1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/CodeGenCommonISel.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore following attributes because they don't affect the
61   // call sequence.
62   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
63   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
64                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
65                            Attribute::NonNull, Attribute::NoUndef})
66     CallerAttrs.removeAttribute(Attr);
67 
68   if (CallerAttrs.hasAttributes())
69     return false;
70 
71   // It's not safe to eliminate the sign / zero extension of the return value.
72   if (CallerAttrs.contains(Attribute::ZExt) ||
73       CallerAttrs.contains(Attribute::SExt))
74     return false;
75 
76   // Check if the only use is a function return node.
77   return isUsedByReturnOnly(Node, Chain);
78 }
79 
80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
81     const uint32_t *CallerPreservedMask,
82     const SmallVectorImpl<CCValAssign> &ArgLocs,
83     const SmallVectorImpl<SDValue> &OutVals) const {
84   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
85     const CCValAssign &ArgLoc = ArgLocs[I];
86     if (!ArgLoc.isRegLoc())
87       continue;
88     MCRegister Reg = ArgLoc.getLocReg();
89     // Only look at callee saved registers.
90     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
91       continue;
92     // Check that we pass the value used for the caller.
93     // (We look for a CopyFromReg reading a virtual register that is used
94     //  for the function live-in value of register Reg)
95     SDValue Value = OutVals[I];
96     if (Value->getOpcode() == ISD::AssertZext)
97       Value = Value.getOperand(0);
98     if (Value->getOpcode() != ISD::CopyFromReg)
99       return false;
100     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
101     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
102       return false;
103   }
104   return true;
105 }
106 
107 /// Set CallLoweringInfo attribute flags based on a call instruction
108 /// and called function attributes.
109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
110                                                      unsigned ArgIdx) {
111   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
112   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
113   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
114   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
115   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
116   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
117   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
118   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
119   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
120   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
121   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
122   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
123   Alignment = Call->getParamStackAlign(ArgIdx);
124   IndirectType = nullptr;
125   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
126          "multiple ABI attributes?");
127   if (IsByVal) {
128     IndirectType = Call->getParamByValType(ArgIdx);
129     if (!Alignment)
130       Alignment = Call->getParamAlign(ArgIdx);
131   }
132   if (IsPreallocated)
133     IndirectType = Call->getParamPreallocatedType(ArgIdx);
134   if (IsInAlloca)
135     IndirectType = Call->getParamInAllocaType(ArgIdx);
136   if (IsSRet)
137     IndirectType = Call->getParamStructRetType(ArgIdx);
138 }
139 
140 /// Generate a libcall taking the given operands as arguments and returning a
141 /// result of type RetVT.
142 std::pair<SDValue, SDValue>
143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
144                             ArrayRef<SDValue> Ops,
145                             MakeLibCallOptions CallOptions,
146                             const SDLoc &dl,
147                             SDValue InChain) const {
148   if (!InChain)
149     InChain = DAG.getEntryNode();
150 
151   TargetLowering::ArgListTy Args;
152   Args.reserve(Ops.size());
153 
154   TargetLowering::ArgListEntry Entry;
155   for (unsigned i = 0; i < Ops.size(); ++i) {
156     SDValue NewOp = Ops[i];
157     Entry.Node = NewOp;
158     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
159     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
160                                                  CallOptions.IsSExt);
161     Entry.IsZExt = !Entry.IsSExt;
162 
163     if (CallOptions.IsSoften &&
164         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
165       Entry.IsSExt = Entry.IsZExt = false;
166     }
167     Args.push_back(Entry);
168   }
169 
170   if (LC == RTLIB::UNKNOWN_LIBCALL)
171     report_fatal_error("Unsupported library call operation!");
172   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
173                                          getPointerTy(DAG.getDataLayout()));
174 
175   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
176   TargetLowering::CallLoweringInfo CLI(DAG);
177   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
178   bool zeroExtend = !signExtend;
179 
180   if (CallOptions.IsSoften &&
181       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
182     signExtend = zeroExtend = false;
183   }
184 
185   CLI.setDebugLoc(dl)
186       .setChain(InChain)
187       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
188       .setNoReturn(CallOptions.DoesNotReturn)
189       .setDiscardResult(!CallOptions.IsReturnValueUsed)
190       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
191       .setSExtResult(signExtend)
192       .setZExtResult(zeroExtend);
193   return LowerCallTo(CLI);
194 }
195 
196 bool TargetLowering::findOptimalMemOpLowering(
197     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
198     unsigned SrcAS, const AttributeList &FuncAttributes) const {
199   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
200       Op.getSrcAlign() < Op.getDstAlign())
201     return false;
202 
203   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
204 
205   if (VT == MVT::Other) {
206     // Use the largest integer type whose alignment constraints are satisfied.
207     // We only need to check DstAlign here as SrcAlign is always greater or
208     // equal to DstAlign (or zero).
209     VT = MVT::i64;
210     if (Op.isFixedDstAlign())
211       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
212              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
213         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
214     assert(VT.isInteger());
215 
216     // Find the largest legal integer type.
217     MVT LVT = MVT::i64;
218     while (!isTypeLegal(LVT))
219       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
220     assert(LVT.isInteger());
221 
222     // If the type we've chosen is larger than the largest legal integer type
223     // then use that instead.
224     if (VT.bitsGT(LVT))
225       VT = LVT;
226   }
227 
228   unsigned NumMemOps = 0;
229   uint64_t Size = Op.size();
230   while (Size) {
231     unsigned VTSize = VT.getSizeInBits() / 8;
232     while (VTSize > Size) {
233       // For now, only use non-vector load / store's for the left-over pieces.
234       EVT NewVT = VT;
235       unsigned NewVTSize;
236 
237       bool Found = false;
238       if (VT.isVector() || VT.isFloatingPoint()) {
239         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
240         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
241             isSafeMemOpType(NewVT.getSimpleVT()))
242           Found = true;
243         else if (NewVT == MVT::i64 &&
244                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
245                  isSafeMemOpType(MVT::f64)) {
246           // i64 is usually not legal on 32-bit targets, but f64 may be.
247           NewVT = MVT::f64;
248           Found = true;
249         }
250       }
251 
252       if (!Found) {
253         do {
254           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
255           if (NewVT == MVT::i8)
256             break;
257         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
258       }
259       NewVTSize = NewVT.getSizeInBits() / 8;
260 
261       // If the new VT cannot cover all of the remaining bits, then consider
262       // issuing a (or a pair of) unaligned and overlapping load / store.
263       bool Fast;
264       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
265           allowsMisalignedMemoryAccesses(
266               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
267               MachineMemOperand::MONone, &Fast) &&
268           Fast)
269         VTSize = Size;
270       else {
271         VT = NewVT;
272         VTSize = NewVTSize;
273       }
274     }
275 
276     if (++NumMemOps > Limit)
277       return false;
278 
279     MemOps.push_back(VT);
280     Size -= VTSize;
281   }
282 
283   return true;
284 }
285 
286 /// Soften the operands of a comparison. This code is shared among BR_CC,
287 /// SELECT_CC, and SETCC handlers.
288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
289                                          SDValue &NewLHS, SDValue &NewRHS,
290                                          ISD::CondCode &CCCode,
291                                          const SDLoc &dl, const SDValue OldLHS,
292                                          const SDValue OldRHS) const {
293   SDValue Chain;
294   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
295                              OldRHS, Chain);
296 }
297 
298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
299                                          SDValue &NewLHS, SDValue &NewRHS,
300                                          ISD::CondCode &CCCode,
301                                          const SDLoc &dl, const SDValue OldLHS,
302                                          const SDValue OldRHS,
303                                          SDValue &Chain,
304                                          bool IsSignaling) const {
305   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
306   // not supporting it. We can update this code when libgcc provides such
307   // functions.
308 
309   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
310          && "Unsupported setcc type!");
311 
312   // Expand into one or more soft-fp libcall(s).
313   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
314   bool ShouldInvertCC = false;
315   switch (CCCode) {
316   case ISD::SETEQ:
317   case ISD::SETOEQ:
318     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
319           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
320           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
321     break;
322   case ISD::SETNE:
323   case ISD::SETUNE:
324     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
325           (VT == MVT::f64) ? RTLIB::UNE_F64 :
326           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
327     break;
328   case ISD::SETGE:
329   case ISD::SETOGE:
330     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
331           (VT == MVT::f64) ? RTLIB::OGE_F64 :
332           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
333     break;
334   case ISD::SETLT:
335   case ISD::SETOLT:
336     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
337           (VT == MVT::f64) ? RTLIB::OLT_F64 :
338           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
339     break;
340   case ISD::SETLE:
341   case ISD::SETOLE:
342     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
343           (VT == MVT::f64) ? RTLIB::OLE_F64 :
344           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
345     break;
346   case ISD::SETGT:
347   case ISD::SETOGT:
348     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
349           (VT == MVT::f64) ? RTLIB::OGT_F64 :
350           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
351     break;
352   case ISD::SETO:
353     ShouldInvertCC = true;
354     LLVM_FALLTHROUGH;
355   case ISD::SETUO:
356     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
357           (VT == MVT::f64) ? RTLIB::UO_F64 :
358           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
359     break;
360   case ISD::SETONE:
361     // SETONE = O && UNE
362     ShouldInvertCC = true;
363     LLVM_FALLTHROUGH;
364   case ISD::SETUEQ:
365     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
366           (VT == MVT::f64) ? RTLIB::UO_F64 :
367           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
368     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
369           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
370           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
371     break;
372   default:
373     // Invert CC for unordered comparisons
374     ShouldInvertCC = true;
375     switch (CCCode) {
376     case ISD::SETULT:
377       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
378             (VT == MVT::f64) ? RTLIB::OGE_F64 :
379             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
380       break;
381     case ISD::SETULE:
382       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
383             (VT == MVT::f64) ? RTLIB::OGT_F64 :
384             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
385       break;
386     case ISD::SETUGT:
387       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
388             (VT == MVT::f64) ? RTLIB::OLE_F64 :
389             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
390       break;
391     case ISD::SETUGE:
392       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
393             (VT == MVT::f64) ? RTLIB::OLT_F64 :
394             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
395       break;
396     default: llvm_unreachable("Do not know how to soften this setcc!");
397     }
398   }
399 
400   // Use the target specific return value for comparions lib calls.
401   EVT RetVT = getCmpLibcallReturnType();
402   SDValue Ops[2] = {NewLHS, NewRHS};
403   TargetLowering::MakeLibCallOptions CallOptions;
404   EVT OpsVT[2] = { OldLHS.getValueType(),
405                    OldRHS.getValueType() };
406   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
407   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
408   NewLHS = Call.first;
409   NewRHS = DAG.getConstant(0, dl, RetVT);
410 
411   CCCode = getCmpLibcallCC(LC1);
412   if (ShouldInvertCC) {
413     assert(RetVT.isInteger());
414     CCCode = getSetCCInverse(CCCode, RetVT);
415   }
416 
417   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
418     // Update Chain.
419     Chain = Call.second;
420   } else {
421     EVT SetCCVT =
422         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
423     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
424     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
425     CCCode = getCmpLibcallCC(LC2);
426     if (ShouldInvertCC)
427       CCCode = getSetCCInverse(CCCode, RetVT);
428     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
429     if (Chain)
430       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
431                           Call2.second);
432     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
433                          Tmp.getValueType(), Tmp, NewLHS);
434     NewRHS = SDValue();
435   }
436 }
437 
438 /// Return the entry encoding for a jump table in the current function. The
439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
440 unsigned TargetLowering::getJumpTableEncoding() const {
441   // In non-pic modes, just use the address of a block.
442   if (!isPositionIndependent())
443     return MachineJumpTableInfo::EK_BlockAddress;
444 
445   // In PIC mode, if the target supports a GPRel32 directive, use it.
446   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
447     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
448 
449   // Otherwise, use a label difference.
450   return MachineJumpTableInfo::EK_LabelDifference32;
451 }
452 
453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
454                                                  SelectionDAG &DAG) const {
455   // If our PIC model is GP relative, use the global offset table as the base.
456   unsigned JTEncoding = getJumpTableEncoding();
457 
458   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
459       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
460     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
461 
462   return Table;
463 }
464 
465 /// This returns the relocation base for the given PIC jumptable, the same as
466 /// getPICJumpTableRelocBase, but as an MCExpr.
467 const MCExpr *
468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
469                                              unsigned JTI,MCContext &Ctx) const{
470   // The normal PIC reloc base is the label at the start of the jump table.
471   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
472 }
473 
474 bool
475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
476   const TargetMachine &TM = getTargetMachine();
477   const GlobalValue *GV = GA->getGlobal();
478 
479   // If the address is not even local to this DSO we will have to load it from
480   // a got and then add the offset.
481   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
482     return false;
483 
484   // If the code is position independent we will have to add a base register.
485   if (isPositionIndependent())
486     return false;
487 
488   // Otherwise we can do it.
489   return true;
490 }
491 
492 //===----------------------------------------------------------------------===//
493 //  Optimization Methods
494 //===----------------------------------------------------------------------===//
495 
496 /// If the specified instruction has a constant integer operand and there are
497 /// bits set in that constant that are not demanded, then clear those bits and
498 /// return true.
499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
500                                             const APInt &DemandedBits,
501                                             const APInt &DemandedElts,
502                                             TargetLoweringOpt &TLO) const {
503   SDLoc DL(Op);
504   unsigned Opcode = Op.getOpcode();
505 
506   // Do target-specific constant optimization.
507   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
508     return TLO.New.getNode();
509 
510   // FIXME: ISD::SELECT, ISD::SELECT_CC
511   switch (Opcode) {
512   default:
513     break;
514   case ISD::XOR:
515   case ISD::AND:
516   case ISD::OR: {
517     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
518     if (!Op1C || Op1C->isOpaque())
519       return false;
520 
521     // If this is a 'not' op, don't touch it because that's a canonical form.
522     const APInt &C = Op1C->getAPIntValue();
523     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
524       return false;
525 
526     if (!C.isSubsetOf(DemandedBits)) {
527       EVT VT = Op.getValueType();
528       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
529       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
530       return TLO.CombineTo(Op, NewOp);
531     }
532 
533     break;
534   }
535   }
536 
537   return false;
538 }
539 
540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
541                                             const APInt &DemandedBits,
542                                             TargetLoweringOpt &TLO) const {
543   EVT VT = Op.getValueType();
544   APInt DemandedElts = VT.isVector()
545                            ? APInt::getAllOnes(VT.getVectorNumElements())
546                            : APInt(1, 1);
547   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
548 }
549 
550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
552 /// generalized for targets with other types of implicit widening casts.
553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
554                                       const APInt &Demanded,
555                                       TargetLoweringOpt &TLO) const {
556   assert(Op.getNumOperands() == 2 &&
557          "ShrinkDemandedOp only supports binary operators!");
558   assert(Op.getNode()->getNumValues() == 1 &&
559          "ShrinkDemandedOp only supports nodes with one result!");
560 
561   SelectionDAG &DAG = TLO.DAG;
562   SDLoc dl(Op);
563 
564   // Early return, as this function cannot handle vector types.
565   if (Op.getValueType().isVector())
566     return false;
567 
568   // Don't do this if the node has another user, which may require the
569   // full value.
570   if (!Op.getNode()->hasOneUse())
571     return false;
572 
573   // Search for the smallest integer type with free casts to and from
574   // Op's type. For expedience, just check power-of-2 integer types.
575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
576   unsigned DemandedSize = Demanded.getActiveBits();
577   unsigned SmallVTBits = DemandedSize;
578   if (!isPowerOf2_32(SmallVTBits))
579     SmallVTBits = NextPowerOf2(SmallVTBits);
580   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
581     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
582     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
583         TLI.isZExtFree(SmallVT, Op.getValueType())) {
584       // We found a type with free casts.
585       SDValue X = DAG.getNode(
586           Op.getOpcode(), dl, SmallVT,
587           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
588           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
589       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
590       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
591       return TLO.CombineTo(Op, Z);
592     }
593   }
594   return false;
595 }
596 
597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
598                                           DAGCombinerInfo &DCI) const {
599   SelectionDAG &DAG = DCI.DAG;
600   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
601                         !DCI.isBeforeLegalizeOps());
602   KnownBits Known;
603 
604   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
605   if (Simplified) {
606     DCI.AddToWorklist(Op.getNode());
607     DCI.CommitTargetLoweringOpt(TLO);
608   }
609   return Simplified;
610 }
611 
612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
613                                           const APInt &DemandedElts,
614                                           DAGCombinerInfo &DCI) const {
615   SelectionDAG &DAG = DCI.DAG;
616   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
617                         !DCI.isBeforeLegalizeOps());
618   KnownBits Known;
619 
620   bool Simplified =
621       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
622   if (Simplified) {
623     DCI.AddToWorklist(Op.getNode());
624     DCI.CommitTargetLoweringOpt(TLO);
625   }
626   return Simplified;
627 }
628 
629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
630                                           KnownBits &Known,
631                                           TargetLoweringOpt &TLO,
632                                           unsigned Depth,
633                                           bool AssumeSingleUse) const {
634   EVT VT = Op.getValueType();
635 
636   // TODO: We can probably do more work on calculating the known bits and
637   // simplifying the operations for scalable vectors, but for now we just
638   // bail out.
639   if (VT.isScalableVector()) {
640     // Pretend we don't know anything for now.
641     Known = KnownBits(DemandedBits.getBitWidth());
642     return false;
643   }
644 
645   APInt DemandedElts = VT.isVector()
646                            ? APInt::getAllOnes(VT.getVectorNumElements())
647                            : APInt(1, 1);
648   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
649                               AssumeSingleUse);
650 }
651 
652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
653 // TODO: Under what circumstances can we create nodes? Constant folding?
654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
655     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
656     SelectionDAG &DAG, unsigned Depth) const {
657   // Limit search depth.
658   if (Depth >= SelectionDAG::MaxRecursionDepth)
659     return SDValue();
660 
661   // Ignore UNDEFs.
662   if (Op.isUndef())
663     return SDValue();
664 
665   // Not demanding any bits/elts from Op.
666   if (DemandedBits == 0 || DemandedElts == 0)
667     return DAG.getUNDEF(Op.getValueType());
668 
669   bool IsLE = DAG.getDataLayout().isLittleEndian();
670   unsigned NumElts = DemandedElts.getBitWidth();
671   unsigned BitWidth = DemandedBits.getBitWidth();
672   KnownBits LHSKnown, RHSKnown;
673   switch (Op.getOpcode()) {
674   case ISD::BITCAST: {
675     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
676     EVT SrcVT = Src.getValueType();
677     EVT DstVT = Op.getValueType();
678     if (SrcVT == DstVT)
679       return Src;
680 
681     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
682     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
683     if (NumSrcEltBits == NumDstEltBits)
684       if (SDValue V = SimplifyMultipleUseDemandedBits(
685               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
686         return DAG.getBitcast(DstVT, V);
687 
688     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
689       unsigned Scale = NumDstEltBits / NumSrcEltBits;
690       unsigned NumSrcElts = SrcVT.getVectorNumElements();
691       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
692       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
693       for (unsigned i = 0; i != Scale; ++i) {
694         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
695         unsigned BitOffset = EltOffset * NumSrcEltBits;
696         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
697         if (!Sub.isZero()) {
698           DemandedSrcBits |= Sub;
699           for (unsigned j = 0; j != NumElts; ++j)
700             if (DemandedElts[j])
701               DemandedSrcElts.setBit((j * Scale) + i);
702         }
703       }
704 
705       if (SDValue V = SimplifyMultipleUseDemandedBits(
706               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
707         return DAG.getBitcast(DstVT, V);
708     }
709 
710     // TODO - bigendian once we have test coverage.
711     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
712       unsigned Scale = NumSrcEltBits / NumDstEltBits;
713       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
714       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
715       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
716       for (unsigned i = 0; i != NumElts; ++i)
717         if (DemandedElts[i]) {
718           unsigned Offset = (i % Scale) * NumDstEltBits;
719           DemandedSrcBits.insertBits(DemandedBits, Offset);
720           DemandedSrcElts.setBit(i / Scale);
721         }
722 
723       if (SDValue V = SimplifyMultipleUseDemandedBits(
724               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
725         return DAG.getBitcast(DstVT, V);
726     }
727 
728     break;
729   }
730   case ISD::AND: {
731     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
732     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
733 
734     // If all of the demanded bits are known 1 on one side, return the other.
735     // These bits cannot contribute to the result of the 'and' in this
736     // context.
737     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
738       return Op.getOperand(0);
739     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
740       return Op.getOperand(1);
741     break;
742   }
743   case ISD::OR: {
744     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
745     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
746 
747     // If all of the demanded bits are known zero on one side, return the
748     // other.  These bits cannot contribute to the result of the 'or' in this
749     // context.
750     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
751       return Op.getOperand(0);
752     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
753       return Op.getOperand(1);
754     break;
755   }
756   case ISD::XOR: {
757     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
758     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
759 
760     // If all of the demanded bits are known zero on one side, return the
761     // other.
762     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
763       return Op.getOperand(0);
764     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
765       return Op.getOperand(1);
766     break;
767   }
768   case ISD::SHL: {
769     // If we are only demanding sign bits then we can use the shift source
770     // directly.
771     if (const APInt *MaxSA =
772             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
773       SDValue Op0 = Op.getOperand(0);
774       unsigned ShAmt = MaxSA->getZExtValue();
775       unsigned NumSignBits =
776           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
777       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
778       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SETCC: {
784     SDValue Op0 = Op.getOperand(0);
785     SDValue Op1 = Op.getOperand(1);
786     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
787     // If (1) we only need the sign-bit, (2) the setcc operands are the same
788     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
789     // -1, we may be able to bypass the setcc.
790     if (DemandedBits.isSignMask() &&
791         Op0.getScalarValueSizeInBits() == BitWidth &&
792         getBooleanContents(Op0.getValueType()) ==
793             BooleanContent::ZeroOrNegativeOneBooleanContent) {
794       // If we're testing X < 0, then this compare isn't needed - just use X!
795       // FIXME: We're limiting to integer types here, but this should also work
796       // if we don't care about FP signed-zero. The use of SETLT with FP means
797       // that we don't care about NaNs.
798       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
799           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
800         return Op0;
801     }
802     break;
803   }
804   case ISD::SIGN_EXTEND_INREG: {
805     // If none of the extended bits are demanded, eliminate the sextinreg.
806     SDValue Op0 = Op.getOperand(0);
807     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
808     unsigned ExBits = ExVT.getScalarSizeInBits();
809     if (DemandedBits.getActiveBits() <= ExBits)
810       return Op0;
811     // If the input is already sign extended, just drop the extension.
812     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
813     if (NumSignBits >= (BitWidth - ExBits + 1))
814       return Op0;
815     break;
816   }
817   case ISD::ANY_EXTEND_VECTOR_INREG:
818   case ISD::SIGN_EXTEND_VECTOR_INREG:
819   case ISD::ZERO_EXTEND_VECTOR_INREG: {
820     // If we only want the lowest element and none of extended bits, then we can
821     // return the bitcasted source vector.
822     SDValue Src = Op.getOperand(0);
823     EVT SrcVT = Src.getValueType();
824     EVT DstVT = Op.getValueType();
825     if (IsLE && DemandedElts == 1 &&
826         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
827         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
828       return DAG.getBitcast(DstVT, Src);
829     }
830     break;
831   }
832   case ISD::INSERT_VECTOR_ELT: {
833     // If we don't demand the inserted element, return the base vector.
834     SDValue Vec = Op.getOperand(0);
835     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
836     EVT VecVT = Vec.getValueType();
837     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
838         !DemandedElts[CIdx->getZExtValue()])
839       return Vec;
840     break;
841   }
842   case ISD::INSERT_SUBVECTOR: {
843     SDValue Vec = Op.getOperand(0);
844     SDValue Sub = Op.getOperand(1);
845     uint64_t Idx = Op.getConstantOperandVal(2);
846     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
847     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
848     // If we don't demand the inserted subvector, return the base vector.
849     if (DemandedSubElts == 0)
850       return Vec;
851     // If this simply widens the lowest subvector, see if we can do it earlier.
852     if (Idx == 0 && Vec.isUndef()) {
853       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
854               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
855         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
856                            Op.getOperand(0), NewSub, Op.getOperand(2));
857     }
858     break;
859   }
860   case ISD::VECTOR_SHUFFLE: {
861     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
862 
863     // If all the demanded elts are from one operand and are inline,
864     // then we can use the operand directly.
865     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
866     for (unsigned i = 0; i != NumElts; ++i) {
867       int M = ShuffleMask[i];
868       if (M < 0 || !DemandedElts[i])
869         continue;
870       AllUndef = false;
871       IdentityLHS &= (M == (int)i);
872       IdentityRHS &= ((M - NumElts) == i);
873     }
874 
875     if (AllUndef)
876       return DAG.getUNDEF(Op.getValueType());
877     if (IdentityLHS)
878       return Op.getOperand(0);
879     if (IdentityRHS)
880       return Op.getOperand(1);
881     break;
882   }
883   default:
884     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
885       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
886               Op, DemandedBits, DemandedElts, DAG, Depth))
887         return V;
888     break;
889   }
890   return SDValue();
891 }
892 
893 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
894     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
895     unsigned Depth) const {
896   EVT VT = Op.getValueType();
897   APInt DemandedElts = VT.isVector()
898                            ? APInt::getAllOnes(VT.getVectorNumElements())
899                            : APInt(1, 1);
900   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
901                                          Depth);
902 }
903 
904 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
905     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
906     unsigned Depth) const {
907   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
908   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
909                                          Depth);
910 }
911 
912 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
913 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
914 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
915                                  const TargetLowering &TLI,
916                                  const APInt &DemandedBits,
917                                  const APInt &DemandedElts,
918                                  unsigned Depth) {
919   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
920          "SRL or SRA node is required here!");
921   // Is the right shift using an immediate value of 1?
922   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
923   if (!N1C || !N1C->isOne())
924     return SDValue();
925 
926   // We are looking for an avgfloor
927   // add(ext, ext)
928   // or one of these as a avgceil
929   // add(add(ext, ext), 1)
930   // add(add(ext, 1), ext)
931   // add(ext, add(ext, 1))
932   SDValue Add = Op.getOperand(0);
933   if (Add.getOpcode() != ISD::ADD)
934     return SDValue();
935 
936   SDValue ExtOpA = Add.getOperand(0);
937   SDValue ExtOpB = Add.getOperand(1);
938   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
939     ConstantSDNode *ConstOp;
940     if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
941         ConstOp->isOne()) {
942       ExtOpA = Op2;
943       ExtOpB = Op3;
944       return true;
945     }
946     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
947         ConstOp->isOne()) {
948       ExtOpA = Op1;
949       ExtOpB = Op3;
950       return true;
951     }
952     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
953         ConstOp->isOne()) {
954       ExtOpA = Op1;
955       ExtOpB = Op2;
956       return true;
957     }
958     return false;
959   };
960   bool IsCeil =
961       (ExtOpA.getOpcode() == ISD::ADD &&
962        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
963       (ExtOpB.getOpcode() == ISD::ADD &&
964        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
965 
966   // If the shift is signed (sra):
967   //  - Needs >= 2 sign bit for both operands.
968   //  - Needs >= 2 zero bits.
969   // If the shift is unsigned (srl):
970   //  - Needs >= 1 zero bit for both operands.
971   //  - Needs 1 demanded bit zero and >= 2 sign bits.
972   unsigned ShiftOpc = Op.getOpcode();
973   bool IsSigned = false;
974   unsigned KnownBits;
975   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
976   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
977   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
978   unsigned NumZeroA =
979       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
980   unsigned NumZeroB =
981       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
982   unsigned NumZero = std::min(NumZeroA, NumZeroB);
983 
984   switch (ShiftOpc) {
985   default:
986     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
987   case ISD::SRA: {
988     if (NumZero >= 2 && NumSigned < NumZero) {
989       IsSigned = false;
990       KnownBits = NumZero;
991       break;
992     }
993     if (NumSigned >= 1) {
994       IsSigned = true;
995       KnownBits = NumSigned;
996       break;
997     }
998     return SDValue();
999   }
1000   case ISD::SRL: {
1001     if (NumZero >= 1 && NumSigned < NumZero) {
1002       IsSigned = false;
1003       KnownBits = NumZero;
1004       break;
1005     }
1006     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1007       IsSigned = true;
1008       KnownBits = NumSigned;
1009       break;
1010     }
1011     return SDValue();
1012   }
1013   }
1014 
1015   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1016                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1017 
1018   // Find the smallest power-2 type that is legal for this vector size and
1019   // operation, given the original type size and the number of known sign/zero
1020   // bits.
1021   EVT VT = Op.getValueType();
1022   unsigned MinWidth =
1023       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1024   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
1025   if (VT.isVector())
1026     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1027   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
1028     return SDValue();
1029 
1030   SDLoc DL(Op);
1031   SDValue ResultAVG =
1032       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1033                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1034   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1035                      ResultAVG);
1036 }
1037 
1038 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1039 /// result of Op are ever used downstream. If we can use this information to
1040 /// simplify Op, create a new simplified DAG node and return true, returning the
1041 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1042 /// return a mask of Known bits for the expression (used to simplify the
1043 /// caller).  The Known bits may only be accurate for those bits in the
1044 /// OriginalDemandedBits and OriginalDemandedElts.
1045 bool TargetLowering::SimplifyDemandedBits(
1046     SDValue Op, const APInt &OriginalDemandedBits,
1047     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1048     unsigned Depth, bool AssumeSingleUse) const {
1049   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1050   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1051          "Mask size mismatches value type size!");
1052 
1053   // Don't know anything.
1054   Known = KnownBits(BitWidth);
1055 
1056   // TODO: We can probably do more work on calculating the known bits and
1057   // simplifying the operations for scalable vectors, but for now we just
1058   // bail out.
1059   if (Op.getValueType().isScalableVector())
1060     return false;
1061 
1062   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1063   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1064   assert((!Op.getValueType().isVector() ||
1065           NumElts == Op.getValueType().getVectorNumElements()) &&
1066          "Unexpected vector size");
1067 
1068   APInt DemandedBits = OriginalDemandedBits;
1069   APInt DemandedElts = OriginalDemandedElts;
1070   SDLoc dl(Op);
1071   auto &DL = TLO.DAG.getDataLayout();
1072 
1073   // Undef operand.
1074   if (Op.isUndef())
1075     return false;
1076 
1077   if (Op.getOpcode() == ISD::Constant) {
1078     // We know all of the bits for a constant!
1079     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1080     return false;
1081   }
1082 
1083   if (Op.getOpcode() == ISD::ConstantFP) {
1084     // We know all of the bits for a floating point constant!
1085     Known = KnownBits::makeConstant(
1086         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1087     return false;
1088   }
1089 
1090   // Other users may use these bits.
1091   EVT VT = Op.getValueType();
1092   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
1093     if (Depth != 0) {
1094       // If not at the root, Just compute the Known bits to
1095       // simplify things downstream.
1096       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1097       return false;
1098     }
1099     // If this is the root being simplified, allow it to have multiple uses,
1100     // just set the DemandedBits/Elts to all bits.
1101     DemandedBits = APInt::getAllOnes(BitWidth);
1102     DemandedElts = APInt::getAllOnes(NumElts);
1103   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1104     // Not demanding any bits/elts from Op.
1105     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1106   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1107     // Limit search depth.
1108     return false;
1109   }
1110 
1111   KnownBits Known2;
1112   switch (Op.getOpcode()) {
1113   case ISD::TargetConstant:
1114     llvm_unreachable("Can't simplify this node");
1115   case ISD::SCALAR_TO_VECTOR: {
1116     if (!DemandedElts[0])
1117       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1118 
1119     KnownBits SrcKnown;
1120     SDValue Src = Op.getOperand(0);
1121     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1122     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1123     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1124       return true;
1125 
1126     // Upper elements are undef, so only get the knownbits if we just demand
1127     // the bottom element.
1128     if (DemandedElts == 1)
1129       Known = SrcKnown.anyextOrTrunc(BitWidth);
1130     break;
1131   }
1132   case ISD::BUILD_VECTOR:
1133     // Collect the known bits that are shared by every demanded element.
1134     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1135     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1136     return false; // Don't fall through, will infinitely loop.
1137   case ISD::LOAD: {
1138     auto *LD = cast<LoadSDNode>(Op);
1139     if (getTargetConstantFromLoad(LD)) {
1140       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1141       return false; // Don't fall through, will infinitely loop.
1142     }
1143     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1144       // If this is a ZEXTLoad and we are looking at the loaded value.
1145       EVT MemVT = LD->getMemoryVT();
1146       unsigned MemBits = MemVT.getScalarSizeInBits();
1147       Known.Zero.setBitsFrom(MemBits);
1148       return false; // Don't fall through, will infinitely loop.
1149     }
1150     break;
1151   }
1152   case ISD::INSERT_VECTOR_ELT: {
1153     SDValue Vec = Op.getOperand(0);
1154     SDValue Scl = Op.getOperand(1);
1155     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1156     EVT VecVT = Vec.getValueType();
1157 
1158     // If index isn't constant, assume we need all vector elements AND the
1159     // inserted element.
1160     APInt DemandedVecElts(DemandedElts);
1161     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1162       unsigned Idx = CIdx->getZExtValue();
1163       DemandedVecElts.clearBit(Idx);
1164 
1165       // Inserted element is not required.
1166       if (!DemandedElts[Idx])
1167         return TLO.CombineTo(Op, Vec);
1168     }
1169 
1170     KnownBits KnownScl;
1171     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1172     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1173     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1174       return true;
1175 
1176     Known = KnownScl.anyextOrTrunc(BitWidth);
1177 
1178     KnownBits KnownVec;
1179     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1180                              Depth + 1))
1181       return true;
1182 
1183     if (!!DemandedVecElts)
1184       Known = KnownBits::commonBits(Known, KnownVec);
1185 
1186     return false;
1187   }
1188   case ISD::INSERT_SUBVECTOR: {
1189     // Demand any elements from the subvector and the remainder from the src its
1190     // inserted into.
1191     SDValue Src = Op.getOperand(0);
1192     SDValue Sub = Op.getOperand(1);
1193     uint64_t Idx = Op.getConstantOperandVal(2);
1194     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1195     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1196     APInt DemandedSrcElts = DemandedElts;
1197     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1198 
1199     KnownBits KnownSub, KnownSrc;
1200     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1201                              Depth + 1))
1202       return true;
1203     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1204                              Depth + 1))
1205       return true;
1206 
1207     Known.Zero.setAllBits();
1208     Known.One.setAllBits();
1209     if (!!DemandedSubElts)
1210       Known = KnownBits::commonBits(Known, KnownSub);
1211     if (!!DemandedSrcElts)
1212       Known = KnownBits::commonBits(Known, KnownSrc);
1213 
1214     // Attempt to avoid multi-use src if we don't need anything from it.
1215     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1216         !DemandedSrcElts.isAllOnes()) {
1217       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1218           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1219       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1220           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1221       if (NewSub || NewSrc) {
1222         NewSub = NewSub ? NewSub : Sub;
1223         NewSrc = NewSrc ? NewSrc : Src;
1224         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1225                                         Op.getOperand(2));
1226         return TLO.CombineTo(Op, NewOp);
1227       }
1228     }
1229     break;
1230   }
1231   case ISD::EXTRACT_SUBVECTOR: {
1232     // Offset the demanded elts by the subvector index.
1233     SDValue Src = Op.getOperand(0);
1234     if (Src.getValueType().isScalableVector())
1235       break;
1236     uint64_t Idx = Op.getConstantOperandVal(1);
1237     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1238     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1239 
1240     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1241                              Depth + 1))
1242       return true;
1243 
1244     // Attempt to avoid multi-use src if we don't need anything from it.
1245     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1246       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1247           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1248       if (DemandedSrc) {
1249         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1250                                         Op.getOperand(1));
1251         return TLO.CombineTo(Op, NewOp);
1252       }
1253     }
1254     break;
1255   }
1256   case ISD::CONCAT_VECTORS: {
1257     Known.Zero.setAllBits();
1258     Known.One.setAllBits();
1259     EVT SubVT = Op.getOperand(0).getValueType();
1260     unsigned NumSubVecs = Op.getNumOperands();
1261     unsigned NumSubElts = SubVT.getVectorNumElements();
1262     for (unsigned i = 0; i != NumSubVecs; ++i) {
1263       APInt DemandedSubElts =
1264           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1265       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1266                                Known2, TLO, Depth + 1))
1267         return true;
1268       // Known bits are shared by every demanded subvector element.
1269       if (!!DemandedSubElts)
1270         Known = KnownBits::commonBits(Known, Known2);
1271     }
1272     break;
1273   }
1274   case ISD::VECTOR_SHUFFLE: {
1275     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1276 
1277     // Collect demanded elements from shuffle operands..
1278     APInt DemandedLHS(NumElts, 0);
1279     APInt DemandedRHS(NumElts, 0);
1280     for (unsigned i = 0; i != NumElts; ++i) {
1281       if (!DemandedElts[i])
1282         continue;
1283       int M = ShuffleMask[i];
1284       if (M < 0) {
1285         // For UNDEF elements, we don't know anything about the common state of
1286         // the shuffle result.
1287         DemandedLHS.clearAllBits();
1288         DemandedRHS.clearAllBits();
1289         break;
1290       }
1291       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1292       if (M < (int)NumElts)
1293         DemandedLHS.setBit(M);
1294       else
1295         DemandedRHS.setBit(M - NumElts);
1296     }
1297 
1298     if (!!DemandedLHS || !!DemandedRHS) {
1299       SDValue Op0 = Op.getOperand(0);
1300       SDValue Op1 = Op.getOperand(1);
1301 
1302       Known.Zero.setAllBits();
1303       Known.One.setAllBits();
1304       if (!!DemandedLHS) {
1305         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1306                                  Depth + 1))
1307           return true;
1308         Known = KnownBits::commonBits(Known, Known2);
1309       }
1310       if (!!DemandedRHS) {
1311         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1312                                  Depth + 1))
1313           return true;
1314         Known = KnownBits::commonBits(Known, Known2);
1315       }
1316 
1317       // Attempt to avoid multi-use ops if we don't need anything from them.
1318       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1319           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1320       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1321           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1322       if (DemandedOp0 || DemandedOp1) {
1323         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1324         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1325         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1326         return TLO.CombineTo(Op, NewOp);
1327       }
1328     }
1329     break;
1330   }
1331   case ISD::AND: {
1332     SDValue Op0 = Op.getOperand(0);
1333     SDValue Op1 = Op.getOperand(1);
1334 
1335     // If the RHS is a constant, check to see if the LHS would be zero without
1336     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1337     // simplify the LHS, here we're using information from the LHS to simplify
1338     // the RHS.
1339     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1340       // Do not increment Depth here; that can cause an infinite loop.
1341       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1342       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1343       if ((LHSKnown.Zero & DemandedBits) ==
1344           (~RHSC->getAPIntValue() & DemandedBits))
1345         return TLO.CombineTo(Op, Op0);
1346 
1347       // If any of the set bits in the RHS are known zero on the LHS, shrink
1348       // the constant.
1349       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1350                                  DemandedElts, TLO))
1351         return true;
1352 
1353       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1354       // constant, but if this 'and' is only clearing bits that were just set by
1355       // the xor, then this 'and' can be eliminated by shrinking the mask of
1356       // the xor. For example, for a 32-bit X:
1357       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1358       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1359           LHSKnown.One == ~RHSC->getAPIntValue()) {
1360         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1361         return TLO.CombineTo(Op, Xor);
1362       }
1363     }
1364 
1365     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1366                              Depth + 1))
1367       return true;
1368     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1369     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1370                              Known2, TLO, Depth + 1))
1371       return true;
1372     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1373 
1374     // Attempt to avoid multi-use ops if we don't need anything from them.
1375     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1376       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1377           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1378       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1379           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1380       if (DemandedOp0 || DemandedOp1) {
1381         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1382         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1383         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1384         return TLO.CombineTo(Op, NewOp);
1385       }
1386     }
1387 
1388     // If all of the demanded bits are known one on one side, return the other.
1389     // These bits cannot contribute to the result of the 'and'.
1390     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1391       return TLO.CombineTo(Op, Op0);
1392     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1393       return TLO.CombineTo(Op, Op1);
1394     // If all of the demanded bits in the inputs are known zeros, return zero.
1395     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1396       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1397     // If the RHS is a constant, see if we can simplify it.
1398     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1399                                TLO))
1400       return true;
1401     // If the operation can be done in a smaller type, do so.
1402     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1403       return true;
1404 
1405     Known &= Known2;
1406     break;
1407   }
1408   case ISD::OR: {
1409     SDValue Op0 = Op.getOperand(0);
1410     SDValue Op1 = Op.getOperand(1);
1411 
1412     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1413                              Depth + 1))
1414       return true;
1415     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1416     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1417                              Known2, TLO, Depth + 1))
1418       return true;
1419     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1420 
1421     // Attempt to avoid multi-use ops if we don't need anything from them.
1422     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1423       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1424           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1425       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1426           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1427       if (DemandedOp0 || DemandedOp1) {
1428         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1429         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1430         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1431         return TLO.CombineTo(Op, NewOp);
1432       }
1433     }
1434 
1435     // If all of the demanded bits are known zero on one side, return the other.
1436     // These bits cannot contribute to the result of the 'or'.
1437     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1438       return TLO.CombineTo(Op, Op0);
1439     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1440       return TLO.CombineTo(Op, Op1);
1441     // If the RHS is a constant, see if we can simplify it.
1442     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1443       return true;
1444     // If the operation can be done in a smaller type, do so.
1445     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1446       return true;
1447 
1448     Known |= Known2;
1449     break;
1450   }
1451   case ISD::XOR: {
1452     SDValue Op0 = Op.getOperand(0);
1453     SDValue Op1 = Op.getOperand(1);
1454 
1455     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1456                              Depth + 1))
1457       return true;
1458     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1459     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1460                              Depth + 1))
1461       return true;
1462     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1463 
1464     // Attempt to avoid multi-use ops if we don't need anything from them.
1465     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1466       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1467           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1468       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1469           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1470       if (DemandedOp0 || DemandedOp1) {
1471         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1472         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1473         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1474         return TLO.CombineTo(Op, NewOp);
1475       }
1476     }
1477 
1478     // If all of the demanded bits are known zero on one side, return the other.
1479     // These bits cannot contribute to the result of the 'xor'.
1480     if (DemandedBits.isSubsetOf(Known.Zero))
1481       return TLO.CombineTo(Op, Op0);
1482     if (DemandedBits.isSubsetOf(Known2.Zero))
1483       return TLO.CombineTo(Op, Op1);
1484     // If the operation can be done in a smaller type, do so.
1485     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1486       return true;
1487 
1488     // If all of the unknown bits are known to be zero on one side or the other
1489     // turn this into an *inclusive* or.
1490     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1491     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1492       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1493 
1494     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1495     if (C) {
1496       // If one side is a constant, and all of the set bits in the constant are
1497       // also known set on the other side, turn this into an AND, as we know
1498       // the bits will be cleared.
1499       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1500       // NB: it is okay if more bits are known than are requested
1501       if (C->getAPIntValue() == Known2.One) {
1502         SDValue ANDC =
1503             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1504         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1505       }
1506 
1507       // If the RHS is a constant, see if we can change it. Don't alter a -1
1508       // constant because that's a 'not' op, and that is better for combining
1509       // and codegen.
1510       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1511         // We're flipping all demanded bits. Flip the undemanded bits too.
1512         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1513         return TLO.CombineTo(Op, New);
1514       }
1515     }
1516 
1517     // If we can't turn this into a 'not', try to shrink the constant.
1518     if (!C || !C->isAllOnes())
1519       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1520         return true;
1521 
1522     Known ^= Known2;
1523     break;
1524   }
1525   case ISD::SELECT:
1526     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1527                              Depth + 1))
1528       return true;
1529     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1530                              Depth + 1))
1531       return true;
1532     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1533     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1534 
1535     // If the operands are constants, see if we can simplify them.
1536     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1537       return true;
1538 
1539     // Only known if known in both the LHS and RHS.
1540     Known = KnownBits::commonBits(Known, Known2);
1541     break;
1542   case ISD::VSELECT:
1543     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1544                              Known, TLO, Depth + 1))
1545       return true;
1546     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1547                              Known2, TLO, Depth + 1))
1548       return true;
1549     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1550     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1551 
1552     // Only known if known in both the LHS and RHS.
1553     Known = KnownBits::commonBits(Known, Known2);
1554     break;
1555   case ISD::SELECT_CC:
1556     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1557                              Depth + 1))
1558       return true;
1559     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1560                              Depth + 1))
1561       return true;
1562     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1563     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1564 
1565     // If the operands are constants, see if we can simplify them.
1566     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1567       return true;
1568 
1569     // Only known if known in both the LHS and RHS.
1570     Known = KnownBits::commonBits(Known, Known2);
1571     break;
1572   case ISD::SETCC: {
1573     SDValue Op0 = Op.getOperand(0);
1574     SDValue Op1 = Op.getOperand(1);
1575     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1576     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1577     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1578     // -1, we may be able to bypass the setcc.
1579     if (DemandedBits.isSignMask() &&
1580         Op0.getScalarValueSizeInBits() == BitWidth &&
1581         getBooleanContents(Op0.getValueType()) ==
1582             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1583       // If we're testing X < 0, then this compare isn't needed - just use X!
1584       // FIXME: We're limiting to integer types here, but this should also work
1585       // if we don't care about FP signed-zero. The use of SETLT with FP means
1586       // that we don't care about NaNs.
1587       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1588           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1589         return TLO.CombineTo(Op, Op0);
1590 
1591       // TODO: Should we check for other forms of sign-bit comparisons?
1592       // Examples: X <= -1, X >= 0
1593     }
1594     if (getBooleanContents(Op0.getValueType()) ==
1595             TargetLowering::ZeroOrOneBooleanContent &&
1596         BitWidth > 1)
1597       Known.Zero.setBitsFrom(1);
1598     break;
1599   }
1600   case ISD::SHL: {
1601     SDValue Op0 = Op.getOperand(0);
1602     SDValue Op1 = Op.getOperand(1);
1603     EVT ShiftVT = Op1.getValueType();
1604 
1605     if (const APInt *SA =
1606             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1607       unsigned ShAmt = SA->getZExtValue();
1608       if (ShAmt == 0)
1609         return TLO.CombineTo(Op, Op0);
1610 
1611       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1612       // single shift.  We can do this if the bottom bits (which are shifted
1613       // out) are never demanded.
1614       // TODO - support non-uniform vector amounts.
1615       if (Op0.getOpcode() == ISD::SRL) {
1616         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1617           if (const APInt *SA2 =
1618                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1619             unsigned C1 = SA2->getZExtValue();
1620             unsigned Opc = ISD::SHL;
1621             int Diff = ShAmt - C1;
1622             if (Diff < 0) {
1623               Diff = -Diff;
1624               Opc = ISD::SRL;
1625             }
1626             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1627             return TLO.CombineTo(
1628                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1629           }
1630         }
1631       }
1632 
1633       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1634       // are not demanded. This will likely allow the anyext to be folded away.
1635       // TODO - support non-uniform vector amounts.
1636       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1637         SDValue InnerOp = Op0.getOperand(0);
1638         EVT InnerVT = InnerOp.getValueType();
1639         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1640         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1641             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1642           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1643           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1644             ShTy = InnerVT;
1645           SDValue NarrowShl =
1646               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1647                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1648           return TLO.CombineTo(
1649               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1650         }
1651 
1652         // Repeat the SHL optimization above in cases where an extension
1653         // intervenes: (shl (anyext (shr x, c1)), c2) to
1654         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1655         // aren't demanded (as above) and that the shifted upper c1 bits of
1656         // x aren't demanded.
1657         // TODO - support non-uniform vector amounts.
1658         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1659             InnerOp.hasOneUse()) {
1660           if (const APInt *SA2 =
1661                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1662             unsigned InnerShAmt = SA2->getZExtValue();
1663             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1664                 DemandedBits.getActiveBits() <=
1665                     (InnerBits - InnerShAmt + ShAmt) &&
1666                 DemandedBits.countTrailingZeros() >= ShAmt) {
1667               SDValue NewSA =
1668                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1669               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1670                                                InnerOp.getOperand(0));
1671               return TLO.CombineTo(
1672                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1673             }
1674           }
1675         }
1676       }
1677 
1678       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1679       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1680                                Depth + 1))
1681         return true;
1682       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1683       Known.Zero <<= ShAmt;
1684       Known.One <<= ShAmt;
1685       // low bits known zero.
1686       Known.Zero.setLowBits(ShAmt);
1687 
1688       // Attempt to avoid multi-use ops if we don't need anything from them.
1689       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1690         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1691             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1692         if (DemandedOp0) {
1693           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1694           return TLO.CombineTo(Op, NewOp);
1695         }
1696       }
1697 
1698       // Try shrinking the operation as long as the shift amount will still be
1699       // in range.
1700       if ((ShAmt < DemandedBits.getActiveBits()) &&
1701           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1702         return true;
1703     }
1704 
1705     // If we are only demanding sign bits then we can use the shift source
1706     // directly.
1707     if (const APInt *MaxSA =
1708             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1709       unsigned ShAmt = MaxSA->getZExtValue();
1710       unsigned NumSignBits =
1711           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1712       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1713       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1714         return TLO.CombineTo(Op, Op0);
1715     }
1716     break;
1717   }
1718   case ISD::SRL: {
1719     SDValue Op0 = Op.getOperand(0);
1720     SDValue Op1 = Op.getOperand(1);
1721     EVT ShiftVT = Op1.getValueType();
1722 
1723     // Try to match AVG patterns.
1724     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1725                                         DemandedElts, Depth + 1))
1726       return TLO.CombineTo(Op, AVG);
1727 
1728     if (const APInt *SA =
1729             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1730       unsigned ShAmt = SA->getZExtValue();
1731       if (ShAmt == 0)
1732         return TLO.CombineTo(Op, Op0);
1733 
1734       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1735       // single shift.  We can do this if the top bits (which are shifted out)
1736       // are never demanded.
1737       // TODO - support non-uniform vector amounts.
1738       if (Op0.getOpcode() == ISD::SHL) {
1739         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1740           if (const APInt *SA2 =
1741                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1742             unsigned C1 = SA2->getZExtValue();
1743             unsigned Opc = ISD::SRL;
1744             int Diff = ShAmt - C1;
1745             if (Diff < 0) {
1746               Diff = -Diff;
1747               Opc = ISD::SHL;
1748             }
1749             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1750             return TLO.CombineTo(
1751                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1752           }
1753         }
1754       }
1755 
1756       APInt InDemandedMask = (DemandedBits << ShAmt);
1757 
1758       // If the shift is exact, then it does demand the low bits (and knows that
1759       // they are zero).
1760       if (Op->getFlags().hasExact())
1761         InDemandedMask.setLowBits(ShAmt);
1762 
1763       // Compute the new bits that are at the top now.
1764       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1765                                Depth + 1))
1766         return true;
1767       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1768       Known.Zero.lshrInPlace(ShAmt);
1769       Known.One.lshrInPlace(ShAmt);
1770       // High bits known zero.
1771       Known.Zero.setHighBits(ShAmt);
1772     }
1773     break;
1774   }
1775   case ISD::SRA: {
1776     SDValue Op0 = Op.getOperand(0);
1777     SDValue Op1 = Op.getOperand(1);
1778     EVT ShiftVT = Op1.getValueType();
1779 
1780     // If we only want bits that already match the signbit then we don't need
1781     // to shift.
1782     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1783     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1784         NumHiDemandedBits)
1785       return TLO.CombineTo(Op, Op0);
1786 
1787     // If this is an arithmetic shift right and only the low-bit is set, we can
1788     // always convert this into a logical shr, even if the shift amount is
1789     // variable.  The low bit of the shift cannot be an input sign bit unless
1790     // the shift amount is >= the size of the datatype, which is undefined.
1791     if (DemandedBits.isOne())
1792       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1793 
1794     // Try to match AVG patterns.
1795     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1796                                         DemandedElts, Depth + 1))
1797       return TLO.CombineTo(Op, AVG);
1798 
1799     if (const APInt *SA =
1800             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1801       unsigned ShAmt = SA->getZExtValue();
1802       if (ShAmt == 0)
1803         return TLO.CombineTo(Op, Op0);
1804 
1805       APInt InDemandedMask = (DemandedBits << ShAmt);
1806 
1807       // If the shift is exact, then it does demand the low bits (and knows that
1808       // they are zero).
1809       if (Op->getFlags().hasExact())
1810         InDemandedMask.setLowBits(ShAmt);
1811 
1812       // If any of the demanded bits are produced by the sign extension, we also
1813       // demand the input sign bit.
1814       if (DemandedBits.countLeadingZeros() < ShAmt)
1815         InDemandedMask.setSignBit();
1816 
1817       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1818                                Depth + 1))
1819         return true;
1820       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1821       Known.Zero.lshrInPlace(ShAmt);
1822       Known.One.lshrInPlace(ShAmt);
1823 
1824       // If the input sign bit is known to be zero, or if none of the top bits
1825       // are demanded, turn this into an unsigned shift right.
1826       if (Known.Zero[BitWidth - ShAmt - 1] ||
1827           DemandedBits.countLeadingZeros() >= ShAmt) {
1828         SDNodeFlags Flags;
1829         Flags.setExact(Op->getFlags().hasExact());
1830         return TLO.CombineTo(
1831             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1832       }
1833 
1834       int Log2 = DemandedBits.exactLogBase2();
1835       if (Log2 >= 0) {
1836         // The bit must come from the sign.
1837         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1838         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1839       }
1840 
1841       if (Known.One[BitWidth - ShAmt - 1])
1842         // New bits are known one.
1843         Known.One.setHighBits(ShAmt);
1844 
1845       // Attempt to avoid multi-use ops if we don't need anything from them.
1846       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1847         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1848             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1849         if (DemandedOp0) {
1850           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1851           return TLO.CombineTo(Op, NewOp);
1852         }
1853       }
1854     }
1855     break;
1856   }
1857   case ISD::FSHL:
1858   case ISD::FSHR: {
1859     SDValue Op0 = Op.getOperand(0);
1860     SDValue Op1 = Op.getOperand(1);
1861     SDValue Op2 = Op.getOperand(2);
1862     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1863 
1864     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1865       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1866 
1867       // For fshl, 0-shift returns the 1st arg.
1868       // For fshr, 0-shift returns the 2nd arg.
1869       if (Amt == 0) {
1870         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1871                                  Known, TLO, Depth + 1))
1872           return true;
1873         break;
1874       }
1875 
1876       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1877       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1878       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1879       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1880       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1881                                Depth + 1))
1882         return true;
1883       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1884                                Depth + 1))
1885         return true;
1886 
1887       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1888       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1889       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1890       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1891       Known.One |= Known2.One;
1892       Known.Zero |= Known2.Zero;
1893 
1894       // Attempt to avoid multi-use ops if we don't need anything from them.
1895       if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
1896           !DemandedElts.isAllOnes()) {
1897         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1898             Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
1899         SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1900             Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
1901         if (DemandedOp0 || DemandedOp1) {
1902           DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
1903           DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
1904           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
1905                                           DemandedOp1, Op2);
1906           return TLO.CombineTo(Op, NewOp);
1907         }
1908       }
1909     }
1910 
1911     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1912     if (isPowerOf2_32(BitWidth)) {
1913       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1914       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1915                                Known2, TLO, Depth + 1))
1916         return true;
1917     }
1918     break;
1919   }
1920   case ISD::ROTL:
1921   case ISD::ROTR: {
1922     SDValue Op0 = Op.getOperand(0);
1923     SDValue Op1 = Op.getOperand(1);
1924     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1925 
1926     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1927     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1928       return TLO.CombineTo(Op, Op0);
1929 
1930     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1931       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1932       unsigned RevAmt = BitWidth - Amt;
1933 
1934       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1935       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1936       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1937       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1938                                Depth + 1))
1939         return true;
1940 
1941       // rot*(x, 0) --> x
1942       if (Amt == 0)
1943         return TLO.CombineTo(Op, Op0);
1944 
1945       // See if we don't demand either half of the rotated bits.
1946       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1947           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1948         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1949         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1950       }
1951       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1952           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1953         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1954         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1955       }
1956     }
1957 
1958     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1959     if (isPowerOf2_32(BitWidth)) {
1960       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1961       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1962                                Depth + 1))
1963         return true;
1964     }
1965     break;
1966   }
1967   case ISD::UMIN: {
1968     // Check if one arg is always less than (or equal) to the other arg.
1969     SDValue Op0 = Op.getOperand(0);
1970     SDValue Op1 = Op.getOperand(1);
1971     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1972     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1973     Known = KnownBits::umin(Known0, Known1);
1974     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1975       return TLO.CombineTo(Op, *IsULE ? Op0 : Op1);
1976     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1977       return TLO.CombineTo(Op, *IsULT ? Op0 : Op1);
1978     break;
1979   }
1980   case ISD::UMAX: {
1981     // Check if one arg is always greater than (or equal) to the other arg.
1982     SDValue Op0 = Op.getOperand(0);
1983     SDValue Op1 = Op.getOperand(1);
1984     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1985     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1986     Known = KnownBits::umax(Known0, Known1);
1987     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1988       return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1);
1989     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1990       return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1);
1991     break;
1992   }
1993   case ISD::BITREVERSE: {
1994     SDValue Src = Op.getOperand(0);
1995     APInt DemandedSrcBits = DemandedBits.reverseBits();
1996     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1997                              Depth + 1))
1998       return true;
1999     Known.One = Known2.One.reverseBits();
2000     Known.Zero = Known2.Zero.reverseBits();
2001     break;
2002   }
2003   case ISD::BSWAP: {
2004     SDValue Src = Op.getOperand(0);
2005 
2006     // If the only bits demanded come from one byte of the bswap result,
2007     // just shift the input byte into position to eliminate the bswap.
2008     unsigned NLZ = DemandedBits.countLeadingZeros();
2009     unsigned NTZ = DemandedBits.countTrailingZeros();
2010 
2011     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
2012     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
2013     // have 14 leading zeros, round to 8.
2014     NLZ = alignDown(NLZ, 8);
2015     NTZ = alignDown(NTZ, 8);
2016     // If we need exactly one byte, we can do this transformation.
2017     if (BitWidth - NLZ - NTZ == 8) {
2018       // Replace this with either a left or right shift to get the byte into
2019       // the right place.
2020       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2021       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2022         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
2023         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2024         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
2025         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2026         return TLO.CombineTo(Op, NewOp);
2027       }
2028     }
2029 
2030     APInt DemandedSrcBits = DemandedBits.byteSwap();
2031     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2032                              Depth + 1))
2033       return true;
2034     Known.One = Known2.One.byteSwap();
2035     Known.Zero = Known2.Zero.byteSwap();
2036     break;
2037   }
2038   case ISD::CTPOP: {
2039     // If only 1 bit is demanded, replace with PARITY as long as we're before
2040     // op legalization.
2041     // FIXME: Limit to scalars for now.
2042     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2043       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2044                                                Op.getOperand(0)));
2045 
2046     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2047     break;
2048   }
2049   case ISD::SIGN_EXTEND_INREG: {
2050     SDValue Op0 = Op.getOperand(0);
2051     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2052     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2053 
2054     // If we only care about the highest bit, don't bother shifting right.
2055     if (DemandedBits.isSignMask()) {
2056       unsigned MinSignedBits =
2057           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2058       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2059       // However if the input is already sign extended we expect the sign
2060       // extension to be dropped altogether later and do not simplify.
2061       if (!AlreadySignExtended) {
2062         // Compute the correct shift amount type, which must be getShiftAmountTy
2063         // for scalar types after legalization.
2064         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2065                                                getShiftAmountTy(VT, DL));
2066         return TLO.CombineTo(Op,
2067                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2068       }
2069     }
2070 
2071     // If none of the extended bits are demanded, eliminate the sextinreg.
2072     if (DemandedBits.getActiveBits() <= ExVTBits)
2073       return TLO.CombineTo(Op, Op0);
2074 
2075     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2076 
2077     // Since the sign extended bits are demanded, we know that the sign
2078     // bit is demanded.
2079     InputDemandedBits.setBit(ExVTBits - 1);
2080 
2081     if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2082                              Depth + 1))
2083       return true;
2084     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2085 
2086     // If the sign bit of the input is known set or clear, then we know the
2087     // top bits of the result.
2088 
2089     // If the input sign bit is known zero, convert this into a zero extension.
2090     if (Known.Zero[ExVTBits - 1])
2091       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2092 
2093     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2094     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2095       Known.One.setBitsFrom(ExVTBits);
2096       Known.Zero &= Mask;
2097     } else { // Input sign bit unknown
2098       Known.Zero &= Mask;
2099       Known.One &= Mask;
2100     }
2101     break;
2102   }
2103   case ISD::BUILD_PAIR: {
2104     EVT HalfVT = Op.getOperand(0).getValueType();
2105     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2106 
2107     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2108     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2109 
2110     KnownBits KnownLo, KnownHi;
2111 
2112     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2113       return true;
2114 
2115     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2116       return true;
2117 
2118     Known.Zero = KnownLo.Zero.zext(BitWidth) |
2119                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
2120 
2121     Known.One = KnownLo.One.zext(BitWidth) |
2122                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
2123     break;
2124   }
2125   case ISD::ZERO_EXTEND:
2126   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2127     SDValue Src = Op.getOperand(0);
2128     EVT SrcVT = Src.getValueType();
2129     unsigned InBits = SrcVT.getScalarSizeInBits();
2130     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2131     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2132 
2133     // If none of the top bits are demanded, convert this into an any_extend.
2134     if (DemandedBits.getActiveBits() <= InBits) {
2135       // If we only need the non-extended bits of the bottom element
2136       // then we can just bitcast to the result.
2137       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2138           VT.getSizeInBits() == SrcVT.getSizeInBits())
2139         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2140 
2141       unsigned Opc =
2142           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2143       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2144         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2145     }
2146 
2147     APInt InDemandedBits = DemandedBits.trunc(InBits);
2148     APInt InDemandedElts = DemandedElts.zext(InElts);
2149     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2150                              Depth + 1))
2151       return true;
2152     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2153     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2154     Known = Known.zext(BitWidth);
2155 
2156     // Attempt to avoid multi-use ops if we don't need anything from them.
2157     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2158             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2159       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2160     break;
2161   }
2162   case ISD::SIGN_EXTEND:
2163   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2164     SDValue Src = Op.getOperand(0);
2165     EVT SrcVT = Src.getValueType();
2166     unsigned InBits = SrcVT.getScalarSizeInBits();
2167     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2168     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2169 
2170     // If none of the top bits are demanded, convert this into an any_extend.
2171     if (DemandedBits.getActiveBits() <= InBits) {
2172       // If we only need the non-extended bits of the bottom element
2173       // then we can just bitcast to the result.
2174       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2175           VT.getSizeInBits() == SrcVT.getSizeInBits())
2176         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2177 
2178       unsigned Opc =
2179           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2180       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2181         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2182     }
2183 
2184     APInt InDemandedBits = DemandedBits.trunc(InBits);
2185     APInt InDemandedElts = DemandedElts.zext(InElts);
2186 
2187     // Since some of the sign extended bits are demanded, we know that the sign
2188     // bit is demanded.
2189     InDemandedBits.setBit(InBits - 1);
2190 
2191     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2192                              Depth + 1))
2193       return true;
2194     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2195     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2196 
2197     // If the sign bit is known one, the top bits match.
2198     Known = Known.sext(BitWidth);
2199 
2200     // If the sign bit is known zero, convert this to a zero extend.
2201     if (Known.isNonNegative()) {
2202       unsigned Opc =
2203           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2204       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2205         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2206     }
2207 
2208     // Attempt to avoid multi-use ops if we don't need anything from them.
2209     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2210             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2211       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2212     break;
2213   }
2214   case ISD::ANY_EXTEND:
2215   case ISD::ANY_EXTEND_VECTOR_INREG: {
2216     SDValue Src = Op.getOperand(0);
2217     EVT SrcVT = Src.getValueType();
2218     unsigned InBits = SrcVT.getScalarSizeInBits();
2219     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2220     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2221 
2222     // If we only need the bottom element then we can just bitcast.
2223     // TODO: Handle ANY_EXTEND?
2224     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2225         VT.getSizeInBits() == SrcVT.getSizeInBits())
2226       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2227 
2228     APInt InDemandedBits = DemandedBits.trunc(InBits);
2229     APInt InDemandedElts = DemandedElts.zext(InElts);
2230     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2231                              Depth + 1))
2232       return true;
2233     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2234     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2235     Known = Known.anyext(BitWidth);
2236 
2237     // Attempt to avoid multi-use ops if we don't need anything from them.
2238     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2239             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2240       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2241     break;
2242   }
2243   case ISD::TRUNCATE: {
2244     SDValue Src = Op.getOperand(0);
2245 
2246     // Simplify the input, using demanded bit information, and compute the known
2247     // zero/one bits live out.
2248     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2249     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2250     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2251                              Depth + 1))
2252       return true;
2253     Known = Known.trunc(BitWidth);
2254 
2255     // Attempt to avoid multi-use ops if we don't need anything from them.
2256     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2257             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2258       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2259 
2260     // If the input is only used by this truncate, see if we can shrink it based
2261     // on the known demanded bits.
2262     if (Src.getNode()->hasOneUse()) {
2263       switch (Src.getOpcode()) {
2264       default:
2265         break;
2266       case ISD::SRL:
2267         // Shrink SRL by a constant if none of the high bits shifted in are
2268         // demanded.
2269         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2270           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2271           // undesirable.
2272           break;
2273 
2274         const APInt *ShAmtC =
2275             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2276         if (!ShAmtC || ShAmtC->uge(BitWidth))
2277           break;
2278         uint64_t ShVal = ShAmtC->getZExtValue();
2279 
2280         APInt HighBits =
2281             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2282         HighBits.lshrInPlace(ShVal);
2283         HighBits = HighBits.trunc(BitWidth);
2284 
2285         if (!(HighBits & DemandedBits)) {
2286           // None of the shifted in bits are needed.  Add a truncate of the
2287           // shift input, then shift it.
2288           SDValue NewShAmt = TLO.DAG.getConstant(
2289               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2290           SDValue NewTrunc =
2291               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2292           return TLO.CombineTo(
2293               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2294         }
2295         break;
2296       }
2297     }
2298 
2299     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2300     break;
2301   }
2302   case ISD::AssertZext: {
2303     // AssertZext demands all of the high bits, plus any of the low bits
2304     // demanded by its users.
2305     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2306     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2307     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2308                              TLO, Depth + 1))
2309       return true;
2310     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2311 
2312     Known.Zero |= ~InMask;
2313     break;
2314   }
2315   case ISD::EXTRACT_VECTOR_ELT: {
2316     SDValue Src = Op.getOperand(0);
2317     SDValue Idx = Op.getOperand(1);
2318     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2319     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2320 
2321     if (SrcEltCnt.isScalable())
2322       return false;
2323 
2324     // Demand the bits from every vector element without a constant index.
2325     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2326     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2327     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2328       if (CIdx->getAPIntValue().ult(NumSrcElts))
2329         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2330 
2331     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2332     // anything about the extended bits.
2333     APInt DemandedSrcBits = DemandedBits;
2334     if (BitWidth > EltBitWidth)
2335       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2336 
2337     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2338                              Depth + 1))
2339       return true;
2340 
2341     // Attempt to avoid multi-use ops if we don't need anything from them.
2342     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2343       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2344               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2345         SDValue NewOp =
2346             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2347         return TLO.CombineTo(Op, NewOp);
2348       }
2349     }
2350 
2351     Known = Known2;
2352     if (BitWidth > EltBitWidth)
2353       Known = Known.anyext(BitWidth);
2354     break;
2355   }
2356   case ISD::BITCAST: {
2357     SDValue Src = Op.getOperand(0);
2358     EVT SrcVT = Src.getValueType();
2359     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2360 
2361     // If this is an FP->Int bitcast and if the sign bit is the only
2362     // thing demanded, turn this into a FGETSIGN.
2363     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2364         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2365         SrcVT.isFloatingPoint()) {
2366       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2367       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2368       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2369           SrcVT != MVT::f128) {
2370         // Cannot eliminate/lower SHL for f128 yet.
2371         EVT Ty = OpVTLegal ? VT : MVT::i32;
2372         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2373         // place.  We expect the SHL to be eliminated by other optimizations.
2374         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2375         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2376         if (!OpVTLegal && OpVTSizeInBits > 32)
2377           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2378         unsigned ShVal = Op.getValueSizeInBits() - 1;
2379         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2380         return TLO.CombineTo(Op,
2381                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2382       }
2383     }
2384 
2385     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2386     // Demand the elt/bit if any of the original elts/bits are demanded.
2387     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2388       unsigned Scale = BitWidth / NumSrcEltBits;
2389       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2390       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2391       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2392       for (unsigned i = 0; i != Scale; ++i) {
2393         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2394         unsigned BitOffset = EltOffset * NumSrcEltBits;
2395         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2396         if (!Sub.isZero()) {
2397           DemandedSrcBits |= Sub;
2398           for (unsigned j = 0; j != NumElts; ++j)
2399             if (DemandedElts[j])
2400               DemandedSrcElts.setBit((j * Scale) + i);
2401         }
2402       }
2403 
2404       APInt KnownSrcUndef, KnownSrcZero;
2405       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2406                                      KnownSrcZero, TLO, Depth + 1))
2407         return true;
2408 
2409       KnownBits KnownSrcBits;
2410       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2411                                KnownSrcBits, TLO, Depth + 1))
2412         return true;
2413     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2414       // TODO - bigendian once we have test coverage.
2415       unsigned Scale = NumSrcEltBits / BitWidth;
2416       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2417       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2418       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2419       for (unsigned i = 0; i != NumElts; ++i)
2420         if (DemandedElts[i]) {
2421           unsigned Offset = (i % Scale) * BitWidth;
2422           DemandedSrcBits.insertBits(DemandedBits, Offset);
2423           DemandedSrcElts.setBit(i / Scale);
2424         }
2425 
2426       if (SrcVT.isVector()) {
2427         APInt KnownSrcUndef, KnownSrcZero;
2428         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2429                                        KnownSrcZero, TLO, Depth + 1))
2430           return true;
2431       }
2432 
2433       KnownBits KnownSrcBits;
2434       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2435                                KnownSrcBits, TLO, Depth + 1))
2436         return true;
2437     }
2438 
2439     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2440     // recursive call where Known may be useful to the caller.
2441     if (Depth > 0) {
2442       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2443       return false;
2444     }
2445     break;
2446   }
2447   case ISD::MUL:
2448     if (DemandedBits.isPowerOf2()) {
2449       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2450       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2451       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2452       unsigned CTZ = DemandedBits.countTrailingZeros();
2453       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2454       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2455         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2456         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2457         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2458         return TLO.CombineTo(Op, Shl);
2459       }
2460     }
2461     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2462     // X * X is odd iff X is odd.
2463     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2464     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2465       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2466       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2467       return TLO.CombineTo(Op, And1);
2468     }
2469     LLVM_FALLTHROUGH;
2470   case ISD::ADD:
2471   case ISD::SUB: {
2472     // Add, Sub, and Mul don't demand any bits in positions beyond that
2473     // of the highest bit demanded of them.
2474     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2475     SDNodeFlags Flags = Op.getNode()->getFlags();
2476     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2477     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2478     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2479                              Depth + 1) ||
2480         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2481                              Depth + 1) ||
2482         // See if the operation should be performed at a smaller bit width.
2483         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2484       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2485         // Disable the nsw and nuw flags. We can no longer guarantee that we
2486         // won't wrap after simplification.
2487         Flags.setNoSignedWrap(false);
2488         Flags.setNoUnsignedWrap(false);
2489         SDValue NewOp =
2490             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2491         return TLO.CombineTo(Op, NewOp);
2492       }
2493       return true;
2494     }
2495 
2496     // Attempt to avoid multi-use ops if we don't need anything from them.
2497     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2498       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2499           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2500       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2501           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2502       if (DemandedOp0 || DemandedOp1) {
2503         Flags.setNoSignedWrap(false);
2504         Flags.setNoUnsignedWrap(false);
2505         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2506         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2507         SDValue NewOp =
2508             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2509         return TLO.CombineTo(Op, NewOp);
2510       }
2511     }
2512 
2513     // If we have a constant operand, we may be able to turn it into -1 if we
2514     // do not demand the high bits. This can make the constant smaller to
2515     // encode, allow more general folding, or match specialized instruction
2516     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2517     // is probably not useful (and could be detrimental).
2518     ConstantSDNode *C = isConstOrConstSplat(Op1);
2519     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2520     if (C && !C->isAllOnes() && !C->isOne() &&
2521         (C->getAPIntValue() | HighMask).isAllOnes()) {
2522       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2523       // Disable the nsw and nuw flags. We can no longer guarantee that we
2524       // won't wrap after simplification.
2525       Flags.setNoSignedWrap(false);
2526       Flags.setNoUnsignedWrap(false);
2527       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2528       return TLO.CombineTo(Op, NewOp);
2529     }
2530 
2531     // Match a multiply with a disguised negated-power-of-2 and convert to a
2532     // an equivalent shift-left amount.
2533     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2534     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2535       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2536         return 0;
2537 
2538       // Don't touch opaque constants. Also, ignore zero and power-of-2
2539       // multiplies. Those will get folded later.
2540       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2541       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2542           !MulC->getAPIntValue().isPowerOf2()) {
2543         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2544         if (UnmaskedC.isNegatedPowerOf2())
2545           return (-UnmaskedC).logBase2();
2546       }
2547       return 0;
2548     };
2549 
2550     auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) {
2551       EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2552       SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
2553       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2554       SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2555       return TLO.CombineTo(Op, Res);
2556     };
2557 
2558     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2559       if (Op.getOpcode() == ISD::ADD) {
2560         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2561         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2562           return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2563         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2564         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2565           return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2566       }
2567       if (Op.getOpcode() == ISD::SUB) {
2568         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2569         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2570           return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2571       }
2572     }
2573 
2574     LLVM_FALLTHROUGH;
2575   }
2576   default:
2577     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2578       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2579                                             Known, TLO, Depth))
2580         return true;
2581       break;
2582     }
2583 
2584     // Just use computeKnownBits to compute output bits.
2585     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2586     break;
2587   }
2588 
2589   // If we know the value of all of the demanded bits, return this as a
2590   // constant.
2591   if (!isTargetCanonicalConstantNode(Op) &&
2592       DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2593     // Avoid folding to a constant if any OpaqueConstant is involved.
2594     const SDNode *N = Op.getNode();
2595     for (SDNode *Op :
2596          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2597       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2598         if (C->isOpaque())
2599           return false;
2600     }
2601     if (VT.isInteger())
2602       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2603     if (VT.isFloatingPoint())
2604       return TLO.CombineTo(
2605           Op,
2606           TLO.DAG.getConstantFP(
2607               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2608   }
2609 
2610   return false;
2611 }
2612 
2613 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2614                                                 const APInt &DemandedElts,
2615                                                 DAGCombinerInfo &DCI) const {
2616   SelectionDAG &DAG = DCI.DAG;
2617   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2618                         !DCI.isBeforeLegalizeOps());
2619 
2620   APInt KnownUndef, KnownZero;
2621   bool Simplified =
2622       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2623   if (Simplified) {
2624     DCI.AddToWorklist(Op.getNode());
2625     DCI.CommitTargetLoweringOpt(TLO);
2626   }
2627 
2628   return Simplified;
2629 }
2630 
2631 /// Given a vector binary operation and known undefined elements for each input
2632 /// operand, compute whether each element of the output is undefined.
2633 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2634                                          const APInt &UndefOp0,
2635                                          const APInt &UndefOp1) {
2636   EVT VT = BO.getValueType();
2637   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2638          "Vector binop only");
2639 
2640   EVT EltVT = VT.getVectorElementType();
2641   unsigned NumElts = VT.getVectorNumElements();
2642   assert(UndefOp0.getBitWidth() == NumElts &&
2643          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2644 
2645   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2646                                    const APInt &UndefVals) {
2647     if (UndefVals[Index])
2648       return DAG.getUNDEF(EltVT);
2649 
2650     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2651       // Try hard to make sure that the getNode() call is not creating temporary
2652       // nodes. Ignore opaque integers because they do not constant fold.
2653       SDValue Elt = BV->getOperand(Index);
2654       auto *C = dyn_cast<ConstantSDNode>(Elt);
2655       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2656         return Elt;
2657     }
2658 
2659     return SDValue();
2660   };
2661 
2662   APInt KnownUndef = APInt::getZero(NumElts);
2663   for (unsigned i = 0; i != NumElts; ++i) {
2664     // If both inputs for this element are either constant or undef and match
2665     // the element type, compute the constant/undef result for this element of
2666     // the vector.
2667     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2668     // not handle FP constants. The code within getNode() should be refactored
2669     // to avoid the danger of creating a bogus temporary node here.
2670     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2671     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2672     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2673       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2674         KnownUndef.setBit(i);
2675   }
2676   return KnownUndef;
2677 }
2678 
2679 bool TargetLowering::SimplifyDemandedVectorElts(
2680     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2681     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2682     bool AssumeSingleUse) const {
2683   EVT VT = Op.getValueType();
2684   unsigned Opcode = Op.getOpcode();
2685   APInt DemandedElts = OriginalDemandedElts;
2686   unsigned NumElts = DemandedElts.getBitWidth();
2687   assert(VT.isVector() && "Expected vector op");
2688 
2689   KnownUndef = KnownZero = APInt::getZero(NumElts);
2690 
2691   const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
2692   if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
2693     return false;
2694 
2695   // TODO: For now we assume we know nothing about scalable vectors.
2696   if (VT.isScalableVector())
2697     return false;
2698 
2699   assert(VT.getVectorNumElements() == NumElts &&
2700          "Mask size mismatches value type element count!");
2701 
2702   // Undef operand.
2703   if (Op.isUndef()) {
2704     KnownUndef.setAllBits();
2705     return false;
2706   }
2707 
2708   // If Op has other users, assume that all elements are needed.
2709   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2710     DemandedElts.setAllBits();
2711 
2712   // Not demanding any elements from Op.
2713   if (DemandedElts == 0) {
2714     KnownUndef.setAllBits();
2715     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2716   }
2717 
2718   // Limit search depth.
2719   if (Depth >= SelectionDAG::MaxRecursionDepth)
2720     return false;
2721 
2722   SDLoc DL(Op);
2723   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2724   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2725 
2726   // Helper for demanding the specified elements and all the bits of both binary
2727   // operands.
2728   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2729     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2730                                                            TLO.DAG, Depth + 1);
2731     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2732                                                            TLO.DAG, Depth + 1);
2733     if (NewOp0 || NewOp1) {
2734       SDValue NewOp = TLO.DAG.getNode(
2735           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2736       return TLO.CombineTo(Op, NewOp);
2737     }
2738     return false;
2739   };
2740 
2741   switch (Opcode) {
2742   case ISD::SCALAR_TO_VECTOR: {
2743     if (!DemandedElts[0]) {
2744       KnownUndef.setAllBits();
2745       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2746     }
2747     SDValue ScalarSrc = Op.getOperand(0);
2748     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2749       SDValue Src = ScalarSrc.getOperand(0);
2750       SDValue Idx = ScalarSrc.getOperand(1);
2751       EVT SrcVT = Src.getValueType();
2752 
2753       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2754 
2755       if (SrcEltCnt.isScalable())
2756         return false;
2757 
2758       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2759       if (isNullConstant(Idx)) {
2760         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2761         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2762         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2763         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2764                                        TLO, Depth + 1))
2765           return true;
2766       }
2767     }
2768     KnownUndef.setHighBits(NumElts - 1);
2769     break;
2770   }
2771   case ISD::BITCAST: {
2772     SDValue Src = Op.getOperand(0);
2773     EVT SrcVT = Src.getValueType();
2774 
2775     // We only handle vectors here.
2776     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2777     if (!SrcVT.isVector())
2778       break;
2779 
2780     // Fast handling of 'identity' bitcasts.
2781     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2782     if (NumSrcElts == NumElts)
2783       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2784                                         KnownZero, TLO, Depth + 1);
2785 
2786     APInt SrcDemandedElts, SrcZero, SrcUndef;
2787 
2788     // Bitcast from 'large element' src vector to 'small element' vector, we
2789     // must demand a source element if any DemandedElt maps to it.
2790     if ((NumElts % NumSrcElts) == 0) {
2791       unsigned Scale = NumElts / NumSrcElts;
2792       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2793       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2794                                      TLO, Depth + 1))
2795         return true;
2796 
2797       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2798       // of the large element.
2799       // TODO - bigendian once we have test coverage.
2800       if (IsLE) {
2801         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2802         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2803         for (unsigned i = 0; i != NumElts; ++i)
2804           if (DemandedElts[i]) {
2805             unsigned Ofs = (i % Scale) * EltSizeInBits;
2806             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2807           }
2808 
2809         KnownBits Known;
2810         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2811                                  TLO, Depth + 1))
2812           return true;
2813 
2814         // The bitcast has split each wide element into a number of
2815         // narrow subelements. We have just computed the Known bits
2816         // for wide elements. See if element splitting results in
2817         // some subelements being zero. Only for demanded elements!
2818         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
2819           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
2820                    .isAllOnes())
2821             continue;
2822           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
2823             unsigned Elt = Scale * SrcElt + SubElt;
2824             if (DemandedElts[Elt])
2825               KnownZero.setBit(Elt);
2826           }
2827         }
2828       }
2829 
2830       // If the src element is zero/undef then all the output elements will be -
2831       // only demanded elements are guaranteed to be correct.
2832       for (unsigned i = 0; i != NumSrcElts; ++i) {
2833         if (SrcDemandedElts[i]) {
2834           if (SrcZero[i])
2835             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2836           if (SrcUndef[i])
2837             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2838         }
2839       }
2840     }
2841 
2842     // Bitcast from 'small element' src vector to 'large element' vector, we
2843     // demand all smaller source elements covered by the larger demanded element
2844     // of this vector.
2845     if ((NumSrcElts % NumElts) == 0) {
2846       unsigned Scale = NumSrcElts / NumElts;
2847       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2848       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2849                                      TLO, Depth + 1))
2850         return true;
2851 
2852       // If all the src elements covering an output element are zero/undef, then
2853       // the output element will be as well, assuming it was demanded.
2854       for (unsigned i = 0; i != NumElts; ++i) {
2855         if (DemandedElts[i]) {
2856           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2857             KnownZero.setBit(i);
2858           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2859             KnownUndef.setBit(i);
2860         }
2861       }
2862     }
2863     break;
2864   }
2865   case ISD::BUILD_VECTOR: {
2866     // Check all elements and simplify any unused elements with UNDEF.
2867     if (!DemandedElts.isAllOnes()) {
2868       // Don't simplify BROADCASTS.
2869       if (llvm::any_of(Op->op_values(),
2870                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2871         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2872         bool Updated = false;
2873         for (unsigned i = 0; i != NumElts; ++i) {
2874           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2875             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2876             KnownUndef.setBit(i);
2877             Updated = true;
2878           }
2879         }
2880         if (Updated)
2881           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2882       }
2883     }
2884     for (unsigned i = 0; i != NumElts; ++i) {
2885       SDValue SrcOp = Op.getOperand(i);
2886       if (SrcOp.isUndef()) {
2887         KnownUndef.setBit(i);
2888       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2889                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2890         KnownZero.setBit(i);
2891       }
2892     }
2893     break;
2894   }
2895   case ISD::CONCAT_VECTORS: {
2896     EVT SubVT = Op.getOperand(0).getValueType();
2897     unsigned NumSubVecs = Op.getNumOperands();
2898     unsigned NumSubElts = SubVT.getVectorNumElements();
2899     for (unsigned i = 0; i != NumSubVecs; ++i) {
2900       SDValue SubOp = Op.getOperand(i);
2901       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2902       APInt SubUndef, SubZero;
2903       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2904                                      Depth + 1))
2905         return true;
2906       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2907       KnownZero.insertBits(SubZero, i * NumSubElts);
2908     }
2909 
2910     // Attempt to avoid multi-use ops if we don't need anything from them.
2911     if (!DemandedElts.isAllOnes()) {
2912       bool FoundNewSub = false;
2913       SmallVector<SDValue, 2> DemandedSubOps;
2914       for (unsigned i = 0; i != NumSubVecs; ++i) {
2915         SDValue SubOp = Op.getOperand(i);
2916         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2917         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
2918             SubOp, SubElts, TLO.DAG, Depth + 1);
2919         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
2920         FoundNewSub = NewSubOp ? true : FoundNewSub;
2921       }
2922       if (FoundNewSub) {
2923         SDValue NewOp =
2924             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
2925         return TLO.CombineTo(Op, NewOp);
2926       }
2927     }
2928     break;
2929   }
2930   case ISD::INSERT_SUBVECTOR: {
2931     // Demand any elements from the subvector and the remainder from the src its
2932     // inserted into.
2933     SDValue Src = Op.getOperand(0);
2934     SDValue Sub = Op.getOperand(1);
2935     uint64_t Idx = Op.getConstantOperandVal(2);
2936     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2937     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2938     APInt DemandedSrcElts = DemandedElts;
2939     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2940 
2941     APInt SubUndef, SubZero;
2942     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2943                                    Depth + 1))
2944       return true;
2945 
2946     // If none of the src operand elements are demanded, replace it with undef.
2947     if (!DemandedSrcElts && !Src.isUndef())
2948       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2949                                                TLO.DAG.getUNDEF(VT), Sub,
2950                                                Op.getOperand(2)));
2951 
2952     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2953                                    TLO, Depth + 1))
2954       return true;
2955     KnownUndef.insertBits(SubUndef, Idx);
2956     KnownZero.insertBits(SubZero, Idx);
2957 
2958     // Attempt to avoid multi-use ops if we don't need anything from them.
2959     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2960       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2961           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2962       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2963           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2964       if (NewSrc || NewSub) {
2965         NewSrc = NewSrc ? NewSrc : Src;
2966         NewSub = NewSub ? NewSub : Sub;
2967         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2968                                         NewSub, Op.getOperand(2));
2969         return TLO.CombineTo(Op, NewOp);
2970       }
2971     }
2972     break;
2973   }
2974   case ISD::EXTRACT_SUBVECTOR: {
2975     // Offset the demanded elts by the subvector index.
2976     SDValue Src = Op.getOperand(0);
2977     if (Src.getValueType().isScalableVector())
2978       break;
2979     uint64_t Idx = Op.getConstantOperandVal(1);
2980     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2981     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
2982 
2983     APInt SrcUndef, SrcZero;
2984     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2985                                    Depth + 1))
2986       return true;
2987     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2988     KnownZero = SrcZero.extractBits(NumElts, Idx);
2989 
2990     // Attempt to avoid multi-use ops if we don't need anything from them.
2991     if (!DemandedElts.isAllOnes()) {
2992       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2993           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2994       if (NewSrc) {
2995         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2996                                         Op.getOperand(1));
2997         return TLO.CombineTo(Op, NewOp);
2998       }
2999     }
3000     break;
3001   }
3002   case ISD::INSERT_VECTOR_ELT: {
3003     SDValue Vec = Op.getOperand(0);
3004     SDValue Scl = Op.getOperand(1);
3005     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3006 
3007     // For a legal, constant insertion index, if we don't need this insertion
3008     // then strip it, else remove it from the demanded elts.
3009     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3010       unsigned Idx = CIdx->getZExtValue();
3011       if (!DemandedElts[Idx])
3012         return TLO.CombineTo(Op, Vec);
3013 
3014       APInt DemandedVecElts(DemandedElts);
3015       DemandedVecElts.clearBit(Idx);
3016       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3017                                      KnownZero, TLO, Depth + 1))
3018         return true;
3019 
3020       KnownUndef.setBitVal(Idx, Scl.isUndef());
3021 
3022       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3023       break;
3024     }
3025 
3026     APInt VecUndef, VecZero;
3027     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3028                                    Depth + 1))
3029       return true;
3030     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3031     break;
3032   }
3033   case ISD::VSELECT: {
3034     // Try to transform the select condition based on the current demanded
3035     // elements.
3036     // TODO: If a condition element is undef, we can choose from one arm of the
3037     //       select (and if one arm is undef, then we can propagate that to the
3038     //       result).
3039     // TODO - add support for constant vselect masks (see IR version of this).
3040     APInt UnusedUndef, UnusedZero;
3041     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
3042                                    UnusedZero, TLO, Depth + 1))
3043       return true;
3044 
3045     // See if we can simplify either vselect operand.
3046     APInt DemandedLHS(DemandedElts);
3047     APInt DemandedRHS(DemandedElts);
3048     APInt UndefLHS, ZeroLHS;
3049     APInt UndefRHS, ZeroRHS;
3050     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
3051                                    ZeroLHS, TLO, Depth + 1))
3052       return true;
3053     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
3054                                    ZeroRHS, TLO, Depth + 1))
3055       return true;
3056 
3057     KnownUndef = UndefLHS & UndefRHS;
3058     KnownZero = ZeroLHS & ZeroRHS;
3059     break;
3060   }
3061   case ISD::VECTOR_SHUFFLE: {
3062     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3063 
3064     // Collect demanded elements from shuffle operands..
3065     APInt DemandedLHS(NumElts, 0);
3066     APInt DemandedRHS(NumElts, 0);
3067     for (unsigned i = 0; i != NumElts; ++i) {
3068       int M = ShuffleMask[i];
3069       if (M < 0 || !DemandedElts[i])
3070         continue;
3071       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3072       if (M < (int)NumElts)
3073         DemandedLHS.setBit(M);
3074       else
3075         DemandedRHS.setBit(M - NumElts);
3076     }
3077 
3078     // See if we can simplify either shuffle operand.
3079     APInt UndefLHS, ZeroLHS;
3080     APInt UndefRHS, ZeroRHS;
3081     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
3082                                    ZeroLHS, TLO, Depth + 1))
3083       return true;
3084     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
3085                                    ZeroRHS, TLO, Depth + 1))
3086       return true;
3087 
3088     // Simplify mask using undef elements from LHS/RHS.
3089     bool Updated = false;
3090     bool IdentityLHS = true, IdentityRHS = true;
3091     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
3092     for (unsigned i = 0; i != NumElts; ++i) {
3093       int &M = NewMask[i];
3094       if (M < 0)
3095         continue;
3096       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3097           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3098         Updated = true;
3099         M = -1;
3100       }
3101       IdentityLHS &= (M < 0) || (M == (int)i);
3102       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3103     }
3104 
3105     // Update legal shuffle masks based on demanded elements if it won't reduce
3106     // to Identity which can cause premature removal of the shuffle mask.
3107     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3108       SDValue LegalShuffle =
3109           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
3110                                   NewMask, TLO.DAG);
3111       if (LegalShuffle)
3112         return TLO.CombineTo(Op, LegalShuffle);
3113     }
3114 
3115     // Propagate undef/zero elements from LHS/RHS.
3116     for (unsigned i = 0; i != NumElts; ++i) {
3117       int M = ShuffleMask[i];
3118       if (M < 0) {
3119         KnownUndef.setBit(i);
3120       } else if (M < (int)NumElts) {
3121         if (UndefLHS[M])
3122           KnownUndef.setBit(i);
3123         if (ZeroLHS[M])
3124           KnownZero.setBit(i);
3125       } else {
3126         if (UndefRHS[M - NumElts])
3127           KnownUndef.setBit(i);
3128         if (ZeroRHS[M - NumElts])
3129           KnownZero.setBit(i);
3130       }
3131     }
3132     break;
3133   }
3134   case ISD::ANY_EXTEND_VECTOR_INREG:
3135   case ISD::SIGN_EXTEND_VECTOR_INREG:
3136   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3137     APInt SrcUndef, SrcZero;
3138     SDValue Src = Op.getOperand(0);
3139     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3140     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3141     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3142                                    Depth + 1))
3143       return true;
3144     KnownZero = SrcZero.zextOrTrunc(NumElts);
3145     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3146 
3147     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3148         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3149         DemandedSrcElts == 1) {
3150       // aext - if we just need the bottom element then we can bitcast.
3151       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3152     }
3153 
3154     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3155       // zext(undef) upper bits are guaranteed to be zero.
3156       if (DemandedElts.isSubsetOf(KnownUndef))
3157         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3158       KnownUndef.clearAllBits();
3159 
3160       // zext - if we just need the bottom element then we can mask:
3161       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3162       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3163           Op->isOnlyUserOf(Src.getNode()) &&
3164           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3165         SDLoc DL(Op);
3166         EVT SrcVT = Src.getValueType();
3167         EVT SrcSVT = SrcVT.getScalarType();
3168         SmallVector<SDValue> MaskElts;
3169         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3170         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3171         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3172         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3173                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3174           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3175           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3176         }
3177       }
3178     }
3179     break;
3180   }
3181 
3182   // TODO: There are more binop opcodes that could be handled here - MIN,
3183   // MAX, saturated math, etc.
3184   case ISD::ADD: {
3185     SDValue Op0 = Op.getOperand(0);
3186     SDValue Op1 = Op.getOperand(1);
3187     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3188       APInt UndefLHS, ZeroLHS;
3189       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3190                                      Depth + 1, /*AssumeSingleUse*/ true))
3191         return true;
3192     }
3193     LLVM_FALLTHROUGH;
3194   }
3195   case ISD::OR:
3196   case ISD::XOR:
3197   case ISD::SUB:
3198   case ISD::FADD:
3199   case ISD::FSUB:
3200   case ISD::FMUL:
3201   case ISD::FDIV:
3202   case ISD::FREM: {
3203     SDValue Op0 = Op.getOperand(0);
3204     SDValue Op1 = Op.getOperand(1);
3205 
3206     APInt UndefRHS, ZeroRHS;
3207     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3208                                    Depth + 1))
3209       return true;
3210     APInt UndefLHS, ZeroLHS;
3211     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3212                                    Depth + 1))
3213       return true;
3214 
3215     KnownZero = ZeroLHS & ZeroRHS;
3216     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3217 
3218     // Attempt to avoid multi-use ops if we don't need anything from them.
3219     // TODO - use KnownUndef to relax the demandedelts?
3220     if (!DemandedElts.isAllOnes())
3221       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3222         return true;
3223     break;
3224   }
3225   case ISD::SHL:
3226   case ISD::SRL:
3227   case ISD::SRA:
3228   case ISD::ROTL:
3229   case ISD::ROTR: {
3230     SDValue Op0 = Op.getOperand(0);
3231     SDValue Op1 = Op.getOperand(1);
3232 
3233     APInt UndefRHS, ZeroRHS;
3234     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3235                                    Depth + 1))
3236       return true;
3237     APInt UndefLHS, ZeroLHS;
3238     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3239                                    Depth + 1))
3240       return true;
3241 
3242     KnownZero = ZeroLHS;
3243     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3244 
3245     // Attempt to avoid multi-use ops if we don't need anything from them.
3246     // TODO - use KnownUndef to relax the demandedelts?
3247     if (!DemandedElts.isAllOnes())
3248       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3249         return true;
3250     break;
3251   }
3252   case ISD::MUL:
3253   case ISD::AND: {
3254     SDValue Op0 = Op.getOperand(0);
3255     SDValue Op1 = Op.getOperand(1);
3256 
3257     APInt SrcUndef, SrcZero;
3258     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3259                                    Depth + 1))
3260       return true;
3261     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
3262                                    TLO, Depth + 1))
3263       return true;
3264 
3265     // If either side has a zero element, then the result element is zero, even
3266     // if the other is an UNDEF.
3267     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3268     // and then handle 'and' nodes with the rest of the binop opcodes.
3269     KnownZero |= SrcZero;
3270     KnownUndef &= SrcUndef;
3271     KnownUndef &= ~KnownZero;
3272 
3273     // Attempt to avoid multi-use ops if we don't need anything from them.
3274     // TODO - use KnownUndef to relax the demandedelts?
3275     if (!DemandedElts.isAllOnes())
3276       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3277         return true;
3278     break;
3279   }
3280   case ISD::TRUNCATE:
3281   case ISD::SIGN_EXTEND:
3282   case ISD::ZERO_EXTEND:
3283     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3284                                    KnownZero, TLO, Depth + 1))
3285       return true;
3286 
3287     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3288       // zext(undef) upper bits are guaranteed to be zero.
3289       if (DemandedElts.isSubsetOf(KnownUndef))
3290         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3291       KnownUndef.clearAllBits();
3292     }
3293     break;
3294   default: {
3295     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3296       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3297                                                   KnownZero, TLO, Depth))
3298         return true;
3299     } else {
3300       KnownBits Known;
3301       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3302       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3303                                TLO, Depth, AssumeSingleUse))
3304         return true;
3305     }
3306     break;
3307   }
3308   }
3309   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3310 
3311   // Constant fold all undef cases.
3312   // TODO: Handle zero cases as well.
3313   if (DemandedElts.isSubsetOf(KnownUndef))
3314     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3315 
3316   return false;
3317 }
3318 
3319 /// Determine which of the bits specified in Mask are known to be either zero or
3320 /// one and return them in the Known.
3321 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3322                                                    KnownBits &Known,
3323                                                    const APInt &DemandedElts,
3324                                                    const SelectionDAG &DAG,
3325                                                    unsigned Depth) const {
3326   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3327           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3328           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3329           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3330          "Should use MaskedValueIsZero if you don't know whether Op"
3331          " is a target node!");
3332   Known.resetAll();
3333 }
3334 
3335 void TargetLowering::computeKnownBitsForTargetInstr(
3336     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3337     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3338     unsigned Depth) const {
3339   Known.resetAll();
3340 }
3341 
3342 void TargetLowering::computeKnownBitsForFrameIndex(
3343   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3344   // The low bits are known zero if the pointer is aligned.
3345   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3346 }
3347 
3348 Align TargetLowering::computeKnownAlignForTargetInstr(
3349   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3350   unsigned Depth) const {
3351   return Align(1);
3352 }
3353 
3354 /// This method can be implemented by targets that want to expose additional
3355 /// information about sign bits to the DAG Combiner.
3356 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3357                                                          const APInt &,
3358                                                          const SelectionDAG &,
3359                                                          unsigned Depth) const {
3360   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3361           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3362           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3363           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3364          "Should use ComputeNumSignBits if you don't know whether Op"
3365          " is a target node!");
3366   return 1;
3367 }
3368 
3369 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3370   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3371   const MachineRegisterInfo &MRI, unsigned Depth) const {
3372   return 1;
3373 }
3374 
3375 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3376     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3377     TargetLoweringOpt &TLO, unsigned Depth) const {
3378   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3379           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3380           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3381           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3382          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3383          " is a target node!");
3384   return false;
3385 }
3386 
3387 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3388     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3389     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3390   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3391           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3392           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3393           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3394          "Should use SimplifyDemandedBits if you don't know whether Op"
3395          " is a target node!");
3396   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3397   return false;
3398 }
3399 
3400 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3401     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3402     SelectionDAG &DAG, unsigned Depth) const {
3403   assert(
3404       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3405        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3406        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3407        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3408       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3409       " is a target node!");
3410   return SDValue();
3411 }
3412 
3413 SDValue
3414 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3415                                         SDValue N1, MutableArrayRef<int> Mask,
3416                                         SelectionDAG &DAG) const {
3417   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3418   if (!LegalMask) {
3419     std::swap(N0, N1);
3420     ShuffleVectorSDNode::commuteMask(Mask);
3421     LegalMask = isShuffleMaskLegal(Mask, VT);
3422   }
3423 
3424   if (!LegalMask)
3425     return SDValue();
3426 
3427   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3428 }
3429 
3430 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3431   return nullptr;
3432 }
3433 
3434 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3435     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3436     bool PoisonOnly, unsigned Depth) const {
3437   assert(
3438       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3439        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3440        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3441        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3442       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3443       " is a target node!");
3444   return false;
3445 }
3446 
3447 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3448                                                   const SelectionDAG &DAG,
3449                                                   bool SNaN,
3450                                                   unsigned Depth) const {
3451   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3452           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3453           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3454           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3455          "Should use isKnownNeverNaN if you don't know whether Op"
3456          " is a target node!");
3457   return false;
3458 }
3459 
3460 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3461                                                const APInt &DemandedElts,
3462                                                APInt &UndefElts,
3463                                                unsigned Depth) const {
3464   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3465           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3466           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3467           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3468          "Should use isSplatValue if you don't know whether Op"
3469          " is a target node!");
3470   return false;
3471 }
3472 
3473 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3474 // work with truncating build vectors and vectors with elements of less than
3475 // 8 bits.
3476 bool TargetLowering::isConstTrueVal(SDValue N) const {
3477   if (!N)
3478     return false;
3479 
3480   unsigned EltWidth;
3481   APInt CVal;
3482   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3483                                                /*AllowTruncation=*/true)) {
3484     CVal = CN->getAPIntValue();
3485     EltWidth = N.getValueType().getScalarSizeInBits();
3486   } else
3487     return false;
3488 
3489   // If this is a truncating splat, truncate the splat value.
3490   // Otherwise, we may fail to match the expected values below.
3491   if (EltWidth < CVal.getBitWidth())
3492     CVal = CVal.trunc(EltWidth);
3493 
3494   switch (getBooleanContents(N.getValueType())) {
3495   case UndefinedBooleanContent:
3496     return CVal[0];
3497   case ZeroOrOneBooleanContent:
3498     return CVal.isOne();
3499   case ZeroOrNegativeOneBooleanContent:
3500     return CVal.isAllOnes();
3501   }
3502 
3503   llvm_unreachable("Invalid boolean contents");
3504 }
3505 
3506 bool TargetLowering::isConstFalseVal(SDValue N) const {
3507   if (!N)
3508     return false;
3509 
3510   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3511   if (!CN) {
3512     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3513     if (!BV)
3514       return false;
3515 
3516     // Only interested in constant splats, we don't care about undef
3517     // elements in identifying boolean constants and getConstantSplatNode
3518     // returns NULL if all ops are undef;
3519     CN = BV->getConstantSplatNode();
3520     if (!CN)
3521       return false;
3522   }
3523 
3524   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3525     return !CN->getAPIntValue()[0];
3526 
3527   return CN->isZero();
3528 }
3529 
3530 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3531                                        bool SExt) const {
3532   if (VT == MVT::i1)
3533     return N->isOne();
3534 
3535   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3536   switch (Cnt) {
3537   case TargetLowering::ZeroOrOneBooleanContent:
3538     // An extended value of 1 is always true, unless its original type is i1,
3539     // in which case it will be sign extended to -1.
3540     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3541   case TargetLowering::UndefinedBooleanContent:
3542   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3543     return N->isAllOnes() && SExt;
3544   }
3545   llvm_unreachable("Unexpected enumeration.");
3546 }
3547 
3548 /// This helper function of SimplifySetCC tries to optimize the comparison when
3549 /// either operand of the SetCC node is a bitwise-and instruction.
3550 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3551                                          ISD::CondCode Cond, const SDLoc &DL,
3552                                          DAGCombinerInfo &DCI) const {
3553   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3554     std::swap(N0, N1);
3555 
3556   SelectionDAG &DAG = DCI.DAG;
3557   EVT OpVT = N0.getValueType();
3558   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3559       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3560     return SDValue();
3561 
3562   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3563   // iff everything but LSB is known zero:
3564   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3565       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3566        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3567     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3568     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3569     if (DAG.MaskedValueIsZero(N0, UpperBits))
3570       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3571   }
3572 
3573   // Match these patterns in any of their permutations:
3574   // (X & Y) == Y
3575   // (X & Y) != Y
3576   SDValue X, Y;
3577   if (N0.getOperand(0) == N1) {
3578     X = N0.getOperand(1);
3579     Y = N0.getOperand(0);
3580   } else if (N0.getOperand(1) == N1) {
3581     X = N0.getOperand(0);
3582     Y = N0.getOperand(1);
3583   } else {
3584     return SDValue();
3585   }
3586 
3587   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3588   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3589     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3590     // Note that where Y is variable and is known to have at most one bit set
3591     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3592     // equivalent when Y == 0.
3593     assert(OpVT.isInteger());
3594     Cond = ISD::getSetCCInverse(Cond, OpVT);
3595     if (DCI.isBeforeLegalizeOps() ||
3596         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3597       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3598   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3599     // If the target supports an 'and-not' or 'and-complement' logic operation,
3600     // try to use that to make a comparison operation more efficient.
3601     // But don't do this transform if the mask is a single bit because there are
3602     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3603     // 'rlwinm' on PPC).
3604 
3605     // Bail out if the compare operand that we want to turn into a zero is
3606     // already a zero (otherwise, infinite loop).
3607     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3608     if (YConst && YConst->isZero())
3609       return SDValue();
3610 
3611     // Transform this into: ~X & Y == 0.
3612     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3613     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3614     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3615   }
3616 
3617   return SDValue();
3618 }
3619 
3620 /// There are multiple IR patterns that could be checking whether certain
3621 /// truncation of a signed number would be lossy or not. The pattern which is
3622 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3623 /// We are looking for the following pattern: (KeptBits is a constant)
3624 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3625 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3626 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3627 /// We will unfold it into the natural trunc+sext pattern:
3628 ///   ((%x << C) a>> C) dstcond %x
3629 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3630 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3631     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3632     const SDLoc &DL) const {
3633   // We must be comparing with a constant.
3634   ConstantSDNode *C1;
3635   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3636     return SDValue();
3637 
3638   // N0 should be:  add %x, (1 << (KeptBits-1))
3639   if (N0->getOpcode() != ISD::ADD)
3640     return SDValue();
3641 
3642   // And we must be 'add'ing a constant.
3643   ConstantSDNode *C01;
3644   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3645     return SDValue();
3646 
3647   SDValue X = N0->getOperand(0);
3648   EVT XVT = X.getValueType();
3649 
3650   // Validate constants ...
3651 
3652   APInt I1 = C1->getAPIntValue();
3653 
3654   ISD::CondCode NewCond;
3655   if (Cond == ISD::CondCode::SETULT) {
3656     NewCond = ISD::CondCode::SETEQ;
3657   } else if (Cond == ISD::CondCode::SETULE) {
3658     NewCond = ISD::CondCode::SETEQ;
3659     // But need to 'canonicalize' the constant.
3660     I1 += 1;
3661   } else if (Cond == ISD::CondCode::SETUGT) {
3662     NewCond = ISD::CondCode::SETNE;
3663     // But need to 'canonicalize' the constant.
3664     I1 += 1;
3665   } else if (Cond == ISD::CondCode::SETUGE) {
3666     NewCond = ISD::CondCode::SETNE;
3667   } else
3668     return SDValue();
3669 
3670   APInt I01 = C01->getAPIntValue();
3671 
3672   auto checkConstants = [&I1, &I01]() -> bool {
3673     // Both of them must be power-of-two, and the constant from setcc is bigger.
3674     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3675   };
3676 
3677   if (checkConstants()) {
3678     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3679   } else {
3680     // What if we invert constants? (and the target predicate)
3681     I1.negate();
3682     I01.negate();
3683     assert(XVT.isInteger());
3684     NewCond = getSetCCInverse(NewCond, XVT);
3685     if (!checkConstants())
3686       return SDValue();
3687     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3688   }
3689 
3690   // They are power-of-two, so which bit is set?
3691   const unsigned KeptBits = I1.logBase2();
3692   const unsigned KeptBitsMinusOne = I01.logBase2();
3693 
3694   // Magic!
3695   if (KeptBits != (KeptBitsMinusOne + 1))
3696     return SDValue();
3697   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3698 
3699   // We don't want to do this in every single case.
3700   SelectionDAG &DAG = DCI.DAG;
3701   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3702           XVT, KeptBits))
3703     return SDValue();
3704 
3705   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3706   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3707 
3708   // Unfold into:  ((%x << C) a>> C) cond %x
3709   // Where 'cond' will be either 'eq' or 'ne'.
3710   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3711   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3712   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3713   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3714 
3715   return T2;
3716 }
3717 
3718 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3719 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3720     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3721     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3722   assert(isConstOrConstSplat(N1C) &&
3723          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3724          "Should be a comparison with 0.");
3725   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3726          "Valid only for [in]equality comparisons.");
3727 
3728   unsigned NewShiftOpcode;
3729   SDValue X, C, Y;
3730 
3731   SelectionDAG &DAG = DCI.DAG;
3732   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3733 
3734   // Look for '(C l>>/<< Y)'.
3735   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3736     // The shift should be one-use.
3737     if (!V.hasOneUse())
3738       return false;
3739     unsigned OldShiftOpcode = V.getOpcode();
3740     switch (OldShiftOpcode) {
3741     case ISD::SHL:
3742       NewShiftOpcode = ISD::SRL;
3743       break;
3744     case ISD::SRL:
3745       NewShiftOpcode = ISD::SHL;
3746       break;
3747     default:
3748       return false; // must be a logical shift.
3749     }
3750     // We should be shifting a constant.
3751     // FIXME: best to use isConstantOrConstantVector().
3752     C = V.getOperand(0);
3753     ConstantSDNode *CC =
3754         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3755     if (!CC)
3756       return false;
3757     Y = V.getOperand(1);
3758 
3759     ConstantSDNode *XC =
3760         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3761     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3762         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3763   };
3764 
3765   // LHS of comparison should be an one-use 'and'.
3766   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3767     return SDValue();
3768 
3769   X = N0.getOperand(0);
3770   SDValue Mask = N0.getOperand(1);
3771 
3772   // 'and' is commutative!
3773   if (!Match(Mask)) {
3774     std::swap(X, Mask);
3775     if (!Match(Mask))
3776       return SDValue();
3777   }
3778 
3779   EVT VT = X.getValueType();
3780 
3781   // Produce:
3782   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3783   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3784   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3785   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3786   return T2;
3787 }
3788 
3789 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3790 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3791 /// handle the commuted versions of these patterns.
3792 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3793                                            ISD::CondCode Cond, const SDLoc &DL,
3794                                            DAGCombinerInfo &DCI) const {
3795   unsigned BOpcode = N0.getOpcode();
3796   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3797          "Unexpected binop");
3798   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3799 
3800   // (X + Y) == X --> Y == 0
3801   // (X - Y) == X --> Y == 0
3802   // (X ^ Y) == X --> Y == 0
3803   SelectionDAG &DAG = DCI.DAG;
3804   EVT OpVT = N0.getValueType();
3805   SDValue X = N0.getOperand(0);
3806   SDValue Y = N0.getOperand(1);
3807   if (X == N1)
3808     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3809 
3810   if (Y != N1)
3811     return SDValue();
3812 
3813   // (X + Y) == Y --> X == 0
3814   // (X ^ Y) == Y --> X == 0
3815   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3816     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3817 
3818   // The shift would not be valid if the operands are boolean (i1).
3819   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3820     return SDValue();
3821 
3822   // (X - Y) == Y --> X == Y << 1
3823   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3824                                  !DCI.isBeforeLegalize());
3825   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3826   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3827   if (!DCI.isCalledByLegalizer())
3828     DCI.AddToWorklist(YShl1.getNode());
3829   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3830 }
3831 
3832 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3833                                       SDValue N0, const APInt &C1,
3834                                       ISD::CondCode Cond, const SDLoc &dl,
3835                                       SelectionDAG &DAG) {
3836   // Look through truncs that don't change the value of a ctpop.
3837   // FIXME: Add vector support? Need to be careful with setcc result type below.
3838   SDValue CTPOP = N0;
3839   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3840       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3841     CTPOP = N0.getOperand(0);
3842 
3843   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3844     return SDValue();
3845 
3846   EVT CTVT = CTPOP.getValueType();
3847   SDValue CTOp = CTPOP.getOperand(0);
3848 
3849   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3850   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3851   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3852     return SDValue();
3853 
3854   // (ctpop x) u< 2 -> (x & x-1) == 0
3855   // (ctpop x) u> 1 -> (x & x-1) != 0
3856   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3857     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3858     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3859       return SDValue();
3860     if (C1 == 0 && (Cond == ISD::SETULT))
3861       return SDValue(); // This is handled elsewhere.
3862 
3863     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3864 
3865     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3866     SDValue Result = CTOp;
3867     for (unsigned i = 0; i < Passes; i++) {
3868       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3869       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3870     }
3871     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3872     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3873   }
3874 
3875   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3876   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3877     // For scalars, keep CTPOP if it is legal or custom.
3878     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3879       return SDValue();
3880     // This is based on X86's custom lowering for CTPOP which produces more
3881     // instructions than the expansion here.
3882 
3883     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3884     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3885     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3886     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3887     assert(CTVT.isInteger());
3888     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3889     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3890     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3891     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3892     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3893     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3894     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3895   }
3896 
3897   return SDValue();
3898 }
3899 
3900 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
3901                                    ISD::CondCode Cond, const SDLoc &dl,
3902                                    SelectionDAG &DAG) {
3903   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3904     return SDValue();
3905 
3906   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3907   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
3908     return SDValue();
3909 
3910   auto getRotateSource = [](SDValue X) {
3911     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
3912       return X.getOperand(0);
3913     return SDValue();
3914   };
3915 
3916   // Peek through a rotated value compared against 0 or -1:
3917   // (rot X, Y) == 0/-1 --> X == 0/-1
3918   // (rot X, Y) != 0/-1 --> X != 0/-1
3919   if (SDValue R = getRotateSource(N0))
3920     return DAG.getSetCC(dl, VT, R, N1, Cond);
3921 
3922   // Peek through an 'or' of a rotated value compared against 0:
3923   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
3924   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
3925   //
3926   // TODO: Add the 'and' with -1 sibling.
3927   // TODO: Recurse through a series of 'or' ops to find the rotate.
3928   EVT OpVT = N0.getValueType();
3929   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
3930     if (SDValue R = getRotateSource(N0.getOperand(0))) {
3931       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
3932       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3933     }
3934     if (SDValue R = getRotateSource(N0.getOperand(1))) {
3935       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
3936       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3937     }
3938   }
3939 
3940   return SDValue();
3941 }
3942 
3943 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
3944                                         ISD::CondCode Cond, const SDLoc &dl,
3945                                         SelectionDAG &DAG) {
3946   // If we are testing for all-bits-clear, we might be able to do that with
3947   // less shifting since bit-order does not matter.
3948   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3949     return SDValue();
3950 
3951   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3952   if (!C1 || !C1->isZero())
3953     return SDValue();
3954 
3955   if (!N0.hasOneUse() ||
3956       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
3957     return SDValue();
3958 
3959   unsigned BitWidth = N0.getScalarValueSizeInBits();
3960   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
3961   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
3962     return SDValue();
3963 
3964   // Canonicalize fshr as fshl to reduce pattern-matching.
3965   unsigned ShAmt = ShAmtC->getZExtValue();
3966   if (N0.getOpcode() == ISD::FSHR)
3967     ShAmt = BitWidth - ShAmt;
3968 
3969   // Match an 'or' with a specific operand 'Other' in either commuted variant.
3970   SDValue X, Y;
3971   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
3972     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
3973       return false;
3974     if (Or.getOperand(0) == Other) {
3975       X = Or.getOperand(0);
3976       Y = Or.getOperand(1);
3977       return true;
3978     }
3979     if (Or.getOperand(1) == Other) {
3980       X = Or.getOperand(1);
3981       Y = Or.getOperand(0);
3982       return true;
3983     }
3984     return false;
3985   };
3986 
3987   EVT OpVT = N0.getValueType();
3988   EVT ShAmtVT = N0.getOperand(2).getValueType();
3989   SDValue F0 = N0.getOperand(0);
3990   SDValue F1 = N0.getOperand(1);
3991   if (matchOr(F0, F1)) {
3992     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
3993     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
3994     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
3995     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
3996     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3997   }
3998   if (matchOr(F1, F0)) {
3999     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4000     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4001     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4002     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4003     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4004   }
4005 
4006   return SDValue();
4007 }
4008 
4009 /// Try to simplify a setcc built with the specified operands and cc. If it is
4010 /// unable to simplify it, return a null SDValue.
4011 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
4012                                       ISD::CondCode Cond, bool foldBooleans,
4013                                       DAGCombinerInfo &DCI,
4014                                       const SDLoc &dl) const {
4015   SelectionDAG &DAG = DCI.DAG;
4016   const DataLayout &Layout = DAG.getDataLayout();
4017   EVT OpVT = N0.getValueType();
4018 
4019   // Constant fold or commute setcc.
4020   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4021     return Fold;
4022 
4023   bool N0ConstOrSplat =
4024       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4025   bool N1ConstOrSplat =
4026       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4027 
4028   // Ensure that the constant occurs on the RHS and fold constant comparisons.
4029   // TODO: Handle non-splat vector constants. All undef causes trouble.
4030   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4031   // infinite loop here when we encounter one.
4032   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4033   if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) &&
4034       (DCI.isBeforeLegalizeOps() ||
4035        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4036     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4037 
4038   // If we have a subtract with the same 2 non-constant operands as this setcc
4039   // -- but in reverse order -- then try to commute the operands of this setcc
4040   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4041   // instruction on some targets.
4042   if (!N0ConstOrSplat && !N1ConstOrSplat &&
4043       (DCI.isBeforeLegalizeOps() ||
4044        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4045       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4046       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4047     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4048 
4049   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4050     return V;
4051 
4052   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4053     return V;
4054 
4055   if (auto *N1C = isConstOrConstSplat(N1)) {
4056     const APInt &C1 = N1C->getAPIntValue();
4057 
4058     // Optimize some CTPOP cases.
4059     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4060       return V;
4061 
4062     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4063     // equality comparison, then we're just comparing whether X itself is
4064     // zero.
4065     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4066         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4067         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
4068       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4069         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4070             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4071           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4072             // (srl (ctlz x), 5) == 0  -> X != 0
4073             // (srl (ctlz x), 5) != 1  -> X != 0
4074             Cond = ISD::SETNE;
4075           } else {
4076             // (srl (ctlz x), 5) != 0  -> X == 0
4077             // (srl (ctlz x), 5) == 1  -> X == 0
4078             Cond = ISD::SETEQ;
4079           }
4080           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4081           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4082                               Cond);
4083         }
4084       }
4085     }
4086   }
4087 
4088   // FIXME: Support vectors.
4089   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4090     const APInt &C1 = N1C->getAPIntValue();
4091 
4092     // (zext x) == C --> x == (trunc C)
4093     // (sext x) == C --> x == (trunc C)
4094     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4095         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4096       unsigned MinBits = N0.getValueSizeInBits();
4097       SDValue PreExt;
4098       bool Signed = false;
4099       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4100         // ZExt
4101         MinBits = N0->getOperand(0).getValueSizeInBits();
4102         PreExt = N0->getOperand(0);
4103       } else if (N0->getOpcode() == ISD::AND) {
4104         // DAGCombine turns costly ZExts into ANDs
4105         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4106           if ((C->getAPIntValue()+1).isPowerOf2()) {
4107             MinBits = C->getAPIntValue().countTrailingOnes();
4108             PreExt = N0->getOperand(0);
4109           }
4110       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4111         // SExt
4112         MinBits = N0->getOperand(0).getValueSizeInBits();
4113         PreExt = N0->getOperand(0);
4114         Signed = true;
4115       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4116         // ZEXTLOAD / SEXTLOAD
4117         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4118           MinBits = LN0->getMemoryVT().getSizeInBits();
4119           PreExt = N0;
4120         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4121           Signed = true;
4122           MinBits = LN0->getMemoryVT().getSizeInBits();
4123           PreExt = N0;
4124         }
4125       }
4126 
4127       // Figure out how many bits we need to preserve this constant.
4128       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
4129 
4130       // Make sure we're not losing bits from the constant.
4131       if (MinBits > 0 &&
4132           MinBits < C1.getBitWidth() &&
4133           MinBits >= ReqdBits) {
4134         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4135         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4136           // Will get folded away.
4137           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4138           if (MinBits == 1 && C1 == 1)
4139             // Invert the condition.
4140             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4141                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4142           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4143           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4144         }
4145 
4146         // If truncating the setcc operands is not desirable, we can still
4147         // simplify the expression in some cases:
4148         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4149         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4150         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4151         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4152         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4153         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4154         SDValue TopSetCC = N0->getOperand(0);
4155         unsigned N0Opc = N0->getOpcode();
4156         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4157         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4158             TopSetCC.getOpcode() == ISD::SETCC &&
4159             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4160             (isConstFalseVal(N1) ||
4161              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4162 
4163           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4164                          (!N1C->isZero() && Cond == ISD::SETNE);
4165 
4166           if (!Inverse)
4167             return TopSetCC;
4168 
4169           ISD::CondCode InvCond = ISD::getSetCCInverse(
4170               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4171               TopSetCC.getOperand(0).getValueType());
4172           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4173                                       TopSetCC.getOperand(1),
4174                                       InvCond);
4175         }
4176       }
4177     }
4178 
4179     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4180     // equality or unsigned, and all 1 bits of the const are in the same
4181     // partial word, see if we can shorten the load.
4182     if (DCI.isBeforeLegalize() &&
4183         !ISD::isSignedIntSetCC(Cond) &&
4184         N0.getOpcode() == ISD::AND && C1 == 0 &&
4185         N0.getNode()->hasOneUse() &&
4186         isa<LoadSDNode>(N0.getOperand(0)) &&
4187         N0.getOperand(0).getNode()->hasOneUse() &&
4188         isa<ConstantSDNode>(N0.getOperand(1))) {
4189       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
4190       APInt bestMask;
4191       unsigned bestWidth = 0, bestOffset = 0;
4192       if (Lod->isSimple() && Lod->isUnindexed()) {
4193         unsigned origWidth = N0.getValueSizeInBits();
4194         unsigned maskWidth = origWidth;
4195         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4196         // 8 bits, but have to be careful...
4197         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4198           origWidth = Lod->getMemoryVT().getSizeInBits();
4199         const APInt &Mask = N0.getConstantOperandAPInt(1);
4200         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
4201           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4202           for (unsigned offset=0; offset<origWidth/width; offset++) {
4203             if (Mask.isSubsetOf(newMask)) {
4204               if (Layout.isLittleEndian())
4205                 bestOffset = (uint64_t)offset * (width/8);
4206               else
4207                 bestOffset = (origWidth/width - offset - 1) * (width/8);
4208               bestMask = Mask.lshr(offset * (width/8) * 8);
4209               bestWidth = width;
4210               break;
4211             }
4212             newMask <<= width;
4213           }
4214         }
4215       }
4216       if (bestWidth) {
4217         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4218         if (newVT.isRound() &&
4219             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
4220           SDValue Ptr = Lod->getBasePtr();
4221           if (bestOffset != 0)
4222             Ptr =
4223                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
4224           SDValue NewLoad =
4225               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4226                           Lod->getPointerInfo().getWithOffset(bestOffset),
4227                           Lod->getOriginalAlign());
4228           return DAG.getSetCC(dl, VT,
4229                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4230                                       DAG.getConstant(bestMask.trunc(bestWidth),
4231                                                       dl, newVT)),
4232                               DAG.getConstant(0LL, dl, newVT), Cond);
4233         }
4234       }
4235     }
4236 
4237     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4238     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4239       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4240 
4241       // If the comparison constant has bits in the upper part, the
4242       // zero-extended value could never match.
4243       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4244                                               C1.getBitWidth() - InSize))) {
4245         switch (Cond) {
4246         case ISD::SETUGT:
4247         case ISD::SETUGE:
4248         case ISD::SETEQ:
4249           return DAG.getConstant(0, dl, VT);
4250         case ISD::SETULT:
4251         case ISD::SETULE:
4252         case ISD::SETNE:
4253           return DAG.getConstant(1, dl, VT);
4254         case ISD::SETGT:
4255         case ISD::SETGE:
4256           // True if the sign bit of C1 is set.
4257           return DAG.getConstant(C1.isNegative(), dl, VT);
4258         case ISD::SETLT:
4259         case ISD::SETLE:
4260           // True if the sign bit of C1 isn't set.
4261           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4262         default:
4263           break;
4264         }
4265       }
4266 
4267       // Otherwise, we can perform the comparison with the low bits.
4268       switch (Cond) {
4269       case ISD::SETEQ:
4270       case ISD::SETNE:
4271       case ISD::SETUGT:
4272       case ISD::SETUGE:
4273       case ISD::SETULT:
4274       case ISD::SETULE: {
4275         EVT newVT = N0.getOperand(0).getValueType();
4276         if (DCI.isBeforeLegalizeOps() ||
4277             (isOperationLegal(ISD::SETCC, newVT) &&
4278              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4279           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4280           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4281 
4282           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4283                                           NewConst, Cond);
4284           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4285         }
4286         break;
4287       }
4288       default:
4289         break; // todo, be more careful with signed comparisons
4290       }
4291     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4292                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4293                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4294                                       OpVT)) {
4295       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4296       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4297       EVT ExtDstTy = N0.getValueType();
4298       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4299 
4300       // If the constant doesn't fit into the number of bits for the source of
4301       // the sign extension, it is impossible for both sides to be equal.
4302       if (C1.getMinSignedBits() > ExtSrcTyBits)
4303         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4304 
4305       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4306              ExtDstTy != ExtSrcTy && "Unexpected types!");
4307       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4308       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4309                                    DAG.getConstant(Imm, dl, ExtDstTy));
4310       if (!DCI.isCalledByLegalizer())
4311         DCI.AddToWorklist(ZextOp.getNode());
4312       // Otherwise, make this a use of a zext.
4313       return DAG.getSetCC(dl, VT, ZextOp,
4314                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4315     } else if ((N1C->isZero() || N1C->isOne()) &&
4316                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4317       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
4318       if (N0.getOpcode() == ISD::SETCC &&
4319           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4320           (N0.getValueType() == MVT::i1 ||
4321            getBooleanContents(N0.getOperand(0).getValueType()) ==
4322                        ZeroOrOneBooleanContent)) {
4323         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4324         if (TrueWhenTrue)
4325           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4326         // Invert the condition.
4327         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4328         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4329         if (DCI.isBeforeLegalizeOps() ||
4330             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4331           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4332       }
4333 
4334       if ((N0.getOpcode() == ISD::XOR ||
4335            (N0.getOpcode() == ISD::AND &&
4336             N0.getOperand(0).getOpcode() == ISD::XOR &&
4337             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4338           isOneConstant(N0.getOperand(1))) {
4339         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4340         // can only do this if the top bits are known zero.
4341         unsigned BitWidth = N0.getValueSizeInBits();
4342         if (DAG.MaskedValueIsZero(N0,
4343                                   APInt::getHighBitsSet(BitWidth,
4344                                                         BitWidth-1))) {
4345           // Okay, get the un-inverted input value.
4346           SDValue Val;
4347           if (N0.getOpcode() == ISD::XOR) {
4348             Val = N0.getOperand(0);
4349           } else {
4350             assert(N0.getOpcode() == ISD::AND &&
4351                     N0.getOperand(0).getOpcode() == ISD::XOR);
4352             // ((X^1)&1)^1 -> X & 1
4353             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4354                               N0.getOperand(0).getOperand(0),
4355                               N0.getOperand(1));
4356           }
4357 
4358           return DAG.getSetCC(dl, VT, Val, N1,
4359                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4360         }
4361       } else if (N1C->isOne()) {
4362         SDValue Op0 = N0;
4363         if (Op0.getOpcode() == ISD::TRUNCATE)
4364           Op0 = Op0.getOperand(0);
4365 
4366         if ((Op0.getOpcode() == ISD::XOR) &&
4367             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4368             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4369           SDValue XorLHS = Op0.getOperand(0);
4370           SDValue XorRHS = Op0.getOperand(1);
4371           // Ensure that the input setccs return an i1 type or 0/1 value.
4372           if (Op0.getValueType() == MVT::i1 ||
4373               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4374                       ZeroOrOneBooleanContent &&
4375                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4376                         ZeroOrOneBooleanContent)) {
4377             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4378             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4379             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4380           }
4381         }
4382         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4383           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4384           if (Op0.getValueType().bitsGT(VT))
4385             Op0 = DAG.getNode(ISD::AND, dl, VT,
4386                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4387                           DAG.getConstant(1, dl, VT));
4388           else if (Op0.getValueType().bitsLT(VT))
4389             Op0 = DAG.getNode(ISD::AND, dl, VT,
4390                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4391                         DAG.getConstant(1, dl, VT));
4392 
4393           return DAG.getSetCC(dl, VT, Op0,
4394                               DAG.getConstant(0, dl, Op0.getValueType()),
4395                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4396         }
4397         if (Op0.getOpcode() == ISD::AssertZext &&
4398             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4399           return DAG.getSetCC(dl, VT, Op0,
4400                               DAG.getConstant(0, dl, Op0.getValueType()),
4401                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4402       }
4403     }
4404 
4405     // Given:
4406     //   icmp eq/ne (urem %x, %y), 0
4407     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4408     //   icmp eq/ne %x, 0
4409     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4410         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4411       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4412       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4413       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4414         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4415     }
4416 
4417     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4418     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4419     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4420         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4421         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4422         N1C && N1C->isAllOnes()) {
4423       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4424                           DAG.getConstant(0, dl, OpVT),
4425                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4426     }
4427 
4428     if (SDValue V =
4429             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4430       return V;
4431   }
4432 
4433   // These simplifications apply to splat vectors as well.
4434   // TODO: Handle more splat vector cases.
4435   if (auto *N1C = isConstOrConstSplat(N1)) {
4436     const APInt &C1 = N1C->getAPIntValue();
4437 
4438     APInt MinVal, MaxVal;
4439     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4440     if (ISD::isSignedIntSetCC(Cond)) {
4441       MinVal = APInt::getSignedMinValue(OperandBitSize);
4442       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4443     } else {
4444       MinVal = APInt::getMinValue(OperandBitSize);
4445       MaxVal = APInt::getMaxValue(OperandBitSize);
4446     }
4447 
4448     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4449     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4450       // X >= MIN --> true
4451       if (C1 == MinVal)
4452         return DAG.getBoolConstant(true, dl, VT, OpVT);
4453 
4454       if (!VT.isVector()) { // TODO: Support this for vectors.
4455         // X >= C0 --> X > (C0 - 1)
4456         APInt C = C1 - 1;
4457         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4458         if ((DCI.isBeforeLegalizeOps() ||
4459              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4460             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4461                                   isLegalICmpImmediate(C.getSExtValue())))) {
4462           return DAG.getSetCC(dl, VT, N0,
4463                               DAG.getConstant(C, dl, N1.getValueType()),
4464                               NewCC);
4465         }
4466       }
4467     }
4468 
4469     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4470       // X <= MAX --> true
4471       if (C1 == MaxVal)
4472         return DAG.getBoolConstant(true, dl, VT, OpVT);
4473 
4474       // X <= C0 --> X < (C0 + 1)
4475       if (!VT.isVector()) { // TODO: Support this for vectors.
4476         APInt C = C1 + 1;
4477         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4478         if ((DCI.isBeforeLegalizeOps() ||
4479              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4480             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4481                                   isLegalICmpImmediate(C.getSExtValue())))) {
4482           return DAG.getSetCC(dl, VT, N0,
4483                               DAG.getConstant(C, dl, N1.getValueType()),
4484                               NewCC);
4485         }
4486       }
4487     }
4488 
4489     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4490       if (C1 == MinVal)
4491         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4492 
4493       // TODO: Support this for vectors after legalize ops.
4494       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4495         // Canonicalize setlt X, Max --> setne X, Max
4496         if (C1 == MaxVal)
4497           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4498 
4499         // If we have setult X, 1, turn it into seteq X, 0
4500         if (C1 == MinVal+1)
4501           return DAG.getSetCC(dl, VT, N0,
4502                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4503                               ISD::SETEQ);
4504       }
4505     }
4506 
4507     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4508       if (C1 == MaxVal)
4509         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4510 
4511       // TODO: Support this for vectors after legalize ops.
4512       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4513         // Canonicalize setgt X, Min --> setne X, Min
4514         if (C1 == MinVal)
4515           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4516 
4517         // If we have setugt X, Max-1, turn it into seteq X, Max
4518         if (C1 == MaxVal-1)
4519           return DAG.getSetCC(dl, VT, N0,
4520                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4521                               ISD::SETEQ);
4522       }
4523     }
4524 
4525     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4526       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4527       if (C1.isZero())
4528         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4529                 VT, N0, N1, Cond, DCI, dl))
4530           return CC;
4531 
4532       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4533       // For example, when high 32-bits of i64 X are known clear:
4534       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4535       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4536       bool CmpZero = N1C->getAPIntValue().isZero();
4537       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4538       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4539         // Match or(lo,shl(hi,bw/2)) pattern.
4540         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4541           unsigned EltBits = V.getScalarValueSizeInBits();
4542           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4543             return false;
4544           SDValue LHS = V.getOperand(0);
4545           SDValue RHS = V.getOperand(1);
4546           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4547           // Unshifted element must have zero upperbits.
4548           if (RHS.getOpcode() == ISD::SHL &&
4549               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4550               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4551               DAG.MaskedValueIsZero(LHS, HiBits)) {
4552             Lo = LHS;
4553             Hi = RHS.getOperand(0);
4554             return true;
4555           }
4556           if (LHS.getOpcode() == ISD::SHL &&
4557               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4558               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4559               DAG.MaskedValueIsZero(RHS, HiBits)) {
4560             Lo = RHS;
4561             Hi = LHS.getOperand(0);
4562             return true;
4563           }
4564           return false;
4565         };
4566 
4567         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4568           unsigned EltBits = N0.getScalarValueSizeInBits();
4569           unsigned HalfBits = EltBits / 2;
4570           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4571           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4572           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4573           SDValue NewN0 =
4574               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4575           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4576           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4577         };
4578 
4579         SDValue Lo, Hi;
4580         if (IsConcat(N0, Lo, Hi))
4581           return MergeConcat(Lo, Hi);
4582 
4583         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4584           SDValue Lo0, Lo1, Hi0, Hi1;
4585           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4586               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4587             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4588                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4589           }
4590         }
4591       }
4592     }
4593 
4594     // If we have "setcc X, C0", check to see if we can shrink the immediate
4595     // by changing cc.
4596     // TODO: Support this for vectors after legalize ops.
4597     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4598       // SETUGT X, SINTMAX  -> SETLT X, 0
4599       // SETUGE X, SINTMIN -> SETLT X, 0
4600       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4601           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4602         return DAG.getSetCC(dl, VT, N0,
4603                             DAG.getConstant(0, dl, N1.getValueType()),
4604                             ISD::SETLT);
4605 
4606       // SETULT X, SINTMIN  -> SETGT X, -1
4607       // SETULE X, SINTMAX  -> SETGT X, -1
4608       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4609           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4610         return DAG.getSetCC(dl, VT, N0,
4611                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4612                             ISD::SETGT);
4613     }
4614   }
4615 
4616   // Back to non-vector simplifications.
4617   // TODO: Can we do these for vector splats?
4618   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4619     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4620     const APInt &C1 = N1C->getAPIntValue();
4621     EVT ShValTy = N0.getValueType();
4622 
4623     // Fold bit comparisons when we can. This will result in an
4624     // incorrect value when boolean false is negative one, unless
4625     // the bitsize is 1 in which case the false value is the same
4626     // in practice regardless of the representation.
4627     if ((VT.getSizeInBits() == 1 ||
4628          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4629         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4630         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4631         N0.getOpcode() == ISD::AND) {
4632       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4633         EVT ShiftTy =
4634             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4635         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4636           // Perform the xform if the AND RHS is a single bit.
4637           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4638           if (AndRHS->getAPIntValue().isPowerOf2() &&
4639               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4640             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4641                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4642                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4643           }
4644         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4645           // (X & 8) == 8  -->  (X & 8) >> 3
4646           // Perform the xform if C1 is a single bit.
4647           unsigned ShCt = C1.logBase2();
4648           if (C1.isPowerOf2() &&
4649               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4650             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4651                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4652                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4653           }
4654         }
4655       }
4656     }
4657 
4658     if (C1.getMinSignedBits() <= 64 &&
4659         !isLegalICmpImmediate(C1.getSExtValue())) {
4660       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4661       // (X & -256) == 256 -> (X >> 8) == 1
4662       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4663           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4664         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4665           const APInt &AndRHSC = AndRHS->getAPIntValue();
4666           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4667             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4668             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4669               SDValue Shift =
4670                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4671                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4672               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4673               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4674             }
4675           }
4676         }
4677       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4678                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4679         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4680         // X <  0x100000000 -> (X >> 32) <  1
4681         // X >= 0x100000000 -> (X >> 32) >= 1
4682         // X <= 0x0ffffffff -> (X >> 32) <  1
4683         // X >  0x0ffffffff -> (X >> 32) >= 1
4684         unsigned ShiftBits;
4685         APInt NewC = C1;
4686         ISD::CondCode NewCond = Cond;
4687         if (AdjOne) {
4688           ShiftBits = C1.countTrailingOnes();
4689           NewC = NewC + 1;
4690           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4691         } else {
4692           ShiftBits = C1.countTrailingZeros();
4693         }
4694         NewC.lshrInPlace(ShiftBits);
4695         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4696             isLegalICmpImmediate(NewC.getSExtValue()) &&
4697             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4698           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4699                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4700           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4701           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4702         }
4703       }
4704     }
4705   }
4706 
4707   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4708     auto *CFP = cast<ConstantFPSDNode>(N1);
4709     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4710 
4711     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4712     // constant if knowing that the operand is non-nan is enough.  We prefer to
4713     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4714     // materialize 0.0.
4715     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4716       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4717 
4718     // setcc (fneg x), C -> setcc swap(pred) x, -C
4719     if (N0.getOpcode() == ISD::FNEG) {
4720       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4721       if (DCI.isBeforeLegalizeOps() ||
4722           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4723         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4724         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4725       }
4726     }
4727 
4728     // If the condition is not legal, see if we can find an equivalent one
4729     // which is legal.
4730     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4731       // If the comparison was an awkward floating-point == or != and one of
4732       // the comparison operands is infinity or negative infinity, convert the
4733       // condition to a less-awkward <= or >=.
4734       if (CFP->getValueAPF().isInfinity()) {
4735         bool IsNegInf = CFP->getValueAPF().isNegative();
4736         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4737         switch (Cond) {
4738         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4739         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4740         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4741         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4742         default: break;
4743         }
4744         if (NewCond != ISD::SETCC_INVALID &&
4745             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4746           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4747       }
4748     }
4749   }
4750 
4751   if (N0 == N1) {
4752     // The sext(setcc()) => setcc() optimization relies on the appropriate
4753     // constant being emitted.
4754     assert(!N0.getValueType().isInteger() &&
4755            "Integer types should be handled by FoldSetCC");
4756 
4757     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4758     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4759     if (UOF == 2) // FP operators that are undefined on NaNs.
4760       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4761     if (UOF == unsigned(EqTrue))
4762       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4763     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4764     // if it is not already.
4765     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4766     if (NewCond != Cond &&
4767         (DCI.isBeforeLegalizeOps() ||
4768                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4769       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4770   }
4771 
4772   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4773       N0.getValueType().isInteger()) {
4774     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4775         N0.getOpcode() == ISD::XOR) {
4776       // Simplify (X+Y) == (X+Z) -->  Y == Z
4777       if (N0.getOpcode() == N1.getOpcode()) {
4778         if (N0.getOperand(0) == N1.getOperand(0))
4779           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4780         if (N0.getOperand(1) == N1.getOperand(1))
4781           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4782         if (isCommutativeBinOp(N0.getOpcode())) {
4783           // If X op Y == Y op X, try other combinations.
4784           if (N0.getOperand(0) == N1.getOperand(1))
4785             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4786                                 Cond);
4787           if (N0.getOperand(1) == N1.getOperand(0))
4788             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4789                                 Cond);
4790         }
4791       }
4792 
4793       // If RHS is a legal immediate value for a compare instruction, we need
4794       // to be careful about increasing register pressure needlessly.
4795       bool LegalRHSImm = false;
4796 
4797       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4798         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4799           // Turn (X+C1) == C2 --> X == C2-C1
4800           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
4801             return DAG.getSetCC(
4802                 dl, VT, N0.getOperand(0),
4803                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
4804                                 dl, N0.getValueType()),
4805                 Cond);
4806 
4807           // Turn (X^C1) == C2 --> X == C1^C2
4808           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
4809             return DAG.getSetCC(
4810                 dl, VT, N0.getOperand(0),
4811                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
4812                                 dl, N0.getValueType()),
4813                 Cond);
4814         }
4815 
4816         // Turn (C1-X) == C2 --> X == C1-C2
4817         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
4818           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
4819             return DAG.getSetCC(
4820                 dl, VT, N0.getOperand(1),
4821                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
4822                                 dl, N0.getValueType()),
4823                 Cond);
4824 
4825         // Could RHSC fold directly into a compare?
4826         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4827           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4828       }
4829 
4830       // (X+Y) == X --> Y == 0 and similar folds.
4831       // Don't do this if X is an immediate that can fold into a cmp
4832       // instruction and X+Y has other uses. It could be an induction variable
4833       // chain, and the transform would increase register pressure.
4834       if (!LegalRHSImm || N0.hasOneUse())
4835         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4836           return V;
4837     }
4838 
4839     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4840         N1.getOpcode() == ISD::XOR)
4841       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4842         return V;
4843 
4844     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4845       return V;
4846   }
4847 
4848   // Fold remainder of division by a constant.
4849   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4850       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4851     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4852 
4853     // When division is cheap or optimizing for minimum size,
4854     // fall through to DIVREM creation by skipping this fold.
4855     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4856       if (N0.getOpcode() == ISD::UREM) {
4857         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4858           return Folded;
4859       } else if (N0.getOpcode() == ISD::SREM) {
4860         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4861           return Folded;
4862       }
4863     }
4864   }
4865 
4866   // Fold away ALL boolean setcc's.
4867   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4868     SDValue Temp;
4869     switch (Cond) {
4870     default: llvm_unreachable("Unknown integer setcc!");
4871     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4872       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4873       N0 = DAG.getNOT(dl, Temp, OpVT);
4874       if (!DCI.isCalledByLegalizer())
4875         DCI.AddToWorklist(Temp.getNode());
4876       break;
4877     case ISD::SETNE:  // X != Y   -->  (X^Y)
4878       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4879       break;
4880     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4881     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4882       Temp = DAG.getNOT(dl, N0, OpVT);
4883       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4884       if (!DCI.isCalledByLegalizer())
4885         DCI.AddToWorklist(Temp.getNode());
4886       break;
4887     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4888     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4889       Temp = DAG.getNOT(dl, N1, OpVT);
4890       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4891       if (!DCI.isCalledByLegalizer())
4892         DCI.AddToWorklist(Temp.getNode());
4893       break;
4894     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4895     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4896       Temp = DAG.getNOT(dl, N0, OpVT);
4897       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4898       if (!DCI.isCalledByLegalizer())
4899         DCI.AddToWorklist(Temp.getNode());
4900       break;
4901     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4902     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4903       Temp = DAG.getNOT(dl, N1, OpVT);
4904       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4905       break;
4906     }
4907     if (VT.getScalarType() != MVT::i1) {
4908       if (!DCI.isCalledByLegalizer())
4909         DCI.AddToWorklist(N0.getNode());
4910       // FIXME: If running after legalize, we probably can't do this.
4911       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4912       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4913     }
4914     return N0;
4915   }
4916 
4917   // Could not fold it.
4918   return SDValue();
4919 }
4920 
4921 /// Returns true (and the GlobalValue and the offset) if the node is a
4922 /// GlobalAddress + offset.
4923 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4924                                     int64_t &Offset) const {
4925 
4926   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4927 
4928   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4929     GA = GASD->getGlobal();
4930     Offset += GASD->getOffset();
4931     return true;
4932   }
4933 
4934   if (N->getOpcode() == ISD::ADD) {
4935     SDValue N1 = N->getOperand(0);
4936     SDValue N2 = N->getOperand(1);
4937     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4938       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4939         Offset += V->getSExtValue();
4940         return true;
4941       }
4942     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4943       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4944         Offset += V->getSExtValue();
4945         return true;
4946       }
4947     }
4948   }
4949 
4950   return false;
4951 }
4952 
4953 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4954                                           DAGCombinerInfo &DCI) const {
4955   // Default implementation: no optimization.
4956   return SDValue();
4957 }
4958 
4959 //===----------------------------------------------------------------------===//
4960 //  Inline Assembler Implementation Methods
4961 //===----------------------------------------------------------------------===//
4962 
4963 TargetLowering::ConstraintType
4964 TargetLowering::getConstraintType(StringRef Constraint) const {
4965   unsigned S = Constraint.size();
4966 
4967   if (S == 1) {
4968     switch (Constraint[0]) {
4969     default: break;
4970     case 'r':
4971       return C_RegisterClass;
4972     case 'm': // memory
4973     case 'o': // offsetable
4974     case 'V': // not offsetable
4975       return C_Memory;
4976     case 'p': // Address.
4977       return C_Address;
4978     case 'n': // Simple Integer
4979     case 'E': // Floating Point Constant
4980     case 'F': // Floating Point Constant
4981       return C_Immediate;
4982     case 'i': // Simple Integer or Relocatable Constant
4983     case 's': // Relocatable Constant
4984     case 'X': // Allow ANY value.
4985     case 'I': // Target registers.
4986     case 'J':
4987     case 'K':
4988     case 'L':
4989     case 'M':
4990     case 'N':
4991     case 'O':
4992     case 'P':
4993     case '<':
4994     case '>':
4995       return C_Other;
4996     }
4997   }
4998 
4999   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5000     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5001       return C_Memory;
5002     return C_Register;
5003   }
5004   return C_Unknown;
5005 }
5006 
5007 /// Try to replace an X constraint, which matches anything, with another that
5008 /// has more specific requirements based on the type of the corresponding
5009 /// operand.
5010 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5011   if (ConstraintVT.isInteger())
5012     return "r";
5013   if (ConstraintVT.isFloatingPoint())
5014     return "f"; // works for many targets
5015   return nullptr;
5016 }
5017 
5018 SDValue TargetLowering::LowerAsmOutputForConstraint(
5019     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
5020     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5021   return SDValue();
5022 }
5023 
5024 /// Lower the specified operand into the Ops vector.
5025 /// If it is invalid, don't add anything to Ops.
5026 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5027                                                   std::string &Constraint,
5028                                                   std::vector<SDValue> &Ops,
5029                                                   SelectionDAG &DAG) const {
5030 
5031   if (Constraint.length() > 1) return;
5032 
5033   char ConstraintLetter = Constraint[0];
5034   switch (ConstraintLetter) {
5035   default: break;
5036   case 'X':    // Allows any operand
5037   case 'i':    // Simple Integer or Relocatable Constant
5038   case 'n':    // Simple Integer
5039   case 's': {  // Relocatable Constant
5040 
5041     ConstantSDNode *C;
5042     uint64_t Offset = 0;
5043 
5044     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5045     // etc., since getelementpointer is variadic. We can't use
5046     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5047     // while in this case the GA may be furthest from the root node which is
5048     // likely an ISD::ADD.
5049     while (true) {
5050       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5051         // gcc prints these as sign extended.  Sign extend value to 64 bits
5052         // now; without this it would get ZExt'd later in
5053         // ScheduleDAGSDNodes::EmitNode, which is very generic.
5054         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5055         BooleanContent BCont = getBooleanContents(MVT::i64);
5056         ISD::NodeType ExtOpc =
5057             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5058         int64_t ExtVal =
5059             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5060         Ops.push_back(
5061             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5062         return;
5063       }
5064       if (ConstraintLetter != 'n') {
5065         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5066           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5067                                                    GA->getValueType(0),
5068                                                    Offset + GA->getOffset()));
5069           return;
5070         }
5071         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5072           Ops.push_back(DAG.getTargetBlockAddress(
5073               BA->getBlockAddress(), BA->getValueType(0),
5074               Offset + BA->getOffset(), BA->getTargetFlags()));
5075           return;
5076         }
5077         if (isa<BasicBlockSDNode>(Op)) {
5078           Ops.push_back(Op);
5079           return;
5080         }
5081       }
5082       const unsigned OpCode = Op.getOpcode();
5083       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5084         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5085           Op = Op.getOperand(1);
5086         // Subtraction is not commutative.
5087         else if (OpCode == ISD::ADD &&
5088                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5089           Op = Op.getOperand(0);
5090         else
5091           return;
5092         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5093         continue;
5094       }
5095       return;
5096     }
5097     break;
5098   }
5099   }
5100 }
5101 
5102 std::pair<unsigned, const TargetRegisterClass *>
5103 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5104                                              StringRef Constraint,
5105                                              MVT VT) const {
5106   if (Constraint.empty() || Constraint[0] != '{')
5107     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5108   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5109 
5110   // Remove the braces from around the name.
5111   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5112 
5113   std::pair<unsigned, const TargetRegisterClass *> R =
5114       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5115 
5116   // Figure out which register class contains this reg.
5117   for (const TargetRegisterClass *RC : RI->regclasses()) {
5118     // If none of the value types for this register class are valid, we
5119     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5120     if (!isLegalRC(*RI, *RC))
5121       continue;
5122 
5123     for (const MCPhysReg &PR : *RC) {
5124       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5125         std::pair<unsigned, const TargetRegisterClass *> S =
5126             std::make_pair(PR, RC);
5127 
5128         // If this register class has the requested value type, return it,
5129         // otherwise keep searching and return the first class found
5130         // if no other is found which explicitly has the requested type.
5131         if (RI->isTypeLegalForClass(*RC, VT))
5132           return S;
5133         if (!R.second)
5134           R = S;
5135       }
5136     }
5137   }
5138 
5139   return R;
5140 }
5141 
5142 //===----------------------------------------------------------------------===//
5143 // Constraint Selection.
5144 
5145 /// Return true of this is an input operand that is a matching constraint like
5146 /// "4".
5147 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5148   assert(!ConstraintCode.empty() && "No known constraint!");
5149   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5150 }
5151 
5152 /// If this is an input matching constraint, this method returns the output
5153 /// operand it matches.
5154 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5155   assert(!ConstraintCode.empty() && "No known constraint!");
5156   return atoi(ConstraintCode.c_str());
5157 }
5158 
5159 /// Split up the constraint string from the inline assembly value into the
5160 /// specific constraints and their prefixes, and also tie in the associated
5161 /// operand values.
5162 /// If this returns an empty vector, and if the constraint string itself
5163 /// isn't empty, there was an error parsing.
5164 TargetLowering::AsmOperandInfoVector
5165 TargetLowering::ParseConstraints(const DataLayout &DL,
5166                                  const TargetRegisterInfo *TRI,
5167                                  const CallBase &Call) const {
5168   /// Information about all of the constraints.
5169   AsmOperandInfoVector ConstraintOperands;
5170   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5171   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5172 
5173   // Do a prepass over the constraints, canonicalizing them, and building up the
5174   // ConstraintOperands list.
5175   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5176   unsigned ResNo = 0; // ResNo - The result number of the next output.
5177 
5178   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5179     ConstraintOperands.emplace_back(std::move(CI));
5180     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5181 
5182     // Update multiple alternative constraint count.
5183     if (OpInfo.multipleAlternatives.size() > maCount)
5184       maCount = OpInfo.multipleAlternatives.size();
5185 
5186     OpInfo.ConstraintVT = MVT::Other;
5187 
5188     // Compute the value type for each operand.
5189     switch (OpInfo.Type) {
5190     case InlineAsm::isOutput:
5191       // Indirect outputs just consume an argument.
5192       if (OpInfo.isIndirect) {
5193         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5194         break;
5195       }
5196 
5197       // The return value of the call is this value.  As such, there is no
5198       // corresponding argument.
5199       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5200       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
5201         OpInfo.ConstraintVT =
5202             getSimpleValueType(DL, STy->getElementType(ResNo));
5203       } else {
5204         assert(ResNo == 0 && "Asm only has one result!");
5205         OpInfo.ConstraintVT =
5206             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5207       }
5208       ++ResNo;
5209       break;
5210     case InlineAsm::isInput:
5211       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5212       break;
5213     case InlineAsm::isClobber:
5214       // Nothing to do.
5215       break;
5216     }
5217 
5218     if (OpInfo.CallOperandVal) {
5219       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5220       if (OpInfo.isIndirect) {
5221         OpTy = Call.getParamElementType(ArgNo);
5222         assert(OpTy && "Indirect operand must have elementtype attribute");
5223       }
5224 
5225       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5226       if (StructType *STy = dyn_cast<StructType>(OpTy))
5227         if (STy->getNumElements() == 1)
5228           OpTy = STy->getElementType(0);
5229 
5230       // If OpTy is not a single value, it may be a struct/union that we
5231       // can tile with integers.
5232       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5233         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5234         switch (BitSize) {
5235         default: break;
5236         case 1:
5237         case 8:
5238         case 16:
5239         case 32:
5240         case 64:
5241         case 128:
5242           OpInfo.ConstraintVT =
5243               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
5244           break;
5245         }
5246       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
5247         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
5248         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
5249       } else {
5250         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
5251       }
5252 
5253       ArgNo++;
5254     }
5255   }
5256 
5257   // If we have multiple alternative constraints, select the best alternative.
5258   if (!ConstraintOperands.empty()) {
5259     if (maCount) {
5260       unsigned bestMAIndex = 0;
5261       int bestWeight = -1;
5262       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5263       int weight = -1;
5264       unsigned maIndex;
5265       // Compute the sums of the weights for each alternative, keeping track
5266       // of the best (highest weight) one so far.
5267       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5268         int weightSum = 0;
5269         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5270              cIndex != eIndex; ++cIndex) {
5271           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5272           if (OpInfo.Type == InlineAsm::isClobber)
5273             continue;
5274 
5275           // If this is an output operand with a matching input operand,
5276           // look up the matching input. If their types mismatch, e.g. one
5277           // is an integer, the other is floating point, or their sizes are
5278           // different, flag it as an maCantMatch.
5279           if (OpInfo.hasMatchingInput()) {
5280             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5281             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5282               if ((OpInfo.ConstraintVT.isInteger() !=
5283                    Input.ConstraintVT.isInteger()) ||
5284                   (OpInfo.ConstraintVT.getSizeInBits() !=
5285                    Input.ConstraintVT.getSizeInBits())) {
5286                 weightSum = -1; // Can't match.
5287                 break;
5288               }
5289             }
5290           }
5291           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5292           if (weight == -1) {
5293             weightSum = -1;
5294             break;
5295           }
5296           weightSum += weight;
5297         }
5298         // Update best.
5299         if (weightSum > bestWeight) {
5300           bestWeight = weightSum;
5301           bestMAIndex = maIndex;
5302         }
5303       }
5304 
5305       // Now select chosen alternative in each constraint.
5306       for (AsmOperandInfo &cInfo : ConstraintOperands)
5307         if (cInfo.Type != InlineAsm::isClobber)
5308           cInfo.selectAlternative(bestMAIndex);
5309     }
5310   }
5311 
5312   // Check and hook up tied operands, choose constraint code to use.
5313   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5314        cIndex != eIndex; ++cIndex) {
5315     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5316 
5317     // If this is an output operand with a matching input operand, look up the
5318     // matching input. If their types mismatch, e.g. one is an integer, the
5319     // other is floating point, or their sizes are different, flag it as an
5320     // error.
5321     if (OpInfo.hasMatchingInput()) {
5322       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5323 
5324       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5325         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5326             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5327                                          OpInfo.ConstraintVT);
5328         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5329             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5330                                          Input.ConstraintVT);
5331         if ((OpInfo.ConstraintVT.isInteger() !=
5332              Input.ConstraintVT.isInteger()) ||
5333             (MatchRC.second != InputRC.second)) {
5334           report_fatal_error("Unsupported asm: input constraint"
5335                              " with a matching output constraint of"
5336                              " incompatible type!");
5337         }
5338       }
5339     }
5340   }
5341 
5342   return ConstraintOperands;
5343 }
5344 
5345 /// Return an integer indicating how general CT is.
5346 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5347   switch (CT) {
5348   case TargetLowering::C_Immediate:
5349   case TargetLowering::C_Other:
5350   case TargetLowering::C_Unknown:
5351     return 0;
5352   case TargetLowering::C_Register:
5353     return 1;
5354   case TargetLowering::C_RegisterClass:
5355     return 2;
5356   case TargetLowering::C_Memory:
5357   case TargetLowering::C_Address:
5358     return 3;
5359   }
5360   llvm_unreachable("Invalid constraint type");
5361 }
5362 
5363 /// Examine constraint type and operand type and determine a weight value.
5364 /// This object must already have been set up with the operand type
5365 /// and the current alternative constraint selected.
5366 TargetLowering::ConstraintWeight
5367   TargetLowering::getMultipleConstraintMatchWeight(
5368     AsmOperandInfo &info, int maIndex) const {
5369   InlineAsm::ConstraintCodeVector *rCodes;
5370   if (maIndex >= (int)info.multipleAlternatives.size())
5371     rCodes = &info.Codes;
5372   else
5373     rCodes = &info.multipleAlternatives[maIndex].Codes;
5374   ConstraintWeight BestWeight = CW_Invalid;
5375 
5376   // Loop over the options, keeping track of the most general one.
5377   for (const std::string &rCode : *rCodes) {
5378     ConstraintWeight weight =
5379         getSingleConstraintMatchWeight(info, rCode.c_str());
5380     if (weight > BestWeight)
5381       BestWeight = weight;
5382   }
5383 
5384   return BestWeight;
5385 }
5386 
5387 /// Examine constraint type and operand type and determine a weight value.
5388 /// This object must already have been set up with the operand type
5389 /// and the current alternative constraint selected.
5390 TargetLowering::ConstraintWeight
5391   TargetLowering::getSingleConstraintMatchWeight(
5392     AsmOperandInfo &info, const char *constraint) const {
5393   ConstraintWeight weight = CW_Invalid;
5394   Value *CallOperandVal = info.CallOperandVal;
5395     // If we don't have a value, we can't do a match,
5396     // but allow it at the lowest weight.
5397   if (!CallOperandVal)
5398     return CW_Default;
5399   // Look at the constraint type.
5400   switch (*constraint) {
5401     case 'i': // immediate integer.
5402     case 'n': // immediate integer with a known value.
5403       if (isa<ConstantInt>(CallOperandVal))
5404         weight = CW_Constant;
5405       break;
5406     case 's': // non-explicit intregal immediate.
5407       if (isa<GlobalValue>(CallOperandVal))
5408         weight = CW_Constant;
5409       break;
5410     case 'E': // immediate float if host format.
5411     case 'F': // immediate float.
5412       if (isa<ConstantFP>(CallOperandVal))
5413         weight = CW_Constant;
5414       break;
5415     case '<': // memory operand with autodecrement.
5416     case '>': // memory operand with autoincrement.
5417     case 'm': // memory operand.
5418     case 'o': // offsettable memory operand
5419     case 'V': // non-offsettable memory operand
5420       weight = CW_Memory;
5421       break;
5422     case 'r': // general register.
5423     case 'g': // general register, memory operand or immediate integer.
5424               // note: Clang converts "g" to "imr".
5425       if (CallOperandVal->getType()->isIntegerTy())
5426         weight = CW_Register;
5427       break;
5428     case 'X': // any operand.
5429   default:
5430     weight = CW_Default;
5431     break;
5432   }
5433   return weight;
5434 }
5435 
5436 /// If there are multiple different constraints that we could pick for this
5437 /// operand (e.g. "imr") try to pick the 'best' one.
5438 /// This is somewhat tricky: constraints fall into four classes:
5439 ///    Other         -> immediates and magic values
5440 ///    Register      -> one specific register
5441 ///    RegisterClass -> a group of regs
5442 ///    Memory        -> memory
5443 /// Ideally, we would pick the most specific constraint possible: if we have
5444 /// something that fits into a register, we would pick it.  The problem here
5445 /// is that if we have something that could either be in a register or in
5446 /// memory that use of the register could cause selection of *other*
5447 /// operands to fail: they might only succeed if we pick memory.  Because of
5448 /// this the heuristic we use is:
5449 ///
5450 ///  1) If there is an 'other' constraint, and if the operand is valid for
5451 ///     that constraint, use it.  This makes us take advantage of 'i'
5452 ///     constraints when available.
5453 ///  2) Otherwise, pick the most general constraint present.  This prefers
5454 ///     'm' over 'r', for example.
5455 ///
5456 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5457                              const TargetLowering &TLI,
5458                              SDValue Op, SelectionDAG *DAG) {
5459   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5460   unsigned BestIdx = 0;
5461   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5462   int BestGenerality = -1;
5463 
5464   // Loop over the options, keeping track of the most general one.
5465   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5466     TargetLowering::ConstraintType CType =
5467       TLI.getConstraintType(OpInfo.Codes[i]);
5468 
5469     // Indirect 'other' or 'immediate' constraints are not allowed.
5470     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5471                                CType == TargetLowering::C_Register ||
5472                                CType == TargetLowering::C_RegisterClass))
5473       continue;
5474 
5475     // If this is an 'other' or 'immediate' constraint, see if the operand is
5476     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5477     // the operand is an integer in the range [0..31] we want to use I (saving a
5478     // load of a register), otherwise we must use 'r'.
5479     if ((CType == TargetLowering::C_Other ||
5480          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5481       assert(OpInfo.Codes[i].size() == 1 &&
5482              "Unhandled multi-letter 'other' constraint");
5483       std::vector<SDValue> ResultOps;
5484       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5485                                        ResultOps, *DAG);
5486       if (!ResultOps.empty()) {
5487         BestType = CType;
5488         BestIdx = i;
5489         break;
5490       }
5491     }
5492 
5493     // Things with matching constraints can only be registers, per gcc
5494     // documentation.  This mainly affects "g" constraints.
5495     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5496       continue;
5497 
5498     // This constraint letter is more general than the previous one, use it.
5499     int Generality = getConstraintGenerality(CType);
5500     if (Generality > BestGenerality) {
5501       BestType = CType;
5502       BestIdx = i;
5503       BestGenerality = Generality;
5504     }
5505   }
5506 
5507   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5508   OpInfo.ConstraintType = BestType;
5509 }
5510 
5511 /// Determines the constraint code and constraint type to use for the specific
5512 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5513 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5514                                             SDValue Op,
5515                                             SelectionDAG *DAG) const {
5516   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5517 
5518   // Single-letter constraints ('r') are very common.
5519   if (OpInfo.Codes.size() == 1) {
5520     OpInfo.ConstraintCode = OpInfo.Codes[0];
5521     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5522   } else {
5523     ChooseConstraint(OpInfo, *this, Op, DAG);
5524   }
5525 
5526   // 'X' matches anything.
5527   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5528     // Constants are handled elsewhere.  For Functions, the type here is the
5529     // type of the result, which is not what we want to look at; leave them
5530     // alone.
5531     Value *v = OpInfo.CallOperandVal;
5532     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5533       return;
5534     }
5535 
5536     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5537       OpInfo.ConstraintCode = "i";
5538       return;
5539     }
5540 
5541     // Otherwise, try to resolve it to something we know about by looking at
5542     // the actual operand type.
5543     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5544       OpInfo.ConstraintCode = Repl;
5545       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5546     }
5547   }
5548 }
5549 
5550 /// Given an exact SDIV by a constant, create a multiplication
5551 /// with the multiplicative inverse of the constant.
5552 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5553                               const SDLoc &dl, SelectionDAG &DAG,
5554                               SmallVectorImpl<SDNode *> &Created) {
5555   SDValue Op0 = N->getOperand(0);
5556   SDValue Op1 = N->getOperand(1);
5557   EVT VT = N->getValueType(0);
5558   EVT SVT = VT.getScalarType();
5559   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5560   EVT ShSVT = ShVT.getScalarType();
5561 
5562   bool UseSRA = false;
5563   SmallVector<SDValue, 16> Shifts, Factors;
5564 
5565   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5566     if (C->isZero())
5567       return false;
5568     APInt Divisor = C->getAPIntValue();
5569     unsigned Shift = Divisor.countTrailingZeros();
5570     if (Shift) {
5571       Divisor.ashrInPlace(Shift);
5572       UseSRA = true;
5573     }
5574     // Calculate the multiplicative inverse, using Newton's method.
5575     APInt t;
5576     APInt Factor = Divisor;
5577     while ((t = Divisor * Factor) != 1)
5578       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5579     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5580     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5581     return true;
5582   };
5583 
5584   // Collect all magic values from the build vector.
5585   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5586     return SDValue();
5587 
5588   SDValue Shift, Factor;
5589   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5590     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5591     Factor = DAG.getBuildVector(VT, dl, Factors);
5592   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5593     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5594            "Expected matchUnaryPredicate to return one element for scalable "
5595            "vectors");
5596     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5597     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5598   } else {
5599     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5600     Shift = Shifts[0];
5601     Factor = Factors[0];
5602   }
5603 
5604   SDValue Res = Op0;
5605 
5606   // Shift the value upfront if it is even, so the LSB is one.
5607   if (UseSRA) {
5608     // TODO: For UDIV use SRL instead of SRA.
5609     SDNodeFlags Flags;
5610     Flags.setExact(true);
5611     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5612     Created.push_back(Res.getNode());
5613   }
5614 
5615   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5616 }
5617 
5618 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5619                               SelectionDAG &DAG,
5620                               SmallVectorImpl<SDNode *> &Created) const {
5621   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5622   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5623   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5624     return SDValue(N, 0); // Lower SDIV as SDIV
5625   return SDValue();
5626 }
5627 
5628 SDValue
5629 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
5630                               SelectionDAG &DAG,
5631                               SmallVectorImpl<SDNode *> &Created) const {
5632   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5633   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5634   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5635     return SDValue(N, 0); // Lower SREM as SREM
5636   return SDValue();
5637 }
5638 
5639 /// Given an ISD::SDIV node expressing a divide by constant,
5640 /// return a DAG expression to select that will generate the same value by
5641 /// multiplying by a magic number.
5642 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5643 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5644                                   bool IsAfterLegalization,
5645                                   SmallVectorImpl<SDNode *> &Created) const {
5646   SDLoc dl(N);
5647   EVT VT = N->getValueType(0);
5648   EVT SVT = VT.getScalarType();
5649   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5650   EVT ShSVT = ShVT.getScalarType();
5651   unsigned EltBits = VT.getScalarSizeInBits();
5652   EVT MulVT;
5653 
5654   // Check to see if we can do this.
5655   // FIXME: We should be more aggressive here.
5656   if (!isTypeLegal(VT)) {
5657     // Limit this to simple scalars for now.
5658     if (VT.isVector() || !VT.isSimple())
5659       return SDValue();
5660 
5661     // If this type will be promoted to a large enough type with a legal
5662     // multiply operation, we can go ahead and do this transform.
5663     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5664       return SDValue();
5665 
5666     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5667     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5668         !isOperationLegal(ISD::MUL, MulVT))
5669       return SDValue();
5670   }
5671 
5672   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5673   if (N->getFlags().hasExact())
5674     return BuildExactSDIV(*this, N, dl, DAG, Created);
5675 
5676   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5677 
5678   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5679     if (C->isZero())
5680       return false;
5681 
5682     const APInt &Divisor = C->getAPIntValue();
5683     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5684     int NumeratorFactor = 0;
5685     int ShiftMask = -1;
5686 
5687     if (Divisor.isOne() || Divisor.isAllOnes()) {
5688       // If d is +1/-1, we just multiply the numerator by +1/-1.
5689       NumeratorFactor = Divisor.getSExtValue();
5690       magics.Magic = 0;
5691       magics.ShiftAmount = 0;
5692       ShiftMask = 0;
5693     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5694       // If d > 0 and m < 0, add the numerator.
5695       NumeratorFactor = 1;
5696     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5697       // If d < 0 and m > 0, subtract the numerator.
5698       NumeratorFactor = -1;
5699     }
5700 
5701     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5702     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5703     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5704     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5705     return true;
5706   };
5707 
5708   SDValue N0 = N->getOperand(0);
5709   SDValue N1 = N->getOperand(1);
5710 
5711   // Collect the shifts / magic values from each element.
5712   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5713     return SDValue();
5714 
5715   SDValue MagicFactor, Factor, Shift, ShiftMask;
5716   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5717     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5718     Factor = DAG.getBuildVector(VT, dl, Factors);
5719     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5720     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5721   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5722     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5723            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5724            "Expected matchUnaryPredicate to return one element for scalable "
5725            "vectors");
5726     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5727     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5728     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5729     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5730   } else {
5731     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5732     MagicFactor = MagicFactors[0];
5733     Factor = Factors[0];
5734     Shift = Shifts[0];
5735     ShiftMask = ShiftMasks[0];
5736   }
5737 
5738   // Multiply the numerator (operand 0) by the magic value.
5739   // FIXME: We should support doing a MUL in a wider type.
5740   auto GetMULHS = [&](SDValue X, SDValue Y) {
5741     // If the type isn't legal, use a wider mul of the the type calculated
5742     // earlier.
5743     if (!isTypeLegal(VT)) {
5744       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5745       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5746       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5747       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5748                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5749       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5750     }
5751 
5752     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5753       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5754     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5755       SDValue LoHi =
5756           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5757       return SDValue(LoHi.getNode(), 1);
5758     }
5759     return SDValue();
5760   };
5761 
5762   SDValue Q = GetMULHS(N0, MagicFactor);
5763   if (!Q)
5764     return SDValue();
5765 
5766   Created.push_back(Q.getNode());
5767 
5768   // (Optionally) Add/subtract the numerator using Factor.
5769   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5770   Created.push_back(Factor.getNode());
5771   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5772   Created.push_back(Q.getNode());
5773 
5774   // Shift right algebraic by shift value.
5775   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5776   Created.push_back(Q.getNode());
5777 
5778   // Extract the sign bit, mask it and add it to the quotient.
5779   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5780   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5781   Created.push_back(T.getNode());
5782   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5783   Created.push_back(T.getNode());
5784   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5785 }
5786 
5787 /// Given an ISD::UDIV node expressing a divide by constant,
5788 /// return a DAG expression to select that will generate the same value by
5789 /// multiplying by a magic number.
5790 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5791 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5792                                   bool IsAfterLegalization,
5793                                   SmallVectorImpl<SDNode *> &Created) const {
5794   SDLoc dl(N);
5795   EVT VT = N->getValueType(0);
5796   EVT SVT = VT.getScalarType();
5797   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5798   EVT ShSVT = ShVT.getScalarType();
5799   unsigned EltBits = VT.getScalarSizeInBits();
5800   EVT MulVT;
5801 
5802   // Check to see if we can do this.
5803   // FIXME: We should be more aggressive here.
5804   if (!isTypeLegal(VT)) {
5805     // Limit this to simple scalars for now.
5806     if (VT.isVector() || !VT.isSimple())
5807       return SDValue();
5808 
5809     // If this type will be promoted to a large enough type with a legal
5810     // multiply operation, we can go ahead and do this transform.
5811     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5812       return SDValue();
5813 
5814     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5815     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5816         !isOperationLegal(ISD::MUL, MulVT))
5817       return SDValue();
5818   }
5819 
5820   bool UseNPQ = false;
5821   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5822 
5823   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5824     if (C->isZero())
5825       return false;
5826     // FIXME: We should use a narrower constant when the upper
5827     // bits are known to be zero.
5828     const APInt& Divisor = C->getAPIntValue();
5829     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5830     unsigned PreShift = 0, PostShift = 0;
5831 
5832     // If the divisor is even, we can avoid using the expensive fixup by
5833     // shifting the divided value upfront.
5834     if (magics.IsAdd != 0 && !Divisor[0]) {
5835       PreShift = Divisor.countTrailingZeros();
5836       // Get magic number for the shifted divisor.
5837       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5838       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5839     }
5840 
5841     APInt Magic = magics.Magic;
5842 
5843     unsigned SelNPQ;
5844     if (magics.IsAdd == 0 || Divisor.isOne()) {
5845       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5846              "We shouldn't generate an undefined shift!");
5847       PostShift = magics.ShiftAmount;
5848       SelNPQ = false;
5849     } else {
5850       PostShift = magics.ShiftAmount - 1;
5851       SelNPQ = true;
5852     }
5853 
5854     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5855     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5856     NPQFactors.push_back(
5857         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5858                                : APInt::getZero(EltBits),
5859                         dl, SVT));
5860     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5861     UseNPQ |= SelNPQ;
5862     return true;
5863   };
5864 
5865   SDValue N0 = N->getOperand(0);
5866   SDValue N1 = N->getOperand(1);
5867 
5868   // Collect the shifts/magic values from each element.
5869   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5870     return SDValue();
5871 
5872   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5873   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5874     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5875     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5876     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5877     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5878   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5879     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5880            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5881            "Expected matchUnaryPredicate to return one for scalable vectors");
5882     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5883     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5884     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5885     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5886   } else {
5887     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5888     PreShift = PreShifts[0];
5889     MagicFactor = MagicFactors[0];
5890     PostShift = PostShifts[0];
5891   }
5892 
5893   SDValue Q = N0;
5894   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5895   Created.push_back(Q.getNode());
5896 
5897   // FIXME: We should support doing a MUL in a wider type.
5898   auto GetMULHU = [&](SDValue X, SDValue Y) {
5899     // If the type isn't legal, use a wider mul of the the type calculated
5900     // earlier.
5901     if (!isTypeLegal(VT)) {
5902       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5903       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5904       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5905       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5906                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5907       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5908     }
5909 
5910     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5911       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5912     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5913       SDValue LoHi =
5914           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5915       return SDValue(LoHi.getNode(), 1);
5916     }
5917     return SDValue(); // No mulhu or equivalent
5918   };
5919 
5920   // Multiply the numerator (operand 0) by the magic value.
5921   Q = GetMULHU(Q, MagicFactor);
5922   if (!Q)
5923     return SDValue();
5924 
5925   Created.push_back(Q.getNode());
5926 
5927   if (UseNPQ) {
5928     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5929     Created.push_back(NPQ.getNode());
5930 
5931     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5932     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5933     if (VT.isVector())
5934       NPQ = GetMULHU(NPQ, NPQFactor);
5935     else
5936       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5937 
5938     Created.push_back(NPQ.getNode());
5939 
5940     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5941     Created.push_back(Q.getNode());
5942   }
5943 
5944   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5945   Created.push_back(Q.getNode());
5946 
5947   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5948 
5949   SDValue One = DAG.getConstant(1, dl, VT);
5950   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5951   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5952 }
5953 
5954 /// If all values in Values that *don't* match the predicate are same 'splat'
5955 /// value, then replace all values with that splat value.
5956 /// Else, if AlternativeReplacement was provided, then replace all values that
5957 /// do match predicate with AlternativeReplacement value.
5958 static void
5959 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5960                           std::function<bool(SDValue)> Predicate,
5961                           SDValue AlternativeReplacement = SDValue()) {
5962   SDValue Replacement;
5963   // Is there a value for which the Predicate does *NOT* match? What is it?
5964   auto SplatValue = llvm::find_if_not(Values, Predicate);
5965   if (SplatValue != Values.end()) {
5966     // Does Values consist only of SplatValue's and values matching Predicate?
5967     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5968           return Value == *SplatValue || Predicate(Value);
5969         })) // Then we shall replace values matching predicate with SplatValue.
5970       Replacement = *SplatValue;
5971   }
5972   if (!Replacement) {
5973     // Oops, we did not find the "baseline" splat value.
5974     if (!AlternativeReplacement)
5975       return; // Nothing to do.
5976     // Let's replace with provided value then.
5977     Replacement = AlternativeReplacement;
5978   }
5979   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5980 }
5981 
5982 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5983 /// where the divisor is constant and the comparison target is zero,
5984 /// return a DAG expression that will generate the same comparison result
5985 /// using only multiplications, additions and shifts/rotations.
5986 /// Ref: "Hacker's Delight" 10-17.
5987 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5988                                         SDValue CompTargetNode,
5989                                         ISD::CondCode Cond,
5990                                         DAGCombinerInfo &DCI,
5991                                         const SDLoc &DL) const {
5992   SmallVector<SDNode *, 5> Built;
5993   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5994                                          DCI, DL, Built)) {
5995     for (SDNode *N : Built)
5996       DCI.AddToWorklist(N);
5997     return Folded;
5998   }
5999 
6000   return SDValue();
6001 }
6002 
6003 SDValue
6004 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6005                                   SDValue CompTargetNode, ISD::CondCode Cond,
6006                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6007                                   SmallVectorImpl<SDNode *> &Created) const {
6008   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6009   // - D must be constant, with D = D0 * 2^K where D0 is odd
6010   // - P is the multiplicative inverse of D0 modulo 2^W
6011   // - Q = floor(((2^W) - 1) / D)
6012   // where W is the width of the common type of N and D.
6013   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6014          "Only applicable for (in)equality comparisons.");
6015 
6016   SelectionDAG &DAG = DCI.DAG;
6017 
6018   EVT VT = REMNode.getValueType();
6019   EVT SVT = VT.getScalarType();
6020   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6021   EVT ShSVT = ShVT.getScalarType();
6022 
6023   // If MUL is unavailable, we cannot proceed in any case.
6024   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6025     return SDValue();
6026 
6027   bool ComparingWithAllZeros = true;
6028   bool AllComparisonsWithNonZerosAreTautological = true;
6029   bool HadTautologicalLanes = false;
6030   bool AllLanesAreTautological = true;
6031   bool HadEvenDivisor = false;
6032   bool AllDivisorsArePowerOfTwo = true;
6033   bool HadTautologicalInvertedLanes = false;
6034   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6035 
6036   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6037     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6038     if (CDiv->isZero())
6039       return false;
6040 
6041     const APInt &D = CDiv->getAPIntValue();
6042     const APInt &Cmp = CCmp->getAPIntValue();
6043 
6044     ComparingWithAllZeros &= Cmp.isZero();
6045 
6046     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6047     // if C2 is not less than C1, the comparison is always false.
6048     // But we will only be able to produce the comparison that will give the
6049     // opposive tautological answer. So this lane would need to be fixed up.
6050     bool TautologicalInvertedLane = D.ule(Cmp);
6051     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6052 
6053     // If all lanes are tautological (either all divisors are ones, or divisor
6054     // is not greater than the constant we are comparing with),
6055     // we will prefer to avoid the fold.
6056     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6057     HadTautologicalLanes |= TautologicalLane;
6058     AllLanesAreTautological &= TautologicalLane;
6059 
6060     // If we are comparing with non-zero, we need'll need  to subtract said
6061     // comparison value from the LHS. But there is no point in doing that if
6062     // every lane where we are comparing with non-zero is tautological..
6063     if (!Cmp.isZero())
6064       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6065 
6066     // Decompose D into D0 * 2^K
6067     unsigned K = D.countTrailingZeros();
6068     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6069     APInt D0 = D.lshr(K);
6070 
6071     // D is even if it has trailing zeros.
6072     HadEvenDivisor |= (K != 0);
6073     // D is a power-of-two if D0 is one.
6074     // If all divisors are power-of-two, we will prefer to avoid the fold.
6075     AllDivisorsArePowerOfTwo &= D0.isOne();
6076 
6077     // P = inv(D0, 2^W)
6078     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6079     unsigned W = D.getBitWidth();
6080     APInt P = D0.zext(W + 1)
6081                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6082                   .trunc(W);
6083     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6084     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6085 
6086     // Q = floor((2^W - 1) u/ D)
6087     // R = ((2^W - 1) u% D)
6088     APInt Q, R;
6089     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6090 
6091     // If we are comparing with zero, then that comparison constant is okay,
6092     // else it may need to be one less than that.
6093     if (Cmp.ugt(R))
6094       Q -= 1;
6095 
6096     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6097            "We are expecting that K is always less than all-ones for ShSVT");
6098 
6099     // If the lane is tautological the result can be constant-folded.
6100     if (TautologicalLane) {
6101       // Set P and K amount to a bogus values so we can try to splat them.
6102       P = 0;
6103       K = -1;
6104       // And ensure that comparison constant is tautological,
6105       // it will always compare true/false.
6106       Q = -1;
6107     }
6108 
6109     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6110     KAmts.push_back(
6111         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6112     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6113     return true;
6114   };
6115 
6116   SDValue N = REMNode.getOperand(0);
6117   SDValue D = REMNode.getOperand(1);
6118 
6119   // Collect the values from each element.
6120   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6121     return SDValue();
6122 
6123   // If all lanes are tautological, the result can be constant-folded.
6124   if (AllLanesAreTautological)
6125     return SDValue();
6126 
6127   // If this is a urem by a powers-of-two, avoid the fold since it can be
6128   // best implemented as a bit test.
6129   if (AllDivisorsArePowerOfTwo)
6130     return SDValue();
6131 
6132   SDValue PVal, KVal, QVal;
6133   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6134     if (HadTautologicalLanes) {
6135       // Try to turn PAmts into a splat, since we don't care about the values
6136       // that are currently '0'. If we can't, just keep '0'`s.
6137       turnVectorIntoSplatVector(PAmts, isNullConstant);
6138       // Try to turn KAmts into a splat, since we don't care about the values
6139       // that are currently '-1'. If we can't, change them to '0'`s.
6140       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6141                                 DAG.getConstant(0, DL, ShSVT));
6142     }
6143 
6144     PVal = DAG.getBuildVector(VT, DL, PAmts);
6145     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6146     QVal = DAG.getBuildVector(VT, DL, QAmts);
6147   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6148     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6149            "Expected matchBinaryPredicate to return one element for "
6150            "SPLAT_VECTORs");
6151     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6152     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6153     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6154   } else {
6155     PVal = PAmts[0];
6156     KVal = KAmts[0];
6157     QVal = QAmts[0];
6158   }
6159 
6160   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6161     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6162       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6163     assert(CompTargetNode.getValueType() == N.getValueType() &&
6164            "Expecting that the types on LHS and RHS of comparisons match.");
6165     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6166   }
6167 
6168   // (mul N, P)
6169   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6170   Created.push_back(Op0.getNode());
6171 
6172   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6173   // divisors as a performance improvement, since rotating by 0 is a no-op.
6174   if (HadEvenDivisor) {
6175     // We need ROTR to do this.
6176     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6177       return SDValue();
6178     // UREM: (rotr (mul N, P), K)
6179     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6180     Created.push_back(Op0.getNode());
6181   }
6182 
6183   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6184   SDValue NewCC =
6185       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6186                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6187   if (!HadTautologicalInvertedLanes)
6188     return NewCC;
6189 
6190   // If any lanes previously compared always-false, the NewCC will give
6191   // always-true result for them, so we need to fixup those lanes.
6192   // Or the other way around for inequality predicate.
6193   assert(VT.isVector() && "Can/should only get here for vectors.");
6194   Created.push_back(NewCC.getNode());
6195 
6196   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6197   // if C2 is not less than C1, the comparison is always false.
6198   // But we have produced the comparison that will give the
6199   // opposive tautological answer. So these lanes would need to be fixed up.
6200   SDValue TautologicalInvertedChannels =
6201       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6202   Created.push_back(TautologicalInvertedChannels.getNode());
6203 
6204   // NOTE: we avoid letting illegal types through even if we're before legalize
6205   // ops – legalization has a hard time producing good code for this.
6206   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6207     // If we have a vector select, let's replace the comparison results in the
6208     // affected lanes with the correct tautological result.
6209     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6210                                               DL, SETCCVT, SETCCVT);
6211     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6212                        Replacement, NewCC);
6213   }
6214 
6215   // Else, we can just invert the comparison result in the appropriate lanes.
6216   //
6217   // NOTE: see the note above VSELECT above.
6218   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6219     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6220                        TautologicalInvertedChannels);
6221 
6222   return SDValue(); // Don't know how to lower.
6223 }
6224 
6225 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6226 /// where the divisor is constant and the comparison target is zero,
6227 /// return a DAG expression that will generate the same comparison result
6228 /// using only multiplications, additions and shifts/rotations.
6229 /// Ref: "Hacker's Delight" 10-17.
6230 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6231                                         SDValue CompTargetNode,
6232                                         ISD::CondCode Cond,
6233                                         DAGCombinerInfo &DCI,
6234                                         const SDLoc &DL) const {
6235   SmallVector<SDNode *, 7> Built;
6236   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6237                                          DCI, DL, Built)) {
6238     assert(Built.size() <= 7 && "Max size prediction failed.");
6239     for (SDNode *N : Built)
6240       DCI.AddToWorklist(N);
6241     return Folded;
6242   }
6243 
6244   return SDValue();
6245 }
6246 
6247 SDValue
6248 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6249                                   SDValue CompTargetNode, ISD::CondCode Cond,
6250                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6251                                   SmallVectorImpl<SDNode *> &Created) const {
6252   // Fold:
6253   //   (seteq/ne (srem N, D), 0)
6254   // To:
6255   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6256   //
6257   // - D must be constant, with D = D0 * 2^K where D0 is odd
6258   // - P is the multiplicative inverse of D0 modulo 2^W
6259   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6260   // - Q = floor((2 * A) / (2^K))
6261   // where W is the width of the common type of N and D.
6262   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6263          "Only applicable for (in)equality comparisons.");
6264 
6265   SelectionDAG &DAG = DCI.DAG;
6266 
6267   EVT VT = REMNode.getValueType();
6268   EVT SVT = VT.getScalarType();
6269   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6270   EVT ShSVT = ShVT.getScalarType();
6271 
6272   // If we are after ops legalization, and MUL is unavailable, we can not
6273   // proceed.
6274   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6275     return SDValue();
6276 
6277   // TODO: Could support comparing with non-zero too.
6278   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6279   if (!CompTarget || !CompTarget->isZero())
6280     return SDValue();
6281 
6282   bool HadIntMinDivisor = false;
6283   bool HadOneDivisor = false;
6284   bool AllDivisorsAreOnes = true;
6285   bool HadEvenDivisor = false;
6286   bool NeedToApplyOffset = false;
6287   bool AllDivisorsArePowerOfTwo = true;
6288   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6289 
6290   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6291     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6292     if (C->isZero())
6293       return false;
6294 
6295     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6296 
6297     // WARNING: this fold is only valid for positive divisors!
6298     APInt D = C->getAPIntValue();
6299     if (D.isNegative())
6300       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6301 
6302     HadIntMinDivisor |= D.isMinSignedValue();
6303 
6304     // If all divisors are ones, we will prefer to avoid the fold.
6305     HadOneDivisor |= D.isOne();
6306     AllDivisorsAreOnes &= D.isOne();
6307 
6308     // Decompose D into D0 * 2^K
6309     unsigned K = D.countTrailingZeros();
6310     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6311     APInt D0 = D.lshr(K);
6312 
6313     if (!D.isMinSignedValue()) {
6314       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6315       // we don't care about this lane in this fold, we'll special-handle it.
6316       HadEvenDivisor |= (K != 0);
6317     }
6318 
6319     // D is a power-of-two if D0 is one. This includes INT_MIN.
6320     // If all divisors are power-of-two, we will prefer to avoid the fold.
6321     AllDivisorsArePowerOfTwo &= D0.isOne();
6322 
6323     // P = inv(D0, 2^W)
6324     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6325     unsigned W = D.getBitWidth();
6326     APInt P = D0.zext(W + 1)
6327                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6328                   .trunc(W);
6329     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6330     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6331 
6332     // A = floor((2^(W - 1) - 1) / D0) & -2^K
6333     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6334     A.clearLowBits(K);
6335 
6336     if (!D.isMinSignedValue()) {
6337       // If divisor INT_MIN, then we don't care about this lane in this fold,
6338       // we'll special-handle it.
6339       NeedToApplyOffset |= A != 0;
6340     }
6341 
6342     // Q = floor((2 * A) / (2^K))
6343     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6344 
6345     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6346            "We are expecting that A is always less than all-ones for SVT");
6347     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6348            "We are expecting that K is always less than all-ones for ShSVT");
6349 
6350     // If the divisor is 1 the result can be constant-folded. Likewise, we
6351     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6352     if (D.isOne()) {
6353       // Set P, A and K to a bogus values so we can try to splat them.
6354       P = 0;
6355       A = -1;
6356       K = -1;
6357 
6358       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
6359       Q = -1;
6360     }
6361 
6362     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6363     AAmts.push_back(DAG.getConstant(A, DL, SVT));
6364     KAmts.push_back(
6365         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6366     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6367     return true;
6368   };
6369 
6370   SDValue N = REMNode.getOperand(0);
6371   SDValue D = REMNode.getOperand(1);
6372 
6373   // Collect the values from each element.
6374   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6375     return SDValue();
6376 
6377   // If this is a srem by a one, avoid the fold since it can be constant-folded.
6378   if (AllDivisorsAreOnes)
6379     return SDValue();
6380 
6381   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6382   // since it can be best implemented as a bit test.
6383   if (AllDivisorsArePowerOfTwo)
6384     return SDValue();
6385 
6386   SDValue PVal, AVal, KVal, QVal;
6387   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6388     if (HadOneDivisor) {
6389       // Try to turn PAmts into a splat, since we don't care about the values
6390       // that are currently '0'. If we can't, just keep '0'`s.
6391       turnVectorIntoSplatVector(PAmts, isNullConstant);
6392       // Try to turn AAmts into a splat, since we don't care about the
6393       // values that are currently '-1'. If we can't, change them to '0'`s.
6394       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6395                                 DAG.getConstant(0, DL, SVT));
6396       // Try to turn KAmts into a splat, since we don't care about the values
6397       // that are currently '-1'. If we can't, change them to '0'`s.
6398       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6399                                 DAG.getConstant(0, DL, ShSVT));
6400     }
6401 
6402     PVal = DAG.getBuildVector(VT, DL, PAmts);
6403     AVal = DAG.getBuildVector(VT, DL, AAmts);
6404     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6405     QVal = DAG.getBuildVector(VT, DL, QAmts);
6406   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6407     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6408            QAmts.size() == 1 &&
6409            "Expected matchUnaryPredicate to return one element for scalable "
6410            "vectors");
6411     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6412     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6413     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6414     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6415   } else {
6416     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6417     PVal = PAmts[0];
6418     AVal = AAmts[0];
6419     KVal = KAmts[0];
6420     QVal = QAmts[0];
6421   }
6422 
6423   // (mul N, P)
6424   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6425   Created.push_back(Op0.getNode());
6426 
6427   if (NeedToApplyOffset) {
6428     // We need ADD to do this.
6429     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6430       return SDValue();
6431 
6432     // (add (mul N, P), A)
6433     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6434     Created.push_back(Op0.getNode());
6435   }
6436 
6437   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6438   // divisors as a performance improvement, since rotating by 0 is a no-op.
6439   if (HadEvenDivisor) {
6440     // We need ROTR to do this.
6441     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6442       return SDValue();
6443     // SREM: (rotr (add (mul N, P), A), K)
6444     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6445     Created.push_back(Op0.getNode());
6446   }
6447 
6448   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6449   SDValue Fold =
6450       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6451                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6452 
6453   // If we didn't have lanes with INT_MIN divisor, then we're done.
6454   if (!HadIntMinDivisor)
6455     return Fold;
6456 
6457   // That fold is only valid for positive divisors. Which effectively means,
6458   // it is invalid for INT_MIN divisors. So if we have such a lane,
6459   // we must fix-up results for said lanes.
6460   assert(VT.isVector() && "Can/should only get here for vectors.");
6461 
6462   // NOTE: we avoid letting illegal types through even if we're before legalize
6463   // ops – legalization has a hard time producing good code for the code that
6464   // follows.
6465   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6466       !isOperationLegalOrCustom(ISD::AND, VT) ||
6467       !isOperationLegalOrCustom(Cond, VT) ||
6468       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6469     return SDValue();
6470 
6471   Created.push_back(Fold.getNode());
6472 
6473   SDValue IntMin = DAG.getConstant(
6474       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6475   SDValue IntMax = DAG.getConstant(
6476       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6477   SDValue Zero =
6478       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6479 
6480   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6481   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6482   Created.push_back(DivisorIsIntMin.getNode());
6483 
6484   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6485   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6486   Created.push_back(Masked.getNode());
6487   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6488   Created.push_back(MaskedIsZero.getNode());
6489 
6490   // To produce final result we need to blend 2 vectors: 'SetCC' and
6491   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6492   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6493   // constant-folded, select can get lowered to a shuffle with constant mask.
6494   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6495                                 MaskedIsZero, Fold);
6496 
6497   return Blended;
6498 }
6499 
6500 bool TargetLowering::
6501 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6502   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6503     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6504                                 "be a constant integer");
6505     return true;
6506   }
6507 
6508   return false;
6509 }
6510 
6511 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6512                                          const DenormalMode &Mode) const {
6513   SDLoc DL(Op);
6514   EVT VT = Op.getValueType();
6515   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6516   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6517   // Testing it with denormal inputs to avoid wrong estimate.
6518   if (Mode.Input == DenormalMode::IEEE) {
6519     // This is specifically a check for the handling of denormal inputs,
6520     // not the result.
6521 
6522     // Test = fabs(X) < SmallestNormal
6523     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6524     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6525     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6526     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6527     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6528   }
6529   // Test = X == 0.0
6530   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6531 }
6532 
6533 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6534                                              bool LegalOps, bool OptForSize,
6535                                              NegatibleCost &Cost,
6536                                              unsigned Depth) const {
6537   // fneg is removable even if it has multiple uses.
6538   if (Op.getOpcode() == ISD::FNEG) {
6539     Cost = NegatibleCost::Cheaper;
6540     return Op.getOperand(0);
6541   }
6542 
6543   // Don't recurse exponentially.
6544   if (Depth > SelectionDAG::MaxRecursionDepth)
6545     return SDValue();
6546 
6547   // Pre-increment recursion depth for use in recursive calls.
6548   ++Depth;
6549   const SDNodeFlags Flags = Op->getFlags();
6550   const TargetOptions &Options = DAG.getTarget().Options;
6551   EVT VT = Op.getValueType();
6552   unsigned Opcode = Op.getOpcode();
6553 
6554   // Don't allow anything with multiple uses unless we know it is free.
6555   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6556     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6557                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6558     if (!IsFreeExtend)
6559       return SDValue();
6560   }
6561 
6562   auto RemoveDeadNode = [&](SDValue N) {
6563     if (N && N.getNode()->use_empty())
6564       DAG.RemoveDeadNode(N.getNode());
6565   };
6566 
6567   SDLoc DL(Op);
6568 
6569   // Because getNegatedExpression can delete nodes we need a handle to keep
6570   // temporary nodes alive in case the recursion manages to create an identical
6571   // node.
6572   std::list<HandleSDNode> Handles;
6573 
6574   switch (Opcode) {
6575   case ISD::ConstantFP: {
6576     // Don't invert constant FP values after legalization unless the target says
6577     // the negated constant is legal.
6578     bool IsOpLegal =
6579         isOperationLegal(ISD::ConstantFP, VT) ||
6580         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6581                      OptForSize);
6582 
6583     if (LegalOps && !IsOpLegal)
6584       break;
6585 
6586     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6587     V.changeSign();
6588     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6589 
6590     // If we already have the use of the negated floating constant, it is free
6591     // to negate it even it has multiple uses.
6592     if (!Op.hasOneUse() && CFP.use_empty())
6593       break;
6594     Cost = NegatibleCost::Neutral;
6595     return CFP;
6596   }
6597   case ISD::BUILD_VECTOR: {
6598     // Only permit BUILD_VECTOR of constants.
6599     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6600           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6601         }))
6602       break;
6603 
6604     bool IsOpLegal =
6605         (isOperationLegal(ISD::ConstantFP, VT) &&
6606          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6607         llvm::all_of(Op->op_values(), [&](SDValue N) {
6608           return N.isUndef() ||
6609                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6610                               OptForSize);
6611         });
6612 
6613     if (LegalOps && !IsOpLegal)
6614       break;
6615 
6616     SmallVector<SDValue, 4> Ops;
6617     for (SDValue C : Op->op_values()) {
6618       if (C.isUndef()) {
6619         Ops.push_back(C);
6620         continue;
6621       }
6622       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6623       V.changeSign();
6624       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6625     }
6626     Cost = NegatibleCost::Neutral;
6627     return DAG.getBuildVector(VT, DL, Ops);
6628   }
6629   case ISD::FADD: {
6630     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6631       break;
6632 
6633     // After operation legalization, it might not be legal to create new FSUBs.
6634     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6635       break;
6636     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6637 
6638     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6639     NegatibleCost CostX = NegatibleCost::Expensive;
6640     SDValue NegX =
6641         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6642     // Prevent this node from being deleted by the next call.
6643     if (NegX)
6644       Handles.emplace_back(NegX);
6645 
6646     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6647     NegatibleCost CostY = NegatibleCost::Expensive;
6648     SDValue NegY =
6649         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6650 
6651     // We're done with the handles.
6652     Handles.clear();
6653 
6654     // Negate the X if its cost is less or equal than Y.
6655     if (NegX && (CostX <= CostY)) {
6656       Cost = CostX;
6657       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6658       if (NegY != N)
6659         RemoveDeadNode(NegY);
6660       return N;
6661     }
6662 
6663     // Negate the Y if it is not expensive.
6664     if (NegY) {
6665       Cost = CostY;
6666       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6667       if (NegX != N)
6668         RemoveDeadNode(NegX);
6669       return N;
6670     }
6671     break;
6672   }
6673   case ISD::FSUB: {
6674     // We can't turn -(A-B) into B-A when we honor signed zeros.
6675     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6676       break;
6677 
6678     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6679     // fold (fneg (fsub 0, Y)) -> Y
6680     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6681       if (C->isZero()) {
6682         Cost = NegatibleCost::Cheaper;
6683         return Y;
6684       }
6685 
6686     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6687     Cost = NegatibleCost::Neutral;
6688     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6689   }
6690   case ISD::FMUL:
6691   case ISD::FDIV: {
6692     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6693 
6694     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6695     NegatibleCost CostX = NegatibleCost::Expensive;
6696     SDValue NegX =
6697         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6698     // Prevent this node from being deleted by the next call.
6699     if (NegX)
6700       Handles.emplace_back(NegX);
6701 
6702     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6703     NegatibleCost CostY = NegatibleCost::Expensive;
6704     SDValue NegY =
6705         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6706 
6707     // We're done with the handles.
6708     Handles.clear();
6709 
6710     // Negate the X if its cost is less or equal than Y.
6711     if (NegX && (CostX <= CostY)) {
6712       Cost = CostX;
6713       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6714       if (NegY != N)
6715         RemoveDeadNode(NegY);
6716       return N;
6717     }
6718 
6719     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6720     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6721       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6722         break;
6723 
6724     // Negate the Y if it is not expensive.
6725     if (NegY) {
6726       Cost = CostY;
6727       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6728       if (NegX != N)
6729         RemoveDeadNode(NegX);
6730       return N;
6731     }
6732     break;
6733   }
6734   case ISD::FMA:
6735   case ISD::FMAD: {
6736     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6737       break;
6738 
6739     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6740     NegatibleCost CostZ = NegatibleCost::Expensive;
6741     SDValue NegZ =
6742         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6743     // Give up if fail to negate the Z.
6744     if (!NegZ)
6745       break;
6746 
6747     // Prevent this node from being deleted by the next two calls.
6748     Handles.emplace_back(NegZ);
6749 
6750     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6751     NegatibleCost CostX = NegatibleCost::Expensive;
6752     SDValue NegX =
6753         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6754     // Prevent this node from being deleted by the next call.
6755     if (NegX)
6756       Handles.emplace_back(NegX);
6757 
6758     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6759     NegatibleCost CostY = NegatibleCost::Expensive;
6760     SDValue NegY =
6761         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6762 
6763     // We're done with the handles.
6764     Handles.clear();
6765 
6766     // Negate the X if its cost is less or equal than Y.
6767     if (NegX && (CostX <= CostY)) {
6768       Cost = std::min(CostX, CostZ);
6769       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6770       if (NegY != N)
6771         RemoveDeadNode(NegY);
6772       return N;
6773     }
6774 
6775     // Negate the Y if it is not expensive.
6776     if (NegY) {
6777       Cost = std::min(CostY, CostZ);
6778       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6779       if (NegX != N)
6780         RemoveDeadNode(NegX);
6781       return N;
6782     }
6783     break;
6784   }
6785 
6786   case ISD::FP_EXTEND:
6787   case ISD::FSIN:
6788     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6789                                             OptForSize, Cost, Depth))
6790       return DAG.getNode(Opcode, DL, VT, NegV);
6791     break;
6792   case ISD::FP_ROUND:
6793     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6794                                             OptForSize, Cost, Depth))
6795       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6796     break;
6797   }
6798 
6799   return SDValue();
6800 }
6801 
6802 //===----------------------------------------------------------------------===//
6803 // Legalization Utilities
6804 //===----------------------------------------------------------------------===//
6805 
6806 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6807                                     SDValue LHS, SDValue RHS,
6808                                     SmallVectorImpl<SDValue> &Result,
6809                                     EVT HiLoVT, SelectionDAG &DAG,
6810                                     MulExpansionKind Kind, SDValue LL,
6811                                     SDValue LH, SDValue RL, SDValue RH) const {
6812   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6813          Opcode == ISD::SMUL_LOHI);
6814 
6815   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6816                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6817   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6818                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6819   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6820                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6821   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6822                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6823 
6824   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6825     return false;
6826 
6827   unsigned OuterBitSize = VT.getScalarSizeInBits();
6828   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6829 
6830   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6831   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6832          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6833 
6834   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6835   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6836                           bool Signed) -> bool {
6837     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6838       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6839       Hi = SDValue(Lo.getNode(), 1);
6840       return true;
6841     }
6842     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6843       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6844       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6845       return true;
6846     }
6847     return false;
6848   };
6849 
6850   SDValue Lo, Hi;
6851 
6852   if (!LL.getNode() && !RL.getNode() &&
6853       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6854     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6855     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6856   }
6857 
6858   if (!LL.getNode())
6859     return false;
6860 
6861   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6862   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6863       DAG.MaskedValueIsZero(RHS, HighMask)) {
6864     // The inputs are both zero-extended.
6865     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6866       Result.push_back(Lo);
6867       Result.push_back(Hi);
6868       if (Opcode != ISD::MUL) {
6869         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6870         Result.push_back(Zero);
6871         Result.push_back(Zero);
6872       }
6873       return true;
6874     }
6875   }
6876 
6877   if (!VT.isVector() && Opcode == ISD::MUL &&
6878       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6879       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6880     // The input values are both sign-extended.
6881     // TODO non-MUL case?
6882     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6883       Result.push_back(Lo);
6884       Result.push_back(Hi);
6885       return true;
6886     }
6887   }
6888 
6889   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6890   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6891   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6892 
6893   if (!LH.getNode() && !RH.getNode() &&
6894       isOperationLegalOrCustom(ISD::SRL, VT) &&
6895       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6896     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6897     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6898     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6899     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6900   }
6901 
6902   if (!LH.getNode())
6903     return false;
6904 
6905   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6906     return false;
6907 
6908   Result.push_back(Lo);
6909 
6910   if (Opcode == ISD::MUL) {
6911     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6912     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6913     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6914     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6915     Result.push_back(Hi);
6916     return true;
6917   }
6918 
6919   // Compute the full width result.
6920   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6921     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6922     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6923     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6924     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6925   };
6926 
6927   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6928   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6929     return false;
6930 
6931   // This is effectively the add part of a multiply-add of half-sized operands,
6932   // so it cannot overflow.
6933   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6934 
6935   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6936     return false;
6937 
6938   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6939   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6940 
6941   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6942                   isOperationLegalOrCustom(ISD::ADDE, VT));
6943   if (UseGlue)
6944     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6945                        Merge(Lo, Hi));
6946   else
6947     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6948                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6949 
6950   SDValue Carry = Next.getValue(1);
6951   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6952   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6953 
6954   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6955     return false;
6956 
6957   if (UseGlue)
6958     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6959                      Carry);
6960   else
6961     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6962                      Zero, Carry);
6963 
6964   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6965 
6966   if (Opcode == ISD::SMUL_LOHI) {
6967     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6968                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6969     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6970 
6971     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6972                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6973     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6974   }
6975 
6976   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6977   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6978   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6979   return true;
6980 }
6981 
6982 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6983                                SelectionDAG &DAG, MulExpansionKind Kind,
6984                                SDValue LL, SDValue LH, SDValue RL,
6985                                SDValue RH) const {
6986   SmallVector<SDValue, 2> Result;
6987   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6988                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6989                            DAG, Kind, LL, LH, RL, RH);
6990   if (Ok) {
6991     assert(Result.size() == 2);
6992     Lo = Result[0];
6993     Hi = Result[1];
6994   }
6995   return Ok;
6996 }
6997 
6998 // Check that (every element of) Z is undef or not an exact multiple of BW.
6999 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
7000   return ISD::matchUnaryPredicate(
7001       Z,
7002       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
7003       true);
7004 }
7005 
7006 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
7007                                           SelectionDAG &DAG) const {
7008   EVT VT = Node->getValueType(0);
7009 
7010   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7011                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7012                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7013                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7014     return SDValue();
7015 
7016   SDValue X = Node->getOperand(0);
7017   SDValue Y = Node->getOperand(1);
7018   SDValue Z = Node->getOperand(2);
7019 
7020   unsigned BW = VT.getScalarSizeInBits();
7021   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
7022   SDLoc DL(SDValue(Node, 0));
7023 
7024   EVT ShVT = Z.getValueType();
7025 
7026   // If a funnel shift in the other direction is more supported, use it.
7027   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
7028   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7029       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
7030     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7031       // fshl X, Y, Z -> fshr X, Y, -Z
7032       // fshr X, Y, Z -> fshl X, Y, -Z
7033       SDValue Zero = DAG.getConstant(0, DL, ShVT);
7034       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
7035     } else {
7036       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
7037       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
7038       SDValue One = DAG.getConstant(1, DL, ShVT);
7039       if (IsFSHL) {
7040         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7041         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
7042       } else {
7043         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7044         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
7045       }
7046       Z = DAG.getNOT(DL, Z, ShVT);
7047     }
7048     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
7049   }
7050 
7051   SDValue ShX, ShY;
7052   SDValue ShAmt, InvShAmt;
7053   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7054     // fshl: X << C | Y >> (BW - C)
7055     // fshr: X << (BW - C) | Y >> C
7056     // where C = Z % BW is not zero
7057     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7058     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7059     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
7060     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
7061     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
7062   } else {
7063     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7064     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7065     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
7066     if (isPowerOf2_32(BW)) {
7067       // Z % BW -> Z & (BW - 1)
7068       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
7069       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7070       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
7071     } else {
7072       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7073       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7074       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
7075     }
7076 
7077     SDValue One = DAG.getConstant(1, DL, ShVT);
7078     if (IsFSHL) {
7079       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
7080       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
7081       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
7082     } else {
7083       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
7084       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
7085       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
7086     }
7087   }
7088   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
7089 }
7090 
7091 // TODO: Merge with expandFunnelShift.
7092 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
7093                                   SelectionDAG &DAG) const {
7094   EVT VT = Node->getValueType(0);
7095   unsigned EltSizeInBits = VT.getScalarSizeInBits();
7096   bool IsLeft = Node->getOpcode() == ISD::ROTL;
7097   SDValue Op0 = Node->getOperand(0);
7098   SDValue Op1 = Node->getOperand(1);
7099   SDLoc DL(SDValue(Node, 0));
7100 
7101   EVT ShVT = Op1.getValueType();
7102   SDValue Zero = DAG.getConstant(0, DL, ShVT);
7103 
7104   // If a rotate in the other direction is more supported, use it.
7105   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
7106   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7107       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
7108     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7109     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
7110   }
7111 
7112   if (!AllowVectorOps && VT.isVector() &&
7113       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7114        !isOperationLegalOrCustom(ISD::SRL, VT) ||
7115        !isOperationLegalOrCustom(ISD::SUB, VT) ||
7116        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
7117        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7118     return SDValue();
7119 
7120   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
7121   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
7122   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
7123   SDValue ShVal;
7124   SDValue HsVal;
7125   if (isPowerOf2_32(EltSizeInBits)) {
7126     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
7127     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
7128     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7129     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
7130     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7131     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
7132     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
7133   } else {
7134     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
7135     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
7136     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
7137     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
7138     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7139     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
7140     SDValue One = DAG.getConstant(1, DL, ShVT);
7141     HsVal =
7142         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
7143   }
7144   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
7145 }
7146 
7147 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
7148                                       SelectionDAG &DAG) const {
7149   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
7150   EVT VT = Node->getValueType(0);
7151   unsigned VTBits = VT.getScalarSizeInBits();
7152   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
7153 
7154   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
7155   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
7156   SDValue ShOpLo = Node->getOperand(0);
7157   SDValue ShOpHi = Node->getOperand(1);
7158   SDValue ShAmt = Node->getOperand(2);
7159   EVT ShAmtVT = ShAmt.getValueType();
7160   EVT ShAmtCCVT =
7161       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
7162   SDLoc dl(Node);
7163 
7164   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
7165   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
7166   // away during isel.
7167   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7168                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
7169   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7170                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
7171                        : DAG.getConstant(0, dl, VT);
7172 
7173   SDValue Tmp2, Tmp3;
7174   if (IsSHL) {
7175     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
7176     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
7177   } else {
7178     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
7179     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
7180   }
7181 
7182   // If the shift amount is larger or equal than the width of a part we don't
7183   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
7184   // values for large shift amounts.
7185   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7186                                 DAG.getConstant(VTBits, dl, ShAmtVT));
7187   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
7188                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
7189 
7190   if (IsSHL) {
7191     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7192     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7193   } else {
7194     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7195     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7196   }
7197 }
7198 
7199 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
7200                                       SelectionDAG &DAG) const {
7201   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7202   SDValue Src = Node->getOperand(OpNo);
7203   EVT SrcVT = Src.getValueType();
7204   EVT DstVT = Node->getValueType(0);
7205   SDLoc dl(SDValue(Node, 0));
7206 
7207   // FIXME: Only f32 to i64 conversions are supported.
7208   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
7209     return false;
7210 
7211   if (Node->isStrictFPOpcode())
7212     // When a NaN is converted to an integer a trap is allowed. We can't
7213     // use this expansion here because it would eliminate that trap. Other
7214     // traps are also allowed and cannot be eliminated. See
7215     // IEEE 754-2008 sec 5.8.
7216     return false;
7217 
7218   // Expand f32 -> i64 conversion
7219   // This algorithm comes from compiler-rt's implementation of fixsfdi:
7220   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7221   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
7222   EVT IntVT = SrcVT.changeTypeToInteger();
7223   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
7224 
7225   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
7226   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
7227   SDValue Bias = DAG.getConstant(127, dl, IntVT);
7228   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
7229   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
7230   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
7231 
7232   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
7233 
7234   SDValue ExponentBits = DAG.getNode(
7235       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
7236       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
7237   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
7238 
7239   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
7240                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
7241                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
7242   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
7243 
7244   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
7245                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
7246                           DAG.getConstant(0x00800000, dl, IntVT));
7247 
7248   R = DAG.getZExtOrTrunc(R, dl, DstVT);
7249 
7250   R = DAG.getSelectCC(
7251       dl, Exponent, ExponentLoBit,
7252       DAG.getNode(ISD::SHL, dl, DstVT, R,
7253                   DAG.getZExtOrTrunc(
7254                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7255                       dl, IntShVT)),
7256       DAG.getNode(ISD::SRL, dl, DstVT, R,
7257                   DAG.getZExtOrTrunc(
7258                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7259                       dl, IntShVT)),
7260       ISD::SETGT);
7261 
7262   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7263                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7264 
7265   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7266                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7267   return true;
7268 }
7269 
7270 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7271                                       SDValue &Chain,
7272                                       SelectionDAG &DAG) const {
7273   SDLoc dl(SDValue(Node, 0));
7274   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7275   SDValue Src = Node->getOperand(OpNo);
7276 
7277   EVT SrcVT = Src.getValueType();
7278   EVT DstVT = Node->getValueType(0);
7279   EVT SetCCVT =
7280       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7281   EVT DstSetCCVT =
7282       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7283 
7284   // Only expand vector types if we have the appropriate vector bit operations.
7285   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7286                                                    ISD::FP_TO_SINT;
7287   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7288                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7289     return false;
7290 
7291   // If the maximum float value is smaller then the signed integer range,
7292   // the destination signmask can't be represented by the float, so we can
7293   // just use FP_TO_SINT directly.
7294   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7295   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7296   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7297   if (APFloat::opOverflow &
7298       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7299     if (Node->isStrictFPOpcode()) {
7300       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7301                            { Node->getOperand(0), Src });
7302       Chain = Result.getValue(1);
7303     } else
7304       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7305     return true;
7306   }
7307 
7308   // Don't expand it if there isn't cheap fsub instruction.
7309   if (!isOperationLegalOrCustom(
7310           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7311     return false;
7312 
7313   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7314   SDValue Sel;
7315 
7316   if (Node->isStrictFPOpcode()) {
7317     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7318                        Node->getOperand(0), /*IsSignaling*/ true);
7319     Chain = Sel.getValue(1);
7320   } else {
7321     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7322   }
7323 
7324   bool Strict = Node->isStrictFPOpcode() ||
7325                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7326 
7327   if (Strict) {
7328     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7329     // signmask then offset (the result of which should be fully representable).
7330     // Sel = Src < 0x8000000000000000
7331     // FltOfs = select Sel, 0, 0x8000000000000000
7332     // IntOfs = select Sel, 0, 0x8000000000000000
7333     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7334 
7335     // TODO: Should any fast-math-flags be set for the FSUB?
7336     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7337                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7338     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7339     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7340                                    DAG.getConstant(0, dl, DstVT),
7341                                    DAG.getConstant(SignMask, dl, DstVT));
7342     SDValue SInt;
7343     if (Node->isStrictFPOpcode()) {
7344       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7345                                 { Chain, Src, FltOfs });
7346       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7347                          { Val.getValue(1), Val });
7348       Chain = SInt.getValue(1);
7349     } else {
7350       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7351       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7352     }
7353     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7354   } else {
7355     // Expand based on maximum range of FP_TO_SINT:
7356     // True = fp_to_sint(Src)
7357     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7358     // Result = select (Src < 0x8000000000000000), True, False
7359 
7360     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7361     // TODO: Should any fast-math-flags be set for the FSUB?
7362     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7363                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7364     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7365                         DAG.getConstant(SignMask, dl, DstVT));
7366     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7367     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7368   }
7369   return true;
7370 }
7371 
7372 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7373                                       SDValue &Chain,
7374                                       SelectionDAG &DAG) const {
7375   // This transform is not correct for converting 0 when rounding mode is set
7376   // to round toward negative infinity which will produce -0.0. So disable under
7377   // strictfp.
7378   if (Node->isStrictFPOpcode())
7379     return false;
7380 
7381   SDValue Src = Node->getOperand(0);
7382   EVT SrcVT = Src.getValueType();
7383   EVT DstVT = Node->getValueType(0);
7384 
7385   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7386     return false;
7387 
7388   // Only expand vector types if we have the appropriate vector bit operations.
7389   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7390                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7391                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7392                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7393                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7394     return false;
7395 
7396   SDLoc dl(SDValue(Node, 0));
7397   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7398 
7399   // Implementation of unsigned i64 to f64 following the algorithm in
7400   // __floatundidf in compiler_rt.  This implementation performs rounding
7401   // correctly in all rounding modes with the exception of converting 0
7402   // when rounding toward negative infinity. In that case the fsub will produce
7403   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7404   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7405   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7406       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7407   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7408   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7409   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7410 
7411   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7412   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7413   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7414   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7415   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7416   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7417   SDValue HiSub =
7418       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7419   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7420   return true;
7421 }
7422 
7423 SDValue
7424 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
7425                                                SelectionDAG &DAG) const {
7426   unsigned Opcode = Node->getOpcode();
7427   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
7428           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
7429          "Wrong opcode");
7430 
7431   if (Node->getFlags().hasNoNaNs()) {
7432     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7433     SDValue Op1 = Node->getOperand(0);
7434     SDValue Op2 = Node->getOperand(1);
7435     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
7436     // Copy FMF flags, but always set the no-signed-zeros flag
7437     // as this is implied by the FMINNUM/FMAXNUM semantics.
7438     SDNodeFlags Flags = Node->getFlags();
7439     Flags.setNoSignedZeros(true);
7440     SelCC->setFlags(Flags);
7441     return SelCC;
7442   }
7443 
7444   return SDValue();
7445 }
7446 
7447 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7448                                               SelectionDAG &DAG) const {
7449   SDLoc dl(Node);
7450   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7451     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7452   EVT VT = Node->getValueType(0);
7453 
7454   if (VT.isScalableVector())
7455     report_fatal_error(
7456         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7457 
7458   if (isOperationLegalOrCustom(NewOp, VT)) {
7459     SDValue Quiet0 = Node->getOperand(0);
7460     SDValue Quiet1 = Node->getOperand(1);
7461 
7462     if (!Node->getFlags().hasNoNaNs()) {
7463       // Insert canonicalizes if it's possible we need to quiet to get correct
7464       // sNaN behavior.
7465       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7466         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7467                              Node->getFlags());
7468       }
7469       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7470         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7471                              Node->getFlags());
7472       }
7473     }
7474 
7475     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7476   }
7477 
7478   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7479   // instead if there are no NaNs.
7480   if (Node->getFlags().hasNoNaNs()) {
7481     unsigned IEEE2018Op =
7482         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7483     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7484       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7485                          Node->getOperand(1), Node->getFlags());
7486     }
7487   }
7488 
7489   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
7490     return SelCC;
7491 
7492   return SDValue();
7493 }
7494 
7495 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
7496                                          unsigned Test, SDNodeFlags Flags,
7497                                          const SDLoc &DL,
7498                                          SelectionDAG &DAG) const {
7499   EVT OperandVT = Op.getValueType();
7500   assert(OperandVT.isFloatingPoint());
7501 
7502   // Degenerated cases.
7503   if (Test == 0)
7504     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
7505   if ((Test & fcAllFlags) == fcAllFlags)
7506     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
7507 
7508   // PPC double double is a pair of doubles, of which the higher part determines
7509   // the value class.
7510   if (OperandVT == MVT::ppcf128) {
7511     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
7512                      DAG.getConstant(1, DL, MVT::i32));
7513     OperandVT = MVT::f64;
7514   }
7515 
7516   // Some checks may be represented as inversion of simpler check, for example
7517   // "inf|normal|subnormal|zero" => !"nan".
7518   bool IsInverted = false;
7519   if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) {
7520     IsInverted = true;
7521     Test = InvertedCheck;
7522   }
7523 
7524   // Floating-point type properties.
7525   EVT ScalarFloatVT = OperandVT.getScalarType();
7526   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
7527   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
7528   bool IsF80 = (ScalarFloatVT == MVT::f80);
7529 
7530   // Some checks can be implemented using float comparisons, if floating point
7531   // exceptions are ignored.
7532   if (Flags.hasNoFPExcept() &&
7533       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
7534     if (Test == fcZero)
7535       return DAG.getSetCC(DL, ResultVT, Op,
7536                           DAG.getConstantFP(0.0, DL, OperandVT),
7537                           IsInverted ? ISD::SETUNE : ISD::SETOEQ);
7538     if (Test == fcNan)
7539       return DAG.getSetCC(DL, ResultVT, Op, Op,
7540                           IsInverted ? ISD::SETO : ISD::SETUO);
7541   }
7542 
7543   // In the general case use integer operations.
7544   unsigned BitSize = OperandVT.getScalarSizeInBits();
7545   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
7546   if (OperandVT.isVector())
7547     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
7548                              OperandVT.getVectorElementCount());
7549   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
7550 
7551   // Various masks.
7552   APInt SignBit = APInt::getSignMask(BitSize);
7553   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
7554   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
7555   const unsigned ExplicitIntBitInF80 = 63;
7556   APInt ExpMask = Inf;
7557   if (IsF80)
7558     ExpMask.clearBit(ExplicitIntBitInF80);
7559   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
7560   APInt QNaNBitMask =
7561       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
7562   APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits());
7563 
7564   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
7565   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
7566   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
7567   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
7568   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
7569   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
7570 
7571   SDValue Res;
7572   const auto appendResult = [&](SDValue PartialRes) {
7573     if (PartialRes) {
7574       if (Res)
7575         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
7576       else
7577         Res = PartialRes;
7578     }
7579   };
7580 
7581   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
7582   const auto getIntBitIsSet = [&]() -> SDValue {
7583     if (!IntBitIsSetV) {
7584       APInt IntBitMask(BitSize, 0);
7585       IntBitMask.setBit(ExplicitIntBitInF80);
7586       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
7587       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
7588       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
7589     }
7590     return IntBitIsSetV;
7591   };
7592 
7593   // Split the value into sign bit and absolute value.
7594   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
7595   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
7596                                DAG.getConstant(0.0, DL, IntVT), ISD::SETLT);
7597 
7598   // Tests that involve more than one class should be processed first.
7599   SDValue PartialRes;
7600 
7601   if (IsF80)
7602     ; // Detect finite numbers of f80 by checking individual classes because
7603       // they have different settings of the explicit integer bit.
7604   else if ((Test & fcFinite) == fcFinite) {
7605     // finite(V) ==> abs(V) < exp_mask
7606     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7607     Test &= ~fcFinite;
7608   } else if ((Test & fcFinite) == fcPosFinite) {
7609     // finite(V) && V > 0 ==> V < exp_mask
7610     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
7611     Test &= ~fcPosFinite;
7612   } else if ((Test & fcFinite) == fcNegFinite) {
7613     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
7614     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7615     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7616     Test &= ~fcNegFinite;
7617   }
7618   appendResult(PartialRes);
7619 
7620   // Check for individual classes.
7621 
7622   if (unsigned PartialCheck = Test & fcZero) {
7623     if (PartialCheck == fcPosZero)
7624       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
7625     else if (PartialCheck == fcZero)
7626       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
7627     else // ISD::fcNegZero
7628       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
7629     appendResult(PartialRes);
7630   }
7631 
7632   if (unsigned PartialCheck = Test & fcInf) {
7633     if (PartialCheck == fcPosInf)
7634       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
7635     else if (PartialCheck == fcInf)
7636       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
7637     else { // ISD::fcNegInf
7638       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
7639       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
7640       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
7641     }
7642     appendResult(PartialRes);
7643   }
7644 
7645   if (unsigned PartialCheck = Test & fcNan) {
7646     APInt InfWithQnanBit = Inf | QNaNBitMask;
7647     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
7648     if (PartialCheck == fcNan) {
7649       // isnan(V) ==> abs(V) > int(inf)
7650       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7651       if (IsF80) {
7652         // Recognize unsupported values as NaNs for compatibility with glibc.
7653         // In them (exp(V)==0) == int_bit.
7654         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
7655         SDValue ExpIsZero =
7656             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
7657         SDValue IsPseudo =
7658             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
7659         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
7660       }
7661     } else if (PartialCheck == fcQNan) {
7662       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
7663       PartialRes =
7664           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
7665     } else { // ISD::fcSNan
7666       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
7667       //                    abs(V) < (unsigned(Inf) | quiet_bit)
7668       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7669       SDValue IsNotQnan =
7670           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
7671       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
7672     }
7673     appendResult(PartialRes);
7674   }
7675 
7676   if (unsigned PartialCheck = Test & fcSubnormal) {
7677     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
7678     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
7679     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
7680     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
7681     SDValue VMinusOneV =
7682         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
7683     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
7684     if (PartialCheck == fcNegSubnormal)
7685       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7686     appendResult(PartialRes);
7687   }
7688 
7689   if (unsigned PartialCheck = Test & fcNormal) {
7690     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
7691     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
7692     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
7693     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
7694     APInt ExpLimit = ExpMask - ExpLSB;
7695     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
7696     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
7697     if (PartialCheck == fcNegNormal)
7698       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7699     else if (PartialCheck == fcPosNormal) {
7700       SDValue PosSignV =
7701           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
7702       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
7703     }
7704     if (IsF80)
7705       PartialRes =
7706           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
7707     appendResult(PartialRes);
7708   }
7709 
7710   if (!Res)
7711     return DAG.getConstant(IsInverted, DL, ResultVT);
7712   if (IsInverted)
7713     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
7714   return Res;
7715 }
7716 
7717 // Only expand vector types if we have the appropriate vector bit operations.
7718 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7719   assert(VT.isVector() && "Expected vector type");
7720   unsigned Len = VT.getScalarSizeInBits();
7721   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7722          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7723          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7724          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7725          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7726 }
7727 
7728 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7729   SDLoc dl(Node);
7730   EVT VT = Node->getValueType(0);
7731   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7732   SDValue Op = Node->getOperand(0);
7733   unsigned Len = VT.getScalarSizeInBits();
7734   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7735 
7736   // TODO: Add support for irregular type lengths.
7737   if (!(Len <= 128 && Len % 8 == 0))
7738     return SDValue();
7739 
7740   // Only expand vector types if we have the appropriate vector bit operations.
7741   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7742     return SDValue();
7743 
7744   // This is the "best" algorithm from
7745   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7746   SDValue Mask55 =
7747       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7748   SDValue Mask33 =
7749       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7750   SDValue Mask0F =
7751       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7752 
7753   // v = v - ((v >> 1) & 0x55555555...)
7754   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7755                    DAG.getNode(ISD::AND, dl, VT,
7756                                DAG.getNode(ISD::SRL, dl, VT, Op,
7757                                            DAG.getConstant(1, dl, ShVT)),
7758                                Mask55));
7759   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7760   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7761                    DAG.getNode(ISD::AND, dl, VT,
7762                                DAG.getNode(ISD::SRL, dl, VT, Op,
7763                                            DAG.getConstant(2, dl, ShVT)),
7764                                Mask33));
7765   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7766   Op = DAG.getNode(ISD::AND, dl, VT,
7767                    DAG.getNode(ISD::ADD, dl, VT, Op,
7768                                DAG.getNode(ISD::SRL, dl, VT, Op,
7769                                            DAG.getConstant(4, dl, ShVT))),
7770                    Mask0F);
7771 
7772   if (Len <= 8)
7773     return Op;
7774 
7775   // Avoid the multiply if we only have 2 bytes to add.
7776   // TODO: Only doing this for scalars because vectors weren't as obviously
7777   // improved.
7778   if (Len == 16 && !VT.isVector()) {
7779     // v = (v + (v >> 8)) & 0x00FF;
7780     return DAG.getNode(ISD::AND, dl, VT,
7781                      DAG.getNode(ISD::ADD, dl, VT, Op,
7782                                  DAG.getNode(ISD::SRL, dl, VT, Op,
7783                                              DAG.getConstant(8, dl, ShVT))),
7784                      DAG.getConstant(0xFF, dl, VT));
7785   }
7786 
7787   // v = (v * 0x01010101...) >> (Len - 8)
7788   SDValue Mask01 =
7789       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7790   return DAG.getNode(ISD::SRL, dl, VT,
7791                      DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7792                      DAG.getConstant(Len - 8, dl, ShVT));
7793 }
7794 
7795 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7796   SDLoc dl(Node);
7797   EVT VT = Node->getValueType(0);
7798   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7799   SDValue Op = Node->getOperand(0);
7800   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7801 
7802   // If the non-ZERO_UNDEF version is supported we can use that instead.
7803   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7804       isOperationLegalOrCustom(ISD::CTLZ, VT))
7805     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7806 
7807   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7808   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7809     EVT SetCCVT =
7810         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7811     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7812     SDValue Zero = DAG.getConstant(0, dl, VT);
7813     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7814     return DAG.getSelect(dl, VT, SrcIsZero,
7815                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7816   }
7817 
7818   // Only expand vector types if we have the appropriate vector bit operations.
7819   // This includes the operations needed to expand CTPOP if it isn't supported.
7820   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7821                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7822                          !canExpandVectorCTPOP(*this, VT)) ||
7823                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7824                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7825     return SDValue();
7826 
7827   // for now, we do this:
7828   // x = x | (x >> 1);
7829   // x = x | (x >> 2);
7830   // ...
7831   // x = x | (x >>16);
7832   // x = x | (x >>32); // for 64-bit input
7833   // return popcount(~x);
7834   //
7835   // Ref: "Hacker's Delight" by Henry Warren
7836   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7837     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7838     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7839                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7840   }
7841   Op = DAG.getNOT(dl, Op, VT);
7842   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7843 }
7844 
7845 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7846   SDLoc dl(Node);
7847   EVT VT = Node->getValueType(0);
7848   SDValue Op = Node->getOperand(0);
7849   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7850 
7851   // If the non-ZERO_UNDEF version is supported we can use that instead.
7852   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7853       isOperationLegalOrCustom(ISD::CTTZ, VT))
7854     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7855 
7856   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7857   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7858     EVT SetCCVT =
7859         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7860     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7861     SDValue Zero = DAG.getConstant(0, dl, VT);
7862     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7863     return DAG.getSelect(dl, VT, SrcIsZero,
7864                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7865   }
7866 
7867   // Only expand vector types if we have the appropriate vector bit operations.
7868   // This includes the operations needed to expand CTPOP if it isn't supported.
7869   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7870                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7871                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7872                          !canExpandVectorCTPOP(*this, VT)) ||
7873                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7874                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7875                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7876     return SDValue();
7877 
7878   // for now, we use: { return popcount(~x & (x - 1)); }
7879   // unless the target has ctlz but not ctpop, in which case we use:
7880   // { return 32 - nlz(~x & (x-1)); }
7881   // Ref: "Hacker's Delight" by Henry Warren
7882   SDValue Tmp = DAG.getNode(
7883       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7884       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7885 
7886   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7887   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7888     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7889                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7890   }
7891 
7892   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7893 }
7894 
7895 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7896                                   bool IsNegative) const {
7897   SDLoc dl(N);
7898   EVT VT = N->getValueType(0);
7899   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7900   SDValue Op = N->getOperand(0);
7901 
7902   // abs(x) -> smax(x,sub(0,x))
7903   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7904       isOperationLegal(ISD::SMAX, VT)) {
7905     SDValue Zero = DAG.getConstant(0, dl, VT);
7906     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7907                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7908   }
7909 
7910   // abs(x) -> umin(x,sub(0,x))
7911   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7912       isOperationLegal(ISD::UMIN, VT)) {
7913     SDValue Zero = DAG.getConstant(0, dl, VT);
7914     Op = DAG.getFreeze(Op);
7915     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7916                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7917   }
7918 
7919   // 0 - abs(x) -> smin(x, sub(0,x))
7920   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7921       isOperationLegal(ISD::SMIN, VT)) {
7922     Op = DAG.getFreeze(Op);
7923     SDValue Zero = DAG.getConstant(0, dl, VT);
7924     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7925                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7926   }
7927 
7928   // Only expand vector types if we have the appropriate vector operations.
7929   if (VT.isVector() &&
7930       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7931        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7932        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7933        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7934     return SDValue();
7935 
7936   Op = DAG.getFreeze(Op);
7937   SDValue Shift =
7938       DAG.getNode(ISD::SRA, dl, VT, Op,
7939                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7940   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7941 
7942   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
7943   if (!IsNegative)
7944     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
7945 
7946   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7947   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7948 }
7949 
7950 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7951   SDLoc dl(N);
7952   EVT VT = N->getValueType(0);
7953   SDValue Op = N->getOperand(0);
7954 
7955   if (!VT.isSimple())
7956     return SDValue();
7957 
7958   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7959   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7960   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7961   default:
7962     return SDValue();
7963   case MVT::i16:
7964     // Use a rotate by 8. This can be further expanded if necessary.
7965     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7966   case MVT::i32:
7967     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7968     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7969     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7970     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7971     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7972                        DAG.getConstant(0xFF0000, dl, VT));
7973     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7974     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7975     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7976     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7977   case MVT::i64:
7978     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7979     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7980     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7981     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7982     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7983     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7984     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7985     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7986     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7987                        DAG.getConstant(255ULL<<48, dl, VT));
7988     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7989                        DAG.getConstant(255ULL<<40, dl, VT));
7990     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7991                        DAG.getConstant(255ULL<<32, dl, VT));
7992     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7993                        DAG.getConstant(255ULL<<24, dl, VT));
7994     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7995                        DAG.getConstant(255ULL<<16, dl, VT));
7996     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7997                        DAG.getConstant(255ULL<<8 , dl, VT));
7998     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7999     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
8000     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
8001     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8002     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
8003     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8004     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
8005   }
8006 }
8007 
8008 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
8009   SDLoc dl(N);
8010   EVT VT = N->getValueType(0);
8011   SDValue Op = N->getOperand(0);
8012   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8013   unsigned Sz = VT.getScalarSizeInBits();
8014 
8015   SDValue Tmp, Tmp2, Tmp3;
8016 
8017   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
8018   // and finally the i1 pairs.
8019   // TODO: We can easily support i4/i2 legal types if any target ever does.
8020   if (Sz >= 8 && isPowerOf2_32(Sz)) {
8021     // Create the masks - repeating the pattern every byte.
8022     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
8023     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
8024     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
8025 
8026     // BSWAP if the type is wider than a single byte.
8027     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
8028 
8029     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
8030     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
8031     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
8032     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
8033     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
8034     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8035 
8036     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
8037     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
8038     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
8039     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
8040     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
8041     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8042 
8043     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
8044     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
8045     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
8046     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
8047     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
8048     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8049     return Tmp;
8050   }
8051 
8052   Tmp = DAG.getConstant(0, dl, VT);
8053   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
8054     if (I < J)
8055       Tmp2 =
8056           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
8057     else
8058       Tmp2 =
8059           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
8060 
8061     APInt Shift(Sz, 1);
8062     Shift <<= J;
8063     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
8064     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
8065   }
8066 
8067   return Tmp;
8068 }
8069 
8070 std::pair<SDValue, SDValue>
8071 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
8072                                     SelectionDAG &DAG) const {
8073   SDLoc SL(LD);
8074   SDValue Chain = LD->getChain();
8075   SDValue BasePTR = LD->getBasePtr();
8076   EVT SrcVT = LD->getMemoryVT();
8077   EVT DstVT = LD->getValueType(0);
8078   ISD::LoadExtType ExtType = LD->getExtensionType();
8079 
8080   if (SrcVT.isScalableVector())
8081     report_fatal_error("Cannot scalarize scalable vector loads");
8082 
8083   unsigned NumElem = SrcVT.getVectorNumElements();
8084 
8085   EVT SrcEltVT = SrcVT.getScalarType();
8086   EVT DstEltVT = DstVT.getScalarType();
8087 
8088   // A vector must always be stored in memory as-is, i.e. without any padding
8089   // between the elements, since various code depend on it, e.g. in the
8090   // handling of a bitcast of a vector type to int, which may be done with a
8091   // vector store followed by an integer load. A vector that does not have
8092   // elements that are byte-sized must therefore be stored as an integer
8093   // built out of the extracted vector elements.
8094   if (!SrcEltVT.isByteSized()) {
8095     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
8096     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
8097 
8098     unsigned NumSrcBits = SrcVT.getSizeInBits();
8099     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
8100 
8101     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
8102     SDValue SrcEltBitMask = DAG.getConstant(
8103         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
8104 
8105     // Load the whole vector and avoid masking off the top bits as it makes
8106     // the codegen worse.
8107     SDValue Load =
8108         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
8109                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
8110                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8111 
8112     SmallVector<SDValue, 8> Vals;
8113     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8114       unsigned ShiftIntoIdx =
8115           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8116       SDValue ShiftAmount =
8117           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
8118                                      LoadVT, SL, /*LegalTypes=*/false);
8119       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
8120       SDValue Elt =
8121           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
8122       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
8123 
8124       if (ExtType != ISD::NON_EXTLOAD) {
8125         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
8126         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
8127       }
8128 
8129       Vals.push_back(Scalar);
8130     }
8131 
8132     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8133     return std::make_pair(Value, Load.getValue(1));
8134   }
8135 
8136   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
8137   assert(SrcEltVT.isByteSized());
8138 
8139   SmallVector<SDValue, 8> Vals;
8140   SmallVector<SDValue, 8> LoadChains;
8141 
8142   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8143     SDValue ScalarLoad =
8144         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
8145                        LD->getPointerInfo().getWithOffset(Idx * Stride),
8146                        SrcEltVT, LD->getOriginalAlign(),
8147                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8148 
8149     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
8150 
8151     Vals.push_back(ScalarLoad.getValue(0));
8152     LoadChains.push_back(ScalarLoad.getValue(1));
8153   }
8154 
8155   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
8156   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8157 
8158   return std::make_pair(Value, NewChain);
8159 }
8160 
8161 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
8162                                              SelectionDAG &DAG) const {
8163   SDLoc SL(ST);
8164 
8165   SDValue Chain = ST->getChain();
8166   SDValue BasePtr = ST->getBasePtr();
8167   SDValue Value = ST->getValue();
8168   EVT StVT = ST->getMemoryVT();
8169 
8170   if (StVT.isScalableVector())
8171     report_fatal_error("Cannot scalarize scalable vector stores");
8172 
8173   // The type of the data we want to save
8174   EVT RegVT = Value.getValueType();
8175   EVT RegSclVT = RegVT.getScalarType();
8176 
8177   // The type of data as saved in memory.
8178   EVT MemSclVT = StVT.getScalarType();
8179 
8180   unsigned NumElem = StVT.getVectorNumElements();
8181 
8182   // A vector must always be stored in memory as-is, i.e. without any padding
8183   // between the elements, since various code depend on it, e.g. in the
8184   // handling of a bitcast of a vector type to int, which may be done with a
8185   // vector store followed by an integer load. A vector that does not have
8186   // elements that are byte-sized must therefore be stored as an integer
8187   // built out of the extracted vector elements.
8188   if (!MemSclVT.isByteSized()) {
8189     unsigned NumBits = StVT.getSizeInBits();
8190     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
8191 
8192     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
8193 
8194     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8195       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8196                                 DAG.getVectorIdxConstant(Idx, SL));
8197       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
8198       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
8199       unsigned ShiftIntoIdx =
8200           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8201       SDValue ShiftAmount =
8202           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
8203       SDValue ShiftedElt =
8204           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
8205       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
8206     }
8207 
8208     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
8209                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8210                         ST->getAAInfo());
8211   }
8212 
8213   // Store Stride in bytes
8214   unsigned Stride = MemSclVT.getSizeInBits() / 8;
8215   assert(Stride && "Zero stride!");
8216   // Extract each of the elements from the original vector and save them into
8217   // memory individually.
8218   SmallVector<SDValue, 8> Stores;
8219   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8220     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8221                               DAG.getVectorIdxConstant(Idx, SL));
8222 
8223     SDValue Ptr =
8224         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
8225 
8226     // This scalar TruncStore may be illegal, but we legalize it later.
8227     SDValue Store = DAG.getTruncStore(
8228         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
8229         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8230         ST->getAAInfo());
8231 
8232     Stores.push_back(Store);
8233   }
8234 
8235   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
8236 }
8237 
8238 std::pair<SDValue, SDValue>
8239 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
8240   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
8241          "unaligned indexed loads not implemented!");
8242   SDValue Chain = LD->getChain();
8243   SDValue Ptr = LD->getBasePtr();
8244   EVT VT = LD->getValueType(0);
8245   EVT LoadedVT = LD->getMemoryVT();
8246   SDLoc dl(LD);
8247   auto &MF = DAG.getMachineFunction();
8248 
8249   if (VT.isFloatingPoint() || VT.isVector()) {
8250     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
8251     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
8252       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
8253           LoadedVT.isVector()) {
8254         // Scalarize the load and let the individual components be handled.
8255         return scalarizeVectorLoad(LD, DAG);
8256       }
8257 
8258       // Expand to a (misaligned) integer load of the same size,
8259       // then bitconvert to floating point or vector.
8260       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
8261                                     LD->getMemOperand());
8262       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
8263       if (LoadedVT != VT)
8264         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
8265                              ISD::ANY_EXTEND, dl, VT, Result);
8266 
8267       return std::make_pair(Result, newLoad.getValue(1));
8268     }
8269 
8270     // Copy the value to a (aligned) stack slot using (unaligned) integer
8271     // loads and stores, then do a (aligned) load from the stack slot.
8272     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
8273     unsigned LoadedBytes = LoadedVT.getStoreSize();
8274     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8275     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
8276 
8277     // Make sure the stack slot is also aligned for the register type.
8278     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
8279     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
8280     SmallVector<SDValue, 8> Stores;
8281     SDValue StackPtr = StackBase;
8282     unsigned Offset = 0;
8283 
8284     EVT PtrVT = Ptr.getValueType();
8285     EVT StackPtrVT = StackPtr.getValueType();
8286 
8287     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8288     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8289 
8290     // Do all but one copies using the full register width.
8291     for (unsigned i = 1; i < NumRegs; i++) {
8292       // Load one integer register's worth from the original location.
8293       SDValue Load = DAG.getLoad(
8294           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
8295           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8296           LD->getAAInfo());
8297       // Follow the load with a store to the stack slot.  Remember the store.
8298       Stores.push_back(DAG.getStore(
8299           Load.getValue(1), dl, Load, StackPtr,
8300           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
8301       // Increment the pointers.
8302       Offset += RegBytes;
8303 
8304       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8305       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8306     }
8307 
8308     // The last copy may be partial.  Do an extending load.
8309     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
8310                                   8 * (LoadedBytes - Offset));
8311     SDValue Load =
8312         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
8313                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
8314                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8315                        LD->getAAInfo());
8316     // Follow the load with a store to the stack slot.  Remember the store.
8317     // On big-endian machines this requires a truncating store to ensure
8318     // that the bits end up in the right place.
8319     Stores.push_back(DAG.getTruncStore(
8320         Load.getValue(1), dl, Load, StackPtr,
8321         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
8322 
8323     // The order of the stores doesn't matter - say it with a TokenFactor.
8324     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8325 
8326     // Finally, perform the original load only redirected to the stack slot.
8327     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
8328                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
8329                           LoadedVT);
8330 
8331     // Callers expect a MERGE_VALUES node.
8332     return std::make_pair(Load, TF);
8333   }
8334 
8335   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
8336          "Unaligned load of unsupported type.");
8337 
8338   // Compute the new VT that is half the size of the old one.  This is an
8339   // integer MVT.
8340   unsigned NumBits = LoadedVT.getSizeInBits();
8341   EVT NewLoadedVT;
8342   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
8343   NumBits >>= 1;
8344 
8345   Align Alignment = LD->getOriginalAlign();
8346   unsigned IncrementSize = NumBits / 8;
8347   ISD::LoadExtType HiExtType = LD->getExtensionType();
8348 
8349   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
8350   if (HiExtType == ISD::NON_EXTLOAD)
8351     HiExtType = ISD::ZEXTLOAD;
8352 
8353   // Load the value in two parts
8354   SDValue Lo, Hi;
8355   if (DAG.getDataLayout().isLittleEndian()) {
8356     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8357                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8358                         LD->getAAInfo());
8359 
8360     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8361     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
8362                         LD->getPointerInfo().getWithOffset(IncrementSize),
8363                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8364                         LD->getAAInfo());
8365   } else {
8366     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8367                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8368                         LD->getAAInfo());
8369 
8370     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8371     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
8372                         LD->getPointerInfo().getWithOffset(IncrementSize),
8373                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8374                         LD->getAAInfo());
8375   }
8376 
8377   // aggregate the two parts
8378   SDValue ShiftAmount =
8379       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
8380                                                     DAG.getDataLayout()));
8381   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
8382   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
8383 
8384   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
8385                              Hi.getValue(1));
8386 
8387   return std::make_pair(Result, TF);
8388 }
8389 
8390 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
8391                                              SelectionDAG &DAG) const {
8392   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
8393          "unaligned indexed stores not implemented!");
8394   SDValue Chain = ST->getChain();
8395   SDValue Ptr = ST->getBasePtr();
8396   SDValue Val = ST->getValue();
8397   EVT VT = Val.getValueType();
8398   Align Alignment = ST->getOriginalAlign();
8399   auto &MF = DAG.getMachineFunction();
8400   EVT StoreMemVT = ST->getMemoryVT();
8401 
8402   SDLoc dl(ST);
8403   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
8404     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8405     if (isTypeLegal(intVT)) {
8406       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
8407           StoreMemVT.isVector()) {
8408         // Scalarize the store and let the individual components be handled.
8409         SDValue Result = scalarizeVectorStore(ST, DAG);
8410         return Result;
8411       }
8412       // Expand to a bitconvert of the value to the integer type of the
8413       // same size, then a (misaligned) int store.
8414       // FIXME: Does not handle truncating floating point stores!
8415       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
8416       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
8417                             Alignment, ST->getMemOperand()->getFlags());
8418       return Result;
8419     }
8420     // Do a (aligned) store to a stack slot, then copy from the stack slot
8421     // to the final destination using (unaligned) integer loads and stores.
8422     MVT RegVT = getRegisterType(
8423         *DAG.getContext(),
8424         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
8425     EVT PtrVT = Ptr.getValueType();
8426     unsigned StoredBytes = StoreMemVT.getStoreSize();
8427     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8428     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
8429 
8430     // Make sure the stack slot is also aligned for the register type.
8431     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
8432     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8433 
8434     // Perform the original store, only redirected to the stack slot.
8435     SDValue Store = DAG.getTruncStore(
8436         Chain, dl, Val, StackPtr,
8437         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
8438 
8439     EVT StackPtrVT = StackPtr.getValueType();
8440 
8441     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8442     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8443     SmallVector<SDValue, 8> Stores;
8444     unsigned Offset = 0;
8445 
8446     // Do all but one copies using the full register width.
8447     for (unsigned i = 1; i < NumRegs; i++) {
8448       // Load one integer register's worth from the stack slot.
8449       SDValue Load = DAG.getLoad(
8450           RegVT, dl, Store, StackPtr,
8451           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
8452       // Store it to the final location.  Remember the store.
8453       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
8454                                     ST->getPointerInfo().getWithOffset(Offset),
8455                                     ST->getOriginalAlign(),
8456                                     ST->getMemOperand()->getFlags()));
8457       // Increment the pointers.
8458       Offset += RegBytes;
8459       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8460       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8461     }
8462 
8463     // The last store may be partial.  Do a truncating store.  On big-endian
8464     // machines this requires an extending load from the stack slot to ensure
8465     // that the bits are in the right place.
8466     EVT LoadMemVT =
8467         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
8468 
8469     // Load from the stack slot.
8470     SDValue Load = DAG.getExtLoad(
8471         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
8472         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
8473 
8474     Stores.push_back(
8475         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
8476                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
8477                           ST->getOriginalAlign(),
8478                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
8479     // The order of the stores doesn't matter - say it with a TokenFactor.
8480     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8481     return Result;
8482   }
8483 
8484   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
8485          "Unaligned store of unknown type.");
8486   // Get the half-size VT
8487   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
8488   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
8489   unsigned IncrementSize = NumBits / 8;
8490 
8491   // Divide the stored value in two parts.
8492   SDValue ShiftAmount = DAG.getConstant(
8493       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
8494   SDValue Lo = Val;
8495   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
8496 
8497   // Store the two parts
8498   SDValue Store1, Store2;
8499   Store1 = DAG.getTruncStore(Chain, dl,
8500                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
8501                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
8502                              ST->getMemOperand()->getFlags());
8503 
8504   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8505   Store2 = DAG.getTruncStore(
8506       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
8507       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
8508       ST->getMemOperand()->getFlags(), ST->getAAInfo());
8509 
8510   SDValue Result =
8511       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
8512   return Result;
8513 }
8514 
8515 SDValue
8516 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
8517                                        const SDLoc &DL, EVT DataVT,
8518                                        SelectionDAG &DAG,
8519                                        bool IsCompressedMemory) const {
8520   SDValue Increment;
8521   EVT AddrVT = Addr.getValueType();
8522   EVT MaskVT = Mask.getValueType();
8523   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
8524          "Incompatible types of Data and Mask");
8525   if (IsCompressedMemory) {
8526     if (DataVT.isScalableVector())
8527       report_fatal_error(
8528           "Cannot currently handle compressed memory with scalable vectors");
8529     // Incrementing the pointer according to number of '1's in the mask.
8530     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
8531     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
8532     if (MaskIntVT.getSizeInBits() < 32) {
8533       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
8534       MaskIntVT = MVT::i32;
8535     }
8536 
8537     // Count '1's with POPCNT.
8538     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
8539     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
8540     // Scale is an element size in bytes.
8541     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
8542                                     AddrVT);
8543     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
8544   } else if (DataVT.isScalableVector()) {
8545     Increment = DAG.getVScale(DL, AddrVT,
8546                               APInt(AddrVT.getFixedSizeInBits(),
8547                                     DataVT.getStoreSize().getKnownMinSize()));
8548   } else
8549     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
8550 
8551   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
8552 }
8553 
8554 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
8555                                        EVT VecVT, const SDLoc &dl,
8556                                        ElementCount SubEC) {
8557   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
8558          "Cannot index a scalable vector within a fixed-width vector");
8559 
8560   unsigned NElts = VecVT.getVectorMinNumElements();
8561   unsigned NumSubElts = SubEC.getKnownMinValue();
8562   EVT IdxVT = Idx.getValueType();
8563 
8564   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
8565     // If this is a constant index and we know the value plus the number of the
8566     // elements in the subvector minus one is less than the minimum number of
8567     // elements then it's safe to return Idx.
8568     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
8569       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
8570         return Idx;
8571     SDValue VS =
8572         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
8573     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
8574     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
8575                               DAG.getConstant(NumSubElts, dl, IdxVT));
8576     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
8577   }
8578   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
8579     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
8580     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
8581                        DAG.getConstant(Imm, dl, IdxVT));
8582   }
8583   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
8584   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
8585                      DAG.getConstant(MaxIndex, dl, IdxVT));
8586 }
8587 
8588 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
8589                                                 SDValue VecPtr, EVT VecVT,
8590                                                 SDValue Index) const {
8591   return getVectorSubVecPointer(
8592       DAG, VecPtr, VecVT,
8593       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
8594       Index);
8595 }
8596 
8597 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
8598                                                SDValue VecPtr, EVT VecVT,
8599                                                EVT SubVecVT,
8600                                                SDValue Index) const {
8601   SDLoc dl(Index);
8602   // Make sure the index type is big enough to compute in.
8603   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
8604 
8605   EVT EltVT = VecVT.getVectorElementType();
8606 
8607   // Calculate the element offset and add it to the pointer.
8608   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
8609   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
8610          "Converting bits to bytes lost precision");
8611   assert(SubVecVT.getVectorElementType() == EltVT &&
8612          "Sub-vector must be a vector with matching element type");
8613   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
8614                                   SubVecVT.getVectorElementCount());
8615 
8616   EVT IdxVT = Index.getValueType();
8617   if (SubVecVT.isScalableVector())
8618     Index =
8619         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8620                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
8621 
8622   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8623                       DAG.getConstant(EltSize, dl, IdxVT));
8624   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
8625 }
8626 
8627 //===----------------------------------------------------------------------===//
8628 // Implementation of Emulated TLS Model
8629 //===----------------------------------------------------------------------===//
8630 
8631 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8632                                                 SelectionDAG &DAG) const {
8633   // Access to address of TLS varialbe xyz is lowered to a function call:
8634   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8635   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8636   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8637   SDLoc dl(GA);
8638 
8639   ArgListTy Args;
8640   ArgListEntry Entry;
8641   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8642   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8643   StringRef EmuTlsVarName(NameString);
8644   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8645   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8646   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8647   Entry.Ty = VoidPtrType;
8648   Args.push_back(Entry);
8649 
8650   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8651 
8652   TargetLowering::CallLoweringInfo CLI(DAG);
8653   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8654   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8655   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8656 
8657   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8658   // At last for X86 targets, maybe good for other targets too?
8659   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8660   MFI.setAdjustsStack(true); // Is this only for X86 target?
8661   MFI.setHasCalls(true);
8662 
8663   assert((GA->getOffset() == 0) &&
8664          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8665   return CallResult.first;
8666 }
8667 
8668 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8669                                                 SelectionDAG &DAG) const {
8670   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8671   if (!isCtlzFast())
8672     return SDValue();
8673   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8674   SDLoc dl(Op);
8675   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8676     if (C->isZero() && CC == ISD::SETEQ) {
8677       EVT VT = Op.getOperand(0).getValueType();
8678       SDValue Zext = Op.getOperand(0);
8679       if (VT.bitsLT(MVT::i32)) {
8680         VT = MVT::i32;
8681         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8682       }
8683       unsigned Log2b = Log2_32(VT.getSizeInBits());
8684       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8685       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8686                                 DAG.getConstant(Log2b, dl, MVT::i32));
8687       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8688     }
8689   }
8690   return SDValue();
8691 }
8692 
8693 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8694   SDValue Op0 = Node->getOperand(0);
8695   SDValue Op1 = Node->getOperand(1);
8696   EVT VT = Op0.getValueType();
8697   unsigned Opcode = Node->getOpcode();
8698   SDLoc DL(Node);
8699 
8700   // umin(x,y) -> sub(x,usubsat(x,y))
8701   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8702       isOperationLegal(ISD::USUBSAT, VT)) {
8703     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8704                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8705   }
8706 
8707   // umax(x,y) -> add(x,usubsat(y,x))
8708   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8709       isOperationLegal(ISD::USUBSAT, VT)) {
8710     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8711                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8712   }
8713 
8714   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8715   ISD::CondCode CC;
8716   switch (Opcode) {
8717   default: llvm_unreachable("How did we get here?");
8718   case ISD::SMAX: CC = ISD::SETGT; break;
8719   case ISD::SMIN: CC = ISD::SETLT; break;
8720   case ISD::UMAX: CC = ISD::SETUGT; break;
8721   case ISD::UMIN: CC = ISD::SETULT; break;
8722   }
8723 
8724   // FIXME: Should really try to split the vector in case it's legal on a
8725   // subvector.
8726   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8727     return DAG.UnrollVectorOp(Node);
8728 
8729   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8730   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8731   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8732 }
8733 
8734 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8735   unsigned Opcode = Node->getOpcode();
8736   SDValue LHS = Node->getOperand(0);
8737   SDValue RHS = Node->getOperand(1);
8738   EVT VT = LHS.getValueType();
8739   SDLoc dl(Node);
8740 
8741   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8742   assert(VT.isInteger() && "Expected operands to be integers");
8743 
8744   // usub.sat(a, b) -> umax(a, b) - b
8745   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8746     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8747     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8748   }
8749 
8750   // uadd.sat(a, b) -> umin(a, ~b) + b
8751   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8752     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8753     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8754     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8755   }
8756 
8757   unsigned OverflowOp;
8758   switch (Opcode) {
8759   case ISD::SADDSAT:
8760     OverflowOp = ISD::SADDO;
8761     break;
8762   case ISD::UADDSAT:
8763     OverflowOp = ISD::UADDO;
8764     break;
8765   case ISD::SSUBSAT:
8766     OverflowOp = ISD::SSUBO;
8767     break;
8768   case ISD::USUBSAT:
8769     OverflowOp = ISD::USUBO;
8770     break;
8771   default:
8772     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8773                      "addition or subtraction node.");
8774   }
8775 
8776   // FIXME: Should really try to split the vector in case it's legal on a
8777   // subvector.
8778   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8779     return DAG.UnrollVectorOp(Node);
8780 
8781   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8782   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8783   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8784   SDValue SumDiff = Result.getValue(0);
8785   SDValue Overflow = Result.getValue(1);
8786   SDValue Zero = DAG.getConstant(0, dl, VT);
8787   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8788 
8789   if (Opcode == ISD::UADDSAT) {
8790     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8791       // (LHS + RHS) | OverflowMask
8792       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8793       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8794     }
8795     // Overflow ? 0xffff.... : (LHS + RHS)
8796     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8797   }
8798 
8799   if (Opcode == ISD::USUBSAT) {
8800     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8801       // (LHS - RHS) & ~OverflowMask
8802       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8803       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8804       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8805     }
8806     // Overflow ? 0 : (LHS - RHS)
8807     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8808   }
8809 
8810   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8811   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8812   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8813   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8814                               DAG.getConstant(BitWidth - 1, dl, VT));
8815   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8816   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8817 }
8818 
8819 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8820   unsigned Opcode = Node->getOpcode();
8821   bool IsSigned = Opcode == ISD::SSHLSAT;
8822   SDValue LHS = Node->getOperand(0);
8823   SDValue RHS = Node->getOperand(1);
8824   EVT VT = LHS.getValueType();
8825   SDLoc dl(Node);
8826 
8827   assert((Node->getOpcode() == ISD::SSHLSAT ||
8828           Node->getOpcode() == ISD::USHLSAT) &&
8829           "Expected a SHLSAT opcode");
8830   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8831   assert(VT.isInteger() && "Expected operands to be integers");
8832 
8833   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8834 
8835   unsigned BW = VT.getScalarSizeInBits();
8836   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8837   SDValue Orig =
8838       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8839 
8840   SDValue SatVal;
8841   if (IsSigned) {
8842     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8843     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8844     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8845                              SatMin, SatMax, ISD::SETLT);
8846   } else {
8847     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8848   }
8849   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8850 
8851   return Result;
8852 }
8853 
8854 SDValue
8855 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8856   assert((Node->getOpcode() == ISD::SMULFIX ||
8857           Node->getOpcode() == ISD::UMULFIX ||
8858           Node->getOpcode() == ISD::SMULFIXSAT ||
8859           Node->getOpcode() == ISD::UMULFIXSAT) &&
8860          "Expected a fixed point multiplication opcode");
8861 
8862   SDLoc dl(Node);
8863   SDValue LHS = Node->getOperand(0);
8864   SDValue RHS = Node->getOperand(1);
8865   EVT VT = LHS.getValueType();
8866   unsigned Scale = Node->getConstantOperandVal(2);
8867   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8868                      Node->getOpcode() == ISD::UMULFIXSAT);
8869   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8870                  Node->getOpcode() == ISD::SMULFIXSAT);
8871   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8872   unsigned VTSize = VT.getScalarSizeInBits();
8873 
8874   if (!Scale) {
8875     // [us]mul.fix(a, b, 0) -> mul(a, b)
8876     if (!Saturating) {
8877       if (isOperationLegalOrCustom(ISD::MUL, VT))
8878         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8879     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8880       SDValue Result =
8881           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8882       SDValue Product = Result.getValue(0);
8883       SDValue Overflow = Result.getValue(1);
8884       SDValue Zero = DAG.getConstant(0, dl, VT);
8885 
8886       APInt MinVal = APInt::getSignedMinValue(VTSize);
8887       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8888       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8889       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8890       // Xor the inputs, if resulting sign bit is 0 the product will be
8891       // positive, else negative.
8892       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8893       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8894       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8895       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8896     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8897       SDValue Result =
8898           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8899       SDValue Product = Result.getValue(0);
8900       SDValue Overflow = Result.getValue(1);
8901 
8902       APInt MaxVal = APInt::getMaxValue(VTSize);
8903       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8904       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8905     }
8906   }
8907 
8908   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8909          "Expected scale to be less than the number of bits if signed or at "
8910          "most the number of bits if unsigned.");
8911   assert(LHS.getValueType() == RHS.getValueType() &&
8912          "Expected both operands to be the same type");
8913 
8914   // Get the upper and lower bits of the result.
8915   SDValue Lo, Hi;
8916   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8917   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8918   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8919     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8920     Lo = Result.getValue(0);
8921     Hi = Result.getValue(1);
8922   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8923     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8924     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8925   } else if (VT.isVector()) {
8926     return SDValue();
8927   } else {
8928     report_fatal_error("Unable to expand fixed point multiplication.");
8929   }
8930 
8931   if (Scale == VTSize)
8932     // Result is just the top half since we'd be shifting by the width of the
8933     // operand. Overflow impossible so this works for both UMULFIX and
8934     // UMULFIXSAT.
8935     return Hi;
8936 
8937   // The result will need to be shifted right by the scale since both operands
8938   // are scaled. The result is given to us in 2 halves, so we only want part of
8939   // both in the result.
8940   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8941   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8942                                DAG.getConstant(Scale, dl, ShiftTy));
8943   if (!Saturating)
8944     return Result;
8945 
8946   if (!Signed) {
8947     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8948     // widened multiplication) aren't all zeroes.
8949 
8950     // Saturate to max if ((Hi >> Scale) != 0),
8951     // which is the same as if (Hi > ((1 << Scale) - 1))
8952     APInt MaxVal = APInt::getMaxValue(VTSize);
8953     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8954                                       dl, VT);
8955     Result = DAG.getSelectCC(dl, Hi, LowMask,
8956                              DAG.getConstant(MaxVal, dl, VT), Result,
8957                              ISD::SETUGT);
8958 
8959     return Result;
8960   }
8961 
8962   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8963   // widened multiplication) aren't all ones or all zeroes.
8964 
8965   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8966   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8967 
8968   if (Scale == 0) {
8969     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8970                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8971     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8972     // Saturated to SatMin if wide product is negative, and SatMax if wide
8973     // product is positive ...
8974     SDValue Zero = DAG.getConstant(0, dl, VT);
8975     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8976                                                ISD::SETLT);
8977     // ... but only if we overflowed.
8978     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8979   }
8980 
8981   //  We handled Scale==0 above so all the bits to examine is in Hi.
8982 
8983   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8984   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8985   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8986                                     dl, VT);
8987   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8988   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8989   // which is the same as if (HI < (-1 << (Scale - 1))
8990   SDValue HighMask =
8991       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8992                       dl, VT);
8993   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8994   return Result;
8995 }
8996 
8997 SDValue
8998 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8999                                     SDValue LHS, SDValue RHS,
9000                                     unsigned Scale, SelectionDAG &DAG) const {
9001   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
9002           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
9003          "Expected a fixed point division opcode");
9004 
9005   EVT VT = LHS.getValueType();
9006   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
9007   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
9008   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9009 
9010   // If there is enough room in the type to upscale the LHS or downscale the
9011   // RHS before the division, we can perform it in this type without having to
9012   // resize. For signed operations, the LHS headroom is the number of
9013   // redundant sign bits, and for unsigned ones it is the number of zeroes.
9014   // The headroom for the RHS is the number of trailing zeroes.
9015   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
9016                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
9017   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
9018 
9019   // For signed saturating operations, we need to be able to detect true integer
9020   // division overflow; that is, when you have MIN / -EPS. However, this
9021   // is undefined behavior and if we emit divisions that could take such
9022   // values it may cause undesired behavior (arithmetic exceptions on x86, for
9023   // example).
9024   // Avoid this by requiring an extra bit so that we never get this case.
9025   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
9026   // signed saturating division, we need to emit a whopping 32-bit division.
9027   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
9028     return SDValue();
9029 
9030   unsigned LHSShift = std::min(LHSLead, Scale);
9031   unsigned RHSShift = Scale - LHSShift;
9032 
9033   // At this point, we know that if we shift the LHS up by LHSShift and the
9034   // RHS down by RHSShift, we can emit a regular division with a final scaling
9035   // factor of Scale.
9036 
9037   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
9038   if (LHSShift)
9039     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
9040                       DAG.getConstant(LHSShift, dl, ShiftTy));
9041   if (RHSShift)
9042     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
9043                       DAG.getConstant(RHSShift, dl, ShiftTy));
9044 
9045   SDValue Quot;
9046   if (Signed) {
9047     // For signed operations, if the resulting quotient is negative and the
9048     // remainder is nonzero, subtract 1 from the quotient to round towards
9049     // negative infinity.
9050     SDValue Rem;
9051     // FIXME: Ideally we would always produce an SDIVREM here, but if the
9052     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
9053     // we couldn't just form a libcall, but the type legalizer doesn't do it.
9054     if (isTypeLegal(VT) &&
9055         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
9056       Quot = DAG.getNode(ISD::SDIVREM, dl,
9057                          DAG.getVTList(VT, VT),
9058                          LHS, RHS);
9059       Rem = Quot.getValue(1);
9060       Quot = Quot.getValue(0);
9061     } else {
9062       Quot = DAG.getNode(ISD::SDIV, dl, VT,
9063                          LHS, RHS);
9064       Rem = DAG.getNode(ISD::SREM, dl, VT,
9065                         LHS, RHS);
9066     }
9067     SDValue Zero = DAG.getConstant(0, dl, VT);
9068     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
9069     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
9070     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
9071     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
9072     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
9073                                DAG.getConstant(1, dl, VT));
9074     Quot = DAG.getSelect(dl, VT,
9075                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
9076                          Sub1, Quot);
9077   } else
9078     Quot = DAG.getNode(ISD::UDIV, dl, VT,
9079                        LHS, RHS);
9080 
9081   return Quot;
9082 }
9083 
9084 void TargetLowering::expandUADDSUBO(
9085     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9086   SDLoc dl(Node);
9087   SDValue LHS = Node->getOperand(0);
9088   SDValue RHS = Node->getOperand(1);
9089   bool IsAdd = Node->getOpcode() == ISD::UADDO;
9090 
9091   // If ADD/SUBCARRY is legal, use that instead.
9092   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
9093   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
9094     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
9095     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
9096                                     { LHS, RHS, CarryIn });
9097     Result = SDValue(NodeCarry.getNode(), 0);
9098     Overflow = SDValue(NodeCarry.getNode(), 1);
9099     return;
9100   }
9101 
9102   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9103                             LHS.getValueType(), LHS, RHS);
9104 
9105   EVT ResultType = Node->getValueType(1);
9106   EVT SetCCType = getSetCCResultType(
9107       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9108   SDValue SetCC;
9109   if (IsAdd && isOneConstant(RHS)) {
9110     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
9111     // the live range of X. We assume comparing with 0 is cheap.
9112     // The general case (X + C) < C is not necessarily beneficial. Although we
9113     // reduce the live range of X, we may introduce the materialization of
9114     // constant C.
9115     SetCC =
9116         DAG.getSetCC(dl, SetCCType, Result,
9117                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
9118   } else {
9119     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
9120     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
9121   }
9122   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9123 }
9124 
9125 void TargetLowering::expandSADDSUBO(
9126     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9127   SDLoc dl(Node);
9128   SDValue LHS = Node->getOperand(0);
9129   SDValue RHS = Node->getOperand(1);
9130   bool IsAdd = Node->getOpcode() == ISD::SADDO;
9131 
9132   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9133                             LHS.getValueType(), LHS, RHS);
9134 
9135   EVT ResultType = Node->getValueType(1);
9136   EVT OType = getSetCCResultType(
9137       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9138 
9139   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
9140   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
9141   if (isOperationLegal(OpcSat, LHS.getValueType())) {
9142     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
9143     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
9144     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9145     return;
9146   }
9147 
9148   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
9149 
9150   // For an addition, the result should be less than one of the operands (LHS)
9151   // if and only if the other operand (RHS) is negative, otherwise there will
9152   // be overflow.
9153   // For a subtraction, the result should be less than one of the operands
9154   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
9155   // otherwise there will be overflow.
9156   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
9157   SDValue ConditionRHS =
9158       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
9159 
9160   Overflow = DAG.getBoolExtOrTrunc(
9161       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
9162       ResultType, ResultType);
9163 }
9164 
9165 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
9166                                 SDValue &Overflow, SelectionDAG &DAG) const {
9167   SDLoc dl(Node);
9168   EVT VT = Node->getValueType(0);
9169   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9170   SDValue LHS = Node->getOperand(0);
9171   SDValue RHS = Node->getOperand(1);
9172   bool isSigned = Node->getOpcode() == ISD::SMULO;
9173 
9174   // For power-of-two multiplications we can use a simpler shift expansion.
9175   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
9176     const APInt &C = RHSC->getAPIntValue();
9177     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
9178     if (C.isPowerOf2()) {
9179       // smulo(x, signed_min) is same as umulo(x, signed_min).
9180       bool UseArithShift = isSigned && !C.isMinSignedValue();
9181       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
9182       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
9183       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
9184       Overflow = DAG.getSetCC(dl, SetCCVT,
9185           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
9186                       dl, VT, Result, ShiftAmt),
9187           LHS, ISD::SETNE);
9188       return true;
9189     }
9190   }
9191 
9192   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
9193   if (VT.isVector())
9194     WideVT =
9195         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
9196 
9197   SDValue BottomHalf;
9198   SDValue TopHalf;
9199   static const unsigned Ops[2][3] =
9200       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
9201         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
9202   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
9203     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9204     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
9205   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
9206     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
9207                              RHS);
9208     TopHalf = BottomHalf.getValue(1);
9209   } else if (isTypeLegal(WideVT)) {
9210     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
9211     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
9212     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
9213     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
9214     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
9215         getShiftAmountTy(WideVT, DAG.getDataLayout()));
9216     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
9217                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
9218   } else {
9219     if (VT.isVector())
9220       return false;
9221 
9222     // We can fall back to a libcall with an illegal type for the MUL if we
9223     // have a libcall big enough.
9224     // Also, we can fall back to a division in some cases, but that's a big
9225     // performance hit in the general case.
9226     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
9227     if (WideVT == MVT::i16)
9228       LC = RTLIB::MUL_I16;
9229     else if (WideVT == MVT::i32)
9230       LC = RTLIB::MUL_I32;
9231     else if (WideVT == MVT::i64)
9232       LC = RTLIB::MUL_I64;
9233     else if (WideVT == MVT::i128)
9234       LC = RTLIB::MUL_I128;
9235     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
9236 
9237     SDValue HiLHS;
9238     SDValue HiRHS;
9239     if (isSigned) {
9240       // The high part is obtained by SRA'ing all but one of the bits of low
9241       // part.
9242       unsigned LoSize = VT.getFixedSizeInBits();
9243       HiLHS =
9244           DAG.getNode(ISD::SRA, dl, VT, LHS,
9245                       DAG.getConstant(LoSize - 1, dl,
9246                                       getPointerTy(DAG.getDataLayout())));
9247       HiRHS =
9248           DAG.getNode(ISD::SRA, dl, VT, RHS,
9249                       DAG.getConstant(LoSize - 1, dl,
9250                                       getPointerTy(DAG.getDataLayout())));
9251     } else {
9252         HiLHS = DAG.getConstant(0, dl, VT);
9253         HiRHS = DAG.getConstant(0, dl, VT);
9254     }
9255 
9256     // Here we're passing the 2 arguments explicitly as 4 arguments that are
9257     // pre-lowered to the correct types. This all depends upon WideVT not
9258     // being a legal type for the architecture and thus has to be split to
9259     // two arguments.
9260     SDValue Ret;
9261     TargetLowering::MakeLibCallOptions CallOptions;
9262     CallOptions.setSExt(isSigned);
9263     CallOptions.setIsPostTypeLegalization(true);
9264     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
9265       // Halves of WideVT are packed into registers in different order
9266       // depending on platform endianness. This is usually handled by
9267       // the C calling convention, but we can't defer to it in
9268       // the legalizer.
9269       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
9270       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9271     } else {
9272       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
9273       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9274     }
9275     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
9276            "Ret value is a collection of constituent nodes holding result.");
9277     if (DAG.getDataLayout().isLittleEndian()) {
9278       // Same as above.
9279       BottomHalf = Ret.getOperand(0);
9280       TopHalf = Ret.getOperand(1);
9281     } else {
9282       BottomHalf = Ret.getOperand(1);
9283       TopHalf = Ret.getOperand(0);
9284     }
9285   }
9286 
9287   Result = BottomHalf;
9288   if (isSigned) {
9289     SDValue ShiftAmt = DAG.getConstant(
9290         VT.getScalarSizeInBits() - 1, dl,
9291         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
9292     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
9293     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
9294   } else {
9295     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
9296                             DAG.getConstant(0, dl, VT), ISD::SETNE);
9297   }
9298 
9299   // Truncate the result if SetCC returns a larger type than needed.
9300   EVT RType = Node->getValueType(1);
9301   if (RType.bitsLT(Overflow.getValueType()))
9302     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
9303 
9304   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
9305          "Unexpected result type for S/UMULO legalization");
9306   return true;
9307 }
9308 
9309 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
9310   SDLoc dl(Node);
9311   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9312   SDValue Op = Node->getOperand(0);
9313   EVT VT = Op.getValueType();
9314 
9315   if (VT.isScalableVector())
9316     report_fatal_error(
9317         "Expanding reductions for scalable vectors is undefined.");
9318 
9319   // Try to use a shuffle reduction for power of two vectors.
9320   if (VT.isPow2VectorType()) {
9321     while (VT.getVectorNumElements() > 1) {
9322       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
9323       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
9324         break;
9325 
9326       SDValue Lo, Hi;
9327       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
9328       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
9329       VT = HalfVT;
9330     }
9331   }
9332 
9333   EVT EltVT = VT.getVectorElementType();
9334   unsigned NumElts = VT.getVectorNumElements();
9335 
9336   SmallVector<SDValue, 8> Ops;
9337   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
9338 
9339   SDValue Res = Ops[0];
9340   for (unsigned i = 1; i < NumElts; i++)
9341     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
9342 
9343   // Result type may be wider than element type.
9344   if (EltVT != Node->getValueType(0))
9345     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
9346   return Res;
9347 }
9348 
9349 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
9350   SDLoc dl(Node);
9351   SDValue AccOp = Node->getOperand(0);
9352   SDValue VecOp = Node->getOperand(1);
9353   SDNodeFlags Flags = Node->getFlags();
9354 
9355   EVT VT = VecOp.getValueType();
9356   EVT EltVT = VT.getVectorElementType();
9357 
9358   if (VT.isScalableVector())
9359     report_fatal_error(
9360         "Expanding reductions for scalable vectors is undefined.");
9361 
9362   unsigned NumElts = VT.getVectorNumElements();
9363 
9364   SmallVector<SDValue, 8> Ops;
9365   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
9366 
9367   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9368 
9369   SDValue Res = AccOp;
9370   for (unsigned i = 0; i < NumElts; i++)
9371     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
9372 
9373   return Res;
9374 }
9375 
9376 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
9377                                SelectionDAG &DAG) const {
9378   EVT VT = Node->getValueType(0);
9379   SDLoc dl(Node);
9380   bool isSigned = Node->getOpcode() == ISD::SREM;
9381   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
9382   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
9383   SDValue Dividend = Node->getOperand(0);
9384   SDValue Divisor = Node->getOperand(1);
9385   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
9386     SDVTList VTs = DAG.getVTList(VT, VT);
9387     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
9388     return true;
9389   }
9390   if (isOperationLegalOrCustom(DivOpc, VT)) {
9391     // X % Y -> X-X/Y*Y
9392     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
9393     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
9394     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
9395     return true;
9396   }
9397   return false;
9398 }
9399 
9400 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
9401                                             SelectionDAG &DAG) const {
9402   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
9403   SDLoc dl(SDValue(Node, 0));
9404   SDValue Src = Node->getOperand(0);
9405 
9406   // DstVT is the result type, while SatVT is the size to which we saturate
9407   EVT SrcVT = Src.getValueType();
9408   EVT DstVT = Node->getValueType(0);
9409 
9410   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9411   unsigned SatWidth = SatVT.getScalarSizeInBits();
9412   unsigned DstWidth = DstVT.getScalarSizeInBits();
9413   assert(SatWidth <= DstWidth &&
9414          "Expected saturation width smaller than result width");
9415 
9416   // Determine minimum and maximum integer values and their corresponding
9417   // floating-point values.
9418   APInt MinInt, MaxInt;
9419   if (IsSigned) {
9420     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
9421     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
9422   } else {
9423     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
9424     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
9425   }
9426 
9427   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
9428   // libcall emission cannot handle this. Large result types will fail.
9429   if (SrcVT == MVT::f16) {
9430     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
9431     SrcVT = Src.getValueType();
9432   }
9433 
9434   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9435   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9436 
9437   APFloat::opStatus MinStatus =
9438       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
9439   APFloat::opStatus MaxStatus =
9440       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
9441   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
9442                              !(MaxStatus & APFloat::opStatus::opInexact);
9443 
9444   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
9445   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
9446 
9447   // If the integer bounds are exactly representable as floats and min/max are
9448   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
9449   // of comparisons and selects.
9450   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
9451                      isOperationLegal(ISD::FMAXNUM, SrcVT);
9452   if (AreExactFloatBounds && MinMaxLegal) {
9453     SDValue Clamped = Src;
9454 
9455     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
9456     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
9457     // Clamp by MaxFloat from above. NaN cannot occur.
9458     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
9459     // Convert clamped value to integer.
9460     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
9461                                   dl, DstVT, Clamped);
9462 
9463     // In the unsigned case we're done, because we mapped NaN to MinFloat,
9464     // which will cast to zero.
9465     if (!IsSigned)
9466       return FpToInt;
9467 
9468     // Otherwise, select 0 if Src is NaN.
9469     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9470     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
9471                            ISD::CondCode::SETUO);
9472   }
9473 
9474   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
9475   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
9476 
9477   // Result of direct conversion. The assumption here is that the operation is
9478   // non-trapping and it's fine to apply it to an out-of-range value if we
9479   // select it away later.
9480   SDValue FpToInt =
9481       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
9482 
9483   SDValue Select = FpToInt;
9484 
9485   // If Src ULT MinFloat, select MinInt. In particular, this also selects
9486   // MinInt if Src is NaN.
9487   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
9488                            ISD::CondCode::SETULT);
9489   // If Src OGT MaxFloat, select MaxInt.
9490   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
9491                            ISD::CondCode::SETOGT);
9492 
9493   // In the unsigned case we are done, because we mapped NaN to MinInt, which
9494   // is already zero.
9495   if (!IsSigned)
9496     return Select;
9497 
9498   // Otherwise, select 0 if Src is NaN.
9499   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9500   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
9501 }
9502 
9503 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
9504                                            SelectionDAG &DAG) const {
9505   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
9506   assert(Node->getValueType(0).isScalableVector() &&
9507          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
9508 
9509   EVT VT = Node->getValueType(0);
9510   SDValue V1 = Node->getOperand(0);
9511   SDValue V2 = Node->getOperand(1);
9512   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
9513   SDLoc DL(Node);
9514 
9515   // Expand through memory thusly:
9516   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
9517   //  Store V1, Ptr
9518   //  Store V2, Ptr + sizeof(V1)
9519   //  If (Imm < 0)
9520   //    TrailingElts = -Imm
9521   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
9522   //  else
9523   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
9524   //  Res = Load Ptr
9525 
9526   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
9527 
9528   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9529                                VT.getVectorElementCount() * 2);
9530   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
9531   EVT PtrVT = StackPtr.getValueType();
9532   auto &MF = DAG.getMachineFunction();
9533   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9534   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
9535 
9536   // Store the lo part of CONCAT_VECTORS(V1, V2)
9537   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
9538   // Store the hi part of CONCAT_VECTORS(V1, V2)
9539   SDValue OffsetToV2 = DAG.getVScale(
9540       DL, PtrVT,
9541       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9542   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
9543   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
9544 
9545   if (Imm >= 0) {
9546     // Load back the required element. getVectorElementPointer takes care of
9547     // clamping the index if it's out-of-bounds.
9548     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
9549     // Load the spliced result
9550     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
9551                        MachinePointerInfo::getUnknownStack(MF));
9552   }
9553 
9554   uint64_t TrailingElts = -Imm;
9555 
9556   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
9557   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
9558   SDValue TrailingBytes =
9559       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
9560 
9561   if (TrailingElts > VT.getVectorMinNumElements()) {
9562     SDValue VLBytes = DAG.getVScale(
9563         DL, PtrVT,
9564         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9565     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
9566   }
9567 
9568   // Calculate the start address of the spliced result.
9569   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
9570 
9571   // Load the spliced result
9572   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
9573                      MachinePointerInfo::getUnknownStack(MF));
9574 }
9575 
9576 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
9577                                            SDValue &LHS, SDValue &RHS,
9578                                            SDValue &CC, SDValue Mask,
9579                                            SDValue EVL, bool &NeedInvert,
9580                                            const SDLoc &dl, SDValue &Chain,
9581                                            bool IsSignaling) const {
9582   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9583   MVT OpVT = LHS.getSimpleValueType();
9584   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
9585   NeedInvert = false;
9586   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
9587   bool IsNonVP = !EVL;
9588   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
9589   default:
9590     llvm_unreachable("Unknown condition code action!");
9591   case TargetLowering::Legal:
9592     // Nothing to do.
9593     break;
9594   case TargetLowering::Expand: {
9595     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
9596     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9597       std::swap(LHS, RHS);
9598       CC = DAG.getCondCode(InvCC);
9599       return true;
9600     }
9601     // Swapping operands didn't work. Try inverting the condition.
9602     bool NeedSwap = false;
9603     InvCC = getSetCCInverse(CCCode, OpVT);
9604     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9605       // If inverting the condition is not enough, try swapping operands
9606       // on top of it.
9607       InvCC = ISD::getSetCCSwappedOperands(InvCC);
9608       NeedSwap = true;
9609     }
9610     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9611       CC = DAG.getCondCode(InvCC);
9612       NeedInvert = true;
9613       if (NeedSwap)
9614         std::swap(LHS, RHS);
9615       return true;
9616     }
9617 
9618     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
9619     unsigned Opc = 0;
9620     switch (CCCode) {
9621     default:
9622       llvm_unreachable("Don't know how to expand this condition!");
9623     case ISD::SETUO:
9624       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
9625         CC1 = ISD::SETUNE;
9626         CC2 = ISD::SETUNE;
9627         Opc = ISD::OR;
9628         break;
9629       }
9630       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9631              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9632       NeedInvert = true;
9633       LLVM_FALLTHROUGH;
9634     case ISD::SETO:
9635       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9636              "If SETO is expanded, SETOEQ must be legal!");
9637       CC1 = ISD::SETOEQ;
9638       CC2 = ISD::SETOEQ;
9639       Opc = ISD::AND;
9640       break;
9641     case ISD::SETONE:
9642     case ISD::SETUEQ:
9643       // If the SETUO or SETO CC isn't legal, we might be able to use
9644       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9645       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9646       // the operands.
9647       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9648       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9649           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9650            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9651         CC1 = ISD::SETOGT;
9652         CC2 = ISD::SETOLT;
9653         Opc = ISD::OR;
9654         NeedInvert = ((unsigned)CCCode & 0x8U);
9655         break;
9656       }
9657       LLVM_FALLTHROUGH;
9658     case ISD::SETOEQ:
9659     case ISD::SETOGT:
9660     case ISD::SETOGE:
9661     case ISD::SETOLT:
9662     case ISD::SETOLE:
9663     case ISD::SETUNE:
9664     case ISD::SETUGT:
9665     case ISD::SETUGE:
9666     case ISD::SETULT:
9667     case ISD::SETULE:
9668       // If we are floating point, assign and break, otherwise fall through.
9669       if (!OpVT.isInteger()) {
9670         // We can use the 4th bit to tell if we are the unordered
9671         // or ordered version of the opcode.
9672         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9673         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9674         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9675         break;
9676       }
9677       // Fallthrough if we are unsigned integer.
9678       LLVM_FALLTHROUGH;
9679     case ISD::SETLE:
9680     case ISD::SETGT:
9681     case ISD::SETGE:
9682     case ISD::SETLT:
9683     case ISD::SETNE:
9684     case ISD::SETEQ:
9685       // If all combinations of inverting the condition and swapping operands
9686       // didn't work then we have no means to expand the condition.
9687       llvm_unreachable("Don't know how to expand this condition!");
9688     }
9689 
9690     SDValue SetCC1, SetCC2;
9691     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9692       // If we aren't the ordered or unorder operation,
9693       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9694       if (IsNonVP) {
9695         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9696         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9697       } else {
9698         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
9699         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
9700       }
9701     } else {
9702       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9703       if (IsNonVP) {
9704         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9705         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9706       } else {
9707         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
9708         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
9709       }
9710     }
9711     if (Chain)
9712       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9713                           SetCC2.getValue(1));
9714     if (IsNonVP)
9715       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9716     else {
9717       // Transform the binary opcode to the VP equivalent.
9718       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
9719       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
9720       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
9721     }
9722     RHS = SDValue();
9723     CC = SDValue();
9724     return true;
9725   }
9726   }
9727   return false;
9728 }
9729