1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     MCRegister Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
114   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
115   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
116   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
117   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
118   Alignment = Call->getParamAlign(ArgIdx);
119   ByValType = nullptr;
120   if (IsByVal)
121     ByValType = Call->getParamByValType(ArgIdx);
122   PreallocatedType = nullptr;
123   if (IsPreallocated)
124     PreallocatedType = Call->getParamPreallocatedType(ArgIdx);
125 }
126 
127 /// Generate a libcall taking the given operands as arguments and returning a
128 /// result of type RetVT.
129 std::pair<SDValue, SDValue>
130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
131                             ArrayRef<SDValue> Ops,
132                             MakeLibCallOptions CallOptions,
133                             const SDLoc &dl,
134                             SDValue InChain) const {
135   if (!InChain)
136     InChain = DAG.getEntryNode();
137 
138   TargetLowering::ArgListTy Args;
139   Args.reserve(Ops.size());
140 
141   TargetLowering::ArgListEntry Entry;
142   for (unsigned i = 0; i < Ops.size(); ++i) {
143     SDValue NewOp = Ops[i];
144     Entry.Node = NewOp;
145     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
146     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
147                                                  CallOptions.IsSExt);
148     Entry.IsZExt = !Entry.IsSExt;
149 
150     if (CallOptions.IsSoften &&
151         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
152       Entry.IsSExt = Entry.IsZExt = false;
153     }
154     Args.push_back(Entry);
155   }
156 
157   if (LC == RTLIB::UNKNOWN_LIBCALL)
158     report_fatal_error("Unsupported library call operation!");
159   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
160                                          getPointerTy(DAG.getDataLayout()));
161 
162   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
163   TargetLowering::CallLoweringInfo CLI(DAG);
164   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
165   bool zeroExtend = !signExtend;
166 
167   if (CallOptions.IsSoften &&
168       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
169     signExtend = zeroExtend = false;
170   }
171 
172   CLI.setDebugLoc(dl)
173       .setChain(InChain)
174       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
175       .setNoReturn(CallOptions.DoesNotReturn)
176       .setDiscardResult(!CallOptions.IsReturnValueUsed)
177       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
178       .setSExtResult(signExtend)
179       .setZExtResult(zeroExtend);
180   return LowerCallTo(CLI);
181 }
182 
183 bool TargetLowering::findOptimalMemOpLowering(
184     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
185     unsigned SrcAS, const AttributeList &FuncAttributes) const {
186   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
187     return false;
188 
189   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
190 
191   if (VT == MVT::Other) {
192     // Use the largest integer type whose alignment constraints are satisfied.
193     // We only need to check DstAlign here as SrcAlign is always greater or
194     // equal to DstAlign (or zero).
195     VT = MVT::i64;
196     if (Op.isFixedDstAlign())
197       while (
198           Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
199           !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
200         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
201     assert(VT.isInteger());
202 
203     // Find the largest legal integer type.
204     MVT LVT = MVT::i64;
205     while (!isTypeLegal(LVT))
206       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
207     assert(LVT.isInteger());
208 
209     // If the type we've chosen is larger than the largest legal integer type
210     // then use that instead.
211     if (VT.bitsGT(LVT))
212       VT = LVT;
213   }
214 
215   unsigned NumMemOps = 0;
216   uint64_t Size = Op.size();
217   while (Size) {
218     unsigned VTSize = VT.getSizeInBits() / 8;
219     while (VTSize > Size) {
220       // For now, only use non-vector load / store's for the left-over pieces.
221       EVT NewVT = VT;
222       unsigned NewVTSize;
223 
224       bool Found = false;
225       if (VT.isVector() || VT.isFloatingPoint()) {
226         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
227         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
228             isSafeMemOpType(NewVT.getSimpleVT()))
229           Found = true;
230         else if (NewVT == MVT::i64 &&
231                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
232                  isSafeMemOpType(MVT::f64)) {
233           // i64 is usually not legal on 32-bit targets, but f64 may be.
234           NewVT = MVT::f64;
235           Found = true;
236         }
237       }
238 
239       if (!Found) {
240         do {
241           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
242           if (NewVT == MVT::i8)
243             break;
244         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
245       }
246       NewVTSize = NewVT.getSizeInBits() / 8;
247 
248       // If the new VT cannot cover all of the remaining bits, then consider
249       // issuing a (or a pair of) unaligned and overlapping load / store.
250       bool Fast;
251       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
252           allowsMisalignedMemoryAccesses(
253               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0,
254               MachineMemOperand::MONone, &Fast) &&
255           Fast)
256         VTSize = Size;
257       else {
258         VT = NewVT;
259         VTSize = NewVTSize;
260       }
261     }
262 
263     if (++NumMemOps > Limit)
264       return false;
265 
266     MemOps.push_back(VT);
267     Size -= VTSize;
268   }
269 
270   return true;
271 }
272 
273 /// Soften the operands of a comparison. This code is shared among BR_CC,
274 /// SELECT_CC, and SETCC handlers.
275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
276                                          SDValue &NewLHS, SDValue &NewRHS,
277                                          ISD::CondCode &CCCode,
278                                          const SDLoc &dl, const SDValue OldLHS,
279                                          const SDValue OldRHS) const {
280   SDValue Chain;
281   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
282                              OldRHS, Chain);
283 }
284 
285 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
286                                          SDValue &NewLHS, SDValue &NewRHS,
287                                          ISD::CondCode &CCCode,
288                                          const SDLoc &dl, const SDValue OldLHS,
289                                          const SDValue OldRHS,
290                                          SDValue &Chain,
291                                          bool IsSignaling) const {
292   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
293   // not supporting it. We can update this code when libgcc provides such
294   // functions.
295 
296   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
297          && "Unsupported setcc type!");
298 
299   // Expand into one or more soft-fp libcall(s).
300   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
301   bool ShouldInvertCC = false;
302   switch (CCCode) {
303   case ISD::SETEQ:
304   case ISD::SETOEQ:
305     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
306           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
307           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
308     break;
309   case ISD::SETNE:
310   case ISD::SETUNE:
311     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
312           (VT == MVT::f64) ? RTLIB::UNE_F64 :
313           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
314     break;
315   case ISD::SETGE:
316   case ISD::SETOGE:
317     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
318           (VT == MVT::f64) ? RTLIB::OGE_F64 :
319           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
320     break;
321   case ISD::SETLT:
322   case ISD::SETOLT:
323     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
324           (VT == MVT::f64) ? RTLIB::OLT_F64 :
325           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
326     break;
327   case ISD::SETLE:
328   case ISD::SETOLE:
329     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
330           (VT == MVT::f64) ? RTLIB::OLE_F64 :
331           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
332     break;
333   case ISD::SETGT:
334   case ISD::SETOGT:
335     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
336           (VT == MVT::f64) ? RTLIB::OGT_F64 :
337           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
338     break;
339   case ISD::SETO:
340     ShouldInvertCC = true;
341     LLVM_FALLTHROUGH;
342   case ISD::SETUO:
343     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
344           (VT == MVT::f64) ? RTLIB::UO_F64 :
345           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
346     break;
347   case ISD::SETONE:
348     // SETONE = O && UNE
349     ShouldInvertCC = true;
350     LLVM_FALLTHROUGH;
351   case ISD::SETUEQ:
352     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
353           (VT == MVT::f64) ? RTLIB::UO_F64 :
354           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
355     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
356           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
357           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
358     break;
359   default:
360     // Invert CC for unordered comparisons
361     ShouldInvertCC = true;
362     switch (CCCode) {
363     case ISD::SETULT:
364       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
365             (VT == MVT::f64) ? RTLIB::OGE_F64 :
366             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
367       break;
368     case ISD::SETULE:
369       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
370             (VT == MVT::f64) ? RTLIB::OGT_F64 :
371             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
372       break;
373     case ISD::SETUGT:
374       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
375             (VT == MVT::f64) ? RTLIB::OLE_F64 :
376             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
377       break;
378     case ISD::SETUGE:
379       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
380             (VT == MVT::f64) ? RTLIB::OLT_F64 :
381             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
382       break;
383     default: llvm_unreachable("Do not know how to soften this setcc!");
384     }
385   }
386 
387   // Use the target specific return value for comparions lib calls.
388   EVT RetVT = getCmpLibcallReturnType();
389   SDValue Ops[2] = {NewLHS, NewRHS};
390   TargetLowering::MakeLibCallOptions CallOptions;
391   EVT OpsVT[2] = { OldLHS.getValueType(),
392                    OldRHS.getValueType() };
393   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
394   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
395   NewLHS = Call.first;
396   NewRHS = DAG.getConstant(0, dl, RetVT);
397 
398   CCCode = getCmpLibcallCC(LC1);
399   if (ShouldInvertCC) {
400     assert(RetVT.isInteger());
401     CCCode = getSetCCInverse(CCCode, RetVT);
402   }
403 
404   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
405     // Update Chain.
406     Chain = Call.second;
407   } else {
408     EVT SetCCVT =
409         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
410     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
411     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
412     CCCode = getCmpLibcallCC(LC2);
413     if (ShouldInvertCC)
414       CCCode = getSetCCInverse(CCCode, RetVT);
415     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
416     if (Chain)
417       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
418                           Call2.second);
419     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
420                          Tmp.getValueType(), Tmp, NewLHS);
421     NewRHS = SDValue();
422   }
423 }
424 
425 /// Return the entry encoding for a jump table in the current function. The
426 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
427 unsigned TargetLowering::getJumpTableEncoding() const {
428   // In non-pic modes, just use the address of a block.
429   if (!isPositionIndependent())
430     return MachineJumpTableInfo::EK_BlockAddress;
431 
432   // In PIC mode, if the target supports a GPRel32 directive, use it.
433   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
434     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
435 
436   // Otherwise, use a label difference.
437   return MachineJumpTableInfo::EK_LabelDifference32;
438 }
439 
440 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
441                                                  SelectionDAG &DAG) const {
442   // If our PIC model is GP relative, use the global offset table as the base.
443   unsigned JTEncoding = getJumpTableEncoding();
444 
445   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
446       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
447     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
448 
449   return Table;
450 }
451 
452 /// This returns the relocation base for the given PIC jumptable, the same as
453 /// getPICJumpTableRelocBase, but as an MCExpr.
454 const MCExpr *
455 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
456                                              unsigned JTI,MCContext &Ctx) const{
457   // The normal PIC reloc base is the label at the start of the jump table.
458   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
459 }
460 
461 bool
462 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
463   const TargetMachine &TM = getTargetMachine();
464   const GlobalValue *GV = GA->getGlobal();
465 
466   // If the address is not even local to this DSO we will have to load it from
467   // a got and then add the offset.
468   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
469     return false;
470 
471   // If the code is position independent we will have to add a base register.
472   if (isPositionIndependent())
473     return false;
474 
475   // Otherwise we can do it.
476   return true;
477 }
478 
479 //===----------------------------------------------------------------------===//
480 //  Optimization Methods
481 //===----------------------------------------------------------------------===//
482 
483 /// If the specified instruction has a constant integer operand and there are
484 /// bits set in that constant that are not demanded, then clear those bits and
485 /// return true.
486 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
487                                             TargetLoweringOpt &TLO) const {
488   SDLoc DL(Op);
489   unsigned Opcode = Op.getOpcode();
490 
491   // Do target-specific constant optimization.
492   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
493     return TLO.New.getNode();
494 
495   // FIXME: ISD::SELECT, ISD::SELECT_CC
496   switch (Opcode) {
497   default:
498     break;
499   case ISD::XOR:
500   case ISD::AND:
501   case ISD::OR: {
502     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
503     if (!Op1C)
504       return false;
505 
506     // If this is a 'not' op, don't touch it because that's a canonical form.
507     const APInt &C = Op1C->getAPIntValue();
508     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
509       return false;
510 
511     if (!C.isSubsetOf(Demanded)) {
512       EVT VT = Op.getValueType();
513       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
514       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
515       return TLO.CombineTo(Op, NewOp);
516     }
517 
518     break;
519   }
520   }
521 
522   return false;
523 }
524 
525 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
526 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
527 /// generalized for targets with other types of implicit widening casts.
528 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
529                                       const APInt &Demanded,
530                                       TargetLoweringOpt &TLO) const {
531   assert(Op.getNumOperands() == 2 &&
532          "ShrinkDemandedOp only supports binary operators!");
533   assert(Op.getNode()->getNumValues() == 1 &&
534          "ShrinkDemandedOp only supports nodes with one result!");
535 
536   SelectionDAG &DAG = TLO.DAG;
537   SDLoc dl(Op);
538 
539   // Early return, as this function cannot handle vector types.
540   if (Op.getValueType().isVector())
541     return false;
542 
543   // Don't do this if the node has another user, which may require the
544   // full value.
545   if (!Op.getNode()->hasOneUse())
546     return false;
547 
548   // Search for the smallest integer type with free casts to and from
549   // Op's type. For expedience, just check power-of-2 integer types.
550   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
551   unsigned DemandedSize = Demanded.getActiveBits();
552   unsigned SmallVTBits = DemandedSize;
553   if (!isPowerOf2_32(SmallVTBits))
554     SmallVTBits = NextPowerOf2(SmallVTBits);
555   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
556     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
557     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
558         TLI.isZExtFree(SmallVT, Op.getValueType())) {
559       // We found a type with free casts.
560       SDValue X = DAG.getNode(
561           Op.getOpcode(), dl, SmallVT,
562           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
563           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
564       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
565       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
566       return TLO.CombineTo(Op, Z);
567     }
568   }
569   return false;
570 }
571 
572 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
573                                           DAGCombinerInfo &DCI) const {
574   SelectionDAG &DAG = DCI.DAG;
575   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
576                         !DCI.isBeforeLegalizeOps());
577   KnownBits Known;
578 
579   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
580   if (Simplified) {
581     DCI.AddToWorklist(Op.getNode());
582     DCI.CommitTargetLoweringOpt(TLO);
583   }
584   return Simplified;
585 }
586 
587 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
588                                           KnownBits &Known,
589                                           TargetLoweringOpt &TLO,
590                                           unsigned Depth,
591                                           bool AssumeSingleUse) const {
592   EVT VT = Op.getValueType();
593   APInt DemandedElts = VT.isVector()
594                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
595                            : APInt(1, 1);
596   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
597                               AssumeSingleUse);
598 }
599 
600 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
601 // TODO: Under what circumstances can we create nodes? Constant folding?
602 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
603     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
604     SelectionDAG &DAG, unsigned Depth) const {
605   // Limit search depth.
606   if (Depth >= SelectionDAG::MaxRecursionDepth)
607     return SDValue();
608 
609   // Ignore UNDEFs.
610   if (Op.isUndef())
611     return SDValue();
612 
613   // Not demanding any bits/elts from Op.
614   if (DemandedBits == 0 || DemandedElts == 0)
615     return DAG.getUNDEF(Op.getValueType());
616 
617   unsigned NumElts = DemandedElts.getBitWidth();
618   KnownBits LHSKnown, RHSKnown;
619   switch (Op.getOpcode()) {
620   case ISD::BITCAST: {
621     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
622     EVT SrcVT = Src.getValueType();
623     EVT DstVT = Op.getValueType();
624     if (SrcVT == DstVT)
625       return Src;
626 
627     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
628     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
629     if (NumSrcEltBits == NumDstEltBits)
630       if (SDValue V = SimplifyMultipleUseDemandedBits(
631               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
632         return DAG.getBitcast(DstVT, V);
633 
634     // TODO - bigendian once we have test coverage.
635     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
636         DAG.getDataLayout().isLittleEndian()) {
637       unsigned Scale = NumDstEltBits / NumSrcEltBits;
638       unsigned NumSrcElts = SrcVT.getVectorNumElements();
639       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
640       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
641       for (unsigned i = 0; i != Scale; ++i) {
642         unsigned Offset = i * NumSrcEltBits;
643         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
644         if (!Sub.isNullValue()) {
645           DemandedSrcBits |= Sub;
646           for (unsigned j = 0; j != NumElts; ++j)
647             if (DemandedElts[j])
648               DemandedSrcElts.setBit((j * Scale) + i);
649         }
650       }
651 
652       if (SDValue V = SimplifyMultipleUseDemandedBits(
653               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
654         return DAG.getBitcast(DstVT, V);
655     }
656 
657     // TODO - bigendian once we have test coverage.
658     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
659         DAG.getDataLayout().isLittleEndian()) {
660       unsigned Scale = NumSrcEltBits / NumDstEltBits;
661       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
662       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
663       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
664       for (unsigned i = 0; i != NumElts; ++i)
665         if (DemandedElts[i]) {
666           unsigned Offset = (i % Scale) * NumDstEltBits;
667           DemandedSrcBits.insertBits(DemandedBits, Offset);
668           DemandedSrcElts.setBit(i / Scale);
669         }
670 
671       if (SDValue V = SimplifyMultipleUseDemandedBits(
672               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
673         return DAG.getBitcast(DstVT, V);
674     }
675 
676     break;
677   }
678   case ISD::AND: {
679     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
680     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
681 
682     // If all of the demanded bits are known 1 on one side, return the other.
683     // These bits cannot contribute to the result of the 'and' in this
684     // context.
685     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
686       return Op.getOperand(0);
687     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
688       return Op.getOperand(1);
689     break;
690   }
691   case ISD::OR: {
692     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
693     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
694 
695     // If all of the demanded bits are known zero on one side, return the
696     // other.  These bits cannot contribute to the result of the 'or' in this
697     // context.
698     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
699       return Op.getOperand(0);
700     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
701       return Op.getOperand(1);
702     break;
703   }
704   case ISD::XOR: {
705     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
706     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
707 
708     // If all of the demanded bits are known zero on one side, return the
709     // other.
710     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
711       return Op.getOperand(0);
712     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
713       return Op.getOperand(1);
714     break;
715   }
716   case ISD::SHL: {
717     // If we are only demanding sign bits then we can use the shift source
718     // directly.
719     if (const APInt *MaxSA =
720             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
721       SDValue Op0 = Op.getOperand(0);
722       unsigned ShAmt = MaxSA->getZExtValue();
723       unsigned BitWidth = DemandedBits.getBitWidth();
724       unsigned NumSignBits =
725           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
726       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
727       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
728         return Op0;
729     }
730     break;
731   }
732   case ISD::SETCC: {
733     SDValue Op0 = Op.getOperand(0);
734     SDValue Op1 = Op.getOperand(1);
735     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
736     // If (1) we only need the sign-bit, (2) the setcc operands are the same
737     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
738     // -1, we may be able to bypass the setcc.
739     if (DemandedBits.isSignMask() &&
740         Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() &&
741         getBooleanContents(Op0.getValueType()) ==
742             BooleanContent::ZeroOrNegativeOneBooleanContent) {
743       // If we're testing X < 0, then this compare isn't needed - just use X!
744       // FIXME: We're limiting to integer types here, but this should also work
745       // if we don't care about FP signed-zero. The use of SETLT with FP means
746       // that we don't care about NaNs.
747       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
748           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
749         return Op0;
750     }
751     break;
752   }
753   case ISD::SIGN_EXTEND_INREG: {
754     // If none of the extended bits are demanded, eliminate the sextinreg.
755     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
756     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
757       return Op.getOperand(0);
758     break;
759   }
760   case ISD::INSERT_VECTOR_ELT: {
761     // If we don't demand the inserted element, return the base vector.
762     SDValue Vec = Op.getOperand(0);
763     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
764     EVT VecVT = Vec.getValueType();
765     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
766         !DemandedElts[CIdx->getZExtValue()])
767       return Vec;
768     break;
769   }
770   case ISD::INSERT_SUBVECTOR: {
771     // If we don't demand the inserted subvector, return the base vector.
772     SDValue Vec = Op.getOperand(0);
773     SDValue Sub = Op.getOperand(1);
774     uint64_t Idx = Op.getConstantOperandVal(2);
775     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
776     if (DemandedElts.extractBits(NumSubElts, Idx) == 0)
777       return Vec;
778     break;
779   }
780   case ISD::VECTOR_SHUFFLE: {
781     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
782 
783     // If all the demanded elts are from one operand and are inline,
784     // then we can use the operand directly.
785     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
786     for (unsigned i = 0; i != NumElts; ++i) {
787       int M = ShuffleMask[i];
788       if (M < 0 || !DemandedElts[i])
789         continue;
790       AllUndef = false;
791       IdentityLHS &= (M == (int)i);
792       IdentityRHS &= ((M - NumElts) == i);
793     }
794 
795     if (AllUndef)
796       return DAG.getUNDEF(Op.getValueType());
797     if (IdentityLHS)
798       return Op.getOperand(0);
799     if (IdentityRHS)
800       return Op.getOperand(1);
801     break;
802   }
803   default:
804     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
805       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
806               Op, DemandedBits, DemandedElts, DAG, Depth))
807         return V;
808     break;
809   }
810   return SDValue();
811 }
812 
813 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
814     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
815     unsigned Depth) const {
816   EVT VT = Op.getValueType();
817   APInt DemandedElts = VT.isVector()
818                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
819                            : APInt(1, 1);
820   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
821                                          Depth);
822 }
823 
824 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
825 /// result of Op are ever used downstream. If we can use this information to
826 /// simplify Op, create a new simplified DAG node and return true, returning the
827 /// original and new nodes in Old and New. Otherwise, analyze the expression and
828 /// return a mask of Known bits for the expression (used to simplify the
829 /// caller).  The Known bits may only be accurate for those bits in the
830 /// OriginalDemandedBits and OriginalDemandedElts.
831 bool TargetLowering::SimplifyDemandedBits(
832     SDValue Op, const APInt &OriginalDemandedBits,
833     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
834     unsigned Depth, bool AssumeSingleUse) const {
835   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
836   assert(Op.getScalarValueSizeInBits() == BitWidth &&
837          "Mask size mismatches value type size!");
838 
839   unsigned NumElts = OriginalDemandedElts.getBitWidth();
840   assert((!Op.getValueType().isVector() ||
841           NumElts == Op.getValueType().getVectorNumElements()) &&
842          "Unexpected vector size");
843 
844   APInt DemandedBits = OriginalDemandedBits;
845   APInt DemandedElts = OriginalDemandedElts;
846   SDLoc dl(Op);
847   auto &DL = TLO.DAG.getDataLayout();
848 
849   // Don't know anything.
850   Known = KnownBits(BitWidth);
851 
852   // Undef operand.
853   if (Op.isUndef())
854     return false;
855 
856   if (Op.getOpcode() == ISD::Constant) {
857     // We know all of the bits for a constant!
858     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
859     Known.Zero = ~Known.One;
860     return false;
861   }
862 
863   // Other users may use these bits.
864   EVT VT = Op.getValueType();
865   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
866     if (Depth != 0) {
867       // If not at the root, Just compute the Known bits to
868       // simplify things downstream.
869       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
870       return false;
871     }
872     // If this is the root being simplified, allow it to have multiple uses,
873     // just set the DemandedBits/Elts to all bits.
874     DemandedBits = APInt::getAllOnesValue(BitWidth);
875     DemandedElts = APInt::getAllOnesValue(NumElts);
876   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
877     // Not demanding any bits/elts from Op.
878     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
879   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
880     // Limit search depth.
881     return false;
882   }
883 
884   KnownBits Known2;
885   switch (Op.getOpcode()) {
886   case ISD::TargetConstant:
887     llvm_unreachable("Can't simplify this node");
888   case ISD::SCALAR_TO_VECTOR: {
889     if (!DemandedElts[0])
890       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
891 
892     KnownBits SrcKnown;
893     SDValue Src = Op.getOperand(0);
894     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
895     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
896     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
897       return true;
898 
899     // Upper elements are undef, so only get the knownbits if we just demand
900     // the bottom element.
901     if (DemandedElts == 1)
902       Known = SrcKnown.anyextOrTrunc(BitWidth);
903     break;
904   }
905   case ISD::BUILD_VECTOR:
906     // Collect the known bits that are shared by every demanded element.
907     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
908     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
909     return false; // Don't fall through, will infinitely loop.
910   case ISD::LOAD: {
911     LoadSDNode *LD = cast<LoadSDNode>(Op);
912     if (getTargetConstantFromLoad(LD)) {
913       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
914       return false; // Don't fall through, will infinitely loop.
915     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
916       // If this is a ZEXTLoad and we are looking at the loaded value.
917       EVT MemVT = LD->getMemoryVT();
918       unsigned MemBits = MemVT.getScalarSizeInBits();
919       Known.Zero.setBitsFrom(MemBits);
920       return false; // Don't fall through, will infinitely loop.
921     }
922     break;
923   }
924   case ISD::INSERT_VECTOR_ELT: {
925     SDValue Vec = Op.getOperand(0);
926     SDValue Scl = Op.getOperand(1);
927     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
928     EVT VecVT = Vec.getValueType();
929 
930     // If index isn't constant, assume we need all vector elements AND the
931     // inserted element.
932     APInt DemandedVecElts(DemandedElts);
933     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
934       unsigned Idx = CIdx->getZExtValue();
935       DemandedVecElts.clearBit(Idx);
936 
937       // Inserted element is not required.
938       if (!DemandedElts[Idx])
939         return TLO.CombineTo(Op, Vec);
940     }
941 
942     KnownBits KnownScl;
943     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
944     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
945     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
946       return true;
947 
948     Known = KnownScl.anyextOrTrunc(BitWidth);
949 
950     KnownBits KnownVec;
951     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
952                              Depth + 1))
953       return true;
954 
955     if (!!DemandedVecElts) {
956       Known.One &= KnownVec.One;
957       Known.Zero &= KnownVec.Zero;
958     }
959 
960     return false;
961   }
962   case ISD::INSERT_SUBVECTOR: {
963     // Demand any elements from the subvector and the remainder from the src its
964     // inserted into.
965     SDValue Src = Op.getOperand(0);
966     SDValue Sub = Op.getOperand(1);
967     uint64_t Idx = Op.getConstantOperandVal(2);
968     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
969     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
970     APInt DemandedSrcElts = DemandedElts;
971     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
972 
973     KnownBits KnownSub, KnownSrc;
974     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
975                              Depth + 1))
976       return true;
977     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
978                              Depth + 1))
979       return true;
980 
981     Known.Zero.setAllBits();
982     Known.One.setAllBits();
983     if (!!DemandedSubElts) {
984       Known.One &= KnownSub.One;
985       Known.Zero &= KnownSub.Zero;
986     }
987     if (!!DemandedSrcElts) {
988       Known.One &= KnownSrc.One;
989       Known.Zero &= KnownSrc.Zero;
990     }
991 
992     // Attempt to avoid multi-use src if we don't need anything from it.
993     if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() ||
994         !DemandedSrcElts.isAllOnesValue()) {
995       SDValue NewSub = SimplifyMultipleUseDemandedBits(
996           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
997       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
998           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
999       if (NewSub || NewSrc) {
1000         NewSub = NewSub ? NewSub : Sub;
1001         NewSrc = NewSrc ? NewSrc : Src;
1002         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1003                                         Op.getOperand(2));
1004         return TLO.CombineTo(Op, NewOp);
1005       }
1006     }
1007     break;
1008   }
1009   case ISD::EXTRACT_SUBVECTOR: {
1010     // Offset the demanded elts by the subvector index.
1011     SDValue Src = Op.getOperand(0);
1012     uint64_t Idx = Op.getConstantOperandVal(1);
1013     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1014     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1015 
1016     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1017                              Depth + 1))
1018       return true;
1019 
1020     // Attempt to avoid multi-use src if we don't need anything from it.
1021     if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) {
1022       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1023           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1024       if (DemandedSrc) {
1025         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1026                                         Op.getOperand(1));
1027         return TLO.CombineTo(Op, NewOp);
1028       }
1029     }
1030     break;
1031   }
1032   case ISD::CONCAT_VECTORS: {
1033     Known.Zero.setAllBits();
1034     Known.One.setAllBits();
1035     EVT SubVT = Op.getOperand(0).getValueType();
1036     unsigned NumSubVecs = Op.getNumOperands();
1037     unsigned NumSubElts = SubVT.getVectorNumElements();
1038     for (unsigned i = 0; i != NumSubVecs; ++i) {
1039       APInt DemandedSubElts =
1040           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1041       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1042                                Known2, TLO, Depth + 1))
1043         return true;
1044       // Known bits are shared by every demanded subvector element.
1045       if (!!DemandedSubElts) {
1046         Known.One &= Known2.One;
1047         Known.Zero &= Known2.Zero;
1048       }
1049     }
1050     break;
1051   }
1052   case ISD::VECTOR_SHUFFLE: {
1053     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1054 
1055     // Collect demanded elements from shuffle operands..
1056     APInt DemandedLHS(NumElts, 0);
1057     APInt DemandedRHS(NumElts, 0);
1058     for (unsigned i = 0; i != NumElts; ++i) {
1059       if (!DemandedElts[i])
1060         continue;
1061       int M = ShuffleMask[i];
1062       if (M < 0) {
1063         // For UNDEF elements, we don't know anything about the common state of
1064         // the shuffle result.
1065         DemandedLHS.clearAllBits();
1066         DemandedRHS.clearAllBits();
1067         break;
1068       }
1069       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1070       if (M < (int)NumElts)
1071         DemandedLHS.setBit(M);
1072       else
1073         DemandedRHS.setBit(M - NumElts);
1074     }
1075 
1076     if (!!DemandedLHS || !!DemandedRHS) {
1077       SDValue Op0 = Op.getOperand(0);
1078       SDValue Op1 = Op.getOperand(1);
1079 
1080       Known.Zero.setAllBits();
1081       Known.One.setAllBits();
1082       if (!!DemandedLHS) {
1083         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1084                                  Depth + 1))
1085           return true;
1086         Known.One &= Known2.One;
1087         Known.Zero &= Known2.Zero;
1088       }
1089       if (!!DemandedRHS) {
1090         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1091                                  Depth + 1))
1092           return true;
1093         Known.One &= Known2.One;
1094         Known.Zero &= Known2.Zero;
1095       }
1096 
1097       // Attempt to avoid multi-use ops if we don't need anything from them.
1098       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1099           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1100       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1101           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1102       if (DemandedOp0 || DemandedOp1) {
1103         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1104         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1105         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1106         return TLO.CombineTo(Op, NewOp);
1107       }
1108     }
1109     break;
1110   }
1111   case ISD::AND: {
1112     SDValue Op0 = Op.getOperand(0);
1113     SDValue Op1 = Op.getOperand(1);
1114 
1115     // If the RHS is a constant, check to see if the LHS would be zero without
1116     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1117     // simplify the LHS, here we're using information from the LHS to simplify
1118     // the RHS.
1119     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1120       // Do not increment Depth here; that can cause an infinite loop.
1121       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1122       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1123       if ((LHSKnown.Zero & DemandedBits) ==
1124           (~RHSC->getAPIntValue() & DemandedBits))
1125         return TLO.CombineTo(Op, Op0);
1126 
1127       // If any of the set bits in the RHS are known zero on the LHS, shrink
1128       // the constant.
1129       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1130         return true;
1131 
1132       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1133       // constant, but if this 'and' is only clearing bits that were just set by
1134       // the xor, then this 'and' can be eliminated by shrinking the mask of
1135       // the xor. For example, for a 32-bit X:
1136       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1137       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1138           LHSKnown.One == ~RHSC->getAPIntValue()) {
1139         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1140         return TLO.CombineTo(Op, Xor);
1141       }
1142     }
1143 
1144     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1145                              Depth + 1))
1146       return true;
1147     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1148     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1149                              Known2, TLO, Depth + 1))
1150       return true;
1151     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1152 
1153     // Attempt to avoid multi-use ops if we don't need anything from them.
1154     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1155       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1156           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1157       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1158           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1159       if (DemandedOp0 || DemandedOp1) {
1160         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1161         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1162         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1163         return TLO.CombineTo(Op, NewOp);
1164       }
1165     }
1166 
1167     // If all of the demanded bits are known one on one side, return the other.
1168     // These bits cannot contribute to the result of the 'and'.
1169     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1170       return TLO.CombineTo(Op, Op0);
1171     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1172       return TLO.CombineTo(Op, Op1);
1173     // If all of the demanded bits in the inputs are known zeros, return zero.
1174     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1175       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1176     // If the RHS is a constant, see if we can simplify it.
1177     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1178       return true;
1179     // If the operation can be done in a smaller type, do so.
1180     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1181       return true;
1182 
1183     Known &= Known2;
1184     break;
1185   }
1186   case ISD::OR: {
1187     SDValue Op0 = Op.getOperand(0);
1188     SDValue Op1 = Op.getOperand(1);
1189 
1190     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1191                              Depth + 1))
1192       return true;
1193     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1194     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1195                              Known2, TLO, Depth + 1))
1196       return true;
1197     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1198 
1199     // Attempt to avoid multi-use ops if we don't need anything from them.
1200     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1201       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1202           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1203       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1204           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1205       if (DemandedOp0 || DemandedOp1) {
1206         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1207         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1208         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1209         return TLO.CombineTo(Op, NewOp);
1210       }
1211     }
1212 
1213     // If all of the demanded bits are known zero on one side, return the other.
1214     // These bits cannot contribute to the result of the 'or'.
1215     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1216       return TLO.CombineTo(Op, Op0);
1217     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1218       return TLO.CombineTo(Op, Op1);
1219     // If the RHS is a constant, see if we can simplify it.
1220     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1221       return true;
1222     // If the operation can be done in a smaller type, do so.
1223     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1224       return true;
1225 
1226     Known |= Known2;
1227     break;
1228   }
1229   case ISD::XOR: {
1230     SDValue Op0 = Op.getOperand(0);
1231     SDValue Op1 = Op.getOperand(1);
1232 
1233     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1234                              Depth + 1))
1235       return true;
1236     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1237     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1238                              Depth + 1))
1239       return true;
1240     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1241 
1242     // Attempt to avoid multi-use ops if we don't need anything from them.
1243     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1244       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1245           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1246       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1247           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1248       if (DemandedOp0 || DemandedOp1) {
1249         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1250         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1251         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1252         return TLO.CombineTo(Op, NewOp);
1253       }
1254     }
1255 
1256     // If all of the demanded bits are known zero on one side, return the other.
1257     // These bits cannot contribute to the result of the 'xor'.
1258     if (DemandedBits.isSubsetOf(Known.Zero))
1259       return TLO.CombineTo(Op, Op0);
1260     if (DemandedBits.isSubsetOf(Known2.Zero))
1261       return TLO.CombineTo(Op, Op1);
1262     // If the operation can be done in a smaller type, do so.
1263     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1264       return true;
1265 
1266     // If all of the unknown bits are known to be zero on one side or the other
1267     // (but not both) turn this into an *inclusive* or.
1268     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1269     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1270       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1271 
1272     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1273       // If one side is a constant, and all of the known set bits on the other
1274       // side are also set in the constant, turn this into an AND, as we know
1275       // the bits will be cleared.
1276       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1277       // NB: it is okay if more bits are known than are requested
1278       if (C->getAPIntValue() == Known2.One) {
1279         SDValue ANDC =
1280             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1281         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1282       }
1283 
1284       // If the RHS is a constant, see if we can change it. Don't alter a -1
1285       // constant because that's a 'not' op, and that is better for combining
1286       // and codegen.
1287       if (!C->isAllOnesValue()) {
1288         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1289           // We're flipping all demanded bits. Flip the undemanded bits too.
1290           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1291           return TLO.CombineTo(Op, New);
1292         }
1293         // If we can't turn this into a 'not', try to shrink the constant.
1294         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1295           return true;
1296       }
1297     }
1298 
1299     Known ^= Known2;
1300     break;
1301   }
1302   case ISD::SELECT:
1303     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1304                              Depth + 1))
1305       return true;
1306     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1307                              Depth + 1))
1308       return true;
1309     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1310     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1311 
1312     // If the operands are constants, see if we can simplify them.
1313     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1314       return true;
1315 
1316     // Only known if known in both the LHS and RHS.
1317     Known.One &= Known2.One;
1318     Known.Zero &= Known2.Zero;
1319     break;
1320   case ISD::SELECT_CC:
1321     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1322                              Depth + 1))
1323       return true;
1324     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1325                              Depth + 1))
1326       return true;
1327     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1328     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1329 
1330     // If the operands are constants, see if we can simplify them.
1331     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1332       return true;
1333 
1334     // Only known if known in both the LHS and RHS.
1335     Known.One &= Known2.One;
1336     Known.Zero &= Known2.Zero;
1337     break;
1338   case ISD::SETCC: {
1339     SDValue Op0 = Op.getOperand(0);
1340     SDValue Op1 = Op.getOperand(1);
1341     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1342     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1343     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1344     // -1, we may be able to bypass the setcc.
1345     if (DemandedBits.isSignMask() &&
1346         Op0.getScalarValueSizeInBits() == BitWidth &&
1347         getBooleanContents(Op0.getValueType()) ==
1348             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1349       // If we're testing X < 0, then this compare isn't needed - just use X!
1350       // FIXME: We're limiting to integer types here, but this should also work
1351       // if we don't care about FP signed-zero. The use of SETLT with FP means
1352       // that we don't care about NaNs.
1353       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1354           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1355         return TLO.CombineTo(Op, Op0);
1356 
1357       // TODO: Should we check for other forms of sign-bit comparisons?
1358       // Examples: X <= -1, X >= 0
1359     }
1360     if (getBooleanContents(Op0.getValueType()) ==
1361             TargetLowering::ZeroOrOneBooleanContent &&
1362         BitWidth > 1)
1363       Known.Zero.setBitsFrom(1);
1364     break;
1365   }
1366   case ISD::SHL: {
1367     SDValue Op0 = Op.getOperand(0);
1368     SDValue Op1 = Op.getOperand(1);
1369     EVT ShiftVT = Op1.getValueType();
1370 
1371     if (const APInt *SA =
1372             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1373       unsigned ShAmt = SA->getZExtValue();
1374       if (ShAmt == 0)
1375         return TLO.CombineTo(Op, Op0);
1376 
1377       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1378       // single shift.  We can do this if the bottom bits (which are shifted
1379       // out) are never demanded.
1380       // TODO - support non-uniform vector amounts.
1381       if (Op0.getOpcode() == ISD::SRL) {
1382         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1383           if (const APInt *SA2 =
1384                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1385             unsigned C1 = SA2->getZExtValue();
1386             unsigned Opc = ISD::SHL;
1387             int Diff = ShAmt - C1;
1388             if (Diff < 0) {
1389               Diff = -Diff;
1390               Opc = ISD::SRL;
1391             }
1392             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1393             return TLO.CombineTo(
1394                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1395           }
1396         }
1397       }
1398 
1399       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1400       // are not demanded. This will likely allow the anyext to be folded away.
1401       // TODO - support non-uniform vector amounts.
1402       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1403         SDValue InnerOp = Op0.getOperand(0);
1404         EVT InnerVT = InnerOp.getValueType();
1405         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1406         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1407             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1408           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1409           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1410             ShTy = InnerVT;
1411           SDValue NarrowShl =
1412               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1413                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1414           return TLO.CombineTo(
1415               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1416         }
1417 
1418         // Repeat the SHL optimization above in cases where an extension
1419         // intervenes: (shl (anyext (shr x, c1)), c2) to
1420         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1421         // aren't demanded (as above) and that the shifted upper c1 bits of
1422         // x aren't demanded.
1423         // TODO - support non-uniform vector amounts.
1424         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1425             InnerOp.hasOneUse()) {
1426           if (const APInt *SA2 =
1427                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1428             unsigned InnerShAmt = SA2->getZExtValue();
1429             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1430                 DemandedBits.getActiveBits() <=
1431                     (InnerBits - InnerShAmt + ShAmt) &&
1432                 DemandedBits.countTrailingZeros() >= ShAmt) {
1433               SDValue NewSA =
1434                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1435               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1436                                                InnerOp.getOperand(0));
1437               return TLO.CombineTo(
1438                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1439             }
1440           }
1441         }
1442       }
1443 
1444       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1445       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1446                                Depth + 1))
1447         return true;
1448       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1449       Known.Zero <<= ShAmt;
1450       Known.One <<= ShAmt;
1451       // low bits known zero.
1452       Known.Zero.setLowBits(ShAmt);
1453 
1454       // Try shrinking the operation as long as the shift amount will still be
1455       // in range.
1456       if ((ShAmt < DemandedBits.getActiveBits()) &&
1457           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1458         return true;
1459     }
1460 
1461     // If we are only demanding sign bits then we can use the shift source
1462     // directly.
1463     if (const APInt *MaxSA =
1464             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1465       unsigned ShAmt = MaxSA->getZExtValue();
1466       unsigned NumSignBits =
1467           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1468       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1469       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1470         return TLO.CombineTo(Op, Op0);
1471     }
1472     break;
1473   }
1474   case ISD::SRL: {
1475     SDValue Op0 = Op.getOperand(0);
1476     SDValue Op1 = Op.getOperand(1);
1477     EVT ShiftVT = Op1.getValueType();
1478 
1479     if (const APInt *SA =
1480             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1481       unsigned ShAmt = SA->getZExtValue();
1482       if (ShAmt == 0)
1483         return TLO.CombineTo(Op, Op0);
1484 
1485       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1486       // single shift.  We can do this if the top bits (which are shifted out)
1487       // are never demanded.
1488       // TODO - support non-uniform vector amounts.
1489       if (Op0.getOpcode() == ISD::SHL) {
1490         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1491           if (const APInt *SA2 =
1492                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1493             unsigned C1 = SA2->getZExtValue();
1494             unsigned Opc = ISD::SRL;
1495             int Diff = ShAmt - C1;
1496             if (Diff < 0) {
1497               Diff = -Diff;
1498               Opc = ISD::SHL;
1499             }
1500             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1501             return TLO.CombineTo(
1502                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1503           }
1504         }
1505       }
1506 
1507       APInt InDemandedMask = (DemandedBits << ShAmt);
1508 
1509       // If the shift is exact, then it does demand the low bits (and knows that
1510       // they are zero).
1511       if (Op->getFlags().hasExact())
1512         InDemandedMask.setLowBits(ShAmt);
1513 
1514       // Compute the new bits that are at the top now.
1515       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1516                                Depth + 1))
1517         return true;
1518       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1519       Known.Zero.lshrInPlace(ShAmt);
1520       Known.One.lshrInPlace(ShAmt);
1521       // High bits known zero.
1522       Known.Zero.setHighBits(ShAmt);
1523     }
1524     break;
1525   }
1526   case ISD::SRA: {
1527     SDValue Op0 = Op.getOperand(0);
1528     SDValue Op1 = Op.getOperand(1);
1529     EVT ShiftVT = Op1.getValueType();
1530 
1531     // If we only want bits that already match the signbit then we don't need
1532     // to shift.
1533     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1534     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1535         NumHiDemandedBits)
1536       return TLO.CombineTo(Op, Op0);
1537 
1538     // If this is an arithmetic shift right and only the low-bit is set, we can
1539     // always convert this into a logical shr, even if the shift amount is
1540     // variable.  The low bit of the shift cannot be an input sign bit unless
1541     // the shift amount is >= the size of the datatype, which is undefined.
1542     if (DemandedBits.isOneValue())
1543       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1544 
1545     if (const APInt *SA =
1546             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1547       unsigned ShAmt = SA->getZExtValue();
1548       if (ShAmt == 0)
1549         return TLO.CombineTo(Op, Op0);
1550 
1551       APInt InDemandedMask = (DemandedBits << ShAmt);
1552 
1553       // If the shift is exact, then it does demand the low bits (and knows that
1554       // they are zero).
1555       if (Op->getFlags().hasExact())
1556         InDemandedMask.setLowBits(ShAmt);
1557 
1558       // If any of the demanded bits are produced by the sign extension, we also
1559       // demand the input sign bit.
1560       if (DemandedBits.countLeadingZeros() < ShAmt)
1561         InDemandedMask.setSignBit();
1562 
1563       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1564                                Depth + 1))
1565         return true;
1566       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1567       Known.Zero.lshrInPlace(ShAmt);
1568       Known.One.lshrInPlace(ShAmt);
1569 
1570       // If the input sign bit is known to be zero, or if none of the top bits
1571       // are demanded, turn this into an unsigned shift right.
1572       if (Known.Zero[BitWidth - ShAmt - 1] ||
1573           DemandedBits.countLeadingZeros() >= ShAmt) {
1574         SDNodeFlags Flags;
1575         Flags.setExact(Op->getFlags().hasExact());
1576         return TLO.CombineTo(
1577             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1578       }
1579 
1580       int Log2 = DemandedBits.exactLogBase2();
1581       if (Log2 >= 0) {
1582         // The bit must come from the sign.
1583         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1584         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1585       }
1586 
1587       if (Known.One[BitWidth - ShAmt - 1])
1588         // New bits are known one.
1589         Known.One.setHighBits(ShAmt);
1590 
1591       // Attempt to avoid multi-use ops if we don't need anything from them.
1592       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1593         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1594             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1595         if (DemandedOp0) {
1596           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1597           return TLO.CombineTo(Op, NewOp);
1598         }
1599       }
1600     }
1601     break;
1602   }
1603   case ISD::FSHL:
1604   case ISD::FSHR: {
1605     SDValue Op0 = Op.getOperand(0);
1606     SDValue Op1 = Op.getOperand(1);
1607     SDValue Op2 = Op.getOperand(2);
1608     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1609 
1610     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1611       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1612 
1613       // For fshl, 0-shift returns the 1st arg.
1614       // For fshr, 0-shift returns the 2nd arg.
1615       if (Amt == 0) {
1616         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1617                                  Known, TLO, Depth + 1))
1618           return true;
1619         break;
1620       }
1621 
1622       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1623       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1624       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1625       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1626       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1627                                Depth + 1))
1628         return true;
1629       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1630                                Depth + 1))
1631         return true;
1632 
1633       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1634       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1635       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1636       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1637       Known.One |= Known2.One;
1638       Known.Zero |= Known2.Zero;
1639     }
1640 
1641     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1642     if (isPowerOf2_32(BitWidth)) {
1643       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1644       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1645                                Known2, TLO, Depth + 1))
1646         return true;
1647     }
1648     break;
1649   }
1650   case ISD::ROTL:
1651   case ISD::ROTR: {
1652     SDValue Op0 = Op.getOperand(0);
1653     SDValue Op1 = Op.getOperand(1);
1654 
1655     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1656     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1657       return TLO.CombineTo(Op, Op0);
1658 
1659     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1660     if (isPowerOf2_32(BitWidth)) {
1661       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1662       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1663                                Depth + 1))
1664         return true;
1665     }
1666     break;
1667   }
1668   case ISD::BITREVERSE: {
1669     SDValue Src = Op.getOperand(0);
1670     APInt DemandedSrcBits = DemandedBits.reverseBits();
1671     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1672                              Depth + 1))
1673       return true;
1674     Known.One = Known2.One.reverseBits();
1675     Known.Zero = Known2.Zero.reverseBits();
1676     break;
1677   }
1678   case ISD::BSWAP: {
1679     SDValue Src = Op.getOperand(0);
1680     APInt DemandedSrcBits = DemandedBits.byteSwap();
1681     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1682                              Depth + 1))
1683       return true;
1684     Known.One = Known2.One.byteSwap();
1685     Known.Zero = Known2.Zero.byteSwap();
1686     break;
1687   }
1688   case ISD::SIGN_EXTEND_INREG: {
1689     SDValue Op0 = Op.getOperand(0);
1690     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1691     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1692 
1693     // If we only care about the highest bit, don't bother shifting right.
1694     if (DemandedBits.isSignMask()) {
1695       unsigned NumSignBits =
1696           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1697       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1698       // However if the input is already sign extended we expect the sign
1699       // extension to be dropped altogether later and do not simplify.
1700       if (!AlreadySignExtended) {
1701         // Compute the correct shift amount type, which must be getShiftAmountTy
1702         // for scalar types after legalization.
1703         EVT ShiftAmtTy = VT;
1704         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1705           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1706 
1707         SDValue ShiftAmt =
1708             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1709         return TLO.CombineTo(Op,
1710                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1711       }
1712     }
1713 
1714     // If none of the extended bits are demanded, eliminate the sextinreg.
1715     if (DemandedBits.getActiveBits() <= ExVTBits)
1716       return TLO.CombineTo(Op, Op0);
1717 
1718     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1719 
1720     // Since the sign extended bits are demanded, we know that the sign
1721     // bit is demanded.
1722     InputDemandedBits.setBit(ExVTBits - 1);
1723 
1724     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1725       return true;
1726     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1727 
1728     // If the sign bit of the input is known set or clear, then we know the
1729     // top bits of the result.
1730 
1731     // If the input sign bit is known zero, convert this into a zero extension.
1732     if (Known.Zero[ExVTBits - 1])
1733       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1734 
1735     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1736     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1737       Known.One.setBitsFrom(ExVTBits);
1738       Known.Zero &= Mask;
1739     } else { // Input sign bit unknown
1740       Known.Zero &= Mask;
1741       Known.One &= Mask;
1742     }
1743     break;
1744   }
1745   case ISD::BUILD_PAIR: {
1746     EVT HalfVT = Op.getOperand(0).getValueType();
1747     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1748 
1749     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1750     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1751 
1752     KnownBits KnownLo, KnownHi;
1753 
1754     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1755       return true;
1756 
1757     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1758       return true;
1759 
1760     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1761                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1762 
1763     Known.One = KnownLo.One.zext(BitWidth) |
1764                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1765     break;
1766   }
1767   case ISD::ZERO_EXTEND:
1768   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1769     SDValue Src = Op.getOperand(0);
1770     EVT SrcVT = Src.getValueType();
1771     unsigned InBits = SrcVT.getScalarSizeInBits();
1772     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1773     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1774 
1775     // If none of the top bits are demanded, convert this into an any_extend.
1776     if (DemandedBits.getActiveBits() <= InBits) {
1777       // If we only need the non-extended bits of the bottom element
1778       // then we can just bitcast to the result.
1779       if (IsVecInReg && DemandedElts == 1 &&
1780           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1781           TLO.DAG.getDataLayout().isLittleEndian())
1782         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1783 
1784       unsigned Opc =
1785           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1786       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1787         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1788     }
1789 
1790     APInt InDemandedBits = DemandedBits.trunc(InBits);
1791     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1792     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1793                              Depth + 1))
1794       return true;
1795     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1796     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1797     Known = Known.zext(BitWidth);
1798     break;
1799   }
1800   case ISD::SIGN_EXTEND:
1801   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1802     SDValue Src = Op.getOperand(0);
1803     EVT SrcVT = Src.getValueType();
1804     unsigned InBits = SrcVT.getScalarSizeInBits();
1805     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1806     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1807 
1808     // If none of the top bits are demanded, convert this into an any_extend.
1809     if (DemandedBits.getActiveBits() <= InBits) {
1810       // If we only need the non-extended bits of the bottom element
1811       // then we can just bitcast to the result.
1812       if (IsVecInReg && DemandedElts == 1 &&
1813           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1814           TLO.DAG.getDataLayout().isLittleEndian())
1815         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1816 
1817       unsigned Opc =
1818           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1819       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1820         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1821     }
1822 
1823     APInt InDemandedBits = DemandedBits.trunc(InBits);
1824     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1825 
1826     // Since some of the sign extended bits are demanded, we know that the sign
1827     // bit is demanded.
1828     InDemandedBits.setBit(InBits - 1);
1829 
1830     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1831                              Depth + 1))
1832       return true;
1833     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1834     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1835 
1836     // If the sign bit is known one, the top bits match.
1837     Known = Known.sext(BitWidth);
1838 
1839     // If the sign bit is known zero, convert this to a zero extend.
1840     if (Known.isNonNegative()) {
1841       unsigned Opc =
1842           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1843       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1844         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1845     }
1846     break;
1847   }
1848   case ISD::ANY_EXTEND:
1849   case ISD::ANY_EXTEND_VECTOR_INREG: {
1850     SDValue Src = Op.getOperand(0);
1851     EVT SrcVT = Src.getValueType();
1852     unsigned InBits = SrcVT.getScalarSizeInBits();
1853     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1854     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1855 
1856     // If we only need the bottom element then we can just bitcast.
1857     // TODO: Handle ANY_EXTEND?
1858     if (IsVecInReg && DemandedElts == 1 &&
1859         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1860         TLO.DAG.getDataLayout().isLittleEndian())
1861       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1862 
1863     APInt InDemandedBits = DemandedBits.trunc(InBits);
1864     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1865     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1866                              Depth + 1))
1867       return true;
1868     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1869     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1870     Known = Known.anyext(BitWidth);
1871 
1872     // Attempt to avoid multi-use ops if we don't need anything from them.
1873     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1874             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1875       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1876     break;
1877   }
1878   case ISD::TRUNCATE: {
1879     SDValue Src = Op.getOperand(0);
1880 
1881     // Simplify the input, using demanded bit information, and compute the known
1882     // zero/one bits live out.
1883     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1884     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1885     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1886       return true;
1887     Known = Known.trunc(BitWidth);
1888 
1889     // Attempt to avoid multi-use ops if we don't need anything from them.
1890     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1891             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1892       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1893 
1894     // If the input is only used by this truncate, see if we can shrink it based
1895     // on the known demanded bits.
1896     if (Src.getNode()->hasOneUse()) {
1897       switch (Src.getOpcode()) {
1898       default:
1899         break;
1900       case ISD::SRL:
1901         // Shrink SRL by a constant if none of the high bits shifted in are
1902         // demanded.
1903         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1904           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1905           // undesirable.
1906           break;
1907 
1908         SDValue ShAmt = Src.getOperand(1);
1909         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
1910         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
1911           break;
1912         uint64_t ShVal = ShAmtC->getZExtValue();
1913 
1914         APInt HighBits =
1915             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1916         HighBits.lshrInPlace(ShVal);
1917         HighBits = HighBits.trunc(BitWidth);
1918 
1919         if (!(HighBits & DemandedBits)) {
1920           // None of the shifted in bits are needed.  Add a truncate of the
1921           // shift input, then shift it.
1922           if (TLO.LegalTypes())
1923             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1924           SDValue NewTrunc =
1925               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1926           return TLO.CombineTo(
1927               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
1928         }
1929         break;
1930       }
1931     }
1932 
1933     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1934     break;
1935   }
1936   case ISD::AssertZext: {
1937     // AssertZext demands all of the high bits, plus any of the low bits
1938     // demanded by its users.
1939     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1940     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1941     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1942                              TLO, Depth + 1))
1943       return true;
1944     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1945 
1946     Known.Zero |= ~InMask;
1947     break;
1948   }
1949   case ISD::EXTRACT_VECTOR_ELT: {
1950     SDValue Src = Op.getOperand(0);
1951     SDValue Idx = Op.getOperand(1);
1952     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1953     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1954 
1955     // Demand the bits from every vector element without a constant index.
1956     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1957     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1958       if (CIdx->getAPIntValue().ult(NumSrcElts))
1959         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1960 
1961     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1962     // anything about the extended bits.
1963     APInt DemandedSrcBits = DemandedBits;
1964     if (BitWidth > EltBitWidth)
1965       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1966 
1967     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1968                              Depth + 1))
1969       return true;
1970 
1971     // Attempt to avoid multi-use ops if we don't need anything from them.
1972     if (!DemandedSrcBits.isAllOnesValue() ||
1973         !DemandedSrcElts.isAllOnesValue()) {
1974       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1975               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
1976         SDValue NewOp =
1977             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
1978         return TLO.CombineTo(Op, NewOp);
1979       }
1980     }
1981 
1982     Known = Known2;
1983     if (BitWidth > EltBitWidth)
1984       Known = Known.anyext(BitWidth);
1985     break;
1986   }
1987   case ISD::BITCAST: {
1988     SDValue Src = Op.getOperand(0);
1989     EVT SrcVT = Src.getValueType();
1990     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1991 
1992     // If this is an FP->Int bitcast and if the sign bit is the only
1993     // thing demanded, turn this into a FGETSIGN.
1994     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1995         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1996         SrcVT.isFloatingPoint()) {
1997       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1998       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1999       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2000           SrcVT != MVT::f128) {
2001         // Cannot eliminate/lower SHL for f128 yet.
2002         EVT Ty = OpVTLegal ? VT : MVT::i32;
2003         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2004         // place.  We expect the SHL to be eliminated by other optimizations.
2005         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2006         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2007         if (!OpVTLegal && OpVTSizeInBits > 32)
2008           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2009         unsigned ShVal = Op.getValueSizeInBits() - 1;
2010         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2011         return TLO.CombineTo(Op,
2012                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2013       }
2014     }
2015 
2016     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2017     // Demand the elt/bit if any of the original elts/bits are demanded.
2018     // TODO - bigendian once we have test coverage.
2019     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2020         TLO.DAG.getDataLayout().isLittleEndian()) {
2021       unsigned Scale = BitWidth / NumSrcEltBits;
2022       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2023       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2024       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2025       for (unsigned i = 0; i != Scale; ++i) {
2026         unsigned Offset = i * NumSrcEltBits;
2027         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2028         if (!Sub.isNullValue()) {
2029           DemandedSrcBits |= Sub;
2030           for (unsigned j = 0; j != NumElts; ++j)
2031             if (DemandedElts[j])
2032               DemandedSrcElts.setBit((j * Scale) + i);
2033         }
2034       }
2035 
2036       APInt KnownSrcUndef, KnownSrcZero;
2037       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2038                                      KnownSrcZero, TLO, Depth + 1))
2039         return true;
2040 
2041       KnownBits KnownSrcBits;
2042       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2043                                KnownSrcBits, TLO, Depth + 1))
2044         return true;
2045     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2046                TLO.DAG.getDataLayout().isLittleEndian()) {
2047       unsigned Scale = NumSrcEltBits / BitWidth;
2048       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2049       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2050       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2051       for (unsigned i = 0; i != NumElts; ++i)
2052         if (DemandedElts[i]) {
2053           unsigned Offset = (i % Scale) * BitWidth;
2054           DemandedSrcBits.insertBits(DemandedBits, Offset);
2055           DemandedSrcElts.setBit(i / Scale);
2056         }
2057 
2058       if (SrcVT.isVector()) {
2059         APInt KnownSrcUndef, KnownSrcZero;
2060         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2061                                        KnownSrcZero, TLO, Depth + 1))
2062           return true;
2063       }
2064 
2065       KnownBits KnownSrcBits;
2066       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2067                                KnownSrcBits, TLO, Depth + 1))
2068         return true;
2069     }
2070 
2071     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2072     // recursive call where Known may be useful to the caller.
2073     if (Depth > 0) {
2074       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2075       return false;
2076     }
2077     break;
2078   }
2079   case ISD::ADD:
2080   case ISD::MUL:
2081   case ISD::SUB: {
2082     // Add, Sub, and Mul don't demand any bits in positions beyond that
2083     // of the highest bit demanded of them.
2084     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2085     SDNodeFlags Flags = Op.getNode()->getFlags();
2086     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2087     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2088     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2089                              Depth + 1) ||
2090         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2091                              Depth + 1) ||
2092         // See if the operation should be performed at a smaller bit width.
2093         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2094       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2095         // Disable the nsw and nuw flags. We can no longer guarantee that we
2096         // won't wrap after simplification.
2097         Flags.setNoSignedWrap(false);
2098         Flags.setNoUnsignedWrap(false);
2099         SDValue NewOp =
2100             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2101         return TLO.CombineTo(Op, NewOp);
2102       }
2103       return true;
2104     }
2105 
2106     // Attempt to avoid multi-use ops if we don't need anything from them.
2107     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2108       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2109           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2110       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2111           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2112       if (DemandedOp0 || DemandedOp1) {
2113         Flags.setNoSignedWrap(false);
2114         Flags.setNoUnsignedWrap(false);
2115         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2116         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2117         SDValue NewOp =
2118             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2119         return TLO.CombineTo(Op, NewOp);
2120       }
2121     }
2122 
2123     // If we have a constant operand, we may be able to turn it into -1 if we
2124     // do not demand the high bits. This can make the constant smaller to
2125     // encode, allow more general folding, or match specialized instruction
2126     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2127     // is probably not useful (and could be detrimental).
2128     ConstantSDNode *C = isConstOrConstSplat(Op1);
2129     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2130     if (C && !C->isAllOnesValue() && !C->isOne() &&
2131         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2132       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2133       // Disable the nsw and nuw flags. We can no longer guarantee that we
2134       // won't wrap after simplification.
2135       Flags.setNoSignedWrap(false);
2136       Flags.setNoUnsignedWrap(false);
2137       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2138       return TLO.CombineTo(Op, NewOp);
2139     }
2140 
2141     LLVM_FALLTHROUGH;
2142   }
2143   default:
2144     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2145       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2146                                             Known, TLO, Depth))
2147         return true;
2148       break;
2149     }
2150 
2151     // Just use computeKnownBits to compute output bits.
2152     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2153     break;
2154   }
2155 
2156   // If we know the value of all of the demanded bits, return this as a
2157   // constant.
2158   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2159     // Avoid folding to a constant if any OpaqueConstant is involved.
2160     const SDNode *N = Op.getNode();
2161     for (SDNodeIterator I = SDNodeIterator::begin(N),
2162                         E = SDNodeIterator::end(N);
2163          I != E; ++I) {
2164       SDNode *Op = *I;
2165       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2166         if (C->isOpaque())
2167           return false;
2168     }
2169     // TODO: Handle float bits as well.
2170     if (VT.isInteger())
2171       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2172   }
2173 
2174   return false;
2175 }
2176 
2177 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2178                                                 const APInt &DemandedElts,
2179                                                 APInt &KnownUndef,
2180                                                 APInt &KnownZero,
2181                                                 DAGCombinerInfo &DCI) const {
2182   SelectionDAG &DAG = DCI.DAG;
2183   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2184                         !DCI.isBeforeLegalizeOps());
2185 
2186   bool Simplified =
2187       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2188   if (Simplified) {
2189     DCI.AddToWorklist(Op.getNode());
2190     DCI.CommitTargetLoweringOpt(TLO);
2191   }
2192 
2193   return Simplified;
2194 }
2195 
2196 /// Given a vector binary operation and known undefined elements for each input
2197 /// operand, compute whether each element of the output is undefined.
2198 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2199                                          const APInt &UndefOp0,
2200                                          const APInt &UndefOp1) {
2201   EVT VT = BO.getValueType();
2202   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2203          "Vector binop only");
2204 
2205   EVT EltVT = VT.getVectorElementType();
2206   unsigned NumElts = VT.getVectorNumElements();
2207   assert(UndefOp0.getBitWidth() == NumElts &&
2208          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2209 
2210   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2211                                    const APInt &UndefVals) {
2212     if (UndefVals[Index])
2213       return DAG.getUNDEF(EltVT);
2214 
2215     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2216       // Try hard to make sure that the getNode() call is not creating temporary
2217       // nodes. Ignore opaque integers because they do not constant fold.
2218       SDValue Elt = BV->getOperand(Index);
2219       auto *C = dyn_cast<ConstantSDNode>(Elt);
2220       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2221         return Elt;
2222     }
2223 
2224     return SDValue();
2225   };
2226 
2227   APInt KnownUndef = APInt::getNullValue(NumElts);
2228   for (unsigned i = 0; i != NumElts; ++i) {
2229     // If both inputs for this element are either constant or undef and match
2230     // the element type, compute the constant/undef result for this element of
2231     // the vector.
2232     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2233     // not handle FP constants. The code within getNode() should be refactored
2234     // to avoid the danger of creating a bogus temporary node here.
2235     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2236     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2237     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2238       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2239         KnownUndef.setBit(i);
2240   }
2241   return KnownUndef;
2242 }
2243 
2244 bool TargetLowering::SimplifyDemandedVectorElts(
2245     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2246     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2247     bool AssumeSingleUse) const {
2248   EVT VT = Op.getValueType();
2249   unsigned Opcode = Op.getOpcode();
2250   APInt DemandedElts = OriginalDemandedElts;
2251   unsigned NumElts = DemandedElts.getBitWidth();
2252   assert(VT.isVector() && "Expected vector op");
2253   assert(VT.getVectorNumElements() == NumElts &&
2254          "Mask size mismatches value type element count!");
2255 
2256   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2257 
2258   // Undef operand.
2259   if (Op.isUndef()) {
2260     KnownUndef.setAllBits();
2261     return false;
2262   }
2263 
2264   // If Op has other users, assume that all elements are needed.
2265   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2266     DemandedElts.setAllBits();
2267 
2268   // Not demanding any elements from Op.
2269   if (DemandedElts == 0) {
2270     KnownUndef.setAllBits();
2271     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2272   }
2273 
2274   // Limit search depth.
2275   if (Depth >= SelectionDAG::MaxRecursionDepth)
2276     return false;
2277 
2278   SDLoc DL(Op);
2279   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2280 
2281   // Helper for demanding the specified elements and all the bits of both binary
2282   // operands.
2283   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2284     unsigned NumBits0 = Op0.getScalarValueSizeInBits();
2285     unsigned NumBits1 = Op1.getScalarValueSizeInBits();
2286     APInt DemandedBits0 = APInt::getAllOnesValue(NumBits0);
2287     APInt DemandedBits1 = APInt::getAllOnesValue(NumBits1);
2288     SDValue NewOp0 = SimplifyMultipleUseDemandedBits(
2289         Op0, DemandedBits0, DemandedElts, TLO.DAG, Depth + 1);
2290     SDValue NewOp1 = SimplifyMultipleUseDemandedBits(
2291         Op1, DemandedBits1, DemandedElts, TLO.DAG, Depth + 1);
2292     if (NewOp0 || NewOp1) {
2293       SDValue NewOp = TLO.DAG.getNode(
2294           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2295       return TLO.CombineTo(Op, NewOp);
2296     }
2297     return false;
2298   };
2299 
2300   switch (Opcode) {
2301   case ISD::SCALAR_TO_VECTOR: {
2302     if (!DemandedElts[0]) {
2303       KnownUndef.setAllBits();
2304       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2305     }
2306     KnownUndef.setHighBits(NumElts - 1);
2307     break;
2308   }
2309   case ISD::BITCAST: {
2310     SDValue Src = Op.getOperand(0);
2311     EVT SrcVT = Src.getValueType();
2312 
2313     // We only handle vectors here.
2314     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2315     if (!SrcVT.isVector())
2316       break;
2317 
2318     // Fast handling of 'identity' bitcasts.
2319     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2320     if (NumSrcElts == NumElts)
2321       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2322                                         KnownZero, TLO, Depth + 1);
2323 
2324     APInt SrcZero, SrcUndef;
2325     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2326 
2327     // Bitcast from 'large element' src vector to 'small element' vector, we
2328     // must demand a source element if any DemandedElt maps to it.
2329     if ((NumElts % NumSrcElts) == 0) {
2330       unsigned Scale = NumElts / NumSrcElts;
2331       for (unsigned i = 0; i != NumElts; ++i)
2332         if (DemandedElts[i])
2333           SrcDemandedElts.setBit(i / Scale);
2334 
2335       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2336                                      TLO, Depth + 1))
2337         return true;
2338 
2339       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2340       // of the large element.
2341       // TODO - bigendian once we have test coverage.
2342       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2343         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2344         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2345         for (unsigned i = 0; i != NumElts; ++i)
2346           if (DemandedElts[i]) {
2347             unsigned Ofs = (i % Scale) * EltSizeInBits;
2348             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2349           }
2350 
2351         KnownBits Known;
2352         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2353                                  TLO, Depth + 1))
2354           return true;
2355       }
2356 
2357       // If the src element is zero/undef then all the output elements will be -
2358       // only demanded elements are guaranteed to be correct.
2359       for (unsigned i = 0; i != NumSrcElts; ++i) {
2360         if (SrcDemandedElts[i]) {
2361           if (SrcZero[i])
2362             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2363           if (SrcUndef[i])
2364             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2365         }
2366       }
2367     }
2368 
2369     // Bitcast from 'small element' src vector to 'large element' vector, we
2370     // demand all smaller source elements covered by the larger demanded element
2371     // of this vector.
2372     if ((NumSrcElts % NumElts) == 0) {
2373       unsigned Scale = NumSrcElts / NumElts;
2374       for (unsigned i = 0; i != NumElts; ++i)
2375         if (DemandedElts[i])
2376           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2377 
2378       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2379                                      TLO, Depth + 1))
2380         return true;
2381 
2382       // If all the src elements covering an output element are zero/undef, then
2383       // the output element will be as well, assuming it was demanded.
2384       for (unsigned i = 0; i != NumElts; ++i) {
2385         if (DemandedElts[i]) {
2386           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2387             KnownZero.setBit(i);
2388           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2389             KnownUndef.setBit(i);
2390         }
2391       }
2392     }
2393     break;
2394   }
2395   case ISD::BUILD_VECTOR: {
2396     // Check all elements and simplify any unused elements with UNDEF.
2397     if (!DemandedElts.isAllOnesValue()) {
2398       // Don't simplify BROADCASTS.
2399       if (llvm::any_of(Op->op_values(),
2400                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2401         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2402         bool Updated = false;
2403         for (unsigned i = 0; i != NumElts; ++i) {
2404           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2405             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2406             KnownUndef.setBit(i);
2407             Updated = true;
2408           }
2409         }
2410         if (Updated)
2411           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2412       }
2413     }
2414     for (unsigned i = 0; i != NumElts; ++i) {
2415       SDValue SrcOp = Op.getOperand(i);
2416       if (SrcOp.isUndef()) {
2417         KnownUndef.setBit(i);
2418       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2419                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2420         KnownZero.setBit(i);
2421       }
2422     }
2423     break;
2424   }
2425   case ISD::CONCAT_VECTORS: {
2426     EVT SubVT = Op.getOperand(0).getValueType();
2427     unsigned NumSubVecs = Op.getNumOperands();
2428     unsigned NumSubElts = SubVT.getVectorNumElements();
2429     for (unsigned i = 0; i != NumSubVecs; ++i) {
2430       SDValue SubOp = Op.getOperand(i);
2431       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2432       APInt SubUndef, SubZero;
2433       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2434                                      Depth + 1))
2435         return true;
2436       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2437       KnownZero.insertBits(SubZero, i * NumSubElts);
2438     }
2439     break;
2440   }
2441   case ISD::INSERT_SUBVECTOR: {
2442     // Demand any elements from the subvector and the remainder from the src its
2443     // inserted into.
2444     SDValue Src = Op.getOperand(0);
2445     SDValue Sub = Op.getOperand(1);
2446     uint64_t Idx = Op.getConstantOperandVal(2);
2447     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2448     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2449     APInt DemandedSrcElts = DemandedElts;
2450     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2451 
2452     APInt SubUndef, SubZero;
2453     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2454                                    Depth + 1))
2455       return true;
2456 
2457     // If none of the src operand elements are demanded, replace it with undef.
2458     if (!DemandedSrcElts && !Src.isUndef())
2459       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2460                                                TLO.DAG.getUNDEF(VT), Sub,
2461                                                Op.getOperand(2)));
2462 
2463     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2464                                    TLO, Depth + 1))
2465       return true;
2466     KnownUndef.insertBits(SubUndef, Idx);
2467     KnownZero.insertBits(SubZero, Idx);
2468 
2469     // Attempt to avoid multi-use ops if we don't need anything from them.
2470     if (!DemandedSrcElts.isAllOnesValue() ||
2471         !DemandedSubElts.isAllOnesValue()) {
2472       APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits());
2473       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2474           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
2475       SDValue NewSub = SimplifyMultipleUseDemandedBits(
2476           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
2477       if (NewSrc || NewSub) {
2478         NewSrc = NewSrc ? NewSrc : Src;
2479         NewSub = NewSub ? NewSub : Sub;
2480         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2481                                         NewSub, Op.getOperand(2));
2482         return TLO.CombineTo(Op, NewOp);
2483       }
2484     }
2485     break;
2486   }
2487   case ISD::EXTRACT_SUBVECTOR: {
2488     // Offset the demanded elts by the subvector index.
2489     SDValue Src = Op.getOperand(0);
2490     uint64_t Idx = Op.getConstantOperandVal(1);
2491     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2492     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2493 
2494     APInt SrcUndef, SrcZero;
2495     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2496                                    Depth + 1))
2497       return true;
2498     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2499     KnownZero = SrcZero.extractBits(NumElts, Idx);
2500 
2501     // Attempt to avoid multi-use ops if we don't need anything from them.
2502     if (!DemandedElts.isAllOnesValue()) {
2503       APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits());
2504       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2505           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
2506       if (NewSrc) {
2507         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2508                                         Op.getOperand(1));
2509         return TLO.CombineTo(Op, NewOp);
2510       }
2511     }
2512     break;
2513   }
2514   case ISD::INSERT_VECTOR_ELT: {
2515     SDValue Vec = Op.getOperand(0);
2516     SDValue Scl = Op.getOperand(1);
2517     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2518 
2519     // For a legal, constant insertion index, if we don't need this insertion
2520     // then strip it, else remove it from the demanded elts.
2521     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2522       unsigned Idx = CIdx->getZExtValue();
2523       if (!DemandedElts[Idx])
2524         return TLO.CombineTo(Op, Vec);
2525 
2526       APInt DemandedVecElts(DemandedElts);
2527       DemandedVecElts.clearBit(Idx);
2528       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2529                                      KnownZero, TLO, Depth + 1))
2530         return true;
2531 
2532       KnownUndef.clearBit(Idx);
2533       if (Scl.isUndef())
2534         KnownUndef.setBit(Idx);
2535 
2536       KnownZero.clearBit(Idx);
2537       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2538         KnownZero.setBit(Idx);
2539       break;
2540     }
2541 
2542     APInt VecUndef, VecZero;
2543     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2544                                    Depth + 1))
2545       return true;
2546     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2547     break;
2548   }
2549   case ISD::VSELECT: {
2550     // Try to transform the select condition based on the current demanded
2551     // elements.
2552     // TODO: If a condition element is undef, we can choose from one arm of the
2553     //       select (and if one arm is undef, then we can propagate that to the
2554     //       result).
2555     // TODO - add support for constant vselect masks (see IR version of this).
2556     APInt UnusedUndef, UnusedZero;
2557     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2558                                    UnusedZero, TLO, Depth + 1))
2559       return true;
2560 
2561     // See if we can simplify either vselect operand.
2562     APInt DemandedLHS(DemandedElts);
2563     APInt DemandedRHS(DemandedElts);
2564     APInt UndefLHS, ZeroLHS;
2565     APInt UndefRHS, ZeroRHS;
2566     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2567                                    ZeroLHS, TLO, Depth + 1))
2568       return true;
2569     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2570                                    ZeroRHS, TLO, Depth + 1))
2571       return true;
2572 
2573     KnownUndef = UndefLHS & UndefRHS;
2574     KnownZero = ZeroLHS & ZeroRHS;
2575     break;
2576   }
2577   case ISD::VECTOR_SHUFFLE: {
2578     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2579 
2580     // Collect demanded elements from shuffle operands..
2581     APInt DemandedLHS(NumElts, 0);
2582     APInt DemandedRHS(NumElts, 0);
2583     for (unsigned i = 0; i != NumElts; ++i) {
2584       int M = ShuffleMask[i];
2585       if (M < 0 || !DemandedElts[i])
2586         continue;
2587       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2588       if (M < (int)NumElts)
2589         DemandedLHS.setBit(M);
2590       else
2591         DemandedRHS.setBit(M - NumElts);
2592     }
2593 
2594     // See if we can simplify either shuffle operand.
2595     APInt UndefLHS, ZeroLHS;
2596     APInt UndefRHS, ZeroRHS;
2597     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2598                                    ZeroLHS, TLO, Depth + 1))
2599       return true;
2600     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2601                                    ZeroRHS, TLO, Depth + 1))
2602       return true;
2603 
2604     // Simplify mask using undef elements from LHS/RHS.
2605     bool Updated = false;
2606     bool IdentityLHS = true, IdentityRHS = true;
2607     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2608     for (unsigned i = 0; i != NumElts; ++i) {
2609       int &M = NewMask[i];
2610       if (M < 0)
2611         continue;
2612       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2613           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2614         Updated = true;
2615         M = -1;
2616       }
2617       IdentityLHS &= (M < 0) || (M == (int)i);
2618       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2619     }
2620 
2621     // Update legal shuffle masks based on demanded elements if it won't reduce
2622     // to Identity which can cause premature removal of the shuffle mask.
2623     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2624       SDValue LegalShuffle =
2625           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2626                                   NewMask, TLO.DAG);
2627       if (LegalShuffle)
2628         return TLO.CombineTo(Op, LegalShuffle);
2629     }
2630 
2631     // Propagate undef/zero elements from LHS/RHS.
2632     for (unsigned i = 0; i != NumElts; ++i) {
2633       int M = ShuffleMask[i];
2634       if (M < 0) {
2635         KnownUndef.setBit(i);
2636       } else if (M < (int)NumElts) {
2637         if (UndefLHS[M])
2638           KnownUndef.setBit(i);
2639         if (ZeroLHS[M])
2640           KnownZero.setBit(i);
2641       } else {
2642         if (UndefRHS[M - NumElts])
2643           KnownUndef.setBit(i);
2644         if (ZeroRHS[M - NumElts])
2645           KnownZero.setBit(i);
2646       }
2647     }
2648     break;
2649   }
2650   case ISD::ANY_EXTEND_VECTOR_INREG:
2651   case ISD::SIGN_EXTEND_VECTOR_INREG:
2652   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2653     APInt SrcUndef, SrcZero;
2654     SDValue Src = Op.getOperand(0);
2655     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2656     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2657     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2658                                    Depth + 1))
2659       return true;
2660     KnownZero = SrcZero.zextOrTrunc(NumElts);
2661     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2662 
2663     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2664         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2665         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2666       // aext - if we just need the bottom element then we can bitcast.
2667       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2668     }
2669 
2670     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2671       // zext(undef) upper bits are guaranteed to be zero.
2672       if (DemandedElts.isSubsetOf(KnownUndef))
2673         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2674       KnownUndef.clearAllBits();
2675     }
2676     break;
2677   }
2678 
2679   // TODO: There are more binop opcodes that could be handled here - MIN,
2680   // MAX, saturated math, etc.
2681   case ISD::OR:
2682   case ISD::XOR:
2683   case ISD::ADD:
2684   case ISD::SUB:
2685   case ISD::FADD:
2686   case ISD::FSUB:
2687   case ISD::FMUL:
2688   case ISD::FDIV:
2689   case ISD::FREM: {
2690     SDValue Op0 = Op.getOperand(0);
2691     SDValue Op1 = Op.getOperand(1);
2692 
2693     APInt UndefRHS, ZeroRHS;
2694     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2695                                    Depth + 1))
2696       return true;
2697     APInt UndefLHS, ZeroLHS;
2698     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2699                                    Depth + 1))
2700       return true;
2701 
2702     KnownZero = ZeroLHS & ZeroRHS;
2703     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2704 
2705     // Attempt to avoid multi-use ops if we don't need anything from them.
2706     // TODO - use KnownUndef to relax the demandedelts?
2707     if (!DemandedElts.isAllOnesValue())
2708       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2709         return true;
2710     break;
2711   }
2712   case ISD::SHL:
2713   case ISD::SRL:
2714   case ISD::SRA:
2715   case ISD::ROTL:
2716   case ISD::ROTR: {
2717     SDValue Op0 = Op.getOperand(0);
2718     SDValue Op1 = Op.getOperand(1);
2719 
2720     APInt UndefRHS, ZeroRHS;
2721     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2722                                    Depth + 1))
2723       return true;
2724     APInt UndefLHS, ZeroLHS;
2725     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2726                                    Depth + 1))
2727       return true;
2728 
2729     KnownZero = ZeroLHS;
2730     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2731 
2732     // Attempt to avoid multi-use ops if we don't need anything from them.
2733     // TODO - use KnownUndef to relax the demandedelts?
2734     if (!DemandedElts.isAllOnesValue())
2735       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2736         return true;
2737     break;
2738   }
2739   case ISD::MUL:
2740   case ISD::AND: {
2741     SDValue Op0 = Op.getOperand(0);
2742     SDValue Op1 = Op.getOperand(1);
2743 
2744     APInt SrcUndef, SrcZero;
2745     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2746                                    Depth + 1))
2747       return true;
2748     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2749                                    TLO, Depth + 1))
2750       return true;
2751 
2752     // If either side has a zero element, then the result element is zero, even
2753     // if the other is an UNDEF.
2754     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2755     // and then handle 'and' nodes with the rest of the binop opcodes.
2756     KnownZero |= SrcZero;
2757     KnownUndef &= SrcUndef;
2758     KnownUndef &= ~KnownZero;
2759 
2760     // Attempt to avoid multi-use ops if we don't need anything from them.
2761     // TODO - use KnownUndef to relax the demandedelts?
2762     if (!DemandedElts.isAllOnesValue())
2763       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2764         return true;
2765     break;
2766   }
2767   case ISD::TRUNCATE:
2768   case ISD::SIGN_EXTEND:
2769   case ISD::ZERO_EXTEND:
2770     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2771                                    KnownZero, TLO, Depth + 1))
2772       return true;
2773 
2774     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2775       // zext(undef) upper bits are guaranteed to be zero.
2776       if (DemandedElts.isSubsetOf(KnownUndef))
2777         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2778       KnownUndef.clearAllBits();
2779     }
2780     break;
2781   default: {
2782     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2783       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2784                                                   KnownZero, TLO, Depth))
2785         return true;
2786     } else {
2787       KnownBits Known;
2788       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2789       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2790                                TLO, Depth, AssumeSingleUse))
2791         return true;
2792     }
2793     break;
2794   }
2795   }
2796   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2797 
2798   // Constant fold all undef cases.
2799   // TODO: Handle zero cases as well.
2800   if (DemandedElts.isSubsetOf(KnownUndef))
2801     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2802 
2803   return false;
2804 }
2805 
2806 /// Determine which of the bits specified in Mask are known to be either zero or
2807 /// one and return them in the Known.
2808 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2809                                                    KnownBits &Known,
2810                                                    const APInt &DemandedElts,
2811                                                    const SelectionDAG &DAG,
2812                                                    unsigned Depth) const {
2813   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2814           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2815           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2816           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2817          "Should use MaskedValueIsZero if you don't know whether Op"
2818          " is a target node!");
2819   Known.resetAll();
2820 }
2821 
2822 void TargetLowering::computeKnownBitsForTargetInstr(
2823     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2824     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2825     unsigned Depth) const {
2826   Known.resetAll();
2827 }
2828 
2829 void TargetLowering::computeKnownBitsForFrameIndex(
2830   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
2831   // The low bits are known zero if the pointer is aligned.
2832   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
2833 }
2834 
2835 /// This method can be implemented by targets that want to expose additional
2836 /// information about sign bits to the DAG Combiner.
2837 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2838                                                          const APInt &,
2839                                                          const SelectionDAG &,
2840                                                          unsigned Depth) const {
2841   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2842           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2843           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2844           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2845          "Should use ComputeNumSignBits if you don't know whether Op"
2846          " is a target node!");
2847   return 1;
2848 }
2849 
2850 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2851   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2852   const MachineRegisterInfo &MRI, unsigned Depth) const {
2853   return 1;
2854 }
2855 
2856 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2857     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2858     TargetLoweringOpt &TLO, unsigned Depth) const {
2859   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2860           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2861           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2862           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2863          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2864          " is a target node!");
2865   return false;
2866 }
2867 
2868 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2869     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2870     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2871   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2872           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2873           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2874           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2875          "Should use SimplifyDemandedBits if you don't know whether Op"
2876          " is a target node!");
2877   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2878   return false;
2879 }
2880 
2881 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2882     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2883     SelectionDAG &DAG, unsigned Depth) const {
2884   assert(
2885       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2886        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2887        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2888        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2889       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2890       " is a target node!");
2891   return SDValue();
2892 }
2893 
2894 SDValue
2895 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2896                                         SDValue N1, MutableArrayRef<int> Mask,
2897                                         SelectionDAG &DAG) const {
2898   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2899   if (!LegalMask) {
2900     std::swap(N0, N1);
2901     ShuffleVectorSDNode::commuteMask(Mask);
2902     LegalMask = isShuffleMaskLegal(Mask, VT);
2903   }
2904 
2905   if (!LegalMask)
2906     return SDValue();
2907 
2908   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2909 }
2910 
2911 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2912   return nullptr;
2913 }
2914 
2915 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2916                                                   const SelectionDAG &DAG,
2917                                                   bool SNaN,
2918                                                   unsigned Depth) const {
2919   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2920           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2921           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2922           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2923          "Should use isKnownNeverNaN if you don't know whether Op"
2924          " is a target node!");
2925   return false;
2926 }
2927 
2928 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2929 // work with truncating build vectors and vectors with elements of less than
2930 // 8 bits.
2931 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2932   if (!N)
2933     return false;
2934 
2935   APInt CVal;
2936   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2937     CVal = CN->getAPIntValue();
2938   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2939     auto *CN = BV->getConstantSplatNode();
2940     if (!CN)
2941       return false;
2942 
2943     // If this is a truncating build vector, truncate the splat value.
2944     // Otherwise, we may fail to match the expected values below.
2945     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2946     CVal = CN->getAPIntValue();
2947     if (BVEltWidth < CVal.getBitWidth())
2948       CVal = CVal.trunc(BVEltWidth);
2949   } else {
2950     return false;
2951   }
2952 
2953   switch (getBooleanContents(N->getValueType(0))) {
2954   case UndefinedBooleanContent:
2955     return CVal[0];
2956   case ZeroOrOneBooleanContent:
2957     return CVal.isOneValue();
2958   case ZeroOrNegativeOneBooleanContent:
2959     return CVal.isAllOnesValue();
2960   }
2961 
2962   llvm_unreachable("Invalid boolean contents");
2963 }
2964 
2965 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2966   if (!N)
2967     return false;
2968 
2969   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2970   if (!CN) {
2971     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2972     if (!BV)
2973       return false;
2974 
2975     // Only interested in constant splats, we don't care about undef
2976     // elements in identifying boolean constants and getConstantSplatNode
2977     // returns NULL if all ops are undef;
2978     CN = BV->getConstantSplatNode();
2979     if (!CN)
2980       return false;
2981   }
2982 
2983   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2984     return !CN->getAPIntValue()[0];
2985 
2986   return CN->isNullValue();
2987 }
2988 
2989 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2990                                        bool SExt) const {
2991   if (VT == MVT::i1)
2992     return N->isOne();
2993 
2994   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2995   switch (Cnt) {
2996   case TargetLowering::ZeroOrOneBooleanContent:
2997     // An extended value of 1 is always true, unless its original type is i1,
2998     // in which case it will be sign extended to -1.
2999     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3000   case TargetLowering::UndefinedBooleanContent:
3001   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3002     return N->isAllOnesValue() && SExt;
3003   }
3004   llvm_unreachable("Unexpected enumeration.");
3005 }
3006 
3007 /// This helper function of SimplifySetCC tries to optimize the comparison when
3008 /// either operand of the SetCC node is a bitwise-and instruction.
3009 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3010                                          ISD::CondCode Cond, const SDLoc &DL,
3011                                          DAGCombinerInfo &DCI) const {
3012   // Match these patterns in any of their permutations:
3013   // (X & Y) == Y
3014   // (X & Y) != Y
3015   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3016     std::swap(N0, N1);
3017 
3018   EVT OpVT = N0.getValueType();
3019   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3020       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3021     return SDValue();
3022 
3023   SDValue X, Y;
3024   if (N0.getOperand(0) == N1) {
3025     X = N0.getOperand(1);
3026     Y = N0.getOperand(0);
3027   } else if (N0.getOperand(1) == N1) {
3028     X = N0.getOperand(0);
3029     Y = N0.getOperand(1);
3030   } else {
3031     return SDValue();
3032   }
3033 
3034   SelectionDAG &DAG = DCI.DAG;
3035   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3036   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3037     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3038     // Note that where Y is variable and is known to have at most one bit set
3039     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3040     // equivalent when Y == 0.
3041     assert(OpVT.isInteger());
3042     Cond = ISD::getSetCCInverse(Cond, OpVT);
3043     if (DCI.isBeforeLegalizeOps() ||
3044         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3045       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3046   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3047     // If the target supports an 'and-not' or 'and-complement' logic operation,
3048     // try to use that to make a comparison operation more efficient.
3049     // But don't do this transform if the mask is a single bit because there are
3050     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3051     // 'rlwinm' on PPC).
3052 
3053     // Bail out if the compare operand that we want to turn into a zero is
3054     // already a zero (otherwise, infinite loop).
3055     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3056     if (YConst && YConst->isNullValue())
3057       return SDValue();
3058 
3059     // Transform this into: ~X & Y == 0.
3060     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3061     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3062     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3063   }
3064 
3065   return SDValue();
3066 }
3067 
3068 /// There are multiple IR patterns that could be checking whether certain
3069 /// truncation of a signed number would be lossy or not. The pattern which is
3070 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3071 /// We are looking for the following pattern: (KeptBits is a constant)
3072 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3073 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3074 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3075 /// We will unfold it into the natural trunc+sext pattern:
3076 ///   ((%x << C) a>> C) dstcond %x
3077 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3078 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3079     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3080     const SDLoc &DL) const {
3081   // We must be comparing with a constant.
3082   ConstantSDNode *C1;
3083   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3084     return SDValue();
3085 
3086   // N0 should be:  add %x, (1 << (KeptBits-1))
3087   if (N0->getOpcode() != ISD::ADD)
3088     return SDValue();
3089 
3090   // And we must be 'add'ing a constant.
3091   ConstantSDNode *C01;
3092   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3093     return SDValue();
3094 
3095   SDValue X = N0->getOperand(0);
3096   EVT XVT = X.getValueType();
3097 
3098   // Validate constants ...
3099 
3100   APInt I1 = C1->getAPIntValue();
3101 
3102   ISD::CondCode NewCond;
3103   if (Cond == ISD::CondCode::SETULT) {
3104     NewCond = ISD::CondCode::SETEQ;
3105   } else if (Cond == ISD::CondCode::SETULE) {
3106     NewCond = ISD::CondCode::SETEQ;
3107     // But need to 'canonicalize' the constant.
3108     I1 += 1;
3109   } else if (Cond == ISD::CondCode::SETUGT) {
3110     NewCond = ISD::CondCode::SETNE;
3111     // But need to 'canonicalize' the constant.
3112     I1 += 1;
3113   } else if (Cond == ISD::CondCode::SETUGE) {
3114     NewCond = ISD::CondCode::SETNE;
3115   } else
3116     return SDValue();
3117 
3118   APInt I01 = C01->getAPIntValue();
3119 
3120   auto checkConstants = [&I1, &I01]() -> bool {
3121     // Both of them must be power-of-two, and the constant from setcc is bigger.
3122     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3123   };
3124 
3125   if (checkConstants()) {
3126     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3127   } else {
3128     // What if we invert constants? (and the target predicate)
3129     I1.negate();
3130     I01.negate();
3131     assert(XVT.isInteger());
3132     NewCond = getSetCCInverse(NewCond, XVT);
3133     if (!checkConstants())
3134       return SDValue();
3135     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3136   }
3137 
3138   // They are power-of-two, so which bit is set?
3139   const unsigned KeptBits = I1.logBase2();
3140   const unsigned KeptBitsMinusOne = I01.logBase2();
3141 
3142   // Magic!
3143   if (KeptBits != (KeptBitsMinusOne + 1))
3144     return SDValue();
3145   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3146 
3147   // We don't want to do this in every single case.
3148   SelectionDAG &DAG = DCI.DAG;
3149   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3150           XVT, KeptBits))
3151     return SDValue();
3152 
3153   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3154   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3155 
3156   // Unfold into:  ((%x << C) a>> C) cond %x
3157   // Where 'cond' will be either 'eq' or 'ne'.
3158   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3159   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3160   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3161   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3162 
3163   return T2;
3164 }
3165 
3166 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3167 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3168     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3169     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3170   assert(isConstOrConstSplat(N1C) &&
3171          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3172          "Should be a comparison with 0.");
3173   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3174          "Valid only for [in]equality comparisons.");
3175 
3176   unsigned NewShiftOpcode;
3177   SDValue X, C, Y;
3178 
3179   SelectionDAG &DAG = DCI.DAG;
3180   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3181 
3182   // Look for '(C l>>/<< Y)'.
3183   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3184     // The shift should be one-use.
3185     if (!V.hasOneUse())
3186       return false;
3187     unsigned OldShiftOpcode = V.getOpcode();
3188     switch (OldShiftOpcode) {
3189     case ISD::SHL:
3190       NewShiftOpcode = ISD::SRL;
3191       break;
3192     case ISD::SRL:
3193       NewShiftOpcode = ISD::SHL;
3194       break;
3195     default:
3196       return false; // must be a logical shift.
3197     }
3198     // We should be shifting a constant.
3199     // FIXME: best to use isConstantOrConstantVector().
3200     C = V.getOperand(0);
3201     ConstantSDNode *CC =
3202         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3203     if (!CC)
3204       return false;
3205     Y = V.getOperand(1);
3206 
3207     ConstantSDNode *XC =
3208         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3209     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3210         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3211   };
3212 
3213   // LHS of comparison should be an one-use 'and'.
3214   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3215     return SDValue();
3216 
3217   X = N0.getOperand(0);
3218   SDValue Mask = N0.getOperand(1);
3219 
3220   // 'and' is commutative!
3221   if (!Match(Mask)) {
3222     std::swap(X, Mask);
3223     if (!Match(Mask))
3224       return SDValue();
3225   }
3226 
3227   EVT VT = X.getValueType();
3228 
3229   // Produce:
3230   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3231   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3232   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3233   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3234   return T2;
3235 }
3236 
3237 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3238 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3239 /// handle the commuted versions of these patterns.
3240 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3241                                            ISD::CondCode Cond, const SDLoc &DL,
3242                                            DAGCombinerInfo &DCI) const {
3243   unsigned BOpcode = N0.getOpcode();
3244   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3245          "Unexpected binop");
3246   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3247 
3248   // (X + Y) == X --> Y == 0
3249   // (X - Y) == X --> Y == 0
3250   // (X ^ Y) == X --> Y == 0
3251   SelectionDAG &DAG = DCI.DAG;
3252   EVT OpVT = N0.getValueType();
3253   SDValue X = N0.getOperand(0);
3254   SDValue Y = N0.getOperand(1);
3255   if (X == N1)
3256     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3257 
3258   if (Y != N1)
3259     return SDValue();
3260 
3261   // (X + Y) == Y --> X == 0
3262   // (X ^ Y) == Y --> X == 0
3263   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3264     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3265 
3266   // The shift would not be valid if the operands are boolean (i1).
3267   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3268     return SDValue();
3269 
3270   // (X - Y) == Y --> X == Y << 1
3271   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3272                                  !DCI.isBeforeLegalize());
3273   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3274   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3275   if (!DCI.isCalledByLegalizer())
3276     DCI.AddToWorklist(YShl1.getNode());
3277   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3278 }
3279 
3280 /// Try to simplify a setcc built with the specified operands and cc. If it is
3281 /// unable to simplify it, return a null SDValue.
3282 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3283                                       ISD::CondCode Cond, bool foldBooleans,
3284                                       DAGCombinerInfo &DCI,
3285                                       const SDLoc &dl) const {
3286   SelectionDAG &DAG = DCI.DAG;
3287   const DataLayout &Layout = DAG.getDataLayout();
3288   EVT OpVT = N0.getValueType();
3289 
3290   // Constant fold or commute setcc.
3291   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3292     return Fold;
3293 
3294   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3295   // TODO: Handle non-splat vector constants. All undef causes trouble.
3296   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3297   if (isConstOrConstSplat(N0) &&
3298       (DCI.isBeforeLegalizeOps() ||
3299        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3300     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3301 
3302   // If we have a subtract with the same 2 non-constant operands as this setcc
3303   // -- but in reverse order -- then try to commute the operands of this setcc
3304   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3305   // instruction on some targets.
3306   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3307       (DCI.isBeforeLegalizeOps() ||
3308        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3309       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3310       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3311     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3312 
3313   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3314     const APInt &C1 = N1C->getAPIntValue();
3315 
3316     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3317     // equality comparison, then we're just comparing whether X itself is
3318     // zero.
3319     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3320         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3321         N0.getOperand(1).getOpcode() == ISD::Constant) {
3322       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3323       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3324           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3325         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3326           // (srl (ctlz x), 5) == 0  -> X != 0
3327           // (srl (ctlz x), 5) != 1  -> X != 0
3328           Cond = ISD::SETNE;
3329         } else {
3330           // (srl (ctlz x), 5) != 0  -> X == 0
3331           // (srl (ctlz x), 5) == 1  -> X == 0
3332           Cond = ISD::SETEQ;
3333         }
3334         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3335         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3336                             Zero, Cond);
3337       }
3338     }
3339 
3340     SDValue CTPOP = N0;
3341     // Look through truncs that don't change the value of a ctpop.
3342     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3343       CTPOP = N0.getOperand(0);
3344 
3345     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3346         (N0 == CTPOP ||
3347          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3348       EVT CTVT = CTPOP.getValueType();
3349       SDValue CTOp = CTPOP.getOperand(0);
3350 
3351       // (ctpop x) u< 2 -> (x & x-1) == 0
3352       // (ctpop x) u> 1 -> (x & x-1) != 0
3353       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3354         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3355         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3356         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3357         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3358         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3359       }
3360 
3361       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3362       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3363           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3364         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3365         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3366         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3367         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3368         assert(CTVT.isInteger());
3369         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3370         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3371         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3372         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3373         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3374         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3375         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3376       }
3377     }
3378 
3379     // (zext x) == C --> x == (trunc C)
3380     // (sext x) == C --> x == (trunc C)
3381     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3382         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3383       unsigned MinBits = N0.getValueSizeInBits();
3384       SDValue PreExt;
3385       bool Signed = false;
3386       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3387         // ZExt
3388         MinBits = N0->getOperand(0).getValueSizeInBits();
3389         PreExt = N0->getOperand(0);
3390       } else if (N0->getOpcode() == ISD::AND) {
3391         // DAGCombine turns costly ZExts into ANDs
3392         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3393           if ((C->getAPIntValue()+1).isPowerOf2()) {
3394             MinBits = C->getAPIntValue().countTrailingOnes();
3395             PreExt = N0->getOperand(0);
3396           }
3397       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3398         // SExt
3399         MinBits = N0->getOperand(0).getValueSizeInBits();
3400         PreExt = N0->getOperand(0);
3401         Signed = true;
3402       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3403         // ZEXTLOAD / SEXTLOAD
3404         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3405           MinBits = LN0->getMemoryVT().getSizeInBits();
3406           PreExt = N0;
3407         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3408           Signed = true;
3409           MinBits = LN0->getMemoryVT().getSizeInBits();
3410           PreExt = N0;
3411         }
3412       }
3413 
3414       // Figure out how many bits we need to preserve this constant.
3415       unsigned ReqdBits = Signed ?
3416         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3417         C1.getActiveBits();
3418 
3419       // Make sure we're not losing bits from the constant.
3420       if (MinBits > 0 &&
3421           MinBits < C1.getBitWidth() &&
3422           MinBits >= ReqdBits) {
3423         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3424         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3425           // Will get folded away.
3426           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3427           if (MinBits == 1 && C1 == 1)
3428             // Invert the condition.
3429             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3430                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3431           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3432           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3433         }
3434 
3435         // If truncating the setcc operands is not desirable, we can still
3436         // simplify the expression in some cases:
3437         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3438         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3439         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3440         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3441         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3442         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3443         SDValue TopSetCC = N0->getOperand(0);
3444         unsigned N0Opc = N0->getOpcode();
3445         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3446         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3447             TopSetCC.getOpcode() == ISD::SETCC &&
3448             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3449             (isConstFalseVal(N1C) ||
3450              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3451 
3452           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3453                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3454 
3455           if (!Inverse)
3456             return TopSetCC;
3457 
3458           ISD::CondCode InvCond = ISD::getSetCCInverse(
3459               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3460               TopSetCC.getOperand(0).getValueType());
3461           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3462                                       TopSetCC.getOperand(1),
3463                                       InvCond);
3464         }
3465       }
3466     }
3467 
3468     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3469     // equality or unsigned, and all 1 bits of the const are in the same
3470     // partial word, see if we can shorten the load.
3471     if (DCI.isBeforeLegalize() &&
3472         !ISD::isSignedIntSetCC(Cond) &&
3473         N0.getOpcode() == ISD::AND && C1 == 0 &&
3474         N0.getNode()->hasOneUse() &&
3475         isa<LoadSDNode>(N0.getOperand(0)) &&
3476         N0.getOperand(0).getNode()->hasOneUse() &&
3477         isa<ConstantSDNode>(N0.getOperand(1))) {
3478       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3479       APInt bestMask;
3480       unsigned bestWidth = 0, bestOffset = 0;
3481       if (Lod->isSimple() && Lod->isUnindexed()) {
3482         unsigned origWidth = N0.getValueSizeInBits();
3483         unsigned maskWidth = origWidth;
3484         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3485         // 8 bits, but have to be careful...
3486         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3487           origWidth = Lod->getMemoryVT().getSizeInBits();
3488         const APInt &Mask = N0.getConstantOperandAPInt(1);
3489         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3490           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3491           for (unsigned offset=0; offset<origWidth/width; offset++) {
3492             if (Mask.isSubsetOf(newMask)) {
3493               if (Layout.isLittleEndian())
3494                 bestOffset = (uint64_t)offset * (width/8);
3495               else
3496                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3497               bestMask = Mask.lshr(offset * (width/8) * 8);
3498               bestWidth = width;
3499               break;
3500             }
3501             newMask <<= width;
3502           }
3503         }
3504       }
3505       if (bestWidth) {
3506         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3507         if (newVT.isRound() &&
3508             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3509           SDValue Ptr = Lod->getBasePtr();
3510           if (bestOffset != 0)
3511             Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl);
3512           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3513           SDValue NewLoad = DAG.getLoad(
3514               newVT, dl, Lod->getChain(), Ptr,
3515               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3516           return DAG.getSetCC(dl, VT,
3517                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3518                                       DAG.getConstant(bestMask.trunc(bestWidth),
3519                                                       dl, newVT)),
3520                               DAG.getConstant(0LL, dl, newVT), Cond);
3521         }
3522       }
3523     }
3524 
3525     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3526     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3527       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3528 
3529       // If the comparison constant has bits in the upper part, the
3530       // zero-extended value could never match.
3531       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3532                                               C1.getBitWidth() - InSize))) {
3533         switch (Cond) {
3534         case ISD::SETUGT:
3535         case ISD::SETUGE:
3536         case ISD::SETEQ:
3537           return DAG.getConstant(0, dl, VT);
3538         case ISD::SETULT:
3539         case ISD::SETULE:
3540         case ISD::SETNE:
3541           return DAG.getConstant(1, dl, VT);
3542         case ISD::SETGT:
3543         case ISD::SETGE:
3544           // True if the sign bit of C1 is set.
3545           return DAG.getConstant(C1.isNegative(), dl, VT);
3546         case ISD::SETLT:
3547         case ISD::SETLE:
3548           // True if the sign bit of C1 isn't set.
3549           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3550         default:
3551           break;
3552         }
3553       }
3554 
3555       // Otherwise, we can perform the comparison with the low bits.
3556       switch (Cond) {
3557       case ISD::SETEQ:
3558       case ISD::SETNE:
3559       case ISD::SETUGT:
3560       case ISD::SETUGE:
3561       case ISD::SETULT:
3562       case ISD::SETULE: {
3563         EVT newVT = N0.getOperand(0).getValueType();
3564         if (DCI.isBeforeLegalizeOps() ||
3565             (isOperationLegal(ISD::SETCC, newVT) &&
3566              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3567           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3568           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3569 
3570           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3571                                           NewConst, Cond);
3572           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3573         }
3574         break;
3575       }
3576       default:
3577         break; // todo, be more careful with signed comparisons
3578       }
3579     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3580                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3581       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3582       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3583       EVT ExtDstTy = N0.getValueType();
3584       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3585 
3586       // If the constant doesn't fit into the number of bits for the source of
3587       // the sign extension, it is impossible for both sides to be equal.
3588       if (C1.getMinSignedBits() > ExtSrcTyBits)
3589         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3590 
3591       SDValue ZextOp;
3592       EVT Op0Ty = N0.getOperand(0).getValueType();
3593       if (Op0Ty == ExtSrcTy) {
3594         ZextOp = N0.getOperand(0);
3595       } else {
3596         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3597         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3598                              DAG.getConstant(Imm, dl, Op0Ty));
3599       }
3600       if (!DCI.isCalledByLegalizer())
3601         DCI.AddToWorklist(ZextOp.getNode());
3602       // Otherwise, make this a use of a zext.
3603       return DAG.getSetCC(dl, VT, ZextOp,
3604                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3605                                                               ExtDstTyBits,
3606                                                               ExtSrcTyBits),
3607                                           dl, ExtDstTy),
3608                           Cond);
3609     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3610                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3611       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3612       if (N0.getOpcode() == ISD::SETCC &&
3613           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3614           (N0.getValueType() == MVT::i1 ||
3615            getBooleanContents(N0.getOperand(0).getValueType()) ==
3616                        ZeroOrOneBooleanContent)) {
3617         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3618         if (TrueWhenTrue)
3619           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3620         // Invert the condition.
3621         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3622         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3623         if (DCI.isBeforeLegalizeOps() ||
3624             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3625           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3626       }
3627 
3628       if ((N0.getOpcode() == ISD::XOR ||
3629            (N0.getOpcode() == ISD::AND &&
3630             N0.getOperand(0).getOpcode() == ISD::XOR &&
3631             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3632           isa<ConstantSDNode>(N0.getOperand(1)) &&
3633           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3634         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3635         // can only do this if the top bits are known zero.
3636         unsigned BitWidth = N0.getValueSizeInBits();
3637         if (DAG.MaskedValueIsZero(N0,
3638                                   APInt::getHighBitsSet(BitWidth,
3639                                                         BitWidth-1))) {
3640           // Okay, get the un-inverted input value.
3641           SDValue Val;
3642           if (N0.getOpcode() == ISD::XOR) {
3643             Val = N0.getOperand(0);
3644           } else {
3645             assert(N0.getOpcode() == ISD::AND &&
3646                     N0.getOperand(0).getOpcode() == ISD::XOR);
3647             // ((X^1)&1)^1 -> X & 1
3648             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3649                               N0.getOperand(0).getOperand(0),
3650                               N0.getOperand(1));
3651           }
3652 
3653           return DAG.getSetCC(dl, VT, Val, N1,
3654                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3655         }
3656       } else if (N1C->isOne()) {
3657         SDValue Op0 = N0;
3658         if (Op0.getOpcode() == ISD::TRUNCATE)
3659           Op0 = Op0.getOperand(0);
3660 
3661         if ((Op0.getOpcode() == ISD::XOR) &&
3662             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3663             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3664           SDValue XorLHS = Op0.getOperand(0);
3665           SDValue XorRHS = Op0.getOperand(1);
3666           // Ensure that the input setccs return an i1 type or 0/1 value.
3667           if (Op0.getValueType() == MVT::i1 ||
3668               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3669                       ZeroOrOneBooleanContent &&
3670                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3671                         ZeroOrOneBooleanContent)) {
3672             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3673             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3674             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3675           }
3676         }
3677         if (Op0.getOpcode() == ISD::AND &&
3678             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3679             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3680           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3681           if (Op0.getValueType().bitsGT(VT))
3682             Op0 = DAG.getNode(ISD::AND, dl, VT,
3683                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3684                           DAG.getConstant(1, dl, VT));
3685           else if (Op0.getValueType().bitsLT(VT))
3686             Op0 = DAG.getNode(ISD::AND, dl, VT,
3687                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3688                         DAG.getConstant(1, dl, VT));
3689 
3690           return DAG.getSetCC(dl, VT, Op0,
3691                               DAG.getConstant(0, dl, Op0.getValueType()),
3692                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3693         }
3694         if (Op0.getOpcode() == ISD::AssertZext &&
3695             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3696           return DAG.getSetCC(dl, VT, Op0,
3697                               DAG.getConstant(0, dl, Op0.getValueType()),
3698                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3699       }
3700     }
3701 
3702     // Given:
3703     //   icmp eq/ne (urem %x, %y), 0
3704     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3705     //   icmp eq/ne %x, 0
3706     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3707         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3708       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3709       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3710       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3711         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3712     }
3713 
3714     if (SDValue V =
3715             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3716       return V;
3717   }
3718 
3719   // These simplifications apply to splat vectors as well.
3720   // TODO: Handle more splat vector cases.
3721   if (auto *N1C = isConstOrConstSplat(N1)) {
3722     const APInt &C1 = N1C->getAPIntValue();
3723 
3724     APInt MinVal, MaxVal;
3725     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3726     if (ISD::isSignedIntSetCC(Cond)) {
3727       MinVal = APInt::getSignedMinValue(OperandBitSize);
3728       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3729     } else {
3730       MinVal = APInt::getMinValue(OperandBitSize);
3731       MaxVal = APInt::getMaxValue(OperandBitSize);
3732     }
3733 
3734     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3735     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3736       // X >= MIN --> true
3737       if (C1 == MinVal)
3738         return DAG.getBoolConstant(true, dl, VT, OpVT);
3739 
3740       if (!VT.isVector()) { // TODO: Support this for vectors.
3741         // X >= C0 --> X > (C0 - 1)
3742         APInt C = C1 - 1;
3743         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3744         if ((DCI.isBeforeLegalizeOps() ||
3745              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3746             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3747                                   isLegalICmpImmediate(C.getSExtValue())))) {
3748           return DAG.getSetCC(dl, VT, N0,
3749                               DAG.getConstant(C, dl, N1.getValueType()),
3750                               NewCC);
3751         }
3752       }
3753     }
3754 
3755     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3756       // X <= MAX --> true
3757       if (C1 == MaxVal)
3758         return DAG.getBoolConstant(true, dl, VT, OpVT);
3759 
3760       // X <= C0 --> X < (C0 + 1)
3761       if (!VT.isVector()) { // TODO: Support this for vectors.
3762         APInt C = C1 + 1;
3763         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3764         if ((DCI.isBeforeLegalizeOps() ||
3765              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3766             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3767                                   isLegalICmpImmediate(C.getSExtValue())))) {
3768           return DAG.getSetCC(dl, VT, N0,
3769                               DAG.getConstant(C, dl, N1.getValueType()),
3770                               NewCC);
3771         }
3772       }
3773     }
3774 
3775     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3776       if (C1 == MinVal)
3777         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3778 
3779       // TODO: Support this for vectors after legalize ops.
3780       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3781         // Canonicalize setlt X, Max --> setne X, Max
3782         if (C1 == MaxVal)
3783           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3784 
3785         // If we have setult X, 1, turn it into seteq X, 0
3786         if (C1 == MinVal+1)
3787           return DAG.getSetCC(dl, VT, N0,
3788                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3789                               ISD::SETEQ);
3790       }
3791     }
3792 
3793     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3794       if (C1 == MaxVal)
3795         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3796 
3797       // TODO: Support this for vectors after legalize ops.
3798       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3799         // Canonicalize setgt X, Min --> setne X, Min
3800         if (C1 == MinVal)
3801           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3802 
3803         // If we have setugt X, Max-1, turn it into seteq X, Max
3804         if (C1 == MaxVal-1)
3805           return DAG.getSetCC(dl, VT, N0,
3806                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3807                               ISD::SETEQ);
3808       }
3809     }
3810 
3811     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3812       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3813       if (C1.isNullValue())
3814         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3815                 VT, N0, N1, Cond, DCI, dl))
3816           return CC;
3817     }
3818 
3819     // If we have "setcc X, C0", check to see if we can shrink the immediate
3820     // by changing cc.
3821     // TODO: Support this for vectors after legalize ops.
3822     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3823       // SETUGT X, SINTMAX  -> SETLT X, 0
3824       if (Cond == ISD::SETUGT &&
3825           C1 == APInt::getSignedMaxValue(OperandBitSize))
3826         return DAG.getSetCC(dl, VT, N0,
3827                             DAG.getConstant(0, dl, N1.getValueType()),
3828                             ISD::SETLT);
3829 
3830       // SETULT X, SINTMIN  -> SETGT X, -1
3831       if (Cond == ISD::SETULT &&
3832           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3833         SDValue ConstMinusOne =
3834             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3835                             N1.getValueType());
3836         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3837       }
3838     }
3839   }
3840 
3841   // Back to non-vector simplifications.
3842   // TODO: Can we do these for vector splats?
3843   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3844     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3845     const APInt &C1 = N1C->getAPIntValue();
3846     EVT ShValTy = N0.getValueType();
3847 
3848     // Fold bit comparisons when we can.
3849     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3850         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3851         N0.getOpcode() == ISD::AND) {
3852       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3853         EVT ShiftTy =
3854             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3855         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3856           // Perform the xform if the AND RHS is a single bit.
3857           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3858           if (AndRHS->getAPIntValue().isPowerOf2() &&
3859               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3860             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3861                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3862                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3863           }
3864         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3865           // (X & 8) == 8  -->  (X & 8) >> 3
3866           // Perform the xform if C1 is a single bit.
3867           unsigned ShCt = C1.logBase2();
3868           if (C1.isPowerOf2() &&
3869               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3870             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3871                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3872                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3873           }
3874         }
3875       }
3876     }
3877 
3878     if (C1.getMinSignedBits() <= 64 &&
3879         !isLegalICmpImmediate(C1.getSExtValue())) {
3880       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3881       // (X & -256) == 256 -> (X >> 8) == 1
3882       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3883           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3884         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3885           const APInt &AndRHSC = AndRHS->getAPIntValue();
3886           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3887             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3888             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3889               SDValue Shift =
3890                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3891                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3892               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3893               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3894             }
3895           }
3896         }
3897       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3898                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3899         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3900         // X <  0x100000000 -> (X >> 32) <  1
3901         // X >= 0x100000000 -> (X >> 32) >= 1
3902         // X <= 0x0ffffffff -> (X >> 32) <  1
3903         // X >  0x0ffffffff -> (X >> 32) >= 1
3904         unsigned ShiftBits;
3905         APInt NewC = C1;
3906         ISD::CondCode NewCond = Cond;
3907         if (AdjOne) {
3908           ShiftBits = C1.countTrailingOnes();
3909           NewC = NewC + 1;
3910           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3911         } else {
3912           ShiftBits = C1.countTrailingZeros();
3913         }
3914         NewC.lshrInPlace(ShiftBits);
3915         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3916             isLegalICmpImmediate(NewC.getSExtValue()) &&
3917             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3918           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3919                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3920           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
3921           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3922         }
3923       }
3924     }
3925   }
3926 
3927   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3928     auto *CFP = cast<ConstantFPSDNode>(N1);
3929     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3930 
3931     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3932     // constant if knowing that the operand is non-nan is enough.  We prefer to
3933     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3934     // materialize 0.0.
3935     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3936       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3937 
3938     // setcc (fneg x), C -> setcc swap(pred) x, -C
3939     if (N0.getOpcode() == ISD::FNEG) {
3940       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3941       if (DCI.isBeforeLegalizeOps() ||
3942           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3943         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3944         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3945       }
3946     }
3947 
3948     // If the condition is not legal, see if we can find an equivalent one
3949     // which is legal.
3950     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3951       // If the comparison was an awkward floating-point == or != and one of
3952       // the comparison operands is infinity or negative infinity, convert the
3953       // condition to a less-awkward <= or >=.
3954       if (CFP->getValueAPF().isInfinity()) {
3955         bool IsNegInf = CFP->getValueAPF().isNegative();
3956         ISD::CondCode NewCond = ISD::SETCC_INVALID;
3957         switch (Cond) {
3958         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
3959         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
3960         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
3961         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
3962         default: break;
3963         }
3964         if (NewCond != ISD::SETCC_INVALID &&
3965             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
3966           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3967       }
3968     }
3969   }
3970 
3971   if (N0 == N1) {
3972     // The sext(setcc()) => setcc() optimization relies on the appropriate
3973     // constant being emitted.
3974     assert(!N0.getValueType().isInteger() &&
3975            "Integer types should be handled by FoldSetCC");
3976 
3977     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3978     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3979     if (UOF == 2) // FP operators that are undefined on NaNs.
3980       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3981     if (UOF == unsigned(EqTrue))
3982       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3983     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3984     // if it is not already.
3985     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3986     if (NewCond != Cond &&
3987         (DCI.isBeforeLegalizeOps() ||
3988                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3989       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3990   }
3991 
3992   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3993       N0.getValueType().isInteger()) {
3994     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3995         N0.getOpcode() == ISD::XOR) {
3996       // Simplify (X+Y) == (X+Z) -->  Y == Z
3997       if (N0.getOpcode() == N1.getOpcode()) {
3998         if (N0.getOperand(0) == N1.getOperand(0))
3999           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4000         if (N0.getOperand(1) == N1.getOperand(1))
4001           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4002         if (isCommutativeBinOp(N0.getOpcode())) {
4003           // If X op Y == Y op X, try other combinations.
4004           if (N0.getOperand(0) == N1.getOperand(1))
4005             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4006                                 Cond);
4007           if (N0.getOperand(1) == N1.getOperand(0))
4008             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4009                                 Cond);
4010         }
4011       }
4012 
4013       // If RHS is a legal immediate value for a compare instruction, we need
4014       // to be careful about increasing register pressure needlessly.
4015       bool LegalRHSImm = false;
4016 
4017       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4018         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4019           // Turn (X+C1) == C2 --> X == C2-C1
4020           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4021             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4022                                 DAG.getConstant(RHSC->getAPIntValue()-
4023                                                 LHSR->getAPIntValue(),
4024                                 dl, N0.getValueType()), Cond);
4025           }
4026 
4027           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4028           if (N0.getOpcode() == ISD::XOR)
4029             // If we know that all of the inverted bits are zero, don't bother
4030             // performing the inversion.
4031             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4032               return
4033                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4034                              DAG.getConstant(LHSR->getAPIntValue() ^
4035                                                RHSC->getAPIntValue(),
4036                                              dl, N0.getValueType()),
4037                              Cond);
4038         }
4039 
4040         // Turn (C1-X) == C2 --> X == C1-C2
4041         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4042           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4043             return
4044               DAG.getSetCC(dl, VT, N0.getOperand(1),
4045                            DAG.getConstant(SUBC->getAPIntValue() -
4046                                              RHSC->getAPIntValue(),
4047                                            dl, N0.getValueType()),
4048                            Cond);
4049           }
4050         }
4051 
4052         // Could RHSC fold directly into a compare?
4053         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4054           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4055       }
4056 
4057       // (X+Y) == X --> Y == 0 and similar folds.
4058       // Don't do this if X is an immediate that can fold into a cmp
4059       // instruction and X+Y has other uses. It could be an induction variable
4060       // chain, and the transform would increase register pressure.
4061       if (!LegalRHSImm || N0.hasOneUse())
4062         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4063           return V;
4064     }
4065 
4066     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4067         N1.getOpcode() == ISD::XOR)
4068       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4069         return V;
4070 
4071     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4072       return V;
4073   }
4074 
4075   // Fold remainder of division by a constant.
4076   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4077       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4078     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4079 
4080     // When division is cheap or optimizing for minimum size,
4081     // fall through to DIVREM creation by skipping this fold.
4082     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4083       if (N0.getOpcode() == ISD::UREM) {
4084         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4085           return Folded;
4086       } else if (N0.getOpcode() == ISD::SREM) {
4087         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4088           return Folded;
4089       }
4090     }
4091   }
4092 
4093   // Fold away ALL boolean setcc's.
4094   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4095     SDValue Temp;
4096     switch (Cond) {
4097     default: llvm_unreachable("Unknown integer setcc!");
4098     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4099       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4100       N0 = DAG.getNOT(dl, Temp, OpVT);
4101       if (!DCI.isCalledByLegalizer())
4102         DCI.AddToWorklist(Temp.getNode());
4103       break;
4104     case ISD::SETNE:  // X != Y   -->  (X^Y)
4105       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4106       break;
4107     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4108     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4109       Temp = DAG.getNOT(dl, N0, OpVT);
4110       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4111       if (!DCI.isCalledByLegalizer())
4112         DCI.AddToWorklist(Temp.getNode());
4113       break;
4114     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4115     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4116       Temp = DAG.getNOT(dl, N1, OpVT);
4117       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4118       if (!DCI.isCalledByLegalizer())
4119         DCI.AddToWorklist(Temp.getNode());
4120       break;
4121     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4122     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4123       Temp = DAG.getNOT(dl, N0, OpVT);
4124       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4125       if (!DCI.isCalledByLegalizer())
4126         DCI.AddToWorklist(Temp.getNode());
4127       break;
4128     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4129     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4130       Temp = DAG.getNOT(dl, N1, OpVT);
4131       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4132       break;
4133     }
4134     if (VT.getScalarType() != MVT::i1) {
4135       if (!DCI.isCalledByLegalizer())
4136         DCI.AddToWorklist(N0.getNode());
4137       // FIXME: If running after legalize, we probably can't do this.
4138       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4139       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4140     }
4141     return N0;
4142   }
4143 
4144   // Could not fold it.
4145   return SDValue();
4146 }
4147 
4148 /// Returns true (and the GlobalValue and the offset) if the node is a
4149 /// GlobalAddress + offset.
4150 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4151                                     int64_t &Offset) const {
4152 
4153   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4154 
4155   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4156     GA = GASD->getGlobal();
4157     Offset += GASD->getOffset();
4158     return true;
4159   }
4160 
4161   if (N->getOpcode() == ISD::ADD) {
4162     SDValue N1 = N->getOperand(0);
4163     SDValue N2 = N->getOperand(1);
4164     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4165       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4166         Offset += V->getSExtValue();
4167         return true;
4168       }
4169     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4170       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4171         Offset += V->getSExtValue();
4172         return true;
4173       }
4174     }
4175   }
4176 
4177   return false;
4178 }
4179 
4180 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4181                                           DAGCombinerInfo &DCI) const {
4182   // Default implementation: no optimization.
4183   return SDValue();
4184 }
4185 
4186 //===----------------------------------------------------------------------===//
4187 //  Inline Assembler Implementation Methods
4188 //===----------------------------------------------------------------------===//
4189 
4190 TargetLowering::ConstraintType
4191 TargetLowering::getConstraintType(StringRef Constraint) const {
4192   unsigned S = Constraint.size();
4193 
4194   if (S == 1) {
4195     switch (Constraint[0]) {
4196     default: break;
4197     case 'r':
4198       return C_RegisterClass;
4199     case 'm': // memory
4200     case 'o': // offsetable
4201     case 'V': // not offsetable
4202       return C_Memory;
4203     case 'n': // Simple Integer
4204     case 'E': // Floating Point Constant
4205     case 'F': // Floating Point Constant
4206       return C_Immediate;
4207     case 'i': // Simple Integer or Relocatable Constant
4208     case 's': // Relocatable Constant
4209     case 'p': // Address.
4210     case 'X': // Allow ANY value.
4211     case 'I': // Target registers.
4212     case 'J':
4213     case 'K':
4214     case 'L':
4215     case 'M':
4216     case 'N':
4217     case 'O':
4218     case 'P':
4219     case '<':
4220     case '>':
4221       return C_Other;
4222     }
4223   }
4224 
4225   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4226     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4227       return C_Memory;
4228     return C_Register;
4229   }
4230   return C_Unknown;
4231 }
4232 
4233 /// Try to replace an X constraint, which matches anything, with another that
4234 /// has more specific requirements based on the type of the corresponding
4235 /// operand.
4236 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4237   if (ConstraintVT.isInteger())
4238     return "r";
4239   if (ConstraintVT.isFloatingPoint())
4240     return "f"; // works for many targets
4241   return nullptr;
4242 }
4243 
4244 SDValue TargetLowering::LowerAsmOutputForConstraint(
4245     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4246     SelectionDAG &DAG) const {
4247   return SDValue();
4248 }
4249 
4250 /// Lower the specified operand into the Ops vector.
4251 /// If it is invalid, don't add anything to Ops.
4252 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4253                                                   std::string &Constraint,
4254                                                   std::vector<SDValue> &Ops,
4255                                                   SelectionDAG &DAG) const {
4256 
4257   if (Constraint.length() > 1) return;
4258 
4259   char ConstraintLetter = Constraint[0];
4260   switch (ConstraintLetter) {
4261   default: break;
4262   case 'X':     // Allows any operand; labels (basic block) use this.
4263     if (Op.getOpcode() == ISD::BasicBlock ||
4264         Op.getOpcode() == ISD::TargetBlockAddress) {
4265       Ops.push_back(Op);
4266       return;
4267     }
4268     LLVM_FALLTHROUGH;
4269   case 'i':    // Simple Integer or Relocatable Constant
4270   case 'n':    // Simple Integer
4271   case 's': {  // Relocatable Constant
4272 
4273     GlobalAddressSDNode *GA;
4274     ConstantSDNode *C;
4275     BlockAddressSDNode *BA;
4276     uint64_t Offset = 0;
4277 
4278     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4279     // etc., since getelementpointer is variadic. We can't use
4280     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4281     // while in this case the GA may be furthest from the root node which is
4282     // likely an ISD::ADD.
4283     while (1) {
4284       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4285         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4286                                                  GA->getValueType(0),
4287                                                  Offset + GA->getOffset()));
4288         return;
4289       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4290                  ConstraintLetter != 's') {
4291         // gcc prints these as sign extended.  Sign extend value to 64 bits
4292         // now; without this it would get ZExt'd later in
4293         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4294         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4295         BooleanContent BCont = getBooleanContents(MVT::i64);
4296         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4297                                       : ISD::SIGN_EXTEND;
4298         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4299                                                     : C->getSExtValue();
4300         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4301                                             SDLoc(C), MVT::i64));
4302         return;
4303       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4304                  ConstraintLetter != 'n') {
4305         Ops.push_back(DAG.getTargetBlockAddress(
4306             BA->getBlockAddress(), BA->getValueType(0),
4307             Offset + BA->getOffset(), BA->getTargetFlags()));
4308         return;
4309       } else {
4310         const unsigned OpCode = Op.getOpcode();
4311         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4312           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4313             Op = Op.getOperand(1);
4314           // Subtraction is not commutative.
4315           else if (OpCode == ISD::ADD &&
4316                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4317             Op = Op.getOperand(0);
4318           else
4319             return;
4320           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4321           continue;
4322         }
4323       }
4324       return;
4325     }
4326     break;
4327   }
4328   }
4329 }
4330 
4331 std::pair<unsigned, const TargetRegisterClass *>
4332 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4333                                              StringRef Constraint,
4334                                              MVT VT) const {
4335   if (Constraint.empty() || Constraint[0] != '{')
4336     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4337   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4338 
4339   // Remove the braces from around the name.
4340   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4341 
4342   std::pair<unsigned, const TargetRegisterClass *> R =
4343       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4344 
4345   // Figure out which register class contains this reg.
4346   for (const TargetRegisterClass *RC : RI->regclasses()) {
4347     // If none of the value types for this register class are valid, we
4348     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4349     if (!isLegalRC(*RI, *RC))
4350       continue;
4351 
4352     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4353          I != E; ++I) {
4354       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4355         std::pair<unsigned, const TargetRegisterClass *> S =
4356             std::make_pair(*I, RC);
4357 
4358         // If this register class has the requested value type, return it,
4359         // otherwise keep searching and return the first class found
4360         // if no other is found which explicitly has the requested type.
4361         if (RI->isTypeLegalForClass(*RC, VT))
4362           return S;
4363         if (!R.second)
4364           R = S;
4365       }
4366     }
4367   }
4368 
4369   return R;
4370 }
4371 
4372 //===----------------------------------------------------------------------===//
4373 // Constraint Selection.
4374 
4375 /// Return true of this is an input operand that is a matching constraint like
4376 /// "4".
4377 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4378   assert(!ConstraintCode.empty() && "No known constraint!");
4379   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4380 }
4381 
4382 /// If this is an input matching constraint, this method returns the output
4383 /// operand it matches.
4384 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4385   assert(!ConstraintCode.empty() && "No known constraint!");
4386   return atoi(ConstraintCode.c_str());
4387 }
4388 
4389 /// Split up the constraint string from the inline assembly value into the
4390 /// specific constraints and their prefixes, and also tie in the associated
4391 /// operand values.
4392 /// If this returns an empty vector, and if the constraint string itself
4393 /// isn't empty, there was an error parsing.
4394 TargetLowering::AsmOperandInfoVector
4395 TargetLowering::ParseConstraints(const DataLayout &DL,
4396                                  const TargetRegisterInfo *TRI,
4397                                  const CallBase &Call) const {
4398   /// Information about all of the constraints.
4399   AsmOperandInfoVector ConstraintOperands;
4400   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4401   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4402 
4403   // Do a prepass over the constraints, canonicalizing them, and building up the
4404   // ConstraintOperands list.
4405   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4406   unsigned ResNo = 0; // ResNo - The result number of the next output.
4407 
4408   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4409     ConstraintOperands.emplace_back(std::move(CI));
4410     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4411 
4412     // Update multiple alternative constraint count.
4413     if (OpInfo.multipleAlternatives.size() > maCount)
4414       maCount = OpInfo.multipleAlternatives.size();
4415 
4416     OpInfo.ConstraintVT = MVT::Other;
4417 
4418     // Compute the value type for each operand.
4419     switch (OpInfo.Type) {
4420     case InlineAsm::isOutput:
4421       // Indirect outputs just consume an argument.
4422       if (OpInfo.isIndirect) {
4423         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4424         break;
4425       }
4426 
4427       // The return value of the call is this value.  As such, there is no
4428       // corresponding argument.
4429       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4430       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4431         OpInfo.ConstraintVT =
4432             getSimpleValueType(DL, STy->getElementType(ResNo));
4433       } else {
4434         assert(ResNo == 0 && "Asm only has one result!");
4435         OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType());
4436       }
4437       ++ResNo;
4438       break;
4439     case InlineAsm::isInput:
4440       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4441       break;
4442     case InlineAsm::isClobber:
4443       // Nothing to do.
4444       break;
4445     }
4446 
4447     if (OpInfo.CallOperandVal) {
4448       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4449       if (OpInfo.isIndirect) {
4450         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4451         if (!PtrTy)
4452           report_fatal_error("Indirect operand for inline asm not a pointer!");
4453         OpTy = PtrTy->getElementType();
4454       }
4455 
4456       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4457       if (StructType *STy = dyn_cast<StructType>(OpTy))
4458         if (STy->getNumElements() == 1)
4459           OpTy = STy->getElementType(0);
4460 
4461       // If OpTy is not a single value, it may be a struct/union that we
4462       // can tile with integers.
4463       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4464         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4465         switch (BitSize) {
4466         default: break;
4467         case 1:
4468         case 8:
4469         case 16:
4470         case 32:
4471         case 64:
4472         case 128:
4473           OpInfo.ConstraintVT =
4474               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4475           break;
4476         }
4477       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4478         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4479         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4480       } else {
4481         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4482       }
4483     }
4484   }
4485 
4486   // If we have multiple alternative constraints, select the best alternative.
4487   if (!ConstraintOperands.empty()) {
4488     if (maCount) {
4489       unsigned bestMAIndex = 0;
4490       int bestWeight = -1;
4491       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4492       int weight = -1;
4493       unsigned maIndex;
4494       // Compute the sums of the weights for each alternative, keeping track
4495       // of the best (highest weight) one so far.
4496       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4497         int weightSum = 0;
4498         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4499              cIndex != eIndex; ++cIndex) {
4500           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4501           if (OpInfo.Type == InlineAsm::isClobber)
4502             continue;
4503 
4504           // If this is an output operand with a matching input operand,
4505           // look up the matching input. If their types mismatch, e.g. one
4506           // is an integer, the other is floating point, or their sizes are
4507           // different, flag it as an maCantMatch.
4508           if (OpInfo.hasMatchingInput()) {
4509             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4510             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4511               if ((OpInfo.ConstraintVT.isInteger() !=
4512                    Input.ConstraintVT.isInteger()) ||
4513                   (OpInfo.ConstraintVT.getSizeInBits() !=
4514                    Input.ConstraintVT.getSizeInBits())) {
4515                 weightSum = -1; // Can't match.
4516                 break;
4517               }
4518             }
4519           }
4520           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4521           if (weight == -1) {
4522             weightSum = -1;
4523             break;
4524           }
4525           weightSum += weight;
4526         }
4527         // Update best.
4528         if (weightSum > bestWeight) {
4529           bestWeight = weightSum;
4530           bestMAIndex = maIndex;
4531         }
4532       }
4533 
4534       // Now select chosen alternative in each constraint.
4535       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4536            cIndex != eIndex; ++cIndex) {
4537         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4538         if (cInfo.Type == InlineAsm::isClobber)
4539           continue;
4540         cInfo.selectAlternative(bestMAIndex);
4541       }
4542     }
4543   }
4544 
4545   // Check and hook up tied operands, choose constraint code to use.
4546   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4547        cIndex != eIndex; ++cIndex) {
4548     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4549 
4550     // If this is an output operand with a matching input operand, look up the
4551     // matching input. If their types mismatch, e.g. one is an integer, the
4552     // other is floating point, or their sizes are different, flag it as an
4553     // error.
4554     if (OpInfo.hasMatchingInput()) {
4555       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4556 
4557       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4558         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4559             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4560                                          OpInfo.ConstraintVT);
4561         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4562             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4563                                          Input.ConstraintVT);
4564         if ((OpInfo.ConstraintVT.isInteger() !=
4565              Input.ConstraintVT.isInteger()) ||
4566             (MatchRC.second != InputRC.second)) {
4567           report_fatal_error("Unsupported asm: input constraint"
4568                              " with a matching output constraint of"
4569                              " incompatible type!");
4570         }
4571       }
4572     }
4573   }
4574 
4575   return ConstraintOperands;
4576 }
4577 
4578 /// Return an integer indicating how general CT is.
4579 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4580   switch (CT) {
4581   case TargetLowering::C_Immediate:
4582   case TargetLowering::C_Other:
4583   case TargetLowering::C_Unknown:
4584     return 0;
4585   case TargetLowering::C_Register:
4586     return 1;
4587   case TargetLowering::C_RegisterClass:
4588     return 2;
4589   case TargetLowering::C_Memory:
4590     return 3;
4591   }
4592   llvm_unreachable("Invalid constraint type");
4593 }
4594 
4595 /// Examine constraint type and operand type and determine a weight value.
4596 /// This object must already have been set up with the operand type
4597 /// and the current alternative constraint selected.
4598 TargetLowering::ConstraintWeight
4599   TargetLowering::getMultipleConstraintMatchWeight(
4600     AsmOperandInfo &info, int maIndex) const {
4601   InlineAsm::ConstraintCodeVector *rCodes;
4602   if (maIndex >= (int)info.multipleAlternatives.size())
4603     rCodes = &info.Codes;
4604   else
4605     rCodes = &info.multipleAlternatives[maIndex].Codes;
4606   ConstraintWeight BestWeight = CW_Invalid;
4607 
4608   // Loop over the options, keeping track of the most general one.
4609   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4610     ConstraintWeight weight =
4611       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4612     if (weight > BestWeight)
4613       BestWeight = weight;
4614   }
4615 
4616   return BestWeight;
4617 }
4618 
4619 /// Examine constraint type and operand type and determine a weight value.
4620 /// This object must already have been set up with the operand type
4621 /// and the current alternative constraint selected.
4622 TargetLowering::ConstraintWeight
4623   TargetLowering::getSingleConstraintMatchWeight(
4624     AsmOperandInfo &info, const char *constraint) const {
4625   ConstraintWeight weight = CW_Invalid;
4626   Value *CallOperandVal = info.CallOperandVal;
4627     // If we don't have a value, we can't do a match,
4628     // but allow it at the lowest weight.
4629   if (!CallOperandVal)
4630     return CW_Default;
4631   // Look at the constraint type.
4632   switch (*constraint) {
4633     case 'i': // immediate integer.
4634     case 'n': // immediate integer with a known value.
4635       if (isa<ConstantInt>(CallOperandVal))
4636         weight = CW_Constant;
4637       break;
4638     case 's': // non-explicit intregal immediate.
4639       if (isa<GlobalValue>(CallOperandVal))
4640         weight = CW_Constant;
4641       break;
4642     case 'E': // immediate float if host format.
4643     case 'F': // immediate float.
4644       if (isa<ConstantFP>(CallOperandVal))
4645         weight = CW_Constant;
4646       break;
4647     case '<': // memory operand with autodecrement.
4648     case '>': // memory operand with autoincrement.
4649     case 'm': // memory operand.
4650     case 'o': // offsettable memory operand
4651     case 'V': // non-offsettable memory operand
4652       weight = CW_Memory;
4653       break;
4654     case 'r': // general register.
4655     case 'g': // general register, memory operand or immediate integer.
4656               // note: Clang converts "g" to "imr".
4657       if (CallOperandVal->getType()->isIntegerTy())
4658         weight = CW_Register;
4659       break;
4660     case 'X': // any operand.
4661   default:
4662     weight = CW_Default;
4663     break;
4664   }
4665   return weight;
4666 }
4667 
4668 /// If there are multiple different constraints that we could pick for this
4669 /// operand (e.g. "imr") try to pick the 'best' one.
4670 /// This is somewhat tricky: constraints fall into four classes:
4671 ///    Other         -> immediates and magic values
4672 ///    Register      -> one specific register
4673 ///    RegisterClass -> a group of regs
4674 ///    Memory        -> memory
4675 /// Ideally, we would pick the most specific constraint possible: if we have
4676 /// something that fits into a register, we would pick it.  The problem here
4677 /// is that if we have something that could either be in a register or in
4678 /// memory that use of the register could cause selection of *other*
4679 /// operands to fail: they might only succeed if we pick memory.  Because of
4680 /// this the heuristic we use is:
4681 ///
4682 ///  1) If there is an 'other' constraint, and if the operand is valid for
4683 ///     that constraint, use it.  This makes us take advantage of 'i'
4684 ///     constraints when available.
4685 ///  2) Otherwise, pick the most general constraint present.  This prefers
4686 ///     'm' over 'r', for example.
4687 ///
4688 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4689                              const TargetLowering &TLI,
4690                              SDValue Op, SelectionDAG *DAG) {
4691   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4692   unsigned BestIdx = 0;
4693   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4694   int BestGenerality = -1;
4695 
4696   // Loop over the options, keeping track of the most general one.
4697   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4698     TargetLowering::ConstraintType CType =
4699       TLI.getConstraintType(OpInfo.Codes[i]);
4700 
4701     // Indirect 'other' or 'immediate' constraints are not allowed.
4702     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4703                                CType == TargetLowering::C_Register ||
4704                                CType == TargetLowering::C_RegisterClass))
4705       continue;
4706 
4707     // If this is an 'other' or 'immediate' constraint, see if the operand is
4708     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4709     // the operand is an integer in the range [0..31] we want to use I (saving a
4710     // load of a register), otherwise we must use 'r'.
4711     if ((CType == TargetLowering::C_Other ||
4712          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4713       assert(OpInfo.Codes[i].size() == 1 &&
4714              "Unhandled multi-letter 'other' constraint");
4715       std::vector<SDValue> ResultOps;
4716       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4717                                        ResultOps, *DAG);
4718       if (!ResultOps.empty()) {
4719         BestType = CType;
4720         BestIdx = i;
4721         break;
4722       }
4723     }
4724 
4725     // Things with matching constraints can only be registers, per gcc
4726     // documentation.  This mainly affects "g" constraints.
4727     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4728       continue;
4729 
4730     // This constraint letter is more general than the previous one, use it.
4731     int Generality = getConstraintGenerality(CType);
4732     if (Generality > BestGenerality) {
4733       BestType = CType;
4734       BestIdx = i;
4735       BestGenerality = Generality;
4736     }
4737   }
4738 
4739   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4740   OpInfo.ConstraintType = BestType;
4741 }
4742 
4743 /// Determines the constraint code and constraint type to use for the specific
4744 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4745 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4746                                             SDValue Op,
4747                                             SelectionDAG *DAG) const {
4748   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4749 
4750   // Single-letter constraints ('r') are very common.
4751   if (OpInfo.Codes.size() == 1) {
4752     OpInfo.ConstraintCode = OpInfo.Codes[0];
4753     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4754   } else {
4755     ChooseConstraint(OpInfo, *this, Op, DAG);
4756   }
4757 
4758   // 'X' matches anything.
4759   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4760     // Labels and constants are handled elsewhere ('X' is the only thing
4761     // that matches labels).  For Functions, the type here is the type of
4762     // the result, which is not what we want to look at; leave them alone.
4763     Value *v = OpInfo.CallOperandVal;
4764     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4765       OpInfo.CallOperandVal = v;
4766       return;
4767     }
4768 
4769     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4770       return;
4771 
4772     // Otherwise, try to resolve it to something we know about by looking at
4773     // the actual operand type.
4774     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4775       OpInfo.ConstraintCode = Repl;
4776       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4777     }
4778   }
4779 }
4780 
4781 /// Given an exact SDIV by a constant, create a multiplication
4782 /// with the multiplicative inverse of the constant.
4783 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4784                               const SDLoc &dl, SelectionDAG &DAG,
4785                               SmallVectorImpl<SDNode *> &Created) {
4786   SDValue Op0 = N->getOperand(0);
4787   SDValue Op1 = N->getOperand(1);
4788   EVT VT = N->getValueType(0);
4789   EVT SVT = VT.getScalarType();
4790   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4791   EVT ShSVT = ShVT.getScalarType();
4792 
4793   bool UseSRA = false;
4794   SmallVector<SDValue, 16> Shifts, Factors;
4795 
4796   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4797     if (C->isNullValue())
4798       return false;
4799     APInt Divisor = C->getAPIntValue();
4800     unsigned Shift = Divisor.countTrailingZeros();
4801     if (Shift) {
4802       Divisor.ashrInPlace(Shift);
4803       UseSRA = true;
4804     }
4805     // Calculate the multiplicative inverse, using Newton's method.
4806     APInt t;
4807     APInt Factor = Divisor;
4808     while ((t = Divisor * Factor) != 1)
4809       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4810     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4811     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4812     return true;
4813   };
4814 
4815   // Collect all magic values from the build vector.
4816   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4817     return SDValue();
4818 
4819   SDValue Shift, Factor;
4820   if (VT.isVector()) {
4821     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4822     Factor = DAG.getBuildVector(VT, dl, Factors);
4823   } else {
4824     Shift = Shifts[0];
4825     Factor = Factors[0];
4826   }
4827 
4828   SDValue Res = Op0;
4829 
4830   // Shift the value upfront if it is even, so the LSB is one.
4831   if (UseSRA) {
4832     // TODO: For UDIV use SRL instead of SRA.
4833     SDNodeFlags Flags;
4834     Flags.setExact(true);
4835     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4836     Created.push_back(Res.getNode());
4837   }
4838 
4839   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4840 }
4841 
4842 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4843                               SelectionDAG &DAG,
4844                               SmallVectorImpl<SDNode *> &Created) const {
4845   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4846   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4847   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4848     return SDValue(N, 0); // Lower SDIV as SDIV
4849   return SDValue();
4850 }
4851 
4852 /// Given an ISD::SDIV node expressing a divide by constant,
4853 /// return a DAG expression to select that will generate the same value by
4854 /// multiplying by a magic number.
4855 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4856 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4857                                   bool IsAfterLegalization,
4858                                   SmallVectorImpl<SDNode *> &Created) const {
4859   SDLoc dl(N);
4860   EVT VT = N->getValueType(0);
4861   EVT SVT = VT.getScalarType();
4862   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4863   EVT ShSVT = ShVT.getScalarType();
4864   unsigned EltBits = VT.getScalarSizeInBits();
4865 
4866   // Check to see if we can do this.
4867   // FIXME: We should be more aggressive here.
4868   if (!isTypeLegal(VT))
4869     return SDValue();
4870 
4871   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4872   if (N->getFlags().hasExact())
4873     return BuildExactSDIV(*this, N, dl, DAG, Created);
4874 
4875   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4876 
4877   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4878     if (C->isNullValue())
4879       return false;
4880 
4881     const APInt &Divisor = C->getAPIntValue();
4882     APInt::ms magics = Divisor.magic();
4883     int NumeratorFactor = 0;
4884     int ShiftMask = -1;
4885 
4886     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4887       // If d is +1/-1, we just multiply the numerator by +1/-1.
4888       NumeratorFactor = Divisor.getSExtValue();
4889       magics.m = 0;
4890       magics.s = 0;
4891       ShiftMask = 0;
4892     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4893       // If d > 0 and m < 0, add the numerator.
4894       NumeratorFactor = 1;
4895     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4896       // If d < 0 and m > 0, subtract the numerator.
4897       NumeratorFactor = -1;
4898     }
4899 
4900     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4901     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4902     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4903     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4904     return true;
4905   };
4906 
4907   SDValue N0 = N->getOperand(0);
4908   SDValue N1 = N->getOperand(1);
4909 
4910   // Collect the shifts / magic values from each element.
4911   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4912     return SDValue();
4913 
4914   SDValue MagicFactor, Factor, Shift, ShiftMask;
4915   if (VT.isVector()) {
4916     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4917     Factor = DAG.getBuildVector(VT, dl, Factors);
4918     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4919     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4920   } else {
4921     MagicFactor = MagicFactors[0];
4922     Factor = Factors[0];
4923     Shift = Shifts[0];
4924     ShiftMask = ShiftMasks[0];
4925   }
4926 
4927   // Multiply the numerator (operand 0) by the magic value.
4928   // FIXME: We should support doing a MUL in a wider type.
4929   SDValue Q;
4930   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4931                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4932     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4933   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4934                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4935     SDValue LoHi =
4936         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4937     Q = SDValue(LoHi.getNode(), 1);
4938   } else
4939     return SDValue(); // No mulhs or equivalent.
4940   Created.push_back(Q.getNode());
4941 
4942   // (Optionally) Add/subtract the numerator using Factor.
4943   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4944   Created.push_back(Factor.getNode());
4945   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4946   Created.push_back(Q.getNode());
4947 
4948   // Shift right algebraic by shift value.
4949   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4950   Created.push_back(Q.getNode());
4951 
4952   // Extract the sign bit, mask it and add it to the quotient.
4953   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4954   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4955   Created.push_back(T.getNode());
4956   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4957   Created.push_back(T.getNode());
4958   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4959 }
4960 
4961 /// Given an ISD::UDIV node expressing a divide by constant,
4962 /// return a DAG expression to select that will generate the same value by
4963 /// multiplying by a magic number.
4964 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4965 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4966                                   bool IsAfterLegalization,
4967                                   SmallVectorImpl<SDNode *> &Created) const {
4968   SDLoc dl(N);
4969   EVT VT = N->getValueType(0);
4970   EVT SVT = VT.getScalarType();
4971   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4972   EVT ShSVT = ShVT.getScalarType();
4973   unsigned EltBits = VT.getScalarSizeInBits();
4974 
4975   // Check to see if we can do this.
4976   // FIXME: We should be more aggressive here.
4977   if (!isTypeLegal(VT))
4978     return SDValue();
4979 
4980   bool UseNPQ = false;
4981   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4982 
4983   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4984     if (C->isNullValue())
4985       return false;
4986     // FIXME: We should use a narrower constant when the upper
4987     // bits are known to be zero.
4988     APInt Divisor = C->getAPIntValue();
4989     APInt::mu magics = Divisor.magicu();
4990     unsigned PreShift = 0, PostShift = 0;
4991 
4992     // If the divisor is even, we can avoid using the expensive fixup by
4993     // shifting the divided value upfront.
4994     if (magics.a != 0 && !Divisor[0]) {
4995       PreShift = Divisor.countTrailingZeros();
4996       // Get magic number for the shifted divisor.
4997       magics = Divisor.lshr(PreShift).magicu(PreShift);
4998       assert(magics.a == 0 && "Should use cheap fixup now");
4999     }
5000 
5001     APInt Magic = magics.m;
5002 
5003     unsigned SelNPQ;
5004     if (magics.a == 0 || Divisor.isOneValue()) {
5005       assert(magics.s < Divisor.getBitWidth() &&
5006              "We shouldn't generate an undefined shift!");
5007       PostShift = magics.s;
5008       SelNPQ = false;
5009     } else {
5010       PostShift = magics.s - 1;
5011       SelNPQ = true;
5012     }
5013 
5014     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5015     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5016     NPQFactors.push_back(
5017         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5018                                : APInt::getNullValue(EltBits),
5019                         dl, SVT));
5020     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5021     UseNPQ |= SelNPQ;
5022     return true;
5023   };
5024 
5025   SDValue N0 = N->getOperand(0);
5026   SDValue N1 = N->getOperand(1);
5027 
5028   // Collect the shifts/magic values from each element.
5029   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5030     return SDValue();
5031 
5032   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5033   if (VT.isVector()) {
5034     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5035     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5036     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5037     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5038   } else {
5039     PreShift = PreShifts[0];
5040     MagicFactor = MagicFactors[0];
5041     PostShift = PostShifts[0];
5042   }
5043 
5044   SDValue Q = N0;
5045   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5046   Created.push_back(Q.getNode());
5047 
5048   // FIXME: We should support doing a MUL in a wider type.
5049   auto GetMULHU = [&](SDValue X, SDValue Y) {
5050     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
5051                             : isOperationLegalOrCustom(ISD::MULHU, VT))
5052       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5053     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
5054                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
5055       SDValue LoHi =
5056           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5057       return SDValue(LoHi.getNode(), 1);
5058     }
5059     return SDValue(); // No mulhu or equivalent
5060   };
5061 
5062   // Multiply the numerator (operand 0) by the magic value.
5063   Q = GetMULHU(Q, MagicFactor);
5064   if (!Q)
5065     return SDValue();
5066 
5067   Created.push_back(Q.getNode());
5068 
5069   if (UseNPQ) {
5070     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5071     Created.push_back(NPQ.getNode());
5072 
5073     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5074     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5075     if (VT.isVector())
5076       NPQ = GetMULHU(NPQ, NPQFactor);
5077     else
5078       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5079 
5080     Created.push_back(NPQ.getNode());
5081 
5082     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5083     Created.push_back(Q.getNode());
5084   }
5085 
5086   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5087   Created.push_back(Q.getNode());
5088 
5089   SDValue One = DAG.getConstant(1, dl, VT);
5090   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
5091   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5092 }
5093 
5094 /// If all values in Values that *don't* match the predicate are same 'splat'
5095 /// value, then replace all values with that splat value.
5096 /// Else, if AlternativeReplacement was provided, then replace all values that
5097 /// do match predicate with AlternativeReplacement value.
5098 static void
5099 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5100                           std::function<bool(SDValue)> Predicate,
5101                           SDValue AlternativeReplacement = SDValue()) {
5102   SDValue Replacement;
5103   // Is there a value for which the Predicate does *NOT* match? What is it?
5104   auto SplatValue = llvm::find_if_not(Values, Predicate);
5105   if (SplatValue != Values.end()) {
5106     // Does Values consist only of SplatValue's and values matching Predicate?
5107     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5108           return Value == *SplatValue || Predicate(Value);
5109         })) // Then we shall replace values matching predicate with SplatValue.
5110       Replacement = *SplatValue;
5111   }
5112   if (!Replacement) {
5113     // Oops, we did not find the "baseline" splat value.
5114     if (!AlternativeReplacement)
5115       return; // Nothing to do.
5116     // Let's replace with provided value then.
5117     Replacement = AlternativeReplacement;
5118   }
5119   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5120 }
5121 
5122 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5123 /// where the divisor is constant and the comparison target is zero,
5124 /// return a DAG expression that will generate the same comparison result
5125 /// using only multiplications, additions and shifts/rotations.
5126 /// Ref: "Hacker's Delight" 10-17.
5127 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5128                                         SDValue CompTargetNode,
5129                                         ISD::CondCode Cond,
5130                                         DAGCombinerInfo &DCI,
5131                                         const SDLoc &DL) const {
5132   SmallVector<SDNode *, 5> Built;
5133   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5134                                          DCI, DL, Built)) {
5135     for (SDNode *N : Built)
5136       DCI.AddToWorklist(N);
5137     return Folded;
5138   }
5139 
5140   return SDValue();
5141 }
5142 
5143 SDValue
5144 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5145                                   SDValue CompTargetNode, ISD::CondCode Cond,
5146                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5147                                   SmallVectorImpl<SDNode *> &Created) const {
5148   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5149   // - D must be constant, with D = D0 * 2^K where D0 is odd
5150   // - P is the multiplicative inverse of D0 modulo 2^W
5151   // - Q = floor(((2^W) - 1) / D)
5152   // where W is the width of the common type of N and D.
5153   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5154          "Only applicable for (in)equality comparisons.");
5155 
5156   SelectionDAG &DAG = DCI.DAG;
5157 
5158   EVT VT = REMNode.getValueType();
5159   EVT SVT = VT.getScalarType();
5160   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5161   EVT ShSVT = ShVT.getScalarType();
5162 
5163   // If MUL is unavailable, we cannot proceed in any case.
5164   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5165     return SDValue();
5166 
5167   bool ComparingWithAllZeros = true;
5168   bool AllComparisonsWithNonZerosAreTautological = true;
5169   bool HadTautologicalLanes = false;
5170   bool AllLanesAreTautological = true;
5171   bool HadEvenDivisor = false;
5172   bool AllDivisorsArePowerOfTwo = true;
5173   bool HadTautologicalInvertedLanes = false;
5174   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5175 
5176   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5177     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5178     if (CDiv->isNullValue())
5179       return false;
5180 
5181     const APInt &D = CDiv->getAPIntValue();
5182     const APInt &Cmp = CCmp->getAPIntValue();
5183 
5184     ComparingWithAllZeros &= Cmp.isNullValue();
5185 
5186     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5187     // if C2 is not less than C1, the comparison is always false.
5188     // But we will only be able to produce the comparison that will give the
5189     // opposive tautological answer. So this lane would need to be fixed up.
5190     bool TautologicalInvertedLane = D.ule(Cmp);
5191     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5192 
5193     // If all lanes are tautological (either all divisors are ones, or divisor
5194     // is not greater than the constant we are comparing with),
5195     // we will prefer to avoid the fold.
5196     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5197     HadTautologicalLanes |= TautologicalLane;
5198     AllLanesAreTautological &= TautologicalLane;
5199 
5200     // If we are comparing with non-zero, we need'll need  to subtract said
5201     // comparison value from the LHS. But there is no point in doing that if
5202     // every lane where we are comparing with non-zero is tautological..
5203     if (!Cmp.isNullValue())
5204       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5205 
5206     // Decompose D into D0 * 2^K
5207     unsigned K = D.countTrailingZeros();
5208     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5209     APInt D0 = D.lshr(K);
5210 
5211     // D is even if it has trailing zeros.
5212     HadEvenDivisor |= (K != 0);
5213     // D is a power-of-two if D0 is one.
5214     // If all divisors are power-of-two, we will prefer to avoid the fold.
5215     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5216 
5217     // P = inv(D0, 2^W)
5218     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5219     unsigned W = D.getBitWidth();
5220     APInt P = D0.zext(W + 1)
5221                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5222                   .trunc(W);
5223     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5224     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5225 
5226     // Q = floor((2^W - 1) u/ D)
5227     // R = ((2^W - 1) u% D)
5228     APInt Q, R;
5229     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5230 
5231     // If we are comparing with zero, then that comparison constant is okay,
5232     // else it may need to be one less than that.
5233     if (Cmp.ugt(R))
5234       Q -= 1;
5235 
5236     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5237            "We are expecting that K is always less than all-ones for ShSVT");
5238 
5239     // If the lane is tautological the result can be constant-folded.
5240     if (TautologicalLane) {
5241       // Set P and K amount to a bogus values so we can try to splat them.
5242       P = 0;
5243       K = -1;
5244       // And ensure that comparison constant is tautological,
5245       // it will always compare true/false.
5246       Q = -1;
5247     }
5248 
5249     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5250     KAmts.push_back(
5251         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5252     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5253     return true;
5254   };
5255 
5256   SDValue N = REMNode.getOperand(0);
5257   SDValue D = REMNode.getOperand(1);
5258 
5259   // Collect the values from each element.
5260   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5261     return SDValue();
5262 
5263   // If all lanes are tautological, the result can be constant-folded.
5264   if (AllLanesAreTautological)
5265     return SDValue();
5266 
5267   // If this is a urem by a powers-of-two, avoid the fold since it can be
5268   // best implemented as a bit test.
5269   if (AllDivisorsArePowerOfTwo)
5270     return SDValue();
5271 
5272   SDValue PVal, KVal, QVal;
5273   if (VT.isVector()) {
5274     if (HadTautologicalLanes) {
5275       // Try to turn PAmts into a splat, since we don't care about the values
5276       // that are currently '0'. If we can't, just keep '0'`s.
5277       turnVectorIntoSplatVector(PAmts, isNullConstant);
5278       // Try to turn KAmts into a splat, since we don't care about the values
5279       // that are currently '-1'. If we can't, change them to '0'`s.
5280       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5281                                 DAG.getConstant(0, DL, ShSVT));
5282     }
5283 
5284     PVal = DAG.getBuildVector(VT, DL, PAmts);
5285     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5286     QVal = DAG.getBuildVector(VT, DL, QAmts);
5287   } else {
5288     PVal = PAmts[0];
5289     KVal = KAmts[0];
5290     QVal = QAmts[0];
5291   }
5292 
5293   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5294     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5295       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5296     assert(CompTargetNode.getValueType() == N.getValueType() &&
5297            "Expecting that the types on LHS and RHS of comparisons match.");
5298     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5299   }
5300 
5301   // (mul N, P)
5302   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5303   Created.push_back(Op0.getNode());
5304 
5305   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5306   // divisors as a performance improvement, since rotating by 0 is a no-op.
5307   if (HadEvenDivisor) {
5308     // We need ROTR to do this.
5309     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5310       return SDValue();
5311     SDNodeFlags Flags;
5312     Flags.setExact(true);
5313     // UREM: (rotr (mul N, P), K)
5314     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5315     Created.push_back(Op0.getNode());
5316   }
5317 
5318   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5319   SDValue NewCC =
5320       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5321                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5322   if (!HadTautologicalInvertedLanes)
5323     return NewCC;
5324 
5325   // If any lanes previously compared always-false, the NewCC will give
5326   // always-true result for them, so we need to fixup those lanes.
5327   // Or the other way around for inequality predicate.
5328   assert(VT.isVector() && "Can/should only get here for vectors.");
5329   Created.push_back(NewCC.getNode());
5330 
5331   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5332   // if C2 is not less than C1, the comparison is always false.
5333   // But we have produced the comparison that will give the
5334   // opposive tautological answer. So these lanes would need to be fixed up.
5335   SDValue TautologicalInvertedChannels =
5336       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5337   Created.push_back(TautologicalInvertedChannels.getNode());
5338 
5339   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5340     // If we have a vector select, let's replace the comparison results in the
5341     // affected lanes with the correct tautological result.
5342     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5343                                               DL, SETCCVT, SETCCVT);
5344     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5345                        Replacement, NewCC);
5346   }
5347 
5348   // Else, we can just invert the comparison result in the appropriate lanes.
5349   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5350     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5351                        TautologicalInvertedChannels);
5352 
5353   return SDValue(); // Don't know how to lower.
5354 }
5355 
5356 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5357 /// where the divisor is constant and the comparison target is zero,
5358 /// return a DAG expression that will generate the same comparison result
5359 /// using only multiplications, additions and shifts/rotations.
5360 /// Ref: "Hacker's Delight" 10-17.
5361 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5362                                         SDValue CompTargetNode,
5363                                         ISD::CondCode Cond,
5364                                         DAGCombinerInfo &DCI,
5365                                         const SDLoc &DL) const {
5366   SmallVector<SDNode *, 7> Built;
5367   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5368                                          DCI, DL, Built)) {
5369     assert(Built.size() <= 7 && "Max size prediction failed.");
5370     for (SDNode *N : Built)
5371       DCI.AddToWorklist(N);
5372     return Folded;
5373   }
5374 
5375   return SDValue();
5376 }
5377 
5378 SDValue
5379 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5380                                   SDValue CompTargetNode, ISD::CondCode Cond,
5381                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5382                                   SmallVectorImpl<SDNode *> &Created) const {
5383   // Fold:
5384   //   (seteq/ne (srem N, D), 0)
5385   // To:
5386   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5387   //
5388   // - D must be constant, with D = D0 * 2^K where D0 is odd
5389   // - P is the multiplicative inverse of D0 modulo 2^W
5390   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5391   // - Q = floor((2 * A) / (2^K))
5392   // where W is the width of the common type of N and D.
5393   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5394          "Only applicable for (in)equality comparisons.");
5395 
5396   SelectionDAG &DAG = DCI.DAG;
5397 
5398   EVT VT = REMNode.getValueType();
5399   EVT SVT = VT.getScalarType();
5400   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5401   EVT ShSVT = ShVT.getScalarType();
5402 
5403   // If MUL is unavailable, we cannot proceed in any case.
5404   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5405     return SDValue();
5406 
5407   // TODO: Could support comparing with non-zero too.
5408   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5409   if (!CompTarget || !CompTarget->isNullValue())
5410     return SDValue();
5411 
5412   bool HadIntMinDivisor = false;
5413   bool HadOneDivisor = false;
5414   bool AllDivisorsAreOnes = true;
5415   bool HadEvenDivisor = false;
5416   bool NeedToApplyOffset = false;
5417   bool AllDivisorsArePowerOfTwo = true;
5418   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5419 
5420   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5421     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5422     if (C->isNullValue())
5423       return false;
5424 
5425     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5426 
5427     // WARNING: this fold is only valid for positive divisors!
5428     APInt D = C->getAPIntValue();
5429     if (D.isNegative())
5430       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5431 
5432     HadIntMinDivisor |= D.isMinSignedValue();
5433 
5434     // If all divisors are ones, we will prefer to avoid the fold.
5435     HadOneDivisor |= D.isOneValue();
5436     AllDivisorsAreOnes &= D.isOneValue();
5437 
5438     // Decompose D into D0 * 2^K
5439     unsigned K = D.countTrailingZeros();
5440     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5441     APInt D0 = D.lshr(K);
5442 
5443     if (!D.isMinSignedValue()) {
5444       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5445       // we don't care about this lane in this fold, we'll special-handle it.
5446       HadEvenDivisor |= (K != 0);
5447     }
5448 
5449     // D is a power-of-two if D0 is one. This includes INT_MIN.
5450     // If all divisors are power-of-two, we will prefer to avoid the fold.
5451     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5452 
5453     // P = inv(D0, 2^W)
5454     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5455     unsigned W = D.getBitWidth();
5456     APInt P = D0.zext(W + 1)
5457                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5458                   .trunc(W);
5459     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5460     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5461 
5462     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5463     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5464     A.clearLowBits(K);
5465 
5466     if (!D.isMinSignedValue()) {
5467       // If divisor INT_MIN, then we don't care about this lane in this fold,
5468       // we'll special-handle it.
5469       NeedToApplyOffset |= A != 0;
5470     }
5471 
5472     // Q = floor((2 * A) / (2^K))
5473     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5474 
5475     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5476            "We are expecting that A is always less than all-ones for SVT");
5477     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5478            "We are expecting that K is always less than all-ones for ShSVT");
5479 
5480     // If the divisor is 1 the result can be constant-folded. Likewise, we
5481     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5482     if (D.isOneValue()) {
5483       // Set P, A and K to a bogus values so we can try to splat them.
5484       P = 0;
5485       A = -1;
5486       K = -1;
5487 
5488       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5489       Q = -1;
5490     }
5491 
5492     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5493     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5494     KAmts.push_back(
5495         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5496     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5497     return true;
5498   };
5499 
5500   SDValue N = REMNode.getOperand(0);
5501   SDValue D = REMNode.getOperand(1);
5502 
5503   // Collect the values from each element.
5504   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5505     return SDValue();
5506 
5507   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5508   if (AllDivisorsAreOnes)
5509     return SDValue();
5510 
5511   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5512   // since it can be best implemented as a bit test.
5513   if (AllDivisorsArePowerOfTwo)
5514     return SDValue();
5515 
5516   SDValue PVal, AVal, KVal, QVal;
5517   if (VT.isVector()) {
5518     if (HadOneDivisor) {
5519       // Try to turn PAmts into a splat, since we don't care about the values
5520       // that are currently '0'. If we can't, just keep '0'`s.
5521       turnVectorIntoSplatVector(PAmts, isNullConstant);
5522       // Try to turn AAmts into a splat, since we don't care about the
5523       // values that are currently '-1'. If we can't, change them to '0'`s.
5524       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5525                                 DAG.getConstant(0, DL, SVT));
5526       // Try to turn KAmts into a splat, since we don't care about the values
5527       // that are currently '-1'. If we can't, change them to '0'`s.
5528       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5529                                 DAG.getConstant(0, DL, ShSVT));
5530     }
5531 
5532     PVal = DAG.getBuildVector(VT, DL, PAmts);
5533     AVal = DAG.getBuildVector(VT, DL, AAmts);
5534     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5535     QVal = DAG.getBuildVector(VT, DL, QAmts);
5536   } else {
5537     PVal = PAmts[0];
5538     AVal = AAmts[0];
5539     KVal = KAmts[0];
5540     QVal = QAmts[0];
5541   }
5542 
5543   // (mul N, P)
5544   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5545   Created.push_back(Op0.getNode());
5546 
5547   if (NeedToApplyOffset) {
5548     // We need ADD to do this.
5549     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5550       return SDValue();
5551 
5552     // (add (mul N, P), A)
5553     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5554     Created.push_back(Op0.getNode());
5555   }
5556 
5557   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5558   // divisors as a performance improvement, since rotating by 0 is a no-op.
5559   if (HadEvenDivisor) {
5560     // We need ROTR to do this.
5561     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5562       return SDValue();
5563     SDNodeFlags Flags;
5564     Flags.setExact(true);
5565     // SREM: (rotr (add (mul N, P), A), K)
5566     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5567     Created.push_back(Op0.getNode());
5568   }
5569 
5570   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5571   SDValue Fold =
5572       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5573                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5574 
5575   // If we didn't have lanes with INT_MIN divisor, then we're done.
5576   if (!HadIntMinDivisor)
5577     return Fold;
5578 
5579   // That fold is only valid for positive divisors. Which effectively means,
5580   // it is invalid for INT_MIN divisors. So if we have such a lane,
5581   // we must fix-up results for said lanes.
5582   assert(VT.isVector() && "Can/should only get here for vectors.");
5583 
5584   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5585       !isOperationLegalOrCustom(ISD::AND, VT) ||
5586       !isOperationLegalOrCustom(Cond, VT) ||
5587       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5588     return SDValue();
5589 
5590   Created.push_back(Fold.getNode());
5591 
5592   SDValue IntMin = DAG.getConstant(
5593       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5594   SDValue IntMax = DAG.getConstant(
5595       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5596   SDValue Zero =
5597       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5598 
5599   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5600   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5601   Created.push_back(DivisorIsIntMin.getNode());
5602 
5603   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5604   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5605   Created.push_back(Masked.getNode());
5606   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5607   Created.push_back(MaskedIsZero.getNode());
5608 
5609   // To produce final result we need to blend 2 vectors: 'SetCC' and
5610   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5611   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5612   // constant-folded, select can get lowered to a shuffle with constant mask.
5613   SDValue Blended =
5614       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5615 
5616   return Blended;
5617 }
5618 
5619 bool TargetLowering::
5620 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5621   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5622     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5623                                 "be a constant integer");
5624     return true;
5625   }
5626 
5627   return false;
5628 }
5629 
5630 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5631                                              bool LegalOps, bool OptForSize,
5632                                              NegatibleCost &Cost,
5633                                              unsigned Depth) const {
5634   // fneg is removable even if it has multiple uses.
5635   if (Op.getOpcode() == ISD::FNEG) {
5636     Cost = NegatibleCost::Cheaper;
5637     return Op.getOperand(0);
5638   }
5639 
5640   // Don't recurse exponentially.
5641   if (Depth > SelectionDAG::MaxRecursionDepth)
5642     return SDValue();
5643 
5644   // Pre-increment recursion depth for use in recursive calls.
5645   ++Depth;
5646   const SDNodeFlags Flags = Op->getFlags();
5647   const TargetOptions &Options = DAG.getTarget().Options;
5648   EVT VT = Op.getValueType();
5649   unsigned Opcode = Op.getOpcode();
5650 
5651   // Don't allow anything with multiple uses unless we know it is free.
5652   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
5653     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
5654                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5655     if (!IsFreeExtend)
5656       return SDValue();
5657   }
5658 
5659   SDLoc DL(Op);
5660 
5661   switch (Opcode) {
5662   case ISD::ConstantFP: {
5663     // Don't invert constant FP values after legalization unless the target says
5664     // the negated constant is legal.
5665     bool IsOpLegal =
5666         isOperationLegal(ISD::ConstantFP, VT) ||
5667         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5668                      OptForSize);
5669 
5670     if (LegalOps && !IsOpLegal)
5671       break;
5672 
5673     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5674     V.changeSign();
5675     SDValue CFP = DAG.getConstantFP(V, DL, VT);
5676 
5677     // If we already have the use of the negated floating constant, it is free
5678     // to negate it even it has multiple uses.
5679     if (!Op.hasOneUse() && CFP.use_empty())
5680       break;
5681     Cost = NegatibleCost::Neutral;
5682     return CFP;
5683   }
5684   case ISD::BUILD_VECTOR: {
5685     // Only permit BUILD_VECTOR of constants.
5686     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5687           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5688         }))
5689       break;
5690 
5691     bool IsOpLegal =
5692         (isOperationLegal(ISD::ConstantFP, VT) &&
5693          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
5694         llvm::all_of(Op->op_values(), [&](SDValue N) {
5695           return N.isUndef() ||
5696                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5697                               OptForSize);
5698         });
5699 
5700     if (LegalOps && !IsOpLegal)
5701       break;
5702 
5703     SmallVector<SDValue, 4> Ops;
5704     for (SDValue C : Op->op_values()) {
5705       if (C.isUndef()) {
5706         Ops.push_back(C);
5707         continue;
5708       }
5709       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5710       V.changeSign();
5711       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
5712     }
5713     Cost = NegatibleCost::Neutral;
5714     return DAG.getBuildVector(VT, DL, Ops);
5715   }
5716   case ISD::FADD: {
5717     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5718       break;
5719 
5720     // After operation legalization, it might not be legal to create new FSUBs.
5721     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
5722       break;
5723     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5724 
5725     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
5726     NegatibleCost CostX = NegatibleCost::Expensive;
5727     SDValue NegX =
5728         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5729     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
5730     NegatibleCost CostY = NegatibleCost::Expensive;
5731     SDValue NegY =
5732         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5733 
5734     // Negate the X if its cost is less or equal than Y.
5735     if (NegX && (CostX <= CostY)) {
5736       Cost = CostX;
5737       return DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
5738     }
5739 
5740     // Negate the Y if it is not expensive.
5741     if (NegY) {
5742       Cost = CostY;
5743       return DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
5744     }
5745     break;
5746   }
5747   case ISD::FSUB: {
5748     // We can't turn -(A-B) into B-A when we honor signed zeros.
5749     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5750       break;
5751 
5752     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5753     // fold (fneg (fsub 0, Y)) -> Y
5754     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
5755       if (C->isZero()) {
5756         Cost = NegatibleCost::Cheaper;
5757         return Y;
5758       }
5759 
5760     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
5761     Cost = NegatibleCost::Neutral;
5762     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
5763   }
5764   case ISD::FMUL:
5765   case ISD::FDIV: {
5766     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5767 
5768     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5769     NegatibleCost CostX = NegatibleCost::Expensive;
5770     SDValue NegX =
5771         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5772     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5773     NegatibleCost CostY = NegatibleCost::Expensive;
5774     SDValue NegY =
5775         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5776 
5777     // Negate the X if its cost is less or equal than Y.
5778     if (NegX && (CostX <= CostY)) {
5779       Cost = CostX;
5780       return DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
5781     }
5782 
5783     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5784     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5785       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5786         break;
5787 
5788     // Negate the Y if it is not expensive.
5789     if (NegY) {
5790       Cost = CostY;
5791       return DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
5792     }
5793     break;
5794   }
5795   case ISD::FMA:
5796   case ISD::FMAD: {
5797     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5798       break;
5799 
5800     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
5801     NegatibleCost CostZ = NegatibleCost::Expensive;
5802     SDValue NegZ =
5803         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
5804     // Give up if fail to negate the Z.
5805     if (!NegZ)
5806       break;
5807 
5808     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5809     NegatibleCost CostX = NegatibleCost::Expensive;
5810     SDValue NegX =
5811         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5812     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5813     NegatibleCost CostY = NegatibleCost::Expensive;
5814     SDValue NegY =
5815         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5816 
5817     // Negate the X if its cost is less or equal than Y.
5818     if (NegX && (CostX <= CostY)) {
5819       Cost = std::min(CostX, CostZ);
5820       return DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
5821     }
5822 
5823     // Negate the Y if it is not expensive.
5824     if (NegY) {
5825       Cost = std::min(CostY, CostZ);
5826       return DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
5827     }
5828     break;
5829   }
5830 
5831   case ISD::FP_EXTEND:
5832   case ISD::FSIN:
5833     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5834                                             OptForSize, Cost, Depth))
5835       return DAG.getNode(Opcode, DL, VT, NegV);
5836     break;
5837   case ISD::FP_ROUND:
5838     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5839                                             OptForSize, Cost, Depth))
5840       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
5841     break;
5842   }
5843 
5844   return SDValue();
5845 }
5846 
5847 //===----------------------------------------------------------------------===//
5848 // Legalization Utilities
5849 //===----------------------------------------------------------------------===//
5850 
5851 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5852                                     SDValue LHS, SDValue RHS,
5853                                     SmallVectorImpl<SDValue> &Result,
5854                                     EVT HiLoVT, SelectionDAG &DAG,
5855                                     MulExpansionKind Kind, SDValue LL,
5856                                     SDValue LH, SDValue RL, SDValue RH) const {
5857   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5858          Opcode == ISD::SMUL_LOHI);
5859 
5860   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5861                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5862   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5863                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5864   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5865                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5866   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5867                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5868 
5869   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5870     return false;
5871 
5872   unsigned OuterBitSize = VT.getScalarSizeInBits();
5873   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5874   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5875   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5876 
5877   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5878   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5879          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5880 
5881   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5882   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5883                           bool Signed) -> bool {
5884     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5885       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5886       Hi = SDValue(Lo.getNode(), 1);
5887       return true;
5888     }
5889     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5890       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5891       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5892       return true;
5893     }
5894     return false;
5895   };
5896 
5897   SDValue Lo, Hi;
5898 
5899   if (!LL.getNode() && !RL.getNode() &&
5900       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5901     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5902     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5903   }
5904 
5905   if (!LL.getNode())
5906     return false;
5907 
5908   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5909   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5910       DAG.MaskedValueIsZero(RHS, HighMask)) {
5911     // The inputs are both zero-extended.
5912     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5913       Result.push_back(Lo);
5914       Result.push_back(Hi);
5915       if (Opcode != ISD::MUL) {
5916         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5917         Result.push_back(Zero);
5918         Result.push_back(Zero);
5919       }
5920       return true;
5921     }
5922   }
5923 
5924   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5925       RHSSB > InnerBitSize) {
5926     // The input values are both sign-extended.
5927     // TODO non-MUL case?
5928     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5929       Result.push_back(Lo);
5930       Result.push_back(Hi);
5931       return true;
5932     }
5933   }
5934 
5935   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5936   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5937   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5938     // FIXME getShiftAmountTy does not always return a sensible result when VT
5939     // is an illegal type, and so the type may be too small to fit the shift
5940     // amount. Override it with i32. The shift will have to be legalized.
5941     ShiftAmountTy = MVT::i32;
5942   }
5943   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5944 
5945   if (!LH.getNode() && !RH.getNode() &&
5946       isOperationLegalOrCustom(ISD::SRL, VT) &&
5947       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5948     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5949     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5950     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5951     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5952   }
5953 
5954   if (!LH.getNode())
5955     return false;
5956 
5957   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5958     return false;
5959 
5960   Result.push_back(Lo);
5961 
5962   if (Opcode == ISD::MUL) {
5963     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5964     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5965     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5966     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5967     Result.push_back(Hi);
5968     return true;
5969   }
5970 
5971   // Compute the full width result.
5972   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5973     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5974     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5975     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5976     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5977   };
5978 
5979   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5980   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5981     return false;
5982 
5983   // This is effectively the add part of a multiply-add of half-sized operands,
5984   // so it cannot overflow.
5985   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5986 
5987   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5988     return false;
5989 
5990   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5991   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5992 
5993   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5994                   isOperationLegalOrCustom(ISD::ADDE, VT));
5995   if (UseGlue)
5996     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5997                        Merge(Lo, Hi));
5998   else
5999     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6000                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6001 
6002   SDValue Carry = Next.getValue(1);
6003   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6004   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6005 
6006   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6007     return false;
6008 
6009   if (UseGlue)
6010     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6011                      Carry);
6012   else
6013     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6014                      Zero, Carry);
6015 
6016   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6017 
6018   if (Opcode == ISD::SMUL_LOHI) {
6019     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6020                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6021     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6022 
6023     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6024                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6025     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6026   }
6027 
6028   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6029   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6030   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6031   return true;
6032 }
6033 
6034 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6035                                SelectionDAG &DAG, MulExpansionKind Kind,
6036                                SDValue LL, SDValue LH, SDValue RL,
6037                                SDValue RH) const {
6038   SmallVector<SDValue, 2> Result;
6039   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
6040                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6041                            DAG, Kind, LL, LH, RL, RH);
6042   if (Ok) {
6043     assert(Result.size() == 2);
6044     Lo = Result[0];
6045     Hi = Result[1];
6046   }
6047   return Ok;
6048 }
6049 
6050 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6051                                        SelectionDAG &DAG) const {
6052   EVT VT = Node->getValueType(0);
6053 
6054   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6055                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6056                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6057                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6058     return false;
6059 
6060   // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6061   // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6062   SDValue X = Node->getOperand(0);
6063   SDValue Y = Node->getOperand(1);
6064   SDValue Z = Node->getOperand(2);
6065 
6066   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6067   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6068   SDLoc DL(SDValue(Node, 0));
6069 
6070   EVT ShVT = Z.getValueType();
6071   SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6072   SDValue ShAmt, InvShAmt;
6073   if (isPowerOf2_32(EltSizeInBits)) {
6074     // Z % BW -> Z & (BW - 1)
6075     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6076     // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6077     InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6078   } else {
6079     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6080     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6081     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6082   }
6083 
6084   SDValue One = DAG.getConstant(1, DL, ShVT);
6085   SDValue ShX, ShY;
6086   if (IsFSHL) {
6087     ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6088     SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6089     ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6090   } else {
6091     SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6092     ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6093     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6094   }
6095   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6096   return true;
6097 }
6098 
6099 // TODO: Merge with expandFunnelShift.
6100 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
6101                                SelectionDAG &DAG) const {
6102   EVT VT = Node->getValueType(0);
6103   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6104   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6105   SDValue Op0 = Node->getOperand(0);
6106   SDValue Op1 = Node->getOperand(1);
6107   SDLoc DL(SDValue(Node, 0));
6108 
6109   EVT ShVT = Op1.getValueType();
6110   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6111 
6112   // If a rotate in the other direction is legal, use it.
6113   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6114   if (isOperationLegal(RevRot, VT)) {
6115     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6116     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6117     return true;
6118   }
6119 
6120   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6121                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6122                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6123                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6124                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6125     return false;
6126 
6127   // Otherwise,
6128   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
6129   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
6130   //
6131   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
6132          "Expecting the type bitwidth to be a power of 2");
6133   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6134   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6135   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6136   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6137   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6138   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6139   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
6140                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
6141   return true;
6142 }
6143 
6144 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6145                                       SelectionDAG &DAG) const {
6146   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6147   SDValue Src = Node->getOperand(OpNo);
6148   EVT SrcVT = Src.getValueType();
6149   EVT DstVT = Node->getValueType(0);
6150   SDLoc dl(SDValue(Node, 0));
6151 
6152   // FIXME: Only f32 to i64 conversions are supported.
6153   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6154     return false;
6155 
6156   if (Node->isStrictFPOpcode())
6157     // When a NaN is converted to an integer a trap is allowed. We can't
6158     // use this expansion here because it would eliminate that trap. Other
6159     // traps are also allowed and cannot be eliminated. See
6160     // IEEE 754-2008 sec 5.8.
6161     return false;
6162 
6163   // Expand f32 -> i64 conversion
6164   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6165   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6166   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6167   EVT IntVT = SrcVT.changeTypeToInteger();
6168   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6169 
6170   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6171   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6172   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6173   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6174   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6175   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6176 
6177   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6178 
6179   SDValue ExponentBits = DAG.getNode(
6180       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6181       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6182   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6183 
6184   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6185                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6186                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6187   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6188 
6189   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6190                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6191                           DAG.getConstant(0x00800000, dl, IntVT));
6192 
6193   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6194 
6195   R = DAG.getSelectCC(
6196       dl, Exponent, ExponentLoBit,
6197       DAG.getNode(ISD::SHL, dl, DstVT, R,
6198                   DAG.getZExtOrTrunc(
6199                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6200                       dl, IntShVT)),
6201       DAG.getNode(ISD::SRL, dl, DstVT, R,
6202                   DAG.getZExtOrTrunc(
6203                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6204                       dl, IntShVT)),
6205       ISD::SETGT);
6206 
6207   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6208                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6209 
6210   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6211                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6212   return true;
6213 }
6214 
6215 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6216                                       SDValue &Chain,
6217                                       SelectionDAG &DAG) const {
6218   SDLoc dl(SDValue(Node, 0));
6219   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6220   SDValue Src = Node->getOperand(OpNo);
6221 
6222   EVT SrcVT = Src.getValueType();
6223   EVT DstVT = Node->getValueType(0);
6224   EVT SetCCVT =
6225       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6226   EVT DstSetCCVT =
6227       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6228 
6229   // Only expand vector types if we have the appropriate vector bit operations.
6230   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6231                                                    ISD::FP_TO_SINT;
6232   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6233                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6234     return false;
6235 
6236   // If the maximum float value is smaller then the signed integer range,
6237   // the destination signmask can't be represented by the float, so we can
6238   // just use FP_TO_SINT directly.
6239   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6240   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6241   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6242   if (APFloat::opOverflow &
6243       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6244     if (Node->isStrictFPOpcode()) {
6245       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6246                            { Node->getOperand(0), Src });
6247       Chain = Result.getValue(1);
6248     } else
6249       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6250     return true;
6251   }
6252 
6253   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6254   SDValue Sel;
6255 
6256   if (Node->isStrictFPOpcode()) {
6257     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6258                        Node->getOperand(0), /*IsSignaling*/ true);
6259     Chain = Sel.getValue(1);
6260   } else {
6261     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6262   }
6263 
6264   bool Strict = Node->isStrictFPOpcode() ||
6265                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6266 
6267   if (Strict) {
6268     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6269     // signmask then offset (the result of which should be fully representable).
6270     // Sel = Src < 0x8000000000000000
6271     // FltOfs = select Sel, 0, 0x8000000000000000
6272     // IntOfs = select Sel, 0, 0x8000000000000000
6273     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6274 
6275     // TODO: Should any fast-math-flags be set for the FSUB?
6276     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6277                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6278     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6279     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6280                                    DAG.getConstant(0, dl, DstVT),
6281                                    DAG.getConstant(SignMask, dl, DstVT));
6282     SDValue SInt;
6283     if (Node->isStrictFPOpcode()) {
6284       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6285                                 { Chain, Src, FltOfs });
6286       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6287                          { Val.getValue(1), Val });
6288       Chain = SInt.getValue(1);
6289     } else {
6290       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6291       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6292     }
6293     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6294   } else {
6295     // Expand based on maximum range of FP_TO_SINT:
6296     // True = fp_to_sint(Src)
6297     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6298     // Result = select (Src < 0x8000000000000000), True, False
6299 
6300     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6301     // TODO: Should any fast-math-flags be set for the FSUB?
6302     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6303                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6304     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6305                         DAG.getConstant(SignMask, dl, DstVT));
6306     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6307     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6308   }
6309   return true;
6310 }
6311 
6312 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6313                                       SDValue &Chain,
6314                                       SelectionDAG &DAG) const {
6315   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6316   SDValue Src = Node->getOperand(OpNo);
6317   EVT SrcVT = Src.getValueType();
6318   EVT DstVT = Node->getValueType(0);
6319 
6320   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6321     return false;
6322 
6323   // Only expand vector types if we have the appropriate vector bit operations.
6324   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6325                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6326                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6327                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6328                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6329     return false;
6330 
6331   SDLoc dl(SDValue(Node, 0));
6332   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6333 
6334   // Implementation of unsigned i64 to f64 following the algorithm in
6335   // __floatundidf in compiler_rt. This implementation has the advantage
6336   // of performing rounding correctly, both in the default rounding mode
6337   // and in all alternate rounding modes.
6338   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6339   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6340       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6341   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6342   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6343   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6344 
6345   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6346   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6347   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6348   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6349   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6350   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6351   if (Node->isStrictFPOpcode()) {
6352     SDValue HiSub =
6353         DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6354                     {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6355     Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6356                          {HiSub.getValue(1), LoFlt, HiSub});
6357     Chain = Result.getValue(1);
6358   } else {
6359     SDValue HiSub =
6360         DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6361     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6362   }
6363   return true;
6364 }
6365 
6366 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6367                                               SelectionDAG &DAG) const {
6368   SDLoc dl(Node);
6369   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6370     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6371   EVT VT = Node->getValueType(0);
6372   if (isOperationLegalOrCustom(NewOp, VT)) {
6373     SDValue Quiet0 = Node->getOperand(0);
6374     SDValue Quiet1 = Node->getOperand(1);
6375 
6376     if (!Node->getFlags().hasNoNaNs()) {
6377       // Insert canonicalizes if it's possible we need to quiet to get correct
6378       // sNaN behavior.
6379       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6380         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6381                              Node->getFlags());
6382       }
6383       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6384         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6385                              Node->getFlags());
6386       }
6387     }
6388 
6389     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6390   }
6391 
6392   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6393   // instead if there are no NaNs.
6394   if (Node->getFlags().hasNoNaNs()) {
6395     unsigned IEEE2018Op =
6396         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6397     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6398       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6399                          Node->getOperand(1), Node->getFlags());
6400     }
6401   }
6402 
6403   // If none of the above worked, but there are no NaNs, then expand to
6404   // a compare/select sequence.  This is required for correctness since
6405   // InstCombine might have canonicalized a fcmp+select sequence to a
6406   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6407   // expansion to libcall, we might introduce a link-time dependency
6408   // on libm into a file that originally did not have one.
6409   if (Node->getFlags().hasNoNaNs()) {
6410     ISD::CondCode Pred =
6411         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6412     SDValue Op1 = Node->getOperand(0);
6413     SDValue Op2 = Node->getOperand(1);
6414     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6415     // Copy FMF flags, but always set the no-signed-zeros flag
6416     // as this is implied by the FMINNUM/FMAXNUM semantics.
6417     SDNodeFlags Flags = Node->getFlags();
6418     Flags.setNoSignedZeros(true);
6419     SelCC->setFlags(Flags);
6420     return SelCC;
6421   }
6422 
6423   return SDValue();
6424 }
6425 
6426 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6427                                  SelectionDAG &DAG) const {
6428   SDLoc dl(Node);
6429   EVT VT = Node->getValueType(0);
6430   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6431   SDValue Op = Node->getOperand(0);
6432   unsigned Len = VT.getScalarSizeInBits();
6433   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6434 
6435   // TODO: Add support for irregular type lengths.
6436   if (!(Len <= 128 && Len % 8 == 0))
6437     return false;
6438 
6439   // Only expand vector types if we have the appropriate vector bit operations.
6440   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6441                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6442                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6443                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6444                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6445     return false;
6446 
6447   // This is the "best" algorithm from
6448   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6449   SDValue Mask55 =
6450       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6451   SDValue Mask33 =
6452       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6453   SDValue Mask0F =
6454       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6455   SDValue Mask01 =
6456       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6457 
6458   // v = v - ((v >> 1) & 0x55555555...)
6459   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6460                    DAG.getNode(ISD::AND, dl, VT,
6461                                DAG.getNode(ISD::SRL, dl, VT, Op,
6462                                            DAG.getConstant(1, dl, ShVT)),
6463                                Mask55));
6464   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6465   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6466                    DAG.getNode(ISD::AND, dl, VT,
6467                                DAG.getNode(ISD::SRL, dl, VT, Op,
6468                                            DAG.getConstant(2, dl, ShVT)),
6469                                Mask33));
6470   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6471   Op = DAG.getNode(ISD::AND, dl, VT,
6472                    DAG.getNode(ISD::ADD, dl, VT, Op,
6473                                DAG.getNode(ISD::SRL, dl, VT, Op,
6474                                            DAG.getConstant(4, dl, ShVT))),
6475                    Mask0F);
6476   // v = (v * 0x01010101...) >> (Len - 8)
6477   if (Len > 8)
6478     Op =
6479         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6480                     DAG.getConstant(Len - 8, dl, ShVT));
6481 
6482   Result = Op;
6483   return true;
6484 }
6485 
6486 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6487                                 SelectionDAG &DAG) const {
6488   SDLoc dl(Node);
6489   EVT VT = Node->getValueType(0);
6490   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6491   SDValue Op = Node->getOperand(0);
6492   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6493 
6494   // If the non-ZERO_UNDEF version is supported we can use that instead.
6495   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6496       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6497     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6498     return true;
6499   }
6500 
6501   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6502   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6503     EVT SetCCVT =
6504         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6505     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6506     SDValue Zero = DAG.getConstant(0, dl, VT);
6507     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6508     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6509                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6510     return true;
6511   }
6512 
6513   // Only expand vector types if we have the appropriate vector bit operations.
6514   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6515                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6516                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6517                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6518     return false;
6519 
6520   // for now, we do this:
6521   // x = x | (x >> 1);
6522   // x = x | (x >> 2);
6523   // ...
6524   // x = x | (x >>16);
6525   // x = x | (x >>32); // for 64-bit input
6526   // return popcount(~x);
6527   //
6528   // Ref: "Hacker's Delight" by Henry Warren
6529   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6530     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6531     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6532                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6533   }
6534   Op = DAG.getNOT(dl, Op, VT);
6535   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6536   return true;
6537 }
6538 
6539 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6540                                 SelectionDAG &DAG) const {
6541   SDLoc dl(Node);
6542   EVT VT = Node->getValueType(0);
6543   SDValue Op = Node->getOperand(0);
6544   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6545 
6546   // If the non-ZERO_UNDEF version is supported we can use that instead.
6547   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6548       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6549     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6550     return true;
6551   }
6552 
6553   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6554   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6555     EVT SetCCVT =
6556         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6557     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6558     SDValue Zero = DAG.getConstant(0, dl, VT);
6559     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6560     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6561                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6562     return true;
6563   }
6564 
6565   // Only expand vector types if we have the appropriate vector bit operations.
6566   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6567                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6568                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6569                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6570                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6571                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6572     return false;
6573 
6574   // for now, we use: { return popcount(~x & (x - 1)); }
6575   // unless the target has ctlz but not ctpop, in which case we use:
6576   // { return 32 - nlz(~x & (x-1)); }
6577   // Ref: "Hacker's Delight" by Henry Warren
6578   SDValue Tmp = DAG.getNode(
6579       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6580       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6581 
6582   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6583   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6584     Result =
6585         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6586                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6587     return true;
6588   }
6589 
6590   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6591   return true;
6592 }
6593 
6594 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6595                                SelectionDAG &DAG) const {
6596   SDLoc dl(N);
6597   EVT VT = N->getValueType(0);
6598   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6599   SDValue Op = N->getOperand(0);
6600 
6601   // Only expand vector types if we have the appropriate vector operations.
6602   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6603                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6604                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6605     return false;
6606 
6607   SDValue Shift =
6608       DAG.getNode(ISD::SRA, dl, VT, Op,
6609                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6610   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6611   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6612   return true;
6613 }
6614 
6615 std::pair<SDValue, SDValue>
6616 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6617                                     SelectionDAG &DAG) const {
6618   SDLoc SL(LD);
6619   SDValue Chain = LD->getChain();
6620   SDValue BasePTR = LD->getBasePtr();
6621   EVT SrcVT = LD->getMemoryVT();
6622   EVT DstVT = LD->getValueType(0);
6623   ISD::LoadExtType ExtType = LD->getExtensionType();
6624 
6625   unsigned NumElem = SrcVT.getVectorNumElements();
6626 
6627   EVT SrcEltVT = SrcVT.getScalarType();
6628   EVT DstEltVT = DstVT.getScalarType();
6629 
6630   // A vector must always be stored in memory as-is, i.e. without any padding
6631   // between the elements, since various code depend on it, e.g. in the
6632   // handling of a bitcast of a vector type to int, which may be done with a
6633   // vector store followed by an integer load. A vector that does not have
6634   // elements that are byte-sized must therefore be stored as an integer
6635   // built out of the extracted vector elements.
6636   if (!SrcEltVT.isByteSized()) {
6637     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
6638     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
6639 
6640     unsigned NumSrcBits = SrcVT.getSizeInBits();
6641     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
6642 
6643     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
6644     SDValue SrcEltBitMask = DAG.getConstant(
6645         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
6646 
6647     // Load the whole vector and avoid masking off the top bits as it makes
6648     // the codegen worse.
6649     SDValue Load =
6650         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
6651                        LD->getPointerInfo(), SrcIntVT, LD->getAlignment(),
6652                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6653 
6654     SmallVector<SDValue, 8> Vals;
6655     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6656       unsigned ShiftIntoIdx =
6657           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6658       SDValue ShiftAmount =
6659           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
6660                                      LoadVT, SL, /*LegalTypes=*/false);
6661       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
6662       SDValue Elt =
6663           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
6664       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
6665 
6666       if (ExtType != ISD::NON_EXTLOAD) {
6667         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
6668         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
6669       }
6670 
6671       Vals.push_back(Scalar);
6672     }
6673 
6674     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6675     return std::make_pair(Value, Load.getValue(1));
6676   }
6677 
6678   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6679   assert(SrcEltVT.isByteSized());
6680 
6681   SmallVector<SDValue, 8> Vals;
6682   SmallVector<SDValue, 8> LoadChains;
6683 
6684   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6685     SDValue ScalarLoad =
6686         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6687                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6688                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6689                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6690 
6691     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6692 
6693     Vals.push_back(ScalarLoad.getValue(0));
6694     LoadChains.push_back(ScalarLoad.getValue(1));
6695   }
6696 
6697   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6698   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6699 
6700   return std::make_pair(Value, NewChain);
6701 }
6702 
6703 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6704                                              SelectionDAG &DAG) const {
6705   SDLoc SL(ST);
6706 
6707   SDValue Chain = ST->getChain();
6708   SDValue BasePtr = ST->getBasePtr();
6709   SDValue Value = ST->getValue();
6710   EVT StVT = ST->getMemoryVT();
6711 
6712   // The type of the data we want to save
6713   EVT RegVT = Value.getValueType();
6714   EVT RegSclVT = RegVT.getScalarType();
6715 
6716   // The type of data as saved in memory.
6717   EVT MemSclVT = StVT.getScalarType();
6718 
6719   unsigned NumElem = StVT.getVectorNumElements();
6720 
6721   // A vector must always be stored in memory as-is, i.e. without any padding
6722   // between the elements, since various code depend on it, e.g. in the
6723   // handling of a bitcast of a vector type to int, which may be done with a
6724   // vector store followed by an integer load. A vector that does not have
6725   // elements that are byte-sized must therefore be stored as an integer
6726   // built out of the extracted vector elements.
6727   if (!MemSclVT.isByteSized()) {
6728     unsigned NumBits = StVT.getSizeInBits();
6729     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6730 
6731     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6732 
6733     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6734       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6735                                 DAG.getVectorIdxConstant(Idx, SL));
6736       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6737       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6738       unsigned ShiftIntoIdx =
6739           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6740       SDValue ShiftAmount =
6741           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6742       SDValue ShiftedElt =
6743           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6744       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6745     }
6746 
6747     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6748                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6749                         ST->getAAInfo());
6750   }
6751 
6752   // Store Stride in bytes
6753   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6754   assert(Stride && "Zero stride!");
6755   // Extract each of the elements from the original vector and save them into
6756   // memory individually.
6757   SmallVector<SDValue, 8> Stores;
6758   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6759     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6760                               DAG.getVectorIdxConstant(Idx, SL));
6761 
6762     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6763 
6764     // This scalar TruncStore may be illegal, but we legalize it later.
6765     SDValue Store = DAG.getTruncStore(
6766         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6767         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6768         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6769 
6770     Stores.push_back(Store);
6771   }
6772 
6773   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6774 }
6775 
6776 std::pair<SDValue, SDValue>
6777 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6778   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6779          "unaligned indexed loads not implemented!");
6780   SDValue Chain = LD->getChain();
6781   SDValue Ptr = LD->getBasePtr();
6782   EVT VT = LD->getValueType(0);
6783   EVT LoadedVT = LD->getMemoryVT();
6784   SDLoc dl(LD);
6785   auto &MF = DAG.getMachineFunction();
6786 
6787   if (VT.isFloatingPoint() || VT.isVector()) {
6788     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6789     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6790       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6791           LoadedVT.isVector()) {
6792         // Scalarize the load and let the individual components be handled.
6793         return scalarizeVectorLoad(LD, DAG);
6794       }
6795 
6796       // Expand to a (misaligned) integer load of the same size,
6797       // then bitconvert to floating point or vector.
6798       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6799                                     LD->getMemOperand());
6800       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6801       if (LoadedVT != VT)
6802         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6803                              ISD::ANY_EXTEND, dl, VT, Result);
6804 
6805       return std::make_pair(Result, newLoad.getValue(1));
6806     }
6807 
6808     // Copy the value to a (aligned) stack slot using (unaligned) integer
6809     // loads and stores, then do a (aligned) load from the stack slot.
6810     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6811     unsigned LoadedBytes = LoadedVT.getStoreSize();
6812     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6813     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6814 
6815     // Make sure the stack slot is also aligned for the register type.
6816     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6817     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6818     SmallVector<SDValue, 8> Stores;
6819     SDValue StackPtr = StackBase;
6820     unsigned Offset = 0;
6821 
6822     EVT PtrVT = Ptr.getValueType();
6823     EVT StackPtrVT = StackPtr.getValueType();
6824 
6825     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6826     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6827 
6828     // Do all but one copies using the full register width.
6829     for (unsigned i = 1; i < NumRegs; i++) {
6830       // Load one integer register's worth from the original location.
6831       SDValue Load = DAG.getLoad(
6832           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6833           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6834           LD->getAAInfo());
6835       // Follow the load with a store to the stack slot.  Remember the store.
6836       Stores.push_back(DAG.getStore(
6837           Load.getValue(1), dl, Load, StackPtr,
6838           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6839       // Increment the pointers.
6840       Offset += RegBytes;
6841 
6842       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6843       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6844     }
6845 
6846     // The last copy may be partial.  Do an extending load.
6847     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6848                                   8 * (LoadedBytes - Offset));
6849     SDValue Load =
6850         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6851                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6852                        MinAlign(LD->getAlignment(), Offset),
6853                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6854     // Follow the load with a store to the stack slot.  Remember the store.
6855     // On big-endian machines this requires a truncating store to ensure
6856     // that the bits end up in the right place.
6857     Stores.push_back(DAG.getTruncStore(
6858         Load.getValue(1), dl, Load, StackPtr,
6859         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6860 
6861     // The order of the stores doesn't matter - say it with a TokenFactor.
6862     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6863 
6864     // Finally, perform the original load only redirected to the stack slot.
6865     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6866                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6867                           LoadedVT);
6868 
6869     // Callers expect a MERGE_VALUES node.
6870     return std::make_pair(Load, TF);
6871   }
6872 
6873   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6874          "Unaligned load of unsupported type.");
6875 
6876   // Compute the new VT that is half the size of the old one.  This is an
6877   // integer MVT.
6878   unsigned NumBits = LoadedVT.getSizeInBits();
6879   EVT NewLoadedVT;
6880   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6881   NumBits >>= 1;
6882 
6883   unsigned Alignment = LD->getAlignment();
6884   unsigned IncrementSize = NumBits / 8;
6885   ISD::LoadExtType HiExtType = LD->getExtensionType();
6886 
6887   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6888   if (HiExtType == ISD::NON_EXTLOAD)
6889     HiExtType = ISD::ZEXTLOAD;
6890 
6891   // Load the value in two parts
6892   SDValue Lo, Hi;
6893   if (DAG.getDataLayout().isLittleEndian()) {
6894     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6895                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6896                         LD->getAAInfo());
6897 
6898     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6899     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6900                         LD->getPointerInfo().getWithOffset(IncrementSize),
6901                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6902                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6903   } else {
6904     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6905                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6906                         LD->getAAInfo());
6907 
6908     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6909     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6910                         LD->getPointerInfo().getWithOffset(IncrementSize),
6911                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6912                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6913   }
6914 
6915   // aggregate the two parts
6916   SDValue ShiftAmount =
6917       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6918                                                     DAG.getDataLayout()));
6919   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6920   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6921 
6922   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6923                              Hi.getValue(1));
6924 
6925   return std::make_pair(Result, TF);
6926 }
6927 
6928 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6929                                              SelectionDAG &DAG) const {
6930   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6931          "unaligned indexed stores not implemented!");
6932   SDValue Chain = ST->getChain();
6933   SDValue Ptr = ST->getBasePtr();
6934   SDValue Val = ST->getValue();
6935   EVT VT = Val.getValueType();
6936   int Alignment = ST->getAlignment();
6937   auto &MF = DAG.getMachineFunction();
6938   EVT StoreMemVT = ST->getMemoryVT();
6939 
6940   SDLoc dl(ST);
6941   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6942     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6943     if (isTypeLegal(intVT)) {
6944       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6945           StoreMemVT.isVector()) {
6946         // Scalarize the store and let the individual components be handled.
6947         SDValue Result = scalarizeVectorStore(ST, DAG);
6948         return Result;
6949       }
6950       // Expand to a bitconvert of the value to the integer type of the
6951       // same size, then a (misaligned) int store.
6952       // FIXME: Does not handle truncating floating point stores!
6953       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6954       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6955                             Alignment, ST->getMemOperand()->getFlags());
6956       return Result;
6957     }
6958     // Do a (aligned) store to a stack slot, then copy from the stack slot
6959     // to the final destination using (unaligned) integer loads and stores.
6960     MVT RegVT = getRegisterType(
6961         *DAG.getContext(),
6962         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6963     EVT PtrVT = Ptr.getValueType();
6964     unsigned StoredBytes = StoreMemVT.getStoreSize();
6965     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6966     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6967 
6968     // Make sure the stack slot is also aligned for the register type.
6969     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6970     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6971 
6972     // Perform the original store, only redirected to the stack slot.
6973     SDValue Store = DAG.getTruncStore(
6974         Chain, dl, Val, StackPtr,
6975         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6976 
6977     EVT StackPtrVT = StackPtr.getValueType();
6978 
6979     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6980     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6981     SmallVector<SDValue, 8> Stores;
6982     unsigned Offset = 0;
6983 
6984     // Do all but one copies using the full register width.
6985     for (unsigned i = 1; i < NumRegs; i++) {
6986       // Load one integer register's worth from the stack slot.
6987       SDValue Load = DAG.getLoad(
6988           RegVT, dl, Store, StackPtr,
6989           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6990       // Store it to the final location.  Remember the store.
6991       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6992                                     ST->getPointerInfo().getWithOffset(Offset),
6993                                     MinAlign(ST->getAlignment(), Offset),
6994                                     ST->getMemOperand()->getFlags()));
6995       // Increment the pointers.
6996       Offset += RegBytes;
6997       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6998       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6999     }
7000 
7001     // The last store may be partial.  Do a truncating store.  On big-endian
7002     // machines this requires an extending load from the stack slot to ensure
7003     // that the bits are in the right place.
7004     EVT LoadMemVT =
7005         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7006 
7007     // Load from the stack slot.
7008     SDValue Load = DAG.getExtLoad(
7009         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7010         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7011 
7012     Stores.push_back(
7013         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7014                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7015                           MinAlign(ST->getAlignment(), Offset),
7016                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7017     // The order of the stores doesn't matter - say it with a TokenFactor.
7018     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7019     return Result;
7020   }
7021 
7022   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7023          "Unaligned store of unknown type.");
7024   // Get the half-size VT
7025   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7026   int NumBits = NewStoredVT.getSizeInBits();
7027   int IncrementSize = NumBits / 8;
7028 
7029   // Divide the stored value in two parts.
7030   SDValue ShiftAmount = DAG.getConstant(
7031       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7032   SDValue Lo = Val;
7033   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7034 
7035   // Store the two parts
7036   SDValue Store1, Store2;
7037   Store1 = DAG.getTruncStore(Chain, dl,
7038                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7039                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7040                              ST->getMemOperand()->getFlags());
7041 
7042   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
7043   Alignment = MinAlign(Alignment, IncrementSize);
7044   Store2 = DAG.getTruncStore(
7045       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7046       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7047       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7048 
7049   SDValue Result =
7050       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7051   return Result;
7052 }
7053 
7054 SDValue
7055 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7056                                        const SDLoc &DL, EVT DataVT,
7057                                        SelectionDAG &DAG,
7058                                        bool IsCompressedMemory) const {
7059   SDValue Increment;
7060   EVT AddrVT = Addr.getValueType();
7061   EVT MaskVT = Mask.getValueType();
7062   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
7063          "Incompatible types of Data and Mask");
7064   if (IsCompressedMemory) {
7065     // Incrementing the pointer according to number of '1's in the mask.
7066     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7067     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7068     if (MaskIntVT.getSizeInBits() < 32) {
7069       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7070       MaskIntVT = MVT::i32;
7071     }
7072 
7073     // Count '1's with POPCNT.
7074     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7075     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7076     // Scale is an element size in bytes.
7077     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7078                                     AddrVT);
7079     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7080   } else
7081     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7082 
7083   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7084 }
7085 
7086 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7087                                        SDValue Idx,
7088                                        EVT VecVT,
7089                                        const SDLoc &dl) {
7090   if (isa<ConstantSDNode>(Idx))
7091     return Idx;
7092 
7093   EVT IdxVT = Idx.getValueType();
7094   unsigned NElts = VecVT.getVectorNumElements();
7095   if (isPowerOf2_32(NElts)) {
7096     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7097                                      Log2_32(NElts));
7098     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7099                        DAG.getConstant(Imm, dl, IdxVT));
7100   }
7101 
7102   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7103                      DAG.getConstant(NElts - 1, dl, IdxVT));
7104 }
7105 
7106 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7107                                                 SDValue VecPtr, EVT VecVT,
7108                                                 SDValue Index) const {
7109   SDLoc dl(Index);
7110   // Make sure the index type is big enough to compute in.
7111   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7112 
7113   EVT EltVT = VecVT.getVectorElementType();
7114 
7115   // Calculate the element offset and add it to the pointer.
7116   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
7117   assert(EltSize * 8 == EltVT.getSizeInBits() &&
7118          "Converting bits to bytes lost precision");
7119 
7120   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7121 
7122   EVT IdxVT = Index.getValueType();
7123 
7124   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7125                       DAG.getConstant(EltSize, dl, IdxVT));
7126   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7127 }
7128 
7129 //===----------------------------------------------------------------------===//
7130 // Implementation of Emulated TLS Model
7131 //===----------------------------------------------------------------------===//
7132 
7133 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7134                                                 SelectionDAG &DAG) const {
7135   // Access to address of TLS varialbe xyz is lowered to a function call:
7136   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7137   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7138   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7139   SDLoc dl(GA);
7140 
7141   ArgListTy Args;
7142   ArgListEntry Entry;
7143   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7144   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7145   StringRef EmuTlsVarName(NameString);
7146   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7147   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7148   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7149   Entry.Ty = VoidPtrType;
7150   Args.push_back(Entry);
7151 
7152   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7153 
7154   TargetLowering::CallLoweringInfo CLI(DAG);
7155   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7156   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7157   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7158 
7159   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7160   // At last for X86 targets, maybe good for other targets too?
7161   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7162   MFI.setAdjustsStack(true); // Is this only for X86 target?
7163   MFI.setHasCalls(true);
7164 
7165   assert((GA->getOffset() == 0) &&
7166          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7167   return CallResult.first;
7168 }
7169 
7170 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7171                                                 SelectionDAG &DAG) const {
7172   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7173   if (!isCtlzFast())
7174     return SDValue();
7175   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7176   SDLoc dl(Op);
7177   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7178     if (C->isNullValue() && CC == ISD::SETEQ) {
7179       EVT VT = Op.getOperand(0).getValueType();
7180       SDValue Zext = Op.getOperand(0);
7181       if (VT.bitsLT(MVT::i32)) {
7182         VT = MVT::i32;
7183         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7184       }
7185       unsigned Log2b = Log2_32(VT.getSizeInBits());
7186       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7187       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7188                                 DAG.getConstant(Log2b, dl, MVT::i32));
7189       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7190     }
7191   }
7192   return SDValue();
7193 }
7194 
7195 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7196   unsigned Opcode = Node->getOpcode();
7197   SDValue LHS = Node->getOperand(0);
7198   SDValue RHS = Node->getOperand(1);
7199   EVT VT = LHS.getValueType();
7200   SDLoc dl(Node);
7201 
7202   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7203   assert(VT.isInteger() && "Expected operands to be integers");
7204 
7205   // usub.sat(a, b) -> umax(a, b) - b
7206   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7207     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7208     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7209   }
7210 
7211   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7212     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7213     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7214     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7215   }
7216 
7217   unsigned OverflowOp;
7218   switch (Opcode) {
7219   case ISD::SADDSAT:
7220     OverflowOp = ISD::SADDO;
7221     break;
7222   case ISD::UADDSAT:
7223     OverflowOp = ISD::UADDO;
7224     break;
7225   case ISD::SSUBSAT:
7226     OverflowOp = ISD::SSUBO;
7227     break;
7228   case ISD::USUBSAT:
7229     OverflowOp = ISD::USUBO;
7230     break;
7231   default:
7232     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7233                      "addition or subtraction node.");
7234   }
7235 
7236   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7237   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7238   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7239                                LHS, RHS);
7240   SDValue SumDiff = Result.getValue(0);
7241   SDValue Overflow = Result.getValue(1);
7242   SDValue Zero = DAG.getConstant(0, dl, VT);
7243   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7244 
7245   if (Opcode == ISD::UADDSAT) {
7246     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7247       // (LHS + RHS) | OverflowMask
7248       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7249       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7250     }
7251     // Overflow ? 0xffff.... : (LHS + RHS)
7252     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7253   } else if (Opcode == ISD::USUBSAT) {
7254     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7255       // (LHS - RHS) & ~OverflowMask
7256       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7257       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7258       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7259     }
7260     // Overflow ? 0 : (LHS - RHS)
7261     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7262   } else {
7263     // SatMax -> Overflow && SumDiff < 0
7264     // SatMin -> Overflow && SumDiff >= 0
7265     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7266     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7267     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7268     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7269     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7270     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7271     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7272   }
7273 }
7274 
7275 SDValue
7276 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7277   assert((Node->getOpcode() == ISD::SMULFIX ||
7278           Node->getOpcode() == ISD::UMULFIX ||
7279           Node->getOpcode() == ISD::SMULFIXSAT ||
7280           Node->getOpcode() == ISD::UMULFIXSAT) &&
7281          "Expected a fixed point multiplication opcode");
7282 
7283   SDLoc dl(Node);
7284   SDValue LHS = Node->getOperand(0);
7285   SDValue RHS = Node->getOperand(1);
7286   EVT VT = LHS.getValueType();
7287   unsigned Scale = Node->getConstantOperandVal(2);
7288   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7289                      Node->getOpcode() == ISD::UMULFIXSAT);
7290   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7291                  Node->getOpcode() == ISD::SMULFIXSAT);
7292   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7293   unsigned VTSize = VT.getScalarSizeInBits();
7294 
7295   if (!Scale) {
7296     // [us]mul.fix(a, b, 0) -> mul(a, b)
7297     if (!Saturating) {
7298       if (isOperationLegalOrCustom(ISD::MUL, VT))
7299         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7300     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7301       SDValue Result =
7302           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7303       SDValue Product = Result.getValue(0);
7304       SDValue Overflow = Result.getValue(1);
7305       SDValue Zero = DAG.getConstant(0, dl, VT);
7306 
7307       APInt MinVal = APInt::getSignedMinValue(VTSize);
7308       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7309       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7310       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7311       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7312       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7313       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7314     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7315       SDValue Result =
7316           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7317       SDValue Product = Result.getValue(0);
7318       SDValue Overflow = Result.getValue(1);
7319 
7320       APInt MaxVal = APInt::getMaxValue(VTSize);
7321       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7322       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7323     }
7324   }
7325 
7326   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7327          "Expected scale to be less than the number of bits if signed or at "
7328          "most the number of bits if unsigned.");
7329   assert(LHS.getValueType() == RHS.getValueType() &&
7330          "Expected both operands to be the same type");
7331 
7332   // Get the upper and lower bits of the result.
7333   SDValue Lo, Hi;
7334   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7335   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7336   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7337     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7338     Lo = Result.getValue(0);
7339     Hi = Result.getValue(1);
7340   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7341     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7342     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7343   } else if (VT.isVector()) {
7344     return SDValue();
7345   } else {
7346     report_fatal_error("Unable to expand fixed point multiplication.");
7347   }
7348 
7349   if (Scale == VTSize)
7350     // Result is just the top half since we'd be shifting by the width of the
7351     // operand. Overflow impossible so this works for both UMULFIX and
7352     // UMULFIXSAT.
7353     return Hi;
7354 
7355   // The result will need to be shifted right by the scale since both operands
7356   // are scaled. The result is given to us in 2 halves, so we only want part of
7357   // both in the result.
7358   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7359   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7360                                DAG.getConstant(Scale, dl, ShiftTy));
7361   if (!Saturating)
7362     return Result;
7363 
7364   if (!Signed) {
7365     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7366     // widened multiplication) aren't all zeroes.
7367 
7368     // Saturate to max if ((Hi >> Scale) != 0),
7369     // which is the same as if (Hi > ((1 << Scale) - 1))
7370     APInt MaxVal = APInt::getMaxValue(VTSize);
7371     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7372                                       dl, VT);
7373     Result = DAG.getSelectCC(dl, Hi, LowMask,
7374                              DAG.getConstant(MaxVal, dl, VT), Result,
7375                              ISD::SETUGT);
7376 
7377     return Result;
7378   }
7379 
7380   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7381   // widened multiplication) aren't all ones or all zeroes.
7382 
7383   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7384   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7385 
7386   if (Scale == 0) {
7387     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7388                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7389     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7390     // Saturated to SatMin if wide product is negative, and SatMax if wide
7391     // product is positive ...
7392     SDValue Zero = DAG.getConstant(0, dl, VT);
7393     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7394                                                ISD::SETLT);
7395     // ... but only if we overflowed.
7396     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7397   }
7398 
7399   //  We handled Scale==0 above so all the bits to examine is in Hi.
7400 
7401   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7402   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7403   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7404                                     dl, VT);
7405   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7406   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7407   // which is the same as if (HI < (-1 << (Scale - 1))
7408   SDValue HighMask =
7409       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7410                       dl, VT);
7411   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7412   return Result;
7413 }
7414 
7415 SDValue
7416 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7417                                     SDValue LHS, SDValue RHS,
7418                                     unsigned Scale, SelectionDAG &DAG) const {
7419   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
7420           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
7421          "Expected a fixed point division opcode");
7422 
7423   EVT VT = LHS.getValueType();
7424   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
7425   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
7426   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7427 
7428   // If there is enough room in the type to upscale the LHS or downscale the
7429   // RHS before the division, we can perform it in this type without having to
7430   // resize. For signed operations, the LHS headroom is the number of
7431   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7432   // The headroom for the RHS is the number of trailing zeroes.
7433   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7434                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7435   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7436 
7437   // For signed saturating operations, we need to be able to detect true integer
7438   // division overflow; that is, when you have MIN / -EPS. However, this
7439   // is undefined behavior and if we emit divisions that could take such
7440   // values it may cause undesired behavior (arithmetic exceptions on x86, for
7441   // example).
7442   // Avoid this by requiring an extra bit so that we never get this case.
7443   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
7444   // signed saturating division, we need to emit a whopping 32-bit division.
7445   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
7446     return SDValue();
7447 
7448   unsigned LHSShift = std::min(LHSLead, Scale);
7449   unsigned RHSShift = Scale - LHSShift;
7450 
7451   // At this point, we know that if we shift the LHS up by LHSShift and the
7452   // RHS down by RHSShift, we can emit a regular division with a final scaling
7453   // factor of Scale.
7454 
7455   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7456   if (LHSShift)
7457     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7458                       DAG.getConstant(LHSShift, dl, ShiftTy));
7459   if (RHSShift)
7460     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7461                       DAG.getConstant(RHSShift, dl, ShiftTy));
7462 
7463   SDValue Quot;
7464   if (Signed) {
7465     // For signed operations, if the resulting quotient is negative and the
7466     // remainder is nonzero, subtract 1 from the quotient to round towards
7467     // negative infinity.
7468     SDValue Rem;
7469     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7470     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7471     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7472     if (isTypeLegal(VT) &&
7473         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7474       Quot = DAG.getNode(ISD::SDIVREM, dl,
7475                          DAG.getVTList(VT, VT),
7476                          LHS, RHS);
7477       Rem = Quot.getValue(1);
7478       Quot = Quot.getValue(0);
7479     } else {
7480       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7481                          LHS, RHS);
7482       Rem = DAG.getNode(ISD::SREM, dl, VT,
7483                         LHS, RHS);
7484     }
7485     SDValue Zero = DAG.getConstant(0, dl, VT);
7486     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7487     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7488     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7489     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7490     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7491                                DAG.getConstant(1, dl, VT));
7492     Quot = DAG.getSelect(dl, VT,
7493                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7494                          Sub1, Quot);
7495   } else
7496     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7497                        LHS, RHS);
7498 
7499   return Quot;
7500 }
7501 
7502 void TargetLowering::expandUADDSUBO(
7503     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7504   SDLoc dl(Node);
7505   SDValue LHS = Node->getOperand(0);
7506   SDValue RHS = Node->getOperand(1);
7507   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7508 
7509   // If ADD/SUBCARRY is legal, use that instead.
7510   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7511   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7512     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7513     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7514                                     { LHS, RHS, CarryIn });
7515     Result = SDValue(NodeCarry.getNode(), 0);
7516     Overflow = SDValue(NodeCarry.getNode(), 1);
7517     return;
7518   }
7519 
7520   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7521                             LHS.getValueType(), LHS, RHS);
7522 
7523   EVT ResultType = Node->getValueType(1);
7524   EVT SetCCType = getSetCCResultType(
7525       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7526   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7527   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7528   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7529 }
7530 
7531 void TargetLowering::expandSADDSUBO(
7532     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7533   SDLoc dl(Node);
7534   SDValue LHS = Node->getOperand(0);
7535   SDValue RHS = Node->getOperand(1);
7536   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7537 
7538   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7539                             LHS.getValueType(), LHS, RHS);
7540 
7541   EVT ResultType = Node->getValueType(1);
7542   EVT OType = getSetCCResultType(
7543       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7544 
7545   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7546   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7547   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7548     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7549     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7550     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7551     return;
7552   }
7553 
7554   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7555 
7556   // For an addition, the result should be less than one of the operands (LHS)
7557   // if and only if the other operand (RHS) is negative, otherwise there will
7558   // be overflow.
7559   // For a subtraction, the result should be less than one of the operands
7560   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7561   // otherwise there will be overflow.
7562   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7563   SDValue ConditionRHS =
7564       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7565 
7566   Overflow = DAG.getBoolExtOrTrunc(
7567       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7568       ResultType, ResultType);
7569 }
7570 
7571 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7572                                 SDValue &Overflow, SelectionDAG &DAG) const {
7573   SDLoc dl(Node);
7574   EVT VT = Node->getValueType(0);
7575   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7576   SDValue LHS = Node->getOperand(0);
7577   SDValue RHS = Node->getOperand(1);
7578   bool isSigned = Node->getOpcode() == ISD::SMULO;
7579 
7580   // For power-of-two multiplications we can use a simpler shift expansion.
7581   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7582     const APInt &C = RHSC->getAPIntValue();
7583     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7584     if (C.isPowerOf2()) {
7585       // smulo(x, signed_min) is same as umulo(x, signed_min).
7586       bool UseArithShift = isSigned && !C.isMinSignedValue();
7587       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7588       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7589       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7590       Overflow = DAG.getSetCC(dl, SetCCVT,
7591           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7592                       dl, VT, Result, ShiftAmt),
7593           LHS, ISD::SETNE);
7594       return true;
7595     }
7596   }
7597 
7598   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7599   if (VT.isVector())
7600     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7601                               VT.getVectorNumElements());
7602 
7603   SDValue BottomHalf;
7604   SDValue TopHalf;
7605   static const unsigned Ops[2][3] =
7606       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7607         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7608   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7609     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7610     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7611   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7612     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7613                              RHS);
7614     TopHalf = BottomHalf.getValue(1);
7615   } else if (isTypeLegal(WideVT)) {
7616     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7617     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7618     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7619     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7620     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7621         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7622     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7623                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7624   } else {
7625     if (VT.isVector())
7626       return false;
7627 
7628     // We can fall back to a libcall with an illegal type for the MUL if we
7629     // have a libcall big enough.
7630     // Also, we can fall back to a division in some cases, but that's a big
7631     // performance hit in the general case.
7632     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7633     if (WideVT == MVT::i16)
7634       LC = RTLIB::MUL_I16;
7635     else if (WideVT == MVT::i32)
7636       LC = RTLIB::MUL_I32;
7637     else if (WideVT == MVT::i64)
7638       LC = RTLIB::MUL_I64;
7639     else if (WideVT == MVT::i128)
7640       LC = RTLIB::MUL_I128;
7641     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7642 
7643     SDValue HiLHS;
7644     SDValue HiRHS;
7645     if (isSigned) {
7646       // The high part is obtained by SRA'ing all but one of the bits of low
7647       // part.
7648       unsigned LoSize = VT.getSizeInBits();
7649       HiLHS =
7650           DAG.getNode(ISD::SRA, dl, VT, LHS,
7651                       DAG.getConstant(LoSize - 1, dl,
7652                                       getPointerTy(DAG.getDataLayout())));
7653       HiRHS =
7654           DAG.getNode(ISD::SRA, dl, VT, RHS,
7655                       DAG.getConstant(LoSize - 1, dl,
7656                                       getPointerTy(DAG.getDataLayout())));
7657     } else {
7658         HiLHS = DAG.getConstant(0, dl, VT);
7659         HiRHS = DAG.getConstant(0, dl, VT);
7660     }
7661 
7662     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7663     // pre-lowered to the correct types. This all depends upon WideVT not
7664     // being a legal type for the architecture and thus has to be split to
7665     // two arguments.
7666     SDValue Ret;
7667     TargetLowering::MakeLibCallOptions CallOptions;
7668     CallOptions.setSExt(isSigned);
7669     CallOptions.setIsPostTypeLegalization(true);
7670     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7671       // Halves of WideVT are packed into registers in different order
7672       // depending on platform endianness. This is usually handled by
7673       // the C calling convention, but we can't defer to it in
7674       // the legalizer.
7675       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7676       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7677     } else {
7678       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7679       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7680     }
7681     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7682            "Ret value is a collection of constituent nodes holding result.");
7683     if (DAG.getDataLayout().isLittleEndian()) {
7684       // Same as above.
7685       BottomHalf = Ret.getOperand(0);
7686       TopHalf = Ret.getOperand(1);
7687     } else {
7688       BottomHalf = Ret.getOperand(1);
7689       TopHalf = Ret.getOperand(0);
7690     }
7691   }
7692 
7693   Result = BottomHalf;
7694   if (isSigned) {
7695     SDValue ShiftAmt = DAG.getConstant(
7696         VT.getScalarSizeInBits() - 1, dl,
7697         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7698     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7699     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7700   } else {
7701     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7702                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7703   }
7704 
7705   // Truncate the result if SetCC returns a larger type than needed.
7706   EVT RType = Node->getValueType(1);
7707   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7708     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7709 
7710   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7711          "Unexpected result type for S/UMULO legalization");
7712   return true;
7713 }
7714 
7715 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7716   SDLoc dl(Node);
7717   bool NoNaN = Node->getFlags().hasNoNaNs();
7718   unsigned BaseOpcode = 0;
7719   switch (Node->getOpcode()) {
7720   default: llvm_unreachable("Expected VECREDUCE opcode");
7721   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7722   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7723   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7724   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7725   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7726   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7727   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7728   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7729   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7730   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7731   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7732   case ISD::VECREDUCE_FMAX:
7733     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7734     break;
7735   case ISD::VECREDUCE_FMIN:
7736     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7737     break;
7738   }
7739 
7740   SDValue Op = Node->getOperand(0);
7741   EVT VT = Op.getValueType();
7742 
7743   // Try to use a shuffle reduction for power of two vectors.
7744   if (VT.isPow2VectorType()) {
7745     while (VT.getVectorNumElements() > 1) {
7746       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7747       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7748         break;
7749 
7750       SDValue Lo, Hi;
7751       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7752       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7753       VT = HalfVT;
7754     }
7755   }
7756 
7757   EVT EltVT = VT.getVectorElementType();
7758   unsigned NumElts = VT.getVectorNumElements();
7759 
7760   SmallVector<SDValue, 8> Ops;
7761   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7762 
7763   SDValue Res = Ops[0];
7764   for (unsigned i = 1; i < NumElts; i++)
7765     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7766 
7767   // Result type may be wider than element type.
7768   if (EltVT != Node->getValueType(0))
7769     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7770   return Res;
7771 }
7772