); 8559 8560 unsigned NElts = VecVT.getVectorMinNumElements(); 8561 unsigned NumSubElts = SubEC.getKnownMinValue(); 8562 EVT IdxVT = Idx.getValueType(); 8563 8564 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 8565 // If this is a constant index and we know the value plus the number of the 8566 // elements in the subvector minus one is less than the minimum number of 8567 // elements then it's safe to return Idx. 8568 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 8569 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 8570 return Idx; 8571 SDValue VS = 8572 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 8573 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 8574 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 8575 DAG.getConstant(NumSubElts, dl, IdxVT)); 8576 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 8577 } 8578 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 8579 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 8580 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 8581 DAG.getConstant(Imm, dl, IdxVT)); 8582 } 8583 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 8584 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 8585 DAG.getConstant(MaxIndex, dl, IdxVT)); 8586 } 8587 8588 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 8589 SDValue VecPtr, EVT VecVT, 8590 SDValue Index) const { 8591 return getVectorSubVecPointer( 8592 DAG, VecPtr, VecVT, 8593 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 8594 Index); 8595 } 8596 8597 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 8598 SDValue VecPtr, EVT VecVT, 8599 EVT SubVecVT, 8600 SDValue Index) const { 8601 SDLoc dl(Index); 8602 // Make sure the index type is big enough to compute in. 8603 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 8604 8605 EVT EltVT = VecVT.getVectorElementType(); 8606 8607 // Calculate the element offset and add it to the pointer. 8608 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 8609 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 8610 "Converting bits to bytes lost precision"); 8611 assert(SubVecVT.getVectorElementType() == EltVT && 8612 "Sub-vector must be a vector with matching element type"); 8613 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 8614 SubVecVT.getVectorElementCount()); 8615 8616 EVT IdxVT = Index.getValueType(); 8617 if (SubVecVT.isScalableVector()) 8618 Index = 8619 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8620 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 8621 8622 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8623 DAG.getConstant(EltSize, dl, IdxVT)); 8624 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 8625 } 8626 8627 //===----------------------------------------------------------------------===// 8628 // Implementation of Emulated TLS Model 8629 //===----------------------------------------------------------------------===// 8630 8631 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 8632 SelectionDAG &DAG) const { 8633 // Access to address of TLS varialbe xyz is lowered to a function call: 8634 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 8635 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8636 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 8637 SDLoc dl(GA); 8638 8639 ArgListTy Args; 8640 ArgListEntry Entry; 8641 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 8642 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 8643 StringRef EmuTlsVarName(NameString); 8644 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 8645 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 8646 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 8647 Entry.Ty = VoidPtrType; 8648 Args.push_back(Entry); 8649 8650 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 8651 8652 TargetLowering::CallLoweringInfo CLI(DAG); 8653 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 8654 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 8655 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 8656 8657 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 8658 // At last for X86 targets, maybe good for other targets too? 8659 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8660 MFI.setAdjustsStack(true); // Is this only for X86 target? 8661 MFI.setHasCalls(true); 8662 8663 assert((GA->getOffset() == 0) && 8664 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 8665 return CallResult.first; 8666 } 8667 8668 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 8669 SelectionDAG &DAG) const { 8670 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 8671 if (!isCtlzFast()) 8672 return SDValue(); 8673 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8674 SDLoc dl(Op); 8675 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8676 if (C->isZero() && CC == ISD::SETEQ) { 8677 EVT VT = Op.getOperand(0).getValueType(); 8678 SDValue Zext = Op.getOperand(0); 8679 if (VT.bitsLT(MVT::i32)) { 8680 VT = MVT::i32; 8681 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8682 } 8683 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8684 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8685 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8686 DAG.getConstant(Log2b, dl, MVT::i32)); 8687 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8688 } 8689 } 8690 return SDValue(); 8691 } 8692 8693 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8694 SDValue Op0 = Node->getOperand(0); 8695 SDValue Op1 = Node->getOperand(1); 8696 EVT VT = Op0.getValueType(); 8697 unsigned Opcode = Node->getOpcode(); 8698 SDLoc DL(Node); 8699 8700 // umin(x,y) -> sub(x,usubsat(x,y)) 8701 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8702 isOperationLegal(ISD::USUBSAT, VT)) { 8703 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8704 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8705 } 8706 8707 // umax(x,y) -> add(x,usubsat(y,x)) 8708 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8709 isOperationLegal(ISD::USUBSAT, VT)) { 8710 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8711 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8712 } 8713 8714 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8715 ISD::CondCode CC; 8716 switch (Opcode) { 8717 default: llvm_unreachable("How did we get here?"); 8718 case ISD::SMAX: CC = ISD::SETGT; break; 8719 case ISD::SMIN: CC = ISD::SETLT; break; 8720 case ISD::UMAX: CC = ISD::SETUGT; break; 8721 case ISD::UMIN: CC = ISD::SETULT; break; 8722 } 8723 8724 // FIXME: Should really try to split the vector in case it's legal on a 8725 // subvector. 8726 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8727 return DAG.UnrollVectorOp(Node); 8728 8729 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8730 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8731 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8732 } 8733 8734 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8735 unsigned Opcode = Node->getOpcode(); 8736 SDValue LHS = Node->getOperand(0); 8737 SDValue RHS = Node->getOperand(1); 8738 EVT VT = LHS.getValueType(); 8739 SDLoc dl(Node); 8740 8741 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8742 assert(VT.isInteger() && "Expected operands to be integers"); 8743 8744 // usub.sat(a, b) -> umax(a, b) - b 8745 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8746 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8747 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8748 } 8749 8750 // uadd.sat(a, b) -> umin(a, ~b) + b 8751 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8752 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8753 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8754 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8755 } 8756 8757 unsigned OverflowOp; 8758 switch (Opcode) { 8759 case ISD::SADDSAT: 8760 OverflowOp = ISD::SADDO; 8761 break; 8762 case ISD::UADDSAT: 8763 OverflowOp = ISD::UADDO; 8764 break; 8765 case ISD::SSUBSAT: 8766 OverflowOp = ISD::SSUBO; 8767 break; 8768 case ISD::USUBSAT: 8769 OverflowOp = ISD::USUBO; 8770 break; 8771 default: 8772 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8773 "addition or subtraction node."); 8774 } 8775 8776 // FIXME: Should really try to split the vector in case it's legal on a 8777 // subvector. 8778 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8779 return DAG.UnrollVectorOp(Node); 8780 8781 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8782 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8783 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8784 SDValue SumDiff = Result.getValue(0); 8785 SDValue Overflow = Result.getValue(1); 8786 SDValue Zero = DAG.getConstant(0, dl, VT); 8787 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8788 8789 if (Opcode == ISD::UADDSAT) { 8790 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8791 // (LHS + RHS) | OverflowMask 8792 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8793 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8794 } 8795 // Overflow ? 0xffff.... : (LHS + RHS) 8796 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8797 } 8798 8799 if (Opcode == ISD::USUBSAT) { 8800 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8801 // (LHS - RHS) & ~OverflowMask 8802 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8803 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8804 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8805 } 8806 // Overflow ? 0 : (LHS - RHS) 8807 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8808 } 8809 8810 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8811 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8812 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8813 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8814 DAG.getConstant(BitWidth - 1, dl, VT)); 8815 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8816 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8817 } 8818 8819 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8820 unsigned Opcode = Node->getOpcode(); 8821 bool IsSigned = Opcode == ISD::SSHLSAT; 8822 SDValue LHS = Node->getOperand(0); 8823 SDValue RHS = Node->getOperand(1); 8824 EVT VT = LHS.getValueType(); 8825 SDLoc dl(Node); 8826 8827 assert((Node->getOpcode() == ISD::SSHLSAT || 8828 Node->getOpcode() == ISD::USHLSAT) && 8829 "Expected a SHLSAT opcode"); 8830 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8831 assert(VT.isInteger() && "Expected operands to be integers"); 8832 8833 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8834 8835 unsigned BW = VT.getScalarSizeInBits(); 8836 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8837 SDValue Orig = 8838 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8839 8840 SDValue SatVal; 8841 if (IsSigned) { 8842 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8843 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8844 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8845 SatMin, SatMax, ISD::SETLT); 8846 } else { 8847 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8848 } 8849 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8850 8851 return Result; 8852 } 8853 8854 SDValue 8855 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8856 assert((Node->getOpcode() == ISD::SMULFIX || 8857 Node->getOpcode() == ISD::UMULFIX || 8858 Node->getOpcode() == ISD::SMULFIXSAT || 8859 Node->getOpcode() == ISD::UMULFIXSAT) && 8860 "Expected a fixed point multiplication opcode"); 8861 8862 SDLoc dl(Node); 8863 SDValue LHS = Node->getOperand(0); 8864 SDValue RHS = Node->getOperand(1); 8865 EVT VT = LHS.getValueType(); 8866 unsigned Scale = Node->getConstantOperandVal(2); 8867 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8868 Node->getOpcode() == ISD::UMULFIXSAT); 8869 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8870 Node->getOpcode() == ISD::SMULFIXSAT); 8871 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8872 unsigned VTSize = VT.getScalarSizeInBits(); 8873 8874 if (!Scale) { 8875 // [us]mul.fix(a, b, 0) -> mul(a, b) 8876 if (!Saturating) { 8877 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8878 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8879 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8880 SDValue Result = 8881 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8882 SDValue Product = Result.getValue(0); 8883 SDValue Overflow = Result.getValue(1); 8884 SDValue Zero = DAG.getConstant(0, dl, VT); 8885 8886 APInt MinVal = APInt::getSignedMinValue(VTSize); 8887 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8888 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8889 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8890 // Xor the inputs, if resulting sign bit is 0 the product will be 8891 // positive, else negative. 8892 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8893 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8894 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8895 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8896 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8897 SDValue Result = 8898 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8899 SDValue Product = Result.getValue(0); 8900 SDValue Overflow = Result.getValue(1); 8901 8902 APInt MaxVal = APInt::getMaxValue(VTSize); 8903 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8904 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8905 } 8906 } 8907 8908 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8909 "Expected scale to be less than the number of bits if signed or at " 8910 "most the number of bits if unsigned."); 8911 assert(LHS.getValueType() == RHS.getValueType() && 8912 "Expected both operands to be the same type"); 8913 8914 // Get the upper and lower bits of the result. 8915 SDValue Lo, Hi; 8916 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8917 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8918 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8919 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8920 Lo = Result.getValue(0); 8921 Hi = Result.getValue(1); 8922 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8923 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8924 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8925 } else if (VT.isVector()) { 8926 return SDValue(); 8927 } else { 8928 report_fatal_error("Unable to expand fixed point multiplication."); 8929 } 8930 8931 if (Scale == VTSize) 8932 // Result is just the top half since we'd be shifting by the width of the 8933 // operand. Overflow impossible so this works for both UMULFIX and 8934 // UMULFIXSAT. 8935 return Hi; 8936 8937 // The result will need to be shifted right by the scale since both operands 8938 // are scaled. The result is given to us in 2 halves, so we only want part of 8939 // both in the result. 8940 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8941 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8942 DAG.getConstant(Scale, dl, ShiftTy)); 8943 if (!Saturating) 8944 return Result; 8945 8946 if (!Signed) { 8947 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8948 // widened multiplication) aren't all zeroes. 8949 8950 // Saturate to max if ((Hi >> Scale) != 0), 8951 // which is the same as if (Hi > ((1 << Scale) - 1)) 8952 APInt MaxVal = APInt::getMaxValue(VTSize); 8953 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8954 dl, VT); 8955 Result = DAG.getSelectCC(dl, Hi, LowMask, 8956 DAG.getConstant(MaxVal, dl, VT), Result, 8957 ISD::SETUGT); 8958 8959 return Result; 8960 } 8961 8962 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8963 // widened multiplication) aren't all ones or all zeroes. 8964 8965 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8966 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8967 8968 if (Scale == 0) { 8969 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8970 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8971 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8972 // Saturated to SatMin if wide product is negative, and SatMax if wide 8973 // product is positive ... 8974 SDValue Zero = DAG.getConstant(0, dl, VT); 8975 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8976 ISD::SETLT); 8977 // ... but only if we overflowed. 8978 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8979 } 8980 8981 // We handled Scale==0 above so all the bits to examine is in Hi. 8982 8983 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8984 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8985 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8986 dl, VT); 8987 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8988 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8989 // which is the same as if (HI < (-1 << (Scale - 1)) 8990 SDValue HighMask = 8991 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8992 dl, VT); 8993 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8994 return Result; 8995 } 8996 8997 SDValue 8998 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8999 SDValue LHS, SDValue RHS, 9000 unsigned Scale, SelectionDAG &DAG) const { 9001 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 9002 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 9003 "Expected a fixed point division opcode"); 9004 9005 EVT VT = LHS.getValueType(); 9006 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 9007 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 9008 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9009 9010 // If there is enough room in the type to upscale the LHS or downscale the 9011 // RHS before the division, we can perform it in this type without having to 9012 // resize. For signed operations, the LHS headroom is the number of 9013 // redundant sign bits, and for unsigned ones it is the number of zeroes. 9014 // The headroom for the RHS is the number of trailing zeroes. 9015 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 9016 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 9017 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 9018 9019 // For signed saturating operations, we need to be able to detect true integer 9020 // division overflow; that is, when you have MIN / -EPS. However, this 9021 // is undefined behavior and if we emit divisions that could take such 9022 // values it may cause undesired behavior (arithmetic exceptions on x86, for 9023 // example). 9024 // Avoid this by requiring an extra bit so that we never get this case. 9025 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 9026 // signed saturating division, we need to emit a whopping 32-bit division. 9027 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 9028 return SDValue(); 9029 9030 unsigned LHSShift = std::min(LHSLead, Scale); 9031 unsigned RHSShift = Scale - LHSShift; 9032 9033 // At this point, we know that if we shift the LHS up by LHSShift and the 9034 // RHS down by RHSShift, we can emit a regular division with a final scaling 9035 // factor of Scale. 9036 9037 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9038 if (LHSShift) 9039 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 9040 DAG.getConstant(LHSShift, dl, ShiftTy)); 9041 if (RHSShift) 9042 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 9043 DAG.getConstant(RHSShift, dl, ShiftTy)); 9044 9045 SDValue Quot; 9046 if (Signed) { 9047 // For signed operations, if the resulting quotient is negative and the 9048 // remainder is nonzero, subtract 1 from the quotient to round towards 9049 // negative infinity. 9050 SDValue Rem; 9051 // FIXME: Ideally we would always produce an SDIVREM here, but if the 9052 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 9053 // we couldn't just form a libcall, but the type legalizer doesn't do it. 9054 if (isTypeLegal(VT) && 9055 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 9056 Quot = DAG.getNode(ISD::SDIVREM, dl, 9057 DAG.getVTList(VT, VT), 9058 LHS, RHS); 9059 Rem = Quot.getValue(1); 9060 Quot = Quot.getValue(0); 9061 } else { 9062 Quot = DAG.getNode(ISD::SDIV, dl, VT, 9063 LHS, RHS); 9064 Rem = DAG.getNode(ISD::SREM, dl, VT, 9065 LHS, RHS); 9066 } 9067 SDValue Zero = DAG.getConstant(0, dl, VT); 9068 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 9069 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 9070 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 9071 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 9072 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 9073 DAG.getConstant(1, dl, VT)); 9074 Quot = DAG.getSelect(dl, VT, 9075 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 9076 Sub1, Quot); 9077 } else 9078 Quot = DAG.getNode(ISD::UDIV, dl, VT, 9079 LHS, RHS); 9080 9081 return Quot; 9082 } 9083 9084 void TargetLowering::expandUADDSUBO( 9085 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 9086 SDLoc dl(Node); 9087 SDValue LHS = Node->getOperand(0); 9088 SDValue RHS = Node->getOperand(1); 9089 bool IsAdd = Node->getOpcode() == ISD::UADDO; 9090 9091 // If ADD/SUBCARRY is legal, use that instead. 9092 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 9093 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 9094 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 9095 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 9096 { LHS, RHS, CarryIn }); 9097 Result = SDValue(NodeCarry.getNode(), 0); 9098 Overflow = SDValue(NodeCarry.getNode(), 1); 9099 return; 9100 } 9101 9102 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 9103 LHS.getValueType(), LHS, RHS); 9104 9105 EVT ResultType = Node->getValueType(1); 9106 EVT SetCCType = getSetCCResultType( 9107 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 9108 SDValue SetCC; 9109 if (IsAdd && isOneConstant(RHS)) { 9110 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces 9111 // the live range of X. We assume comparing with 0 is cheap. 9112 // The general case (X + C) < C is not necessarily beneficial. Although we 9113 // reduce the live range of X, we may introduce the materialization of 9114 // constant C. 9115 SetCC = 9116 DAG.getSetCC(dl, SetCCType, Result, 9117 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ); 9118 } else { 9119 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 9120 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 9121 } 9122 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 9123 } 9124 9125 void TargetLowering::expandSADDSUBO( 9126 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 9127 SDLoc dl(Node); 9128 SDValue LHS = Node->getOperand(0); 9129 SDValue RHS = Node->getOperand(1); 9130 bool IsAdd = Node->getOpcode() == ISD::SADDO; 9131 9132 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 9133 LHS.getValueType(), LHS, RHS); 9134 9135 EVT ResultType = Node->getValueType(1); 9136 EVT OType = getSetCCResultType( 9137 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 9138 9139 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 9140 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 9141 if (isOperationLegal(OpcSat, LHS.getValueType())) { 9142 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 9143 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 9144 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 9145 return; 9146 } 9147 9148 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 9149 9150 // For an addition, the result should be less than one of the operands (LHS) 9151 // if and only if the other operand (RHS) is negative, otherwise there will 9152 // be overflow. 9153 // For a subtraction, the result should be less than one of the operands 9154 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 9155 // otherwise there will be overflow. 9156 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 9157 SDValue ConditionRHS = 9158 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 9159 9160 Overflow = DAG.getBoolExtOrTrunc( 9161 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 9162 ResultType, ResultType); 9163 } 9164 9165 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 9166 SDValue &Overflow, SelectionDAG &DAG) const { 9167 SDLoc dl(Node); 9168 EVT VT = Node->getValueType(0); 9169 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9170 SDValue LHS = Node->getOperand(0); 9171 SDValue RHS = Node->getOperand(1); 9172 bool isSigned = Node->getOpcode() == ISD::SMULO; 9173 9174 // For power-of-two multiplications we can use a simpler shift expansion. 9175 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 9176 const APInt &C = RHSC->getAPIntValue(); 9177 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 9178 if (C.isPowerOf2()) { 9179 // smulo(x, signed_min) is same as umulo(x, signed_min). 9180 bool UseArithShift = isSigned && !C.isMinSignedValue(); 9181 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9182 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 9183 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 9184 Overflow = DAG.getSetCC(dl, SetCCVT, 9185 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 9186 dl, VT, Result, ShiftAmt), 9187 LHS, ISD::SETNE); 9188 return true; 9189 } 9190 } 9191 9192 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 9193 if (VT.isVector()) 9194 WideVT = 9195 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 9196 9197 SDValue BottomHalf; 9198 SDValue TopHalf; 9199 static const unsigned Ops[2][3] = 9200 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 9201 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 9202 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 9203 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 9204 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 9205 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 9206 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 9207 RHS); 9208 TopHalf = BottomHalf.getValue(1); 9209 } else if (isTypeLegal(WideVT)) { 9210 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 9211 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 9212 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 9213 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 9214 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 9215 getShiftAmountTy(WideVT, DAG.getDataLayout())); 9216 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 9217 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 9218 } else { 9219 if (VT.isVector()) 9220 return false; 9221 9222 // We can fall back to a libcall with an illegal type for the MUL if we 9223 // have a libcall big enough. 9224 // Also, we can fall back to a division in some cases, but that's a big 9225 // performance hit in the general case. 9226 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 9227 if (WideVT == MVT::i16) 9228 LC = RTLIB::MUL_I16; 9229 else if (WideVT == MVT::i32) 9230 LC = RTLIB::MUL_I32; 9231 else if (WideVT == MVT::i64) 9232 LC = RTLIB::MUL_I64; 9233 else if (WideVT == MVT::i128) 9234 LC = RTLIB::MUL_I128; 9235 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 9236 9237 SDValue HiLHS; 9238 SDValue HiRHS; 9239 if (isSigned) { 9240 // The high part is obtained by SRA'ing all but one of the bits of low 9241 // part. 9242 unsigned LoSize = VT.getFixedSizeInBits(); 9243 HiLHS = 9244 DAG.getNode(ISD::SRA, dl, VT, LHS, 9245 DAG.getConstant(LoSize - 1, dl, 9246 getPointerTy(DAG.getDataLayout()))); 9247 HiRHS = 9248 DAG.getNode(ISD::SRA, dl, VT, RHS, 9249 DAG.getConstant(LoSize - 1, dl, 9250 getPointerTy(DAG.getDataLayout()))); 9251 } else { 9252 HiLHS = DAG.getConstant(0, dl, VT); 9253 HiRHS = DAG.getConstant(0, dl, VT); 9254 } 9255 9256 // Here we're passing the 2 arguments explicitly as 4 arguments that are 9257 // pre-lowered to the correct types. This all depends upon WideVT not 9258 // being a legal type for the architecture and thus has to be split to 9259 // two arguments. 9260 SDValue Ret; 9261 TargetLowering::MakeLibCallOptions CallOptions; 9262 CallOptions.setSExt(isSigned); 9263 CallOptions.setIsPostTypeLegalization(true); 9264 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 9265 // Halves of WideVT are packed into registers in different order 9266 // depending on platform endianness. This is usually handled by 9267 // the C calling convention, but we can't defer to it in 9268 // the legalizer. 9269 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 9270 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 9271 } else { 9272 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 9273 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 9274 } 9275 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 9276 "Ret value is a collection of constituent nodes holding result."); 9277 if (DAG.getDataLayout().isLittleEndian()) { 9278 // Same as above. 9279 BottomHalf = Ret.getOperand(0); 9280 TopHalf = Ret.getOperand(1); 9281 } else { 9282 BottomHalf = Ret.getOperand(1); 9283 TopHalf = Ret.getOperand(0); 9284 } 9285 } 9286 9287 Result = BottomHalf; 9288 if (isSigned) { 9289 SDValue ShiftAmt = DAG.getConstant( 9290 VT.getScalarSizeInBits() - 1, dl, 9291 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 9292 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 9293 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 9294 } else { 9295 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 9296 DAG.getConstant(0, dl, VT), ISD::SETNE); 9297 } 9298 9299 // Truncate the result if SetCC returns a larger type than needed. 9300 EVT RType = Node->getValueType(1); 9301 if (RType.bitsLT(Overflow.getValueType())) 9302 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 9303 9304 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 9305 "Unexpected result type for S/UMULO legalization"); 9306 return true; 9307 } 9308 9309 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 9310 SDLoc dl(Node); 9311 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 9312 SDValue Op = Node->getOperand(0); 9313 EVT VT = Op.getValueType(); 9314 9315 if (VT.isScalableVector()) 9316 report_fatal_error( 9317 "Expanding reductions for scalable vectors is undefined."); 9318 9319 // Try to use a shuffle reduction for power of two vectors. 9320 if (VT.isPow2VectorType()) { 9321 while (VT.getVectorNumElements() > 1) { 9322 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 9323 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 9324 break; 9325 9326 SDValue Lo, Hi; 9327 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 9328 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 9329 VT = HalfVT; 9330 } 9331 } 9332 9333 EVT EltVT = VT.getVectorElementType(); 9334 unsigned NumElts = VT.getVectorNumElements(); 9335 9336 SmallVector<SDValue, 8> Ops; 9337 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 9338 9339 SDValue Res = Ops[0]; 9340 for (unsigned i = 1; i < NumElts; i++) 9341 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 9342 9343 // Result type may be wider than element type. 9344 if (EltVT != Node->getValueType(0)) 9345 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 9346 return Res; 9347 } 9348 9349 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 9350 SDLoc dl(Node); 9351 SDValue AccOp = Node->getOperand(0); 9352 SDValue VecOp = Node->getOperand(1); 9353 SDNodeFlags Flags = Node->getFlags(); 9354 9355 EVT VT = VecOp.getValueType(); 9356 EVT EltVT = VT.getVectorElementType(); 9357 9358 if (VT.isScalableVector()) 9359 report_fatal_error( 9360 "Expanding reductions for scalable vectors is undefined."); 9361 9362 unsigned NumElts = VT.getVectorNumElements(); 9363 9364 SmallVector<SDValue, 8> Ops; 9365 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 9366 9367 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 9368 9369 SDValue Res = AccOp; 9370 for (unsigned i = 0; i < NumElts; i++) 9371 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 9372 9373 return Res; 9374 } 9375 9376 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 9377 SelectionDAG &DAG) const { 9378 EVT VT = Node->getValueType(0); 9379 SDLoc dl(Node); 9380 bool isSigned = Node->getOpcode() == ISD::SREM; 9381 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 9382 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 9383 SDValue Dividend = Node->getOperand(0); 9384 SDValue Divisor = Node->getOperand(1); 9385 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 9386 SDVTList VTs = DAG.getVTList(VT, VT); 9387 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 9388 return true; 9389 } 9390 if (isOperationLegalOrCustom(DivOpc, VT)) { 9391 // X % Y -> X-X/Y*Y 9392 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 9393 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 9394 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 9395 return true; 9396 } 9397 return false; 9398 } 9399 9400 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 9401 SelectionDAG &DAG) const { 9402 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 9403 SDLoc dl(SDValue(Node, 0)); 9404 SDValue Src = Node->getOperand(0); 9405 9406 // DstVT is the result type, while SatVT is the size to which we saturate 9407 EVT SrcVT = Src.getValueType(); 9408 EVT DstVT = Node->getValueType(0); 9409 9410 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 9411 unsigned SatWidth = SatVT.getScalarSizeInBits(); 9412 unsigned DstWidth = DstVT.getScalarSizeInBits(); 9413 assert(SatWidth <= DstWidth && 9414 "Expected saturation width smaller than result width"); 9415 9416 // Determine minimum and maximum integer values and their corresponding 9417 // floating-point values. 9418 APInt MinInt, MaxInt; 9419 if (IsSigned) { 9420 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth); 9421 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth); 9422 } else { 9423 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth); 9424 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth); 9425 } 9426 9427 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 9428 // libcall emission cannot handle this. Large result types will fail. 9429 if (SrcVT == MVT::f16) { 9430 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 9431 SrcVT = Src.getValueType(); 9432 } 9433 9434 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9435 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9436 9437 APFloat::opStatus MinStatus = 9438 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 9439 APFloat::opStatus MaxStatus = 9440 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 9441 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 9442 !(MaxStatus & APFloat::opStatus::opInexact); 9443 9444 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 9445 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 9446 9447 // If the integer bounds are exactly representable as floats and min/max are 9448 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 9449 // of comparisons and selects. 9450 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 9451 isOperationLegal(ISD::FMAXNUM, SrcVT); 9452 if (AreExactFloatBounds && MinMaxLegal) { 9453 SDValue Clamped = Src; 9454 9455 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 9456 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 9457 // Clamp by MaxFloat from above. NaN cannot occur. 9458 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 9459 // Convert clamped value to integer. 9460 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 9461 dl, DstVT, Clamped); 9462 9463 // In the unsigned case we're done, because we mapped NaN to MinFloat, 9464 // which will cast to zero. 9465 if (!IsSigned) 9466 return FpToInt; 9467 9468 // Otherwise, select 0 if Src is NaN. 9469 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9470 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 9471 ISD::CondCode::SETUO); 9472 } 9473 9474 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 9475 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 9476 9477 // Result of direct conversion. The assumption here is that the operation is 9478 // non-trapping and it's fine to apply it to an out-of-range value if we 9479 // select it away later. 9480 SDValue FpToInt = 9481 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 9482 9483 SDValue Select = FpToInt; 9484 9485 // If Src ULT MinFloat, select MinInt. In particular, this also selects 9486 // MinInt if Src is NaN. 9487 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 9488 ISD::CondCode::SETULT); 9489 // If Src OGT MaxFloat, select MaxInt. 9490 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 9491 ISD::CondCode::SETOGT); 9492 9493 // In the unsigned case we are done, because we mapped NaN to MinInt, which 9494 // is already zero. 9495 if (!IsSigned) 9496 return Select; 9497 9498 // Otherwise, select 0 if Src is NaN. 9499 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9500 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 9501 } 9502 9503 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 9504 SelectionDAG &DAG) const { 9505 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 9506 assert(Node->getValueType(0).isScalableVector() && 9507 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 9508 9509 EVT VT = Node->getValueType(0); 9510 SDValue V1 = Node->getOperand(0); 9511 SDValue V2 = Node->getOperand(1); 9512 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 9513 SDLoc DL(Node); 9514 9515 // Expand through memory thusly: 9516 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 9517 // Store V1, Ptr 9518 // Store V2, Ptr + sizeof(V1) 9519 // If (Imm < 0) 9520 // TrailingElts = -Imm 9521 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 9522 // else 9523 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 9524 // Res = Load Ptr 9525 9526 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 9527 9528 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 9529 VT.getVectorElementCount() * 2); 9530 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 9531 EVT PtrVT = StackPtr.getValueType(); 9532 auto &MF = DAG.getMachineFunction(); 9533 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 9534 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 9535 9536 // Store the lo part of CONCAT_VECTORS(V1, V2) 9537 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 9538 // Store the hi part of CONCAT_VECTORS(V1, V2) 9539 SDValue OffsetToV2 = DAG.getVScale( 9540 DL, PtrVT, 9541 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9542 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 9543 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 9544 9545 if (Imm >= 0) { 9546 // Load back the required element. getVectorElementPointer takes care of 9547 // clamping the index if it's out-of-bounds. 9548 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 9549 // Load the spliced result 9550 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 9551 MachinePointerInfo::getUnknownStack(MF)); 9552 } 9553 9554 uint64_t TrailingElts = -Imm; 9555 9556 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 9557 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 9558 SDValue TrailingBytes = 9559 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 9560 9561 if (TrailingElts > VT.getVectorMinNumElements()) { 9562 SDValue VLBytes = DAG.getVScale( 9563 DL, PtrVT, 9564 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9565 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 9566 } 9567 9568 // Calculate the start address of the spliced result. 9569 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 9570 9571 // Load the spliced result 9572 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 9573 MachinePointerInfo::getUnknownStack(MF)); 9574 } 9575 9576 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 9577 SDValue &LHS, SDValue &RHS, 9578 SDValue &CC, SDValue Mask, 9579 SDValue EVL, bool &NeedInvert, 9580 const SDLoc &dl, SDValue &Chain, 9581 bool IsSignaling) const { 9582 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9583 MVT OpVT = LHS.getSimpleValueType(); 9584 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 9585 NeedInvert = false; 9586 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset"); 9587 bool IsNonVP = !EVL; 9588 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 9589 default: 9590 llvm_unreachable("Unknown condition code action!"); 9591 case TargetLowering::Legal: 9592 // Nothing to do. 9593 break; 9594 case TargetLowering::Expand: { 9595 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 9596 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9597 std::swap(LHS, RHS); 9598 CC = DAG.getCondCode(InvCC); 9599 return true; 9600 } 9601 // Swapping operands didn't work. Try inverting the condition. 9602 bool NeedSwap = false; 9603 InvCC = getSetCCInverse(CCCode, OpVT); 9604 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9605 // If inverting the condition is not enough, try swapping operands 9606 // on top of it. 9607 InvCC = ISD::getSetCCSwappedOperands(InvCC); 9608 NeedSwap = true; 9609 } 9610 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9611 CC = DAG.getCondCode(InvCC); 9612 NeedInvert = true; 9613 if (NeedSwap) 9614 std::swap(LHS, RHS); 9615 return true; 9616 } 9617 9618 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 9619 unsigned Opc = 0; 9620 switch (CCCode) { 9621 default: 9622 llvm_unreachable("Don't know how to expand this condition!"); 9623 case ISD::SETUO: 9624 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 9625 CC1 = ISD::SETUNE; 9626 CC2 = ISD::SETUNE; 9627 Opc = ISD::OR; 9628 break; 9629 } 9630 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9631 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 9632 NeedInvert = true; 9633 LLVM_FALLTHROUGH; 9634 case ISD::SETO: 9635 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9636 "If SETO is expanded, SETOEQ must be legal!"); 9637 CC1 = ISD::SETOEQ; 9638 CC2 = ISD::SETOEQ; 9639 Opc = ISD::AND; 9640 break; 9641 case ISD::SETONE: 9642 case ISD::SETUEQ: 9643 // If the SETUO or SETO CC isn't legal, we might be able to use 9644 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 9645 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 9646 // the operands. 9647 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9648 if (!TLI.isCondCodeLegal(CC2, OpVT) && 9649 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 9650 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 9651 CC1 = ISD::SETOGT; 9652 CC2 = ISD::SETOLT; 9653 Opc = ISD::OR; 9654 NeedInvert = ((unsigned)CCCode & 0x8U); 9655 break; 9656 } 9657 LLVM_FALLTHROUGH; 9658 case ISD::SETOEQ: 9659 case ISD::SETOGT: 9660 case ISD::SETOGE: 9661 case ISD::SETOLT: 9662 case ISD::SETOLE: 9663 case ISD::SETUNE: 9664 case ISD::SETUGT: 9665 case ISD::SETUGE: 9666 case ISD::SETULT: 9667 case ISD::SETULE: 9668 // If we are floating point, assign and break, otherwise fall through. 9669 if (!OpVT.isInteger()) { 9670 // We can use the 4th bit to tell if we are the unordered 9671 // or ordered version of the opcode. 9672 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9673 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9674 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9675 break; 9676 } 9677 // Fallthrough if we are unsigned integer. 9678 LLVM_FALLTHROUGH; 9679 case ISD::SETLE: 9680 case ISD::SETGT: 9681 case ISD::SETGE: 9682 case ISD::SETLT: 9683 case ISD::SETNE: 9684 case ISD::SETEQ: 9685 // If all combinations of inverting the condition and swapping operands 9686 // didn't work then we have no means to expand the condition. 9687 llvm_unreachable("Don't know how to expand this condition!"); 9688 } 9689 9690 SDValue SetCC1, SetCC2; 9691 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9692 // If we aren't the ordered or unorder operation, 9693 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9694 if (IsNonVP) { 9695 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9696 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9697 } else { 9698 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL); 9699 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL); 9700 } 9701 } else { 9702 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9703 if (IsNonVP) { 9704 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9705 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9706 } else { 9707 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL); 9708 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL); 9709 } 9710 } 9711 if (Chain) 9712 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9713 SetCC2.getValue(1)); 9714 if (IsNonVP) 9715 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9716 else { 9717 // Transform the binary opcode to the VP equivalent. 9718 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode"); 9719 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; 9720 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL); 9721 } 9722 RHS = SDValue(); 9723 CC = SDValue(); 9724 return true; 9725 } 9726 } 9727 return false; 9728 } 9729