1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetLoweringObjectFile.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 /// Check whether a given call node is in tail position within its function. If 47 /// so, it sets Chain to the input chain of the tail call. 48 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 49 SDValue &Chain) const { 50 const Function *F = DAG.getMachineFunction().getFunction(); 51 52 // Conservatively require the attributes of the call to match those of 53 // the return. Ignore noalias because it doesn't affect the call sequence. 54 AttributeSet CallerAttrs = F->getAttributes(); 55 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 56 .removeAttribute(Attribute::NoAlias).hasAttributes()) 57 return false; 58 59 // It's not safe to eliminate the sign / zero extension of the return value. 60 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 61 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 62 return false; 63 64 // Check if the only use is a function return node. 65 return isUsedByReturnOnly(Node, Chain); 66 } 67 68 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 69 /// and called function attributes. 70 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, 71 unsigned AttrIdx) { 72 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 73 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 74 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 75 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 76 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 77 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 78 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 79 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 80 Alignment = CS->getParamAlignment(AttrIdx); 81 } 82 83 /// Generate a libcall taking the given operands as arguments and returning a 84 /// result of type RetVT. 85 std::pair<SDValue, SDValue> 86 TargetLowering::makeLibCall(SelectionDAG &DAG, 87 RTLIB::Libcall LC, EVT RetVT, 88 const SDValue *Ops, unsigned NumOps, 89 bool isSigned, SDLoc dl, 90 bool doesNotReturn, 91 bool isReturnValueUsed) const { 92 TargetLowering::ArgListTy Args; 93 Args.reserve(NumOps); 94 95 TargetLowering::ArgListEntry Entry; 96 for (unsigned i = 0; i != NumOps; ++i) { 97 Entry.Node = Ops[i]; 98 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 99 Entry.isSExt = shouldSignExtendTypeInLibCall(Ops[i].getValueType(), isSigned); 100 Entry.isZExt = !shouldSignExtendTypeInLibCall(Ops[i].getValueType(), isSigned); 101 Args.push_back(Entry); 102 } 103 if (LC == RTLIB::UNKNOWN_LIBCALL) 104 report_fatal_error("Unsupported library call operation!"); 105 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy()); 106 107 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 108 TargetLowering::CallLoweringInfo CLI(DAG); 109 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 110 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 111 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) 112 .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed) 113 .setSExtResult(signExtend).setZExtResult(!signExtend); 114 return LowerCallTo(CLI); 115 } 116 117 118 /// SoftenSetCCOperands - Soften the operands of a comparison. This code is 119 /// shared among BR_CC, SELECT_CC, and SETCC handlers. 120 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 121 SDValue &NewLHS, SDValue &NewRHS, 122 ISD::CondCode &CCCode, 123 SDLoc dl) const { 124 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 125 && "Unsupported setcc type!"); 126 127 // Expand into one or more soft-fp libcall(s). 128 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 129 switch (CCCode) { 130 case ISD::SETEQ: 131 case ISD::SETOEQ: 132 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 133 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 134 break; 135 case ISD::SETNE: 136 case ISD::SETUNE: 137 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 138 (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128; 139 break; 140 case ISD::SETGE: 141 case ISD::SETOGE: 142 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 143 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 144 break; 145 case ISD::SETLT: 146 case ISD::SETOLT: 147 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 148 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 149 break; 150 case ISD::SETLE: 151 case ISD::SETOLE: 152 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 153 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 154 break; 155 case ISD::SETGT: 156 case ISD::SETOGT: 157 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 158 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 159 break; 160 case ISD::SETUO: 161 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 162 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 163 break; 164 case ISD::SETO: 165 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 166 (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128; 167 break; 168 default: 169 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 170 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 171 switch (CCCode) { 172 case ISD::SETONE: 173 // SETONE = SETOLT | SETOGT 174 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 175 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 176 // Fallthrough 177 case ISD::SETUGT: 178 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 179 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 180 break; 181 case ISD::SETUGE: 182 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 183 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 184 break; 185 case ISD::SETULT: 186 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 187 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 188 break; 189 case ISD::SETULE: 190 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 191 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 192 break; 193 case ISD::SETUEQ: 194 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 195 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 196 break; 197 default: llvm_unreachable("Do not know how to soften this setcc!"); 198 } 199 } 200 201 // Use the target specific return value for comparions lib calls. 202 EVT RetVT = getCmpLibcallReturnType(); 203 SDValue Ops[2] = { NewLHS, NewRHS }; 204 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/, 205 dl).first; 206 NewRHS = DAG.getConstant(0, dl, RetVT); 207 CCCode = getCmpLibcallCC(LC1); 208 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 209 SDValue Tmp = DAG.getNode(ISD::SETCC, dl, 210 getSetCCResultType(*DAG.getContext(), RetVT), 211 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 212 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/, 213 dl).first; 214 NewLHS = DAG.getNode(ISD::SETCC, dl, 215 getSetCCResultType(*DAG.getContext(), RetVT), NewLHS, 216 NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 217 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 218 NewRHS = SDValue(); 219 } 220 } 221 222 /// getJumpTableEncoding - Return the entry encoding for a jump table in the 223 /// current function. The returned value is a member of the 224 /// MachineJumpTableInfo::JTEntryKind enum. 225 unsigned TargetLowering::getJumpTableEncoding() const { 226 // In non-pic modes, just use the address of a block. 227 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 228 return MachineJumpTableInfo::EK_BlockAddress; 229 230 // In PIC mode, if the target supports a GPRel32 directive, use it. 231 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 232 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 233 234 // Otherwise, use a label difference. 235 return MachineJumpTableInfo::EK_LabelDifference32; 236 } 237 238 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 239 SelectionDAG &DAG) const { 240 // If our PIC model is GP relative, use the global offset table as the base. 241 unsigned JTEncoding = getJumpTableEncoding(); 242 243 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 244 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 245 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0)); 246 247 return Table; 248 } 249 250 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the 251 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an 252 /// MCExpr. 253 const MCExpr * 254 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 255 unsigned JTI,MCContext &Ctx) const{ 256 // The normal PIC reloc base is the label at the start of the jump table. 257 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 258 } 259 260 bool 261 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 262 // Assume that everything is safe in static mode. 263 if (getTargetMachine().getRelocationModel() == Reloc::Static) 264 return true; 265 266 // In dynamic-no-pic mode, assume that known defined values are safe. 267 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && 268 GA && 269 !GA->getGlobal()->isDeclaration() && 270 !GA->getGlobal()->isWeakForLinker()) 271 return true; 272 273 // Otherwise assume nothing is safe. 274 return false; 275 } 276 277 //===----------------------------------------------------------------------===// 278 // Optimization Methods 279 //===----------------------------------------------------------------------===// 280 281 /// ShrinkDemandedConstant - Check to see if the specified operand of the 282 /// specified instruction is a constant integer. If so, check to see if there 283 /// are any bits set in the constant that are not demanded. If so, shrink the 284 /// constant and return true. 285 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 286 const APInt &Demanded) { 287 SDLoc dl(Op); 288 289 // FIXME: ISD::SELECT, ISD::SELECT_CC 290 switch (Op.getOpcode()) { 291 default: break; 292 case ISD::XOR: 293 case ISD::AND: 294 case ISD::OR: { 295 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 296 if (!C) return false; 297 298 if (Op.getOpcode() == ISD::XOR && 299 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 300 return false; 301 302 // if we can expand it to have all bits set, do it 303 if (C->getAPIntValue().intersects(~Demanded)) { 304 EVT VT = Op.getValueType(); 305 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 306 DAG.getConstant(Demanded & 307 C->getAPIntValue(), 308 dl, VT)); 309 return CombineTo(Op, New); 310 } 311 312 break; 313 } 314 } 315 316 return false; 317 } 318 319 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the 320 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening 321 /// cast, but it could be generalized for targets with other types of 322 /// implicit widening casts. 323 bool 324 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 325 unsigned BitWidth, 326 const APInt &Demanded, 327 SDLoc dl) { 328 assert(Op.getNumOperands() == 2 && 329 "ShrinkDemandedOp only supports binary operators!"); 330 assert(Op.getNode()->getNumValues() == 1 && 331 "ShrinkDemandedOp only supports nodes with one result!"); 332 333 // Early return, as this function cannot handle vector types. 334 if (Op.getValueType().isVector()) 335 return false; 336 337 // Don't do this if the node has another user, which may require the 338 // full value. 339 if (!Op.getNode()->hasOneUse()) 340 return false; 341 342 // Search for the smallest integer type with free casts to and from 343 // Op's type. For expedience, just check power-of-2 integer types. 344 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 345 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 346 unsigned SmallVTBits = DemandedSize; 347 if (!isPowerOf2_32(SmallVTBits)) 348 SmallVTBits = NextPowerOf2(SmallVTBits); 349 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 350 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 351 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 352 TLI.isZExtFree(SmallVT, Op.getValueType())) { 353 // We found a type with free casts. 354 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 355 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 356 Op.getNode()->getOperand(0)), 357 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 358 Op.getNode()->getOperand(1))); 359 bool NeedZext = DemandedSize > SmallVTBits; 360 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 361 dl, Op.getValueType(), X); 362 return CombineTo(Op, Z); 363 } 364 } 365 return false; 366 } 367 368 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the 369 /// DemandedMask bits of the result of Op are ever used downstream. If we can 370 /// use this information to simplify Op, create a new simplified DAG node and 371 /// return true, returning the original and new nodes in Old and New. Otherwise, 372 /// analyze the expression and return a mask of KnownOne and KnownZero bits for 373 /// the expression (used to simplify the caller). The KnownZero/One bits may 374 /// only be accurate for those bits in the DemandedMask. 375 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 376 const APInt &DemandedMask, 377 APInt &KnownZero, 378 APInt &KnownOne, 379 TargetLoweringOpt &TLO, 380 unsigned Depth) const { 381 unsigned BitWidth = DemandedMask.getBitWidth(); 382 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && 383 "Mask size mismatches value type size!"); 384 APInt NewMask = DemandedMask; 385 SDLoc dl(Op); 386 387 // Don't know anything. 388 KnownZero = KnownOne = APInt(BitWidth, 0); 389 390 // Other users may use these bits. 391 if (!Op.getNode()->hasOneUse()) { 392 if (Depth != 0) { 393 // If not at the root, Just compute the KnownZero/KnownOne bits to 394 // simplify things downstream. 395 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 396 return false; 397 } 398 // If this is the root being simplified, allow it to have multiple uses, 399 // just set the NewMask to all bits. 400 NewMask = APInt::getAllOnesValue(BitWidth); 401 } else if (DemandedMask == 0) { 402 // Not demanding any bits from Op. 403 if (Op.getOpcode() != ISD::UNDEF) 404 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 405 return false; 406 } else if (Depth == 6) { // Limit search depth. 407 return false; 408 } 409 410 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 411 switch (Op.getOpcode()) { 412 case ISD::Constant: 413 // We know all of the bits for a constant! 414 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 415 KnownZero = ~KnownOne; 416 return false; // Don't fall through, will infinitely loop. 417 case ISD::AND: 418 // If the RHS is a constant, check to see if the LHS would be zero without 419 // using the bits from the RHS. Below, we use knowledge about the RHS to 420 // simplify the LHS, here we're using information from the LHS to simplify 421 // the RHS. 422 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 423 APInt LHSZero, LHSOne; 424 // Do not increment Depth here; that can cause an infinite loop. 425 TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 426 // If the LHS already has zeros where RHSC does, this and is dead. 427 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 428 return TLO.CombineTo(Op, Op.getOperand(0)); 429 // If any of the set bits in the RHS are known zero on the LHS, shrink 430 // the constant. 431 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 432 return true; 433 } 434 435 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 436 KnownOne, TLO, Depth+1)) 437 return true; 438 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 439 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 440 KnownZero2, KnownOne2, TLO, Depth+1)) 441 return true; 442 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 443 444 // If all of the demanded bits are known one on one side, return the other. 445 // These bits cannot contribute to the result of the 'and'. 446 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 447 return TLO.CombineTo(Op, Op.getOperand(0)); 448 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 449 return TLO.CombineTo(Op, Op.getOperand(1)); 450 // If all of the demanded bits in the inputs are known zeros, return zero. 451 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 452 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); 453 // If the RHS is a constant, see if we can simplify it. 454 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 455 return true; 456 // If the operation can be done in a smaller type, do so. 457 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 458 return true; 459 460 // Output known-1 bits are only known if set in both the LHS & RHS. 461 KnownOne &= KnownOne2; 462 // Output known-0 are known to be clear if zero in either the LHS | RHS. 463 KnownZero |= KnownZero2; 464 break; 465 case ISD::OR: 466 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 467 KnownOne, TLO, Depth+1)) 468 return true; 469 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 470 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 471 KnownZero2, KnownOne2, TLO, Depth+1)) 472 return true; 473 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 474 475 // If all of the demanded bits are known zero on one side, return the other. 476 // These bits cannot contribute to the result of the 'or'. 477 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 478 return TLO.CombineTo(Op, Op.getOperand(0)); 479 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 480 return TLO.CombineTo(Op, Op.getOperand(1)); 481 // If all of the potentially set bits on one side are known to be set on 482 // the other side, just use the 'other' side. 483 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 484 return TLO.CombineTo(Op, Op.getOperand(0)); 485 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 486 return TLO.CombineTo(Op, Op.getOperand(1)); 487 // If the RHS is a constant, see if we can simplify it. 488 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 489 return true; 490 // If the operation can be done in a smaller type, do so. 491 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 492 return true; 493 494 // Output known-0 bits are only known if clear in both the LHS & RHS. 495 KnownZero &= KnownZero2; 496 // Output known-1 are known to be set if set in either the LHS | RHS. 497 KnownOne |= KnownOne2; 498 break; 499 case ISD::XOR: 500 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 501 KnownOne, TLO, Depth+1)) 502 return true; 503 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 504 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 505 KnownOne2, TLO, Depth+1)) 506 return true; 507 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 508 509 // If all of the demanded bits are known zero on one side, return the other. 510 // These bits cannot contribute to the result of the 'xor'. 511 if ((KnownZero & NewMask) == NewMask) 512 return TLO.CombineTo(Op, Op.getOperand(0)); 513 if ((KnownZero2 & NewMask) == NewMask) 514 return TLO.CombineTo(Op, Op.getOperand(1)); 515 // If the operation can be done in a smaller type, do so. 516 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 517 return true; 518 519 // If all of the unknown bits are known to be zero on one side or the other 520 // (but not both) turn this into an *inclusive* or. 521 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 522 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 523 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 524 Op.getOperand(0), 525 Op.getOperand(1))); 526 527 // Output known-0 bits are known if clear or set in both the LHS & RHS. 528 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 529 // Output known-1 are known to be set if set in only one of the LHS, RHS. 530 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 531 532 // If all of the demanded bits on one side are known, and all of the set 533 // bits on that side are also known to be set on the other side, turn this 534 // into an AND, as we know the bits will be cleared. 535 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 536 // NB: it is okay if more bits are known than are requested 537 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 538 if (KnownOne == KnownOne2) { // set bits are the same on both sides 539 EVT VT = Op.getValueType(); 540 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT); 541 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 542 Op.getOperand(0), ANDC)); 543 } 544 } 545 546 // If the RHS is a constant, see if we can simplify it. 547 // for XOR, we prefer to force bits to 1 if they will make a -1. 548 // if we can't force bits, try to shrink constant 549 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 550 APInt Expanded = C->getAPIntValue() | (~NewMask); 551 // if we can expand it to have all bits set, do it 552 if (Expanded.isAllOnesValue()) { 553 if (Expanded != C->getAPIntValue()) { 554 EVT VT = Op.getValueType(); 555 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 556 TLO.DAG.getConstant(Expanded, dl, VT)); 557 return TLO.CombineTo(Op, New); 558 } 559 // if it already has all the bits set, nothing to change 560 // but don't shrink either! 561 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 562 return true; 563 } 564 } 565 566 KnownZero = KnownZeroOut; 567 KnownOne = KnownOneOut; 568 break; 569 case ISD::SELECT: 570 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 571 KnownOne, TLO, Depth+1)) 572 return true; 573 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 574 KnownOne2, TLO, Depth+1)) 575 return true; 576 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 577 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 578 579 // If the operands are constants, see if we can simplify them. 580 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 581 return true; 582 583 // Only known if known in both the LHS and RHS. 584 KnownOne &= KnownOne2; 585 KnownZero &= KnownZero2; 586 break; 587 case ISD::SELECT_CC: 588 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 589 KnownOne, TLO, Depth+1)) 590 return true; 591 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 592 KnownOne2, TLO, Depth+1)) 593 return true; 594 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 595 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 596 597 // If the operands are constants, see if we can simplify them. 598 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 599 return true; 600 601 // Only known if known in both the LHS and RHS. 602 KnownOne &= KnownOne2; 603 KnownZero &= KnownZero2; 604 break; 605 case ISD::SHL: 606 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 607 unsigned ShAmt = SA->getZExtValue(); 608 SDValue InOp = Op.getOperand(0); 609 610 // If the shift count is an invalid immediate, don't do anything. 611 if (ShAmt >= BitWidth) 612 break; 613 614 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 615 // single shift. We can do this if the bottom bits (which are shifted 616 // out) are never demanded. 617 if (InOp.getOpcode() == ISD::SRL && 618 isa<ConstantSDNode>(InOp.getOperand(1))) { 619 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 620 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 621 unsigned Opc = ISD::SHL; 622 int Diff = ShAmt-C1; 623 if (Diff < 0) { 624 Diff = -Diff; 625 Opc = ISD::SRL; 626 } 627 628 SDValue NewSA = 629 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 630 EVT VT = Op.getValueType(); 631 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 632 InOp.getOperand(0), NewSA)); 633 } 634 } 635 636 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 637 KnownZero, KnownOne, TLO, Depth+1)) 638 return true; 639 640 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 641 // are not demanded. This will likely allow the anyext to be folded away. 642 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 643 SDValue InnerOp = InOp.getNode()->getOperand(0); 644 EVT InnerVT = InnerOp.getValueType(); 645 unsigned InnerBits = InnerVT.getSizeInBits(); 646 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 647 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 648 EVT ShTy = getShiftAmountTy(InnerVT); 649 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 650 ShTy = InnerVT; 651 SDValue NarrowShl = 652 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 653 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 654 return 655 TLO.CombineTo(Op, 656 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 657 NarrowShl)); 658 } 659 // Repeat the SHL optimization above in cases where an extension 660 // intervenes: (shl (anyext (shr x, c1)), c2) to 661 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 662 // aren't demanded (as above) and that the shifted upper c1 bits of 663 // x aren't demanded. 664 if (InOp.hasOneUse() && 665 InnerOp.getOpcode() == ISD::SRL && 666 InnerOp.hasOneUse() && 667 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 668 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 669 ->getZExtValue(); 670 if (InnerShAmt < ShAmt && 671 InnerShAmt < InnerBits && 672 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 673 NewMask.trunc(ShAmt) == 0) { 674 SDValue NewSA = 675 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 676 Op.getOperand(1).getValueType()); 677 EVT VT = Op.getValueType(); 678 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 679 InnerOp.getOperand(0)); 680 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 681 NewExt, NewSA)); 682 } 683 } 684 } 685 686 KnownZero <<= SA->getZExtValue(); 687 KnownOne <<= SA->getZExtValue(); 688 // low bits known zero. 689 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 690 } 691 break; 692 case ISD::SRL: 693 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 694 EVT VT = Op.getValueType(); 695 unsigned ShAmt = SA->getZExtValue(); 696 unsigned VTSize = VT.getSizeInBits(); 697 SDValue InOp = Op.getOperand(0); 698 699 // If the shift count is an invalid immediate, don't do anything. 700 if (ShAmt >= BitWidth) 701 break; 702 703 APInt InDemandedMask = (NewMask << ShAmt); 704 705 // If the shift is exact, then it does demand the low bits (and knows that 706 // they are zero). 707 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 708 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 709 710 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 711 // single shift. We can do this if the top bits (which are shifted out) 712 // are never demanded. 713 if (InOp.getOpcode() == ISD::SHL && 714 isa<ConstantSDNode>(InOp.getOperand(1))) { 715 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 716 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 717 unsigned Opc = ISD::SRL; 718 int Diff = ShAmt-C1; 719 if (Diff < 0) { 720 Diff = -Diff; 721 Opc = ISD::SHL; 722 } 723 724 SDValue NewSA = 725 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 726 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 727 InOp.getOperand(0), NewSA)); 728 } 729 } 730 731 // Compute the new bits that are at the top now. 732 if (SimplifyDemandedBits(InOp, InDemandedMask, 733 KnownZero, KnownOne, TLO, Depth+1)) 734 return true; 735 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 736 KnownZero = KnownZero.lshr(ShAmt); 737 KnownOne = KnownOne.lshr(ShAmt); 738 739 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 740 KnownZero |= HighBits; // High bits known zero. 741 } 742 break; 743 case ISD::SRA: 744 // If this is an arithmetic shift right and only the low-bit is set, we can 745 // always convert this into a logical shr, even if the shift amount is 746 // variable. The low bit of the shift cannot be an input sign bit unless 747 // the shift amount is >= the size of the datatype, which is undefined. 748 if (NewMask == 1) 749 return TLO.CombineTo(Op, 750 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 751 Op.getOperand(0), Op.getOperand(1))); 752 753 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 754 EVT VT = Op.getValueType(); 755 unsigned ShAmt = SA->getZExtValue(); 756 757 // If the shift count is an invalid immediate, don't do anything. 758 if (ShAmt >= BitWidth) 759 break; 760 761 APInt InDemandedMask = (NewMask << ShAmt); 762 763 // If the shift is exact, then it does demand the low bits (and knows that 764 // they are zero). 765 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 766 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 767 768 // If any of the demanded bits are produced by the sign extension, we also 769 // demand the input sign bit. 770 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 771 if (HighBits.intersects(NewMask)) 772 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); 773 774 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 775 KnownZero, KnownOne, TLO, Depth+1)) 776 return true; 777 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 778 KnownZero = KnownZero.lshr(ShAmt); 779 KnownOne = KnownOne.lshr(ShAmt); 780 781 // Handle the sign bit, adjusted to where it is now in the mask. 782 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 783 784 // If the input sign bit is known to be zero, or if none of the top bits 785 // are demanded, turn this into an unsigned shift right. 786 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { 787 SDNodeFlags Flags; 788 Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()); 789 return TLO.CombineTo(Op, 790 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 791 Op.getOperand(1), &Flags)); 792 } 793 794 int Log2 = NewMask.exactLogBase2(); 795 if (Log2 >= 0) { 796 // The bit must come from the sign. 797 SDValue NewSA = 798 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 799 Op.getOperand(1).getValueType()); 800 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 801 Op.getOperand(0), NewSA)); 802 } 803 804 if (KnownOne.intersects(SignBit)) 805 // New bits are known one. 806 KnownOne |= HighBits; 807 } 808 break; 809 case ISD::SIGN_EXTEND_INREG: { 810 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 811 812 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 813 // If we only care about the highest bit, don't bother shifting right. 814 if (MsbMask == NewMask) { 815 unsigned ShAmt = ExVT.getScalarType().getSizeInBits(); 816 SDValue InOp = Op.getOperand(0); 817 unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits(); 818 bool AlreadySignExtended = 819 TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1; 820 // However if the input is already sign extended we expect the sign 821 // extension to be dropped altogether later and do not simplify. 822 if (!AlreadySignExtended) { 823 // Compute the correct shift amount type, which must be getShiftAmountTy 824 // for scalar types after legalization. 825 EVT ShiftAmtTy = Op.getValueType(); 826 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 827 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy); 828 829 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl, 830 ShiftAmtTy); 831 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 832 Op.getValueType(), InOp, 833 ShiftAmt)); 834 } 835 } 836 837 // Sign extension. Compute the demanded bits in the result that are not 838 // present in the input. 839 APInt NewBits = 840 APInt::getHighBitsSet(BitWidth, 841 BitWidth - ExVT.getScalarType().getSizeInBits()); 842 843 // If none of the extended bits are demanded, eliminate the sextinreg. 844 if ((NewBits & NewMask) == 0) 845 return TLO.CombineTo(Op, Op.getOperand(0)); 846 847 APInt InSignBit = 848 APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth); 849 APInt InputDemandedBits = 850 APInt::getLowBitsSet(BitWidth, 851 ExVT.getScalarType().getSizeInBits()) & 852 NewMask; 853 854 // Since the sign extended bits are demanded, we know that the sign 855 // bit is demanded. 856 InputDemandedBits |= InSignBit; 857 858 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 859 KnownZero, KnownOne, TLO, Depth+1)) 860 return true; 861 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 862 863 // If the sign bit of the input is known set or clear, then we know the 864 // top bits of the result. 865 866 // If the input sign bit is known zero, convert this into a zero extension. 867 if (KnownZero.intersects(InSignBit)) 868 return TLO.CombineTo(Op, 869 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT)); 870 871 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 872 KnownOne |= NewBits; 873 KnownZero &= ~NewBits; 874 } else { // Input sign bit unknown 875 KnownZero &= ~NewBits; 876 KnownOne &= ~NewBits; 877 } 878 break; 879 } 880 case ISD::BUILD_PAIR: { 881 EVT HalfVT = Op.getOperand(0).getValueType(); 882 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 883 884 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 885 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 886 887 APInt KnownZeroLo, KnownOneLo; 888 APInt KnownZeroHi, KnownOneHi; 889 890 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, 891 KnownOneLo, TLO, Depth + 1)) 892 return true; 893 894 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, 895 KnownOneHi, TLO, Depth + 1)) 896 return true; 897 898 KnownZero = KnownZeroLo.zext(BitWidth) | 899 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); 900 901 KnownOne = KnownOneLo.zext(BitWidth) | 902 KnownOneHi.zext(BitWidth).shl(HalfBitWidth); 903 break; 904 } 905 case ISD::ZERO_EXTEND: { 906 unsigned OperandBitWidth = 907 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 908 APInt InMask = NewMask.trunc(OperandBitWidth); 909 910 // If none of the top bits are demanded, convert this into an any_extend. 911 APInt NewBits = 912 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 913 if (!NewBits.intersects(NewMask)) 914 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 915 Op.getValueType(), 916 Op.getOperand(0))); 917 918 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 919 KnownZero, KnownOne, TLO, Depth+1)) 920 return true; 921 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 922 KnownZero = KnownZero.zext(BitWidth); 923 KnownOne = KnownOne.zext(BitWidth); 924 KnownZero |= NewBits; 925 break; 926 } 927 case ISD::SIGN_EXTEND: { 928 EVT InVT = Op.getOperand(0).getValueType(); 929 unsigned InBits = InVT.getScalarType().getSizeInBits(); 930 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 931 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 932 APInt NewBits = ~InMask & NewMask; 933 934 // If none of the top bits are demanded, convert this into an any_extend. 935 if (NewBits == 0) 936 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 937 Op.getValueType(), 938 Op.getOperand(0))); 939 940 // Since some of the sign extended bits are demanded, we know that the sign 941 // bit is demanded. 942 APInt InDemandedBits = InMask & NewMask; 943 InDemandedBits |= InSignBit; 944 InDemandedBits = InDemandedBits.trunc(InBits); 945 946 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 947 KnownOne, TLO, Depth+1)) 948 return true; 949 KnownZero = KnownZero.zext(BitWidth); 950 KnownOne = KnownOne.zext(BitWidth); 951 952 // If the sign bit is known zero, convert this to a zero extend. 953 if (KnownZero.intersects(InSignBit)) 954 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 955 Op.getValueType(), 956 Op.getOperand(0))); 957 958 // If the sign bit is known one, the top bits match. 959 if (KnownOne.intersects(InSignBit)) { 960 KnownOne |= NewBits; 961 assert((KnownZero & NewBits) == 0); 962 } else { // Otherwise, top bits aren't known. 963 assert((KnownOne & NewBits) == 0); 964 assert((KnownZero & NewBits) == 0); 965 } 966 break; 967 } 968 case ISD::ANY_EXTEND: { 969 unsigned OperandBitWidth = 970 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 971 APInt InMask = NewMask.trunc(OperandBitWidth); 972 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 973 KnownZero, KnownOne, TLO, Depth+1)) 974 return true; 975 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 976 KnownZero = KnownZero.zext(BitWidth); 977 KnownOne = KnownOne.zext(BitWidth); 978 break; 979 } 980 case ISD::TRUNCATE: { 981 // Simplify the input, using demanded bit information, and compute the known 982 // zero/one bits live out. 983 unsigned OperandBitWidth = 984 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 985 APInt TruncMask = NewMask.zext(OperandBitWidth); 986 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 987 KnownZero, KnownOne, TLO, Depth+1)) 988 return true; 989 KnownZero = KnownZero.trunc(BitWidth); 990 KnownOne = KnownOne.trunc(BitWidth); 991 992 // If the input is only used by this truncate, see if we can shrink it based 993 // on the known demanded bits. 994 if (Op.getOperand(0).getNode()->hasOneUse()) { 995 SDValue In = Op.getOperand(0); 996 switch (In.getOpcode()) { 997 default: break; 998 case ISD::SRL: 999 // Shrink SRL by a constant if none of the high bits shifted in are 1000 // demanded. 1001 if (TLO.LegalTypes() && 1002 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 1003 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1004 // undesirable. 1005 break; 1006 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1007 if (!ShAmt) 1008 break; 1009 SDValue Shift = In.getOperand(1); 1010 if (TLO.LegalTypes()) { 1011 uint64_t ShVal = ShAmt->getZExtValue(); 1012 Shift = 1013 TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(Op.getValueType())); 1014 } 1015 1016 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1017 OperandBitWidth - BitWidth); 1018 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 1019 1020 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 1021 // None of the shifted in bits are needed. Add a truncate of the 1022 // shift input, then shift it. 1023 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1024 Op.getValueType(), 1025 In.getOperand(0)); 1026 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1027 Op.getValueType(), 1028 NewTrunc, 1029 Shift)); 1030 } 1031 break; 1032 } 1033 } 1034 1035 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1036 break; 1037 } 1038 case ISD::AssertZext: { 1039 // AssertZext demands all of the high bits, plus any of the low bits 1040 // demanded by its users. 1041 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1042 APInt InMask = APInt::getLowBitsSet(BitWidth, 1043 VT.getSizeInBits()); 1044 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1045 KnownZero, KnownOne, TLO, Depth+1)) 1046 return true; 1047 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1048 1049 KnownZero |= ~InMask & NewMask; 1050 break; 1051 } 1052 case ISD::BITCAST: 1053 // If this is an FP->Int bitcast and if the sign bit is the only 1054 // thing demanded, turn this into a FGETSIGN. 1055 if (!TLO.LegalOperations() && 1056 !Op.getValueType().isVector() && 1057 !Op.getOperand(0).getValueType().isVector() && 1058 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && 1059 Op.getOperand(0).getValueType().isFloatingPoint()) { 1060 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1061 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1062 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) { 1063 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1064 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1065 // place. We expect the SHL to be eliminated by other optimizations. 1066 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1067 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); 1068 if (!OpVTLegal && OpVTSizeInBits > 32) 1069 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1070 unsigned ShVal = Op.getValueType().getSizeInBits()-1; 1071 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType()); 1072 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1073 Op.getValueType(), 1074 Sign, ShAmt)); 1075 } 1076 } 1077 break; 1078 case ISD::ADD: 1079 case ISD::MUL: 1080 case ISD::SUB: { 1081 // Add, Sub, and Mul don't demand any bits in positions beyond that 1082 // of the highest bit demanded of them. 1083 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1084 BitWidth - NewMask.countLeadingZeros()); 1085 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1086 KnownOne2, TLO, Depth+1)) 1087 return true; 1088 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1089 KnownOne2, TLO, Depth+1)) 1090 return true; 1091 // See if the operation should be performed at a smaller bit width. 1092 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1093 return true; 1094 } 1095 // FALL THROUGH 1096 default: 1097 // Just use computeKnownBits to compute output bits. 1098 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 1099 break; 1100 } 1101 1102 // If we know the value of all of the demanded bits, return this as a 1103 // constant. 1104 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { 1105 // Avoid folding to a constant if any OpaqueConstant is involved. 1106 const SDNode *N = Op.getNode(); 1107 for (SDNodeIterator I = SDNodeIterator::begin(N), 1108 E = SDNodeIterator::end(N); I != E; ++I) { 1109 SDNode *Op = *I; 1110 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1111 if (C->isOpaque()) 1112 return false; 1113 } 1114 return TLO.CombineTo(Op, 1115 TLO.DAG.getConstant(KnownOne, dl, Op.getValueType())); 1116 } 1117 1118 return false; 1119 } 1120 1121 /// computeKnownBitsForTargetNode - Determine which of the bits specified 1122 /// in Mask are known to be either zero or one and return them in the 1123 /// KnownZero/KnownOne bitsets. 1124 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1125 APInt &KnownZero, 1126 APInt &KnownOne, 1127 const SelectionDAG &DAG, 1128 unsigned Depth) const { 1129 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1130 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1131 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1132 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1133 "Should use MaskedValueIsZero if you don't know whether Op" 1134 " is a target node!"); 1135 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1136 } 1137 1138 /// ComputeNumSignBitsForTargetNode - This method can be implemented by 1139 /// targets that want to expose additional information about sign bits to the 1140 /// DAG Combiner. 1141 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1142 const SelectionDAG &, 1143 unsigned Depth) const { 1144 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1145 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1146 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1147 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1148 "Should use ComputeNumSignBits if you don't know whether Op" 1149 " is a target node!"); 1150 return 1; 1151 } 1152 1153 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly 1154 /// one bit set. This differs from computeKnownBits in that it doesn't need to 1155 /// determine which bit is set. 1156 /// 1157 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { 1158 // A left-shift of a constant one will have exactly one bit set, because 1159 // shifting the bit off the end is undefined. 1160 if (Val.getOpcode() == ISD::SHL) 1161 if (ConstantSDNode *C = 1162 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1163 if (C->getAPIntValue() == 1) 1164 return true; 1165 1166 // Similarly, a right-shift of a constant sign-bit will have exactly 1167 // one bit set. 1168 if (Val.getOpcode() == ISD::SRL) 1169 if (ConstantSDNode *C = 1170 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1171 if (C->getAPIntValue().isSignBit()) 1172 return true; 1173 1174 // More could be done here, though the above checks are enough 1175 // to handle some common cases. 1176 1177 // Fall back to computeKnownBits to catch other known cases. 1178 EVT OpVT = Val.getValueType(); 1179 unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); 1180 APInt KnownZero, KnownOne; 1181 DAG.computeKnownBits(Val, KnownZero, KnownOne); 1182 return (KnownZero.countPopulation() == BitWidth - 1) && 1183 (KnownOne.countPopulation() == 1); 1184 } 1185 1186 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1187 if (!N) 1188 return false; 1189 1190 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1191 if (!CN) { 1192 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1193 if (!BV) 1194 return false; 1195 1196 BitVector UndefElements; 1197 CN = BV->getConstantSplatNode(&UndefElements); 1198 // Only interested in constant splats, and we don't try to handle undef 1199 // elements in identifying boolean constants. 1200 if (!CN || UndefElements.none()) 1201 return false; 1202 } 1203 1204 switch (getBooleanContents(N->getValueType(0))) { 1205 case UndefinedBooleanContent: 1206 return CN->getAPIntValue()[0]; 1207 case ZeroOrOneBooleanContent: 1208 return CN->isOne(); 1209 case ZeroOrNegativeOneBooleanContent: 1210 return CN->isAllOnesValue(); 1211 } 1212 1213 llvm_unreachable("Invalid boolean contents"); 1214 } 1215 1216 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1217 if (!N) 1218 return false; 1219 1220 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1221 if (!CN) { 1222 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1223 if (!BV) 1224 return false; 1225 1226 BitVector UndefElements; 1227 CN = BV->getConstantSplatNode(&UndefElements); 1228 // Only interested in constant splats, and we don't try to handle undef 1229 // elements in identifying boolean constants. 1230 if (!CN || UndefElements.none()) 1231 return false; 1232 } 1233 1234 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1235 return !CN->getAPIntValue()[0]; 1236 1237 return CN->isNullValue(); 1238 } 1239 1240 /// SimplifySetCC - Try to simplify a setcc built with the specified operands 1241 /// and cc. If it is unable to simplify it, return a null SDValue. 1242 SDValue 1243 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1244 ISD::CondCode Cond, bool foldBooleans, 1245 DAGCombinerInfo &DCI, SDLoc dl) const { 1246 SelectionDAG &DAG = DCI.DAG; 1247 1248 // These setcc operations always fold. 1249 switch (Cond) { 1250 default: break; 1251 case ISD::SETFALSE: 1252 case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT); 1253 case ISD::SETTRUE: 1254 case ISD::SETTRUE2: { 1255 TargetLowering::BooleanContent Cnt = 1256 getBooleanContents(N0->getValueType(0)); 1257 return DAG.getConstant( 1258 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1259 VT); 1260 } 1261 } 1262 1263 // Ensure that the constant occurs on the RHS, and fold constant 1264 // comparisons. 1265 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1266 if (isa<ConstantSDNode>(N0.getNode()) && 1267 (DCI.isBeforeLegalizeOps() || 1268 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1269 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1270 1271 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1272 const APInt &C1 = N1C->getAPIntValue(); 1273 1274 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1275 // equality comparison, then we're just comparing whether X itself is 1276 // zero. 1277 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1278 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1279 N0.getOperand(1).getOpcode() == ISD::Constant) { 1280 const APInt &ShAmt 1281 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1282 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1283 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { 1284 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1285 // (srl (ctlz x), 5) == 0 -> X != 0 1286 // (srl (ctlz x), 5) != 1 -> X != 0 1287 Cond = ISD::SETNE; 1288 } else { 1289 // (srl (ctlz x), 5) != 0 -> X == 0 1290 // (srl (ctlz x), 5) == 1 -> X == 0 1291 Cond = ISD::SETEQ; 1292 } 1293 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1294 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1295 Zero, Cond); 1296 } 1297 } 1298 1299 SDValue CTPOP = N0; 1300 // Look through truncs that don't change the value of a ctpop. 1301 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1302 CTPOP = N0.getOperand(0); 1303 1304 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1305 (N0 == CTPOP || N0.getValueType().getSizeInBits() > 1306 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { 1307 EVT CTVT = CTPOP.getValueType(); 1308 SDValue CTOp = CTPOP.getOperand(0); 1309 1310 // (ctpop x) u< 2 -> (x & x-1) == 0 1311 // (ctpop x) u> 1 -> (x & x-1) != 0 1312 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1313 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1314 DAG.getConstant(1, dl, CTVT)); 1315 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1316 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1317 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 1318 } 1319 1320 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1321 } 1322 1323 // (zext x) == C --> x == (trunc C) 1324 // (sext x) == C --> x == (trunc C) 1325 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1326 DCI.isBeforeLegalize() && N0->hasOneUse()) { 1327 unsigned MinBits = N0.getValueSizeInBits(); 1328 SDValue PreExt; 1329 bool Signed = false; 1330 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1331 // ZExt 1332 MinBits = N0->getOperand(0).getValueSizeInBits(); 1333 PreExt = N0->getOperand(0); 1334 } else if (N0->getOpcode() == ISD::AND) { 1335 // DAGCombine turns costly ZExts into ANDs 1336 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1337 if ((C->getAPIntValue()+1).isPowerOf2()) { 1338 MinBits = C->getAPIntValue().countTrailingOnes(); 1339 PreExt = N0->getOperand(0); 1340 } 1341 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 1342 // SExt 1343 MinBits = N0->getOperand(0).getValueSizeInBits(); 1344 PreExt = N0->getOperand(0); 1345 Signed = true; 1346 } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) { 1347 // ZEXTLOAD / SEXTLOAD 1348 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1349 MinBits = LN0->getMemoryVT().getSizeInBits(); 1350 PreExt = N0; 1351 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 1352 Signed = true; 1353 MinBits = LN0->getMemoryVT().getSizeInBits(); 1354 PreExt = N0; 1355 } 1356 } 1357 1358 // Figure out how many bits we need to preserve this constant. 1359 unsigned ReqdBits = Signed ? 1360 C1.getBitWidth() - C1.getNumSignBits() + 1 : 1361 C1.getActiveBits(); 1362 1363 // Make sure we're not losing bits from the constant. 1364 if (MinBits > 0 && 1365 MinBits < C1.getBitWidth() && 1366 MinBits >= ReqdBits) { 1367 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1368 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1369 // Will get folded away. 1370 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 1371 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 1372 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1373 } 1374 } 1375 } 1376 1377 // If the LHS is '(and load, const)', the RHS is 0, 1378 // the test is for equality or unsigned, and all 1 bits of the const are 1379 // in the same partial word, see if we can shorten the load. 1380 if (DCI.isBeforeLegalize() && 1381 !ISD::isSignedIntSetCC(Cond) && 1382 N0.getOpcode() == ISD::AND && C1 == 0 && 1383 N0.getNode()->hasOneUse() && 1384 isa<LoadSDNode>(N0.getOperand(0)) && 1385 N0.getOperand(0).getNode()->hasOneUse() && 1386 isa<ConstantSDNode>(N0.getOperand(1))) { 1387 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1388 APInt bestMask; 1389 unsigned bestWidth = 0, bestOffset = 0; 1390 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1391 unsigned origWidth = N0.getValueType().getSizeInBits(); 1392 unsigned maskWidth = origWidth; 1393 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1394 // 8 bits, but have to be careful... 1395 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1396 origWidth = Lod->getMemoryVT().getSizeInBits(); 1397 const APInt &Mask = 1398 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1399 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1400 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1401 for (unsigned offset=0; offset<origWidth/width; offset++) { 1402 if ((newMask & Mask) == Mask) { 1403 if (!getDataLayout()->isLittleEndian()) 1404 bestOffset = (origWidth/width - offset - 1) * (width/8); 1405 else 1406 bestOffset = (uint64_t)offset * (width/8); 1407 bestMask = Mask.lshr(offset * (width/8) * 8); 1408 bestWidth = width; 1409 break; 1410 } 1411 newMask = newMask << width; 1412 } 1413 } 1414 } 1415 if (bestWidth) { 1416 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1417 if (newVT.isRound()) { 1418 EVT PtrType = Lod->getOperand(1).getValueType(); 1419 SDValue Ptr = Lod->getBasePtr(); 1420 if (bestOffset != 0) 1421 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1422 DAG.getConstant(bestOffset, dl, PtrType)); 1423 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1424 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 1425 Lod->getPointerInfo().getWithOffset(bestOffset), 1426 false, false, false, NewAlign); 1427 return DAG.getSetCC(dl, VT, 1428 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1429 DAG.getConstant(bestMask.trunc(bestWidth), 1430 dl, newVT)), 1431 DAG.getConstant(0LL, dl, newVT), Cond); 1432 } 1433 } 1434 } 1435 1436 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1437 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1438 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); 1439 1440 // If the comparison constant has bits in the upper part, the 1441 // zero-extended value could never match. 1442 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1443 C1.getBitWidth() - InSize))) { 1444 switch (Cond) { 1445 case ISD::SETUGT: 1446 case ISD::SETUGE: 1447 case ISD::SETEQ: return DAG.getConstant(0, dl, VT); 1448 case ISD::SETULT: 1449 case ISD::SETULE: 1450 case ISD::SETNE: return DAG.getConstant(1, dl, VT); 1451 case ISD::SETGT: 1452 case ISD::SETGE: 1453 // True if the sign bit of C1 is set. 1454 return DAG.getConstant(C1.isNegative(), dl, VT); 1455 case ISD::SETLT: 1456 case ISD::SETLE: 1457 // True if the sign bit of C1 isn't set. 1458 return DAG.getConstant(C1.isNonNegative(), dl, VT); 1459 default: 1460 break; 1461 } 1462 } 1463 1464 // Otherwise, we can perform the comparison with the low bits. 1465 switch (Cond) { 1466 case ISD::SETEQ: 1467 case ISD::SETNE: 1468 case ISD::SETUGT: 1469 case ISD::SETUGE: 1470 case ISD::SETULT: 1471 case ISD::SETULE: { 1472 EVT newVT = N0.getOperand(0).getValueType(); 1473 if (DCI.isBeforeLegalizeOps() || 1474 (isOperationLegal(ISD::SETCC, newVT) && 1475 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1476 EVT NewSetCCVT = getSetCCResultType(*DAG.getContext(), newVT); 1477 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 1478 1479 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1480 NewConst, Cond); 1481 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 1482 } 1483 break; 1484 } 1485 default: 1486 break; // todo, be more careful with signed comparisons 1487 } 1488 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1489 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1490 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1491 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1492 EVT ExtDstTy = N0.getValueType(); 1493 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1494 1495 // If the constant doesn't fit into the number of bits for the source of 1496 // the sign extension, it is impossible for both sides to be equal. 1497 if (C1.getMinSignedBits() > ExtSrcTyBits) 1498 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 1499 1500 SDValue ZextOp; 1501 EVT Op0Ty = N0.getOperand(0).getValueType(); 1502 if (Op0Ty == ExtSrcTy) { 1503 ZextOp = N0.getOperand(0); 1504 } else { 1505 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1506 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1507 DAG.getConstant(Imm, dl, Op0Ty)); 1508 } 1509 if (!DCI.isCalledByLegalizer()) 1510 DCI.AddToWorklist(ZextOp.getNode()); 1511 // Otherwise, make this a use of a zext. 1512 return DAG.getSetCC(dl, VT, ZextOp, 1513 DAG.getConstant(C1 & APInt::getLowBitsSet( 1514 ExtDstTyBits, 1515 ExtSrcTyBits), 1516 dl, ExtDstTy), 1517 Cond); 1518 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1519 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1520 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1521 if (N0.getOpcode() == ISD::SETCC && 1522 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1523 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1524 if (TrueWhenTrue) 1525 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1526 // Invert the condition. 1527 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1528 CC = ISD::getSetCCInverse(CC, 1529 N0.getOperand(0).getValueType().isInteger()); 1530 if (DCI.isBeforeLegalizeOps() || 1531 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1532 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1533 } 1534 1535 if ((N0.getOpcode() == ISD::XOR || 1536 (N0.getOpcode() == ISD::AND && 1537 N0.getOperand(0).getOpcode() == ISD::XOR && 1538 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1539 isa<ConstantSDNode>(N0.getOperand(1)) && 1540 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1541 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1542 // can only do this if the top bits are known zero. 1543 unsigned BitWidth = N0.getValueSizeInBits(); 1544 if (DAG.MaskedValueIsZero(N0, 1545 APInt::getHighBitsSet(BitWidth, 1546 BitWidth-1))) { 1547 // Okay, get the un-inverted input value. 1548 SDValue Val; 1549 if (N0.getOpcode() == ISD::XOR) 1550 Val = N0.getOperand(0); 1551 else { 1552 assert(N0.getOpcode() == ISD::AND && 1553 N0.getOperand(0).getOpcode() == ISD::XOR); 1554 // ((X^1)&1)^1 -> X & 1 1555 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1556 N0.getOperand(0).getOperand(0), 1557 N0.getOperand(1)); 1558 } 1559 1560 return DAG.getSetCC(dl, VT, Val, N1, 1561 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1562 } 1563 } else if (N1C->getAPIntValue() == 1 && 1564 (VT == MVT::i1 || 1565 getBooleanContents(N0->getValueType(0)) == 1566 ZeroOrOneBooleanContent)) { 1567 SDValue Op0 = N0; 1568 if (Op0.getOpcode() == ISD::TRUNCATE) 1569 Op0 = Op0.getOperand(0); 1570 1571 if ((Op0.getOpcode() == ISD::XOR) && 1572 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1573 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1574 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1575 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1576 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1577 Cond); 1578 } 1579 if (Op0.getOpcode() == ISD::AND && 1580 isa<ConstantSDNode>(Op0.getOperand(1)) && 1581 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1582 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1583 if (Op0.getValueType().bitsGT(VT)) 1584 Op0 = DAG.getNode(ISD::AND, dl, VT, 1585 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1586 DAG.getConstant(1, dl, VT)); 1587 else if (Op0.getValueType().bitsLT(VT)) 1588 Op0 = DAG.getNode(ISD::AND, dl, VT, 1589 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1590 DAG.getConstant(1, dl, VT)); 1591 1592 return DAG.getSetCC(dl, VT, Op0, 1593 DAG.getConstant(0, dl, Op0.getValueType()), 1594 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1595 } 1596 if (Op0.getOpcode() == ISD::AssertZext && 1597 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1598 return DAG.getSetCC(dl, VT, Op0, 1599 DAG.getConstant(0, dl, Op0.getValueType()), 1600 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1601 } 1602 } 1603 1604 APInt MinVal, MaxVal; 1605 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1606 if (ISD::isSignedIntSetCC(Cond)) { 1607 MinVal = APInt::getSignedMinValue(OperandBitSize); 1608 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1609 } else { 1610 MinVal = APInt::getMinValue(OperandBitSize); 1611 MaxVal = APInt::getMaxValue(OperandBitSize); 1612 } 1613 1614 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1615 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1616 if (C1 == MinVal) return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1617 // X >= C0 --> X > (C0 - 1) 1618 APInt C = C1 - 1; 1619 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1620 if ((DCI.isBeforeLegalizeOps() || 1621 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1622 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1623 isLegalICmpImmediate(C.getSExtValue())))) { 1624 return DAG.getSetCC(dl, VT, N0, 1625 DAG.getConstant(C, dl, N1.getValueType()), 1626 NewCC); 1627 } 1628 } 1629 1630 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1631 if (C1 == MaxVal) return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1632 // X <= C0 --> X < (C0 + 1) 1633 APInt C = C1 + 1; 1634 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1635 if ((DCI.isBeforeLegalizeOps() || 1636 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1637 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1638 isLegalICmpImmediate(C.getSExtValue())))) { 1639 return DAG.getSetCC(dl, VT, N0, 1640 DAG.getConstant(C, dl, N1.getValueType()), 1641 NewCC); 1642 } 1643 } 1644 1645 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1646 return DAG.getConstant(0, dl, VT); // X < MIN --> false 1647 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1648 return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1649 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1650 return DAG.getConstant(0, dl, VT); // X > MAX --> false 1651 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1652 return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1653 1654 // Canonicalize setgt X, Min --> setne X, Min 1655 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1656 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1657 // Canonicalize setlt X, Max --> setne X, Max 1658 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1659 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1660 1661 // If we have setult X, 1, turn it into seteq X, 0 1662 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1663 return DAG.getSetCC(dl, VT, N0, 1664 DAG.getConstant(MinVal, dl, N0.getValueType()), 1665 ISD::SETEQ); 1666 // If we have setugt X, Max-1, turn it into seteq X, Max 1667 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1668 return DAG.getSetCC(dl, VT, N0, 1669 DAG.getConstant(MaxVal, dl, N0.getValueType()), 1670 ISD::SETEQ); 1671 1672 // If we have "setcc X, C0", check to see if we can shrink the immediate 1673 // by changing cc. 1674 1675 // SETUGT X, SINTMAX -> SETLT X, 0 1676 if (Cond == ISD::SETUGT && 1677 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1678 return DAG.getSetCC(dl, VT, N0, 1679 DAG.getConstant(0, dl, N1.getValueType()), 1680 ISD::SETLT); 1681 1682 // SETULT X, SINTMIN -> SETGT X, -1 1683 if (Cond == ISD::SETULT && 1684 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1685 SDValue ConstMinusOne = 1686 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 1687 N1.getValueType()); 1688 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1689 } 1690 1691 // Fold bit comparisons when we can. 1692 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1693 (VT == N0.getValueType() || 1694 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1695 N0.getOpcode() == ISD::AND) 1696 if (ConstantSDNode *AndRHS = 1697 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1698 EVT ShiftTy = DCI.isBeforeLegalize() ? 1699 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1700 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1701 // Perform the xform if the AND RHS is a single bit. 1702 if (AndRHS->getAPIntValue().isPowerOf2()) { 1703 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1704 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1705 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 1706 ShiftTy))); 1707 } 1708 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1709 // (X & 8) == 8 --> (X & 8) >> 3 1710 // Perform the xform if C1 is a single bit. 1711 if (C1.isPowerOf2()) { 1712 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1713 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1714 DAG.getConstant(C1.logBase2(), dl, 1715 ShiftTy))); 1716 } 1717 } 1718 } 1719 1720 if (C1.getMinSignedBits() <= 64 && 1721 !isLegalICmpImmediate(C1.getSExtValue())) { 1722 // (X & -256) == 256 -> (X >> 8) == 1 1723 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1724 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1725 if (ConstantSDNode *AndRHS = 1726 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1727 const APInt &AndRHSC = AndRHS->getAPIntValue(); 1728 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 1729 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 1730 EVT ShiftTy = DCI.isBeforeLegalize() ? 1731 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1732 EVT CmpTy = N0.getValueType(); 1733 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 1734 DAG.getConstant(ShiftBits, dl, 1735 ShiftTy)); 1736 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 1737 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 1738 } 1739 } 1740 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 1741 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 1742 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 1743 // X < 0x100000000 -> (X >> 32) < 1 1744 // X >= 0x100000000 -> (X >> 32) >= 1 1745 // X <= 0x0ffffffff -> (X >> 32) < 1 1746 // X > 0x0ffffffff -> (X >> 32) >= 1 1747 unsigned ShiftBits; 1748 APInt NewC = C1; 1749 ISD::CondCode NewCond = Cond; 1750 if (AdjOne) { 1751 ShiftBits = C1.countTrailingOnes(); 1752 NewC = NewC + 1; 1753 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 1754 } else { 1755 ShiftBits = C1.countTrailingZeros(); 1756 } 1757 NewC = NewC.lshr(ShiftBits); 1758 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 1759 isLegalICmpImmediate(NewC.getSExtValue())) { 1760 EVT ShiftTy = DCI.isBeforeLegalize() ? 1761 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1762 EVT CmpTy = N0.getValueType(); 1763 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 1764 DAG.getConstant(ShiftBits, dl, ShiftTy)); 1765 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 1766 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 1767 } 1768 } 1769 } 1770 } 1771 1772 if (isa<ConstantFPSDNode>(N0.getNode())) { 1773 // Constant fold or commute setcc. 1774 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 1775 if (O.getNode()) return O; 1776 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 1777 // If the RHS of an FP comparison is a constant, simplify it away in 1778 // some cases. 1779 if (CFP->getValueAPF().isNaN()) { 1780 // If an operand is known to be a nan, we can fold it. 1781 switch (ISD::getUnorderedFlavor(Cond)) { 1782 default: llvm_unreachable("Unknown flavor!"); 1783 case 0: // Known false. 1784 return DAG.getConstant(0, dl, VT); 1785 case 1: // Known true. 1786 return DAG.getConstant(1, dl, VT); 1787 case 2: // Undefined. 1788 return DAG.getUNDEF(VT); 1789 } 1790 } 1791 1792 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 1793 // constant if knowing that the operand is non-nan is enough. We prefer to 1794 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 1795 // materialize 0.0. 1796 if (Cond == ISD::SETO || Cond == ISD::SETUO) 1797 return DAG.getSetCC(dl, VT, N0, N0, Cond); 1798 1799 // If the condition is not legal, see if we can find an equivalent one 1800 // which is legal. 1801 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1802 // If the comparison was an awkward floating-point == or != and one of 1803 // the comparison operands is infinity or negative infinity, convert the 1804 // condition to a less-awkward <= or >=. 1805 if (CFP->getValueAPF().isInfinity()) { 1806 if (CFP->getValueAPF().isNegative()) { 1807 if (Cond == ISD::SETOEQ && 1808 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1809 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 1810 if (Cond == ISD::SETUEQ && 1811 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1812 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 1813 if (Cond == ISD::SETUNE && 1814 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1815 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 1816 if (Cond == ISD::SETONE && 1817 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1818 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 1819 } else { 1820 if (Cond == ISD::SETOEQ && 1821 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1822 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 1823 if (Cond == ISD::SETUEQ && 1824 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1825 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 1826 if (Cond == ISD::SETUNE && 1827 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1828 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 1829 if (Cond == ISD::SETONE && 1830 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1831 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 1832 } 1833 } 1834 } 1835 } 1836 1837 if (N0 == N1) { 1838 // The sext(setcc()) => setcc() optimization relies on the appropriate 1839 // constant being emitted. 1840 uint64_t EqVal = 0; 1841 switch (getBooleanContents(N0.getValueType())) { 1842 case UndefinedBooleanContent: 1843 case ZeroOrOneBooleanContent: 1844 EqVal = ISD::isTrueWhenEqual(Cond); 1845 break; 1846 case ZeroOrNegativeOneBooleanContent: 1847 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 1848 break; 1849 } 1850 1851 // We can always fold X == X for integer setcc's. 1852 if (N0.getValueType().isInteger()) { 1853 return DAG.getConstant(EqVal, dl, VT); 1854 } 1855 unsigned UOF = ISD::getUnorderedFlavor(Cond); 1856 if (UOF == 2) // FP operators that are undefined on NaNs. 1857 return DAG.getConstant(EqVal, dl, VT); 1858 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 1859 return DAG.getConstant(EqVal, dl, VT); 1860 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 1861 // if it is not already. 1862 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 1863 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 1864 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 1865 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 1866 } 1867 1868 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1869 N0.getValueType().isInteger()) { 1870 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 1871 N0.getOpcode() == ISD::XOR) { 1872 // Simplify (X+Y) == (X+Z) --> Y == Z 1873 if (N0.getOpcode() == N1.getOpcode()) { 1874 if (N0.getOperand(0) == N1.getOperand(0)) 1875 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 1876 if (N0.getOperand(1) == N1.getOperand(1)) 1877 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 1878 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 1879 // If X op Y == Y op X, try other combinations. 1880 if (N0.getOperand(0) == N1.getOperand(1)) 1881 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 1882 Cond); 1883 if (N0.getOperand(1) == N1.getOperand(0)) 1884 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 1885 Cond); 1886 } 1887 } 1888 1889 // If RHS is a legal immediate value for a compare instruction, we need 1890 // to be careful about increasing register pressure needlessly. 1891 bool LegalRHSImm = false; 1892 1893 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { 1894 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1895 // Turn (X+C1) == C2 --> X == C2-C1 1896 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 1897 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1898 DAG.getConstant(RHSC->getAPIntValue()- 1899 LHSR->getAPIntValue(), 1900 dl, N0.getValueType()), Cond); 1901 } 1902 1903 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 1904 if (N0.getOpcode() == ISD::XOR) 1905 // If we know that all of the inverted bits are zero, don't bother 1906 // performing the inversion. 1907 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 1908 return 1909 DAG.getSetCC(dl, VT, N0.getOperand(0), 1910 DAG.getConstant(LHSR->getAPIntValue() ^ 1911 RHSC->getAPIntValue(), 1912 dl, N0.getValueType()), 1913 Cond); 1914 } 1915 1916 // Turn (C1-X) == C2 --> X == C1-C2 1917 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 1918 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 1919 return 1920 DAG.getSetCC(dl, VT, N0.getOperand(1), 1921 DAG.getConstant(SUBC->getAPIntValue() - 1922 RHSC->getAPIntValue(), 1923 dl, N0.getValueType()), 1924 Cond); 1925 } 1926 } 1927 1928 // Could RHSC fold directly into a compare? 1929 if (RHSC->getValueType(0).getSizeInBits() <= 64) 1930 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 1931 } 1932 1933 // Simplify (X+Z) == X --> Z == 0 1934 // Don't do this if X is an immediate that can fold into a cmp 1935 // instruction and X+Z has other uses. It could be an induction variable 1936 // chain, and the transform would increase register pressure. 1937 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 1938 if (N0.getOperand(0) == N1) 1939 return DAG.getSetCC(dl, VT, N0.getOperand(1), 1940 DAG.getConstant(0, dl, N0.getValueType()), Cond); 1941 if (N0.getOperand(1) == N1) { 1942 if (DAG.isCommutativeBinOp(N0.getOpcode())) 1943 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1944 DAG.getConstant(0, dl, N0.getValueType()), 1945 Cond); 1946 if (N0.getNode()->hasOneUse()) { 1947 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 1948 // (Z-X) == X --> Z == X<<1 1949 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1, 1950 DAG.getConstant(1, dl, 1951 getShiftAmountTy(N1.getValueType()))); 1952 if (!DCI.isCalledByLegalizer()) 1953 DCI.AddToWorklist(SH.getNode()); 1954 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 1955 } 1956 } 1957 } 1958 } 1959 1960 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 1961 N1.getOpcode() == ISD::XOR) { 1962 // Simplify X == (X+Z) --> Z == 0 1963 if (N1.getOperand(0) == N0) 1964 return DAG.getSetCC(dl, VT, N1.getOperand(1), 1965 DAG.getConstant(0, dl, N1.getValueType()), Cond); 1966 if (N1.getOperand(1) == N0) { 1967 if (DAG.isCommutativeBinOp(N1.getOpcode())) 1968 return DAG.getSetCC(dl, VT, N1.getOperand(0), 1969 DAG.getConstant(0, dl, N1.getValueType()), Cond); 1970 if (N1.getNode()->hasOneUse()) { 1971 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 1972 // X == (Z-X) --> X<<1 == Z 1973 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, 1974 DAG.getConstant(1, dl, 1975 getShiftAmountTy(N0.getValueType()))); 1976 if (!DCI.isCalledByLegalizer()) 1977 DCI.AddToWorklist(SH.getNode()); 1978 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 1979 } 1980 } 1981 } 1982 1983 // Simplify x&y == y to x&y != 0 if y has exactly one bit set. 1984 // Note that where y is variable and is known to have at most 1985 // one bit set (for example, if it is z&1) we cannot do this; 1986 // the expressions are not equivalent when y==0. 1987 if (N0.getOpcode() == ISD::AND) 1988 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { 1989 if (ValueHasExactlyOneBitSet(N1, DAG)) { 1990 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1991 if (DCI.isBeforeLegalizeOps() || 1992 isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1993 SDValue Zero = DAG.getConstant(0, dl, N1.getValueType()); 1994 return DAG.getSetCC(dl, VT, N0, Zero, Cond); 1995 } 1996 } 1997 } 1998 if (N1.getOpcode() == ISD::AND) 1999 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { 2000 if (ValueHasExactlyOneBitSet(N0, DAG)) { 2001 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2002 if (DCI.isBeforeLegalizeOps() || 2003 isCondCodeLegal(Cond, N1.getSimpleValueType())) { 2004 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 2005 return DAG.getSetCC(dl, VT, N1, Zero, Cond); 2006 } 2007 } 2008 } 2009 } 2010 2011 // Fold away ALL boolean setcc's. 2012 SDValue Temp; 2013 if (N0.getValueType() == MVT::i1 && foldBooleans) { 2014 switch (Cond) { 2015 default: llvm_unreachable("Unknown integer setcc!"); 2016 case ISD::SETEQ: // X == Y -> ~(X^Y) 2017 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2018 N0 = DAG.getNOT(dl, Temp, MVT::i1); 2019 if (!DCI.isCalledByLegalizer()) 2020 DCI.AddToWorklist(Temp.getNode()); 2021 break; 2022 case ISD::SETNE: // X != Y --> (X^Y) 2023 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2024 break; 2025 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2026 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2027 Temp = DAG.getNOT(dl, N0, MVT::i1); 2028 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 2029 if (!DCI.isCalledByLegalizer()) 2030 DCI.AddToWorklist(Temp.getNode()); 2031 break; 2032 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2033 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2034 Temp = DAG.getNOT(dl, N1, MVT::i1); 2035 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 2036 if (!DCI.isCalledByLegalizer()) 2037 DCI.AddToWorklist(Temp.getNode()); 2038 break; 2039 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2040 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2041 Temp = DAG.getNOT(dl, N0, MVT::i1); 2042 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2043 if (!DCI.isCalledByLegalizer()) 2044 DCI.AddToWorklist(Temp.getNode()); 2045 break; 2046 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2047 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2048 Temp = DAG.getNOT(dl, N1, MVT::i1); 2049 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2050 break; 2051 } 2052 if (VT != MVT::i1) { 2053 if (!DCI.isCalledByLegalizer()) 2054 DCI.AddToWorklist(N0.getNode()); 2055 // FIXME: If running after legalize, we probably can't do this. 2056 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2057 } 2058 return N0; 2059 } 2060 2061 // Could not fold it. 2062 return SDValue(); 2063 } 2064 2065 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the 2066 /// node is a GlobalAddress + offset. 2067 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2068 int64_t &Offset) const { 2069 if (isa<GlobalAddressSDNode>(N)) { 2070 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N); 2071 GA = GASD->getGlobal(); 2072 Offset += GASD->getOffset(); 2073 return true; 2074 } 2075 2076 if (N->getOpcode() == ISD::ADD) { 2077 SDValue N1 = N->getOperand(0); 2078 SDValue N2 = N->getOperand(1); 2079 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2080 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2); 2081 if (V) { 2082 Offset += V->getSExtValue(); 2083 return true; 2084 } 2085 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2086 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1); 2087 if (V) { 2088 Offset += V->getSExtValue(); 2089 return true; 2090 } 2091 } 2092 } 2093 2094 return false; 2095 } 2096 2097 2098 SDValue TargetLowering:: 2099 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { 2100 // Default implementation: no optimization. 2101 return SDValue(); 2102 } 2103 2104 //===----------------------------------------------------------------------===// 2105 // Inline Assembler Implementation Methods 2106 //===----------------------------------------------------------------------===// 2107 2108 2109 TargetLowering::ConstraintType 2110 TargetLowering::getConstraintType(const std::string &Constraint) const { 2111 unsigned S = Constraint.size(); 2112 2113 if (S == 1) { 2114 switch (Constraint[0]) { 2115 default: break; 2116 case 'r': return C_RegisterClass; 2117 case 'm': // memory 2118 case 'o': // offsetable 2119 case 'V': // not offsetable 2120 return C_Memory; 2121 case 'i': // Simple Integer or Relocatable Constant 2122 case 'n': // Simple Integer 2123 case 'E': // Floating Point Constant 2124 case 'F': // Floating Point Constant 2125 case 's': // Relocatable Constant 2126 case 'p': // Address. 2127 case 'X': // Allow ANY value. 2128 case 'I': // Target registers. 2129 case 'J': 2130 case 'K': 2131 case 'L': 2132 case 'M': 2133 case 'N': 2134 case 'O': 2135 case 'P': 2136 case '<': 2137 case '>': 2138 return C_Other; 2139 } 2140 } 2141 2142 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2143 if (S == 8 && !Constraint.compare(1, 6, "memory", 6)) // "{memory}" 2144 return C_Memory; 2145 return C_Register; 2146 } 2147 return C_Unknown; 2148 } 2149 2150 /// LowerXConstraint - try to replace an X constraint, which matches anything, 2151 /// with another that has more specific requirements based on the type of the 2152 /// corresponding operand. 2153 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2154 if (ConstraintVT.isInteger()) 2155 return "r"; 2156 if (ConstraintVT.isFloatingPoint()) 2157 return "f"; // works for many targets 2158 return nullptr; 2159 } 2160 2161 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 2162 /// vector. If it is invalid, don't add anything to Ops. 2163 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2164 std::string &Constraint, 2165 std::vector<SDValue> &Ops, 2166 SelectionDAG &DAG) const { 2167 2168 if (Constraint.length() > 1) return; 2169 2170 char ConstraintLetter = Constraint[0]; 2171 switch (ConstraintLetter) { 2172 default: break; 2173 case 'X': // Allows any operand; labels (basic block) use this. 2174 if (Op.getOpcode() == ISD::BasicBlock) { 2175 Ops.push_back(Op); 2176 return; 2177 } 2178 // fall through 2179 case 'i': // Simple Integer or Relocatable Constant 2180 case 'n': // Simple Integer 2181 case 's': { // Relocatable Constant 2182 // These operands are interested in values of the form (GV+C), where C may 2183 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2184 // is possible and fine if either GV or C are missing. 2185 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2186 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2187 2188 // If we have "(add GV, C)", pull out GV/C 2189 if (Op.getOpcode() == ISD::ADD) { 2190 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2191 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2192 if (!C || !GA) { 2193 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2194 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2195 } 2196 if (!C || !GA) 2197 C = nullptr, GA = nullptr; 2198 } 2199 2200 // If we find a valid operand, map to the TargetXXX version so that the 2201 // value itself doesn't get selected. 2202 if (GA) { // Either &GV or &GV+C 2203 if (ConstraintLetter != 'n') { 2204 int64_t Offs = GA->getOffset(); 2205 if (C) Offs += C->getZExtValue(); 2206 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2207 C ? SDLoc(C) : SDLoc(), 2208 Op.getValueType(), Offs)); 2209 return; 2210 } 2211 } 2212 if (C) { // just C, no GV. 2213 // Simple constants are not allowed for 's'. 2214 if (ConstraintLetter != 's') { 2215 // gcc prints these as sign extended. Sign extend value to 64 bits 2216 // now; without this it would get ZExt'd later in 2217 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2218 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2219 SDLoc(C), MVT::i64)); 2220 return; 2221 } 2222 } 2223 break; 2224 } 2225 } 2226 } 2227 2228 std::pair<unsigned, const TargetRegisterClass *> 2229 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2230 const std::string &Constraint, 2231 MVT VT) const { 2232 if (Constraint.empty() || Constraint[0] != '{') 2233 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2234 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2235 2236 // Remove the braces from around the name. 2237 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2238 2239 std::pair<unsigned, const TargetRegisterClass*> R = 2240 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2241 2242 // Figure out which register class contains this reg. 2243 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2244 E = RI->regclass_end(); RCI != E; ++RCI) { 2245 const TargetRegisterClass *RC = *RCI; 2246 2247 // If none of the value types for this register class are valid, we 2248 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2249 if (!isLegalRC(RC)) 2250 continue; 2251 2252 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2253 I != E; ++I) { 2254 if (RegName.equals_lower(RI->getName(*I))) { 2255 std::pair<unsigned, const TargetRegisterClass*> S = 2256 std::make_pair(*I, RC); 2257 2258 // If this register class has the requested value type, return it, 2259 // otherwise keep searching and return the first class found 2260 // if no other is found which explicitly has the requested type. 2261 if (RC->hasType(VT)) 2262 return S; 2263 else if (!R.second) 2264 R = S; 2265 } 2266 } 2267 } 2268 2269 return R; 2270 } 2271 2272 //===----------------------------------------------------------------------===// 2273 // Constraint Selection. 2274 2275 /// isMatchingInputConstraint - Return true of this is an input operand that is 2276 /// a matching constraint like "4". 2277 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2278 assert(!ConstraintCode.empty() && "No known constraint!"); 2279 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2280 } 2281 2282 /// getMatchedOperand - If this is an input matching constraint, this method 2283 /// returns the output operand it matches. 2284 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2285 assert(!ConstraintCode.empty() && "No known constraint!"); 2286 return atoi(ConstraintCode.c_str()); 2287 } 2288 2289 2290 /// ParseConstraints - Split up the constraint string from the inline 2291 /// assembly value into the specific constraints and their prefixes, 2292 /// and also tie in the associated operand values. 2293 /// If this returns an empty vector, and if the constraint string itself 2294 /// isn't empty, there was an error parsing. 2295 TargetLowering::AsmOperandInfoVector 2296 TargetLowering::ParseConstraints(const TargetRegisterInfo *TRI, 2297 ImmutableCallSite CS) const { 2298 /// ConstraintOperands - Information about all of the constraints. 2299 AsmOperandInfoVector ConstraintOperands; 2300 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2301 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2302 2303 // Do a prepass over the constraints, canonicalizing them, and building up the 2304 // ConstraintOperands list. 2305 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2306 unsigned ResNo = 0; // ResNo - The result number of the next output. 2307 2308 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2309 ConstraintOperands.emplace_back(std::move(CI)); 2310 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2311 2312 // Update multiple alternative constraint count. 2313 if (OpInfo.multipleAlternatives.size() > maCount) 2314 maCount = OpInfo.multipleAlternatives.size(); 2315 2316 OpInfo.ConstraintVT = MVT::Other; 2317 2318 // Compute the value type for each operand. 2319 switch (OpInfo.Type) { 2320 case InlineAsm::isOutput: 2321 // Indirect outputs just consume an argument. 2322 if (OpInfo.isIndirect) { 2323 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2324 break; 2325 } 2326 2327 // The return value of the call is this value. As such, there is no 2328 // corresponding argument. 2329 assert(!CS.getType()->isVoidTy() && 2330 "Bad inline asm!"); 2331 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2332 OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo)); 2333 } else { 2334 assert(ResNo == 0 && "Asm only has one result!"); 2335 OpInfo.ConstraintVT = getSimpleValueType(CS.getType()); 2336 } 2337 ++ResNo; 2338 break; 2339 case InlineAsm::isInput: 2340 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2341 break; 2342 case InlineAsm::isClobber: 2343 // Nothing to do. 2344 break; 2345 } 2346 2347 if (OpInfo.CallOperandVal) { 2348 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2349 if (OpInfo.isIndirect) { 2350 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2351 if (!PtrTy) 2352 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2353 OpTy = PtrTy->getElementType(); 2354 } 2355 2356 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2357 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2358 if (STy->getNumElements() == 1) 2359 OpTy = STy->getElementType(0); 2360 2361 // If OpTy is not a single value, it may be a struct/union that we 2362 // can tile with integers. 2363 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2364 unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy); 2365 switch (BitSize) { 2366 default: break; 2367 case 1: 2368 case 8: 2369 case 16: 2370 case 32: 2371 case 64: 2372 case 128: 2373 OpInfo.ConstraintVT = 2374 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2375 break; 2376 } 2377 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2378 unsigned PtrSize 2379 = getDataLayout()->getPointerSizeInBits(PT->getAddressSpace()); 2380 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2381 } else { 2382 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2383 } 2384 } 2385 } 2386 2387 // If we have multiple alternative constraints, select the best alternative. 2388 if (!ConstraintOperands.empty()) { 2389 if (maCount) { 2390 unsigned bestMAIndex = 0; 2391 int bestWeight = -1; 2392 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2393 int weight = -1; 2394 unsigned maIndex; 2395 // Compute the sums of the weights for each alternative, keeping track 2396 // of the best (highest weight) one so far. 2397 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2398 int weightSum = 0; 2399 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2400 cIndex != eIndex; ++cIndex) { 2401 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2402 if (OpInfo.Type == InlineAsm::isClobber) 2403 continue; 2404 2405 // If this is an output operand with a matching input operand, 2406 // look up the matching input. If their types mismatch, e.g. one 2407 // is an integer, the other is floating point, or their sizes are 2408 // different, flag it as an maCantMatch. 2409 if (OpInfo.hasMatchingInput()) { 2410 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2411 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2412 if ((OpInfo.ConstraintVT.isInteger() != 2413 Input.ConstraintVT.isInteger()) || 2414 (OpInfo.ConstraintVT.getSizeInBits() != 2415 Input.ConstraintVT.getSizeInBits())) { 2416 weightSum = -1; // Can't match. 2417 break; 2418 } 2419 } 2420 } 2421 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2422 if (weight == -1) { 2423 weightSum = -1; 2424 break; 2425 } 2426 weightSum += weight; 2427 } 2428 // Update best. 2429 if (weightSum > bestWeight) { 2430 bestWeight = weightSum; 2431 bestMAIndex = maIndex; 2432 } 2433 } 2434 2435 // Now select chosen alternative in each constraint. 2436 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2437 cIndex != eIndex; ++cIndex) { 2438 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2439 if (cInfo.Type == InlineAsm::isClobber) 2440 continue; 2441 cInfo.selectAlternative(bestMAIndex); 2442 } 2443 } 2444 } 2445 2446 // Check and hook up tied operands, choose constraint code to use. 2447 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2448 cIndex != eIndex; ++cIndex) { 2449 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2450 2451 // If this is an output operand with a matching input operand, look up the 2452 // matching input. If their types mismatch, e.g. one is an integer, the 2453 // other is floating point, or their sizes are different, flag it as an 2454 // error. 2455 if (OpInfo.hasMatchingInput()) { 2456 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2457 2458 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2459 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 2460 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 2461 OpInfo.ConstraintVT); 2462 std::pair<unsigned, const TargetRegisterClass *> InputRC = 2463 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 2464 Input.ConstraintVT); 2465 if ((OpInfo.ConstraintVT.isInteger() != 2466 Input.ConstraintVT.isInteger()) || 2467 (MatchRC.second != InputRC.second)) { 2468 report_fatal_error("Unsupported asm: input constraint" 2469 " with a matching output constraint of" 2470 " incompatible type!"); 2471 } 2472 } 2473 2474 } 2475 } 2476 2477 return ConstraintOperands; 2478 } 2479 2480 2481 /// getConstraintGenerality - Return an integer indicating how general CT 2482 /// is. 2483 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2484 switch (CT) { 2485 case TargetLowering::C_Other: 2486 case TargetLowering::C_Unknown: 2487 return 0; 2488 case TargetLowering::C_Register: 2489 return 1; 2490 case TargetLowering::C_RegisterClass: 2491 return 2; 2492 case TargetLowering::C_Memory: 2493 return 3; 2494 } 2495 llvm_unreachable("Invalid constraint type"); 2496 } 2497 2498 /// Examine constraint type and operand type and determine a weight value. 2499 /// This object must already have been set up with the operand type 2500 /// and the current alternative constraint selected. 2501 TargetLowering::ConstraintWeight 2502 TargetLowering::getMultipleConstraintMatchWeight( 2503 AsmOperandInfo &info, int maIndex) const { 2504 InlineAsm::ConstraintCodeVector *rCodes; 2505 if (maIndex >= (int)info.multipleAlternatives.size()) 2506 rCodes = &info.Codes; 2507 else 2508 rCodes = &info.multipleAlternatives[maIndex].Codes; 2509 ConstraintWeight BestWeight = CW_Invalid; 2510 2511 // Loop over the options, keeping track of the most general one. 2512 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2513 ConstraintWeight weight = 2514 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2515 if (weight > BestWeight) 2516 BestWeight = weight; 2517 } 2518 2519 return BestWeight; 2520 } 2521 2522 /// Examine constraint type and operand type and determine a weight value. 2523 /// This object must already have been set up with the operand type 2524 /// and the current alternative constraint selected. 2525 TargetLowering::ConstraintWeight 2526 TargetLowering::getSingleConstraintMatchWeight( 2527 AsmOperandInfo &info, const char *constraint) const { 2528 ConstraintWeight weight = CW_Invalid; 2529 Value *CallOperandVal = info.CallOperandVal; 2530 // If we don't have a value, we can't do a match, 2531 // but allow it at the lowest weight. 2532 if (!CallOperandVal) 2533 return CW_Default; 2534 // Look at the constraint type. 2535 switch (*constraint) { 2536 case 'i': // immediate integer. 2537 case 'n': // immediate integer with a known value. 2538 if (isa<ConstantInt>(CallOperandVal)) 2539 weight = CW_Constant; 2540 break; 2541 case 's': // non-explicit intregal immediate. 2542 if (isa<GlobalValue>(CallOperandVal)) 2543 weight = CW_Constant; 2544 break; 2545 case 'E': // immediate float if host format. 2546 case 'F': // immediate float. 2547 if (isa<ConstantFP>(CallOperandVal)) 2548 weight = CW_Constant; 2549 break; 2550 case '<': // memory operand with autodecrement. 2551 case '>': // memory operand with autoincrement. 2552 case 'm': // memory operand. 2553 case 'o': // offsettable memory operand 2554 case 'V': // non-offsettable memory operand 2555 weight = CW_Memory; 2556 break; 2557 case 'r': // general register. 2558 case 'g': // general register, memory operand or immediate integer. 2559 // note: Clang converts "g" to "imr". 2560 if (CallOperandVal->getType()->isIntegerTy()) 2561 weight = CW_Register; 2562 break; 2563 case 'X': // any operand. 2564 default: 2565 weight = CW_Default; 2566 break; 2567 } 2568 return weight; 2569 } 2570 2571 /// ChooseConstraint - If there are multiple different constraints that we 2572 /// could pick for this operand (e.g. "imr") try to pick the 'best' one. 2573 /// This is somewhat tricky: constraints fall into four classes: 2574 /// Other -> immediates and magic values 2575 /// Register -> one specific register 2576 /// RegisterClass -> a group of regs 2577 /// Memory -> memory 2578 /// Ideally, we would pick the most specific constraint possible: if we have 2579 /// something that fits into a register, we would pick it. The problem here 2580 /// is that if we have something that could either be in a register or in 2581 /// memory that use of the register could cause selection of *other* 2582 /// operands to fail: they might only succeed if we pick memory. Because of 2583 /// this the heuristic we use is: 2584 /// 2585 /// 1) If there is an 'other' constraint, and if the operand is valid for 2586 /// that constraint, use it. This makes us take advantage of 'i' 2587 /// constraints when available. 2588 /// 2) Otherwise, pick the most general constraint present. This prefers 2589 /// 'm' over 'r', for example. 2590 /// 2591 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2592 const TargetLowering &TLI, 2593 SDValue Op, SelectionDAG *DAG) { 2594 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2595 unsigned BestIdx = 0; 2596 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2597 int BestGenerality = -1; 2598 2599 // Loop over the options, keeping track of the most general one. 2600 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2601 TargetLowering::ConstraintType CType = 2602 TLI.getConstraintType(OpInfo.Codes[i]); 2603 2604 // If this is an 'other' constraint, see if the operand is valid for it. 2605 // For example, on X86 we might have an 'rI' constraint. If the operand 2606 // is an integer in the range [0..31] we want to use I (saving a load 2607 // of a register), otherwise we must use 'r'. 2608 if (CType == TargetLowering::C_Other && Op.getNode()) { 2609 assert(OpInfo.Codes[i].size() == 1 && 2610 "Unhandled multi-letter 'other' constraint"); 2611 std::vector<SDValue> ResultOps; 2612 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2613 ResultOps, *DAG); 2614 if (!ResultOps.empty()) { 2615 BestType = CType; 2616 BestIdx = i; 2617 break; 2618 } 2619 } 2620 2621 // Things with matching constraints can only be registers, per gcc 2622 // documentation. This mainly affects "g" constraints. 2623 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2624 continue; 2625 2626 // This constraint letter is more general than the previous one, use it. 2627 int Generality = getConstraintGenerality(CType); 2628 if (Generality > BestGenerality) { 2629 BestType = CType; 2630 BestIdx = i; 2631 BestGenerality = Generality; 2632 } 2633 } 2634 2635 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2636 OpInfo.ConstraintType = BestType; 2637 } 2638 2639 /// ComputeConstraintToUse - Determines the constraint code and constraint 2640 /// type to use for the specific AsmOperandInfo, setting 2641 /// OpInfo.ConstraintCode and OpInfo.ConstraintType. 2642 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2643 SDValue Op, 2644 SelectionDAG *DAG) const { 2645 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2646 2647 // Single-letter constraints ('r') are very common. 2648 if (OpInfo.Codes.size() == 1) { 2649 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2650 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2651 } else { 2652 ChooseConstraint(OpInfo, *this, Op, DAG); 2653 } 2654 2655 // 'X' matches anything. 2656 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2657 // Labels and constants are handled elsewhere ('X' is the only thing 2658 // that matches labels). For Functions, the type here is the type of 2659 // the result, which is not what we want to look at; leave them alone. 2660 Value *v = OpInfo.CallOperandVal; 2661 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2662 OpInfo.CallOperandVal = v; 2663 return; 2664 } 2665 2666 // Otherwise, try to resolve it to something we know about by looking at 2667 // the actual operand type. 2668 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2669 OpInfo.ConstraintCode = Repl; 2670 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2671 } 2672 } 2673 } 2674 2675 /// \brief Given an exact SDIV by a constant, create a multiplication 2676 /// with the multiplicative inverse of the constant. 2677 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, 2678 SDLoc dl, SelectionDAG &DAG, 2679 std::vector<SDNode *> &Created) { 2680 assert(d != 0 && "Division by zero!"); 2681 2682 // Shift the value upfront if it is even, so the LSB is one. 2683 unsigned ShAmt = d.countTrailingZeros(); 2684 if (ShAmt) { 2685 // TODO: For UDIV use SRL instead of SRA. 2686 SDValue Amt = 2687 DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType())); 2688 SDNodeFlags Flags; 2689 Flags.setExact(true); 2690 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags); 2691 Created.push_back(Op1.getNode()); 2692 d = d.ashr(ShAmt); 2693 } 2694 2695 // Calculate the multiplicative inverse, using Newton's method. 2696 APInt t, xn = d; 2697 while ((t = d*xn) != 1) 2698 xn *= APInt(d.getBitWidth(), 2) - t; 2699 2700 SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); 2701 SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2702 Created.push_back(Mul.getNode()); 2703 return Mul; 2704 } 2705 2706 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2707 /// return a DAG expression to select that will generate the same value by 2708 /// multiplying by a magic number. 2709 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2710 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2711 SelectionDAG &DAG, bool IsAfterLegalization, 2712 std::vector<SDNode *> *Created) const { 2713 assert(Created && "No vector to hold sdiv ops."); 2714 2715 EVT VT = N->getValueType(0); 2716 SDLoc dl(N); 2717 2718 // Check to see if we can do this. 2719 // FIXME: We should be more aggressive here. 2720 if (!isTypeLegal(VT)) 2721 return SDValue(); 2722 2723 // If the sdiv has an 'exact' bit we can use a simpler lowering. 2724 if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact()) 2725 return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created); 2726 2727 APInt::ms magics = Divisor.magic(); 2728 2729 // Multiply the numerator (operand 0) by the magic value 2730 // FIXME: We should support doing a MUL in a wider type 2731 SDValue Q; 2732 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2733 isOperationLegalOrCustom(ISD::MULHS, VT)) 2734 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 2735 DAG.getConstant(magics.m, dl, VT)); 2736 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 2737 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 2738 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 2739 N->getOperand(0), 2740 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2741 else 2742 return SDValue(); // No mulhs or equvialent 2743 // If d > 0 and m < 0, add the numerator 2744 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 2745 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 2746 Created->push_back(Q.getNode()); 2747 } 2748 // If d < 0 and m > 0, subtract the numerator. 2749 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 2750 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 2751 Created->push_back(Q.getNode()); 2752 } 2753 // Shift right algebraic if shift value is nonzero 2754 if (magics.s > 0) { 2755 Q = DAG.getNode(ISD::SRA, dl, VT, Q, 2756 DAG.getConstant(magics.s, dl, 2757 getShiftAmountTy(Q.getValueType()))); 2758 Created->push_back(Q.getNode()); 2759 } 2760 // Extract the sign bit and add it to the quotient 2761 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, 2762 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, 2763 getShiftAmountTy(Q.getValueType()))); 2764 Created->push_back(T.getNode()); 2765 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 2766 } 2767 2768 /// \brief Given an ISD::UDIV node expressing a divide by constant, 2769 /// return a DAG expression to select that will generate the same value by 2770 /// multiplying by a magic number. 2771 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2772 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 2773 SelectionDAG &DAG, bool IsAfterLegalization, 2774 std::vector<SDNode *> *Created) const { 2775 assert(Created && "No vector to hold udiv ops."); 2776 2777 EVT VT = N->getValueType(0); 2778 SDLoc dl(N); 2779 2780 // Check to see if we can do this. 2781 // FIXME: We should be more aggressive here. 2782 if (!isTypeLegal(VT)) 2783 return SDValue(); 2784 2785 // FIXME: We should use a narrower constant when the upper 2786 // bits are known to be zero. 2787 APInt::mu magics = Divisor.magicu(); 2788 2789 SDValue Q = N->getOperand(0); 2790 2791 // If the divisor is even, we can avoid using the expensive fixup by shifting 2792 // the divided value upfront. 2793 if (magics.a != 0 && !Divisor[0]) { 2794 unsigned Shift = Divisor.countTrailingZeros(); 2795 Q = DAG.getNode(ISD::SRL, dl, VT, Q, 2796 DAG.getConstant(Shift, dl, 2797 getShiftAmountTy(Q.getValueType()))); 2798 Created->push_back(Q.getNode()); 2799 2800 // Get magic number for the shifted divisor. 2801 magics = Divisor.lshr(Shift).magicu(Shift); 2802 assert(magics.a == 0 && "Should use cheap fixup now"); 2803 } 2804 2805 // Multiply the numerator (operand 0) by the magic value 2806 // FIXME: We should support doing a MUL in a wider type 2807 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 2808 isOperationLegalOrCustom(ISD::MULHU, VT)) 2809 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); 2810 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 2811 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 2812 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 2813 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2814 else 2815 return SDValue(); // No mulhu or equvialent 2816 2817 Created->push_back(Q.getNode()); 2818 2819 if (magics.a == 0) { 2820 assert(magics.s < Divisor.getBitWidth() && 2821 "We shouldn't generate an undefined shift!"); 2822 return DAG.getNode(ISD::SRL, dl, VT, Q, 2823 DAG.getConstant(magics.s, dl, 2824 getShiftAmountTy(Q.getValueType()))); 2825 } else { 2826 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 2827 Created->push_back(NPQ.getNode()); 2828 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, 2829 DAG.getConstant(1, dl, 2830 getShiftAmountTy(NPQ.getValueType()))); 2831 Created->push_back(NPQ.getNode()); 2832 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 2833 Created->push_back(NPQ.getNode()); 2834 return DAG.getNode(ISD::SRL, dl, VT, NPQ, 2835 DAG.getConstant(magics.s - 1, dl, 2836 getShiftAmountTy(NPQ.getValueType()))); 2837 } 2838 } 2839 2840 bool TargetLowering:: 2841 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 2842 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 2843 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 2844 "be a constant integer"); 2845 return true; 2846 } 2847 2848 return false; 2849 } 2850 2851 //===----------------------------------------------------------------------===// 2852 // Legalization Utilities 2853 //===----------------------------------------------------------------------===// 2854 2855 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 2856 SelectionDAG &DAG, SDValue LL, SDValue LH, 2857 SDValue RL, SDValue RH) const { 2858 EVT VT = N->getValueType(0); 2859 SDLoc dl(N); 2860 2861 bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 2862 bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 2863 bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 2864 bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 2865 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 2866 unsigned OuterBitSize = VT.getSizeInBits(); 2867 unsigned InnerBitSize = HiLoVT.getSizeInBits(); 2868 unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); 2869 unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); 2870 2871 // LL, LH, RL, and RH must be either all NULL or all set to a value. 2872 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 2873 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 2874 2875 if (!LL.getNode() && !RL.getNode() && 2876 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 2877 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0)); 2878 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1)); 2879 } 2880 2881 if (!LL.getNode()) 2882 return false; 2883 2884 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 2885 if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) && 2886 DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) { 2887 // The inputs are both zero-extended. 2888 if (HasUMUL_LOHI) { 2889 // We can emit a umul_lohi. 2890 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 2891 RL); 2892 Hi = SDValue(Lo.getNode(), 1); 2893 return true; 2894 } 2895 if (HasMULHU) { 2896 // We can emit a mulhu+mul. 2897 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2898 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 2899 return true; 2900 } 2901 } 2902 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 2903 // The input values are both sign-extended. 2904 if (HasSMUL_LOHI) { 2905 // We can emit a smul_lohi. 2906 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 2907 RL); 2908 Hi = SDValue(Lo.getNode(), 1); 2909 return true; 2910 } 2911 if (HasMULHS) { 2912 // We can emit a mulhs+mul. 2913 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2914 Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL); 2915 return true; 2916 } 2917 } 2918 2919 if (!LH.getNode() && !RH.getNode() && 2920 isOperationLegalOrCustom(ISD::SRL, VT) && 2921 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 2922 unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits(); 2923 SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT)); 2924 LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift); 2925 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 2926 RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift); 2927 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 2928 } 2929 2930 if (!LH.getNode()) 2931 return false; 2932 2933 if (HasUMUL_LOHI) { 2934 // Lo,Hi = umul LHS, RHS. 2935 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, 2936 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 2937 Lo = UMulLOHI; 2938 Hi = UMulLOHI.getValue(1); 2939 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 2940 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 2941 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 2942 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 2943 return true; 2944 } 2945 if (HasMULHU) { 2946 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2947 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 2948 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 2949 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 2950 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 2951 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 2952 return true; 2953 } 2954 } 2955 return false; 2956 } 2957 2958 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 2959 SelectionDAG &DAG) const { 2960 EVT VT = Node->getOperand(0).getValueType(); 2961 EVT NVT = Node->getValueType(0); 2962 SDLoc dl(SDValue(Node, 0)); 2963 2964 // FIXME: Only f32 to i64 conversions are supported. 2965 if (VT != MVT::f32 || NVT != MVT::i64) 2966 return false; 2967 2968 // Expand f32 -> i64 conversion 2969 // This algorithm comes from compiler-rt's implementation of fixsfdi: 2970 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 2971 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 2972 VT.getSizeInBits()); 2973 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 2974 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 2975 SDValue Bias = DAG.getConstant(127, dl, IntVT); 2976 SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl, 2977 IntVT); 2978 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 2979 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 2980 2981 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 2982 2983 SDValue ExponentBits = DAG.getNode(ISD::SRL, dl, IntVT, 2984 DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 2985 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT))); 2986 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 2987 2988 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 2989 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 2990 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT))); 2991 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 2992 2993 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 2994 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 2995 DAG.getConstant(0x00800000, dl, IntVT)); 2996 2997 R = DAG.getZExtOrTrunc(R, dl, NVT); 2998 2999 3000 R = DAG.getSelectCC(dl, Exponent, ExponentLoBit, 3001 DAG.getNode(ISD::SHL, dl, NVT, R, 3002 DAG.getZExtOrTrunc( 3003 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 3004 dl, getShiftAmountTy(IntVT))), 3005 DAG.getNode(ISD::SRL, dl, NVT, R, 3006 DAG.getZExtOrTrunc( 3007 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 3008 dl, getShiftAmountTy(IntVT))), 3009 ISD::SETGT); 3010 3011 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 3012 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 3013 Sign); 3014 3015 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 3016 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 3017 return true; 3018 } 3019