1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 MCRegister Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 114 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 115 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 116 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 117 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 118 Alignment = Call->getParamAlign(ArgIdx); 119 ByValType = nullptr; 120 if (IsByVal) 121 ByValType = Call->getParamByValType(ArgIdx); 122 PreallocatedType = nullptr; 123 if (IsPreallocated) 124 PreallocatedType = Call->getParamPreallocatedType(ArgIdx); 125 } 126 127 /// Generate a libcall taking the given operands as arguments and returning a 128 /// result of type RetVT. 129 std::pair<SDValue, SDValue> 130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 131 ArrayRef<SDValue> Ops, 132 MakeLibCallOptions CallOptions, 133 const SDLoc &dl, 134 SDValue InChain) const { 135 if (!InChain) 136 InChain = DAG.getEntryNode(); 137 138 TargetLowering::ArgListTy Args; 139 Args.reserve(Ops.size()); 140 141 TargetLowering::ArgListEntry Entry; 142 for (unsigned i = 0; i < Ops.size(); ++i) { 143 SDValue NewOp = Ops[i]; 144 Entry.Node = NewOp; 145 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 146 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 147 CallOptions.IsSExt); 148 Entry.IsZExt = !Entry.IsSExt; 149 150 if (CallOptions.IsSoften && 151 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 152 Entry.IsSExt = Entry.IsZExt = false; 153 } 154 Args.push_back(Entry); 155 } 156 157 if (LC == RTLIB::UNKNOWN_LIBCALL) 158 report_fatal_error("Unsupported library call operation!"); 159 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 160 getPointerTy(DAG.getDataLayout())); 161 162 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 163 TargetLowering::CallLoweringInfo CLI(DAG); 164 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 165 bool zeroExtend = !signExtend; 166 167 if (CallOptions.IsSoften && 168 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 169 signExtend = zeroExtend = false; 170 } 171 172 CLI.setDebugLoc(dl) 173 .setChain(InChain) 174 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 175 .setNoReturn(CallOptions.DoesNotReturn) 176 .setDiscardResult(!CallOptions.IsReturnValueUsed) 177 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 178 .setSExtResult(signExtend) 179 .setZExtResult(zeroExtend); 180 return LowerCallTo(CLI); 181 } 182 183 bool TargetLowering::findOptimalMemOpLowering( 184 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 185 unsigned SrcAS, const AttributeList &FuncAttributes) const { 186 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 187 return false; 188 189 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 190 191 if (VT == MVT::Other) { 192 // Use the largest integer type whose alignment constraints are satisfied. 193 // We only need to check DstAlign here as SrcAlign is always greater or 194 // equal to DstAlign (or zero). 195 VT = MVT::i64; 196 if (Op.isFixedDstAlign()) 197 while ( 198 Op.getDstAlign() < (VT.getSizeInBits() / 8) && 199 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value())) 200 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 201 assert(VT.isInteger()); 202 203 // Find the largest legal integer type. 204 MVT LVT = MVT::i64; 205 while (!isTypeLegal(LVT)) 206 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 207 assert(LVT.isInteger()); 208 209 // If the type we've chosen is larger than the largest legal integer type 210 // then use that instead. 211 if (VT.bitsGT(LVT)) 212 VT = LVT; 213 } 214 215 unsigned NumMemOps = 0; 216 uint64_t Size = Op.size(); 217 while (Size) { 218 unsigned VTSize = VT.getSizeInBits() / 8; 219 while (VTSize > Size) { 220 // For now, only use non-vector load / store's for the left-over pieces. 221 EVT NewVT = VT; 222 unsigned NewVTSize; 223 224 bool Found = false; 225 if (VT.isVector() || VT.isFloatingPoint()) { 226 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 227 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 228 isSafeMemOpType(NewVT.getSimpleVT())) 229 Found = true; 230 else if (NewVT == MVT::i64 && 231 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 232 isSafeMemOpType(MVT::f64)) { 233 // i64 is usually not legal on 32-bit targets, but f64 may be. 234 NewVT = MVT::f64; 235 Found = true; 236 } 237 } 238 239 if (!Found) { 240 do { 241 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 242 if (NewVT == MVT::i8) 243 break; 244 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 245 } 246 NewVTSize = NewVT.getSizeInBits() / 8; 247 248 // If the new VT cannot cover all of the remaining bits, then consider 249 // issuing a (or a pair of) unaligned and overlapping load / store. 250 bool Fast; 251 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 252 allowsMisalignedMemoryAccesses( 253 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 254 MachineMemOperand::MONone, &Fast) && 255 Fast) 256 VTSize = Size; 257 else { 258 VT = NewVT; 259 VTSize = NewVTSize; 260 } 261 } 262 263 if (++NumMemOps > Limit) 264 return false; 265 266 MemOps.push_back(VT); 267 Size -= VTSize; 268 } 269 270 return true; 271 } 272 273 /// Soften the operands of a comparison. This code is shared among BR_CC, 274 /// SELECT_CC, and SETCC handlers. 275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 276 SDValue &NewLHS, SDValue &NewRHS, 277 ISD::CondCode &CCCode, 278 const SDLoc &dl, const SDValue OldLHS, 279 const SDValue OldRHS) const { 280 SDValue Chain; 281 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 282 OldRHS, Chain); 283 } 284 285 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 286 SDValue &NewLHS, SDValue &NewRHS, 287 ISD::CondCode &CCCode, 288 const SDLoc &dl, const SDValue OldLHS, 289 const SDValue OldRHS, 290 SDValue &Chain, 291 bool IsSignaling) const { 292 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 293 // not supporting it. We can update this code when libgcc provides such 294 // functions. 295 296 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 297 && "Unsupported setcc type!"); 298 299 // Expand into one or more soft-fp libcall(s). 300 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 301 bool ShouldInvertCC = false; 302 switch (CCCode) { 303 case ISD::SETEQ: 304 case ISD::SETOEQ: 305 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 306 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 307 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 308 break; 309 case ISD::SETNE: 310 case ISD::SETUNE: 311 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 312 (VT == MVT::f64) ? RTLIB::UNE_F64 : 313 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 314 break; 315 case ISD::SETGE: 316 case ISD::SETOGE: 317 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 318 (VT == MVT::f64) ? RTLIB::OGE_F64 : 319 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 320 break; 321 case ISD::SETLT: 322 case ISD::SETOLT: 323 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 324 (VT == MVT::f64) ? RTLIB::OLT_F64 : 325 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 326 break; 327 case ISD::SETLE: 328 case ISD::SETOLE: 329 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 330 (VT == MVT::f64) ? RTLIB::OLE_F64 : 331 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 332 break; 333 case ISD::SETGT: 334 case ISD::SETOGT: 335 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 336 (VT == MVT::f64) ? RTLIB::OGT_F64 : 337 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 338 break; 339 case ISD::SETO: 340 ShouldInvertCC = true; 341 LLVM_FALLTHROUGH; 342 case ISD::SETUO: 343 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 344 (VT == MVT::f64) ? RTLIB::UO_F64 : 345 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 346 break; 347 case ISD::SETONE: 348 // SETONE = O && UNE 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUEQ: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 356 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 357 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 358 break; 359 default: 360 // Invert CC for unordered comparisons 361 ShouldInvertCC = true; 362 switch (CCCode) { 363 case ISD::SETULT: 364 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 365 (VT == MVT::f64) ? RTLIB::OGE_F64 : 366 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 367 break; 368 case ISD::SETULE: 369 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 370 (VT == MVT::f64) ? RTLIB::OGT_F64 : 371 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 372 break; 373 case ISD::SETUGT: 374 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 375 (VT == MVT::f64) ? RTLIB::OLE_F64 : 376 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 377 break; 378 case ISD::SETUGE: 379 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 380 (VT == MVT::f64) ? RTLIB::OLT_F64 : 381 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 382 break; 383 default: llvm_unreachable("Do not know how to soften this setcc!"); 384 } 385 } 386 387 // Use the target specific return value for comparions lib calls. 388 EVT RetVT = getCmpLibcallReturnType(); 389 SDValue Ops[2] = {NewLHS, NewRHS}; 390 TargetLowering::MakeLibCallOptions CallOptions; 391 EVT OpsVT[2] = { OldLHS.getValueType(), 392 OldRHS.getValueType() }; 393 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 394 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 395 NewLHS = Call.first; 396 NewRHS = DAG.getConstant(0, dl, RetVT); 397 398 CCCode = getCmpLibcallCC(LC1); 399 if (ShouldInvertCC) { 400 assert(RetVT.isInteger()); 401 CCCode = getSetCCInverse(CCCode, RetVT); 402 } 403 404 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 405 // Update Chain. 406 Chain = Call.second; 407 } else { 408 EVT SetCCVT = 409 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 410 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 411 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 412 CCCode = getCmpLibcallCC(LC2); 413 if (ShouldInvertCC) 414 CCCode = getSetCCInverse(CCCode, RetVT); 415 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 416 if (Chain) 417 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 418 Call2.second); 419 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 420 Tmp.getValueType(), Tmp, NewLHS); 421 NewRHS = SDValue(); 422 } 423 } 424 425 /// Return the entry encoding for a jump table in the current function. The 426 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 427 unsigned TargetLowering::getJumpTableEncoding() const { 428 // In non-pic modes, just use the address of a block. 429 if (!isPositionIndependent()) 430 return MachineJumpTableInfo::EK_BlockAddress; 431 432 // In PIC mode, if the target supports a GPRel32 directive, use it. 433 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 434 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 435 436 // Otherwise, use a label difference. 437 return MachineJumpTableInfo::EK_LabelDifference32; 438 } 439 440 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 441 SelectionDAG &DAG) const { 442 // If our PIC model is GP relative, use the global offset table as the base. 443 unsigned JTEncoding = getJumpTableEncoding(); 444 445 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 446 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 447 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 448 449 return Table; 450 } 451 452 /// This returns the relocation base for the given PIC jumptable, the same as 453 /// getPICJumpTableRelocBase, but as an MCExpr. 454 const MCExpr * 455 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 456 unsigned JTI,MCContext &Ctx) const{ 457 // The normal PIC reloc base is the label at the start of the jump table. 458 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 459 } 460 461 bool 462 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 463 const TargetMachine &TM = getTargetMachine(); 464 const GlobalValue *GV = GA->getGlobal(); 465 466 // If the address is not even local to this DSO we will have to load it from 467 // a got and then add the offset. 468 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 469 return false; 470 471 // If the code is position independent we will have to add a base register. 472 if (isPositionIndependent()) 473 return false; 474 475 // Otherwise we can do it. 476 return true; 477 } 478 479 //===----------------------------------------------------------------------===// 480 // Optimization Methods 481 //===----------------------------------------------------------------------===// 482 483 /// If the specified instruction has a constant integer operand and there are 484 /// bits set in that constant that are not demanded, then clear those bits and 485 /// return true. 486 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 487 TargetLoweringOpt &TLO) const { 488 SDLoc DL(Op); 489 unsigned Opcode = Op.getOpcode(); 490 491 // Do target-specific constant optimization. 492 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 493 return TLO.New.getNode(); 494 495 // FIXME: ISD::SELECT, ISD::SELECT_CC 496 switch (Opcode) { 497 default: 498 break; 499 case ISD::XOR: 500 case ISD::AND: 501 case ISD::OR: { 502 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 503 if (!Op1C) 504 return false; 505 506 // If this is a 'not' op, don't touch it because that's a canonical form. 507 const APInt &C = Op1C->getAPIntValue(); 508 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 509 return false; 510 511 if (!C.isSubsetOf(Demanded)) { 512 EVT VT = Op.getValueType(); 513 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 514 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 515 return TLO.CombineTo(Op, NewOp); 516 } 517 518 break; 519 } 520 } 521 522 return false; 523 } 524 525 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 526 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 527 /// generalized for targets with other types of implicit widening casts. 528 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 529 const APInt &Demanded, 530 TargetLoweringOpt &TLO) const { 531 assert(Op.getNumOperands() == 2 && 532 "ShrinkDemandedOp only supports binary operators!"); 533 assert(Op.getNode()->getNumValues() == 1 && 534 "ShrinkDemandedOp only supports nodes with one result!"); 535 536 SelectionDAG &DAG = TLO.DAG; 537 SDLoc dl(Op); 538 539 // Early return, as this function cannot handle vector types. 540 if (Op.getValueType().isVector()) 541 return false; 542 543 // Don't do this if the node has another user, which may require the 544 // full value. 545 if (!Op.getNode()->hasOneUse()) 546 return false; 547 548 // Search for the smallest integer type with free casts to and from 549 // Op's type. For expedience, just check power-of-2 integer types. 550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 551 unsigned DemandedSize = Demanded.getActiveBits(); 552 unsigned SmallVTBits = DemandedSize; 553 if (!isPowerOf2_32(SmallVTBits)) 554 SmallVTBits = NextPowerOf2(SmallVTBits); 555 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 556 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 557 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 558 TLI.isZExtFree(SmallVT, Op.getValueType())) { 559 // We found a type with free casts. 560 SDValue X = DAG.getNode( 561 Op.getOpcode(), dl, SmallVT, 562 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 563 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 564 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 565 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 566 return TLO.CombineTo(Op, Z); 567 } 568 } 569 return false; 570 } 571 572 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 573 DAGCombinerInfo &DCI) const { 574 SelectionDAG &DAG = DCI.DAG; 575 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 576 !DCI.isBeforeLegalizeOps()); 577 KnownBits Known; 578 579 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 580 if (Simplified) { 581 DCI.AddToWorklist(Op.getNode()); 582 DCI.CommitTargetLoweringOpt(TLO); 583 } 584 return Simplified; 585 } 586 587 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 588 KnownBits &Known, 589 TargetLoweringOpt &TLO, 590 unsigned Depth, 591 bool AssumeSingleUse) const { 592 EVT VT = Op.getValueType(); 593 APInt DemandedElts = VT.isVector() 594 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 595 : APInt(1, 1); 596 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 597 AssumeSingleUse); 598 } 599 600 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 601 // TODO: Under what circumstances can we create nodes? Constant folding? 602 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 603 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 604 SelectionDAG &DAG, unsigned Depth) const { 605 // Limit search depth. 606 if (Depth >= SelectionDAG::MaxRecursionDepth) 607 return SDValue(); 608 609 // Ignore UNDEFs. 610 if (Op.isUndef()) 611 return SDValue(); 612 613 // Not demanding any bits/elts from Op. 614 if (DemandedBits == 0 || DemandedElts == 0) 615 return DAG.getUNDEF(Op.getValueType()); 616 617 unsigned NumElts = DemandedElts.getBitWidth(); 618 KnownBits LHSKnown, RHSKnown; 619 switch (Op.getOpcode()) { 620 case ISD::BITCAST: { 621 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 622 EVT SrcVT = Src.getValueType(); 623 EVT DstVT = Op.getValueType(); 624 if (SrcVT == DstVT) 625 return Src; 626 627 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 628 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 629 if (NumSrcEltBits == NumDstEltBits) 630 if (SDValue V = SimplifyMultipleUseDemandedBits( 631 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 632 return DAG.getBitcast(DstVT, V); 633 634 // TODO - bigendian once we have test coverage. 635 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 636 DAG.getDataLayout().isLittleEndian()) { 637 unsigned Scale = NumDstEltBits / NumSrcEltBits; 638 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 639 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 640 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 641 for (unsigned i = 0; i != Scale; ++i) { 642 unsigned Offset = i * NumSrcEltBits; 643 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 644 if (!Sub.isNullValue()) { 645 DemandedSrcBits |= Sub; 646 for (unsigned j = 0; j != NumElts; ++j) 647 if (DemandedElts[j]) 648 DemandedSrcElts.setBit((j * Scale) + i); 649 } 650 } 651 652 if (SDValue V = SimplifyMultipleUseDemandedBits( 653 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 654 return DAG.getBitcast(DstVT, V); 655 } 656 657 // TODO - bigendian once we have test coverage. 658 if ((NumSrcEltBits % NumDstEltBits) == 0 && 659 DAG.getDataLayout().isLittleEndian()) { 660 unsigned Scale = NumSrcEltBits / NumDstEltBits; 661 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 662 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 663 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 664 for (unsigned i = 0; i != NumElts; ++i) 665 if (DemandedElts[i]) { 666 unsigned Offset = (i % Scale) * NumDstEltBits; 667 DemandedSrcBits.insertBits(DemandedBits, Offset); 668 DemandedSrcElts.setBit(i / Scale); 669 } 670 671 if (SDValue V = SimplifyMultipleUseDemandedBits( 672 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 673 return DAG.getBitcast(DstVT, V); 674 } 675 676 break; 677 } 678 case ISD::AND: { 679 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 680 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 681 682 // If all of the demanded bits are known 1 on one side, return the other. 683 // These bits cannot contribute to the result of the 'and' in this 684 // context. 685 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 686 return Op.getOperand(0); 687 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 688 return Op.getOperand(1); 689 break; 690 } 691 case ISD::OR: { 692 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 693 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 694 695 // If all of the demanded bits are known zero on one side, return the 696 // other. These bits cannot contribute to the result of the 'or' in this 697 // context. 698 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 699 return Op.getOperand(0); 700 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 701 return Op.getOperand(1); 702 break; 703 } 704 case ISD::XOR: { 705 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 706 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 707 708 // If all of the demanded bits are known zero on one side, return the 709 // other. 710 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 711 return Op.getOperand(0); 712 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 713 return Op.getOperand(1); 714 break; 715 } 716 case ISD::SHL: { 717 // If we are only demanding sign bits then we can use the shift source 718 // directly. 719 if (const APInt *MaxSA = 720 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 721 SDValue Op0 = Op.getOperand(0); 722 unsigned ShAmt = MaxSA->getZExtValue(); 723 unsigned BitWidth = DemandedBits.getBitWidth(); 724 unsigned NumSignBits = 725 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 726 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 727 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 728 return Op0; 729 } 730 break; 731 } 732 case ISD::SETCC: { 733 SDValue Op0 = Op.getOperand(0); 734 SDValue Op1 = Op.getOperand(1); 735 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 736 // If (1) we only need the sign-bit, (2) the setcc operands are the same 737 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 738 // -1, we may be able to bypass the setcc. 739 if (DemandedBits.isSignMask() && 740 Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() && 741 getBooleanContents(Op0.getValueType()) == 742 BooleanContent::ZeroOrNegativeOneBooleanContent) { 743 // If we're testing X < 0, then this compare isn't needed - just use X! 744 // FIXME: We're limiting to integer types here, but this should also work 745 // if we don't care about FP signed-zero. The use of SETLT with FP means 746 // that we don't care about NaNs. 747 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 748 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 749 return Op0; 750 } 751 break; 752 } 753 case ISD::SIGN_EXTEND_INREG: { 754 // If none of the extended bits are demanded, eliminate the sextinreg. 755 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 756 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 757 return Op.getOperand(0); 758 break; 759 } 760 case ISD::INSERT_VECTOR_ELT: { 761 // If we don't demand the inserted element, return the base vector. 762 SDValue Vec = Op.getOperand(0); 763 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 764 EVT VecVT = Vec.getValueType(); 765 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 766 !DemandedElts[CIdx->getZExtValue()]) 767 return Vec; 768 break; 769 } 770 case ISD::INSERT_SUBVECTOR: { 771 // If we don't demand the inserted subvector, return the base vector. 772 SDValue Vec = Op.getOperand(0); 773 SDValue Sub = Op.getOperand(1); 774 uint64_t Idx = Op.getConstantOperandVal(2); 775 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 776 if (DemandedElts.extractBits(NumSubElts, Idx) == 0) 777 return Vec; 778 break; 779 } 780 case ISD::VECTOR_SHUFFLE: { 781 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 782 783 // If all the demanded elts are from one operand and are inline, 784 // then we can use the operand directly. 785 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 786 for (unsigned i = 0; i != NumElts; ++i) { 787 int M = ShuffleMask[i]; 788 if (M < 0 || !DemandedElts[i]) 789 continue; 790 AllUndef = false; 791 IdentityLHS &= (M == (int)i); 792 IdentityRHS &= ((M - NumElts) == i); 793 } 794 795 if (AllUndef) 796 return DAG.getUNDEF(Op.getValueType()); 797 if (IdentityLHS) 798 return Op.getOperand(0); 799 if (IdentityRHS) 800 return Op.getOperand(1); 801 break; 802 } 803 default: 804 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 805 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 806 Op, DemandedBits, DemandedElts, DAG, Depth)) 807 return V; 808 break; 809 } 810 return SDValue(); 811 } 812 813 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 814 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 815 unsigned Depth) const { 816 EVT VT = Op.getValueType(); 817 APInt DemandedElts = VT.isVector() 818 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 819 : APInt(1, 1); 820 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 821 Depth); 822 } 823 824 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 825 /// result of Op are ever used downstream. If we can use this information to 826 /// simplify Op, create a new simplified DAG node and return true, returning the 827 /// original and new nodes in Old and New. Otherwise, analyze the expression and 828 /// return a mask of Known bits for the expression (used to simplify the 829 /// caller). The Known bits may only be accurate for those bits in the 830 /// OriginalDemandedBits and OriginalDemandedElts. 831 bool TargetLowering::SimplifyDemandedBits( 832 SDValue Op, const APInt &OriginalDemandedBits, 833 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 834 unsigned Depth, bool AssumeSingleUse) const { 835 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 836 assert(Op.getScalarValueSizeInBits() == BitWidth && 837 "Mask size mismatches value type size!"); 838 839 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 840 assert((!Op.getValueType().isVector() || 841 NumElts == Op.getValueType().getVectorNumElements()) && 842 "Unexpected vector size"); 843 844 APInt DemandedBits = OriginalDemandedBits; 845 APInt DemandedElts = OriginalDemandedElts; 846 SDLoc dl(Op); 847 auto &DL = TLO.DAG.getDataLayout(); 848 849 // Don't know anything. 850 Known = KnownBits(BitWidth); 851 852 // Undef operand. 853 if (Op.isUndef()) 854 return false; 855 856 if (Op.getOpcode() == ISD::Constant) { 857 // We know all of the bits for a constant! 858 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 859 Known.Zero = ~Known.One; 860 return false; 861 } 862 863 // Other users may use these bits. 864 EVT VT = Op.getValueType(); 865 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 866 if (Depth != 0) { 867 // If not at the root, Just compute the Known bits to 868 // simplify things downstream. 869 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 870 return false; 871 } 872 // If this is the root being simplified, allow it to have multiple uses, 873 // just set the DemandedBits/Elts to all bits. 874 DemandedBits = APInt::getAllOnesValue(BitWidth); 875 DemandedElts = APInt::getAllOnesValue(NumElts); 876 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 877 // Not demanding any bits/elts from Op. 878 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 879 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 880 // Limit search depth. 881 return false; 882 } 883 884 KnownBits Known2; 885 switch (Op.getOpcode()) { 886 case ISD::TargetConstant: 887 llvm_unreachable("Can't simplify this node"); 888 case ISD::SCALAR_TO_VECTOR: { 889 if (!DemandedElts[0]) 890 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 891 892 KnownBits SrcKnown; 893 SDValue Src = Op.getOperand(0); 894 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 895 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 896 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 897 return true; 898 899 // Upper elements are undef, so only get the knownbits if we just demand 900 // the bottom element. 901 if (DemandedElts == 1) 902 Known = SrcKnown.anyextOrTrunc(BitWidth); 903 break; 904 } 905 case ISD::BUILD_VECTOR: 906 // Collect the known bits that are shared by every demanded element. 907 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 908 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 909 return false; // Don't fall through, will infinitely loop. 910 case ISD::LOAD: { 911 LoadSDNode *LD = cast<LoadSDNode>(Op); 912 if (getTargetConstantFromLoad(LD)) { 913 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 914 return false; // Don't fall through, will infinitely loop. 915 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 916 // If this is a ZEXTLoad and we are looking at the loaded value. 917 EVT MemVT = LD->getMemoryVT(); 918 unsigned MemBits = MemVT.getScalarSizeInBits(); 919 Known.Zero.setBitsFrom(MemBits); 920 return false; // Don't fall through, will infinitely loop. 921 } 922 break; 923 } 924 case ISD::INSERT_VECTOR_ELT: { 925 SDValue Vec = Op.getOperand(0); 926 SDValue Scl = Op.getOperand(1); 927 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 928 EVT VecVT = Vec.getValueType(); 929 930 // If index isn't constant, assume we need all vector elements AND the 931 // inserted element. 932 APInt DemandedVecElts(DemandedElts); 933 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 934 unsigned Idx = CIdx->getZExtValue(); 935 DemandedVecElts.clearBit(Idx); 936 937 // Inserted element is not required. 938 if (!DemandedElts[Idx]) 939 return TLO.CombineTo(Op, Vec); 940 } 941 942 KnownBits KnownScl; 943 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 944 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 945 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 946 return true; 947 948 Known = KnownScl.anyextOrTrunc(BitWidth); 949 950 KnownBits KnownVec; 951 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 952 Depth + 1)) 953 return true; 954 955 if (!!DemandedVecElts) { 956 Known.One &= KnownVec.One; 957 Known.Zero &= KnownVec.Zero; 958 } 959 960 return false; 961 } 962 case ISD::INSERT_SUBVECTOR: { 963 // Demand any elements from the subvector and the remainder from the src its 964 // inserted into. 965 SDValue Src = Op.getOperand(0); 966 SDValue Sub = Op.getOperand(1); 967 uint64_t Idx = Op.getConstantOperandVal(2); 968 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 969 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 970 APInt DemandedSrcElts = DemandedElts; 971 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 972 973 KnownBits KnownSub, KnownSrc; 974 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 975 Depth + 1)) 976 return true; 977 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 978 Depth + 1)) 979 return true; 980 981 Known.Zero.setAllBits(); 982 Known.One.setAllBits(); 983 if (!!DemandedSubElts) { 984 Known.One &= KnownSub.One; 985 Known.Zero &= KnownSub.Zero; 986 } 987 if (!!DemandedSrcElts) { 988 Known.One &= KnownSrc.One; 989 Known.Zero &= KnownSrc.Zero; 990 } 991 992 // Attempt to avoid multi-use src if we don't need anything from it. 993 if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() || 994 !DemandedSrcElts.isAllOnesValue()) { 995 SDValue NewSub = SimplifyMultipleUseDemandedBits( 996 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 997 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 998 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 999 if (NewSub || NewSrc) { 1000 NewSub = NewSub ? NewSub : Sub; 1001 NewSrc = NewSrc ? NewSrc : Src; 1002 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1003 Op.getOperand(2)); 1004 return TLO.CombineTo(Op, NewOp); 1005 } 1006 } 1007 break; 1008 } 1009 case ISD::EXTRACT_SUBVECTOR: { 1010 // Offset the demanded elts by the subvector index. 1011 SDValue Src = Op.getOperand(0); 1012 uint64_t Idx = Op.getConstantOperandVal(1); 1013 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1014 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1015 1016 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1017 Depth + 1)) 1018 return true; 1019 1020 // Attempt to avoid multi-use src if we don't need anything from it. 1021 if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) { 1022 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1023 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1024 if (DemandedSrc) { 1025 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1026 Op.getOperand(1)); 1027 return TLO.CombineTo(Op, NewOp); 1028 } 1029 } 1030 break; 1031 } 1032 case ISD::CONCAT_VECTORS: { 1033 Known.Zero.setAllBits(); 1034 Known.One.setAllBits(); 1035 EVT SubVT = Op.getOperand(0).getValueType(); 1036 unsigned NumSubVecs = Op.getNumOperands(); 1037 unsigned NumSubElts = SubVT.getVectorNumElements(); 1038 for (unsigned i = 0; i != NumSubVecs; ++i) { 1039 APInt DemandedSubElts = 1040 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1041 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1042 Known2, TLO, Depth + 1)) 1043 return true; 1044 // Known bits are shared by every demanded subvector element. 1045 if (!!DemandedSubElts) { 1046 Known.One &= Known2.One; 1047 Known.Zero &= Known2.Zero; 1048 } 1049 } 1050 break; 1051 } 1052 case ISD::VECTOR_SHUFFLE: { 1053 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1054 1055 // Collect demanded elements from shuffle operands.. 1056 APInt DemandedLHS(NumElts, 0); 1057 APInt DemandedRHS(NumElts, 0); 1058 for (unsigned i = 0; i != NumElts; ++i) { 1059 if (!DemandedElts[i]) 1060 continue; 1061 int M = ShuffleMask[i]; 1062 if (M < 0) { 1063 // For UNDEF elements, we don't know anything about the common state of 1064 // the shuffle result. 1065 DemandedLHS.clearAllBits(); 1066 DemandedRHS.clearAllBits(); 1067 break; 1068 } 1069 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1070 if (M < (int)NumElts) 1071 DemandedLHS.setBit(M); 1072 else 1073 DemandedRHS.setBit(M - NumElts); 1074 } 1075 1076 if (!!DemandedLHS || !!DemandedRHS) { 1077 SDValue Op0 = Op.getOperand(0); 1078 SDValue Op1 = Op.getOperand(1); 1079 1080 Known.Zero.setAllBits(); 1081 Known.One.setAllBits(); 1082 if (!!DemandedLHS) { 1083 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1084 Depth + 1)) 1085 return true; 1086 Known.One &= Known2.One; 1087 Known.Zero &= Known2.Zero; 1088 } 1089 if (!!DemandedRHS) { 1090 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1091 Depth + 1)) 1092 return true; 1093 Known.One &= Known2.One; 1094 Known.Zero &= Known2.Zero; 1095 } 1096 1097 // Attempt to avoid multi-use ops if we don't need anything from them. 1098 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1099 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1100 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1101 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1102 if (DemandedOp0 || DemandedOp1) { 1103 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1104 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1105 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1106 return TLO.CombineTo(Op, NewOp); 1107 } 1108 } 1109 break; 1110 } 1111 case ISD::AND: { 1112 SDValue Op0 = Op.getOperand(0); 1113 SDValue Op1 = Op.getOperand(1); 1114 1115 // If the RHS is a constant, check to see if the LHS would be zero without 1116 // using the bits from the RHS. Below, we use knowledge about the RHS to 1117 // simplify the LHS, here we're using information from the LHS to simplify 1118 // the RHS. 1119 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1120 // Do not increment Depth here; that can cause an infinite loop. 1121 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1122 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1123 if ((LHSKnown.Zero & DemandedBits) == 1124 (~RHSC->getAPIntValue() & DemandedBits)) 1125 return TLO.CombineTo(Op, Op0); 1126 1127 // If any of the set bits in the RHS are known zero on the LHS, shrink 1128 // the constant. 1129 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1130 return true; 1131 1132 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1133 // constant, but if this 'and' is only clearing bits that were just set by 1134 // the xor, then this 'and' can be eliminated by shrinking the mask of 1135 // the xor. For example, for a 32-bit X: 1136 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1137 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1138 LHSKnown.One == ~RHSC->getAPIntValue()) { 1139 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1140 return TLO.CombineTo(Op, Xor); 1141 } 1142 } 1143 1144 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1145 Depth + 1)) 1146 return true; 1147 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1148 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1149 Known2, TLO, Depth + 1)) 1150 return true; 1151 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1152 1153 // Attempt to avoid multi-use ops if we don't need anything from them. 1154 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1155 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1156 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1157 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1158 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1159 if (DemandedOp0 || DemandedOp1) { 1160 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1161 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1162 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1163 return TLO.CombineTo(Op, NewOp); 1164 } 1165 } 1166 1167 // If all of the demanded bits are known one on one side, return the other. 1168 // These bits cannot contribute to the result of the 'and'. 1169 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1170 return TLO.CombineTo(Op, Op0); 1171 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1172 return TLO.CombineTo(Op, Op1); 1173 // If all of the demanded bits in the inputs are known zeros, return zero. 1174 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1175 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1176 // If the RHS is a constant, see if we can simplify it. 1177 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1178 return true; 1179 // If the operation can be done in a smaller type, do so. 1180 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1181 return true; 1182 1183 Known &= Known2; 1184 break; 1185 } 1186 case ISD::OR: { 1187 SDValue Op0 = Op.getOperand(0); 1188 SDValue Op1 = Op.getOperand(1); 1189 1190 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1191 Depth + 1)) 1192 return true; 1193 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1194 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1195 Known2, TLO, Depth + 1)) 1196 return true; 1197 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1198 1199 // Attempt to avoid multi-use ops if we don't need anything from them. 1200 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1201 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1202 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1203 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1204 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1205 if (DemandedOp0 || DemandedOp1) { 1206 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1207 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1208 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1209 return TLO.CombineTo(Op, NewOp); 1210 } 1211 } 1212 1213 // If all of the demanded bits are known zero on one side, return the other. 1214 // These bits cannot contribute to the result of the 'or'. 1215 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1216 return TLO.CombineTo(Op, Op0); 1217 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1218 return TLO.CombineTo(Op, Op1); 1219 // If the RHS is a constant, see if we can simplify it. 1220 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1221 return true; 1222 // If the operation can be done in a smaller type, do so. 1223 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1224 return true; 1225 1226 Known |= Known2; 1227 break; 1228 } 1229 case ISD::XOR: { 1230 SDValue Op0 = Op.getOperand(0); 1231 SDValue Op1 = Op.getOperand(1); 1232 1233 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1234 Depth + 1)) 1235 return true; 1236 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1237 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1238 Depth + 1)) 1239 return true; 1240 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1241 1242 // Attempt to avoid multi-use ops if we don't need anything from them. 1243 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1244 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1245 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1246 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1247 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1248 if (DemandedOp0 || DemandedOp1) { 1249 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1250 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1251 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1252 return TLO.CombineTo(Op, NewOp); 1253 } 1254 } 1255 1256 // If all of the demanded bits are known zero on one side, return the other. 1257 // These bits cannot contribute to the result of the 'xor'. 1258 if (DemandedBits.isSubsetOf(Known.Zero)) 1259 return TLO.CombineTo(Op, Op0); 1260 if (DemandedBits.isSubsetOf(Known2.Zero)) 1261 return TLO.CombineTo(Op, Op1); 1262 // If the operation can be done in a smaller type, do so. 1263 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1264 return true; 1265 1266 // If all of the unknown bits are known to be zero on one side or the other 1267 // (but not both) turn this into an *inclusive* or. 1268 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1269 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1270 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1271 1272 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1273 // If one side is a constant, and all of the known set bits on the other 1274 // side are also set in the constant, turn this into an AND, as we know 1275 // the bits will be cleared. 1276 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1277 // NB: it is okay if more bits are known than are requested 1278 if (C->getAPIntValue() == Known2.One) { 1279 SDValue ANDC = 1280 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1281 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1282 } 1283 1284 // If the RHS is a constant, see if we can change it. Don't alter a -1 1285 // constant because that's a 'not' op, and that is better for combining 1286 // and codegen. 1287 if (!C->isAllOnesValue()) { 1288 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1289 // We're flipping all demanded bits. Flip the undemanded bits too. 1290 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1291 return TLO.CombineTo(Op, New); 1292 } 1293 // If we can't turn this into a 'not', try to shrink the constant. 1294 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1295 return true; 1296 } 1297 } 1298 1299 Known ^= Known2; 1300 break; 1301 } 1302 case ISD::SELECT: 1303 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1304 Depth + 1)) 1305 return true; 1306 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1307 Depth + 1)) 1308 return true; 1309 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1310 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1311 1312 // If the operands are constants, see if we can simplify them. 1313 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1314 return true; 1315 1316 // Only known if known in both the LHS and RHS. 1317 Known.One &= Known2.One; 1318 Known.Zero &= Known2.Zero; 1319 break; 1320 case ISD::SELECT_CC: 1321 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1322 Depth + 1)) 1323 return true; 1324 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1325 Depth + 1)) 1326 return true; 1327 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1328 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1329 1330 // If the operands are constants, see if we can simplify them. 1331 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1332 return true; 1333 1334 // Only known if known in both the LHS and RHS. 1335 Known.One &= Known2.One; 1336 Known.Zero &= Known2.Zero; 1337 break; 1338 case ISD::SETCC: { 1339 SDValue Op0 = Op.getOperand(0); 1340 SDValue Op1 = Op.getOperand(1); 1341 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1342 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1343 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1344 // -1, we may be able to bypass the setcc. 1345 if (DemandedBits.isSignMask() && 1346 Op0.getScalarValueSizeInBits() == BitWidth && 1347 getBooleanContents(Op0.getValueType()) == 1348 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1349 // If we're testing X < 0, then this compare isn't needed - just use X! 1350 // FIXME: We're limiting to integer types here, but this should also work 1351 // if we don't care about FP signed-zero. The use of SETLT with FP means 1352 // that we don't care about NaNs. 1353 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1354 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1355 return TLO.CombineTo(Op, Op0); 1356 1357 // TODO: Should we check for other forms of sign-bit comparisons? 1358 // Examples: X <= -1, X >= 0 1359 } 1360 if (getBooleanContents(Op0.getValueType()) == 1361 TargetLowering::ZeroOrOneBooleanContent && 1362 BitWidth > 1) 1363 Known.Zero.setBitsFrom(1); 1364 break; 1365 } 1366 case ISD::SHL: { 1367 SDValue Op0 = Op.getOperand(0); 1368 SDValue Op1 = Op.getOperand(1); 1369 EVT ShiftVT = Op1.getValueType(); 1370 1371 if (const APInt *SA = 1372 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1373 unsigned ShAmt = SA->getZExtValue(); 1374 if (ShAmt == 0) 1375 return TLO.CombineTo(Op, Op0); 1376 1377 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1378 // single shift. We can do this if the bottom bits (which are shifted 1379 // out) are never demanded. 1380 // TODO - support non-uniform vector amounts. 1381 if (Op0.getOpcode() == ISD::SRL) { 1382 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1383 if (const APInt *SA2 = 1384 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1385 unsigned C1 = SA2->getZExtValue(); 1386 unsigned Opc = ISD::SHL; 1387 int Diff = ShAmt - C1; 1388 if (Diff < 0) { 1389 Diff = -Diff; 1390 Opc = ISD::SRL; 1391 } 1392 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1393 return TLO.CombineTo( 1394 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1395 } 1396 } 1397 } 1398 1399 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1400 // are not demanded. This will likely allow the anyext to be folded away. 1401 // TODO - support non-uniform vector amounts. 1402 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1403 SDValue InnerOp = Op0.getOperand(0); 1404 EVT InnerVT = InnerOp.getValueType(); 1405 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1406 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1407 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1408 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1409 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1410 ShTy = InnerVT; 1411 SDValue NarrowShl = 1412 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1413 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1414 return TLO.CombineTo( 1415 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1416 } 1417 1418 // Repeat the SHL optimization above in cases where an extension 1419 // intervenes: (shl (anyext (shr x, c1)), c2) to 1420 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1421 // aren't demanded (as above) and that the shifted upper c1 bits of 1422 // x aren't demanded. 1423 // TODO - support non-uniform vector amounts. 1424 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1425 InnerOp.hasOneUse()) { 1426 if (const APInt *SA2 = 1427 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1428 unsigned InnerShAmt = SA2->getZExtValue(); 1429 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1430 DemandedBits.getActiveBits() <= 1431 (InnerBits - InnerShAmt + ShAmt) && 1432 DemandedBits.countTrailingZeros() >= ShAmt) { 1433 SDValue NewSA = 1434 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1435 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1436 InnerOp.getOperand(0)); 1437 return TLO.CombineTo( 1438 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1439 } 1440 } 1441 } 1442 } 1443 1444 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1445 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1446 Depth + 1)) 1447 return true; 1448 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1449 Known.Zero <<= ShAmt; 1450 Known.One <<= ShAmt; 1451 // low bits known zero. 1452 Known.Zero.setLowBits(ShAmt); 1453 1454 // Try shrinking the operation as long as the shift amount will still be 1455 // in range. 1456 if ((ShAmt < DemandedBits.getActiveBits()) && 1457 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1458 return true; 1459 } 1460 1461 // If we are only demanding sign bits then we can use the shift source 1462 // directly. 1463 if (const APInt *MaxSA = 1464 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1465 unsigned ShAmt = MaxSA->getZExtValue(); 1466 unsigned NumSignBits = 1467 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1468 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1469 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1470 return TLO.CombineTo(Op, Op0); 1471 } 1472 break; 1473 } 1474 case ISD::SRL: { 1475 SDValue Op0 = Op.getOperand(0); 1476 SDValue Op1 = Op.getOperand(1); 1477 EVT ShiftVT = Op1.getValueType(); 1478 1479 if (const APInt *SA = 1480 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1481 unsigned ShAmt = SA->getZExtValue(); 1482 if (ShAmt == 0) 1483 return TLO.CombineTo(Op, Op0); 1484 1485 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1486 // single shift. We can do this if the top bits (which are shifted out) 1487 // are never demanded. 1488 // TODO - support non-uniform vector amounts. 1489 if (Op0.getOpcode() == ISD::SHL) { 1490 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1491 if (const APInt *SA2 = 1492 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1493 unsigned C1 = SA2->getZExtValue(); 1494 unsigned Opc = ISD::SRL; 1495 int Diff = ShAmt - C1; 1496 if (Diff < 0) { 1497 Diff = -Diff; 1498 Opc = ISD::SHL; 1499 } 1500 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1501 return TLO.CombineTo( 1502 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1503 } 1504 } 1505 } 1506 1507 APInt InDemandedMask = (DemandedBits << ShAmt); 1508 1509 // If the shift is exact, then it does demand the low bits (and knows that 1510 // they are zero). 1511 if (Op->getFlags().hasExact()) 1512 InDemandedMask.setLowBits(ShAmt); 1513 1514 // Compute the new bits that are at the top now. 1515 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1516 Depth + 1)) 1517 return true; 1518 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1519 Known.Zero.lshrInPlace(ShAmt); 1520 Known.One.lshrInPlace(ShAmt); 1521 // High bits known zero. 1522 Known.Zero.setHighBits(ShAmt); 1523 } 1524 break; 1525 } 1526 case ISD::SRA: { 1527 SDValue Op0 = Op.getOperand(0); 1528 SDValue Op1 = Op.getOperand(1); 1529 EVT ShiftVT = Op1.getValueType(); 1530 1531 // If we only want bits that already match the signbit then we don't need 1532 // to shift. 1533 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1534 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1535 NumHiDemandedBits) 1536 return TLO.CombineTo(Op, Op0); 1537 1538 // If this is an arithmetic shift right and only the low-bit is set, we can 1539 // always convert this into a logical shr, even if the shift amount is 1540 // variable. The low bit of the shift cannot be an input sign bit unless 1541 // the shift amount is >= the size of the datatype, which is undefined. 1542 if (DemandedBits.isOneValue()) 1543 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1544 1545 if (const APInt *SA = 1546 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1547 unsigned ShAmt = SA->getZExtValue(); 1548 if (ShAmt == 0) 1549 return TLO.CombineTo(Op, Op0); 1550 1551 APInt InDemandedMask = (DemandedBits << ShAmt); 1552 1553 // If the shift is exact, then it does demand the low bits (and knows that 1554 // they are zero). 1555 if (Op->getFlags().hasExact()) 1556 InDemandedMask.setLowBits(ShAmt); 1557 1558 // If any of the demanded bits are produced by the sign extension, we also 1559 // demand the input sign bit. 1560 if (DemandedBits.countLeadingZeros() < ShAmt) 1561 InDemandedMask.setSignBit(); 1562 1563 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1564 Depth + 1)) 1565 return true; 1566 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1567 Known.Zero.lshrInPlace(ShAmt); 1568 Known.One.lshrInPlace(ShAmt); 1569 1570 // If the input sign bit is known to be zero, or if none of the top bits 1571 // are demanded, turn this into an unsigned shift right. 1572 if (Known.Zero[BitWidth - ShAmt - 1] || 1573 DemandedBits.countLeadingZeros() >= ShAmt) { 1574 SDNodeFlags Flags; 1575 Flags.setExact(Op->getFlags().hasExact()); 1576 return TLO.CombineTo( 1577 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1578 } 1579 1580 int Log2 = DemandedBits.exactLogBase2(); 1581 if (Log2 >= 0) { 1582 // The bit must come from the sign. 1583 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1584 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1585 } 1586 1587 if (Known.One[BitWidth - ShAmt - 1]) 1588 // New bits are known one. 1589 Known.One.setHighBits(ShAmt); 1590 1591 // Attempt to avoid multi-use ops if we don't need anything from them. 1592 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1593 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1594 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1595 if (DemandedOp0) { 1596 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1597 return TLO.CombineTo(Op, NewOp); 1598 } 1599 } 1600 } 1601 break; 1602 } 1603 case ISD::FSHL: 1604 case ISD::FSHR: { 1605 SDValue Op0 = Op.getOperand(0); 1606 SDValue Op1 = Op.getOperand(1); 1607 SDValue Op2 = Op.getOperand(2); 1608 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1609 1610 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1611 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1612 1613 // For fshl, 0-shift returns the 1st arg. 1614 // For fshr, 0-shift returns the 2nd arg. 1615 if (Amt == 0) { 1616 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1617 Known, TLO, Depth + 1)) 1618 return true; 1619 break; 1620 } 1621 1622 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1623 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1624 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1625 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1626 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1627 Depth + 1)) 1628 return true; 1629 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1630 Depth + 1)) 1631 return true; 1632 1633 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1634 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1635 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1636 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1637 Known.One |= Known2.One; 1638 Known.Zero |= Known2.Zero; 1639 } 1640 1641 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1642 if (isPowerOf2_32(BitWidth)) { 1643 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1644 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1645 Known2, TLO, Depth + 1)) 1646 return true; 1647 } 1648 break; 1649 } 1650 case ISD::ROTL: 1651 case ISD::ROTR: { 1652 SDValue Op0 = Op.getOperand(0); 1653 SDValue Op1 = Op.getOperand(1); 1654 1655 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1656 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1657 return TLO.CombineTo(Op, Op0); 1658 1659 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1660 if (isPowerOf2_32(BitWidth)) { 1661 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1662 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1663 Depth + 1)) 1664 return true; 1665 } 1666 break; 1667 } 1668 case ISD::BITREVERSE: { 1669 SDValue Src = Op.getOperand(0); 1670 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1671 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1672 Depth + 1)) 1673 return true; 1674 Known.One = Known2.One.reverseBits(); 1675 Known.Zero = Known2.Zero.reverseBits(); 1676 break; 1677 } 1678 case ISD::BSWAP: { 1679 SDValue Src = Op.getOperand(0); 1680 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1681 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1682 Depth + 1)) 1683 return true; 1684 Known.One = Known2.One.byteSwap(); 1685 Known.Zero = Known2.Zero.byteSwap(); 1686 break; 1687 } 1688 case ISD::SIGN_EXTEND_INREG: { 1689 SDValue Op0 = Op.getOperand(0); 1690 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1691 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1692 1693 // If we only care about the highest bit, don't bother shifting right. 1694 if (DemandedBits.isSignMask()) { 1695 unsigned NumSignBits = 1696 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1697 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1698 // However if the input is already sign extended we expect the sign 1699 // extension to be dropped altogether later and do not simplify. 1700 if (!AlreadySignExtended) { 1701 // Compute the correct shift amount type, which must be getShiftAmountTy 1702 // for scalar types after legalization. 1703 EVT ShiftAmtTy = VT; 1704 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1705 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1706 1707 SDValue ShiftAmt = 1708 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1709 return TLO.CombineTo(Op, 1710 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1711 } 1712 } 1713 1714 // If none of the extended bits are demanded, eliminate the sextinreg. 1715 if (DemandedBits.getActiveBits() <= ExVTBits) 1716 return TLO.CombineTo(Op, Op0); 1717 1718 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1719 1720 // Since the sign extended bits are demanded, we know that the sign 1721 // bit is demanded. 1722 InputDemandedBits.setBit(ExVTBits - 1); 1723 1724 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1725 return true; 1726 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1727 1728 // If the sign bit of the input is known set or clear, then we know the 1729 // top bits of the result. 1730 1731 // If the input sign bit is known zero, convert this into a zero extension. 1732 if (Known.Zero[ExVTBits - 1]) 1733 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1734 1735 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1736 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1737 Known.One.setBitsFrom(ExVTBits); 1738 Known.Zero &= Mask; 1739 } else { // Input sign bit unknown 1740 Known.Zero &= Mask; 1741 Known.One &= Mask; 1742 } 1743 break; 1744 } 1745 case ISD::BUILD_PAIR: { 1746 EVT HalfVT = Op.getOperand(0).getValueType(); 1747 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1748 1749 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1750 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1751 1752 KnownBits KnownLo, KnownHi; 1753 1754 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1755 return true; 1756 1757 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1758 return true; 1759 1760 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1761 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1762 1763 Known.One = KnownLo.One.zext(BitWidth) | 1764 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1765 break; 1766 } 1767 case ISD::ZERO_EXTEND: 1768 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1769 SDValue Src = Op.getOperand(0); 1770 EVT SrcVT = Src.getValueType(); 1771 unsigned InBits = SrcVT.getScalarSizeInBits(); 1772 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1773 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1774 1775 // If none of the top bits are demanded, convert this into an any_extend. 1776 if (DemandedBits.getActiveBits() <= InBits) { 1777 // If we only need the non-extended bits of the bottom element 1778 // then we can just bitcast to the result. 1779 if (IsVecInReg && DemandedElts == 1 && 1780 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1781 TLO.DAG.getDataLayout().isLittleEndian()) 1782 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1783 1784 unsigned Opc = 1785 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1786 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1787 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1788 } 1789 1790 APInt InDemandedBits = DemandedBits.trunc(InBits); 1791 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1792 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1793 Depth + 1)) 1794 return true; 1795 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1796 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1797 Known = Known.zext(BitWidth); 1798 break; 1799 } 1800 case ISD::SIGN_EXTEND: 1801 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1802 SDValue Src = Op.getOperand(0); 1803 EVT SrcVT = Src.getValueType(); 1804 unsigned InBits = SrcVT.getScalarSizeInBits(); 1805 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1806 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1807 1808 // If none of the top bits are demanded, convert this into an any_extend. 1809 if (DemandedBits.getActiveBits() <= InBits) { 1810 // If we only need the non-extended bits of the bottom element 1811 // then we can just bitcast to the result. 1812 if (IsVecInReg && DemandedElts == 1 && 1813 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1814 TLO.DAG.getDataLayout().isLittleEndian()) 1815 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1816 1817 unsigned Opc = 1818 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1819 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1820 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1821 } 1822 1823 APInt InDemandedBits = DemandedBits.trunc(InBits); 1824 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1825 1826 // Since some of the sign extended bits are demanded, we know that the sign 1827 // bit is demanded. 1828 InDemandedBits.setBit(InBits - 1); 1829 1830 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1831 Depth + 1)) 1832 return true; 1833 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1834 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1835 1836 // If the sign bit is known one, the top bits match. 1837 Known = Known.sext(BitWidth); 1838 1839 // If the sign bit is known zero, convert this to a zero extend. 1840 if (Known.isNonNegative()) { 1841 unsigned Opc = 1842 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1843 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1844 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1845 } 1846 break; 1847 } 1848 case ISD::ANY_EXTEND: 1849 case ISD::ANY_EXTEND_VECTOR_INREG: { 1850 SDValue Src = Op.getOperand(0); 1851 EVT SrcVT = Src.getValueType(); 1852 unsigned InBits = SrcVT.getScalarSizeInBits(); 1853 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1854 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1855 1856 // If we only need the bottom element then we can just bitcast. 1857 // TODO: Handle ANY_EXTEND? 1858 if (IsVecInReg && DemandedElts == 1 && 1859 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1860 TLO.DAG.getDataLayout().isLittleEndian()) 1861 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1862 1863 APInt InDemandedBits = DemandedBits.trunc(InBits); 1864 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1865 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1866 Depth + 1)) 1867 return true; 1868 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1869 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1870 Known = Known.anyext(BitWidth); 1871 1872 // Attempt to avoid multi-use ops if we don't need anything from them. 1873 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1874 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1875 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1876 break; 1877 } 1878 case ISD::TRUNCATE: { 1879 SDValue Src = Op.getOperand(0); 1880 1881 // Simplify the input, using demanded bit information, and compute the known 1882 // zero/one bits live out. 1883 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1884 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1885 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1886 return true; 1887 Known = Known.trunc(BitWidth); 1888 1889 // Attempt to avoid multi-use ops if we don't need anything from them. 1890 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1891 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1892 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1893 1894 // If the input is only used by this truncate, see if we can shrink it based 1895 // on the known demanded bits. 1896 if (Src.getNode()->hasOneUse()) { 1897 switch (Src.getOpcode()) { 1898 default: 1899 break; 1900 case ISD::SRL: 1901 // Shrink SRL by a constant if none of the high bits shifted in are 1902 // demanded. 1903 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1904 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1905 // undesirable. 1906 break; 1907 1908 SDValue ShAmt = Src.getOperand(1); 1909 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1910 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1911 break; 1912 uint64_t ShVal = ShAmtC->getZExtValue(); 1913 1914 APInt HighBits = 1915 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1916 HighBits.lshrInPlace(ShVal); 1917 HighBits = HighBits.trunc(BitWidth); 1918 1919 if (!(HighBits & DemandedBits)) { 1920 // None of the shifted in bits are needed. Add a truncate of the 1921 // shift input, then shift it. 1922 if (TLO.LegalTypes()) 1923 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1924 SDValue NewTrunc = 1925 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1926 return TLO.CombineTo( 1927 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 1928 } 1929 break; 1930 } 1931 } 1932 1933 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1934 break; 1935 } 1936 case ISD::AssertZext: { 1937 // AssertZext demands all of the high bits, plus any of the low bits 1938 // demanded by its users. 1939 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1940 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1941 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1942 TLO, Depth + 1)) 1943 return true; 1944 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1945 1946 Known.Zero |= ~InMask; 1947 break; 1948 } 1949 case ISD::EXTRACT_VECTOR_ELT: { 1950 SDValue Src = Op.getOperand(0); 1951 SDValue Idx = Op.getOperand(1); 1952 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1953 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1954 1955 // Demand the bits from every vector element without a constant index. 1956 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1957 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1958 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1959 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1960 1961 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1962 // anything about the extended bits. 1963 APInt DemandedSrcBits = DemandedBits; 1964 if (BitWidth > EltBitWidth) 1965 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1966 1967 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1968 Depth + 1)) 1969 return true; 1970 1971 // Attempt to avoid multi-use ops if we don't need anything from them. 1972 if (!DemandedSrcBits.isAllOnesValue() || 1973 !DemandedSrcElts.isAllOnesValue()) { 1974 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1975 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 1976 SDValue NewOp = 1977 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 1978 return TLO.CombineTo(Op, NewOp); 1979 } 1980 } 1981 1982 Known = Known2; 1983 if (BitWidth > EltBitWidth) 1984 Known = Known.anyext(BitWidth); 1985 break; 1986 } 1987 case ISD::BITCAST: { 1988 SDValue Src = Op.getOperand(0); 1989 EVT SrcVT = Src.getValueType(); 1990 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1991 1992 // If this is an FP->Int bitcast and if the sign bit is the only 1993 // thing demanded, turn this into a FGETSIGN. 1994 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1995 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1996 SrcVT.isFloatingPoint()) { 1997 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1998 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1999 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2000 SrcVT != MVT::f128) { 2001 // Cannot eliminate/lower SHL for f128 yet. 2002 EVT Ty = OpVTLegal ? VT : MVT::i32; 2003 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2004 // place. We expect the SHL to be eliminated by other optimizations. 2005 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2006 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2007 if (!OpVTLegal && OpVTSizeInBits > 32) 2008 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2009 unsigned ShVal = Op.getValueSizeInBits() - 1; 2010 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2011 return TLO.CombineTo(Op, 2012 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2013 } 2014 } 2015 2016 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2017 // Demand the elt/bit if any of the original elts/bits are demanded. 2018 // TODO - bigendian once we have test coverage. 2019 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2020 TLO.DAG.getDataLayout().isLittleEndian()) { 2021 unsigned Scale = BitWidth / NumSrcEltBits; 2022 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2023 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2024 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2025 for (unsigned i = 0; i != Scale; ++i) { 2026 unsigned Offset = i * NumSrcEltBits; 2027 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2028 if (!Sub.isNullValue()) { 2029 DemandedSrcBits |= Sub; 2030 for (unsigned j = 0; j != NumElts; ++j) 2031 if (DemandedElts[j]) 2032 DemandedSrcElts.setBit((j * Scale) + i); 2033 } 2034 } 2035 2036 APInt KnownSrcUndef, KnownSrcZero; 2037 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2038 KnownSrcZero, TLO, Depth + 1)) 2039 return true; 2040 2041 KnownBits KnownSrcBits; 2042 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2043 KnownSrcBits, TLO, Depth + 1)) 2044 return true; 2045 } else if ((NumSrcEltBits % BitWidth) == 0 && 2046 TLO.DAG.getDataLayout().isLittleEndian()) { 2047 unsigned Scale = NumSrcEltBits / BitWidth; 2048 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2049 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2050 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2051 for (unsigned i = 0; i != NumElts; ++i) 2052 if (DemandedElts[i]) { 2053 unsigned Offset = (i % Scale) * BitWidth; 2054 DemandedSrcBits.insertBits(DemandedBits, Offset); 2055 DemandedSrcElts.setBit(i / Scale); 2056 } 2057 2058 if (SrcVT.isVector()) { 2059 APInt KnownSrcUndef, KnownSrcZero; 2060 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2061 KnownSrcZero, TLO, Depth + 1)) 2062 return true; 2063 } 2064 2065 KnownBits KnownSrcBits; 2066 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2067 KnownSrcBits, TLO, Depth + 1)) 2068 return true; 2069 } 2070 2071 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2072 // recursive call where Known may be useful to the caller. 2073 if (Depth > 0) { 2074 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2075 return false; 2076 } 2077 break; 2078 } 2079 case ISD::ADD: 2080 case ISD::MUL: 2081 case ISD::SUB: { 2082 // Add, Sub, and Mul don't demand any bits in positions beyond that 2083 // of the highest bit demanded of them. 2084 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2085 SDNodeFlags Flags = Op.getNode()->getFlags(); 2086 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2087 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2088 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2089 Depth + 1) || 2090 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2091 Depth + 1) || 2092 // See if the operation should be performed at a smaller bit width. 2093 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2094 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2095 // Disable the nsw and nuw flags. We can no longer guarantee that we 2096 // won't wrap after simplification. 2097 Flags.setNoSignedWrap(false); 2098 Flags.setNoUnsignedWrap(false); 2099 SDValue NewOp = 2100 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2101 return TLO.CombineTo(Op, NewOp); 2102 } 2103 return true; 2104 } 2105 2106 // Attempt to avoid multi-use ops if we don't need anything from them. 2107 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2108 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2109 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2110 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2111 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2112 if (DemandedOp0 || DemandedOp1) { 2113 Flags.setNoSignedWrap(false); 2114 Flags.setNoUnsignedWrap(false); 2115 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2116 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2117 SDValue NewOp = 2118 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2119 return TLO.CombineTo(Op, NewOp); 2120 } 2121 } 2122 2123 // If we have a constant operand, we may be able to turn it into -1 if we 2124 // do not demand the high bits. This can make the constant smaller to 2125 // encode, allow more general folding, or match specialized instruction 2126 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2127 // is probably not useful (and could be detrimental). 2128 ConstantSDNode *C = isConstOrConstSplat(Op1); 2129 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2130 if (C && !C->isAllOnesValue() && !C->isOne() && 2131 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2132 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2133 // Disable the nsw and nuw flags. We can no longer guarantee that we 2134 // won't wrap after simplification. 2135 Flags.setNoSignedWrap(false); 2136 Flags.setNoUnsignedWrap(false); 2137 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2138 return TLO.CombineTo(Op, NewOp); 2139 } 2140 2141 LLVM_FALLTHROUGH; 2142 } 2143 default: 2144 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2145 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2146 Known, TLO, Depth)) 2147 return true; 2148 break; 2149 } 2150 2151 // Just use computeKnownBits to compute output bits. 2152 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2153 break; 2154 } 2155 2156 // If we know the value of all of the demanded bits, return this as a 2157 // constant. 2158 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2159 // Avoid folding to a constant if any OpaqueConstant is involved. 2160 const SDNode *N = Op.getNode(); 2161 for (SDNodeIterator I = SDNodeIterator::begin(N), 2162 E = SDNodeIterator::end(N); 2163 I != E; ++I) { 2164 SDNode *Op = *I; 2165 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2166 if (C->isOpaque()) 2167 return false; 2168 } 2169 // TODO: Handle float bits as well. 2170 if (VT.isInteger()) 2171 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2172 } 2173 2174 return false; 2175 } 2176 2177 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2178 const APInt &DemandedElts, 2179 APInt &KnownUndef, 2180 APInt &KnownZero, 2181 DAGCombinerInfo &DCI) const { 2182 SelectionDAG &DAG = DCI.DAG; 2183 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2184 !DCI.isBeforeLegalizeOps()); 2185 2186 bool Simplified = 2187 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2188 if (Simplified) { 2189 DCI.AddToWorklist(Op.getNode()); 2190 DCI.CommitTargetLoweringOpt(TLO); 2191 } 2192 2193 return Simplified; 2194 } 2195 2196 /// Given a vector binary operation and known undefined elements for each input 2197 /// operand, compute whether each element of the output is undefined. 2198 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2199 const APInt &UndefOp0, 2200 const APInt &UndefOp1) { 2201 EVT VT = BO.getValueType(); 2202 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2203 "Vector binop only"); 2204 2205 EVT EltVT = VT.getVectorElementType(); 2206 unsigned NumElts = VT.getVectorNumElements(); 2207 assert(UndefOp0.getBitWidth() == NumElts && 2208 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2209 2210 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2211 const APInt &UndefVals) { 2212 if (UndefVals[Index]) 2213 return DAG.getUNDEF(EltVT); 2214 2215 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2216 // Try hard to make sure that the getNode() call is not creating temporary 2217 // nodes. Ignore opaque integers because they do not constant fold. 2218 SDValue Elt = BV->getOperand(Index); 2219 auto *C = dyn_cast<ConstantSDNode>(Elt); 2220 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2221 return Elt; 2222 } 2223 2224 return SDValue(); 2225 }; 2226 2227 APInt KnownUndef = APInt::getNullValue(NumElts); 2228 for (unsigned i = 0; i != NumElts; ++i) { 2229 // If both inputs for this element are either constant or undef and match 2230 // the element type, compute the constant/undef result for this element of 2231 // the vector. 2232 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2233 // not handle FP constants. The code within getNode() should be refactored 2234 // to avoid the danger of creating a bogus temporary node here. 2235 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2236 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2237 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2238 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2239 KnownUndef.setBit(i); 2240 } 2241 return KnownUndef; 2242 } 2243 2244 bool TargetLowering::SimplifyDemandedVectorElts( 2245 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2246 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2247 bool AssumeSingleUse) const { 2248 EVT VT = Op.getValueType(); 2249 unsigned Opcode = Op.getOpcode(); 2250 APInt DemandedElts = OriginalDemandedElts; 2251 unsigned NumElts = DemandedElts.getBitWidth(); 2252 assert(VT.isVector() && "Expected vector op"); 2253 assert(VT.getVectorNumElements() == NumElts && 2254 "Mask size mismatches value type element count!"); 2255 2256 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2257 2258 // Undef operand. 2259 if (Op.isUndef()) { 2260 KnownUndef.setAllBits(); 2261 return false; 2262 } 2263 2264 // If Op has other users, assume that all elements are needed. 2265 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2266 DemandedElts.setAllBits(); 2267 2268 // Not demanding any elements from Op. 2269 if (DemandedElts == 0) { 2270 KnownUndef.setAllBits(); 2271 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2272 } 2273 2274 // Limit search depth. 2275 if (Depth >= SelectionDAG::MaxRecursionDepth) 2276 return false; 2277 2278 SDLoc DL(Op); 2279 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2280 2281 // Helper for demanding the specified elements and all the bits of both binary 2282 // operands. 2283 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2284 unsigned NumBits0 = Op0.getScalarValueSizeInBits(); 2285 unsigned NumBits1 = Op1.getScalarValueSizeInBits(); 2286 APInt DemandedBits0 = APInt::getAllOnesValue(NumBits0); 2287 APInt DemandedBits1 = APInt::getAllOnesValue(NumBits1); 2288 SDValue NewOp0 = SimplifyMultipleUseDemandedBits( 2289 Op0, DemandedBits0, DemandedElts, TLO.DAG, Depth + 1); 2290 SDValue NewOp1 = SimplifyMultipleUseDemandedBits( 2291 Op1, DemandedBits1, DemandedElts, TLO.DAG, Depth + 1); 2292 if (NewOp0 || NewOp1) { 2293 SDValue NewOp = TLO.DAG.getNode( 2294 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2295 return TLO.CombineTo(Op, NewOp); 2296 } 2297 return false; 2298 }; 2299 2300 switch (Opcode) { 2301 case ISD::SCALAR_TO_VECTOR: { 2302 if (!DemandedElts[0]) { 2303 KnownUndef.setAllBits(); 2304 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2305 } 2306 KnownUndef.setHighBits(NumElts - 1); 2307 break; 2308 } 2309 case ISD::BITCAST: { 2310 SDValue Src = Op.getOperand(0); 2311 EVT SrcVT = Src.getValueType(); 2312 2313 // We only handle vectors here. 2314 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2315 if (!SrcVT.isVector()) 2316 break; 2317 2318 // Fast handling of 'identity' bitcasts. 2319 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2320 if (NumSrcElts == NumElts) 2321 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2322 KnownZero, TLO, Depth + 1); 2323 2324 APInt SrcZero, SrcUndef; 2325 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2326 2327 // Bitcast from 'large element' src vector to 'small element' vector, we 2328 // must demand a source element if any DemandedElt maps to it. 2329 if ((NumElts % NumSrcElts) == 0) { 2330 unsigned Scale = NumElts / NumSrcElts; 2331 for (unsigned i = 0; i != NumElts; ++i) 2332 if (DemandedElts[i]) 2333 SrcDemandedElts.setBit(i / Scale); 2334 2335 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2336 TLO, Depth + 1)) 2337 return true; 2338 2339 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2340 // of the large element. 2341 // TODO - bigendian once we have test coverage. 2342 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2343 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2344 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2345 for (unsigned i = 0; i != NumElts; ++i) 2346 if (DemandedElts[i]) { 2347 unsigned Ofs = (i % Scale) * EltSizeInBits; 2348 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2349 } 2350 2351 KnownBits Known; 2352 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2353 TLO, Depth + 1)) 2354 return true; 2355 } 2356 2357 // If the src element is zero/undef then all the output elements will be - 2358 // only demanded elements are guaranteed to be correct. 2359 for (unsigned i = 0; i != NumSrcElts; ++i) { 2360 if (SrcDemandedElts[i]) { 2361 if (SrcZero[i]) 2362 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2363 if (SrcUndef[i]) 2364 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2365 } 2366 } 2367 } 2368 2369 // Bitcast from 'small element' src vector to 'large element' vector, we 2370 // demand all smaller source elements covered by the larger demanded element 2371 // of this vector. 2372 if ((NumSrcElts % NumElts) == 0) { 2373 unsigned Scale = NumSrcElts / NumElts; 2374 for (unsigned i = 0; i != NumElts; ++i) 2375 if (DemandedElts[i]) 2376 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2377 2378 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2379 TLO, Depth + 1)) 2380 return true; 2381 2382 // If all the src elements covering an output element are zero/undef, then 2383 // the output element will be as well, assuming it was demanded. 2384 for (unsigned i = 0; i != NumElts; ++i) { 2385 if (DemandedElts[i]) { 2386 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2387 KnownZero.setBit(i); 2388 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2389 KnownUndef.setBit(i); 2390 } 2391 } 2392 } 2393 break; 2394 } 2395 case ISD::BUILD_VECTOR: { 2396 // Check all elements and simplify any unused elements with UNDEF. 2397 if (!DemandedElts.isAllOnesValue()) { 2398 // Don't simplify BROADCASTS. 2399 if (llvm::any_of(Op->op_values(), 2400 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2401 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2402 bool Updated = false; 2403 for (unsigned i = 0; i != NumElts; ++i) { 2404 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2405 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2406 KnownUndef.setBit(i); 2407 Updated = true; 2408 } 2409 } 2410 if (Updated) 2411 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2412 } 2413 } 2414 for (unsigned i = 0; i != NumElts; ++i) { 2415 SDValue SrcOp = Op.getOperand(i); 2416 if (SrcOp.isUndef()) { 2417 KnownUndef.setBit(i); 2418 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2419 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2420 KnownZero.setBit(i); 2421 } 2422 } 2423 break; 2424 } 2425 case ISD::CONCAT_VECTORS: { 2426 EVT SubVT = Op.getOperand(0).getValueType(); 2427 unsigned NumSubVecs = Op.getNumOperands(); 2428 unsigned NumSubElts = SubVT.getVectorNumElements(); 2429 for (unsigned i = 0; i != NumSubVecs; ++i) { 2430 SDValue SubOp = Op.getOperand(i); 2431 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2432 APInt SubUndef, SubZero; 2433 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2434 Depth + 1)) 2435 return true; 2436 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2437 KnownZero.insertBits(SubZero, i * NumSubElts); 2438 } 2439 break; 2440 } 2441 case ISD::INSERT_SUBVECTOR: { 2442 // Demand any elements from the subvector and the remainder from the src its 2443 // inserted into. 2444 SDValue Src = Op.getOperand(0); 2445 SDValue Sub = Op.getOperand(1); 2446 uint64_t Idx = Op.getConstantOperandVal(2); 2447 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2448 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2449 APInt DemandedSrcElts = DemandedElts; 2450 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2451 2452 APInt SubUndef, SubZero; 2453 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2454 Depth + 1)) 2455 return true; 2456 2457 // If none of the src operand elements are demanded, replace it with undef. 2458 if (!DemandedSrcElts && !Src.isUndef()) 2459 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2460 TLO.DAG.getUNDEF(VT), Sub, 2461 Op.getOperand(2))); 2462 2463 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2464 TLO, Depth + 1)) 2465 return true; 2466 KnownUndef.insertBits(SubUndef, Idx); 2467 KnownZero.insertBits(SubZero, Idx); 2468 2469 // Attempt to avoid multi-use ops if we don't need anything from them. 2470 if (!DemandedSrcElts.isAllOnesValue() || 2471 !DemandedSubElts.isAllOnesValue()) { 2472 APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits()); 2473 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2474 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 2475 SDValue NewSub = SimplifyMultipleUseDemandedBits( 2476 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 2477 if (NewSrc || NewSub) { 2478 NewSrc = NewSrc ? NewSrc : Src; 2479 NewSub = NewSub ? NewSub : Sub; 2480 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2481 NewSub, Op.getOperand(2)); 2482 return TLO.CombineTo(Op, NewOp); 2483 } 2484 } 2485 break; 2486 } 2487 case ISD::EXTRACT_SUBVECTOR: { 2488 // Offset the demanded elts by the subvector index. 2489 SDValue Src = Op.getOperand(0); 2490 uint64_t Idx = Op.getConstantOperandVal(1); 2491 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2492 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2493 2494 APInt SrcUndef, SrcZero; 2495 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2496 Depth + 1)) 2497 return true; 2498 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2499 KnownZero = SrcZero.extractBits(NumElts, Idx); 2500 2501 // Attempt to avoid multi-use ops if we don't need anything from them. 2502 if (!DemandedElts.isAllOnesValue()) { 2503 APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits()); 2504 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2505 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 2506 if (NewSrc) { 2507 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2508 Op.getOperand(1)); 2509 return TLO.CombineTo(Op, NewOp); 2510 } 2511 } 2512 break; 2513 } 2514 case ISD::INSERT_VECTOR_ELT: { 2515 SDValue Vec = Op.getOperand(0); 2516 SDValue Scl = Op.getOperand(1); 2517 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2518 2519 // For a legal, constant insertion index, if we don't need this insertion 2520 // then strip it, else remove it from the demanded elts. 2521 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2522 unsigned Idx = CIdx->getZExtValue(); 2523 if (!DemandedElts[Idx]) 2524 return TLO.CombineTo(Op, Vec); 2525 2526 APInt DemandedVecElts(DemandedElts); 2527 DemandedVecElts.clearBit(Idx); 2528 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2529 KnownZero, TLO, Depth + 1)) 2530 return true; 2531 2532 KnownUndef.clearBit(Idx); 2533 if (Scl.isUndef()) 2534 KnownUndef.setBit(Idx); 2535 2536 KnownZero.clearBit(Idx); 2537 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2538 KnownZero.setBit(Idx); 2539 break; 2540 } 2541 2542 APInt VecUndef, VecZero; 2543 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2544 Depth + 1)) 2545 return true; 2546 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2547 break; 2548 } 2549 case ISD::VSELECT: { 2550 // Try to transform the select condition based on the current demanded 2551 // elements. 2552 // TODO: If a condition element is undef, we can choose from one arm of the 2553 // select (and if one arm is undef, then we can propagate that to the 2554 // result). 2555 // TODO - add support for constant vselect masks (see IR version of this). 2556 APInt UnusedUndef, UnusedZero; 2557 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2558 UnusedZero, TLO, Depth + 1)) 2559 return true; 2560 2561 // See if we can simplify either vselect operand. 2562 APInt DemandedLHS(DemandedElts); 2563 APInt DemandedRHS(DemandedElts); 2564 APInt UndefLHS, ZeroLHS; 2565 APInt UndefRHS, ZeroRHS; 2566 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2567 ZeroLHS, TLO, Depth + 1)) 2568 return true; 2569 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2570 ZeroRHS, TLO, Depth + 1)) 2571 return true; 2572 2573 KnownUndef = UndefLHS & UndefRHS; 2574 KnownZero = ZeroLHS & ZeroRHS; 2575 break; 2576 } 2577 case ISD::VECTOR_SHUFFLE: { 2578 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2579 2580 // Collect demanded elements from shuffle operands.. 2581 APInt DemandedLHS(NumElts, 0); 2582 APInt DemandedRHS(NumElts, 0); 2583 for (unsigned i = 0; i != NumElts; ++i) { 2584 int M = ShuffleMask[i]; 2585 if (M < 0 || !DemandedElts[i]) 2586 continue; 2587 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2588 if (M < (int)NumElts) 2589 DemandedLHS.setBit(M); 2590 else 2591 DemandedRHS.setBit(M - NumElts); 2592 } 2593 2594 // See if we can simplify either shuffle operand. 2595 APInt UndefLHS, ZeroLHS; 2596 APInt UndefRHS, ZeroRHS; 2597 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2598 ZeroLHS, TLO, Depth + 1)) 2599 return true; 2600 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2601 ZeroRHS, TLO, Depth + 1)) 2602 return true; 2603 2604 // Simplify mask using undef elements from LHS/RHS. 2605 bool Updated = false; 2606 bool IdentityLHS = true, IdentityRHS = true; 2607 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2608 for (unsigned i = 0; i != NumElts; ++i) { 2609 int &M = NewMask[i]; 2610 if (M < 0) 2611 continue; 2612 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2613 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2614 Updated = true; 2615 M = -1; 2616 } 2617 IdentityLHS &= (M < 0) || (M == (int)i); 2618 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2619 } 2620 2621 // Update legal shuffle masks based on demanded elements if it won't reduce 2622 // to Identity which can cause premature removal of the shuffle mask. 2623 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2624 SDValue LegalShuffle = 2625 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2626 NewMask, TLO.DAG); 2627 if (LegalShuffle) 2628 return TLO.CombineTo(Op, LegalShuffle); 2629 } 2630 2631 // Propagate undef/zero elements from LHS/RHS. 2632 for (unsigned i = 0; i != NumElts; ++i) { 2633 int M = ShuffleMask[i]; 2634 if (M < 0) { 2635 KnownUndef.setBit(i); 2636 } else if (M < (int)NumElts) { 2637 if (UndefLHS[M]) 2638 KnownUndef.setBit(i); 2639 if (ZeroLHS[M]) 2640 KnownZero.setBit(i); 2641 } else { 2642 if (UndefRHS[M - NumElts]) 2643 KnownUndef.setBit(i); 2644 if (ZeroRHS[M - NumElts]) 2645 KnownZero.setBit(i); 2646 } 2647 } 2648 break; 2649 } 2650 case ISD::ANY_EXTEND_VECTOR_INREG: 2651 case ISD::SIGN_EXTEND_VECTOR_INREG: 2652 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2653 APInt SrcUndef, SrcZero; 2654 SDValue Src = Op.getOperand(0); 2655 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2656 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2657 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2658 Depth + 1)) 2659 return true; 2660 KnownZero = SrcZero.zextOrTrunc(NumElts); 2661 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2662 2663 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2664 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2665 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2666 // aext - if we just need the bottom element then we can bitcast. 2667 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2668 } 2669 2670 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2671 // zext(undef) upper bits are guaranteed to be zero. 2672 if (DemandedElts.isSubsetOf(KnownUndef)) 2673 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2674 KnownUndef.clearAllBits(); 2675 } 2676 break; 2677 } 2678 2679 // TODO: There are more binop opcodes that could be handled here - MIN, 2680 // MAX, saturated math, etc. 2681 case ISD::OR: 2682 case ISD::XOR: 2683 case ISD::ADD: 2684 case ISD::SUB: 2685 case ISD::FADD: 2686 case ISD::FSUB: 2687 case ISD::FMUL: 2688 case ISD::FDIV: 2689 case ISD::FREM: { 2690 SDValue Op0 = Op.getOperand(0); 2691 SDValue Op1 = Op.getOperand(1); 2692 2693 APInt UndefRHS, ZeroRHS; 2694 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2695 Depth + 1)) 2696 return true; 2697 APInt UndefLHS, ZeroLHS; 2698 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2699 Depth + 1)) 2700 return true; 2701 2702 KnownZero = ZeroLHS & ZeroRHS; 2703 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2704 2705 // Attempt to avoid multi-use ops if we don't need anything from them. 2706 // TODO - use KnownUndef to relax the demandedelts? 2707 if (!DemandedElts.isAllOnesValue()) 2708 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2709 return true; 2710 break; 2711 } 2712 case ISD::SHL: 2713 case ISD::SRL: 2714 case ISD::SRA: 2715 case ISD::ROTL: 2716 case ISD::ROTR: { 2717 SDValue Op0 = Op.getOperand(0); 2718 SDValue Op1 = Op.getOperand(1); 2719 2720 APInt UndefRHS, ZeroRHS; 2721 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2722 Depth + 1)) 2723 return true; 2724 APInt UndefLHS, ZeroLHS; 2725 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2726 Depth + 1)) 2727 return true; 2728 2729 KnownZero = ZeroLHS; 2730 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2731 2732 // Attempt to avoid multi-use ops if we don't need anything from them. 2733 // TODO - use KnownUndef to relax the demandedelts? 2734 if (!DemandedElts.isAllOnesValue()) 2735 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2736 return true; 2737 break; 2738 } 2739 case ISD::MUL: 2740 case ISD::AND: { 2741 SDValue Op0 = Op.getOperand(0); 2742 SDValue Op1 = Op.getOperand(1); 2743 2744 APInt SrcUndef, SrcZero; 2745 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2746 Depth + 1)) 2747 return true; 2748 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2749 TLO, Depth + 1)) 2750 return true; 2751 2752 // If either side has a zero element, then the result element is zero, even 2753 // if the other is an UNDEF. 2754 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2755 // and then handle 'and' nodes with the rest of the binop opcodes. 2756 KnownZero |= SrcZero; 2757 KnownUndef &= SrcUndef; 2758 KnownUndef &= ~KnownZero; 2759 2760 // Attempt to avoid multi-use ops if we don't need anything from them. 2761 // TODO - use KnownUndef to relax the demandedelts? 2762 if (!DemandedElts.isAllOnesValue()) 2763 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2764 return true; 2765 break; 2766 } 2767 case ISD::TRUNCATE: 2768 case ISD::SIGN_EXTEND: 2769 case ISD::ZERO_EXTEND: 2770 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2771 KnownZero, TLO, Depth + 1)) 2772 return true; 2773 2774 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2775 // zext(undef) upper bits are guaranteed to be zero. 2776 if (DemandedElts.isSubsetOf(KnownUndef)) 2777 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2778 KnownUndef.clearAllBits(); 2779 } 2780 break; 2781 default: { 2782 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2783 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2784 KnownZero, TLO, Depth)) 2785 return true; 2786 } else { 2787 KnownBits Known; 2788 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2789 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2790 TLO, Depth, AssumeSingleUse)) 2791 return true; 2792 } 2793 break; 2794 } 2795 } 2796 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2797 2798 // Constant fold all undef cases. 2799 // TODO: Handle zero cases as well. 2800 if (DemandedElts.isSubsetOf(KnownUndef)) 2801 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2802 2803 return false; 2804 } 2805 2806 /// Determine which of the bits specified in Mask are known to be either zero or 2807 /// one and return them in the Known. 2808 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2809 KnownBits &Known, 2810 const APInt &DemandedElts, 2811 const SelectionDAG &DAG, 2812 unsigned Depth) const { 2813 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2814 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2815 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2816 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2817 "Should use MaskedValueIsZero if you don't know whether Op" 2818 " is a target node!"); 2819 Known.resetAll(); 2820 } 2821 2822 void TargetLowering::computeKnownBitsForTargetInstr( 2823 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2824 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2825 unsigned Depth) const { 2826 Known.resetAll(); 2827 } 2828 2829 void TargetLowering::computeKnownBitsForFrameIndex( 2830 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2831 // The low bits are known zero if the pointer is aligned. 2832 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2833 } 2834 2835 /// This method can be implemented by targets that want to expose additional 2836 /// information about sign bits to the DAG Combiner. 2837 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2838 const APInt &, 2839 const SelectionDAG &, 2840 unsigned Depth) const { 2841 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2842 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2843 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2844 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2845 "Should use ComputeNumSignBits if you don't know whether Op" 2846 " is a target node!"); 2847 return 1; 2848 } 2849 2850 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2851 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2852 const MachineRegisterInfo &MRI, unsigned Depth) const { 2853 return 1; 2854 } 2855 2856 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2857 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2858 TargetLoweringOpt &TLO, unsigned Depth) const { 2859 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2860 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2861 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2862 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2863 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2864 " is a target node!"); 2865 return false; 2866 } 2867 2868 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2869 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2870 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2871 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2872 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2873 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2874 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2875 "Should use SimplifyDemandedBits if you don't know whether Op" 2876 " is a target node!"); 2877 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2878 return false; 2879 } 2880 2881 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2882 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2883 SelectionDAG &DAG, unsigned Depth) const { 2884 assert( 2885 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2886 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2887 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2888 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2889 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2890 " is a target node!"); 2891 return SDValue(); 2892 } 2893 2894 SDValue 2895 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2896 SDValue N1, MutableArrayRef<int> Mask, 2897 SelectionDAG &DAG) const { 2898 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2899 if (!LegalMask) { 2900 std::swap(N0, N1); 2901 ShuffleVectorSDNode::commuteMask(Mask); 2902 LegalMask = isShuffleMaskLegal(Mask, VT); 2903 } 2904 2905 if (!LegalMask) 2906 return SDValue(); 2907 2908 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2909 } 2910 2911 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2912 return nullptr; 2913 } 2914 2915 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2916 const SelectionDAG &DAG, 2917 bool SNaN, 2918 unsigned Depth) const { 2919 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2920 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2921 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2922 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2923 "Should use isKnownNeverNaN if you don't know whether Op" 2924 " is a target node!"); 2925 return false; 2926 } 2927 2928 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2929 // work with truncating build vectors and vectors with elements of less than 2930 // 8 bits. 2931 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2932 if (!N) 2933 return false; 2934 2935 APInt CVal; 2936 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2937 CVal = CN->getAPIntValue(); 2938 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2939 auto *CN = BV->getConstantSplatNode(); 2940 if (!CN) 2941 return false; 2942 2943 // If this is a truncating build vector, truncate the splat value. 2944 // Otherwise, we may fail to match the expected values below. 2945 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2946 CVal = CN->getAPIntValue(); 2947 if (BVEltWidth < CVal.getBitWidth()) 2948 CVal = CVal.trunc(BVEltWidth); 2949 } else { 2950 return false; 2951 } 2952 2953 switch (getBooleanContents(N->getValueType(0))) { 2954 case UndefinedBooleanContent: 2955 return CVal[0]; 2956 case ZeroOrOneBooleanContent: 2957 return CVal.isOneValue(); 2958 case ZeroOrNegativeOneBooleanContent: 2959 return CVal.isAllOnesValue(); 2960 } 2961 2962 llvm_unreachable("Invalid boolean contents"); 2963 } 2964 2965 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2966 if (!N) 2967 return false; 2968 2969 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2970 if (!CN) { 2971 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2972 if (!BV) 2973 return false; 2974 2975 // Only interested in constant splats, we don't care about undef 2976 // elements in identifying boolean constants and getConstantSplatNode 2977 // returns NULL if all ops are undef; 2978 CN = BV->getConstantSplatNode(); 2979 if (!CN) 2980 return false; 2981 } 2982 2983 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2984 return !CN->getAPIntValue()[0]; 2985 2986 return CN->isNullValue(); 2987 } 2988 2989 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2990 bool SExt) const { 2991 if (VT == MVT::i1) 2992 return N->isOne(); 2993 2994 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2995 switch (Cnt) { 2996 case TargetLowering::ZeroOrOneBooleanContent: 2997 // An extended value of 1 is always true, unless its original type is i1, 2998 // in which case it will be sign extended to -1. 2999 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3000 case TargetLowering::UndefinedBooleanContent: 3001 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3002 return N->isAllOnesValue() && SExt; 3003 } 3004 llvm_unreachable("Unexpected enumeration."); 3005 } 3006 3007 /// This helper function of SimplifySetCC tries to optimize the comparison when 3008 /// either operand of the SetCC node is a bitwise-and instruction. 3009 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3010 ISD::CondCode Cond, const SDLoc &DL, 3011 DAGCombinerInfo &DCI) const { 3012 // Match these patterns in any of their permutations: 3013 // (X & Y) == Y 3014 // (X & Y) != Y 3015 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3016 std::swap(N0, N1); 3017 3018 EVT OpVT = N0.getValueType(); 3019 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3020 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3021 return SDValue(); 3022 3023 SDValue X, Y; 3024 if (N0.getOperand(0) == N1) { 3025 X = N0.getOperand(1); 3026 Y = N0.getOperand(0); 3027 } else if (N0.getOperand(1) == N1) { 3028 X = N0.getOperand(0); 3029 Y = N0.getOperand(1); 3030 } else { 3031 return SDValue(); 3032 } 3033 3034 SelectionDAG &DAG = DCI.DAG; 3035 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3036 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3037 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3038 // Note that where Y is variable and is known to have at most one bit set 3039 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3040 // equivalent when Y == 0. 3041 assert(OpVT.isInteger()); 3042 Cond = ISD::getSetCCInverse(Cond, OpVT); 3043 if (DCI.isBeforeLegalizeOps() || 3044 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3045 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3046 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3047 // If the target supports an 'and-not' or 'and-complement' logic operation, 3048 // try to use that to make a comparison operation more efficient. 3049 // But don't do this transform if the mask is a single bit because there are 3050 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3051 // 'rlwinm' on PPC). 3052 3053 // Bail out if the compare operand that we want to turn into a zero is 3054 // already a zero (otherwise, infinite loop). 3055 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3056 if (YConst && YConst->isNullValue()) 3057 return SDValue(); 3058 3059 // Transform this into: ~X & Y == 0. 3060 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3061 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3062 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3063 } 3064 3065 return SDValue(); 3066 } 3067 3068 /// There are multiple IR patterns that could be checking whether certain 3069 /// truncation of a signed number would be lossy or not. The pattern which is 3070 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3071 /// We are looking for the following pattern: (KeptBits is a constant) 3072 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3073 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3074 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3075 /// We will unfold it into the natural trunc+sext pattern: 3076 /// ((%x << C) a>> C) dstcond %x 3077 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3078 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3079 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3080 const SDLoc &DL) const { 3081 // We must be comparing with a constant. 3082 ConstantSDNode *C1; 3083 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3084 return SDValue(); 3085 3086 // N0 should be: add %x, (1 << (KeptBits-1)) 3087 if (N0->getOpcode() != ISD::ADD) 3088 return SDValue(); 3089 3090 // And we must be 'add'ing a constant. 3091 ConstantSDNode *C01; 3092 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3093 return SDValue(); 3094 3095 SDValue X = N0->getOperand(0); 3096 EVT XVT = X.getValueType(); 3097 3098 // Validate constants ... 3099 3100 APInt I1 = C1->getAPIntValue(); 3101 3102 ISD::CondCode NewCond; 3103 if (Cond == ISD::CondCode::SETULT) { 3104 NewCond = ISD::CondCode::SETEQ; 3105 } else if (Cond == ISD::CondCode::SETULE) { 3106 NewCond = ISD::CondCode::SETEQ; 3107 // But need to 'canonicalize' the constant. 3108 I1 += 1; 3109 } else if (Cond == ISD::CondCode::SETUGT) { 3110 NewCond = ISD::CondCode::SETNE; 3111 // But need to 'canonicalize' the constant. 3112 I1 += 1; 3113 } else if (Cond == ISD::CondCode::SETUGE) { 3114 NewCond = ISD::CondCode::SETNE; 3115 } else 3116 return SDValue(); 3117 3118 APInt I01 = C01->getAPIntValue(); 3119 3120 auto checkConstants = [&I1, &I01]() -> bool { 3121 // Both of them must be power-of-two, and the constant from setcc is bigger. 3122 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3123 }; 3124 3125 if (checkConstants()) { 3126 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3127 } else { 3128 // What if we invert constants? (and the target predicate) 3129 I1.negate(); 3130 I01.negate(); 3131 assert(XVT.isInteger()); 3132 NewCond = getSetCCInverse(NewCond, XVT); 3133 if (!checkConstants()) 3134 return SDValue(); 3135 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3136 } 3137 3138 // They are power-of-two, so which bit is set? 3139 const unsigned KeptBits = I1.logBase2(); 3140 const unsigned KeptBitsMinusOne = I01.logBase2(); 3141 3142 // Magic! 3143 if (KeptBits != (KeptBitsMinusOne + 1)) 3144 return SDValue(); 3145 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3146 3147 // We don't want to do this in every single case. 3148 SelectionDAG &DAG = DCI.DAG; 3149 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3150 XVT, KeptBits)) 3151 return SDValue(); 3152 3153 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3154 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3155 3156 // Unfold into: ((%x << C) a>> C) cond %x 3157 // Where 'cond' will be either 'eq' or 'ne'. 3158 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3159 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3160 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3161 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3162 3163 return T2; 3164 } 3165 3166 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3167 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3168 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3169 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3170 assert(isConstOrConstSplat(N1C) && 3171 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3172 "Should be a comparison with 0."); 3173 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3174 "Valid only for [in]equality comparisons."); 3175 3176 unsigned NewShiftOpcode; 3177 SDValue X, C, Y; 3178 3179 SelectionDAG &DAG = DCI.DAG; 3180 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3181 3182 // Look for '(C l>>/<< Y)'. 3183 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3184 // The shift should be one-use. 3185 if (!V.hasOneUse()) 3186 return false; 3187 unsigned OldShiftOpcode = V.getOpcode(); 3188 switch (OldShiftOpcode) { 3189 case ISD::SHL: 3190 NewShiftOpcode = ISD::SRL; 3191 break; 3192 case ISD::SRL: 3193 NewShiftOpcode = ISD::SHL; 3194 break; 3195 default: 3196 return false; // must be a logical shift. 3197 } 3198 // We should be shifting a constant. 3199 // FIXME: best to use isConstantOrConstantVector(). 3200 C = V.getOperand(0); 3201 ConstantSDNode *CC = 3202 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3203 if (!CC) 3204 return false; 3205 Y = V.getOperand(1); 3206 3207 ConstantSDNode *XC = 3208 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3209 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3210 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3211 }; 3212 3213 // LHS of comparison should be an one-use 'and'. 3214 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3215 return SDValue(); 3216 3217 X = N0.getOperand(0); 3218 SDValue Mask = N0.getOperand(1); 3219 3220 // 'and' is commutative! 3221 if (!Match(Mask)) { 3222 std::swap(X, Mask); 3223 if (!Match(Mask)) 3224 return SDValue(); 3225 } 3226 3227 EVT VT = X.getValueType(); 3228 3229 // Produce: 3230 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3231 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3232 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3233 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3234 return T2; 3235 } 3236 3237 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3238 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3239 /// handle the commuted versions of these patterns. 3240 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3241 ISD::CondCode Cond, const SDLoc &DL, 3242 DAGCombinerInfo &DCI) const { 3243 unsigned BOpcode = N0.getOpcode(); 3244 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3245 "Unexpected binop"); 3246 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3247 3248 // (X + Y) == X --> Y == 0 3249 // (X - Y) == X --> Y == 0 3250 // (X ^ Y) == X --> Y == 0 3251 SelectionDAG &DAG = DCI.DAG; 3252 EVT OpVT = N0.getValueType(); 3253 SDValue X = N0.getOperand(0); 3254 SDValue Y = N0.getOperand(1); 3255 if (X == N1) 3256 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3257 3258 if (Y != N1) 3259 return SDValue(); 3260 3261 // (X + Y) == Y --> X == 0 3262 // (X ^ Y) == Y --> X == 0 3263 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3264 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3265 3266 // The shift would not be valid if the operands are boolean (i1). 3267 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3268 return SDValue(); 3269 3270 // (X - Y) == Y --> X == Y << 1 3271 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3272 !DCI.isBeforeLegalize()); 3273 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3274 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3275 if (!DCI.isCalledByLegalizer()) 3276 DCI.AddToWorklist(YShl1.getNode()); 3277 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3278 } 3279 3280 /// Try to simplify a setcc built with the specified operands and cc. If it is 3281 /// unable to simplify it, return a null SDValue. 3282 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3283 ISD::CondCode Cond, bool foldBooleans, 3284 DAGCombinerInfo &DCI, 3285 const SDLoc &dl) const { 3286 SelectionDAG &DAG = DCI.DAG; 3287 const DataLayout &Layout = DAG.getDataLayout(); 3288 EVT OpVT = N0.getValueType(); 3289 3290 // Constant fold or commute setcc. 3291 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3292 return Fold; 3293 3294 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3295 // TODO: Handle non-splat vector constants. All undef causes trouble. 3296 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3297 if (isConstOrConstSplat(N0) && 3298 (DCI.isBeforeLegalizeOps() || 3299 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3300 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3301 3302 // If we have a subtract with the same 2 non-constant operands as this setcc 3303 // -- but in reverse order -- then try to commute the operands of this setcc 3304 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3305 // instruction on some targets. 3306 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3307 (DCI.isBeforeLegalizeOps() || 3308 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3309 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3310 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3311 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3312 3313 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3314 const APInt &C1 = N1C->getAPIntValue(); 3315 3316 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3317 // equality comparison, then we're just comparing whether X itself is 3318 // zero. 3319 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3320 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3321 N0.getOperand(1).getOpcode() == ISD::Constant) { 3322 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3323 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3324 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3325 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3326 // (srl (ctlz x), 5) == 0 -> X != 0 3327 // (srl (ctlz x), 5) != 1 -> X != 0 3328 Cond = ISD::SETNE; 3329 } else { 3330 // (srl (ctlz x), 5) != 0 -> X == 0 3331 // (srl (ctlz x), 5) == 1 -> X == 0 3332 Cond = ISD::SETEQ; 3333 } 3334 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3335 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3336 Zero, Cond); 3337 } 3338 } 3339 3340 SDValue CTPOP = N0; 3341 // Look through truncs that don't change the value of a ctpop. 3342 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3343 CTPOP = N0.getOperand(0); 3344 3345 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3346 (N0 == CTPOP || 3347 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3348 EVT CTVT = CTPOP.getValueType(); 3349 SDValue CTOp = CTPOP.getOperand(0); 3350 3351 // (ctpop x) u< 2 -> (x & x-1) == 0 3352 // (ctpop x) u> 1 -> (x & x-1) != 0 3353 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3354 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3355 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3356 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3357 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3358 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3359 } 3360 3361 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3362 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3363 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3364 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3365 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3366 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3367 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3368 assert(CTVT.isInteger()); 3369 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3370 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3371 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3372 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3373 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3374 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3375 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3376 } 3377 } 3378 3379 // (zext x) == C --> x == (trunc C) 3380 // (sext x) == C --> x == (trunc C) 3381 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3382 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3383 unsigned MinBits = N0.getValueSizeInBits(); 3384 SDValue PreExt; 3385 bool Signed = false; 3386 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3387 // ZExt 3388 MinBits = N0->getOperand(0).getValueSizeInBits(); 3389 PreExt = N0->getOperand(0); 3390 } else if (N0->getOpcode() == ISD::AND) { 3391 // DAGCombine turns costly ZExts into ANDs 3392 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3393 if ((C->getAPIntValue()+1).isPowerOf2()) { 3394 MinBits = C->getAPIntValue().countTrailingOnes(); 3395 PreExt = N0->getOperand(0); 3396 } 3397 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3398 // SExt 3399 MinBits = N0->getOperand(0).getValueSizeInBits(); 3400 PreExt = N0->getOperand(0); 3401 Signed = true; 3402 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3403 // ZEXTLOAD / SEXTLOAD 3404 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3405 MinBits = LN0->getMemoryVT().getSizeInBits(); 3406 PreExt = N0; 3407 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3408 Signed = true; 3409 MinBits = LN0->getMemoryVT().getSizeInBits(); 3410 PreExt = N0; 3411 } 3412 } 3413 3414 // Figure out how many bits we need to preserve this constant. 3415 unsigned ReqdBits = Signed ? 3416 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3417 C1.getActiveBits(); 3418 3419 // Make sure we're not losing bits from the constant. 3420 if (MinBits > 0 && 3421 MinBits < C1.getBitWidth() && 3422 MinBits >= ReqdBits) { 3423 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3424 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3425 // Will get folded away. 3426 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3427 if (MinBits == 1 && C1 == 1) 3428 // Invert the condition. 3429 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3430 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3431 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3432 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3433 } 3434 3435 // If truncating the setcc operands is not desirable, we can still 3436 // simplify the expression in some cases: 3437 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3438 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3439 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3440 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3441 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3442 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3443 SDValue TopSetCC = N0->getOperand(0); 3444 unsigned N0Opc = N0->getOpcode(); 3445 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3446 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3447 TopSetCC.getOpcode() == ISD::SETCC && 3448 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3449 (isConstFalseVal(N1C) || 3450 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3451 3452 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3453 (!N1C->isNullValue() && Cond == ISD::SETNE); 3454 3455 if (!Inverse) 3456 return TopSetCC; 3457 3458 ISD::CondCode InvCond = ISD::getSetCCInverse( 3459 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3460 TopSetCC.getOperand(0).getValueType()); 3461 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3462 TopSetCC.getOperand(1), 3463 InvCond); 3464 } 3465 } 3466 } 3467 3468 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3469 // equality or unsigned, and all 1 bits of the const are in the same 3470 // partial word, see if we can shorten the load. 3471 if (DCI.isBeforeLegalize() && 3472 !ISD::isSignedIntSetCC(Cond) && 3473 N0.getOpcode() == ISD::AND && C1 == 0 && 3474 N0.getNode()->hasOneUse() && 3475 isa<LoadSDNode>(N0.getOperand(0)) && 3476 N0.getOperand(0).getNode()->hasOneUse() && 3477 isa<ConstantSDNode>(N0.getOperand(1))) { 3478 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3479 APInt bestMask; 3480 unsigned bestWidth = 0, bestOffset = 0; 3481 if (Lod->isSimple() && Lod->isUnindexed()) { 3482 unsigned origWidth = N0.getValueSizeInBits(); 3483 unsigned maskWidth = origWidth; 3484 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3485 // 8 bits, but have to be careful... 3486 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3487 origWidth = Lod->getMemoryVT().getSizeInBits(); 3488 const APInt &Mask = N0.getConstantOperandAPInt(1); 3489 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3490 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3491 for (unsigned offset=0; offset<origWidth/width; offset++) { 3492 if (Mask.isSubsetOf(newMask)) { 3493 if (Layout.isLittleEndian()) 3494 bestOffset = (uint64_t)offset * (width/8); 3495 else 3496 bestOffset = (origWidth/width - offset - 1) * (width/8); 3497 bestMask = Mask.lshr(offset * (width/8) * 8); 3498 bestWidth = width; 3499 break; 3500 } 3501 newMask <<= width; 3502 } 3503 } 3504 } 3505 if (bestWidth) { 3506 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3507 if (newVT.isRound() && 3508 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3509 SDValue Ptr = Lod->getBasePtr(); 3510 if (bestOffset != 0) 3511 Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); 3512 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3513 SDValue NewLoad = DAG.getLoad( 3514 newVT, dl, Lod->getChain(), Ptr, 3515 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3516 return DAG.getSetCC(dl, VT, 3517 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3518 DAG.getConstant(bestMask.trunc(bestWidth), 3519 dl, newVT)), 3520 DAG.getConstant(0LL, dl, newVT), Cond); 3521 } 3522 } 3523 } 3524 3525 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3526 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3527 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3528 3529 // If the comparison constant has bits in the upper part, the 3530 // zero-extended value could never match. 3531 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3532 C1.getBitWidth() - InSize))) { 3533 switch (Cond) { 3534 case ISD::SETUGT: 3535 case ISD::SETUGE: 3536 case ISD::SETEQ: 3537 return DAG.getConstant(0, dl, VT); 3538 case ISD::SETULT: 3539 case ISD::SETULE: 3540 case ISD::SETNE: 3541 return DAG.getConstant(1, dl, VT); 3542 case ISD::SETGT: 3543 case ISD::SETGE: 3544 // True if the sign bit of C1 is set. 3545 return DAG.getConstant(C1.isNegative(), dl, VT); 3546 case ISD::SETLT: 3547 case ISD::SETLE: 3548 // True if the sign bit of C1 isn't set. 3549 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3550 default: 3551 break; 3552 } 3553 } 3554 3555 // Otherwise, we can perform the comparison with the low bits. 3556 switch (Cond) { 3557 case ISD::SETEQ: 3558 case ISD::SETNE: 3559 case ISD::SETUGT: 3560 case ISD::SETUGE: 3561 case ISD::SETULT: 3562 case ISD::SETULE: { 3563 EVT newVT = N0.getOperand(0).getValueType(); 3564 if (DCI.isBeforeLegalizeOps() || 3565 (isOperationLegal(ISD::SETCC, newVT) && 3566 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3567 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3568 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3569 3570 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3571 NewConst, Cond); 3572 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3573 } 3574 break; 3575 } 3576 default: 3577 break; // todo, be more careful with signed comparisons 3578 } 3579 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3580 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3581 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3582 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3583 EVT ExtDstTy = N0.getValueType(); 3584 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3585 3586 // If the constant doesn't fit into the number of bits for the source of 3587 // the sign extension, it is impossible for both sides to be equal. 3588 if (C1.getMinSignedBits() > ExtSrcTyBits) 3589 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3590 3591 SDValue ZextOp; 3592 EVT Op0Ty = N0.getOperand(0).getValueType(); 3593 if (Op0Ty == ExtSrcTy) { 3594 ZextOp = N0.getOperand(0); 3595 } else { 3596 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3597 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3598 DAG.getConstant(Imm, dl, Op0Ty)); 3599 } 3600 if (!DCI.isCalledByLegalizer()) 3601 DCI.AddToWorklist(ZextOp.getNode()); 3602 // Otherwise, make this a use of a zext. 3603 return DAG.getSetCC(dl, VT, ZextOp, 3604 DAG.getConstant(C1 & APInt::getLowBitsSet( 3605 ExtDstTyBits, 3606 ExtSrcTyBits), 3607 dl, ExtDstTy), 3608 Cond); 3609 } else if ((N1C->isNullValue() || N1C->isOne()) && 3610 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3611 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3612 if (N0.getOpcode() == ISD::SETCC && 3613 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3614 (N0.getValueType() == MVT::i1 || 3615 getBooleanContents(N0.getOperand(0).getValueType()) == 3616 ZeroOrOneBooleanContent)) { 3617 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3618 if (TrueWhenTrue) 3619 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3620 // Invert the condition. 3621 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3622 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3623 if (DCI.isBeforeLegalizeOps() || 3624 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3625 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3626 } 3627 3628 if ((N0.getOpcode() == ISD::XOR || 3629 (N0.getOpcode() == ISD::AND && 3630 N0.getOperand(0).getOpcode() == ISD::XOR && 3631 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3632 isa<ConstantSDNode>(N0.getOperand(1)) && 3633 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3634 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3635 // can only do this if the top bits are known zero. 3636 unsigned BitWidth = N0.getValueSizeInBits(); 3637 if (DAG.MaskedValueIsZero(N0, 3638 APInt::getHighBitsSet(BitWidth, 3639 BitWidth-1))) { 3640 // Okay, get the un-inverted input value. 3641 SDValue Val; 3642 if (N0.getOpcode() == ISD::XOR) { 3643 Val = N0.getOperand(0); 3644 } else { 3645 assert(N0.getOpcode() == ISD::AND && 3646 N0.getOperand(0).getOpcode() == ISD::XOR); 3647 // ((X^1)&1)^1 -> X & 1 3648 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3649 N0.getOperand(0).getOperand(0), 3650 N0.getOperand(1)); 3651 } 3652 3653 return DAG.getSetCC(dl, VT, Val, N1, 3654 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3655 } 3656 } else if (N1C->isOne()) { 3657 SDValue Op0 = N0; 3658 if (Op0.getOpcode() == ISD::TRUNCATE) 3659 Op0 = Op0.getOperand(0); 3660 3661 if ((Op0.getOpcode() == ISD::XOR) && 3662 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3663 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3664 SDValue XorLHS = Op0.getOperand(0); 3665 SDValue XorRHS = Op0.getOperand(1); 3666 // Ensure that the input setccs return an i1 type or 0/1 value. 3667 if (Op0.getValueType() == MVT::i1 || 3668 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3669 ZeroOrOneBooleanContent && 3670 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3671 ZeroOrOneBooleanContent)) { 3672 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3673 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3674 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3675 } 3676 } 3677 if (Op0.getOpcode() == ISD::AND && 3678 isa<ConstantSDNode>(Op0.getOperand(1)) && 3679 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3680 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3681 if (Op0.getValueType().bitsGT(VT)) 3682 Op0 = DAG.getNode(ISD::AND, dl, VT, 3683 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3684 DAG.getConstant(1, dl, VT)); 3685 else if (Op0.getValueType().bitsLT(VT)) 3686 Op0 = DAG.getNode(ISD::AND, dl, VT, 3687 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3688 DAG.getConstant(1, dl, VT)); 3689 3690 return DAG.getSetCC(dl, VT, Op0, 3691 DAG.getConstant(0, dl, Op0.getValueType()), 3692 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3693 } 3694 if (Op0.getOpcode() == ISD::AssertZext && 3695 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3696 return DAG.getSetCC(dl, VT, Op0, 3697 DAG.getConstant(0, dl, Op0.getValueType()), 3698 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3699 } 3700 } 3701 3702 // Given: 3703 // icmp eq/ne (urem %x, %y), 0 3704 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3705 // icmp eq/ne %x, 0 3706 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3707 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3708 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3709 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3710 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3711 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3712 } 3713 3714 if (SDValue V = 3715 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3716 return V; 3717 } 3718 3719 // These simplifications apply to splat vectors as well. 3720 // TODO: Handle more splat vector cases. 3721 if (auto *N1C = isConstOrConstSplat(N1)) { 3722 const APInt &C1 = N1C->getAPIntValue(); 3723 3724 APInt MinVal, MaxVal; 3725 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3726 if (ISD::isSignedIntSetCC(Cond)) { 3727 MinVal = APInt::getSignedMinValue(OperandBitSize); 3728 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3729 } else { 3730 MinVal = APInt::getMinValue(OperandBitSize); 3731 MaxVal = APInt::getMaxValue(OperandBitSize); 3732 } 3733 3734 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3735 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3736 // X >= MIN --> true 3737 if (C1 == MinVal) 3738 return DAG.getBoolConstant(true, dl, VT, OpVT); 3739 3740 if (!VT.isVector()) { // TODO: Support this for vectors. 3741 // X >= C0 --> X > (C0 - 1) 3742 APInt C = C1 - 1; 3743 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3744 if ((DCI.isBeforeLegalizeOps() || 3745 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3746 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3747 isLegalICmpImmediate(C.getSExtValue())))) { 3748 return DAG.getSetCC(dl, VT, N0, 3749 DAG.getConstant(C, dl, N1.getValueType()), 3750 NewCC); 3751 } 3752 } 3753 } 3754 3755 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3756 // X <= MAX --> true 3757 if (C1 == MaxVal) 3758 return DAG.getBoolConstant(true, dl, VT, OpVT); 3759 3760 // X <= C0 --> X < (C0 + 1) 3761 if (!VT.isVector()) { // TODO: Support this for vectors. 3762 APInt C = C1 + 1; 3763 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3764 if ((DCI.isBeforeLegalizeOps() || 3765 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3766 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3767 isLegalICmpImmediate(C.getSExtValue())))) { 3768 return DAG.getSetCC(dl, VT, N0, 3769 DAG.getConstant(C, dl, N1.getValueType()), 3770 NewCC); 3771 } 3772 } 3773 } 3774 3775 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3776 if (C1 == MinVal) 3777 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3778 3779 // TODO: Support this for vectors after legalize ops. 3780 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3781 // Canonicalize setlt X, Max --> setne X, Max 3782 if (C1 == MaxVal) 3783 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3784 3785 // If we have setult X, 1, turn it into seteq X, 0 3786 if (C1 == MinVal+1) 3787 return DAG.getSetCC(dl, VT, N0, 3788 DAG.getConstant(MinVal, dl, N0.getValueType()), 3789 ISD::SETEQ); 3790 } 3791 } 3792 3793 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3794 if (C1 == MaxVal) 3795 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3796 3797 // TODO: Support this for vectors after legalize ops. 3798 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3799 // Canonicalize setgt X, Min --> setne X, Min 3800 if (C1 == MinVal) 3801 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3802 3803 // If we have setugt X, Max-1, turn it into seteq X, Max 3804 if (C1 == MaxVal-1) 3805 return DAG.getSetCC(dl, VT, N0, 3806 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3807 ISD::SETEQ); 3808 } 3809 } 3810 3811 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3812 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3813 if (C1.isNullValue()) 3814 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3815 VT, N0, N1, Cond, DCI, dl)) 3816 return CC; 3817 } 3818 3819 // If we have "setcc X, C0", check to see if we can shrink the immediate 3820 // by changing cc. 3821 // TODO: Support this for vectors after legalize ops. 3822 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3823 // SETUGT X, SINTMAX -> SETLT X, 0 3824 if (Cond == ISD::SETUGT && 3825 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3826 return DAG.getSetCC(dl, VT, N0, 3827 DAG.getConstant(0, dl, N1.getValueType()), 3828 ISD::SETLT); 3829 3830 // SETULT X, SINTMIN -> SETGT X, -1 3831 if (Cond == ISD::SETULT && 3832 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3833 SDValue ConstMinusOne = 3834 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3835 N1.getValueType()); 3836 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3837 } 3838 } 3839 } 3840 3841 // Back to non-vector simplifications. 3842 // TODO: Can we do these for vector splats? 3843 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3844 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3845 const APInt &C1 = N1C->getAPIntValue(); 3846 EVT ShValTy = N0.getValueType(); 3847 3848 // Fold bit comparisons when we can. 3849 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3850 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3851 N0.getOpcode() == ISD::AND) { 3852 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3853 EVT ShiftTy = 3854 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3855 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3856 // Perform the xform if the AND RHS is a single bit. 3857 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3858 if (AndRHS->getAPIntValue().isPowerOf2() && 3859 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3860 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3861 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3862 DAG.getConstant(ShCt, dl, ShiftTy))); 3863 } 3864 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3865 // (X & 8) == 8 --> (X & 8) >> 3 3866 // Perform the xform if C1 is a single bit. 3867 unsigned ShCt = C1.logBase2(); 3868 if (C1.isPowerOf2() && 3869 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3870 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3871 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3872 DAG.getConstant(ShCt, dl, ShiftTy))); 3873 } 3874 } 3875 } 3876 } 3877 3878 if (C1.getMinSignedBits() <= 64 && 3879 !isLegalICmpImmediate(C1.getSExtValue())) { 3880 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3881 // (X & -256) == 256 -> (X >> 8) == 1 3882 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3883 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3884 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3885 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3886 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3887 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3888 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3889 SDValue Shift = 3890 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3891 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3892 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3893 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3894 } 3895 } 3896 } 3897 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3898 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3899 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3900 // X < 0x100000000 -> (X >> 32) < 1 3901 // X >= 0x100000000 -> (X >> 32) >= 1 3902 // X <= 0x0ffffffff -> (X >> 32) < 1 3903 // X > 0x0ffffffff -> (X >> 32) >= 1 3904 unsigned ShiftBits; 3905 APInt NewC = C1; 3906 ISD::CondCode NewCond = Cond; 3907 if (AdjOne) { 3908 ShiftBits = C1.countTrailingOnes(); 3909 NewC = NewC + 1; 3910 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3911 } else { 3912 ShiftBits = C1.countTrailingZeros(); 3913 } 3914 NewC.lshrInPlace(ShiftBits); 3915 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3916 isLegalICmpImmediate(NewC.getSExtValue()) && 3917 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3918 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3919 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3920 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3921 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3922 } 3923 } 3924 } 3925 } 3926 3927 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3928 auto *CFP = cast<ConstantFPSDNode>(N1); 3929 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3930 3931 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3932 // constant if knowing that the operand is non-nan is enough. We prefer to 3933 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3934 // materialize 0.0. 3935 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3936 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3937 3938 // setcc (fneg x), C -> setcc swap(pred) x, -C 3939 if (N0.getOpcode() == ISD::FNEG) { 3940 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3941 if (DCI.isBeforeLegalizeOps() || 3942 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3943 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3944 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3945 } 3946 } 3947 3948 // If the condition is not legal, see if we can find an equivalent one 3949 // which is legal. 3950 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3951 // If the comparison was an awkward floating-point == or != and one of 3952 // the comparison operands is infinity or negative infinity, convert the 3953 // condition to a less-awkward <= or >=. 3954 if (CFP->getValueAPF().isInfinity()) { 3955 bool IsNegInf = CFP->getValueAPF().isNegative(); 3956 ISD::CondCode NewCond = ISD::SETCC_INVALID; 3957 switch (Cond) { 3958 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 3959 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 3960 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 3961 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 3962 default: break; 3963 } 3964 if (NewCond != ISD::SETCC_INVALID && 3965 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 3966 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3967 } 3968 } 3969 } 3970 3971 if (N0 == N1) { 3972 // The sext(setcc()) => setcc() optimization relies on the appropriate 3973 // constant being emitted. 3974 assert(!N0.getValueType().isInteger() && 3975 "Integer types should be handled by FoldSetCC"); 3976 3977 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3978 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3979 if (UOF == 2) // FP operators that are undefined on NaNs. 3980 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3981 if (UOF == unsigned(EqTrue)) 3982 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3983 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3984 // if it is not already. 3985 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3986 if (NewCond != Cond && 3987 (DCI.isBeforeLegalizeOps() || 3988 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3989 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3990 } 3991 3992 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3993 N0.getValueType().isInteger()) { 3994 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3995 N0.getOpcode() == ISD::XOR) { 3996 // Simplify (X+Y) == (X+Z) --> Y == Z 3997 if (N0.getOpcode() == N1.getOpcode()) { 3998 if (N0.getOperand(0) == N1.getOperand(0)) 3999 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4000 if (N0.getOperand(1) == N1.getOperand(1)) 4001 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4002 if (isCommutativeBinOp(N0.getOpcode())) { 4003 // If X op Y == Y op X, try other combinations. 4004 if (N0.getOperand(0) == N1.getOperand(1)) 4005 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4006 Cond); 4007 if (N0.getOperand(1) == N1.getOperand(0)) 4008 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4009 Cond); 4010 } 4011 } 4012 4013 // If RHS is a legal immediate value for a compare instruction, we need 4014 // to be careful about increasing register pressure needlessly. 4015 bool LegalRHSImm = false; 4016 4017 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4018 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4019 // Turn (X+C1) == C2 --> X == C2-C1 4020 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4021 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4022 DAG.getConstant(RHSC->getAPIntValue()- 4023 LHSR->getAPIntValue(), 4024 dl, N0.getValueType()), Cond); 4025 } 4026 4027 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4028 if (N0.getOpcode() == ISD::XOR) 4029 // If we know that all of the inverted bits are zero, don't bother 4030 // performing the inversion. 4031 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4032 return 4033 DAG.getSetCC(dl, VT, N0.getOperand(0), 4034 DAG.getConstant(LHSR->getAPIntValue() ^ 4035 RHSC->getAPIntValue(), 4036 dl, N0.getValueType()), 4037 Cond); 4038 } 4039 4040 // Turn (C1-X) == C2 --> X == C1-C2 4041 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4042 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4043 return 4044 DAG.getSetCC(dl, VT, N0.getOperand(1), 4045 DAG.getConstant(SUBC->getAPIntValue() - 4046 RHSC->getAPIntValue(), 4047 dl, N0.getValueType()), 4048 Cond); 4049 } 4050 } 4051 4052 // Could RHSC fold directly into a compare? 4053 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4054 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4055 } 4056 4057 // (X+Y) == X --> Y == 0 and similar folds. 4058 // Don't do this if X is an immediate that can fold into a cmp 4059 // instruction and X+Y has other uses. It could be an induction variable 4060 // chain, and the transform would increase register pressure. 4061 if (!LegalRHSImm || N0.hasOneUse()) 4062 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4063 return V; 4064 } 4065 4066 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4067 N1.getOpcode() == ISD::XOR) 4068 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4069 return V; 4070 4071 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4072 return V; 4073 } 4074 4075 // Fold remainder of division by a constant. 4076 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4077 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4078 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4079 4080 // When division is cheap or optimizing for minimum size, 4081 // fall through to DIVREM creation by skipping this fold. 4082 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4083 if (N0.getOpcode() == ISD::UREM) { 4084 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4085 return Folded; 4086 } else if (N0.getOpcode() == ISD::SREM) { 4087 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4088 return Folded; 4089 } 4090 } 4091 } 4092 4093 // Fold away ALL boolean setcc's. 4094 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4095 SDValue Temp; 4096 switch (Cond) { 4097 default: llvm_unreachable("Unknown integer setcc!"); 4098 case ISD::SETEQ: // X == Y -> ~(X^Y) 4099 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4100 N0 = DAG.getNOT(dl, Temp, OpVT); 4101 if (!DCI.isCalledByLegalizer()) 4102 DCI.AddToWorklist(Temp.getNode()); 4103 break; 4104 case ISD::SETNE: // X != Y --> (X^Y) 4105 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4106 break; 4107 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4108 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4109 Temp = DAG.getNOT(dl, N0, OpVT); 4110 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4111 if (!DCI.isCalledByLegalizer()) 4112 DCI.AddToWorklist(Temp.getNode()); 4113 break; 4114 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4115 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4116 Temp = DAG.getNOT(dl, N1, OpVT); 4117 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4118 if (!DCI.isCalledByLegalizer()) 4119 DCI.AddToWorklist(Temp.getNode()); 4120 break; 4121 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4122 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4123 Temp = DAG.getNOT(dl, N0, OpVT); 4124 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4125 if (!DCI.isCalledByLegalizer()) 4126 DCI.AddToWorklist(Temp.getNode()); 4127 break; 4128 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4129 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4130 Temp = DAG.getNOT(dl, N1, OpVT); 4131 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4132 break; 4133 } 4134 if (VT.getScalarType() != MVT::i1) { 4135 if (!DCI.isCalledByLegalizer()) 4136 DCI.AddToWorklist(N0.getNode()); 4137 // FIXME: If running after legalize, we probably can't do this. 4138 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4139 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4140 } 4141 return N0; 4142 } 4143 4144 // Could not fold it. 4145 return SDValue(); 4146 } 4147 4148 /// Returns true (and the GlobalValue and the offset) if the node is a 4149 /// GlobalAddress + offset. 4150 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4151 int64_t &Offset) const { 4152 4153 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4154 4155 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4156 GA = GASD->getGlobal(); 4157 Offset += GASD->getOffset(); 4158 return true; 4159 } 4160 4161 if (N->getOpcode() == ISD::ADD) { 4162 SDValue N1 = N->getOperand(0); 4163 SDValue N2 = N->getOperand(1); 4164 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4165 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4166 Offset += V->getSExtValue(); 4167 return true; 4168 } 4169 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4170 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4171 Offset += V->getSExtValue(); 4172 return true; 4173 } 4174 } 4175 } 4176 4177 return false; 4178 } 4179 4180 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4181 DAGCombinerInfo &DCI) const { 4182 // Default implementation: no optimization. 4183 return SDValue(); 4184 } 4185 4186 //===----------------------------------------------------------------------===// 4187 // Inline Assembler Implementation Methods 4188 //===----------------------------------------------------------------------===// 4189 4190 TargetLowering::ConstraintType 4191 TargetLowering::getConstraintType(StringRef Constraint) const { 4192 unsigned S = Constraint.size(); 4193 4194 if (S == 1) { 4195 switch (Constraint[0]) { 4196 default: break; 4197 case 'r': 4198 return C_RegisterClass; 4199 case 'm': // memory 4200 case 'o': // offsetable 4201 case 'V': // not offsetable 4202 return C_Memory; 4203 case 'n': // Simple Integer 4204 case 'E': // Floating Point Constant 4205 case 'F': // Floating Point Constant 4206 return C_Immediate; 4207 case 'i': // Simple Integer or Relocatable Constant 4208 case 's': // Relocatable Constant 4209 case 'p': // Address. 4210 case 'X': // Allow ANY value. 4211 case 'I': // Target registers. 4212 case 'J': 4213 case 'K': 4214 case 'L': 4215 case 'M': 4216 case 'N': 4217 case 'O': 4218 case 'P': 4219 case '<': 4220 case '>': 4221 return C_Other; 4222 } 4223 } 4224 4225 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4226 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4227 return C_Memory; 4228 return C_Register; 4229 } 4230 return C_Unknown; 4231 } 4232 4233 /// Try to replace an X constraint, which matches anything, with another that 4234 /// has more specific requirements based on the type of the corresponding 4235 /// operand. 4236 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4237 if (ConstraintVT.isInteger()) 4238 return "r"; 4239 if (ConstraintVT.isFloatingPoint()) 4240 return "f"; // works for many targets 4241 return nullptr; 4242 } 4243 4244 SDValue TargetLowering::LowerAsmOutputForConstraint( 4245 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4246 SelectionDAG &DAG) const { 4247 return SDValue(); 4248 } 4249 4250 /// Lower the specified operand into the Ops vector. 4251 /// If it is invalid, don't add anything to Ops. 4252 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4253 std::string &Constraint, 4254 std::vector<SDValue> &Ops, 4255 SelectionDAG &DAG) const { 4256 4257 if (Constraint.length() > 1) return; 4258 4259 char ConstraintLetter = Constraint[0]; 4260 switch (ConstraintLetter) { 4261 default: break; 4262 case 'X': // Allows any operand; labels (basic block) use this. 4263 if (Op.getOpcode() == ISD::BasicBlock || 4264 Op.getOpcode() == ISD::TargetBlockAddress) { 4265 Ops.push_back(Op); 4266 return; 4267 } 4268 LLVM_FALLTHROUGH; 4269 case 'i': // Simple Integer or Relocatable Constant 4270 case 'n': // Simple Integer 4271 case 's': { // Relocatable Constant 4272 4273 GlobalAddressSDNode *GA; 4274 ConstantSDNode *C; 4275 BlockAddressSDNode *BA; 4276 uint64_t Offset = 0; 4277 4278 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4279 // etc., since getelementpointer is variadic. We can't use 4280 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4281 // while in this case the GA may be furthest from the root node which is 4282 // likely an ISD::ADD. 4283 while (1) { 4284 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4285 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4286 GA->getValueType(0), 4287 Offset + GA->getOffset())); 4288 return; 4289 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4290 ConstraintLetter != 's') { 4291 // gcc prints these as sign extended. Sign extend value to 64 bits 4292 // now; without this it would get ZExt'd later in 4293 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4294 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4295 BooleanContent BCont = getBooleanContents(MVT::i64); 4296 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4297 : ISD::SIGN_EXTEND; 4298 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4299 : C->getSExtValue(); 4300 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4301 SDLoc(C), MVT::i64)); 4302 return; 4303 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4304 ConstraintLetter != 'n') { 4305 Ops.push_back(DAG.getTargetBlockAddress( 4306 BA->getBlockAddress(), BA->getValueType(0), 4307 Offset + BA->getOffset(), BA->getTargetFlags())); 4308 return; 4309 } else { 4310 const unsigned OpCode = Op.getOpcode(); 4311 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4312 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4313 Op = Op.getOperand(1); 4314 // Subtraction is not commutative. 4315 else if (OpCode == ISD::ADD && 4316 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4317 Op = Op.getOperand(0); 4318 else 4319 return; 4320 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4321 continue; 4322 } 4323 } 4324 return; 4325 } 4326 break; 4327 } 4328 } 4329 } 4330 4331 std::pair<unsigned, const TargetRegisterClass *> 4332 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4333 StringRef Constraint, 4334 MVT VT) const { 4335 if (Constraint.empty() || Constraint[0] != '{') 4336 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4337 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4338 4339 // Remove the braces from around the name. 4340 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4341 4342 std::pair<unsigned, const TargetRegisterClass *> R = 4343 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4344 4345 // Figure out which register class contains this reg. 4346 for (const TargetRegisterClass *RC : RI->regclasses()) { 4347 // If none of the value types for this register class are valid, we 4348 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4349 if (!isLegalRC(*RI, *RC)) 4350 continue; 4351 4352 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4353 I != E; ++I) { 4354 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4355 std::pair<unsigned, const TargetRegisterClass *> S = 4356 std::make_pair(*I, RC); 4357 4358 // If this register class has the requested value type, return it, 4359 // otherwise keep searching and return the first class found 4360 // if no other is found which explicitly has the requested type. 4361 if (RI->isTypeLegalForClass(*RC, VT)) 4362 return S; 4363 if (!R.second) 4364 R = S; 4365 } 4366 } 4367 } 4368 4369 return R; 4370 } 4371 4372 //===----------------------------------------------------------------------===// 4373 // Constraint Selection. 4374 4375 /// Return true of this is an input operand that is a matching constraint like 4376 /// "4". 4377 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4378 assert(!ConstraintCode.empty() && "No known constraint!"); 4379 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4380 } 4381 4382 /// If this is an input matching constraint, this method returns the output 4383 /// operand it matches. 4384 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4385 assert(!ConstraintCode.empty() && "No known constraint!"); 4386 return atoi(ConstraintCode.c_str()); 4387 } 4388 4389 /// Split up the constraint string from the inline assembly value into the 4390 /// specific constraints and their prefixes, and also tie in the associated 4391 /// operand values. 4392 /// If this returns an empty vector, and if the constraint string itself 4393 /// isn't empty, there was an error parsing. 4394 TargetLowering::AsmOperandInfoVector 4395 TargetLowering::ParseConstraints(const DataLayout &DL, 4396 const TargetRegisterInfo *TRI, 4397 const CallBase &Call) const { 4398 /// Information about all of the constraints. 4399 AsmOperandInfoVector ConstraintOperands; 4400 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4401 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4402 4403 // Do a prepass over the constraints, canonicalizing them, and building up the 4404 // ConstraintOperands list. 4405 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4406 unsigned ResNo = 0; // ResNo - The result number of the next output. 4407 4408 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4409 ConstraintOperands.emplace_back(std::move(CI)); 4410 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4411 4412 // Update multiple alternative constraint count. 4413 if (OpInfo.multipleAlternatives.size() > maCount) 4414 maCount = OpInfo.multipleAlternatives.size(); 4415 4416 OpInfo.ConstraintVT = MVT::Other; 4417 4418 // Compute the value type for each operand. 4419 switch (OpInfo.Type) { 4420 case InlineAsm::isOutput: 4421 // Indirect outputs just consume an argument. 4422 if (OpInfo.isIndirect) { 4423 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4424 break; 4425 } 4426 4427 // The return value of the call is this value. As such, there is no 4428 // corresponding argument. 4429 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4430 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4431 OpInfo.ConstraintVT = 4432 getSimpleValueType(DL, STy->getElementType(ResNo)); 4433 } else { 4434 assert(ResNo == 0 && "Asm only has one result!"); 4435 OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType()); 4436 } 4437 ++ResNo; 4438 break; 4439 case InlineAsm::isInput: 4440 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4441 break; 4442 case InlineAsm::isClobber: 4443 // Nothing to do. 4444 break; 4445 } 4446 4447 if (OpInfo.CallOperandVal) { 4448 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4449 if (OpInfo.isIndirect) { 4450 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4451 if (!PtrTy) 4452 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4453 OpTy = PtrTy->getElementType(); 4454 } 4455 4456 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4457 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4458 if (STy->getNumElements() == 1) 4459 OpTy = STy->getElementType(0); 4460 4461 // If OpTy is not a single value, it may be a struct/union that we 4462 // can tile with integers. 4463 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4464 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4465 switch (BitSize) { 4466 default: break; 4467 case 1: 4468 case 8: 4469 case 16: 4470 case 32: 4471 case 64: 4472 case 128: 4473 OpInfo.ConstraintVT = 4474 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4475 break; 4476 } 4477 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4478 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4479 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4480 } else { 4481 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4482 } 4483 } 4484 } 4485 4486 // If we have multiple alternative constraints, select the best alternative. 4487 if (!ConstraintOperands.empty()) { 4488 if (maCount) { 4489 unsigned bestMAIndex = 0; 4490 int bestWeight = -1; 4491 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4492 int weight = -1; 4493 unsigned maIndex; 4494 // Compute the sums of the weights for each alternative, keeping track 4495 // of the best (highest weight) one so far. 4496 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4497 int weightSum = 0; 4498 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4499 cIndex != eIndex; ++cIndex) { 4500 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4501 if (OpInfo.Type == InlineAsm::isClobber) 4502 continue; 4503 4504 // If this is an output operand with a matching input operand, 4505 // look up the matching input. If their types mismatch, e.g. one 4506 // is an integer, the other is floating point, or their sizes are 4507 // different, flag it as an maCantMatch. 4508 if (OpInfo.hasMatchingInput()) { 4509 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4510 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4511 if ((OpInfo.ConstraintVT.isInteger() != 4512 Input.ConstraintVT.isInteger()) || 4513 (OpInfo.ConstraintVT.getSizeInBits() != 4514 Input.ConstraintVT.getSizeInBits())) { 4515 weightSum = -1; // Can't match. 4516 break; 4517 } 4518 } 4519 } 4520 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4521 if (weight == -1) { 4522 weightSum = -1; 4523 break; 4524 } 4525 weightSum += weight; 4526 } 4527 // Update best. 4528 if (weightSum > bestWeight) { 4529 bestWeight = weightSum; 4530 bestMAIndex = maIndex; 4531 } 4532 } 4533 4534 // Now select chosen alternative in each constraint. 4535 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4536 cIndex != eIndex; ++cIndex) { 4537 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4538 if (cInfo.Type == InlineAsm::isClobber) 4539 continue; 4540 cInfo.selectAlternative(bestMAIndex); 4541 } 4542 } 4543 } 4544 4545 // Check and hook up tied operands, choose constraint code to use. 4546 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4547 cIndex != eIndex; ++cIndex) { 4548 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4549 4550 // If this is an output operand with a matching input operand, look up the 4551 // matching input. If their types mismatch, e.g. one is an integer, the 4552 // other is floating point, or their sizes are different, flag it as an 4553 // error. 4554 if (OpInfo.hasMatchingInput()) { 4555 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4556 4557 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4558 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4559 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4560 OpInfo.ConstraintVT); 4561 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4562 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4563 Input.ConstraintVT); 4564 if ((OpInfo.ConstraintVT.isInteger() != 4565 Input.ConstraintVT.isInteger()) || 4566 (MatchRC.second != InputRC.second)) { 4567 report_fatal_error("Unsupported asm: input constraint" 4568 " with a matching output constraint of" 4569 " incompatible type!"); 4570 } 4571 } 4572 } 4573 } 4574 4575 return ConstraintOperands; 4576 } 4577 4578 /// Return an integer indicating how general CT is. 4579 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4580 switch (CT) { 4581 case TargetLowering::C_Immediate: 4582 case TargetLowering::C_Other: 4583 case TargetLowering::C_Unknown: 4584 return 0; 4585 case TargetLowering::C_Register: 4586 return 1; 4587 case TargetLowering::C_RegisterClass: 4588 return 2; 4589 case TargetLowering::C_Memory: 4590 return 3; 4591 } 4592 llvm_unreachable("Invalid constraint type"); 4593 } 4594 4595 /// Examine constraint type and operand type and determine a weight value. 4596 /// This object must already have been set up with the operand type 4597 /// and the current alternative constraint selected. 4598 TargetLowering::ConstraintWeight 4599 TargetLowering::getMultipleConstraintMatchWeight( 4600 AsmOperandInfo &info, int maIndex) const { 4601 InlineAsm::ConstraintCodeVector *rCodes; 4602 if (maIndex >= (int)info.multipleAlternatives.size()) 4603 rCodes = &info.Codes; 4604 else 4605 rCodes = &info.multipleAlternatives[maIndex].Codes; 4606 ConstraintWeight BestWeight = CW_Invalid; 4607 4608 // Loop over the options, keeping track of the most general one. 4609 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4610 ConstraintWeight weight = 4611 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4612 if (weight > BestWeight) 4613 BestWeight = weight; 4614 } 4615 4616 return BestWeight; 4617 } 4618 4619 /// Examine constraint type and operand type and determine a weight value. 4620 /// This object must already have been set up with the operand type 4621 /// and the current alternative constraint selected. 4622 TargetLowering::ConstraintWeight 4623 TargetLowering::getSingleConstraintMatchWeight( 4624 AsmOperandInfo &info, const char *constraint) const { 4625 ConstraintWeight weight = CW_Invalid; 4626 Value *CallOperandVal = info.CallOperandVal; 4627 // If we don't have a value, we can't do a match, 4628 // but allow it at the lowest weight. 4629 if (!CallOperandVal) 4630 return CW_Default; 4631 // Look at the constraint type. 4632 switch (*constraint) { 4633 case 'i': // immediate integer. 4634 case 'n': // immediate integer with a known value. 4635 if (isa<ConstantInt>(CallOperandVal)) 4636 weight = CW_Constant; 4637 break; 4638 case 's': // non-explicit intregal immediate. 4639 if (isa<GlobalValue>(CallOperandVal)) 4640 weight = CW_Constant; 4641 break; 4642 case 'E': // immediate float if host format. 4643 case 'F': // immediate float. 4644 if (isa<ConstantFP>(CallOperandVal)) 4645 weight = CW_Constant; 4646 break; 4647 case '<': // memory operand with autodecrement. 4648 case '>': // memory operand with autoincrement. 4649 case 'm': // memory operand. 4650 case 'o': // offsettable memory operand 4651 case 'V': // non-offsettable memory operand 4652 weight = CW_Memory; 4653 break; 4654 case 'r': // general register. 4655 case 'g': // general register, memory operand or immediate integer. 4656 // note: Clang converts "g" to "imr". 4657 if (CallOperandVal->getType()->isIntegerTy()) 4658 weight = CW_Register; 4659 break; 4660 case 'X': // any operand. 4661 default: 4662 weight = CW_Default; 4663 break; 4664 } 4665 return weight; 4666 } 4667 4668 /// If there are multiple different constraints that we could pick for this 4669 /// operand (e.g. "imr") try to pick the 'best' one. 4670 /// This is somewhat tricky: constraints fall into four classes: 4671 /// Other -> immediates and magic values 4672 /// Register -> one specific register 4673 /// RegisterClass -> a group of regs 4674 /// Memory -> memory 4675 /// Ideally, we would pick the most specific constraint possible: if we have 4676 /// something that fits into a register, we would pick it. The problem here 4677 /// is that if we have something that could either be in a register or in 4678 /// memory that use of the register could cause selection of *other* 4679 /// operands to fail: they might only succeed if we pick memory. Because of 4680 /// this the heuristic we use is: 4681 /// 4682 /// 1) If there is an 'other' constraint, and if the operand is valid for 4683 /// that constraint, use it. This makes us take advantage of 'i' 4684 /// constraints when available. 4685 /// 2) Otherwise, pick the most general constraint present. This prefers 4686 /// 'm' over 'r', for example. 4687 /// 4688 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4689 const TargetLowering &TLI, 4690 SDValue Op, SelectionDAG *DAG) { 4691 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4692 unsigned BestIdx = 0; 4693 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4694 int BestGenerality = -1; 4695 4696 // Loop over the options, keeping track of the most general one. 4697 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4698 TargetLowering::ConstraintType CType = 4699 TLI.getConstraintType(OpInfo.Codes[i]); 4700 4701 // Indirect 'other' or 'immediate' constraints are not allowed. 4702 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4703 CType == TargetLowering::C_Register || 4704 CType == TargetLowering::C_RegisterClass)) 4705 continue; 4706 4707 // If this is an 'other' or 'immediate' constraint, see if the operand is 4708 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4709 // the operand is an integer in the range [0..31] we want to use I (saving a 4710 // load of a register), otherwise we must use 'r'. 4711 if ((CType == TargetLowering::C_Other || 4712 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4713 assert(OpInfo.Codes[i].size() == 1 && 4714 "Unhandled multi-letter 'other' constraint"); 4715 std::vector<SDValue> ResultOps; 4716 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4717 ResultOps, *DAG); 4718 if (!ResultOps.empty()) { 4719 BestType = CType; 4720 BestIdx = i; 4721 break; 4722 } 4723 } 4724 4725 // Things with matching constraints can only be registers, per gcc 4726 // documentation. This mainly affects "g" constraints. 4727 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4728 continue; 4729 4730 // This constraint letter is more general than the previous one, use it. 4731 int Generality = getConstraintGenerality(CType); 4732 if (Generality > BestGenerality) { 4733 BestType = CType; 4734 BestIdx = i; 4735 BestGenerality = Generality; 4736 } 4737 } 4738 4739 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4740 OpInfo.ConstraintType = BestType; 4741 } 4742 4743 /// Determines the constraint code and constraint type to use for the specific 4744 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4745 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4746 SDValue Op, 4747 SelectionDAG *DAG) const { 4748 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4749 4750 // Single-letter constraints ('r') are very common. 4751 if (OpInfo.Codes.size() == 1) { 4752 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4753 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4754 } else { 4755 ChooseConstraint(OpInfo, *this, Op, DAG); 4756 } 4757 4758 // 'X' matches anything. 4759 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4760 // Labels and constants are handled elsewhere ('X' is the only thing 4761 // that matches labels). For Functions, the type here is the type of 4762 // the result, which is not what we want to look at; leave them alone. 4763 Value *v = OpInfo.CallOperandVal; 4764 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4765 OpInfo.CallOperandVal = v; 4766 return; 4767 } 4768 4769 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4770 return; 4771 4772 // Otherwise, try to resolve it to something we know about by looking at 4773 // the actual operand type. 4774 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4775 OpInfo.ConstraintCode = Repl; 4776 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4777 } 4778 } 4779 } 4780 4781 /// Given an exact SDIV by a constant, create a multiplication 4782 /// with the multiplicative inverse of the constant. 4783 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4784 const SDLoc &dl, SelectionDAG &DAG, 4785 SmallVectorImpl<SDNode *> &Created) { 4786 SDValue Op0 = N->getOperand(0); 4787 SDValue Op1 = N->getOperand(1); 4788 EVT VT = N->getValueType(0); 4789 EVT SVT = VT.getScalarType(); 4790 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4791 EVT ShSVT = ShVT.getScalarType(); 4792 4793 bool UseSRA = false; 4794 SmallVector<SDValue, 16> Shifts, Factors; 4795 4796 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4797 if (C->isNullValue()) 4798 return false; 4799 APInt Divisor = C->getAPIntValue(); 4800 unsigned Shift = Divisor.countTrailingZeros(); 4801 if (Shift) { 4802 Divisor.ashrInPlace(Shift); 4803 UseSRA = true; 4804 } 4805 // Calculate the multiplicative inverse, using Newton's method. 4806 APInt t; 4807 APInt Factor = Divisor; 4808 while ((t = Divisor * Factor) != 1) 4809 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4810 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4811 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4812 return true; 4813 }; 4814 4815 // Collect all magic values from the build vector. 4816 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4817 return SDValue(); 4818 4819 SDValue Shift, Factor; 4820 if (VT.isVector()) { 4821 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4822 Factor = DAG.getBuildVector(VT, dl, Factors); 4823 } else { 4824 Shift = Shifts[0]; 4825 Factor = Factors[0]; 4826 } 4827 4828 SDValue Res = Op0; 4829 4830 // Shift the value upfront if it is even, so the LSB is one. 4831 if (UseSRA) { 4832 // TODO: For UDIV use SRL instead of SRA. 4833 SDNodeFlags Flags; 4834 Flags.setExact(true); 4835 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4836 Created.push_back(Res.getNode()); 4837 } 4838 4839 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4840 } 4841 4842 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4843 SelectionDAG &DAG, 4844 SmallVectorImpl<SDNode *> &Created) const { 4845 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4846 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4847 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4848 return SDValue(N, 0); // Lower SDIV as SDIV 4849 return SDValue(); 4850 } 4851 4852 /// Given an ISD::SDIV node expressing a divide by constant, 4853 /// return a DAG expression to select that will generate the same value by 4854 /// multiplying by a magic number. 4855 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4856 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4857 bool IsAfterLegalization, 4858 SmallVectorImpl<SDNode *> &Created) const { 4859 SDLoc dl(N); 4860 EVT VT = N->getValueType(0); 4861 EVT SVT = VT.getScalarType(); 4862 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4863 EVT ShSVT = ShVT.getScalarType(); 4864 unsigned EltBits = VT.getScalarSizeInBits(); 4865 4866 // Check to see if we can do this. 4867 // FIXME: We should be more aggressive here. 4868 if (!isTypeLegal(VT)) 4869 return SDValue(); 4870 4871 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4872 if (N->getFlags().hasExact()) 4873 return BuildExactSDIV(*this, N, dl, DAG, Created); 4874 4875 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4876 4877 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4878 if (C->isNullValue()) 4879 return false; 4880 4881 const APInt &Divisor = C->getAPIntValue(); 4882 APInt::ms magics = Divisor.magic(); 4883 int NumeratorFactor = 0; 4884 int ShiftMask = -1; 4885 4886 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4887 // If d is +1/-1, we just multiply the numerator by +1/-1. 4888 NumeratorFactor = Divisor.getSExtValue(); 4889 magics.m = 0; 4890 magics.s = 0; 4891 ShiftMask = 0; 4892 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4893 // If d > 0 and m < 0, add the numerator. 4894 NumeratorFactor = 1; 4895 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4896 // If d < 0 and m > 0, subtract the numerator. 4897 NumeratorFactor = -1; 4898 } 4899 4900 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4901 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4902 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4903 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4904 return true; 4905 }; 4906 4907 SDValue N0 = N->getOperand(0); 4908 SDValue N1 = N->getOperand(1); 4909 4910 // Collect the shifts / magic values from each element. 4911 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4912 return SDValue(); 4913 4914 SDValue MagicFactor, Factor, Shift, ShiftMask; 4915 if (VT.isVector()) { 4916 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4917 Factor = DAG.getBuildVector(VT, dl, Factors); 4918 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4919 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4920 } else { 4921 MagicFactor = MagicFactors[0]; 4922 Factor = Factors[0]; 4923 Shift = Shifts[0]; 4924 ShiftMask = ShiftMasks[0]; 4925 } 4926 4927 // Multiply the numerator (operand 0) by the magic value. 4928 // FIXME: We should support doing a MUL in a wider type. 4929 SDValue Q; 4930 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4931 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4932 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4933 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4934 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4935 SDValue LoHi = 4936 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4937 Q = SDValue(LoHi.getNode(), 1); 4938 } else 4939 return SDValue(); // No mulhs or equivalent. 4940 Created.push_back(Q.getNode()); 4941 4942 // (Optionally) Add/subtract the numerator using Factor. 4943 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4944 Created.push_back(Factor.getNode()); 4945 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4946 Created.push_back(Q.getNode()); 4947 4948 // Shift right algebraic by shift value. 4949 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4950 Created.push_back(Q.getNode()); 4951 4952 // Extract the sign bit, mask it and add it to the quotient. 4953 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4954 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4955 Created.push_back(T.getNode()); 4956 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4957 Created.push_back(T.getNode()); 4958 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4959 } 4960 4961 /// Given an ISD::UDIV node expressing a divide by constant, 4962 /// return a DAG expression to select that will generate the same value by 4963 /// multiplying by a magic number. 4964 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4965 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4966 bool IsAfterLegalization, 4967 SmallVectorImpl<SDNode *> &Created) const { 4968 SDLoc dl(N); 4969 EVT VT = N->getValueType(0); 4970 EVT SVT = VT.getScalarType(); 4971 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4972 EVT ShSVT = ShVT.getScalarType(); 4973 unsigned EltBits = VT.getScalarSizeInBits(); 4974 4975 // Check to see if we can do this. 4976 // FIXME: We should be more aggressive here. 4977 if (!isTypeLegal(VT)) 4978 return SDValue(); 4979 4980 bool UseNPQ = false; 4981 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4982 4983 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4984 if (C->isNullValue()) 4985 return false; 4986 // FIXME: We should use a narrower constant when the upper 4987 // bits are known to be zero. 4988 APInt Divisor = C->getAPIntValue(); 4989 APInt::mu magics = Divisor.magicu(); 4990 unsigned PreShift = 0, PostShift = 0; 4991 4992 // If the divisor is even, we can avoid using the expensive fixup by 4993 // shifting the divided value upfront. 4994 if (magics.a != 0 && !Divisor[0]) { 4995 PreShift = Divisor.countTrailingZeros(); 4996 // Get magic number for the shifted divisor. 4997 magics = Divisor.lshr(PreShift).magicu(PreShift); 4998 assert(magics.a == 0 && "Should use cheap fixup now"); 4999 } 5000 5001 APInt Magic = magics.m; 5002 5003 unsigned SelNPQ; 5004 if (magics.a == 0 || Divisor.isOneValue()) { 5005 assert(magics.s < Divisor.getBitWidth() && 5006 "We shouldn't generate an undefined shift!"); 5007 PostShift = magics.s; 5008 SelNPQ = false; 5009 } else { 5010 PostShift = magics.s - 1; 5011 SelNPQ = true; 5012 } 5013 5014 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5015 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5016 NPQFactors.push_back( 5017 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5018 : APInt::getNullValue(EltBits), 5019 dl, SVT)); 5020 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5021 UseNPQ |= SelNPQ; 5022 return true; 5023 }; 5024 5025 SDValue N0 = N->getOperand(0); 5026 SDValue N1 = N->getOperand(1); 5027 5028 // Collect the shifts/magic values from each element. 5029 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5030 return SDValue(); 5031 5032 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5033 if (VT.isVector()) { 5034 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5035 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5036 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5037 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5038 } else { 5039 PreShift = PreShifts[0]; 5040 MagicFactor = MagicFactors[0]; 5041 PostShift = PostShifts[0]; 5042 } 5043 5044 SDValue Q = N0; 5045 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5046 Created.push_back(Q.getNode()); 5047 5048 // FIXME: We should support doing a MUL in a wider type. 5049 auto GetMULHU = [&](SDValue X, SDValue Y) { 5050 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 5051 : isOperationLegalOrCustom(ISD::MULHU, VT)) 5052 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5053 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 5054 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 5055 SDValue LoHi = 5056 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5057 return SDValue(LoHi.getNode(), 1); 5058 } 5059 return SDValue(); // No mulhu or equivalent 5060 }; 5061 5062 // Multiply the numerator (operand 0) by the magic value. 5063 Q = GetMULHU(Q, MagicFactor); 5064 if (!Q) 5065 return SDValue(); 5066 5067 Created.push_back(Q.getNode()); 5068 5069 if (UseNPQ) { 5070 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5071 Created.push_back(NPQ.getNode()); 5072 5073 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5074 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5075 if (VT.isVector()) 5076 NPQ = GetMULHU(NPQ, NPQFactor); 5077 else 5078 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5079 5080 Created.push_back(NPQ.getNode()); 5081 5082 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5083 Created.push_back(Q.getNode()); 5084 } 5085 5086 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5087 Created.push_back(Q.getNode()); 5088 5089 SDValue One = DAG.getConstant(1, dl, VT); 5090 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 5091 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5092 } 5093 5094 /// If all values in Values that *don't* match the predicate are same 'splat' 5095 /// value, then replace all values with that splat value. 5096 /// Else, if AlternativeReplacement was provided, then replace all values that 5097 /// do match predicate with AlternativeReplacement value. 5098 static void 5099 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5100 std::function<bool(SDValue)> Predicate, 5101 SDValue AlternativeReplacement = SDValue()) { 5102 SDValue Replacement; 5103 // Is there a value for which the Predicate does *NOT* match? What is it? 5104 auto SplatValue = llvm::find_if_not(Values, Predicate); 5105 if (SplatValue != Values.end()) { 5106 // Does Values consist only of SplatValue's and values matching Predicate? 5107 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5108 return Value == *SplatValue || Predicate(Value); 5109 })) // Then we shall replace values matching predicate with SplatValue. 5110 Replacement = *SplatValue; 5111 } 5112 if (!Replacement) { 5113 // Oops, we did not find the "baseline" splat value. 5114 if (!AlternativeReplacement) 5115 return; // Nothing to do. 5116 // Let's replace with provided value then. 5117 Replacement = AlternativeReplacement; 5118 } 5119 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5120 } 5121 5122 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5123 /// where the divisor is constant and the comparison target is zero, 5124 /// return a DAG expression that will generate the same comparison result 5125 /// using only multiplications, additions and shifts/rotations. 5126 /// Ref: "Hacker's Delight" 10-17. 5127 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5128 SDValue CompTargetNode, 5129 ISD::CondCode Cond, 5130 DAGCombinerInfo &DCI, 5131 const SDLoc &DL) const { 5132 SmallVector<SDNode *, 5> Built; 5133 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5134 DCI, DL, Built)) { 5135 for (SDNode *N : Built) 5136 DCI.AddToWorklist(N); 5137 return Folded; 5138 } 5139 5140 return SDValue(); 5141 } 5142 5143 SDValue 5144 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5145 SDValue CompTargetNode, ISD::CondCode Cond, 5146 DAGCombinerInfo &DCI, const SDLoc &DL, 5147 SmallVectorImpl<SDNode *> &Created) const { 5148 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5149 // - D must be constant, with D = D0 * 2^K where D0 is odd 5150 // - P is the multiplicative inverse of D0 modulo 2^W 5151 // - Q = floor(((2^W) - 1) / D) 5152 // where W is the width of the common type of N and D. 5153 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5154 "Only applicable for (in)equality comparisons."); 5155 5156 SelectionDAG &DAG = DCI.DAG; 5157 5158 EVT VT = REMNode.getValueType(); 5159 EVT SVT = VT.getScalarType(); 5160 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5161 EVT ShSVT = ShVT.getScalarType(); 5162 5163 // If MUL is unavailable, we cannot proceed in any case. 5164 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5165 return SDValue(); 5166 5167 bool ComparingWithAllZeros = true; 5168 bool AllComparisonsWithNonZerosAreTautological = true; 5169 bool HadTautologicalLanes = false; 5170 bool AllLanesAreTautological = true; 5171 bool HadEvenDivisor = false; 5172 bool AllDivisorsArePowerOfTwo = true; 5173 bool HadTautologicalInvertedLanes = false; 5174 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5175 5176 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5177 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5178 if (CDiv->isNullValue()) 5179 return false; 5180 5181 const APInt &D = CDiv->getAPIntValue(); 5182 const APInt &Cmp = CCmp->getAPIntValue(); 5183 5184 ComparingWithAllZeros &= Cmp.isNullValue(); 5185 5186 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5187 // if C2 is not less than C1, the comparison is always false. 5188 // But we will only be able to produce the comparison that will give the 5189 // opposive tautological answer. So this lane would need to be fixed up. 5190 bool TautologicalInvertedLane = D.ule(Cmp); 5191 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5192 5193 // If all lanes are tautological (either all divisors are ones, or divisor 5194 // is not greater than the constant we are comparing with), 5195 // we will prefer to avoid the fold. 5196 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5197 HadTautologicalLanes |= TautologicalLane; 5198 AllLanesAreTautological &= TautologicalLane; 5199 5200 // If we are comparing with non-zero, we need'll need to subtract said 5201 // comparison value from the LHS. But there is no point in doing that if 5202 // every lane where we are comparing with non-zero is tautological.. 5203 if (!Cmp.isNullValue()) 5204 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5205 5206 // Decompose D into D0 * 2^K 5207 unsigned K = D.countTrailingZeros(); 5208 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5209 APInt D0 = D.lshr(K); 5210 5211 // D is even if it has trailing zeros. 5212 HadEvenDivisor |= (K != 0); 5213 // D is a power-of-two if D0 is one. 5214 // If all divisors are power-of-two, we will prefer to avoid the fold. 5215 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5216 5217 // P = inv(D0, 2^W) 5218 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5219 unsigned W = D.getBitWidth(); 5220 APInt P = D0.zext(W + 1) 5221 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5222 .trunc(W); 5223 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5224 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5225 5226 // Q = floor((2^W - 1) u/ D) 5227 // R = ((2^W - 1) u% D) 5228 APInt Q, R; 5229 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5230 5231 // If we are comparing with zero, then that comparison constant is okay, 5232 // else it may need to be one less than that. 5233 if (Cmp.ugt(R)) 5234 Q -= 1; 5235 5236 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5237 "We are expecting that K is always less than all-ones for ShSVT"); 5238 5239 // If the lane is tautological the result can be constant-folded. 5240 if (TautologicalLane) { 5241 // Set P and K amount to a bogus values so we can try to splat them. 5242 P = 0; 5243 K = -1; 5244 // And ensure that comparison constant is tautological, 5245 // it will always compare true/false. 5246 Q = -1; 5247 } 5248 5249 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5250 KAmts.push_back( 5251 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5252 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5253 return true; 5254 }; 5255 5256 SDValue N = REMNode.getOperand(0); 5257 SDValue D = REMNode.getOperand(1); 5258 5259 // Collect the values from each element. 5260 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5261 return SDValue(); 5262 5263 // If all lanes are tautological, the result can be constant-folded. 5264 if (AllLanesAreTautological) 5265 return SDValue(); 5266 5267 // If this is a urem by a powers-of-two, avoid the fold since it can be 5268 // best implemented as a bit test. 5269 if (AllDivisorsArePowerOfTwo) 5270 return SDValue(); 5271 5272 SDValue PVal, KVal, QVal; 5273 if (VT.isVector()) { 5274 if (HadTautologicalLanes) { 5275 // Try to turn PAmts into a splat, since we don't care about the values 5276 // that are currently '0'. If we can't, just keep '0'`s. 5277 turnVectorIntoSplatVector(PAmts, isNullConstant); 5278 // Try to turn KAmts into a splat, since we don't care about the values 5279 // that are currently '-1'. If we can't, change them to '0'`s. 5280 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5281 DAG.getConstant(0, DL, ShSVT)); 5282 } 5283 5284 PVal = DAG.getBuildVector(VT, DL, PAmts); 5285 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5286 QVal = DAG.getBuildVector(VT, DL, QAmts); 5287 } else { 5288 PVal = PAmts[0]; 5289 KVal = KAmts[0]; 5290 QVal = QAmts[0]; 5291 } 5292 5293 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5294 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5295 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5296 assert(CompTargetNode.getValueType() == N.getValueType() && 5297 "Expecting that the types on LHS and RHS of comparisons match."); 5298 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5299 } 5300 5301 // (mul N, P) 5302 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5303 Created.push_back(Op0.getNode()); 5304 5305 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5306 // divisors as a performance improvement, since rotating by 0 is a no-op. 5307 if (HadEvenDivisor) { 5308 // We need ROTR to do this. 5309 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5310 return SDValue(); 5311 SDNodeFlags Flags; 5312 Flags.setExact(true); 5313 // UREM: (rotr (mul N, P), K) 5314 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5315 Created.push_back(Op0.getNode()); 5316 } 5317 5318 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5319 SDValue NewCC = 5320 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5321 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5322 if (!HadTautologicalInvertedLanes) 5323 return NewCC; 5324 5325 // If any lanes previously compared always-false, the NewCC will give 5326 // always-true result for them, so we need to fixup those lanes. 5327 // Or the other way around for inequality predicate. 5328 assert(VT.isVector() && "Can/should only get here for vectors."); 5329 Created.push_back(NewCC.getNode()); 5330 5331 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5332 // if C2 is not less than C1, the comparison is always false. 5333 // But we have produced the comparison that will give the 5334 // opposive tautological answer. So these lanes would need to be fixed up. 5335 SDValue TautologicalInvertedChannels = 5336 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5337 Created.push_back(TautologicalInvertedChannels.getNode()); 5338 5339 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5340 // If we have a vector select, let's replace the comparison results in the 5341 // affected lanes with the correct tautological result. 5342 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5343 DL, SETCCVT, SETCCVT); 5344 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5345 Replacement, NewCC); 5346 } 5347 5348 // Else, we can just invert the comparison result in the appropriate lanes. 5349 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5350 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5351 TautologicalInvertedChannels); 5352 5353 return SDValue(); // Don't know how to lower. 5354 } 5355 5356 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5357 /// where the divisor is constant and the comparison target is zero, 5358 /// return a DAG expression that will generate the same comparison result 5359 /// using only multiplications, additions and shifts/rotations. 5360 /// Ref: "Hacker's Delight" 10-17. 5361 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5362 SDValue CompTargetNode, 5363 ISD::CondCode Cond, 5364 DAGCombinerInfo &DCI, 5365 const SDLoc &DL) const { 5366 SmallVector<SDNode *, 7> Built; 5367 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5368 DCI, DL, Built)) { 5369 assert(Built.size() <= 7 && "Max size prediction failed."); 5370 for (SDNode *N : Built) 5371 DCI.AddToWorklist(N); 5372 return Folded; 5373 } 5374 5375 return SDValue(); 5376 } 5377 5378 SDValue 5379 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5380 SDValue CompTargetNode, ISD::CondCode Cond, 5381 DAGCombinerInfo &DCI, const SDLoc &DL, 5382 SmallVectorImpl<SDNode *> &Created) const { 5383 // Fold: 5384 // (seteq/ne (srem N, D), 0) 5385 // To: 5386 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5387 // 5388 // - D must be constant, with D = D0 * 2^K where D0 is odd 5389 // - P is the multiplicative inverse of D0 modulo 2^W 5390 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5391 // - Q = floor((2 * A) / (2^K)) 5392 // where W is the width of the common type of N and D. 5393 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5394 "Only applicable for (in)equality comparisons."); 5395 5396 SelectionDAG &DAG = DCI.DAG; 5397 5398 EVT VT = REMNode.getValueType(); 5399 EVT SVT = VT.getScalarType(); 5400 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5401 EVT ShSVT = ShVT.getScalarType(); 5402 5403 // If MUL is unavailable, we cannot proceed in any case. 5404 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5405 return SDValue(); 5406 5407 // TODO: Could support comparing with non-zero too. 5408 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5409 if (!CompTarget || !CompTarget->isNullValue()) 5410 return SDValue(); 5411 5412 bool HadIntMinDivisor = false; 5413 bool HadOneDivisor = false; 5414 bool AllDivisorsAreOnes = true; 5415 bool HadEvenDivisor = false; 5416 bool NeedToApplyOffset = false; 5417 bool AllDivisorsArePowerOfTwo = true; 5418 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5419 5420 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5421 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5422 if (C->isNullValue()) 5423 return false; 5424 5425 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5426 5427 // WARNING: this fold is only valid for positive divisors! 5428 APInt D = C->getAPIntValue(); 5429 if (D.isNegative()) 5430 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5431 5432 HadIntMinDivisor |= D.isMinSignedValue(); 5433 5434 // If all divisors are ones, we will prefer to avoid the fold. 5435 HadOneDivisor |= D.isOneValue(); 5436 AllDivisorsAreOnes &= D.isOneValue(); 5437 5438 // Decompose D into D0 * 2^K 5439 unsigned K = D.countTrailingZeros(); 5440 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5441 APInt D0 = D.lshr(K); 5442 5443 if (!D.isMinSignedValue()) { 5444 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5445 // we don't care about this lane in this fold, we'll special-handle it. 5446 HadEvenDivisor |= (K != 0); 5447 } 5448 5449 // D is a power-of-two if D0 is one. This includes INT_MIN. 5450 // If all divisors are power-of-two, we will prefer to avoid the fold. 5451 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5452 5453 // P = inv(D0, 2^W) 5454 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5455 unsigned W = D.getBitWidth(); 5456 APInt P = D0.zext(W + 1) 5457 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5458 .trunc(W); 5459 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5460 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5461 5462 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5463 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5464 A.clearLowBits(K); 5465 5466 if (!D.isMinSignedValue()) { 5467 // If divisor INT_MIN, then we don't care about this lane in this fold, 5468 // we'll special-handle it. 5469 NeedToApplyOffset |= A != 0; 5470 } 5471 5472 // Q = floor((2 * A) / (2^K)) 5473 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5474 5475 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5476 "We are expecting that A is always less than all-ones for SVT"); 5477 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5478 "We are expecting that K is always less than all-ones for ShSVT"); 5479 5480 // If the divisor is 1 the result can be constant-folded. Likewise, we 5481 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5482 if (D.isOneValue()) { 5483 // Set P, A and K to a bogus values so we can try to splat them. 5484 P = 0; 5485 A = -1; 5486 K = -1; 5487 5488 // x ?% 1 == 0 <--> true <--> x u<= -1 5489 Q = -1; 5490 } 5491 5492 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5493 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5494 KAmts.push_back( 5495 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5496 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5497 return true; 5498 }; 5499 5500 SDValue N = REMNode.getOperand(0); 5501 SDValue D = REMNode.getOperand(1); 5502 5503 // Collect the values from each element. 5504 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5505 return SDValue(); 5506 5507 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5508 if (AllDivisorsAreOnes) 5509 return SDValue(); 5510 5511 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5512 // since it can be best implemented as a bit test. 5513 if (AllDivisorsArePowerOfTwo) 5514 return SDValue(); 5515 5516 SDValue PVal, AVal, KVal, QVal; 5517 if (VT.isVector()) { 5518 if (HadOneDivisor) { 5519 // Try to turn PAmts into a splat, since we don't care about the values 5520 // that are currently '0'. If we can't, just keep '0'`s. 5521 turnVectorIntoSplatVector(PAmts, isNullConstant); 5522 // Try to turn AAmts into a splat, since we don't care about the 5523 // values that are currently '-1'. If we can't, change them to '0'`s. 5524 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5525 DAG.getConstant(0, DL, SVT)); 5526 // Try to turn KAmts into a splat, since we don't care about the values 5527 // that are currently '-1'. If we can't, change them to '0'`s. 5528 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5529 DAG.getConstant(0, DL, ShSVT)); 5530 } 5531 5532 PVal = DAG.getBuildVector(VT, DL, PAmts); 5533 AVal = DAG.getBuildVector(VT, DL, AAmts); 5534 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5535 QVal = DAG.getBuildVector(VT, DL, QAmts); 5536 } else { 5537 PVal = PAmts[0]; 5538 AVal = AAmts[0]; 5539 KVal = KAmts[0]; 5540 QVal = QAmts[0]; 5541 } 5542 5543 // (mul N, P) 5544 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5545 Created.push_back(Op0.getNode()); 5546 5547 if (NeedToApplyOffset) { 5548 // We need ADD to do this. 5549 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5550 return SDValue(); 5551 5552 // (add (mul N, P), A) 5553 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5554 Created.push_back(Op0.getNode()); 5555 } 5556 5557 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5558 // divisors as a performance improvement, since rotating by 0 is a no-op. 5559 if (HadEvenDivisor) { 5560 // We need ROTR to do this. 5561 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5562 return SDValue(); 5563 SDNodeFlags Flags; 5564 Flags.setExact(true); 5565 // SREM: (rotr (add (mul N, P), A), K) 5566 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5567 Created.push_back(Op0.getNode()); 5568 } 5569 5570 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5571 SDValue Fold = 5572 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5573 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5574 5575 // If we didn't have lanes with INT_MIN divisor, then we're done. 5576 if (!HadIntMinDivisor) 5577 return Fold; 5578 5579 // That fold is only valid for positive divisors. Which effectively means, 5580 // it is invalid for INT_MIN divisors. So if we have such a lane, 5581 // we must fix-up results for said lanes. 5582 assert(VT.isVector() && "Can/should only get here for vectors."); 5583 5584 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5585 !isOperationLegalOrCustom(ISD::AND, VT) || 5586 !isOperationLegalOrCustom(Cond, VT) || 5587 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5588 return SDValue(); 5589 5590 Created.push_back(Fold.getNode()); 5591 5592 SDValue IntMin = DAG.getConstant( 5593 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5594 SDValue IntMax = DAG.getConstant( 5595 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5596 SDValue Zero = 5597 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5598 5599 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5600 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5601 Created.push_back(DivisorIsIntMin.getNode()); 5602 5603 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5604 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5605 Created.push_back(Masked.getNode()); 5606 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5607 Created.push_back(MaskedIsZero.getNode()); 5608 5609 // To produce final result we need to blend 2 vectors: 'SetCC' and 5610 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5611 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5612 // constant-folded, select can get lowered to a shuffle with constant mask. 5613 SDValue Blended = 5614 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5615 5616 return Blended; 5617 } 5618 5619 bool TargetLowering:: 5620 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5621 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5622 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5623 "be a constant integer"); 5624 return true; 5625 } 5626 5627 return false; 5628 } 5629 5630 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5631 bool LegalOps, bool OptForSize, 5632 NegatibleCost &Cost, 5633 unsigned Depth) const { 5634 // fneg is removable even if it has multiple uses. 5635 if (Op.getOpcode() == ISD::FNEG) { 5636 Cost = NegatibleCost::Cheaper; 5637 return Op.getOperand(0); 5638 } 5639 5640 // Don't recurse exponentially. 5641 if (Depth > SelectionDAG::MaxRecursionDepth) 5642 return SDValue(); 5643 5644 // Pre-increment recursion depth for use in recursive calls. 5645 ++Depth; 5646 const SDNodeFlags Flags = Op->getFlags(); 5647 const TargetOptions &Options = DAG.getTarget().Options; 5648 EVT VT = Op.getValueType(); 5649 unsigned Opcode = Op.getOpcode(); 5650 5651 // Don't allow anything with multiple uses unless we know it is free. 5652 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 5653 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 5654 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5655 if (!IsFreeExtend) 5656 return SDValue(); 5657 } 5658 5659 SDLoc DL(Op); 5660 5661 switch (Opcode) { 5662 case ISD::ConstantFP: { 5663 // Don't invert constant FP values after legalization unless the target says 5664 // the negated constant is legal. 5665 bool IsOpLegal = 5666 isOperationLegal(ISD::ConstantFP, VT) || 5667 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5668 OptForSize); 5669 5670 if (LegalOps && !IsOpLegal) 5671 break; 5672 5673 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5674 V.changeSign(); 5675 SDValue CFP = DAG.getConstantFP(V, DL, VT); 5676 5677 // If we already have the use of the negated floating constant, it is free 5678 // to negate it even it has multiple uses. 5679 if (!Op.hasOneUse() && CFP.use_empty()) 5680 break; 5681 Cost = NegatibleCost::Neutral; 5682 return CFP; 5683 } 5684 case ISD::BUILD_VECTOR: { 5685 // Only permit BUILD_VECTOR of constants. 5686 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5687 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5688 })) 5689 break; 5690 5691 bool IsOpLegal = 5692 (isOperationLegal(ISD::ConstantFP, VT) && 5693 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 5694 llvm::all_of(Op->op_values(), [&](SDValue N) { 5695 return N.isUndef() || 5696 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5697 OptForSize); 5698 }); 5699 5700 if (LegalOps && !IsOpLegal) 5701 break; 5702 5703 SmallVector<SDValue, 4> Ops; 5704 for (SDValue C : Op->op_values()) { 5705 if (C.isUndef()) { 5706 Ops.push_back(C); 5707 continue; 5708 } 5709 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5710 V.changeSign(); 5711 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 5712 } 5713 Cost = NegatibleCost::Neutral; 5714 return DAG.getBuildVector(VT, DL, Ops); 5715 } 5716 case ISD::FADD: { 5717 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5718 break; 5719 5720 // After operation legalization, it might not be legal to create new FSUBs. 5721 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5722 break; 5723 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5724 5725 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 5726 NegatibleCost CostX = NegatibleCost::Expensive; 5727 SDValue NegX = 5728 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5729 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 5730 NegatibleCost CostY = NegatibleCost::Expensive; 5731 SDValue NegY = 5732 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5733 5734 // Negate the X if its cost is less or equal than Y. 5735 if (NegX && (CostX <= CostY)) { 5736 Cost = CostX; 5737 return DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 5738 } 5739 5740 // Negate the Y if it is not expensive. 5741 if (NegY) { 5742 Cost = CostY; 5743 return DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 5744 } 5745 break; 5746 } 5747 case ISD::FSUB: { 5748 // We can't turn -(A-B) into B-A when we honor signed zeros. 5749 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5750 break; 5751 5752 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5753 // fold (fneg (fsub 0, Y)) -> Y 5754 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 5755 if (C->isZero()) { 5756 Cost = NegatibleCost::Cheaper; 5757 return Y; 5758 } 5759 5760 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 5761 Cost = NegatibleCost::Neutral; 5762 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 5763 } 5764 case ISD::FMUL: 5765 case ISD::FDIV: { 5766 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5767 5768 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5769 NegatibleCost CostX = NegatibleCost::Expensive; 5770 SDValue NegX = 5771 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5772 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5773 NegatibleCost CostY = NegatibleCost::Expensive; 5774 SDValue NegY = 5775 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5776 5777 // Negate the X if its cost is less or equal than Y. 5778 if (NegX && (CostX <= CostY)) { 5779 Cost = CostX; 5780 return DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 5781 } 5782 5783 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5784 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5785 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5786 break; 5787 5788 // Negate the Y if it is not expensive. 5789 if (NegY) { 5790 Cost = CostY; 5791 return DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 5792 } 5793 break; 5794 } 5795 case ISD::FMA: 5796 case ISD::FMAD: { 5797 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5798 break; 5799 5800 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 5801 NegatibleCost CostZ = NegatibleCost::Expensive; 5802 SDValue NegZ = 5803 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 5804 // Give up if fail to negate the Z. 5805 if (!NegZ) 5806 break; 5807 5808 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5809 NegatibleCost CostX = NegatibleCost::Expensive; 5810 SDValue NegX = 5811 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5812 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5813 NegatibleCost CostY = NegatibleCost::Expensive; 5814 SDValue NegY = 5815 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5816 5817 // Negate the X if its cost is less or equal than Y. 5818 if (NegX && (CostX <= CostY)) { 5819 Cost = std::min(CostX, CostZ); 5820 return DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 5821 } 5822 5823 // Negate the Y if it is not expensive. 5824 if (NegY) { 5825 Cost = std::min(CostY, CostZ); 5826 return DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 5827 } 5828 break; 5829 } 5830 5831 case ISD::FP_EXTEND: 5832 case ISD::FSIN: 5833 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 5834 OptForSize, Cost, Depth)) 5835 return DAG.getNode(Opcode, DL, VT, NegV); 5836 break; 5837 case ISD::FP_ROUND: 5838 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 5839 OptForSize, Cost, Depth)) 5840 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 5841 break; 5842 } 5843 5844 return SDValue(); 5845 } 5846 5847 //===----------------------------------------------------------------------===// 5848 // Legalization Utilities 5849 //===----------------------------------------------------------------------===// 5850 5851 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5852 SDValue LHS, SDValue RHS, 5853 SmallVectorImpl<SDValue> &Result, 5854 EVT HiLoVT, SelectionDAG &DAG, 5855 MulExpansionKind Kind, SDValue LL, 5856 SDValue LH, SDValue RL, SDValue RH) const { 5857 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5858 Opcode == ISD::SMUL_LOHI); 5859 5860 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5861 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5862 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5863 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5864 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5865 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5866 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5867 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5868 5869 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5870 return false; 5871 5872 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5873 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5874 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5875 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5876 5877 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5878 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5879 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5880 5881 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5882 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5883 bool Signed) -> bool { 5884 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5885 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5886 Hi = SDValue(Lo.getNode(), 1); 5887 return true; 5888 } 5889 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5890 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5891 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5892 return true; 5893 } 5894 return false; 5895 }; 5896 5897 SDValue Lo, Hi; 5898 5899 if (!LL.getNode() && !RL.getNode() && 5900 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5901 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5902 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5903 } 5904 5905 if (!LL.getNode()) 5906 return false; 5907 5908 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5909 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5910 DAG.MaskedValueIsZero(RHS, HighMask)) { 5911 // The inputs are both zero-extended. 5912 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5913 Result.push_back(Lo); 5914 Result.push_back(Hi); 5915 if (Opcode != ISD::MUL) { 5916 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5917 Result.push_back(Zero); 5918 Result.push_back(Zero); 5919 } 5920 return true; 5921 } 5922 } 5923 5924 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5925 RHSSB > InnerBitSize) { 5926 // The input values are both sign-extended. 5927 // TODO non-MUL case? 5928 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5929 Result.push_back(Lo); 5930 Result.push_back(Hi); 5931 return true; 5932 } 5933 } 5934 5935 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5936 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5937 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5938 // FIXME getShiftAmountTy does not always return a sensible result when VT 5939 // is an illegal type, and so the type may be too small to fit the shift 5940 // amount. Override it with i32. The shift will have to be legalized. 5941 ShiftAmountTy = MVT::i32; 5942 } 5943 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5944 5945 if (!LH.getNode() && !RH.getNode() && 5946 isOperationLegalOrCustom(ISD::SRL, VT) && 5947 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5948 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5949 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5950 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5951 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5952 } 5953 5954 if (!LH.getNode()) 5955 return false; 5956 5957 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5958 return false; 5959 5960 Result.push_back(Lo); 5961 5962 if (Opcode == ISD::MUL) { 5963 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5964 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5965 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5966 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5967 Result.push_back(Hi); 5968 return true; 5969 } 5970 5971 // Compute the full width result. 5972 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5973 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5974 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5975 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5976 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5977 }; 5978 5979 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5980 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5981 return false; 5982 5983 // This is effectively the add part of a multiply-add of half-sized operands, 5984 // so it cannot overflow. 5985 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5986 5987 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5988 return false; 5989 5990 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5991 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5992 5993 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5994 isOperationLegalOrCustom(ISD::ADDE, VT)); 5995 if (UseGlue) 5996 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5997 Merge(Lo, Hi)); 5998 else 5999 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6000 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6001 6002 SDValue Carry = Next.getValue(1); 6003 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6004 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6005 6006 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6007 return false; 6008 6009 if (UseGlue) 6010 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6011 Carry); 6012 else 6013 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6014 Zero, Carry); 6015 6016 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6017 6018 if (Opcode == ISD::SMUL_LOHI) { 6019 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6020 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6021 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6022 6023 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6024 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6025 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6026 } 6027 6028 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6029 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6030 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6031 return true; 6032 } 6033 6034 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6035 SelectionDAG &DAG, MulExpansionKind Kind, 6036 SDValue LL, SDValue LH, SDValue RL, 6037 SDValue RH) const { 6038 SmallVector<SDValue, 2> Result; 6039 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 6040 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6041 DAG, Kind, LL, LH, RL, RH); 6042 if (Ok) { 6043 assert(Result.size() == 2); 6044 Lo = Result[0]; 6045 Hi = Result[1]; 6046 } 6047 return Ok; 6048 } 6049 6050 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6051 SelectionDAG &DAG) const { 6052 EVT VT = Node->getValueType(0); 6053 6054 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6055 !isOperationLegalOrCustom(ISD::SRL, VT) || 6056 !isOperationLegalOrCustom(ISD::SUB, VT) || 6057 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6058 return false; 6059 6060 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6061 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6062 SDValue X = Node->getOperand(0); 6063 SDValue Y = Node->getOperand(1); 6064 SDValue Z = Node->getOperand(2); 6065 6066 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6067 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6068 SDLoc DL(SDValue(Node, 0)); 6069 6070 EVT ShVT = Z.getValueType(); 6071 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6072 SDValue ShAmt, InvShAmt; 6073 if (isPowerOf2_32(EltSizeInBits)) { 6074 // Z % BW -> Z & (BW - 1) 6075 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6076 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6077 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6078 } else { 6079 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6080 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6081 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6082 } 6083 6084 SDValue One = DAG.getConstant(1, DL, ShVT); 6085 SDValue ShX, ShY; 6086 if (IsFSHL) { 6087 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6088 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6089 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6090 } else { 6091 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6092 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6093 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6094 } 6095 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6096 return true; 6097 } 6098 6099 // TODO: Merge with expandFunnelShift. 6100 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 6101 SelectionDAG &DAG) const { 6102 EVT VT = Node->getValueType(0); 6103 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6104 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6105 SDValue Op0 = Node->getOperand(0); 6106 SDValue Op1 = Node->getOperand(1); 6107 SDLoc DL(SDValue(Node, 0)); 6108 6109 EVT ShVT = Op1.getValueType(); 6110 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6111 6112 // If a rotate in the other direction is legal, use it. 6113 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6114 if (isOperationLegal(RevRot, VT)) { 6115 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6116 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6117 return true; 6118 } 6119 6120 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6121 !isOperationLegalOrCustom(ISD::SRL, VT) || 6122 !isOperationLegalOrCustom(ISD::SUB, VT) || 6123 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6124 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6125 return false; 6126 6127 // Otherwise, 6128 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 6129 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 6130 // 6131 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 6132 "Expecting the type bitwidth to be a power of 2"); 6133 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6134 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6135 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6136 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6137 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6138 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6139 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 6140 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 6141 return true; 6142 } 6143 6144 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6145 SelectionDAG &DAG) const { 6146 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6147 SDValue Src = Node->getOperand(OpNo); 6148 EVT SrcVT = Src.getValueType(); 6149 EVT DstVT = Node->getValueType(0); 6150 SDLoc dl(SDValue(Node, 0)); 6151 6152 // FIXME: Only f32 to i64 conversions are supported. 6153 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6154 return false; 6155 6156 if (Node->isStrictFPOpcode()) 6157 // When a NaN is converted to an integer a trap is allowed. We can't 6158 // use this expansion here because it would eliminate that trap. Other 6159 // traps are also allowed and cannot be eliminated. See 6160 // IEEE 754-2008 sec 5.8. 6161 return false; 6162 6163 // Expand f32 -> i64 conversion 6164 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6165 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6166 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6167 EVT IntVT = SrcVT.changeTypeToInteger(); 6168 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6169 6170 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6171 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6172 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6173 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6174 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6175 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6176 6177 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6178 6179 SDValue ExponentBits = DAG.getNode( 6180 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6181 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6182 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6183 6184 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6185 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6186 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6187 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6188 6189 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6190 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6191 DAG.getConstant(0x00800000, dl, IntVT)); 6192 6193 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6194 6195 R = DAG.getSelectCC( 6196 dl, Exponent, ExponentLoBit, 6197 DAG.getNode(ISD::SHL, dl, DstVT, R, 6198 DAG.getZExtOrTrunc( 6199 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6200 dl, IntShVT)), 6201 DAG.getNode(ISD::SRL, dl, DstVT, R, 6202 DAG.getZExtOrTrunc( 6203 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6204 dl, IntShVT)), 6205 ISD::SETGT); 6206 6207 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6208 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6209 6210 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6211 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6212 return true; 6213 } 6214 6215 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6216 SDValue &Chain, 6217 SelectionDAG &DAG) const { 6218 SDLoc dl(SDValue(Node, 0)); 6219 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6220 SDValue Src = Node->getOperand(OpNo); 6221 6222 EVT SrcVT = Src.getValueType(); 6223 EVT DstVT = Node->getValueType(0); 6224 EVT SetCCVT = 6225 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6226 EVT DstSetCCVT = 6227 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6228 6229 // Only expand vector types if we have the appropriate vector bit operations. 6230 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6231 ISD::FP_TO_SINT; 6232 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6233 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6234 return false; 6235 6236 // If the maximum float value is smaller then the signed integer range, 6237 // the destination signmask can't be represented by the float, so we can 6238 // just use FP_TO_SINT directly. 6239 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6240 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6241 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6242 if (APFloat::opOverflow & 6243 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6244 if (Node->isStrictFPOpcode()) { 6245 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6246 { Node->getOperand(0), Src }); 6247 Chain = Result.getValue(1); 6248 } else 6249 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6250 return true; 6251 } 6252 6253 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6254 SDValue Sel; 6255 6256 if (Node->isStrictFPOpcode()) { 6257 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6258 Node->getOperand(0), /*IsSignaling*/ true); 6259 Chain = Sel.getValue(1); 6260 } else { 6261 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6262 } 6263 6264 bool Strict = Node->isStrictFPOpcode() || 6265 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6266 6267 if (Strict) { 6268 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6269 // signmask then offset (the result of which should be fully representable). 6270 // Sel = Src < 0x8000000000000000 6271 // FltOfs = select Sel, 0, 0x8000000000000000 6272 // IntOfs = select Sel, 0, 0x8000000000000000 6273 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6274 6275 // TODO: Should any fast-math-flags be set for the FSUB? 6276 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6277 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6278 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6279 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6280 DAG.getConstant(0, dl, DstVT), 6281 DAG.getConstant(SignMask, dl, DstVT)); 6282 SDValue SInt; 6283 if (Node->isStrictFPOpcode()) { 6284 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6285 { Chain, Src, FltOfs }); 6286 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6287 { Val.getValue(1), Val }); 6288 Chain = SInt.getValue(1); 6289 } else { 6290 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6291 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6292 } 6293 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6294 } else { 6295 // Expand based on maximum range of FP_TO_SINT: 6296 // True = fp_to_sint(Src) 6297 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6298 // Result = select (Src < 0x8000000000000000), True, False 6299 6300 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6301 // TODO: Should any fast-math-flags be set for the FSUB? 6302 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6303 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6304 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6305 DAG.getConstant(SignMask, dl, DstVT)); 6306 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6307 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6308 } 6309 return true; 6310 } 6311 6312 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6313 SDValue &Chain, 6314 SelectionDAG &DAG) const { 6315 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6316 SDValue Src = Node->getOperand(OpNo); 6317 EVT SrcVT = Src.getValueType(); 6318 EVT DstVT = Node->getValueType(0); 6319 6320 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6321 return false; 6322 6323 // Only expand vector types if we have the appropriate vector bit operations. 6324 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6325 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6326 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6327 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6328 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6329 return false; 6330 6331 SDLoc dl(SDValue(Node, 0)); 6332 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6333 6334 // Implementation of unsigned i64 to f64 following the algorithm in 6335 // __floatundidf in compiler_rt. This implementation has the advantage 6336 // of performing rounding correctly, both in the default rounding mode 6337 // and in all alternate rounding modes. 6338 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6339 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6340 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6341 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6342 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6343 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6344 6345 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6346 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6347 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6348 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6349 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6350 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6351 if (Node->isStrictFPOpcode()) { 6352 SDValue HiSub = 6353 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6354 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6355 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6356 {HiSub.getValue(1), LoFlt, HiSub}); 6357 Chain = Result.getValue(1); 6358 } else { 6359 SDValue HiSub = 6360 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6361 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6362 } 6363 return true; 6364 } 6365 6366 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6367 SelectionDAG &DAG) const { 6368 SDLoc dl(Node); 6369 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6370 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6371 EVT VT = Node->getValueType(0); 6372 if (isOperationLegalOrCustom(NewOp, VT)) { 6373 SDValue Quiet0 = Node->getOperand(0); 6374 SDValue Quiet1 = Node->getOperand(1); 6375 6376 if (!Node->getFlags().hasNoNaNs()) { 6377 // Insert canonicalizes if it's possible we need to quiet to get correct 6378 // sNaN behavior. 6379 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6380 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6381 Node->getFlags()); 6382 } 6383 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6384 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6385 Node->getFlags()); 6386 } 6387 } 6388 6389 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6390 } 6391 6392 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6393 // instead if there are no NaNs. 6394 if (Node->getFlags().hasNoNaNs()) { 6395 unsigned IEEE2018Op = 6396 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6397 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6398 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6399 Node->getOperand(1), Node->getFlags()); 6400 } 6401 } 6402 6403 // If none of the above worked, but there are no NaNs, then expand to 6404 // a compare/select sequence. This is required for correctness since 6405 // InstCombine might have canonicalized a fcmp+select sequence to a 6406 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6407 // expansion to libcall, we might introduce a link-time dependency 6408 // on libm into a file that originally did not have one. 6409 if (Node->getFlags().hasNoNaNs()) { 6410 ISD::CondCode Pred = 6411 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6412 SDValue Op1 = Node->getOperand(0); 6413 SDValue Op2 = Node->getOperand(1); 6414 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6415 // Copy FMF flags, but always set the no-signed-zeros flag 6416 // as this is implied by the FMINNUM/FMAXNUM semantics. 6417 SDNodeFlags Flags = Node->getFlags(); 6418 Flags.setNoSignedZeros(true); 6419 SelCC->setFlags(Flags); 6420 return SelCC; 6421 } 6422 6423 return SDValue(); 6424 } 6425 6426 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6427 SelectionDAG &DAG) const { 6428 SDLoc dl(Node); 6429 EVT VT = Node->getValueType(0); 6430 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6431 SDValue Op = Node->getOperand(0); 6432 unsigned Len = VT.getScalarSizeInBits(); 6433 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6434 6435 // TODO: Add support for irregular type lengths. 6436 if (!(Len <= 128 && Len % 8 == 0)) 6437 return false; 6438 6439 // Only expand vector types if we have the appropriate vector bit operations. 6440 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6441 !isOperationLegalOrCustom(ISD::SUB, VT) || 6442 !isOperationLegalOrCustom(ISD::SRL, VT) || 6443 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6444 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6445 return false; 6446 6447 // This is the "best" algorithm from 6448 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6449 SDValue Mask55 = 6450 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6451 SDValue Mask33 = 6452 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6453 SDValue Mask0F = 6454 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6455 SDValue Mask01 = 6456 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6457 6458 // v = v - ((v >> 1) & 0x55555555...) 6459 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6460 DAG.getNode(ISD::AND, dl, VT, 6461 DAG.getNode(ISD::SRL, dl, VT, Op, 6462 DAG.getConstant(1, dl, ShVT)), 6463 Mask55)); 6464 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6465 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6466 DAG.getNode(ISD::AND, dl, VT, 6467 DAG.getNode(ISD::SRL, dl, VT, Op, 6468 DAG.getConstant(2, dl, ShVT)), 6469 Mask33)); 6470 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6471 Op = DAG.getNode(ISD::AND, dl, VT, 6472 DAG.getNode(ISD::ADD, dl, VT, Op, 6473 DAG.getNode(ISD::SRL, dl, VT, Op, 6474 DAG.getConstant(4, dl, ShVT))), 6475 Mask0F); 6476 // v = (v * 0x01010101...) >> (Len - 8) 6477 if (Len > 8) 6478 Op = 6479 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6480 DAG.getConstant(Len - 8, dl, ShVT)); 6481 6482 Result = Op; 6483 return true; 6484 } 6485 6486 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6487 SelectionDAG &DAG) const { 6488 SDLoc dl(Node); 6489 EVT VT = Node->getValueType(0); 6490 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6491 SDValue Op = Node->getOperand(0); 6492 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6493 6494 // If the non-ZERO_UNDEF version is supported we can use that instead. 6495 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6496 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6497 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6498 return true; 6499 } 6500 6501 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6502 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6503 EVT SetCCVT = 6504 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6505 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6506 SDValue Zero = DAG.getConstant(0, dl, VT); 6507 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6508 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6509 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6510 return true; 6511 } 6512 6513 // Only expand vector types if we have the appropriate vector bit operations. 6514 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6515 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6516 !isOperationLegalOrCustom(ISD::SRL, VT) || 6517 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6518 return false; 6519 6520 // for now, we do this: 6521 // x = x | (x >> 1); 6522 // x = x | (x >> 2); 6523 // ... 6524 // x = x | (x >>16); 6525 // x = x | (x >>32); // for 64-bit input 6526 // return popcount(~x); 6527 // 6528 // Ref: "Hacker's Delight" by Henry Warren 6529 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6530 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6531 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6532 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6533 } 6534 Op = DAG.getNOT(dl, Op, VT); 6535 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6536 return true; 6537 } 6538 6539 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6540 SelectionDAG &DAG) const { 6541 SDLoc dl(Node); 6542 EVT VT = Node->getValueType(0); 6543 SDValue Op = Node->getOperand(0); 6544 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6545 6546 // If the non-ZERO_UNDEF version is supported we can use that instead. 6547 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6548 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6549 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6550 return true; 6551 } 6552 6553 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6554 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6555 EVT SetCCVT = 6556 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6557 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6558 SDValue Zero = DAG.getConstant(0, dl, VT); 6559 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6560 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6561 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6562 return true; 6563 } 6564 6565 // Only expand vector types if we have the appropriate vector bit operations. 6566 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6567 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6568 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6569 !isOperationLegalOrCustom(ISD::SUB, VT) || 6570 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6571 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6572 return false; 6573 6574 // for now, we use: { return popcount(~x & (x - 1)); } 6575 // unless the target has ctlz but not ctpop, in which case we use: 6576 // { return 32 - nlz(~x & (x-1)); } 6577 // Ref: "Hacker's Delight" by Henry Warren 6578 SDValue Tmp = DAG.getNode( 6579 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6580 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6581 6582 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6583 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6584 Result = 6585 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6586 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6587 return true; 6588 } 6589 6590 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6591 return true; 6592 } 6593 6594 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6595 SelectionDAG &DAG) const { 6596 SDLoc dl(N); 6597 EVT VT = N->getValueType(0); 6598 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6599 SDValue Op = N->getOperand(0); 6600 6601 // Only expand vector types if we have the appropriate vector operations. 6602 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6603 !isOperationLegalOrCustom(ISD::ADD, VT) || 6604 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6605 return false; 6606 6607 SDValue Shift = 6608 DAG.getNode(ISD::SRA, dl, VT, Op, 6609 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6610 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6611 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6612 return true; 6613 } 6614 6615 std::pair<SDValue, SDValue> 6616 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6617 SelectionDAG &DAG) const { 6618 SDLoc SL(LD); 6619 SDValue Chain = LD->getChain(); 6620 SDValue BasePTR = LD->getBasePtr(); 6621 EVT SrcVT = LD->getMemoryVT(); 6622 EVT DstVT = LD->getValueType(0); 6623 ISD::LoadExtType ExtType = LD->getExtensionType(); 6624 6625 unsigned NumElem = SrcVT.getVectorNumElements(); 6626 6627 EVT SrcEltVT = SrcVT.getScalarType(); 6628 EVT DstEltVT = DstVT.getScalarType(); 6629 6630 // A vector must always be stored in memory as-is, i.e. without any padding 6631 // between the elements, since various code depend on it, e.g. in the 6632 // handling of a bitcast of a vector type to int, which may be done with a 6633 // vector store followed by an integer load. A vector that does not have 6634 // elements that are byte-sized must therefore be stored as an integer 6635 // built out of the extracted vector elements. 6636 if (!SrcEltVT.isByteSized()) { 6637 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 6638 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 6639 6640 unsigned NumSrcBits = SrcVT.getSizeInBits(); 6641 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 6642 6643 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 6644 SDValue SrcEltBitMask = DAG.getConstant( 6645 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 6646 6647 // Load the whole vector and avoid masking off the top bits as it makes 6648 // the codegen worse. 6649 SDValue Load = 6650 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 6651 LD->getPointerInfo(), SrcIntVT, LD->getAlignment(), 6652 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6653 6654 SmallVector<SDValue, 8> Vals; 6655 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6656 unsigned ShiftIntoIdx = 6657 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6658 SDValue ShiftAmount = 6659 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 6660 LoadVT, SL, /*LegalTypes=*/false); 6661 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 6662 SDValue Elt = 6663 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 6664 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 6665 6666 if (ExtType != ISD::NON_EXTLOAD) { 6667 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 6668 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 6669 } 6670 6671 Vals.push_back(Scalar); 6672 } 6673 6674 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6675 return std::make_pair(Value, Load.getValue(1)); 6676 } 6677 6678 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6679 assert(SrcEltVT.isByteSized()); 6680 6681 SmallVector<SDValue, 8> Vals; 6682 SmallVector<SDValue, 8> LoadChains; 6683 6684 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6685 SDValue ScalarLoad = 6686 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6687 LD->getPointerInfo().getWithOffset(Idx * Stride), 6688 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6689 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6690 6691 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6692 6693 Vals.push_back(ScalarLoad.getValue(0)); 6694 LoadChains.push_back(ScalarLoad.getValue(1)); 6695 } 6696 6697 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6698 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6699 6700 return std::make_pair(Value, NewChain); 6701 } 6702 6703 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6704 SelectionDAG &DAG) const { 6705 SDLoc SL(ST); 6706 6707 SDValue Chain = ST->getChain(); 6708 SDValue BasePtr = ST->getBasePtr(); 6709 SDValue Value = ST->getValue(); 6710 EVT StVT = ST->getMemoryVT(); 6711 6712 // The type of the data we want to save 6713 EVT RegVT = Value.getValueType(); 6714 EVT RegSclVT = RegVT.getScalarType(); 6715 6716 // The type of data as saved in memory. 6717 EVT MemSclVT = StVT.getScalarType(); 6718 6719 unsigned NumElem = StVT.getVectorNumElements(); 6720 6721 // A vector must always be stored in memory as-is, i.e. without any padding 6722 // between the elements, since various code depend on it, e.g. in the 6723 // handling of a bitcast of a vector type to int, which may be done with a 6724 // vector store followed by an integer load. A vector that does not have 6725 // elements that are byte-sized must therefore be stored as an integer 6726 // built out of the extracted vector elements. 6727 if (!MemSclVT.isByteSized()) { 6728 unsigned NumBits = StVT.getSizeInBits(); 6729 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6730 6731 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6732 6733 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6734 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6735 DAG.getVectorIdxConstant(Idx, SL)); 6736 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6737 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6738 unsigned ShiftIntoIdx = 6739 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6740 SDValue ShiftAmount = 6741 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6742 SDValue ShiftedElt = 6743 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6744 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6745 } 6746 6747 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6748 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6749 ST->getAAInfo()); 6750 } 6751 6752 // Store Stride in bytes 6753 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6754 assert(Stride && "Zero stride!"); 6755 // Extract each of the elements from the original vector and save them into 6756 // memory individually. 6757 SmallVector<SDValue, 8> Stores; 6758 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6759 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6760 DAG.getVectorIdxConstant(Idx, SL)); 6761 6762 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6763 6764 // This scalar TruncStore may be illegal, but we legalize it later. 6765 SDValue Store = DAG.getTruncStore( 6766 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6767 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6768 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6769 6770 Stores.push_back(Store); 6771 } 6772 6773 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6774 } 6775 6776 std::pair<SDValue, SDValue> 6777 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6778 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6779 "unaligned indexed loads not implemented!"); 6780 SDValue Chain = LD->getChain(); 6781 SDValue Ptr = LD->getBasePtr(); 6782 EVT VT = LD->getValueType(0); 6783 EVT LoadedVT = LD->getMemoryVT(); 6784 SDLoc dl(LD); 6785 auto &MF = DAG.getMachineFunction(); 6786 6787 if (VT.isFloatingPoint() || VT.isVector()) { 6788 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6789 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6790 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6791 LoadedVT.isVector()) { 6792 // Scalarize the load and let the individual components be handled. 6793 return scalarizeVectorLoad(LD, DAG); 6794 } 6795 6796 // Expand to a (misaligned) integer load of the same size, 6797 // then bitconvert to floating point or vector. 6798 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6799 LD->getMemOperand()); 6800 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6801 if (LoadedVT != VT) 6802 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6803 ISD::ANY_EXTEND, dl, VT, Result); 6804 6805 return std::make_pair(Result, newLoad.getValue(1)); 6806 } 6807 6808 // Copy the value to a (aligned) stack slot using (unaligned) integer 6809 // loads and stores, then do a (aligned) load from the stack slot. 6810 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6811 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6812 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6813 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6814 6815 // Make sure the stack slot is also aligned for the register type. 6816 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6817 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6818 SmallVector<SDValue, 8> Stores; 6819 SDValue StackPtr = StackBase; 6820 unsigned Offset = 0; 6821 6822 EVT PtrVT = Ptr.getValueType(); 6823 EVT StackPtrVT = StackPtr.getValueType(); 6824 6825 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6826 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6827 6828 // Do all but one copies using the full register width. 6829 for (unsigned i = 1; i < NumRegs; i++) { 6830 // Load one integer register's worth from the original location. 6831 SDValue Load = DAG.getLoad( 6832 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6833 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6834 LD->getAAInfo()); 6835 // Follow the load with a store to the stack slot. Remember the store. 6836 Stores.push_back(DAG.getStore( 6837 Load.getValue(1), dl, Load, StackPtr, 6838 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6839 // Increment the pointers. 6840 Offset += RegBytes; 6841 6842 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6843 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6844 } 6845 6846 // The last copy may be partial. Do an extending load. 6847 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6848 8 * (LoadedBytes - Offset)); 6849 SDValue Load = 6850 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6851 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6852 MinAlign(LD->getAlignment(), Offset), 6853 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6854 // Follow the load with a store to the stack slot. Remember the store. 6855 // On big-endian machines this requires a truncating store to ensure 6856 // that the bits end up in the right place. 6857 Stores.push_back(DAG.getTruncStore( 6858 Load.getValue(1), dl, Load, StackPtr, 6859 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6860 6861 // The order of the stores doesn't matter - say it with a TokenFactor. 6862 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6863 6864 // Finally, perform the original load only redirected to the stack slot. 6865 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6866 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6867 LoadedVT); 6868 6869 // Callers expect a MERGE_VALUES node. 6870 return std::make_pair(Load, TF); 6871 } 6872 6873 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6874 "Unaligned load of unsupported type."); 6875 6876 // Compute the new VT that is half the size of the old one. This is an 6877 // integer MVT. 6878 unsigned NumBits = LoadedVT.getSizeInBits(); 6879 EVT NewLoadedVT; 6880 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6881 NumBits >>= 1; 6882 6883 unsigned Alignment = LD->getAlignment(); 6884 unsigned IncrementSize = NumBits / 8; 6885 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6886 6887 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6888 if (HiExtType == ISD::NON_EXTLOAD) 6889 HiExtType = ISD::ZEXTLOAD; 6890 6891 // Load the value in two parts 6892 SDValue Lo, Hi; 6893 if (DAG.getDataLayout().isLittleEndian()) { 6894 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6895 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6896 LD->getAAInfo()); 6897 6898 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6899 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6900 LD->getPointerInfo().getWithOffset(IncrementSize), 6901 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6902 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6903 } else { 6904 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6905 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6906 LD->getAAInfo()); 6907 6908 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6909 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6910 LD->getPointerInfo().getWithOffset(IncrementSize), 6911 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6912 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6913 } 6914 6915 // aggregate the two parts 6916 SDValue ShiftAmount = 6917 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6918 DAG.getDataLayout())); 6919 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6920 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6921 6922 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6923 Hi.getValue(1)); 6924 6925 return std::make_pair(Result, TF); 6926 } 6927 6928 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6929 SelectionDAG &DAG) const { 6930 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6931 "unaligned indexed stores not implemented!"); 6932 SDValue Chain = ST->getChain(); 6933 SDValue Ptr = ST->getBasePtr(); 6934 SDValue Val = ST->getValue(); 6935 EVT VT = Val.getValueType(); 6936 int Alignment = ST->getAlignment(); 6937 auto &MF = DAG.getMachineFunction(); 6938 EVT StoreMemVT = ST->getMemoryVT(); 6939 6940 SDLoc dl(ST); 6941 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6942 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6943 if (isTypeLegal(intVT)) { 6944 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6945 StoreMemVT.isVector()) { 6946 // Scalarize the store and let the individual components be handled. 6947 SDValue Result = scalarizeVectorStore(ST, DAG); 6948 return Result; 6949 } 6950 // Expand to a bitconvert of the value to the integer type of the 6951 // same size, then a (misaligned) int store. 6952 // FIXME: Does not handle truncating floating point stores! 6953 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6954 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6955 Alignment, ST->getMemOperand()->getFlags()); 6956 return Result; 6957 } 6958 // Do a (aligned) store to a stack slot, then copy from the stack slot 6959 // to the final destination using (unaligned) integer loads and stores. 6960 MVT RegVT = getRegisterType( 6961 *DAG.getContext(), 6962 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6963 EVT PtrVT = Ptr.getValueType(); 6964 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6965 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6966 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6967 6968 // Make sure the stack slot is also aligned for the register type. 6969 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6970 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6971 6972 // Perform the original store, only redirected to the stack slot. 6973 SDValue Store = DAG.getTruncStore( 6974 Chain, dl, Val, StackPtr, 6975 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6976 6977 EVT StackPtrVT = StackPtr.getValueType(); 6978 6979 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6980 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6981 SmallVector<SDValue, 8> Stores; 6982 unsigned Offset = 0; 6983 6984 // Do all but one copies using the full register width. 6985 for (unsigned i = 1; i < NumRegs; i++) { 6986 // Load one integer register's worth from the stack slot. 6987 SDValue Load = DAG.getLoad( 6988 RegVT, dl, Store, StackPtr, 6989 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6990 // Store it to the final location. Remember the store. 6991 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6992 ST->getPointerInfo().getWithOffset(Offset), 6993 MinAlign(ST->getAlignment(), Offset), 6994 ST->getMemOperand()->getFlags())); 6995 // Increment the pointers. 6996 Offset += RegBytes; 6997 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6998 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6999 } 7000 7001 // The last store may be partial. Do a truncating store. On big-endian 7002 // machines this requires an extending load from the stack slot to ensure 7003 // that the bits are in the right place. 7004 EVT LoadMemVT = 7005 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7006 7007 // Load from the stack slot. 7008 SDValue Load = DAG.getExtLoad( 7009 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7010 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7011 7012 Stores.push_back( 7013 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7014 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7015 MinAlign(ST->getAlignment(), Offset), 7016 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7017 // The order of the stores doesn't matter - say it with a TokenFactor. 7018 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7019 return Result; 7020 } 7021 7022 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7023 "Unaligned store of unknown type."); 7024 // Get the half-size VT 7025 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7026 int NumBits = NewStoredVT.getSizeInBits(); 7027 int IncrementSize = NumBits / 8; 7028 7029 // Divide the stored value in two parts. 7030 SDValue ShiftAmount = DAG.getConstant( 7031 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7032 SDValue Lo = Val; 7033 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7034 7035 // Store the two parts 7036 SDValue Store1, Store2; 7037 Store1 = DAG.getTruncStore(Chain, dl, 7038 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7039 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7040 ST->getMemOperand()->getFlags()); 7041 7042 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 7043 Alignment = MinAlign(Alignment, IncrementSize); 7044 Store2 = DAG.getTruncStore( 7045 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7046 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7047 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7048 7049 SDValue Result = 7050 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7051 return Result; 7052 } 7053 7054 SDValue 7055 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7056 const SDLoc &DL, EVT DataVT, 7057 SelectionDAG &DAG, 7058 bool IsCompressedMemory) const { 7059 SDValue Increment; 7060 EVT AddrVT = Addr.getValueType(); 7061 EVT MaskVT = Mask.getValueType(); 7062 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 7063 "Incompatible types of Data and Mask"); 7064 if (IsCompressedMemory) { 7065 // Incrementing the pointer according to number of '1's in the mask. 7066 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7067 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7068 if (MaskIntVT.getSizeInBits() < 32) { 7069 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7070 MaskIntVT = MVT::i32; 7071 } 7072 7073 // Count '1's with POPCNT. 7074 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7075 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7076 // Scale is an element size in bytes. 7077 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7078 AddrVT); 7079 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7080 } else 7081 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7082 7083 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7084 } 7085 7086 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7087 SDValue Idx, 7088 EVT VecVT, 7089 const SDLoc &dl) { 7090 if (isa<ConstantSDNode>(Idx)) 7091 return Idx; 7092 7093 EVT IdxVT = Idx.getValueType(); 7094 unsigned NElts = VecVT.getVectorNumElements(); 7095 if (isPowerOf2_32(NElts)) { 7096 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7097 Log2_32(NElts)); 7098 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7099 DAG.getConstant(Imm, dl, IdxVT)); 7100 } 7101 7102 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7103 DAG.getConstant(NElts - 1, dl, IdxVT)); 7104 } 7105 7106 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7107 SDValue VecPtr, EVT VecVT, 7108 SDValue Index) const { 7109 SDLoc dl(Index); 7110 // Make sure the index type is big enough to compute in. 7111 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7112 7113 EVT EltVT = VecVT.getVectorElementType(); 7114 7115 // Calculate the element offset and add it to the pointer. 7116 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 7117 assert(EltSize * 8 == EltVT.getSizeInBits() && 7118 "Converting bits to bytes lost precision"); 7119 7120 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7121 7122 EVT IdxVT = Index.getValueType(); 7123 7124 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7125 DAG.getConstant(EltSize, dl, IdxVT)); 7126 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7127 } 7128 7129 //===----------------------------------------------------------------------===// 7130 // Implementation of Emulated TLS Model 7131 //===----------------------------------------------------------------------===// 7132 7133 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7134 SelectionDAG &DAG) const { 7135 // Access to address of TLS varialbe xyz is lowered to a function call: 7136 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7137 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7138 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7139 SDLoc dl(GA); 7140 7141 ArgListTy Args; 7142 ArgListEntry Entry; 7143 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7144 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7145 StringRef EmuTlsVarName(NameString); 7146 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7147 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7148 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7149 Entry.Ty = VoidPtrType; 7150 Args.push_back(Entry); 7151 7152 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7153 7154 TargetLowering::CallLoweringInfo CLI(DAG); 7155 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7156 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7157 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7158 7159 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7160 // At last for X86 targets, maybe good for other targets too? 7161 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7162 MFI.setAdjustsStack(true); // Is this only for X86 target? 7163 MFI.setHasCalls(true); 7164 7165 assert((GA->getOffset() == 0) && 7166 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7167 return CallResult.first; 7168 } 7169 7170 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7171 SelectionDAG &DAG) const { 7172 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7173 if (!isCtlzFast()) 7174 return SDValue(); 7175 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7176 SDLoc dl(Op); 7177 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7178 if (C->isNullValue() && CC == ISD::SETEQ) { 7179 EVT VT = Op.getOperand(0).getValueType(); 7180 SDValue Zext = Op.getOperand(0); 7181 if (VT.bitsLT(MVT::i32)) { 7182 VT = MVT::i32; 7183 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7184 } 7185 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7186 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7187 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7188 DAG.getConstant(Log2b, dl, MVT::i32)); 7189 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7190 } 7191 } 7192 return SDValue(); 7193 } 7194 7195 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7196 unsigned Opcode = Node->getOpcode(); 7197 SDValue LHS = Node->getOperand(0); 7198 SDValue RHS = Node->getOperand(1); 7199 EVT VT = LHS.getValueType(); 7200 SDLoc dl(Node); 7201 7202 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7203 assert(VT.isInteger() && "Expected operands to be integers"); 7204 7205 // usub.sat(a, b) -> umax(a, b) - b 7206 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7207 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7208 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7209 } 7210 7211 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7212 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7213 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7214 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7215 } 7216 7217 unsigned OverflowOp; 7218 switch (Opcode) { 7219 case ISD::SADDSAT: 7220 OverflowOp = ISD::SADDO; 7221 break; 7222 case ISD::UADDSAT: 7223 OverflowOp = ISD::UADDO; 7224 break; 7225 case ISD::SSUBSAT: 7226 OverflowOp = ISD::SSUBO; 7227 break; 7228 case ISD::USUBSAT: 7229 OverflowOp = ISD::USUBO; 7230 break; 7231 default: 7232 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7233 "addition or subtraction node."); 7234 } 7235 7236 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7237 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7238 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7239 LHS, RHS); 7240 SDValue SumDiff = Result.getValue(0); 7241 SDValue Overflow = Result.getValue(1); 7242 SDValue Zero = DAG.getConstant(0, dl, VT); 7243 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7244 7245 if (Opcode == ISD::UADDSAT) { 7246 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7247 // (LHS + RHS) | OverflowMask 7248 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7249 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7250 } 7251 // Overflow ? 0xffff.... : (LHS + RHS) 7252 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7253 } else if (Opcode == ISD::USUBSAT) { 7254 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7255 // (LHS - RHS) & ~OverflowMask 7256 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7257 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7258 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7259 } 7260 // Overflow ? 0 : (LHS - RHS) 7261 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7262 } else { 7263 // SatMax -> Overflow && SumDiff < 0 7264 // SatMin -> Overflow && SumDiff >= 0 7265 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7266 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7267 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7268 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7269 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7270 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7271 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7272 } 7273 } 7274 7275 SDValue 7276 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7277 assert((Node->getOpcode() == ISD::SMULFIX || 7278 Node->getOpcode() == ISD::UMULFIX || 7279 Node->getOpcode() == ISD::SMULFIXSAT || 7280 Node->getOpcode() == ISD::UMULFIXSAT) && 7281 "Expected a fixed point multiplication opcode"); 7282 7283 SDLoc dl(Node); 7284 SDValue LHS = Node->getOperand(0); 7285 SDValue RHS = Node->getOperand(1); 7286 EVT VT = LHS.getValueType(); 7287 unsigned Scale = Node->getConstantOperandVal(2); 7288 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7289 Node->getOpcode() == ISD::UMULFIXSAT); 7290 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7291 Node->getOpcode() == ISD::SMULFIXSAT); 7292 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7293 unsigned VTSize = VT.getScalarSizeInBits(); 7294 7295 if (!Scale) { 7296 // [us]mul.fix(a, b, 0) -> mul(a, b) 7297 if (!Saturating) { 7298 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7299 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7300 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7301 SDValue Result = 7302 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7303 SDValue Product = Result.getValue(0); 7304 SDValue Overflow = Result.getValue(1); 7305 SDValue Zero = DAG.getConstant(0, dl, VT); 7306 7307 APInt MinVal = APInt::getSignedMinValue(VTSize); 7308 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7309 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7310 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7311 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7312 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7313 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7314 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7315 SDValue Result = 7316 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7317 SDValue Product = Result.getValue(0); 7318 SDValue Overflow = Result.getValue(1); 7319 7320 APInt MaxVal = APInt::getMaxValue(VTSize); 7321 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7322 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7323 } 7324 } 7325 7326 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7327 "Expected scale to be less than the number of bits if signed or at " 7328 "most the number of bits if unsigned."); 7329 assert(LHS.getValueType() == RHS.getValueType() && 7330 "Expected both operands to be the same type"); 7331 7332 // Get the upper and lower bits of the result. 7333 SDValue Lo, Hi; 7334 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7335 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7336 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7337 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7338 Lo = Result.getValue(0); 7339 Hi = Result.getValue(1); 7340 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7341 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7342 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7343 } else if (VT.isVector()) { 7344 return SDValue(); 7345 } else { 7346 report_fatal_error("Unable to expand fixed point multiplication."); 7347 } 7348 7349 if (Scale == VTSize) 7350 // Result is just the top half since we'd be shifting by the width of the 7351 // operand. Overflow impossible so this works for both UMULFIX and 7352 // UMULFIXSAT. 7353 return Hi; 7354 7355 // The result will need to be shifted right by the scale since both operands 7356 // are scaled. The result is given to us in 2 halves, so we only want part of 7357 // both in the result. 7358 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7359 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7360 DAG.getConstant(Scale, dl, ShiftTy)); 7361 if (!Saturating) 7362 return Result; 7363 7364 if (!Signed) { 7365 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7366 // widened multiplication) aren't all zeroes. 7367 7368 // Saturate to max if ((Hi >> Scale) != 0), 7369 // which is the same as if (Hi > ((1 << Scale) - 1)) 7370 APInt MaxVal = APInt::getMaxValue(VTSize); 7371 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7372 dl, VT); 7373 Result = DAG.getSelectCC(dl, Hi, LowMask, 7374 DAG.getConstant(MaxVal, dl, VT), Result, 7375 ISD::SETUGT); 7376 7377 return Result; 7378 } 7379 7380 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7381 // widened multiplication) aren't all ones or all zeroes. 7382 7383 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7384 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7385 7386 if (Scale == 0) { 7387 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7388 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7389 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7390 // Saturated to SatMin if wide product is negative, and SatMax if wide 7391 // product is positive ... 7392 SDValue Zero = DAG.getConstant(0, dl, VT); 7393 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7394 ISD::SETLT); 7395 // ... but only if we overflowed. 7396 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7397 } 7398 7399 // We handled Scale==0 above so all the bits to examine is in Hi. 7400 7401 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7402 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7403 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7404 dl, VT); 7405 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7406 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7407 // which is the same as if (HI < (-1 << (Scale - 1)) 7408 SDValue HighMask = 7409 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7410 dl, VT); 7411 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7412 return Result; 7413 } 7414 7415 SDValue 7416 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7417 SDValue LHS, SDValue RHS, 7418 unsigned Scale, SelectionDAG &DAG) const { 7419 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 7420 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 7421 "Expected a fixed point division opcode"); 7422 7423 EVT VT = LHS.getValueType(); 7424 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 7425 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 7426 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7427 7428 // If there is enough room in the type to upscale the LHS or downscale the 7429 // RHS before the division, we can perform it in this type without having to 7430 // resize. For signed operations, the LHS headroom is the number of 7431 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7432 // The headroom for the RHS is the number of trailing zeroes. 7433 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7434 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7435 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7436 7437 // For signed saturating operations, we need to be able to detect true integer 7438 // division overflow; that is, when you have MIN / -EPS. However, this 7439 // is undefined behavior and if we emit divisions that could take such 7440 // values it may cause undesired behavior (arithmetic exceptions on x86, for 7441 // example). 7442 // Avoid this by requiring an extra bit so that we never get this case. 7443 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 7444 // signed saturating division, we need to emit a whopping 32-bit division. 7445 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 7446 return SDValue(); 7447 7448 unsigned LHSShift = std::min(LHSLead, Scale); 7449 unsigned RHSShift = Scale - LHSShift; 7450 7451 // At this point, we know that if we shift the LHS up by LHSShift and the 7452 // RHS down by RHSShift, we can emit a regular division with a final scaling 7453 // factor of Scale. 7454 7455 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7456 if (LHSShift) 7457 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7458 DAG.getConstant(LHSShift, dl, ShiftTy)); 7459 if (RHSShift) 7460 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7461 DAG.getConstant(RHSShift, dl, ShiftTy)); 7462 7463 SDValue Quot; 7464 if (Signed) { 7465 // For signed operations, if the resulting quotient is negative and the 7466 // remainder is nonzero, subtract 1 from the quotient to round towards 7467 // negative infinity. 7468 SDValue Rem; 7469 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7470 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7471 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7472 if (isTypeLegal(VT) && 7473 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7474 Quot = DAG.getNode(ISD::SDIVREM, dl, 7475 DAG.getVTList(VT, VT), 7476 LHS, RHS); 7477 Rem = Quot.getValue(1); 7478 Quot = Quot.getValue(0); 7479 } else { 7480 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7481 LHS, RHS); 7482 Rem = DAG.getNode(ISD::SREM, dl, VT, 7483 LHS, RHS); 7484 } 7485 SDValue Zero = DAG.getConstant(0, dl, VT); 7486 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7487 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7488 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7489 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7490 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7491 DAG.getConstant(1, dl, VT)); 7492 Quot = DAG.getSelect(dl, VT, 7493 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7494 Sub1, Quot); 7495 } else 7496 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7497 LHS, RHS); 7498 7499 return Quot; 7500 } 7501 7502 void TargetLowering::expandUADDSUBO( 7503 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7504 SDLoc dl(Node); 7505 SDValue LHS = Node->getOperand(0); 7506 SDValue RHS = Node->getOperand(1); 7507 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7508 7509 // If ADD/SUBCARRY is legal, use that instead. 7510 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7511 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7512 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7513 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7514 { LHS, RHS, CarryIn }); 7515 Result = SDValue(NodeCarry.getNode(), 0); 7516 Overflow = SDValue(NodeCarry.getNode(), 1); 7517 return; 7518 } 7519 7520 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7521 LHS.getValueType(), LHS, RHS); 7522 7523 EVT ResultType = Node->getValueType(1); 7524 EVT SetCCType = getSetCCResultType( 7525 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7526 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7527 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7528 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7529 } 7530 7531 void TargetLowering::expandSADDSUBO( 7532 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7533 SDLoc dl(Node); 7534 SDValue LHS = Node->getOperand(0); 7535 SDValue RHS = Node->getOperand(1); 7536 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7537 7538 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7539 LHS.getValueType(), LHS, RHS); 7540 7541 EVT ResultType = Node->getValueType(1); 7542 EVT OType = getSetCCResultType( 7543 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7544 7545 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7546 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7547 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7548 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7549 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7550 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7551 return; 7552 } 7553 7554 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7555 7556 // For an addition, the result should be less than one of the operands (LHS) 7557 // if and only if the other operand (RHS) is negative, otherwise there will 7558 // be overflow. 7559 // For a subtraction, the result should be less than one of the operands 7560 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7561 // otherwise there will be overflow. 7562 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7563 SDValue ConditionRHS = 7564 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7565 7566 Overflow = DAG.getBoolExtOrTrunc( 7567 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7568 ResultType, ResultType); 7569 } 7570 7571 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7572 SDValue &Overflow, SelectionDAG &DAG) const { 7573 SDLoc dl(Node); 7574 EVT VT = Node->getValueType(0); 7575 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7576 SDValue LHS = Node->getOperand(0); 7577 SDValue RHS = Node->getOperand(1); 7578 bool isSigned = Node->getOpcode() == ISD::SMULO; 7579 7580 // For power-of-two multiplications we can use a simpler shift expansion. 7581 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7582 const APInt &C = RHSC->getAPIntValue(); 7583 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7584 if (C.isPowerOf2()) { 7585 // smulo(x, signed_min) is same as umulo(x, signed_min). 7586 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7587 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7588 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7589 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7590 Overflow = DAG.getSetCC(dl, SetCCVT, 7591 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7592 dl, VT, Result, ShiftAmt), 7593 LHS, ISD::SETNE); 7594 return true; 7595 } 7596 } 7597 7598 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7599 if (VT.isVector()) 7600 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7601 VT.getVectorNumElements()); 7602 7603 SDValue BottomHalf; 7604 SDValue TopHalf; 7605 static const unsigned Ops[2][3] = 7606 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7607 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7608 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7609 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7610 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7611 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7612 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7613 RHS); 7614 TopHalf = BottomHalf.getValue(1); 7615 } else if (isTypeLegal(WideVT)) { 7616 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7617 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7618 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7619 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7620 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7621 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7622 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7623 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7624 } else { 7625 if (VT.isVector()) 7626 return false; 7627 7628 // We can fall back to a libcall with an illegal type for the MUL if we 7629 // have a libcall big enough. 7630 // Also, we can fall back to a division in some cases, but that's a big 7631 // performance hit in the general case. 7632 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7633 if (WideVT == MVT::i16) 7634 LC = RTLIB::MUL_I16; 7635 else if (WideVT == MVT::i32) 7636 LC = RTLIB::MUL_I32; 7637 else if (WideVT == MVT::i64) 7638 LC = RTLIB::MUL_I64; 7639 else if (WideVT == MVT::i128) 7640 LC = RTLIB::MUL_I128; 7641 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7642 7643 SDValue HiLHS; 7644 SDValue HiRHS; 7645 if (isSigned) { 7646 // The high part is obtained by SRA'ing all but one of the bits of low 7647 // part. 7648 unsigned LoSize = VT.getSizeInBits(); 7649 HiLHS = 7650 DAG.getNode(ISD::SRA, dl, VT, LHS, 7651 DAG.getConstant(LoSize - 1, dl, 7652 getPointerTy(DAG.getDataLayout()))); 7653 HiRHS = 7654 DAG.getNode(ISD::SRA, dl, VT, RHS, 7655 DAG.getConstant(LoSize - 1, dl, 7656 getPointerTy(DAG.getDataLayout()))); 7657 } else { 7658 HiLHS = DAG.getConstant(0, dl, VT); 7659 HiRHS = DAG.getConstant(0, dl, VT); 7660 } 7661 7662 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7663 // pre-lowered to the correct types. This all depends upon WideVT not 7664 // being a legal type for the architecture and thus has to be split to 7665 // two arguments. 7666 SDValue Ret; 7667 TargetLowering::MakeLibCallOptions CallOptions; 7668 CallOptions.setSExt(isSigned); 7669 CallOptions.setIsPostTypeLegalization(true); 7670 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7671 // Halves of WideVT are packed into registers in different order 7672 // depending on platform endianness. This is usually handled by 7673 // the C calling convention, but we can't defer to it in 7674 // the legalizer. 7675 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7676 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7677 } else { 7678 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7679 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7680 } 7681 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7682 "Ret value is a collection of constituent nodes holding result."); 7683 if (DAG.getDataLayout().isLittleEndian()) { 7684 // Same as above. 7685 BottomHalf = Ret.getOperand(0); 7686 TopHalf = Ret.getOperand(1); 7687 } else { 7688 BottomHalf = Ret.getOperand(1); 7689 TopHalf = Ret.getOperand(0); 7690 } 7691 } 7692 7693 Result = BottomHalf; 7694 if (isSigned) { 7695 SDValue ShiftAmt = DAG.getConstant( 7696 VT.getScalarSizeInBits() - 1, dl, 7697 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7698 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7699 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7700 } else { 7701 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7702 DAG.getConstant(0, dl, VT), ISD::SETNE); 7703 } 7704 7705 // Truncate the result if SetCC returns a larger type than needed. 7706 EVT RType = Node->getValueType(1); 7707 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7708 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7709 7710 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7711 "Unexpected result type for S/UMULO legalization"); 7712 return true; 7713 } 7714 7715 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7716 SDLoc dl(Node); 7717 bool NoNaN = Node->getFlags().hasNoNaNs(); 7718 unsigned BaseOpcode = 0; 7719 switch (Node->getOpcode()) { 7720 default: llvm_unreachable("Expected VECREDUCE opcode"); 7721 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7722 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7723 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7724 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7725 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7726 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7727 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7728 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7729 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7730 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7731 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7732 case ISD::VECREDUCE_FMAX: 7733 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7734 break; 7735 case ISD::VECREDUCE_FMIN: 7736 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7737 break; 7738 } 7739 7740 SDValue Op = Node->getOperand(0); 7741 EVT VT = Op.getValueType(); 7742 7743 // Try to use a shuffle reduction for power of two vectors. 7744 if (VT.isPow2VectorType()) { 7745 while (VT.getVectorNumElements() > 1) { 7746 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7747 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7748 break; 7749 7750 SDValue Lo, Hi; 7751 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7752 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7753 VT = HalfVT; 7754 } 7755 } 7756 7757 EVT EltVT = VT.getVectorElementType(); 7758 unsigned NumElts = VT.getVectorNumElements(); 7759 7760 SmallVector<SDValue, 8> Ops; 7761 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7762 7763 SDValue Res = Ops[0]; 7764 for (unsigned i = 1; i < NumElts; i++) 7765 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7766 7767 // Result type may be wider than element type. 7768 if (EltVT != Node->getValueType(0)) 7769 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7770 return Res; 7771 } 7772