1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/CodeGenCommonISel.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore following attributes because they don't affect the
61   // call sequence.
62   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
63   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
64                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
65                            Attribute::NonNull, Attribute::NoUndef})
66     CallerAttrs.removeAttribute(Attr);
67 
68   if (CallerAttrs.hasAttributes())
69     return false;
70 
71   // It's not safe to eliminate the sign / zero extension of the return value.
72   if (CallerAttrs.contains(Attribute::ZExt) ||
73       CallerAttrs.contains(Attribute::SExt))
74     return false;
75 
76   // Check if the only use is a function return node.
77   return isUsedByReturnOnly(Node, Chain);
78 }
79 
80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
81     const uint32_t *CallerPreservedMask,
82     const SmallVectorImpl<CCValAssign> &ArgLocs,
83     const SmallVectorImpl<SDValue> &OutVals) const {
84   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
85     const CCValAssign &ArgLoc = ArgLocs[I];
86     if (!ArgLoc.isRegLoc())
87       continue;
88     MCRegister Reg = ArgLoc.getLocReg();
89     // Only look at callee saved registers.
90     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
91       continue;
92     // Check that we pass the value used for the caller.
93     // (We look for a CopyFromReg reading a virtual register that is used
94     //  for the function live-in value of register Reg)
95     SDValue Value = OutVals[I];
96     if (Value->getOpcode() == ISD::AssertZext)
97       Value = Value.getOperand(0);
98     if (Value->getOpcode() != ISD::CopyFromReg)
99       return false;
100     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
101     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
102       return false;
103   }
104   return true;
105 }
106 
107 /// Set CallLoweringInfo attribute flags based on a call instruction
108 /// and called function attributes.
109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
110                                                      unsigned ArgIdx) {
111   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
112   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
113   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
114   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
115   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
116   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
117   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
118   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
119   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
120   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
121   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
122   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
123   Alignment = Call->getParamStackAlign(ArgIdx);
124   IndirectType = nullptr;
125   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
126          "multiple ABI attributes?");
127   if (IsByVal) {
128     IndirectType = Call->getParamByValType(ArgIdx);
129     if (!Alignment)
130       Alignment = Call->getParamAlign(ArgIdx);
131   }
132   if (IsPreallocated)
133     IndirectType = Call->getParamPreallocatedType(ArgIdx);
134   if (IsInAlloca)
135     IndirectType = Call->getParamInAllocaType(ArgIdx);
136   if (IsSRet)
137     IndirectType = Call->getParamStructRetType(ArgIdx);
138 }
139 
140 /// Generate a libcall taking the given operands as arguments and returning a
141 /// result of type RetVT.
142 std::pair<SDValue, SDValue>
143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
144                             ArrayRef<SDValue> Ops,
145                             MakeLibCallOptions CallOptions,
146                             const SDLoc &dl,
147                             SDValue InChain) const {
148   if (!InChain)
149     InChain = DAG.getEntryNode();
150 
151   TargetLowering::ArgListTy Args;
152   Args.reserve(Ops.size());
153 
154   TargetLowering::ArgListEntry Entry;
155   for (unsigned i = 0; i < Ops.size(); ++i) {
156     SDValue NewOp = Ops[i];
157     Entry.Node = NewOp;
158     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
159     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
160                                                  CallOptions.IsSExt);
161     Entry.IsZExt = !Entry.IsSExt;
162 
163     if (CallOptions.IsSoften &&
164         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
165       Entry.IsSExt = Entry.IsZExt = false;
166     }
167     Args.push_back(Entry);
168   }
169 
170   if (LC == RTLIB::UNKNOWN_LIBCALL)
171     report_fatal_error("Unsupported library call operation!");
172   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
173                                          getPointerTy(DAG.getDataLayout()));
174 
175   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
176   TargetLowering::CallLoweringInfo CLI(DAG);
177   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
178   bool zeroExtend = !signExtend;
179 
180   if (CallOptions.IsSoften &&
181       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
182     signExtend = zeroExtend = false;
183   }
184 
185   CLI.setDebugLoc(dl)
186       .setChain(InChain)
187       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
188       .setNoReturn(CallOptions.DoesNotReturn)
189       .setDiscardResult(!CallOptions.IsReturnValueUsed)
190       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
191       .setSExtResult(signExtend)
192       .setZExtResult(zeroExtend);
193   return LowerCallTo(CLI);
194 }
195 
196 bool TargetLowering::findOptimalMemOpLowering(
197     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
198     unsigned SrcAS, const AttributeList &FuncAttributes) const {
199   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
200       Op.getSrcAlign() < Op.getDstAlign())
201     return false;
202 
203   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
204 
205   if (VT == MVT::Other) {
206     // Use the largest integer type whose alignment constraints are satisfied.
207     // We only need to check DstAlign here as SrcAlign is always greater or
208     // equal to DstAlign (or zero).
209     VT = MVT::i64;
210     if (Op.isFixedDstAlign())
211       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
212              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
213         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
214     assert(VT.isInteger());
215 
216     // Find the largest legal integer type.
217     MVT LVT = MVT::i64;
218     while (!isTypeLegal(LVT))
219       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
220     assert(LVT.isInteger());
221 
222     // If the type we've chosen is larger than the largest legal integer type
223     // then use that instead.
224     if (VT.bitsGT(LVT))
225       VT = LVT;
226   }
227 
228   unsigned NumMemOps = 0;
229   uint64_t Size = Op.size();
230   while (Size) {
231     unsigned VTSize = VT.getSizeInBits() / 8;
232     while (VTSize > Size) {
233       // For now, only use non-vector load / store's for the left-over pieces.
234       EVT NewVT = VT;
235       unsigned NewVTSize;
236 
237       bool Found = false;
238       if (VT.isVector() || VT.isFloatingPoint()) {
239         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
240         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
241             isSafeMemOpType(NewVT.getSimpleVT()))
242           Found = true;
243         else if (NewVT == MVT::i64 &&
244                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
245                  isSafeMemOpType(MVT::f64)) {
246           // i64 is usually not legal on 32-bit targets, but f64 may be.
247           NewVT = MVT::f64;
248           Found = true;
249         }
250       }
251 
252       if (!Found) {
253         do {
254           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
255           if (NewVT == MVT::i8)
256             break;
257         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
258       }
259       NewVTSize = NewVT.getSizeInBits() / 8;
260 
261       // If the new VT cannot cover all of the remaining bits, then consider
262       // issuing a (or a pair of) unaligned and overlapping load / store.
263       bool Fast;
264       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
265           allowsMisalignedMemoryAccesses(
266               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
267               MachineMemOperand::MONone, &Fast) &&
268           Fast)
269         VTSize = Size;
270       else {
271         VT = NewVT;
272         VTSize = NewVTSize;
273       }
274     }
275 
276     if (++NumMemOps > Limit)
277       return false;
278 
279     MemOps.push_back(VT);
280     Size -= VTSize;
281   }
282 
283   return true;
284 }
285 
286 /// Soften the operands of a comparison. This code is shared among BR_CC,
287 /// SELECT_CC, and SETCC handlers.
288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
289                                          SDValue &NewLHS, SDValue &NewRHS,
290                                          ISD::CondCode &CCCode,
291                                          const SDLoc &dl, const SDValue OldLHS,
292                                          const SDValue OldRHS) const {
293   SDValue Chain;
294   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
295                              OldRHS, Chain);
296 }
297 
298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
299                                          SDValue &NewLHS, SDValue &NewRHS,
300                                          ISD::CondCode &CCCode,
301                                          const SDLoc &dl, const SDValue OldLHS,
302                                          const SDValue OldRHS,
303                                          SDValue &Chain,
304                                          bool IsSignaling) const {
305   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
306   // not supporting it. We can update this code when libgcc provides such
307   // functions.
308 
309   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
310          && "Unsupported setcc type!");
311 
312   // Expand into one or more soft-fp libcall(s).
313   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
314   bool ShouldInvertCC = false;
315   switch (CCCode) {
316   case ISD::SETEQ:
317   case ISD::SETOEQ:
318     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
319           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
320           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
321     break;
322   case ISD::SETNE:
323   case ISD::SETUNE:
324     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
325           (VT == MVT::f64) ? RTLIB::UNE_F64 :
326           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
327     break;
328   case ISD::SETGE:
329   case ISD::SETOGE:
330     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
331           (VT == MVT::f64) ? RTLIB::OGE_F64 :
332           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
333     break;
334   case ISD::SETLT:
335   case ISD::SETOLT:
336     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
337           (VT == MVT::f64) ? RTLIB::OLT_F64 :
338           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
339     break;
340   case ISD::SETLE:
341   case ISD::SETOLE:
342     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
343           (VT == MVT::f64) ? RTLIB::OLE_F64 :
344           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
345     break;
346   case ISD::SETGT:
347   case ISD::SETOGT:
348     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
349           (VT == MVT::f64) ? RTLIB::OGT_F64 :
350           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
351     break;
352   case ISD::SETO:
353     ShouldInvertCC = true;
354     LLVM_FALLTHROUGH;
355   case ISD::SETUO:
356     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
357           (VT == MVT::f64) ? RTLIB::UO_F64 :
358           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
359     break;
360   case ISD::SETONE:
361     // SETONE = O && UNE
362     ShouldInvertCC = true;
363     LLVM_FALLTHROUGH;
364   case ISD::SETUEQ:
365     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
366           (VT == MVT::f64) ? RTLIB::UO_F64 :
367           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
368     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
369           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
370           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
371     break;
372   default:
373     // Invert CC for unordered comparisons
374     ShouldInvertCC = true;
375     switch (CCCode) {
376     case ISD::SETULT:
377       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
378             (VT == MVT::f64) ? RTLIB::OGE_F64 :
379             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
380       break;
381     case ISD::SETULE:
382       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
383             (VT == MVT::f64) ? RTLIB::OGT_F64 :
384             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
385       break;
386     case ISD::SETUGT:
387       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
388             (VT == MVT::f64) ? RTLIB::OLE_F64 :
389             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
390       break;
391     case ISD::SETUGE:
392       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
393             (VT == MVT::f64) ? RTLIB::OLT_F64 :
394             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
395       break;
396     default: llvm_unreachable("Do not know how to soften this setcc!");
397     }
398   }
399 
400   // Use the target specific return value for comparions lib calls.
401   EVT RetVT = getCmpLibcallReturnType();
402   SDValue Ops[2] = {NewLHS, NewRHS};
403   TargetLowering::MakeLibCallOptions CallOptions;
404   EVT OpsVT[2] = { OldLHS.getValueType(),
405                    OldRHS.getValueType() };
406   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
407   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
408   NewLHS = Call.first;
409   NewRHS = DAG.getConstant(0, dl, RetVT);
410 
411   CCCode = getCmpLibcallCC(LC1);
412   if (ShouldInvertCC) {
413     assert(RetVT.isInteger());
414     CCCode = getSetCCInverse(CCCode, RetVT);
415   }
416 
417   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
418     // Update Chain.
419     Chain = Call.second;
420   } else {
421     EVT SetCCVT =
422         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
423     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
424     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
425     CCCode = getCmpLibcallCC(LC2);
426     if (ShouldInvertCC)
427       CCCode = getSetCCInverse(CCCode, RetVT);
428     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
429     if (Chain)
430       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
431                           Call2.second);
432     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
433                          Tmp.getValueType(), Tmp, NewLHS);
434     NewRHS = SDValue();
435   }
436 }
437 
438 /// Return the entry encoding for a jump table in the current function. The
439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
440 unsigned TargetLowering::getJumpTableEncoding() const {
441   // In non-pic modes, just use the address of a block.
442   if (!isPositionIndependent())
443     return MachineJumpTableInfo::EK_BlockAddress;
444 
445   // In PIC mode, if the target supports a GPRel32 directive, use it.
446   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
447     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
448 
449   // Otherwise, use a label difference.
450   return MachineJumpTableInfo::EK_LabelDifference32;
451 }
452 
453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
454                                                  SelectionDAG &DAG) const {
455   // If our PIC model is GP relative, use the global offset table as the base.
456   unsigned JTEncoding = getJumpTableEncoding();
457 
458   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
459       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
460     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
461 
462   return Table;
463 }
464 
465 /// This returns the relocation base for the given PIC jumptable, the same as
466 /// getPICJumpTableRelocBase, but as an MCExpr.
467 const MCExpr *
468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
469                                              unsigned JTI,MCContext &Ctx) const{
470   // The normal PIC reloc base is the label at the start of the jump table.
471   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
472 }
473 
474 bool
475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
476   const TargetMachine &TM = getTargetMachine();
477   const GlobalValue *GV = GA->getGlobal();
478 
479   // If the address is not even local to this DSO we will have to load it from
480   // a got and then add the offset.
481   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
482     return false;
483 
484   // If the code is position independent we will have to add a base register.
485   if (isPositionIndependent())
486     return false;
487 
488   // Otherwise we can do it.
489   return true;
490 }
491 
492 //===----------------------------------------------------------------------===//
493 //  Optimization Methods
494 //===----------------------------------------------------------------------===//
495 
496 /// If the specified instruction has a constant integer operand and there are
497 /// bits set in that constant that are not demanded, then clear those bits and
498 /// return true.
499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
500                                             const APInt &DemandedBits,
501                                             const APInt &DemandedElts,
502                                             TargetLoweringOpt &TLO) const {
503   SDLoc DL(Op);
504   unsigned Opcode = Op.getOpcode();
505 
506   // Do target-specific constant optimization.
507   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
508     return TLO.New.getNode();
509 
510   // FIXME: ISD::SELECT, ISD::SELECT_CC
511   switch (Opcode) {
512   default:
513     break;
514   case ISD::XOR:
515   case ISD::AND:
516   case ISD::OR: {
517     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
518     if (!Op1C || Op1C->isOpaque())
519       return false;
520 
521     // If this is a 'not' op, don't touch it because that's a canonical form.
522     const APInt &C = Op1C->getAPIntValue();
523     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
524       return false;
525 
526     if (!C.isSubsetOf(DemandedBits)) {
527       EVT VT = Op.getValueType();
528       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
529       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
530       return TLO.CombineTo(Op, NewOp);
531     }
532 
533     break;
534   }
535   }
536 
537   return false;
538 }
539 
540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
541                                             const APInt &DemandedBits,
542                                             TargetLoweringOpt &TLO) const {
543   EVT VT = Op.getValueType();
544   APInt DemandedElts = VT.isVector()
545                            ? APInt::getAllOnes(VT.getVectorNumElements())
546                            : APInt(1, 1);
547   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
548 }
549 
550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
552 /// generalized for targets with other types of implicit widening casts.
553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
554                                       const APInt &Demanded,
555                                       TargetLoweringOpt &TLO) const {
556   assert(Op.getNumOperands() == 2 &&
557          "ShrinkDemandedOp only supports binary operators!");
558   assert(Op.getNode()->getNumValues() == 1 &&
559          "ShrinkDemandedOp only supports nodes with one result!");
560 
561   SelectionDAG &DAG = TLO.DAG;
562   SDLoc dl(Op);
563 
564   // Early return, as this function cannot handle vector types.
565   if (Op.getValueType().isVector())
566     return false;
567 
568   // Don't do this if the node has another user, which may require the
569   // full value.
570   if (!Op.getNode()->hasOneUse())
571     return false;
572 
573   // Search for the smallest integer type with free casts to and from
574   // Op's type. For expedience, just check power-of-2 integer types.
575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
576   unsigned DemandedSize = Demanded.getActiveBits();
577   unsigned SmallVTBits = DemandedSize;
578   if (!isPowerOf2_32(SmallVTBits))
579     SmallVTBits = NextPowerOf2(SmallVTBits);
580   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
581     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
582     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
583         TLI.isZExtFree(SmallVT, Op.getValueType())) {
584       // We found a type with free casts.
585       SDValue X = DAG.getNode(
586           Op.getOpcode(), dl, SmallVT,
587           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
588           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
589       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
590       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
591       return TLO.CombineTo(Op, Z);
592     }
593   }
594   return false;
595 }
596 
597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
598                                           DAGCombinerInfo &DCI) const {
599   SelectionDAG &DAG = DCI.DAG;
600   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
601                         !DCI.isBeforeLegalizeOps());
602   KnownBits Known;
603 
604   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
605   if (Simplified) {
606     DCI.AddToWorklist(Op.getNode());
607     DCI.CommitTargetLoweringOpt(TLO);
608   }
609   return Simplified;
610 }
611 
612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
613                                           const APInt &DemandedElts,
614                                           DAGCombinerInfo &DCI) const {
615   SelectionDAG &DAG = DCI.DAG;
616   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
617                         !DCI.isBeforeLegalizeOps());
618   KnownBits Known;
619 
620   bool Simplified =
621       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
622   if (Simplified) {
623     DCI.AddToWorklist(Op.getNode());
624     DCI.CommitTargetLoweringOpt(TLO);
625   }
626   return Simplified;
627 }
628 
629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
630                                           KnownBits &Known,
631                                           TargetLoweringOpt &TLO,
632                                           unsigned Depth,
633                                           bool AssumeSingleUse) const {
634   EVT VT = Op.getValueType();
635 
636   // TODO: We can probably do more work on calculating the known bits and
637   // simplifying the operations for scalable vectors, but for now we just
638   // bail out.
639   if (VT.isScalableVector()) {
640     // Pretend we don't know anything for now.
641     Known = KnownBits(DemandedBits.getBitWidth());
642     return false;
643   }
644 
645   APInt DemandedElts = VT.isVector()
646                            ? APInt::getAllOnes(VT.getVectorNumElements())
647                            : APInt(1, 1);
648   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
649                               AssumeSingleUse);
650 }
651 
652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
653 // TODO: Under what circumstances can we create nodes? Constant folding?
654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
655     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
656     SelectionDAG &DAG, unsigned Depth) const {
657   // Limit search depth.
658   if (Depth >= SelectionDAG::MaxRecursionDepth)
659     return SDValue();
660 
661   // Ignore UNDEFs.
662   if (Op.isUndef())
663     return SDValue();
664 
665   // Not demanding any bits/elts from Op.
666   if (DemandedBits == 0 || DemandedElts == 0)
667     return DAG.getUNDEF(Op.getValueType());
668 
669   bool IsLE = DAG.getDataLayout().isLittleEndian();
670   unsigned NumElts = DemandedElts.getBitWidth();
671   unsigned BitWidth = DemandedBits.getBitWidth();
672   KnownBits LHSKnown, RHSKnown;
673   switch (Op.getOpcode()) {
674   case ISD::BITCAST: {
675     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
676     EVT SrcVT = Src.getValueType();
677     EVT DstVT = Op.getValueType();
678     if (SrcVT == DstVT)
679       return Src;
680 
681     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
682     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
683     if (NumSrcEltBits == NumDstEltBits)
684       if (SDValue V = SimplifyMultipleUseDemandedBits(
685               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
686         return DAG.getBitcast(DstVT, V);
687 
688     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
689       unsigned Scale = NumDstEltBits / NumSrcEltBits;
690       unsigned NumSrcElts = SrcVT.getVectorNumElements();
691       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
692       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
693       for (unsigned i = 0; i != Scale; ++i) {
694         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
695         unsigned BitOffset = EltOffset * NumSrcEltBits;
696         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
697         if (!Sub.isZero()) {
698           DemandedSrcBits |= Sub;
699           for (unsigned j = 0; j != NumElts; ++j)
700             if (DemandedElts[j])
701               DemandedSrcElts.setBit((j * Scale) + i);
702         }
703       }
704 
705       if (SDValue V = SimplifyMultipleUseDemandedBits(
706               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
707         return DAG.getBitcast(DstVT, V);
708     }
709 
710     // TODO - bigendian once we have test coverage.
711     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
712       unsigned Scale = NumSrcEltBits / NumDstEltBits;
713       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
714       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
715       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
716       for (unsigned i = 0; i != NumElts; ++i)
717         if (DemandedElts[i]) {
718           unsigned Offset = (i % Scale) * NumDstEltBits;
719           DemandedSrcBits.insertBits(DemandedBits, Offset);
720           DemandedSrcElts.setBit(i / Scale);
721         }
722 
723       if (SDValue V = SimplifyMultipleUseDemandedBits(
724               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
725         return DAG.getBitcast(DstVT, V);
726     }
727 
728     break;
729   }
730   case ISD::AND: {
731     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
732     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
733 
734     // If all of the demanded bits are known 1 on one side, return the other.
735     // These bits cannot contribute to the result of the 'and' in this
736     // context.
737     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
738       return Op.getOperand(0);
739     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
740       return Op.getOperand(1);
741     break;
742   }
743   case ISD::OR: {
744     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
745     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
746 
747     // If all of the demanded bits are known zero on one side, return the
748     // other.  These bits cannot contribute to the result of the 'or' in this
749     // context.
750     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
751       return Op.getOperand(0);
752     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
753       return Op.getOperand(1);
754     break;
755   }
756   case ISD::XOR: {
757     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
758     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
759 
760     // If all of the demanded bits are known zero on one side, return the
761     // other.
762     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
763       return Op.getOperand(0);
764     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
765       return Op.getOperand(1);
766     break;
767   }
768   case ISD::SHL: {
769     // If we are only demanding sign bits then we can use the shift source
770     // directly.
771     if (const APInt *MaxSA =
772             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
773       SDValue Op0 = Op.getOperand(0);
774       unsigned ShAmt = MaxSA->getZExtValue();
775       unsigned NumSignBits =
776           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
777       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
778       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SETCC: {
784     SDValue Op0 = Op.getOperand(0);
785     SDValue Op1 = Op.getOperand(1);
786     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
787     // If (1) we only need the sign-bit, (2) the setcc operands are the same
788     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
789     // -1, we may be able to bypass the setcc.
790     if (DemandedBits.isSignMask() &&
791         Op0.getScalarValueSizeInBits() == BitWidth &&
792         getBooleanContents(Op0.getValueType()) ==
793             BooleanContent::ZeroOrNegativeOneBooleanContent) {
794       // If we're testing X < 0, then this compare isn't needed - just use X!
795       // FIXME: We're limiting to integer types here, but this should also work
796       // if we don't care about FP signed-zero. The use of SETLT with FP means
797       // that we don't care about NaNs.
798       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
799           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
800         return Op0;
801     }
802     break;
803   }
804   case ISD::SIGN_EXTEND_INREG: {
805     // If none of the extended bits are demanded, eliminate the sextinreg.
806     SDValue Op0 = Op.getOperand(0);
807     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
808     unsigned ExBits = ExVT.getScalarSizeInBits();
809     if (DemandedBits.getActiveBits() <= ExBits)
810       return Op0;
811     // If the input is already sign extended, just drop the extension.
812     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
813     if (NumSignBits >= (BitWidth - ExBits + 1))
814       return Op0;
815     break;
816   }
817   case ISD::ANY_EXTEND_VECTOR_INREG:
818   case ISD::SIGN_EXTEND_VECTOR_INREG:
819   case ISD::ZERO_EXTEND_VECTOR_INREG: {
820     // If we only want the lowest element and none of extended bits, then we can
821     // return the bitcasted source vector.
822     SDValue Src = Op.getOperand(0);
823     EVT SrcVT = Src.getValueType();
824     EVT DstVT = Op.getValueType();
825     if (IsLE && DemandedElts == 1 &&
826         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
827         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
828       return DAG.getBitcast(DstVT, Src);
829     }
830     break;
831   }
832   case ISD::INSERT_VECTOR_ELT: {
833     // If we don't demand the inserted element, return the base vector.
834     SDValue Vec = Op.getOperand(0);
835     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
836     EVT VecVT = Vec.getValueType();
837     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
838         !DemandedElts[CIdx->getZExtValue()])
839       return Vec;
840     break;
841   }
842   case ISD::INSERT_SUBVECTOR: {
843     SDValue Vec = Op.getOperand(0);
844     SDValue Sub = Op.getOperand(1);
845     uint64_t Idx = Op.getConstantOperandVal(2);
846     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
847     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
848     // If we don't demand the inserted subvector, return the base vector.
849     if (DemandedSubElts == 0)
850       return Vec;
851     // If this simply widens the lowest subvector, see if we can do it earlier.
852     if (Idx == 0 && Vec.isUndef()) {
853       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
854               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
855         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
856                            Op.getOperand(0), NewSub, Op.getOperand(2));
857     }
858     break;
859   }
860   case ISD::VECTOR_SHUFFLE: {
861     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
862 
863     // If all the demanded elts are from one operand and are inline,
864     // then we can use the operand directly.
865     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
866     for (unsigned i = 0; i != NumElts; ++i) {
867       int M = ShuffleMask[i];
868       if (M < 0 || !DemandedElts[i])
869         continue;
870       AllUndef = false;
871       IdentityLHS &= (M == (int)i);
872       IdentityRHS &= ((M - NumElts) == i);
873     }
874 
875     if (AllUndef)
876       return DAG.getUNDEF(Op.getValueType());
877     if (IdentityLHS)
878       return Op.getOperand(0);
879     if (IdentityRHS)
880       return Op.getOperand(1);
881     break;
882   }
883   default:
884     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
885       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
886               Op, DemandedBits, DemandedElts, DAG, Depth))
887         return V;
888     break;
889   }
890   return SDValue();
891 }
892 
893 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
894     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
895     unsigned Depth) const {
896   EVT VT = Op.getValueType();
897   APInt DemandedElts = VT.isVector()
898                            ? APInt::getAllOnes(VT.getVectorNumElements())
899                            : APInt(1, 1);
900   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
901                                          Depth);
902 }
903 
904 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
905     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
906     unsigned Depth) const {
907   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
908   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
909                                          Depth);
910 }
911 
912 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
913 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
914 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
915                                  const TargetLowering &TLI,
916                                  const APInt &DemandedBits,
917                                  const APInt &DemandedElts,
918                                  unsigned Depth) {
919   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
920          "SRL or SRA node is required here!");
921   // Is the right shift using an immediate value of 1?
922   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
923   if (!N1C || !N1C->isOne())
924     return SDValue();
925 
926   // We are looking for an avgfloor
927   // add(ext, ext)
928   // or one of these as a avgceil
929   // add(add(ext, ext), 1)
930   // add(add(ext, 1), ext)
931   // add(ext, add(ext, 1))
932   SDValue Add = Op.getOperand(0);
933   if (Add.getOpcode() != ISD::ADD)
934     return SDValue();
935 
936   SDValue ExtOpA = Add.getOperand(0);
937   SDValue ExtOpB = Add.getOperand(1);
938   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
939     ConstantSDNode *ConstOp;
940     if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
941         ConstOp->isOne()) {
942       ExtOpA = Op2;
943       ExtOpB = Op3;
944       return true;
945     }
946     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
947         ConstOp->isOne()) {
948       ExtOpA = Op1;
949       ExtOpB = Op3;
950       return true;
951     }
952     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
953         ConstOp->isOne()) {
954       ExtOpA = Op1;
955       ExtOpB = Op2;
956       return true;
957     }
958     return false;
959   };
960   bool IsCeil =
961       (ExtOpA.getOpcode() == ISD::ADD &&
962        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
963       (ExtOpB.getOpcode() == ISD::ADD &&
964        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
965 
966   // If the shift is signed (sra):
967   //  - Needs >= 2 sign bit for both operands.
968   //  - Needs >= 2 zero bits.
969   // If the shift is unsigned (srl):
970   //  - Needs >= 1 zero bit for both operands.
971   //  - Needs 1 demanded bit zero and >= 2 sign bits.
972   unsigned ShiftOpc = Op.getOpcode();
973   bool IsSigned = false;
974   unsigned KnownBits;
975   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
976   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
977   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
978   unsigned NumZeroA =
979       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
980   unsigned NumZeroB =
981       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
982   unsigned NumZero = std::min(NumZeroA, NumZeroB);
983 
984   switch (ShiftOpc) {
985   default:
986     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
987   case ISD::SRA: {
988     if (NumZero >= 2 && NumSigned < NumZero) {
989       IsSigned = false;
990       KnownBits = NumZero;
991       break;
992     }
993     if (NumSigned >= 1) {
994       IsSigned = true;
995       KnownBits = NumSigned;
996       break;
997     }
998     return SDValue();
999   }
1000   case ISD::SRL: {
1001     if (NumZero >= 1 && NumSigned < NumZero) {
1002       IsSigned = false;
1003       KnownBits = NumZero;
1004       break;
1005     }
1006     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1007       IsSigned = true;
1008       KnownBits = NumSigned;
1009       break;
1010     }
1011     return SDValue();
1012   }
1013   }
1014 
1015   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1016                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1017 
1018   // Find the smallest power-2 type that is legal for this vector size and
1019   // operation, given the original type size and the number of known sign/zero
1020   // bits.
1021   EVT VT = Op.getValueType();
1022   unsigned MinWidth =
1023       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1024   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
1025   if (VT.isVector())
1026     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1027   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
1028     return SDValue();
1029 
1030   SDLoc DL(Op);
1031   SDValue ResultAVG =
1032       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1033                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1034   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1035                      ResultAVG);
1036 }
1037 
1038 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1039 /// result of Op are ever used downstream. If we can use this information to
1040 /// simplify Op, create a new simplified DAG node and return true, returning the
1041 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1042 /// return a mask of Known bits for the expression (used to simplify the
1043 /// caller).  The Known bits may only be accurate for those bits in the
1044 /// OriginalDemandedBits and OriginalDemandedElts.
1045 bool TargetLowering::SimplifyDemandedBits(
1046     SDValue Op, const APInt &OriginalDemandedBits,
1047     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1048     unsigned Depth, bool AssumeSingleUse) const {
1049   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1050   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1051          "Mask size mismatches value type size!");
1052 
1053   // Don't know anything.
1054   Known = KnownBits(BitWidth);
1055 
1056   // TODO: We can probably do more work on calculating the known bits and
1057   // simplifying the operations for scalable vectors, but for now we just
1058   // bail out.
1059   EVT VT = Op.getValueType();
1060   if (VT.isScalableVector())
1061     return false;
1062 
1063   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1064   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1065   assert((!VT.isVector() || NumElts == VT.getVectorNumElements()) &&
1066          "Unexpected vector size");
1067 
1068   APInt DemandedBits = OriginalDemandedBits;
1069   APInt DemandedElts = OriginalDemandedElts;
1070   SDLoc dl(Op);
1071   auto &DL = TLO.DAG.getDataLayout();
1072 
1073   // Undef operand.
1074   if (Op.isUndef())
1075     return false;
1076 
1077   if (Op.getOpcode() == ISD::Constant) {
1078     // We know all of the bits for a constant!
1079     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1080     return false;
1081   }
1082 
1083   if (Op.getOpcode() == ISD::ConstantFP) {
1084     // We know all of the bits for a floating point constant!
1085     Known = KnownBits::makeConstant(
1086         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1087     return false;
1088   }
1089 
1090   // Other users may use these bits.
1091   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
1092     if (Depth != 0) {
1093       // If not at the root, Just compute the Known bits to
1094       // simplify things downstream.
1095       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1096       return false;
1097     }
1098     // If this is the root being simplified, allow it to have multiple uses,
1099     // just set the DemandedBits/Elts to all bits.
1100     DemandedBits = APInt::getAllOnes(BitWidth);
1101     DemandedElts = APInt::getAllOnes(NumElts);
1102   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1103     // Not demanding any bits/elts from Op.
1104     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1105   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1106     // Limit search depth.
1107     return false;
1108   }
1109 
1110   KnownBits Known2;
1111   switch (Op.getOpcode()) {
1112   case ISD::TargetConstant:
1113     llvm_unreachable("Can't simplify this node");
1114   case ISD::SCALAR_TO_VECTOR: {
1115     if (!DemandedElts[0])
1116       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1117 
1118     KnownBits SrcKnown;
1119     SDValue Src = Op.getOperand(0);
1120     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1121     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1122     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1123       return true;
1124 
1125     // Upper elements are undef, so only get the knownbits if we just demand
1126     // the bottom element.
1127     if (DemandedElts == 1)
1128       Known = SrcKnown.anyextOrTrunc(BitWidth);
1129     break;
1130   }
1131   case ISD::BUILD_VECTOR:
1132     // Collect the known bits that are shared by every demanded element.
1133     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1134     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1135     return false; // Don't fall through, will infinitely loop.
1136   case ISD::LOAD: {
1137     auto *LD = cast<LoadSDNode>(Op);
1138     if (getTargetConstantFromLoad(LD)) {
1139       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1140       return false; // Don't fall through, will infinitely loop.
1141     }
1142     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1143       // If this is a ZEXTLoad and we are looking at the loaded value.
1144       EVT MemVT = LD->getMemoryVT();
1145       unsigned MemBits = MemVT.getScalarSizeInBits();
1146       Known.Zero.setBitsFrom(MemBits);
1147       return false; // Don't fall through, will infinitely loop.
1148     }
1149     break;
1150   }
1151   case ISD::INSERT_VECTOR_ELT: {
1152     SDValue Vec = Op.getOperand(0);
1153     SDValue Scl = Op.getOperand(1);
1154     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1155     EVT VecVT = Vec.getValueType();
1156 
1157     // If index isn't constant, assume we need all vector elements AND the
1158     // inserted element.
1159     APInt DemandedVecElts(DemandedElts);
1160     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1161       unsigned Idx = CIdx->getZExtValue();
1162       DemandedVecElts.clearBit(Idx);
1163 
1164       // Inserted element is not required.
1165       if (!DemandedElts[Idx])
1166         return TLO.CombineTo(Op, Vec);
1167     }
1168 
1169     KnownBits KnownScl;
1170     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1171     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1172     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1173       return true;
1174 
1175     Known = KnownScl.anyextOrTrunc(BitWidth);
1176 
1177     KnownBits KnownVec;
1178     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1179                              Depth + 1))
1180       return true;
1181 
1182     if (!!DemandedVecElts)
1183       Known = KnownBits::commonBits(Known, KnownVec);
1184 
1185     return false;
1186   }
1187   case ISD::INSERT_SUBVECTOR: {
1188     // Demand any elements from the subvector and the remainder from the src its
1189     // inserted into.
1190     SDValue Src = Op.getOperand(0);
1191     SDValue Sub = Op.getOperand(1);
1192     uint64_t Idx = Op.getConstantOperandVal(2);
1193     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1194     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1195     APInt DemandedSrcElts = DemandedElts;
1196     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1197 
1198     KnownBits KnownSub, KnownSrc;
1199     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1200                              Depth + 1))
1201       return true;
1202     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1203                              Depth + 1))
1204       return true;
1205 
1206     Known.Zero.setAllBits();
1207     Known.One.setAllBits();
1208     if (!!DemandedSubElts)
1209       Known = KnownBits::commonBits(Known, KnownSub);
1210     if (!!DemandedSrcElts)
1211       Known = KnownBits::commonBits(Known, KnownSrc);
1212 
1213     // Attempt to avoid multi-use src if we don't need anything from it.
1214     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1215         !DemandedSrcElts.isAllOnes()) {
1216       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1217           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1218       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1219           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1220       if (NewSub || NewSrc) {
1221         NewSub = NewSub ? NewSub : Sub;
1222         NewSrc = NewSrc ? NewSrc : Src;
1223         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1224                                         Op.getOperand(2));
1225         return TLO.CombineTo(Op, NewOp);
1226       }
1227     }
1228     break;
1229   }
1230   case ISD::EXTRACT_SUBVECTOR: {
1231     // Offset the demanded elts by the subvector index.
1232     SDValue Src = Op.getOperand(0);
1233     if (Src.getValueType().isScalableVector())
1234       break;
1235     uint64_t Idx = Op.getConstantOperandVal(1);
1236     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1237     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1238 
1239     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1240                              Depth + 1))
1241       return true;
1242 
1243     // Attempt to avoid multi-use src if we don't need anything from it.
1244     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1245       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1246           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1247       if (DemandedSrc) {
1248         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1249                                         Op.getOperand(1));
1250         return TLO.CombineTo(Op, NewOp);
1251       }
1252     }
1253     break;
1254   }
1255   case ISD::CONCAT_VECTORS: {
1256     Known.Zero.setAllBits();
1257     Known.One.setAllBits();
1258     EVT SubVT = Op.getOperand(0).getValueType();
1259     unsigned NumSubVecs = Op.getNumOperands();
1260     unsigned NumSubElts = SubVT.getVectorNumElements();
1261     for (unsigned i = 0; i != NumSubVecs; ++i) {
1262       APInt DemandedSubElts =
1263           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1264       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1265                                Known2, TLO, Depth + 1))
1266         return true;
1267       // Known bits are shared by every demanded subvector element.
1268       if (!!DemandedSubElts)
1269         Known = KnownBits::commonBits(Known, Known2);
1270     }
1271     break;
1272   }
1273   case ISD::VECTOR_SHUFFLE: {
1274     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1275 
1276     // Collect demanded elements from shuffle operands..
1277     APInt DemandedLHS(NumElts, 0);
1278     APInt DemandedRHS(NumElts, 0);
1279     for (unsigned i = 0; i != NumElts; ++i) {
1280       if (!DemandedElts[i])
1281         continue;
1282       int M = ShuffleMask[i];
1283       if (M < 0) {
1284         // For UNDEF elements, we don't know anything about the common state of
1285         // the shuffle result.
1286         DemandedLHS.clearAllBits();
1287         DemandedRHS.clearAllBits();
1288         break;
1289       }
1290       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1291       if (M < (int)NumElts)
1292         DemandedLHS.setBit(M);
1293       else
1294         DemandedRHS.setBit(M - NumElts);
1295     }
1296 
1297     if (!!DemandedLHS || !!DemandedRHS) {
1298       SDValue Op0 = Op.getOperand(0);
1299       SDValue Op1 = Op.getOperand(1);
1300 
1301       Known.Zero.setAllBits();
1302       Known.One.setAllBits();
1303       if (!!DemandedLHS) {
1304         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1305                                  Depth + 1))
1306           return true;
1307         Known = KnownBits::commonBits(Known, Known2);
1308       }
1309       if (!!DemandedRHS) {
1310         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1311                                  Depth + 1))
1312           return true;
1313         Known = KnownBits::commonBits(Known, Known2);
1314       }
1315 
1316       // Attempt to avoid multi-use ops if we don't need anything from them.
1317       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1318           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1319       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1320           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1321       if (DemandedOp0 || DemandedOp1) {
1322         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1323         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1324         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1325         return TLO.CombineTo(Op, NewOp);
1326       }
1327     }
1328     break;
1329   }
1330   case ISD::AND: {
1331     SDValue Op0 = Op.getOperand(0);
1332     SDValue Op1 = Op.getOperand(1);
1333 
1334     // If the RHS is a constant, check to see if the LHS would be zero without
1335     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1336     // simplify the LHS, here we're using information from the LHS to simplify
1337     // the RHS.
1338     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1339       // Do not increment Depth here; that can cause an infinite loop.
1340       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1341       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1342       if ((LHSKnown.Zero & DemandedBits) ==
1343           (~RHSC->getAPIntValue() & DemandedBits))
1344         return TLO.CombineTo(Op, Op0);
1345 
1346       // If any of the set bits in the RHS are known zero on the LHS, shrink
1347       // the constant.
1348       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1349                                  DemandedElts, TLO))
1350         return true;
1351 
1352       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1353       // constant, but if this 'and' is only clearing bits that were just set by
1354       // the xor, then this 'and' can be eliminated by shrinking the mask of
1355       // the xor. For example, for a 32-bit X:
1356       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1357       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1358           LHSKnown.One == ~RHSC->getAPIntValue()) {
1359         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1360         return TLO.CombineTo(Op, Xor);
1361       }
1362     }
1363 
1364     // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
1365     // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
1366     if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR &&
1367         (Op0.getOperand(0).isUndef() ||
1368          ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) &&
1369         Op0->hasOneUse()) {
1370       unsigned NumSubElts =
1371           Op0.getOperand(1).getValueType().getVectorNumElements();
1372       unsigned SubIdx = Op0.getConstantOperandVal(2);
1373       APInt DemandedSub =
1374           APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
1375       KnownBits KnownSubMask =
1376           TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
1377       if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
1378         SDValue NewAnd =
1379             TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
1380         SDValue NewInsert =
1381             TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
1382                             Op0.getOperand(1), Op0.getOperand(2));
1383         return TLO.CombineTo(Op, NewInsert);
1384       }
1385     }
1386 
1387     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1388                              Depth + 1))
1389       return true;
1390     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1391     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1392                              Known2, TLO, Depth + 1))
1393       return true;
1394     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1395 
1396     // If all of the demanded bits are known one on one side, return the other.
1397     // These bits cannot contribute to the result of the 'and'.
1398     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1399       return TLO.CombineTo(Op, Op0);
1400     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1401       return TLO.CombineTo(Op, Op1);
1402     // If all of the demanded bits in the inputs are known zeros, return zero.
1403     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1404       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1405     // If the RHS is a constant, see if we can simplify it.
1406     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1407                                TLO))
1408       return true;
1409     // If the operation can be done in a smaller type, do so.
1410     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1411       return true;
1412 
1413     // Attempt to avoid multi-use ops if we don't need anything from them.
1414     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1415       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1416           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1417       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1418           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1419       if (DemandedOp0 || DemandedOp1) {
1420         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1421         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1422         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1423         return TLO.CombineTo(Op, NewOp);
1424       }
1425     }
1426 
1427     Known &= Known2;
1428     break;
1429   }
1430   case ISD::OR: {
1431     SDValue Op0 = Op.getOperand(0);
1432     SDValue Op1 = Op.getOperand(1);
1433 
1434     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1435                              Depth + 1))
1436       return true;
1437     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1438     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1439                              Known2, TLO, Depth + 1))
1440       return true;
1441     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1442 
1443     // If all of the demanded bits are known zero on one side, return the other.
1444     // These bits cannot contribute to the result of the 'or'.
1445     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1446       return TLO.CombineTo(Op, Op0);
1447     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1448       return TLO.CombineTo(Op, Op1);
1449     // If the RHS is a constant, see if we can simplify it.
1450     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1451       return true;
1452     // If the operation can be done in a smaller type, do so.
1453     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1454       return true;
1455 
1456     // Attempt to avoid multi-use ops if we don't need anything from them.
1457     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1458       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1459           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1460       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1461           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1462       if (DemandedOp0 || DemandedOp1) {
1463         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1464         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1465         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1466         return TLO.CombineTo(Op, NewOp);
1467       }
1468     }
1469 
1470     // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2))
1471     // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks.
1472     if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND &&
1473         Op0->hasOneUse() && Op1->hasOneUse()) {
1474       // Attempt to match all commutations - m_c_Or would've been useful!
1475       for (int I = 0; I != 2; ++I) {
1476         SDValue X = Op.getOperand(I).getOperand(0);
1477         SDValue C1 = Op.getOperand(I).getOperand(1);
1478         SDValue Alt = Op.getOperand(1 - I).getOperand(0);
1479         SDValue C2 = Op.getOperand(1 - I).getOperand(1);
1480         if (Alt.getOpcode() == ISD::OR) {
1481           for (int J = 0; J != 2; ++J) {
1482             if (X == Alt.getOperand(J)) {
1483               SDValue Y = Alt.getOperand(1 - J);
1484               if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT,
1485                                                                {C1, C2})) {
1486                 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12);
1487                 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2);
1488                 return TLO.CombineTo(
1489                     Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY));
1490               }
1491             }
1492           }
1493         }
1494       }
1495     }
1496 
1497     Known |= Known2;
1498     break;
1499   }
1500   case ISD::XOR: {
1501     SDValue Op0 = Op.getOperand(0);
1502     SDValue Op1 = Op.getOperand(1);
1503 
1504     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1505                              Depth + 1))
1506       return true;
1507     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1508     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1509                              Depth + 1))
1510       return true;
1511     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1512 
1513     // If all of the demanded bits are known zero on one side, return the other.
1514     // These bits cannot contribute to the result of the 'xor'.
1515     if (DemandedBits.isSubsetOf(Known.Zero))
1516       return TLO.CombineTo(Op, Op0);
1517     if (DemandedBits.isSubsetOf(Known2.Zero))
1518       return TLO.CombineTo(Op, Op1);
1519     // If the operation can be done in a smaller type, do so.
1520     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1521       return true;
1522 
1523     // If all of the unknown bits are known to be zero on one side or the other
1524     // turn this into an *inclusive* or.
1525     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1526     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1527       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1528 
1529     ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts);
1530     if (C) {
1531       // If one side is a constant, and all of the set bits in the constant are
1532       // also known set on the other side, turn this into an AND, as we know
1533       // the bits will be cleared.
1534       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1535       // NB: it is okay if more bits are known than are requested
1536       if (C->getAPIntValue() == Known2.One) {
1537         SDValue ANDC =
1538             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1539         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1540       }
1541 
1542       // If the RHS is a constant, see if we can change it. Don't alter a -1
1543       // constant because that's a 'not' op, and that is better for combining
1544       // and codegen.
1545       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1546         // We're flipping all demanded bits. Flip the undemanded bits too.
1547         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1548         return TLO.CombineTo(Op, New);
1549       }
1550 
1551       unsigned Op0Opcode = Op0.getOpcode();
1552       if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) {
1553         if (ConstantSDNode *ShiftC =
1554                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1555           // Don't crash on an oversized shift. We can not guarantee that a
1556           // bogus shift has been simplified to undef.
1557           if (ShiftC->getAPIntValue().ult(BitWidth)) {
1558             uint64_t ShiftAmt = ShiftC->getZExtValue();
1559             APInt Ones = APInt::getAllOnes(BitWidth);
1560             Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt)
1561                                          : Ones.lshr(ShiftAmt);
1562             const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
1563             if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) &&
1564                 TLI.isDesirableToCommuteXorWithShift(Op.getNode())) {
1565               // If the xor constant is a demanded mask, do a 'not' before the
1566               // shift:
1567               // xor (X << ShiftC), XorC --> (not X) << ShiftC
1568               // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
1569               SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT);
1570               return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not,
1571                                                        Op0.getOperand(1)));
1572             }
1573           }
1574         }
1575       }
1576     }
1577 
1578     // If we can't turn this into a 'not', try to shrink the constant.
1579     if (!C || !C->isAllOnes())
1580       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1581         return true;
1582 
1583     // Attempt to avoid multi-use ops if we don't need anything from them.
1584     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1585       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1586           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1587       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1588           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1589       if (DemandedOp0 || DemandedOp1) {
1590         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1591         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1592         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1593         return TLO.CombineTo(Op, NewOp);
1594       }
1595     }
1596 
1597     Known ^= Known2;
1598     break;
1599   }
1600   case ISD::SELECT:
1601     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1602                              Depth + 1))
1603       return true;
1604     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1605                              Depth + 1))
1606       return true;
1607     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1608     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1609 
1610     // If the operands are constants, see if we can simplify them.
1611     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1612       return true;
1613 
1614     // Only known if known in both the LHS and RHS.
1615     Known = KnownBits::commonBits(Known, Known2);
1616     break;
1617   case ISD::VSELECT:
1618     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1619                              Known, TLO, Depth + 1))
1620       return true;
1621     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1622                              Known2, TLO, Depth + 1))
1623       return true;
1624     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1625     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1626 
1627     // Only known if known in both the LHS and RHS.
1628     Known = KnownBits::commonBits(Known, Known2);
1629     break;
1630   case ISD::SELECT_CC:
1631     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1632                              Depth + 1))
1633       return true;
1634     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1635                              Depth + 1))
1636       return true;
1637     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1638     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1639 
1640     // If the operands are constants, see if we can simplify them.
1641     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1642       return true;
1643 
1644     // Only known if known in both the LHS and RHS.
1645     Known = KnownBits::commonBits(Known, Known2);
1646     break;
1647   case ISD::SETCC: {
1648     SDValue Op0 = Op.getOperand(0);
1649     SDValue Op1 = Op.getOperand(1);
1650     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1651     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1652     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1653     // -1, we may be able to bypass the setcc.
1654     if (DemandedBits.isSignMask() &&
1655         Op0.getScalarValueSizeInBits() == BitWidth &&
1656         getBooleanContents(Op0.getValueType()) ==
1657             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1658       // If we're testing X < 0, then this compare isn't needed - just use X!
1659       // FIXME: We're limiting to integer types here, but this should also work
1660       // if we don't care about FP signed-zero. The use of SETLT with FP means
1661       // that we don't care about NaNs.
1662       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1663           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1664         return TLO.CombineTo(Op, Op0);
1665 
1666       // TODO: Should we check for other forms of sign-bit comparisons?
1667       // Examples: X <= -1, X >= 0
1668     }
1669     if (getBooleanContents(Op0.getValueType()) ==
1670             TargetLowering::ZeroOrOneBooleanContent &&
1671         BitWidth > 1)
1672       Known.Zero.setBitsFrom(1);
1673     break;
1674   }
1675   case ISD::SHL: {
1676     SDValue Op0 = Op.getOperand(0);
1677     SDValue Op1 = Op.getOperand(1);
1678     EVT ShiftVT = Op1.getValueType();
1679 
1680     if (const APInt *SA =
1681             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1682       unsigned ShAmt = SA->getZExtValue();
1683       if (ShAmt == 0)
1684         return TLO.CombineTo(Op, Op0);
1685 
1686       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1687       // single shift.  We can do this if the bottom bits (which are shifted
1688       // out) are never demanded.
1689       // TODO - support non-uniform vector amounts.
1690       if (Op0.getOpcode() == ISD::SRL) {
1691         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1692           if (const APInt *SA2 =
1693                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1694             unsigned C1 = SA2->getZExtValue();
1695             unsigned Opc = ISD::SHL;
1696             int Diff = ShAmt - C1;
1697             if (Diff < 0) {
1698               Diff = -Diff;
1699               Opc = ISD::SRL;
1700             }
1701             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1702             return TLO.CombineTo(
1703                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1704           }
1705         }
1706       }
1707 
1708       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1709       // are not demanded. This will likely allow the anyext to be folded away.
1710       // TODO - support non-uniform vector amounts.
1711       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1712         SDValue InnerOp = Op0.getOperand(0);
1713         EVT InnerVT = InnerOp.getValueType();
1714         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1715         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1716             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1717           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1718           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1719             ShTy = InnerVT;
1720           SDValue NarrowShl =
1721               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1722                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1723           return TLO.CombineTo(
1724               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1725         }
1726 
1727         // Repeat the SHL optimization above in cases where an extension
1728         // intervenes: (shl (anyext (shr x, c1)), c2) to
1729         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1730         // aren't demanded (as above) and that the shifted upper c1 bits of
1731         // x aren't demanded.
1732         // TODO - support non-uniform vector amounts.
1733         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1734             InnerOp.hasOneUse()) {
1735           if (const APInt *SA2 =
1736                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1737             unsigned InnerShAmt = SA2->getZExtValue();
1738             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1739                 DemandedBits.getActiveBits() <=
1740                     (InnerBits - InnerShAmt + ShAmt) &&
1741                 DemandedBits.countTrailingZeros() >= ShAmt) {
1742               SDValue NewSA =
1743                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1744               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1745                                                InnerOp.getOperand(0));
1746               return TLO.CombineTo(
1747                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1748             }
1749           }
1750         }
1751       }
1752 
1753       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1754       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1755                                Depth + 1))
1756         return true;
1757       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1758       Known.Zero <<= ShAmt;
1759       Known.One <<= ShAmt;
1760       // low bits known zero.
1761       Known.Zero.setLowBits(ShAmt);
1762 
1763       // Attempt to avoid multi-use ops if we don't need anything from them.
1764       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1765         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1766             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1767         if (DemandedOp0) {
1768           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1769           return TLO.CombineTo(Op, NewOp);
1770         }
1771       }
1772 
1773       // Try shrinking the operation as long as the shift amount will still be
1774       // in range.
1775       if ((ShAmt < DemandedBits.getActiveBits()) &&
1776           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1777         return true;
1778     } else {
1779       // This is a variable shift, so we can't shift the demand mask by a known
1780       // amount. But if we are not demanding high bits, then we are not
1781       // demanding those bits from the pre-shifted operand either.
1782       if (unsigned CTLZ = DemandedBits.countLeadingZeros()) {
1783         APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
1784         if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
1785                                  Depth + 1)) {
1786           SDNodeFlags Flags = Op.getNode()->getFlags();
1787           if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1788             // Disable the nsw and nuw flags. We can no longer guarantee that we
1789             // won't wrap after simplification.
1790             Flags.setNoSignedWrap(false);
1791             Flags.setNoUnsignedWrap(false);
1792             Op->setFlags(Flags);
1793           }
1794           return true;
1795         }
1796         Known.resetAll();
1797       }
1798     }
1799 
1800     // If we are only demanding sign bits then we can use the shift source
1801     // directly.
1802     if (const APInt *MaxSA =
1803             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1804       unsigned ShAmt = MaxSA->getZExtValue();
1805       unsigned NumSignBits =
1806           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1807       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1808       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1809         return TLO.CombineTo(Op, Op0);
1810     }
1811     break;
1812   }
1813   case ISD::SRL: {
1814     SDValue Op0 = Op.getOperand(0);
1815     SDValue Op1 = Op.getOperand(1);
1816     EVT ShiftVT = Op1.getValueType();
1817 
1818     // Try to match AVG patterns.
1819     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1820                                         DemandedElts, Depth + 1))
1821       return TLO.CombineTo(Op, AVG);
1822 
1823     if (const APInt *SA =
1824             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1825       unsigned ShAmt = SA->getZExtValue();
1826       if (ShAmt == 0)
1827         return TLO.CombineTo(Op, Op0);
1828 
1829       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1830       // single shift.  We can do this if the top bits (which are shifted out)
1831       // are never demanded.
1832       // TODO - support non-uniform vector amounts.
1833       if (Op0.getOpcode() == ISD::SHL) {
1834         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1835           if (const APInt *SA2 =
1836                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1837             unsigned C1 = SA2->getZExtValue();
1838             unsigned Opc = ISD::SRL;
1839             int Diff = ShAmt - C1;
1840             if (Diff < 0) {
1841               Diff = -Diff;
1842               Opc = ISD::SHL;
1843             }
1844             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1845             return TLO.CombineTo(
1846                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1847           }
1848         }
1849       }
1850 
1851       APInt InDemandedMask = (DemandedBits << ShAmt);
1852 
1853       // If the shift is exact, then it does demand the low bits (and knows that
1854       // they are zero).
1855       if (Op->getFlags().hasExact())
1856         InDemandedMask.setLowBits(ShAmt);
1857 
1858       // Compute the new bits that are at the top now.
1859       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1860                                Depth + 1))
1861         return true;
1862       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1863       Known.Zero.lshrInPlace(ShAmt);
1864       Known.One.lshrInPlace(ShAmt);
1865       // High bits known zero.
1866       Known.Zero.setHighBits(ShAmt);
1867     }
1868     break;
1869   }
1870   case ISD::SRA: {
1871     SDValue Op0 = Op.getOperand(0);
1872     SDValue Op1 = Op.getOperand(1);
1873     EVT ShiftVT = Op1.getValueType();
1874 
1875     // If we only want bits that already match the signbit then we don't need
1876     // to shift.
1877     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1878     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1879         NumHiDemandedBits)
1880       return TLO.CombineTo(Op, Op0);
1881 
1882     // If this is an arithmetic shift right and only the low-bit is set, we can
1883     // always convert this into a logical shr, even if the shift amount is
1884     // variable.  The low bit of the shift cannot be an input sign bit unless
1885     // the shift amount is >= the size of the datatype, which is undefined.
1886     if (DemandedBits.isOne())
1887       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1888 
1889     // Try to match AVG patterns.
1890     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1891                                         DemandedElts, Depth + 1))
1892       return TLO.CombineTo(Op, AVG);
1893 
1894     if (const APInt *SA =
1895             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1896       unsigned ShAmt = SA->getZExtValue();
1897       if (ShAmt == 0)
1898         return TLO.CombineTo(Op, Op0);
1899 
1900       APInt InDemandedMask = (DemandedBits << ShAmt);
1901 
1902       // If the shift is exact, then it does demand the low bits (and knows that
1903       // they are zero).
1904       if (Op->getFlags().hasExact())
1905         InDemandedMask.setLowBits(ShAmt);
1906 
1907       // If any of the demanded bits are produced by the sign extension, we also
1908       // demand the input sign bit.
1909       if (DemandedBits.countLeadingZeros() < ShAmt)
1910         InDemandedMask.setSignBit();
1911 
1912       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1913                                Depth + 1))
1914         return true;
1915       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1916       Known.Zero.lshrInPlace(ShAmt);
1917       Known.One.lshrInPlace(ShAmt);
1918 
1919       // If the input sign bit is known to be zero, or if none of the top bits
1920       // are demanded, turn this into an unsigned shift right.
1921       if (Known.Zero[BitWidth - ShAmt - 1] ||
1922           DemandedBits.countLeadingZeros() >= ShAmt) {
1923         SDNodeFlags Flags;
1924         Flags.setExact(Op->getFlags().hasExact());
1925         return TLO.CombineTo(
1926             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1927       }
1928 
1929       int Log2 = DemandedBits.exactLogBase2();
1930       if (Log2 >= 0) {
1931         // The bit must come from the sign.
1932         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1933         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1934       }
1935 
1936       if (Known.One[BitWidth - ShAmt - 1])
1937         // New bits are known one.
1938         Known.One.setHighBits(ShAmt);
1939 
1940       // Attempt to avoid multi-use ops if we don't need anything from them.
1941       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1942         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1943             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1944         if (DemandedOp0) {
1945           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1946           return TLO.CombineTo(Op, NewOp);
1947         }
1948       }
1949     }
1950     break;
1951   }
1952   case ISD::FSHL:
1953   case ISD::FSHR: {
1954     SDValue Op0 = Op.getOperand(0);
1955     SDValue Op1 = Op.getOperand(1);
1956     SDValue Op2 = Op.getOperand(2);
1957     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1958 
1959     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1960       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1961 
1962       // For fshl, 0-shift returns the 1st arg.
1963       // For fshr, 0-shift returns the 2nd arg.
1964       if (Amt == 0) {
1965         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1966                                  Known, TLO, Depth + 1))
1967           return true;
1968         break;
1969       }
1970 
1971       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1972       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1973       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1974       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1975       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1976                                Depth + 1))
1977         return true;
1978       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1979                                Depth + 1))
1980         return true;
1981 
1982       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1983       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1984       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1985       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1986       Known.One |= Known2.One;
1987       Known.Zero |= Known2.Zero;
1988 
1989       // Attempt to avoid multi-use ops if we don't need anything from them.
1990       if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
1991           !DemandedElts.isAllOnes()) {
1992         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1993             Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
1994         SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1995             Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
1996         if (DemandedOp0 || DemandedOp1) {
1997           DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
1998           DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
1999           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
2000                                           DemandedOp1, Op2);
2001           return TLO.CombineTo(Op, NewOp);
2002         }
2003       }
2004     }
2005 
2006     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2007     if (isPowerOf2_32(BitWidth)) {
2008       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
2009       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
2010                                Known2, TLO, Depth + 1))
2011         return true;
2012     }
2013     break;
2014   }
2015   case ISD::ROTL:
2016   case ISD::ROTR: {
2017     SDValue Op0 = Op.getOperand(0);
2018     SDValue Op1 = Op.getOperand(1);
2019     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
2020 
2021     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
2022     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
2023       return TLO.CombineTo(Op, Op0);
2024 
2025     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
2026       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2027       unsigned RevAmt = BitWidth - Amt;
2028 
2029       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
2030       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
2031       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
2032       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2033                                Depth + 1))
2034         return true;
2035 
2036       // rot*(x, 0) --> x
2037       if (Amt == 0)
2038         return TLO.CombineTo(Op, Op0);
2039 
2040       // See if we don't demand either half of the rotated bits.
2041       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
2042           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
2043         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
2044         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
2045       }
2046       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
2047           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
2048         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
2049         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2050       }
2051     }
2052 
2053     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2054     if (isPowerOf2_32(BitWidth)) {
2055       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
2056       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
2057                                Depth + 1))
2058         return true;
2059     }
2060     break;
2061   }
2062   case ISD::UMIN: {
2063     // Check if one arg is always less than (or equal) to the other arg.
2064     SDValue Op0 = Op.getOperand(0);
2065     SDValue Op1 = Op.getOperand(1);
2066     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2067     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2068     Known = KnownBits::umin(Known0, Known1);
2069     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
2070       return TLO.CombineTo(Op, IsULE.value() ? Op0 : Op1);
2071     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
2072       return TLO.CombineTo(Op, IsULT.value() ? Op0 : Op1);
2073     break;
2074   }
2075   case ISD::UMAX: {
2076     // Check if one arg is always greater than (or equal) to the other arg.
2077     SDValue Op0 = Op.getOperand(0);
2078     SDValue Op1 = Op.getOperand(1);
2079     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2080     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2081     Known = KnownBits::umax(Known0, Known1);
2082     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
2083       return TLO.CombineTo(Op, IsUGE.value() ? Op0 : Op1);
2084     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
2085       return TLO.CombineTo(Op, IsUGT.value() ? Op0 : Op1);
2086     break;
2087   }
2088   case ISD::BITREVERSE: {
2089     SDValue Src = Op.getOperand(0);
2090     APInt DemandedSrcBits = DemandedBits.reverseBits();
2091     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2092                              Depth + 1))
2093       return true;
2094     Known.One = Known2.One.reverseBits();
2095     Known.Zero = Known2.Zero.reverseBits();
2096     break;
2097   }
2098   case ISD::BSWAP: {
2099     SDValue Src = Op.getOperand(0);
2100 
2101     // If the only bits demanded come from one byte of the bswap result,
2102     // just shift the input byte into position to eliminate the bswap.
2103     unsigned NLZ = DemandedBits.countLeadingZeros();
2104     unsigned NTZ = DemandedBits.countTrailingZeros();
2105 
2106     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
2107     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
2108     // have 14 leading zeros, round to 8.
2109     NLZ = alignDown(NLZ, 8);
2110     NTZ = alignDown(NTZ, 8);
2111     // If we need exactly one byte, we can do this transformation.
2112     if (BitWidth - NLZ - NTZ == 8) {
2113       // Replace this with either a left or right shift to get the byte into
2114       // the right place.
2115       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2116       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2117         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
2118         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2119         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
2120         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2121         return TLO.CombineTo(Op, NewOp);
2122       }
2123     }
2124 
2125     APInt DemandedSrcBits = DemandedBits.byteSwap();
2126     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2127                              Depth + 1))
2128       return true;
2129     Known.One = Known2.One.byteSwap();
2130     Known.Zero = Known2.Zero.byteSwap();
2131     break;
2132   }
2133   case ISD::CTPOP: {
2134     // If only 1 bit is demanded, replace with PARITY as long as we're before
2135     // op legalization.
2136     // FIXME: Limit to scalars for now.
2137     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2138       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2139                                                Op.getOperand(0)));
2140 
2141     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2142     break;
2143   }
2144   case ISD::SIGN_EXTEND_INREG: {
2145     SDValue Op0 = Op.getOperand(0);
2146     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2147     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2148 
2149     // If we only care about the highest bit, don't bother shifting right.
2150     if (DemandedBits.isSignMask()) {
2151       unsigned MinSignedBits =
2152           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2153       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2154       // However if the input is already sign extended we expect the sign
2155       // extension to be dropped altogether later and do not simplify.
2156       if (!AlreadySignExtended) {
2157         // Compute the correct shift amount type, which must be getShiftAmountTy
2158         // for scalar types after legalization.
2159         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2160                                                getShiftAmountTy(VT, DL));
2161         return TLO.CombineTo(Op,
2162                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2163       }
2164     }
2165 
2166     // If none of the extended bits are demanded, eliminate the sextinreg.
2167     if (DemandedBits.getActiveBits() <= ExVTBits)
2168       return TLO.CombineTo(Op, Op0);
2169 
2170     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2171 
2172     // Since the sign extended bits are demanded, we know that the sign
2173     // bit is demanded.
2174     InputDemandedBits.setBit(ExVTBits - 1);
2175 
2176     if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2177                              Depth + 1))
2178       return true;
2179     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2180 
2181     // If the sign bit of the input is known set or clear, then we know the
2182     // top bits of the result.
2183 
2184     // If the input sign bit is known zero, convert this into a zero extension.
2185     if (Known.Zero[ExVTBits - 1])
2186       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2187 
2188     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2189     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2190       Known.One.setBitsFrom(ExVTBits);
2191       Known.Zero &= Mask;
2192     } else { // Input sign bit unknown
2193       Known.Zero &= Mask;
2194       Known.One &= Mask;
2195     }
2196     break;
2197   }
2198   case ISD::BUILD_PAIR: {
2199     EVT HalfVT = Op.getOperand(0).getValueType();
2200     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2201 
2202     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2203     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2204 
2205     KnownBits KnownLo, KnownHi;
2206 
2207     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2208       return true;
2209 
2210     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2211       return true;
2212 
2213     Known.Zero = KnownLo.Zero.zext(BitWidth) |
2214                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
2215 
2216     Known.One = KnownLo.One.zext(BitWidth) |
2217                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
2218     break;
2219   }
2220   case ISD::ZERO_EXTEND:
2221   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2222     SDValue Src = Op.getOperand(0);
2223     EVT SrcVT = Src.getValueType();
2224     unsigned InBits = SrcVT.getScalarSizeInBits();
2225     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2226     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2227 
2228     // If none of the top bits are demanded, convert this into an any_extend.
2229     if (DemandedBits.getActiveBits() <= InBits) {
2230       // If we only need the non-extended bits of the bottom element
2231       // then we can just bitcast to the result.
2232       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2233           VT.getSizeInBits() == SrcVT.getSizeInBits())
2234         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2235 
2236       unsigned Opc =
2237           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2238       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2239         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2240     }
2241 
2242     APInt InDemandedBits = DemandedBits.trunc(InBits);
2243     APInt InDemandedElts = DemandedElts.zext(InElts);
2244     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2245                              Depth + 1))
2246       return true;
2247     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2248     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2249     Known = Known.zext(BitWidth);
2250 
2251     // Attempt to avoid multi-use ops if we don't need anything from them.
2252     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2253             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2254       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2255     break;
2256   }
2257   case ISD::SIGN_EXTEND:
2258   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2259     SDValue Src = Op.getOperand(0);
2260     EVT SrcVT = Src.getValueType();
2261     unsigned InBits = SrcVT.getScalarSizeInBits();
2262     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2263     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2264 
2265     // If none of the top bits are demanded, convert this into an any_extend.
2266     if (DemandedBits.getActiveBits() <= InBits) {
2267       // If we only need the non-extended bits of the bottom element
2268       // then we can just bitcast to the result.
2269       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2270           VT.getSizeInBits() == SrcVT.getSizeInBits())
2271         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2272 
2273       unsigned Opc =
2274           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2275       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2276         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2277     }
2278 
2279     APInt InDemandedBits = DemandedBits.trunc(InBits);
2280     APInt InDemandedElts = DemandedElts.zext(InElts);
2281 
2282     // Since some of the sign extended bits are demanded, we know that the sign
2283     // bit is demanded.
2284     InDemandedBits.setBit(InBits - 1);
2285 
2286     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2287                              Depth + 1))
2288       return true;
2289     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2290     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2291 
2292     // If the sign bit is known one, the top bits match.
2293     Known = Known.sext(BitWidth);
2294 
2295     // If the sign bit is known zero, convert this to a zero extend.
2296     if (Known.isNonNegative()) {
2297       unsigned Opc =
2298           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2299       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2300         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2301     }
2302 
2303     // Attempt to avoid multi-use ops if we don't need anything from them.
2304     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2305             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2306       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2307     break;
2308   }
2309   case ISD::ANY_EXTEND:
2310   case ISD::ANY_EXTEND_VECTOR_INREG: {
2311     SDValue Src = Op.getOperand(0);
2312     EVT SrcVT = Src.getValueType();
2313     unsigned InBits = SrcVT.getScalarSizeInBits();
2314     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2315     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2316 
2317     // If we only need the bottom element then we can just bitcast.
2318     // TODO: Handle ANY_EXTEND?
2319     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2320         VT.getSizeInBits() == SrcVT.getSizeInBits())
2321       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2322 
2323     APInt InDemandedBits = DemandedBits.trunc(InBits);
2324     APInt InDemandedElts = DemandedElts.zext(InElts);
2325     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2326                              Depth + 1))
2327       return true;
2328     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2329     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2330     Known = Known.anyext(BitWidth);
2331 
2332     // Attempt to avoid multi-use ops if we don't need anything from them.
2333     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2334             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2335       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2336     break;
2337   }
2338   case ISD::TRUNCATE: {
2339     SDValue Src = Op.getOperand(0);
2340 
2341     // Simplify the input, using demanded bit information, and compute the known
2342     // zero/one bits live out.
2343     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2344     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2345     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2346                              Depth + 1))
2347       return true;
2348     Known = Known.trunc(BitWidth);
2349 
2350     // Attempt to avoid multi-use ops if we don't need anything from them.
2351     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2352             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2353       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2354 
2355     // If the input is only used by this truncate, see if we can shrink it based
2356     // on the known demanded bits.
2357     if (Src.getNode()->hasOneUse()) {
2358       switch (Src.getOpcode()) {
2359       default:
2360         break;
2361       case ISD::SRL:
2362         // Shrink SRL by a constant if none of the high bits shifted in are
2363         // demanded.
2364         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2365           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2366           // undesirable.
2367           break;
2368 
2369         const APInt *ShAmtC =
2370             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2371         if (!ShAmtC || ShAmtC->uge(BitWidth))
2372           break;
2373         uint64_t ShVal = ShAmtC->getZExtValue();
2374 
2375         APInt HighBits =
2376             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2377         HighBits.lshrInPlace(ShVal);
2378         HighBits = HighBits.trunc(BitWidth);
2379 
2380         if (!(HighBits & DemandedBits)) {
2381           // None of the shifted in bits are needed.  Add a truncate of the
2382           // shift input, then shift it.
2383           SDValue NewShAmt = TLO.DAG.getConstant(
2384               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2385           SDValue NewTrunc =
2386               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2387           return TLO.CombineTo(
2388               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2389         }
2390         break;
2391       }
2392     }
2393 
2394     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2395     break;
2396   }
2397   case ISD::AssertZext: {
2398     // AssertZext demands all of the high bits, plus any of the low bits
2399     // demanded by its users.
2400     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2401     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2402     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2403                              TLO, Depth + 1))
2404       return true;
2405     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2406 
2407     Known.Zero |= ~InMask;
2408     break;
2409   }
2410   case ISD::EXTRACT_VECTOR_ELT: {
2411     SDValue Src = Op.getOperand(0);
2412     SDValue Idx = Op.getOperand(1);
2413     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2414     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2415 
2416     if (SrcEltCnt.isScalable())
2417       return false;
2418 
2419     // Demand the bits from every vector element without a constant index.
2420     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2421     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2422     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2423       if (CIdx->getAPIntValue().ult(NumSrcElts))
2424         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2425 
2426     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2427     // anything about the extended bits.
2428     APInt DemandedSrcBits = DemandedBits;
2429     if (BitWidth > EltBitWidth)
2430       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2431 
2432     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2433                              Depth + 1))
2434       return true;
2435 
2436     // Attempt to avoid multi-use ops if we don't need anything from them.
2437     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2438       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2439               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2440         SDValue NewOp =
2441             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2442         return TLO.CombineTo(Op, NewOp);
2443       }
2444     }
2445 
2446     Known = Known2;
2447     if (BitWidth > EltBitWidth)
2448       Known = Known.anyext(BitWidth);
2449     break;
2450   }
2451   case ISD::BITCAST: {
2452     SDValue Src = Op.getOperand(0);
2453     EVT SrcVT = Src.getValueType();
2454     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2455 
2456     // If this is an FP->Int bitcast and if the sign bit is the only
2457     // thing demanded, turn this into a FGETSIGN.
2458     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2459         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2460         SrcVT.isFloatingPoint()) {
2461       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2462       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2463       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2464           SrcVT != MVT::f128) {
2465         // Cannot eliminate/lower SHL for f128 yet.
2466         EVT Ty = OpVTLegal ? VT : MVT::i32;
2467         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2468         // place.  We expect the SHL to be eliminated by other optimizations.
2469         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2470         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2471         if (!OpVTLegal && OpVTSizeInBits > 32)
2472           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2473         unsigned ShVal = Op.getValueSizeInBits() - 1;
2474         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2475         return TLO.CombineTo(Op,
2476                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2477       }
2478     }
2479 
2480     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2481     // Demand the elt/bit if any of the original elts/bits are demanded.
2482     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2483       unsigned Scale = BitWidth / NumSrcEltBits;
2484       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2485       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2486       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2487       for (unsigned i = 0; i != Scale; ++i) {
2488         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2489         unsigned BitOffset = EltOffset * NumSrcEltBits;
2490         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2491         if (!Sub.isZero()) {
2492           DemandedSrcBits |= Sub;
2493           for (unsigned j = 0; j != NumElts; ++j)
2494             if (DemandedElts[j])
2495               DemandedSrcElts.setBit((j * Scale) + i);
2496         }
2497       }
2498 
2499       APInt KnownSrcUndef, KnownSrcZero;
2500       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2501                                      KnownSrcZero, TLO, Depth + 1))
2502         return true;
2503 
2504       KnownBits KnownSrcBits;
2505       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2506                                KnownSrcBits, TLO, Depth + 1))
2507         return true;
2508     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2509       // TODO - bigendian once we have test coverage.
2510       unsigned Scale = NumSrcEltBits / BitWidth;
2511       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2512       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2513       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2514       for (unsigned i = 0; i != NumElts; ++i)
2515         if (DemandedElts[i]) {
2516           unsigned Offset = (i % Scale) * BitWidth;
2517           DemandedSrcBits.insertBits(DemandedBits, Offset);
2518           DemandedSrcElts.setBit(i / Scale);
2519         }
2520 
2521       if (SrcVT.isVector()) {
2522         APInt KnownSrcUndef, KnownSrcZero;
2523         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2524                                        KnownSrcZero, TLO, Depth + 1))
2525           return true;
2526       }
2527 
2528       KnownBits KnownSrcBits;
2529       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2530                                KnownSrcBits, TLO, Depth + 1))
2531         return true;
2532     }
2533 
2534     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2535     // recursive call where Known may be useful to the caller.
2536     if (Depth > 0) {
2537       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2538       return false;
2539     }
2540     break;
2541   }
2542   case ISD::MUL:
2543     if (DemandedBits.isPowerOf2()) {
2544       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2545       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2546       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2547       unsigned CTZ = DemandedBits.countTrailingZeros();
2548       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2549       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2550         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2551         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2552         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2553         return TLO.CombineTo(Op, Shl);
2554       }
2555     }
2556     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2557     // X * X is odd iff X is odd.
2558     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2559     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2560       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2561       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2562       return TLO.CombineTo(Op, And1);
2563     }
2564     LLVM_FALLTHROUGH;
2565   case ISD::ADD:
2566   case ISD::SUB: {
2567     // Add, Sub, and Mul don't demand any bits in positions beyond that
2568     // of the highest bit demanded of them.
2569     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2570     SDNodeFlags Flags = Op.getNode()->getFlags();
2571     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2572     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2573     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2574                              Depth + 1) ||
2575         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2576                              Depth + 1) ||
2577         // See if the operation should be performed at a smaller bit width.
2578         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2579       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2580         // Disable the nsw and nuw flags. We can no longer guarantee that we
2581         // won't wrap after simplification.
2582         Flags.setNoSignedWrap(false);
2583         Flags.setNoUnsignedWrap(false);
2584         Op->setFlags(Flags);
2585       }
2586       return true;
2587     }
2588 
2589     // Attempt to avoid multi-use ops if we don't need anything from them.
2590     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2591       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2592           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2593       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2594           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2595       if (DemandedOp0 || DemandedOp1) {
2596         Flags.setNoSignedWrap(false);
2597         Flags.setNoUnsignedWrap(false);
2598         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2599         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2600         SDValue NewOp =
2601             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2602         return TLO.CombineTo(Op, NewOp);
2603       }
2604     }
2605 
2606     // If we have a constant operand, we may be able to turn it into -1 if we
2607     // do not demand the high bits. This can make the constant smaller to
2608     // encode, allow more general folding, or match specialized instruction
2609     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2610     // is probably not useful (and could be detrimental).
2611     ConstantSDNode *C = isConstOrConstSplat(Op1);
2612     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2613     if (C && !C->isAllOnes() && !C->isOne() &&
2614         (C->getAPIntValue() | HighMask).isAllOnes()) {
2615       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2616       // Disable the nsw and nuw flags. We can no longer guarantee that we
2617       // won't wrap after simplification.
2618       Flags.setNoSignedWrap(false);
2619       Flags.setNoUnsignedWrap(false);
2620       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2621       return TLO.CombineTo(Op, NewOp);
2622     }
2623 
2624     // Match a multiply with a disguised negated-power-of-2 and convert to a
2625     // an equivalent shift-left amount.
2626     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2627     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2628       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2629         return 0;
2630 
2631       // Don't touch opaque constants. Also, ignore zero and power-of-2
2632       // multiplies. Those will get folded later.
2633       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2634       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2635           !MulC->getAPIntValue().isPowerOf2()) {
2636         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2637         if (UnmaskedC.isNegatedPowerOf2())
2638           return (-UnmaskedC).logBase2();
2639       }
2640       return 0;
2641     };
2642 
2643     auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) {
2644       EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2645       SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
2646       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2647       SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2648       return TLO.CombineTo(Op, Res);
2649     };
2650 
2651     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2652       if (Op.getOpcode() == ISD::ADD) {
2653         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2654         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2655           return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2656         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2657         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2658           return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2659       }
2660       if (Op.getOpcode() == ISD::SUB) {
2661         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2662         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2663           return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2664       }
2665     }
2666 
2667     LLVM_FALLTHROUGH;
2668   }
2669   default:
2670     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2671       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2672                                             Known, TLO, Depth))
2673         return true;
2674       break;
2675     }
2676 
2677     // Just use computeKnownBits to compute output bits.
2678     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2679     break;
2680   }
2681 
2682   // If we know the value of all of the demanded bits, return this as a
2683   // constant.
2684   if (!isTargetCanonicalConstantNode(Op) &&
2685       DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2686     // Avoid folding to a constant if any OpaqueConstant is involved.
2687     const SDNode *N = Op.getNode();
2688     for (SDNode *Op :
2689          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2690       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2691         if (C->isOpaque())
2692           return false;
2693     }
2694     if (VT.isInteger())
2695       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2696     if (VT.isFloatingPoint())
2697       return TLO.CombineTo(
2698           Op,
2699           TLO.DAG.getConstantFP(
2700               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2701   }
2702 
2703   return false;
2704 }
2705 
2706 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2707                                                 const APInt &DemandedElts,
2708                                                 DAGCombinerInfo &DCI) const {
2709   SelectionDAG &DAG = DCI.DAG;
2710   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2711                         !DCI.isBeforeLegalizeOps());
2712 
2713   APInt KnownUndef, KnownZero;
2714   bool Simplified =
2715       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2716   if (Simplified) {
2717     DCI.AddToWorklist(Op.getNode());
2718     DCI.CommitTargetLoweringOpt(TLO);
2719   }
2720 
2721   return Simplified;
2722 }
2723 
2724 /// Given a vector binary operation and known undefined elements for each input
2725 /// operand, compute whether each element of the output is undefined.
2726 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2727                                          const APInt &UndefOp0,
2728                                          const APInt &UndefOp1) {
2729   EVT VT = BO.getValueType();
2730   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2731          "Vector binop only");
2732 
2733   EVT EltVT = VT.getVectorElementType();
2734   unsigned NumElts = VT.getVectorNumElements();
2735   assert(UndefOp0.getBitWidth() == NumElts &&
2736          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2737 
2738   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2739                                    const APInt &UndefVals) {
2740     if (UndefVals[Index])
2741       return DAG.getUNDEF(EltVT);
2742 
2743     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2744       // Try hard to make sure that the getNode() call is not creating temporary
2745       // nodes. Ignore opaque integers because they do not constant fold.
2746       SDValue Elt = BV->getOperand(Index);
2747       auto *C = dyn_cast<ConstantSDNode>(Elt);
2748       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2749         return Elt;
2750     }
2751 
2752     return SDValue();
2753   };
2754 
2755   APInt KnownUndef = APInt::getZero(NumElts);
2756   for (unsigned i = 0; i != NumElts; ++i) {
2757     // If both inputs for this element are either constant or undef and match
2758     // the element type, compute the constant/undef result for this element of
2759     // the vector.
2760     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2761     // not handle FP constants. The code within getNode() should be refactored
2762     // to avoid the danger of creating a bogus temporary node here.
2763     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2764     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2765     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2766       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2767         KnownUndef.setBit(i);
2768   }
2769   return KnownUndef;
2770 }
2771 
2772 bool TargetLowering::SimplifyDemandedVectorElts(
2773     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2774     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2775     bool AssumeSingleUse) const {
2776   EVT VT = Op.getValueType();
2777   unsigned Opcode = Op.getOpcode();
2778   APInt DemandedElts = OriginalDemandedElts;
2779   unsigned NumElts = DemandedElts.getBitWidth();
2780   assert(VT.isVector() && "Expected vector op");
2781 
2782   KnownUndef = KnownZero = APInt::getZero(NumElts);
2783 
2784   const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
2785   if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
2786     return false;
2787 
2788   // TODO: For now we assume we know nothing about scalable vectors.
2789   if (VT.isScalableVector())
2790     return false;
2791 
2792   assert(VT.getVectorNumElements() == NumElts &&
2793          "Mask size mismatches value type element count!");
2794 
2795   // Undef operand.
2796   if (Op.isUndef()) {
2797     KnownUndef.setAllBits();
2798     return false;
2799   }
2800 
2801   // If Op has other users, assume that all elements are needed.
2802   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2803     DemandedElts.setAllBits();
2804 
2805   // Not demanding any elements from Op.
2806   if (DemandedElts == 0) {
2807     KnownUndef.setAllBits();
2808     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2809   }
2810 
2811   // Limit search depth.
2812   if (Depth >= SelectionDAG::MaxRecursionDepth)
2813     return false;
2814 
2815   SDLoc DL(Op);
2816   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2817   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2818 
2819   // Helper for demanding the specified elements and all the bits of both binary
2820   // operands.
2821   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2822     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2823                                                            TLO.DAG, Depth + 1);
2824     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2825                                                            TLO.DAG, Depth + 1);
2826     if (NewOp0 || NewOp1) {
2827       SDValue NewOp = TLO.DAG.getNode(
2828           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2829       return TLO.CombineTo(Op, NewOp);
2830     }
2831     return false;
2832   };
2833 
2834   switch (Opcode) {
2835   case ISD::SCALAR_TO_VECTOR: {
2836     if (!DemandedElts[0]) {
2837       KnownUndef.setAllBits();
2838       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2839     }
2840     SDValue ScalarSrc = Op.getOperand(0);
2841     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2842       SDValue Src = ScalarSrc.getOperand(0);
2843       SDValue Idx = ScalarSrc.getOperand(1);
2844       EVT SrcVT = Src.getValueType();
2845 
2846       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2847 
2848       if (SrcEltCnt.isScalable())
2849         return false;
2850 
2851       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2852       if (isNullConstant(Idx)) {
2853         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2854         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2855         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2856         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2857                                        TLO, Depth + 1))
2858           return true;
2859       }
2860     }
2861     KnownUndef.setHighBits(NumElts - 1);
2862     break;
2863   }
2864   case ISD::BITCAST: {
2865     SDValue Src = Op.getOperand(0);
2866     EVT SrcVT = Src.getValueType();
2867 
2868     // We only handle vectors here.
2869     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2870     if (!SrcVT.isVector())
2871       break;
2872 
2873     // Fast handling of 'identity' bitcasts.
2874     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2875     if (NumSrcElts == NumElts)
2876       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2877                                         KnownZero, TLO, Depth + 1);
2878 
2879     APInt SrcDemandedElts, SrcZero, SrcUndef;
2880 
2881     // Bitcast from 'large element' src vector to 'small element' vector, we
2882     // must demand a source element if any DemandedElt maps to it.
2883     if ((NumElts % NumSrcElts) == 0) {
2884       unsigned Scale = NumElts / NumSrcElts;
2885       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2886       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2887                                      TLO, Depth + 1))
2888         return true;
2889 
2890       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2891       // of the large element.
2892       // TODO - bigendian once we have test coverage.
2893       if (IsLE) {
2894         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2895         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2896         for (unsigned i = 0; i != NumElts; ++i)
2897           if (DemandedElts[i]) {
2898             unsigned Ofs = (i % Scale) * EltSizeInBits;
2899             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2900           }
2901 
2902         KnownBits Known;
2903         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2904                                  TLO, Depth + 1))
2905           return true;
2906 
2907         // The bitcast has split each wide element into a number of
2908         // narrow subelements. We have just computed the Known bits
2909         // for wide elements. See if element splitting results in
2910         // some subelements being zero. Only for demanded elements!
2911         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
2912           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
2913                    .isAllOnes())
2914             continue;
2915           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
2916             unsigned Elt = Scale * SrcElt + SubElt;
2917             if (DemandedElts[Elt])
2918               KnownZero.setBit(Elt);
2919           }
2920         }
2921       }
2922 
2923       // If the src element is zero/undef then all the output elements will be -
2924       // only demanded elements are guaranteed to be correct.
2925       for (unsigned i = 0; i != NumSrcElts; ++i) {
2926         if (SrcDemandedElts[i]) {
2927           if (SrcZero[i])
2928             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2929           if (SrcUndef[i])
2930             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2931         }
2932       }
2933     }
2934 
2935     // Bitcast from 'small element' src vector to 'large element' vector, we
2936     // demand all smaller source elements covered by the larger demanded element
2937     // of this vector.
2938     if ((NumSrcElts % NumElts) == 0) {
2939       unsigned Scale = NumSrcElts / NumElts;
2940       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2941       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2942                                      TLO, Depth + 1))
2943         return true;
2944 
2945       // If all the src elements covering an output element are zero/undef, then
2946       // the output element will be as well, assuming it was demanded.
2947       for (unsigned i = 0; i != NumElts; ++i) {
2948         if (DemandedElts[i]) {
2949           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2950             KnownZero.setBit(i);
2951           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2952             KnownUndef.setBit(i);
2953         }
2954       }
2955     }
2956     break;
2957   }
2958   case ISD::BUILD_VECTOR: {
2959     // Check all elements and simplify any unused elements with UNDEF.
2960     if (!DemandedElts.isAllOnes()) {
2961       // Don't simplify BROADCASTS.
2962       if (llvm::any_of(Op->op_values(),
2963                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2964         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2965         bool Updated = false;
2966         for (unsigned i = 0; i != NumElts; ++i) {
2967           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2968             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2969             KnownUndef.setBit(i);
2970             Updated = true;
2971           }
2972         }
2973         if (Updated)
2974           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2975       }
2976     }
2977     for (unsigned i = 0; i != NumElts; ++i) {
2978       SDValue SrcOp = Op.getOperand(i);
2979       if (SrcOp.isUndef()) {
2980         KnownUndef.setBit(i);
2981       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2982                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2983         KnownZero.setBit(i);
2984       }
2985     }
2986     break;
2987   }
2988   case ISD::CONCAT_VECTORS: {
2989     EVT SubVT = Op.getOperand(0).getValueType();
2990     unsigned NumSubVecs = Op.getNumOperands();
2991     unsigned NumSubElts = SubVT.getVectorNumElements();
2992     for (unsigned i = 0; i != NumSubVecs; ++i) {
2993       SDValue SubOp = Op.getOperand(i);
2994       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2995       APInt SubUndef, SubZero;
2996       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2997                                      Depth + 1))
2998         return true;
2999       KnownUndef.insertBits(SubUndef, i * NumSubElts);
3000       KnownZero.insertBits(SubZero, i * NumSubElts);
3001     }
3002 
3003     // Attempt to avoid multi-use ops if we don't need anything from them.
3004     if (!DemandedElts.isAllOnes()) {
3005       bool FoundNewSub = false;
3006       SmallVector<SDValue, 2> DemandedSubOps;
3007       for (unsigned i = 0; i != NumSubVecs; ++i) {
3008         SDValue SubOp = Op.getOperand(i);
3009         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3010         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
3011             SubOp, SubElts, TLO.DAG, Depth + 1);
3012         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
3013         FoundNewSub = NewSubOp ? true : FoundNewSub;
3014       }
3015       if (FoundNewSub) {
3016         SDValue NewOp =
3017             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
3018         return TLO.CombineTo(Op, NewOp);
3019       }
3020     }
3021     break;
3022   }
3023   case ISD::INSERT_SUBVECTOR: {
3024     // Demand any elements from the subvector and the remainder from the src its
3025     // inserted into.
3026     SDValue Src = Op.getOperand(0);
3027     SDValue Sub = Op.getOperand(1);
3028     uint64_t Idx = Op.getConstantOperandVal(2);
3029     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3030     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3031     APInt DemandedSrcElts = DemandedElts;
3032     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3033 
3034     APInt SubUndef, SubZero;
3035     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
3036                                    Depth + 1))
3037       return true;
3038 
3039     // If none of the src operand elements are demanded, replace it with undef.
3040     if (!DemandedSrcElts && !Src.isUndef())
3041       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
3042                                                TLO.DAG.getUNDEF(VT), Sub,
3043                                                Op.getOperand(2)));
3044 
3045     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
3046                                    TLO, Depth + 1))
3047       return true;
3048     KnownUndef.insertBits(SubUndef, Idx);
3049     KnownZero.insertBits(SubZero, Idx);
3050 
3051     // Attempt to avoid multi-use ops if we don't need anything from them.
3052     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
3053       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3054           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3055       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
3056           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
3057       if (NewSrc || NewSub) {
3058         NewSrc = NewSrc ? NewSrc : Src;
3059         NewSub = NewSub ? NewSub : Sub;
3060         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3061                                         NewSub, Op.getOperand(2));
3062         return TLO.CombineTo(Op, NewOp);
3063       }
3064     }
3065     break;
3066   }
3067   case ISD::EXTRACT_SUBVECTOR: {
3068     // Offset the demanded elts by the subvector index.
3069     SDValue Src = Op.getOperand(0);
3070     if (Src.getValueType().isScalableVector())
3071       break;
3072     uint64_t Idx = Op.getConstantOperandVal(1);
3073     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3074     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3075 
3076     APInt SrcUndef, SrcZero;
3077     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3078                                    Depth + 1))
3079       return true;
3080     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
3081     KnownZero = SrcZero.extractBits(NumElts, Idx);
3082 
3083     // Attempt to avoid multi-use ops if we don't need anything from them.
3084     if (!DemandedElts.isAllOnes()) {
3085       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3086           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3087       if (NewSrc) {
3088         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3089                                         Op.getOperand(1));
3090         return TLO.CombineTo(Op, NewOp);
3091       }
3092     }
3093     break;
3094   }
3095   case ISD::INSERT_VECTOR_ELT: {
3096     SDValue Vec = Op.getOperand(0);
3097     SDValue Scl = Op.getOperand(1);
3098     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3099 
3100     // For a legal, constant insertion index, if we don't need this insertion
3101     // then strip it, else remove it from the demanded elts.
3102     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3103       unsigned Idx = CIdx->getZExtValue();
3104       if (!DemandedElts[Idx])
3105         return TLO.CombineTo(Op, Vec);
3106 
3107       APInt DemandedVecElts(DemandedElts);
3108       DemandedVecElts.clearBit(Idx);
3109       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3110                                      KnownZero, TLO, Depth + 1))
3111         return true;
3112 
3113       KnownUndef.setBitVal(Idx, Scl.isUndef());
3114 
3115       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3116       break;
3117     }
3118 
3119     APInt VecUndef, VecZero;
3120     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3121                                    Depth + 1))
3122       return true;
3123     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3124     break;
3125   }
3126   case ISD::VSELECT: {
3127     SDValue Sel = Op.getOperand(0);
3128     SDValue LHS = Op.getOperand(1);
3129     SDValue RHS = Op.getOperand(2);
3130 
3131     // Try to transform the select condition based on the current demanded
3132     // elements.
3133     APInt UndefSel, UndefZero;
3134     if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, UndefZero, TLO,
3135                                    Depth + 1))
3136       return true;
3137 
3138     // See if we can simplify either vselect operand.
3139     APInt DemandedLHS(DemandedElts);
3140     APInt DemandedRHS(DemandedElts);
3141     APInt UndefLHS, ZeroLHS;
3142     APInt UndefRHS, ZeroRHS;
3143     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3144                                    Depth + 1))
3145       return true;
3146     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3147                                    Depth + 1))
3148       return true;
3149 
3150     KnownUndef = UndefLHS & UndefRHS;
3151     KnownZero = ZeroLHS & ZeroRHS;
3152 
3153     // If we know that the selected element is always zero, we don't need the
3154     // select value element.
3155     APInt DemandedSel = DemandedElts & ~KnownZero;
3156     if (DemandedSel != DemandedElts)
3157       if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, UndefZero, TLO,
3158                                      Depth + 1))
3159         return true;
3160 
3161     break;
3162   }
3163   case ISD::VECTOR_SHUFFLE: {
3164     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3165 
3166     // Collect demanded elements from shuffle operands..
3167     APInt DemandedLHS(NumElts, 0);
3168     APInt DemandedRHS(NumElts, 0);
3169     for (unsigned i = 0; i != NumElts; ++i) {
3170       int M = ShuffleMask[i];
3171       if (M < 0 || !DemandedElts[i])
3172         continue;
3173       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3174       if (M < (int)NumElts)
3175         DemandedLHS.setBit(M);
3176       else
3177         DemandedRHS.setBit(M - NumElts);
3178     }
3179 
3180     // See if we can simplify either shuffle operand.
3181     APInt UndefLHS, ZeroLHS;
3182     APInt UndefRHS, ZeroRHS;
3183     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
3184                                    ZeroLHS, TLO, Depth + 1))
3185       return true;
3186     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
3187                                    ZeroRHS, TLO, Depth + 1))
3188       return true;
3189 
3190     // Simplify mask using undef elements from LHS/RHS.
3191     bool Updated = false;
3192     bool IdentityLHS = true, IdentityRHS = true;
3193     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
3194     for (unsigned i = 0; i != NumElts; ++i) {
3195       int &M = NewMask[i];
3196       if (M < 0)
3197         continue;
3198       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3199           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3200         Updated = true;
3201         M = -1;
3202       }
3203       IdentityLHS &= (M < 0) || (M == (int)i);
3204       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3205     }
3206 
3207     // Update legal shuffle masks based on demanded elements if it won't reduce
3208     // to Identity which can cause premature removal of the shuffle mask.
3209     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3210       SDValue LegalShuffle =
3211           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
3212                                   NewMask, TLO.DAG);
3213       if (LegalShuffle)
3214         return TLO.CombineTo(Op, LegalShuffle);
3215     }
3216 
3217     // Propagate undef/zero elements from LHS/RHS.
3218     for (unsigned i = 0; i != NumElts; ++i) {
3219       int M = ShuffleMask[i];
3220       if (M < 0) {
3221         KnownUndef.setBit(i);
3222       } else if (M < (int)NumElts) {
3223         if (UndefLHS[M])
3224           KnownUndef.setBit(i);
3225         if (ZeroLHS[M])
3226           KnownZero.setBit(i);
3227       } else {
3228         if (UndefRHS[M - NumElts])
3229           KnownUndef.setBit(i);
3230         if (ZeroRHS[M - NumElts])
3231           KnownZero.setBit(i);
3232       }
3233     }
3234     break;
3235   }
3236   case ISD::ANY_EXTEND_VECTOR_INREG:
3237   case ISD::SIGN_EXTEND_VECTOR_INREG:
3238   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3239     APInt SrcUndef, SrcZero;
3240     SDValue Src = Op.getOperand(0);
3241     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3242     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3243     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3244                                    Depth + 1))
3245       return true;
3246     KnownZero = SrcZero.zextOrTrunc(NumElts);
3247     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3248 
3249     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3250         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3251         DemandedSrcElts == 1) {
3252       // aext - if we just need the bottom element then we can bitcast.
3253       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3254     }
3255 
3256     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3257       // zext(undef) upper bits are guaranteed to be zero.
3258       if (DemandedElts.isSubsetOf(KnownUndef))
3259         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3260       KnownUndef.clearAllBits();
3261 
3262       // zext - if we just need the bottom element then we can mask:
3263       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3264       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3265           Op->isOnlyUserOf(Src.getNode()) &&
3266           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3267         SDLoc DL(Op);
3268         EVT SrcVT = Src.getValueType();
3269         EVT SrcSVT = SrcVT.getScalarType();
3270         SmallVector<SDValue> MaskElts;
3271         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3272         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3273         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3274         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3275                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3276           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3277           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3278         }
3279       }
3280     }
3281     break;
3282   }
3283 
3284   // TODO: There are more binop opcodes that could be handled here - MIN,
3285   // MAX, saturated math, etc.
3286   case ISD::ADD: {
3287     SDValue Op0 = Op.getOperand(0);
3288     SDValue Op1 = Op.getOperand(1);
3289     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3290       APInt UndefLHS, ZeroLHS;
3291       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3292                                      Depth + 1, /*AssumeSingleUse*/ true))
3293         return true;
3294     }
3295     LLVM_FALLTHROUGH;
3296   }
3297   case ISD::OR:
3298   case ISD::XOR:
3299   case ISD::SUB:
3300   case ISD::FADD:
3301   case ISD::FSUB:
3302   case ISD::FMUL:
3303   case ISD::FDIV:
3304   case ISD::FREM: {
3305     SDValue Op0 = Op.getOperand(0);
3306     SDValue Op1 = Op.getOperand(1);
3307 
3308     APInt UndefRHS, ZeroRHS;
3309     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3310                                    Depth + 1))
3311       return true;
3312     APInt UndefLHS, ZeroLHS;
3313     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3314                                    Depth + 1))
3315       return true;
3316 
3317     KnownZero = ZeroLHS & ZeroRHS;
3318     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3319 
3320     // Attempt to avoid multi-use ops if we don't need anything from them.
3321     // TODO - use KnownUndef to relax the demandedelts?
3322     if (!DemandedElts.isAllOnes())
3323       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3324         return true;
3325     break;
3326   }
3327   case ISD::SHL:
3328   case ISD::SRL:
3329   case ISD::SRA:
3330   case ISD::ROTL:
3331   case ISD::ROTR: {
3332     SDValue Op0 = Op.getOperand(0);
3333     SDValue Op1 = Op.getOperand(1);
3334 
3335     APInt UndefRHS, ZeroRHS;
3336     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3337                                    Depth + 1))
3338       return true;
3339     APInt UndefLHS, ZeroLHS;
3340     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3341                                    Depth + 1))
3342       return true;
3343 
3344     KnownZero = ZeroLHS;
3345     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3346 
3347     // Attempt to avoid multi-use ops if we don't need anything from them.
3348     // TODO - use KnownUndef to relax the demandedelts?
3349     if (!DemandedElts.isAllOnes())
3350       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3351         return true;
3352     break;
3353   }
3354   case ISD::MUL:
3355   case ISD::AND: {
3356     SDValue Op0 = Op.getOperand(0);
3357     SDValue Op1 = Op.getOperand(1);
3358 
3359     APInt SrcUndef, SrcZero;
3360     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3361                                    Depth + 1))
3362       return true;
3363     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
3364                                    TLO, Depth + 1))
3365       return true;
3366 
3367     // If every element pair has a zero/undef then just fold to zero.
3368     // fold (and x, undef) -> 0  /  (and x, 0) -> 0
3369     // fold (mul x, undef) -> 0  /  (mul x, 0) -> 0
3370     if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
3371       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3372 
3373     // If either side has a zero element, then the result element is zero, even
3374     // if the other is an UNDEF.
3375     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3376     // and then handle 'and' nodes with the rest of the binop opcodes.
3377     KnownZero |= SrcZero;
3378     KnownUndef &= SrcUndef;
3379     KnownUndef &= ~KnownZero;
3380 
3381     // Attempt to avoid multi-use ops if we don't need anything from them.
3382     if (!DemandedElts.isAllOnes())
3383       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3384         return true;
3385     break;
3386   }
3387   case ISD::TRUNCATE:
3388   case ISD::SIGN_EXTEND:
3389   case ISD::ZERO_EXTEND:
3390     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3391                                    KnownZero, TLO, Depth + 1))
3392       return true;
3393 
3394     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3395       // zext(undef) upper bits are guaranteed to be zero.
3396       if (DemandedElts.isSubsetOf(KnownUndef))
3397         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3398       KnownUndef.clearAllBits();
3399     }
3400     break;
3401   default: {
3402     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3403       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3404                                                   KnownZero, TLO, Depth))
3405         return true;
3406     } else {
3407       KnownBits Known;
3408       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3409       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3410                                TLO, Depth, AssumeSingleUse))
3411         return true;
3412     }
3413     break;
3414   }
3415   }
3416   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3417 
3418   // Constant fold all undef cases.
3419   // TODO: Handle zero cases as well.
3420   if (DemandedElts.isSubsetOf(KnownUndef))
3421     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3422 
3423   return false;
3424 }
3425 
3426 /// Determine which of the bits specified in Mask are known to be either zero or
3427 /// one and return them in the Known.
3428 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3429                                                    KnownBits &Known,
3430                                                    const APInt &DemandedElts,
3431                                                    const SelectionDAG &DAG,
3432                                                    unsigned Depth) const {
3433   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3434           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3435           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3436           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3437          "Should use MaskedValueIsZero if you don't know whether Op"
3438          " is a target node!");
3439   Known.resetAll();
3440 }
3441 
3442 void TargetLowering::computeKnownBitsForTargetInstr(
3443     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3444     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3445     unsigned Depth) const {
3446   Known.resetAll();
3447 }
3448 
3449 void TargetLowering::computeKnownBitsForFrameIndex(
3450   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3451   // The low bits are known zero if the pointer is aligned.
3452   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3453 }
3454 
3455 Align TargetLowering::computeKnownAlignForTargetInstr(
3456   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3457   unsigned Depth) const {
3458   return Align(1);
3459 }
3460 
3461 /// This method can be implemented by targets that want to expose additional
3462 /// information about sign bits to the DAG Combiner.
3463 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3464                                                          const APInt &,
3465                                                          const SelectionDAG &,
3466                                                          unsigned Depth) const {
3467   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3468           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3469           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3470           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3471          "Should use ComputeNumSignBits if you don't know whether Op"
3472          " is a target node!");
3473   return 1;
3474 }
3475 
3476 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3477   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3478   const MachineRegisterInfo &MRI, unsigned Depth) const {
3479   return 1;
3480 }
3481 
3482 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3483     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3484     TargetLoweringOpt &TLO, unsigned Depth) const {
3485   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3486           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3487           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3488           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3489          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3490          " is a target node!");
3491   return false;
3492 }
3493 
3494 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3495     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3496     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3497   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3498           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3499           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3500           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3501          "Should use SimplifyDemandedBits if you don't know whether Op"
3502          " is a target node!");
3503   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3504   return false;
3505 }
3506 
3507 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3508     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3509     SelectionDAG &DAG, unsigned Depth) const {
3510   assert(
3511       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3512        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3513        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3514        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3515       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3516       " is a target node!");
3517   return SDValue();
3518 }
3519 
3520 SDValue
3521 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3522                                         SDValue N1, MutableArrayRef<int> Mask,
3523                                         SelectionDAG &DAG) const {
3524   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3525   if (!LegalMask) {
3526     std::swap(N0, N1);
3527     ShuffleVectorSDNode::commuteMask(Mask);
3528     LegalMask = isShuffleMaskLegal(Mask, VT);
3529   }
3530 
3531   if (!LegalMask)
3532     return SDValue();
3533 
3534   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3535 }
3536 
3537 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3538   return nullptr;
3539 }
3540 
3541 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3542     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3543     bool PoisonOnly, unsigned Depth) const {
3544   assert(
3545       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3546        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3547        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3548        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3549       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3550       " is a target node!");
3551   return false;
3552 }
3553 
3554 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3555                                                   const SelectionDAG &DAG,
3556                                                   bool SNaN,
3557                                                   unsigned Depth) const {
3558   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3559           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3560           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3561           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3562          "Should use isKnownNeverNaN if you don't know whether Op"
3563          " is a target node!");
3564   return false;
3565 }
3566 
3567 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3568                                                const APInt &DemandedElts,
3569                                                APInt &UndefElts,
3570                                                unsigned Depth) const {
3571   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3572           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3573           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3574           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3575          "Should use isSplatValue if you don't know whether Op"
3576          " is a target node!");
3577   return false;
3578 }
3579 
3580 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3581 // work with truncating build vectors and vectors with elements of less than
3582 // 8 bits.
3583 bool TargetLowering::isConstTrueVal(SDValue N) const {
3584   if (!N)
3585     return false;
3586 
3587   unsigned EltWidth;
3588   APInt CVal;
3589   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3590                                                /*AllowTruncation=*/true)) {
3591     CVal = CN->getAPIntValue();
3592     EltWidth = N.getValueType().getScalarSizeInBits();
3593   } else
3594     return false;
3595 
3596   // If this is a truncating splat, truncate the splat value.
3597   // Otherwise, we may fail to match the expected values below.
3598   if (EltWidth < CVal.getBitWidth())
3599     CVal = CVal.trunc(EltWidth);
3600 
3601   switch (getBooleanContents(N.getValueType())) {
3602   case UndefinedBooleanContent:
3603     return CVal[0];
3604   case ZeroOrOneBooleanContent:
3605     return CVal.isOne();
3606   case ZeroOrNegativeOneBooleanContent:
3607     return CVal.isAllOnes();
3608   }
3609 
3610   llvm_unreachable("Invalid boolean contents");
3611 }
3612 
3613 bool TargetLowering::isConstFalseVal(SDValue N) const {
3614   if (!N)
3615     return false;
3616 
3617   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3618   if (!CN) {
3619     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3620     if (!BV)
3621       return false;
3622 
3623     // Only interested in constant splats, we don't care about undef
3624     // elements in identifying boolean constants and getConstantSplatNode
3625     // returns NULL if all ops are undef;
3626     CN = BV->getConstantSplatNode();
3627     if (!CN)
3628       return false;
3629   }
3630 
3631   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3632     return !CN->getAPIntValue()[0];
3633 
3634   return CN->isZero();
3635 }
3636 
3637 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3638                                        bool SExt) const {
3639   if (VT == MVT::i1)
3640     return N->isOne();
3641 
3642   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3643   switch (Cnt) {
3644   case TargetLowering::ZeroOrOneBooleanContent:
3645     // An extended value of 1 is always true, unless its original type is i1,
3646     // in which case it will be sign extended to -1.
3647     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3648   case TargetLowering::UndefinedBooleanContent:
3649   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3650     return N->isAllOnes() && SExt;
3651   }
3652   llvm_unreachable("Unexpected enumeration.");
3653 }
3654 
3655 /// This helper function of SimplifySetCC tries to optimize the comparison when
3656 /// either operand of the SetCC node is a bitwise-and instruction.
3657 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3658                                          ISD::CondCode Cond, const SDLoc &DL,
3659                                          DAGCombinerInfo &DCI) const {
3660   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3661     std::swap(N0, N1);
3662 
3663   SelectionDAG &DAG = DCI.DAG;
3664   EVT OpVT = N0.getValueType();
3665   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3666       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3667     return SDValue();
3668 
3669   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3670   // iff everything but LSB is known zero:
3671   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3672       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3673        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3674     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3675     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3676     if (DAG.MaskedValueIsZero(N0, UpperBits))
3677       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3678   }
3679 
3680   // Match these patterns in any of their permutations:
3681   // (X & Y) == Y
3682   // (X & Y) != Y
3683   SDValue X, Y;
3684   if (N0.getOperand(0) == N1) {
3685     X = N0.getOperand(1);
3686     Y = N0.getOperand(0);
3687   } else if (N0.getOperand(1) == N1) {
3688     X = N0.getOperand(0);
3689     Y = N0.getOperand(1);
3690   } else {
3691     return SDValue();
3692   }
3693 
3694   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3695   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3696     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3697     // Note that where Y is variable and is known to have at most one bit set
3698     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3699     // equivalent when Y == 0.
3700     assert(OpVT.isInteger());
3701     Cond = ISD::getSetCCInverse(Cond, OpVT);
3702     if (DCI.isBeforeLegalizeOps() ||
3703         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3704       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3705   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3706     // If the target supports an 'and-not' or 'and-complement' logic operation,
3707     // try to use that to make a comparison operation more efficient.
3708     // But don't do this transform if the mask is a single bit because there are
3709     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3710     // 'rlwinm' on PPC).
3711 
3712     // Bail out if the compare operand that we want to turn into a zero is
3713     // already a zero (otherwise, infinite loop).
3714     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3715     if (YConst && YConst->isZero())
3716       return SDValue();
3717 
3718     // Transform this into: ~X & Y == 0.
3719     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3720     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3721     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3722   }
3723 
3724   return SDValue();
3725 }
3726 
3727 /// There are multiple IR patterns that could be checking whether certain
3728 /// truncation of a signed number would be lossy or not. The pattern which is
3729 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3730 /// We are looking for the following pattern: (KeptBits is a constant)
3731 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3732 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3733 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3734 /// We will unfold it into the natural trunc+sext pattern:
3735 ///   ((%x << C) a>> C) dstcond %x
3736 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3737 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3738     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3739     const SDLoc &DL) const {
3740   // We must be comparing with a constant.
3741   ConstantSDNode *C1;
3742   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3743     return SDValue();
3744 
3745   // N0 should be:  add %x, (1 << (KeptBits-1))
3746   if (N0->getOpcode() != ISD::ADD)
3747     return SDValue();
3748 
3749   // And we must be 'add'ing a constant.
3750   ConstantSDNode *C01;
3751   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3752     return SDValue();
3753 
3754   SDValue X = N0->getOperand(0);
3755   EVT XVT = X.getValueType();
3756 
3757   // Validate constants ...
3758 
3759   APInt I1 = C1->getAPIntValue();
3760 
3761   ISD::CondCode NewCond;
3762   if (Cond == ISD::CondCode::SETULT) {
3763     NewCond = ISD::CondCode::SETEQ;
3764   } else if (Cond == ISD::CondCode::SETULE) {
3765     NewCond = ISD::CondCode::SETEQ;
3766     // But need to 'canonicalize' the constant.
3767     I1 += 1;
3768   } else if (Cond == ISD::CondCode::SETUGT) {
3769     NewCond = ISD::CondCode::SETNE;
3770     // But need to 'canonicalize' the constant.
3771     I1 += 1;
3772   } else if (Cond == ISD::CondCode::SETUGE) {
3773     NewCond = ISD::CondCode::SETNE;
3774   } else
3775     return SDValue();
3776 
3777   APInt I01 = C01->getAPIntValue();
3778 
3779   auto checkConstants = [&I1, &I01]() -> bool {
3780     // Both of them must be power-of-two, and the constant from setcc is bigger.
3781     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3782   };
3783 
3784   if (checkConstants()) {
3785     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3786   } else {
3787     // What if we invert constants? (and the target predicate)
3788     I1.negate();
3789     I01.negate();
3790     assert(XVT.isInteger());
3791     NewCond = getSetCCInverse(NewCond, XVT);
3792     if (!checkConstants())
3793       return SDValue();
3794     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3795   }
3796 
3797   // They are power-of-two, so which bit is set?
3798   const unsigned KeptBits = I1.logBase2();
3799   const unsigned KeptBitsMinusOne = I01.logBase2();
3800 
3801   // Magic!
3802   if (KeptBits != (KeptBitsMinusOne + 1))
3803     return SDValue();
3804   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3805 
3806   // We don't want to do this in every single case.
3807   SelectionDAG &DAG = DCI.DAG;
3808   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3809           XVT, KeptBits))
3810     return SDValue();
3811 
3812   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3813   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3814 
3815   // Unfold into:  ((%x << C) a>> C) cond %x
3816   // Where 'cond' will be either 'eq' or 'ne'.
3817   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3818   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3819   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3820   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3821 
3822   return T2;
3823 }
3824 
3825 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3826 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3827     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3828     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3829   assert(isConstOrConstSplat(N1C) &&
3830          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3831          "Should be a comparison with 0.");
3832   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3833          "Valid only for [in]equality comparisons.");
3834 
3835   unsigned NewShiftOpcode;
3836   SDValue X, C, Y;
3837 
3838   SelectionDAG &DAG = DCI.DAG;
3839   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3840 
3841   // Look for '(C l>>/<< Y)'.
3842   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3843     // The shift should be one-use.
3844     if (!V.hasOneUse())
3845       return false;
3846     unsigned OldShiftOpcode = V.getOpcode();
3847     switch (OldShiftOpcode) {
3848     case ISD::SHL:
3849       NewShiftOpcode = ISD::SRL;
3850       break;
3851     case ISD::SRL:
3852       NewShiftOpcode = ISD::SHL;
3853       break;
3854     default:
3855       return false; // must be a logical shift.
3856     }
3857     // We should be shifting a constant.
3858     // FIXME: best to use isConstantOrConstantVector().
3859     C = V.getOperand(0);
3860     ConstantSDNode *CC =
3861         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3862     if (!CC)
3863       return false;
3864     Y = V.getOperand(1);
3865 
3866     ConstantSDNode *XC =
3867         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3868     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3869         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3870   };
3871 
3872   // LHS of comparison should be an one-use 'and'.
3873   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3874     return SDValue();
3875 
3876   X = N0.getOperand(0);
3877   SDValue Mask = N0.getOperand(1);
3878 
3879   // 'and' is commutative!
3880   if (!Match(Mask)) {
3881     std::swap(X, Mask);
3882     if (!Match(Mask))
3883       return SDValue();
3884   }
3885 
3886   EVT VT = X.getValueType();
3887 
3888   // Produce:
3889   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3890   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3891   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3892   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3893   return T2;
3894 }
3895 
3896 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3897 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3898 /// handle the commuted versions of these patterns.
3899 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3900                                            ISD::CondCode Cond, const SDLoc &DL,
3901                                            DAGCombinerInfo &DCI) const {
3902   unsigned BOpcode = N0.getOpcode();
3903   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3904          "Unexpected binop");
3905   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3906 
3907   // (X + Y) == X --> Y == 0
3908   // (X - Y) == X --> Y == 0
3909   // (X ^ Y) == X --> Y == 0
3910   SelectionDAG &DAG = DCI.DAG;
3911   EVT OpVT = N0.getValueType();
3912   SDValue X = N0.getOperand(0);
3913   SDValue Y = N0.getOperand(1);
3914   if (X == N1)
3915     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3916 
3917   if (Y != N1)
3918     return SDValue();
3919 
3920   // (X + Y) == Y --> X == 0
3921   // (X ^ Y) == Y --> X == 0
3922   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3923     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3924 
3925   // The shift would not be valid if the operands are boolean (i1).
3926   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3927     return SDValue();
3928 
3929   // (X - Y) == Y --> X == Y << 1
3930   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3931                                  !DCI.isBeforeLegalize());
3932   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3933   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3934   if (!DCI.isCalledByLegalizer())
3935     DCI.AddToWorklist(YShl1.getNode());
3936   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3937 }
3938 
3939 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3940                                       SDValue N0, const APInt &C1,
3941                                       ISD::CondCode Cond, const SDLoc &dl,
3942                                       SelectionDAG &DAG) {
3943   // Look through truncs that don't change the value of a ctpop.
3944   // FIXME: Add vector support? Need to be careful with setcc result type below.
3945   SDValue CTPOP = N0;
3946   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3947       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3948     CTPOP = N0.getOperand(0);
3949 
3950   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3951     return SDValue();
3952 
3953   EVT CTVT = CTPOP.getValueType();
3954   SDValue CTOp = CTPOP.getOperand(0);
3955 
3956   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3957   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3958   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3959     return SDValue();
3960 
3961   // (ctpop x) u< 2 -> (x & x-1) == 0
3962   // (ctpop x) u> 1 -> (x & x-1) != 0
3963   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3964     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3965     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3966       return SDValue();
3967     if (C1 == 0 && (Cond == ISD::SETULT))
3968       return SDValue(); // This is handled elsewhere.
3969 
3970     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3971 
3972     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3973     SDValue Result = CTOp;
3974     for (unsigned i = 0; i < Passes; i++) {
3975       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3976       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3977     }
3978     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3979     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3980   }
3981 
3982   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3983   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3984     // For scalars, keep CTPOP if it is legal or custom.
3985     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3986       return SDValue();
3987     // This is based on X86's custom lowering for CTPOP which produces more
3988     // instructions than the expansion here.
3989 
3990     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3991     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3992     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3993     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3994     assert(CTVT.isInteger());
3995     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3996     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3997     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3998     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3999     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
4000     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
4001     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
4002   }
4003 
4004   return SDValue();
4005 }
4006 
4007 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
4008                                    ISD::CondCode Cond, const SDLoc &dl,
4009                                    SelectionDAG &DAG) {
4010   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4011     return SDValue();
4012 
4013   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4014   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
4015     return SDValue();
4016 
4017   auto getRotateSource = [](SDValue X) {
4018     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
4019       return X.getOperand(0);
4020     return SDValue();
4021   };
4022 
4023   // Peek through a rotated value compared against 0 or -1:
4024   // (rot X, Y) == 0/-1 --> X == 0/-1
4025   // (rot X, Y) != 0/-1 --> X != 0/-1
4026   if (SDValue R = getRotateSource(N0))
4027     return DAG.getSetCC(dl, VT, R, N1, Cond);
4028 
4029   // Peek through an 'or' of a rotated value compared against 0:
4030   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
4031   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
4032   //
4033   // TODO: Add the 'and' with -1 sibling.
4034   // TODO: Recurse through a series of 'or' ops to find the rotate.
4035   EVT OpVT = N0.getValueType();
4036   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
4037     if (SDValue R = getRotateSource(N0.getOperand(0))) {
4038       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
4039       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4040     }
4041     if (SDValue R = getRotateSource(N0.getOperand(1))) {
4042       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
4043       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4044     }
4045   }
4046 
4047   return SDValue();
4048 }
4049 
4050 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
4051                                         ISD::CondCode Cond, const SDLoc &dl,
4052                                         SelectionDAG &DAG) {
4053   // If we are testing for all-bits-clear, we might be able to do that with
4054   // less shifting since bit-order does not matter.
4055   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4056     return SDValue();
4057 
4058   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4059   if (!C1 || !C1->isZero())
4060     return SDValue();
4061 
4062   if (!N0.hasOneUse() ||
4063       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
4064     return SDValue();
4065 
4066   unsigned BitWidth = N0.getScalarValueSizeInBits();
4067   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
4068   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
4069     return SDValue();
4070 
4071   // Canonicalize fshr as fshl to reduce pattern-matching.
4072   unsigned ShAmt = ShAmtC->getZExtValue();
4073   if (N0.getOpcode() == ISD::FSHR)
4074     ShAmt = BitWidth - ShAmt;
4075 
4076   // Match an 'or' with a specific operand 'Other' in either commuted variant.
4077   SDValue X, Y;
4078   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
4079     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
4080       return false;
4081     if (Or.getOperand(0) == Other) {
4082       X = Or.getOperand(0);
4083       Y = Or.getOperand(1);
4084       return true;
4085     }
4086     if (Or.getOperand(1) == Other) {
4087       X = Or.getOperand(1);
4088       Y = Or.getOperand(0);
4089       return true;
4090     }
4091     return false;
4092   };
4093 
4094   EVT OpVT = N0.getValueType();
4095   EVT ShAmtVT = N0.getOperand(2).getValueType();
4096   SDValue F0 = N0.getOperand(0);
4097   SDValue F1 = N0.getOperand(1);
4098   if (matchOr(F0, F1)) {
4099     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
4100     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
4101     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
4102     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4103     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4104   }
4105   if (matchOr(F1, F0)) {
4106     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4107     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4108     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4109     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4110     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4111   }
4112 
4113   return SDValue();
4114 }
4115 
4116 /// Try to simplify a setcc built with the specified operands and cc. If it is
4117 /// unable to simplify it, return a null SDValue.
4118 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
4119                                       ISD::CondCode Cond, bool foldBooleans,
4120                                       DAGCombinerInfo &DCI,
4121                                       const SDLoc &dl) const {
4122   SelectionDAG &DAG = DCI.DAG;
4123   const DataLayout &Layout = DAG.getDataLayout();
4124   EVT OpVT = N0.getValueType();
4125 
4126   // Constant fold or commute setcc.
4127   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4128     return Fold;
4129 
4130   bool N0ConstOrSplat =
4131       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4132   bool N1ConstOrSplat =
4133       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4134 
4135   // Ensure that the constant occurs on the RHS and fold constant comparisons.
4136   // TODO: Handle non-splat vector constants. All undef causes trouble.
4137   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4138   // infinite loop here when we encounter one.
4139   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4140   if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) &&
4141       (DCI.isBeforeLegalizeOps() ||
4142        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4143     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4144 
4145   // If we have a subtract with the same 2 non-constant operands as this setcc
4146   // -- but in reverse order -- then try to commute the operands of this setcc
4147   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4148   // instruction on some targets.
4149   if (!N0ConstOrSplat && !N1ConstOrSplat &&
4150       (DCI.isBeforeLegalizeOps() ||
4151        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4152       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4153       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4154     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4155 
4156   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4157     return V;
4158 
4159   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4160     return V;
4161 
4162   if (auto *N1C = isConstOrConstSplat(N1)) {
4163     const APInt &C1 = N1C->getAPIntValue();
4164 
4165     // Optimize some CTPOP cases.
4166     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4167       return V;
4168 
4169     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4170     // equality comparison, then we're just comparing whether X itself is
4171     // zero.
4172     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4173         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4174         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
4175       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4176         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4177             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4178           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4179             // (srl (ctlz x), 5) == 0  -> X != 0
4180             // (srl (ctlz x), 5) != 1  -> X != 0
4181             Cond = ISD::SETNE;
4182           } else {
4183             // (srl (ctlz x), 5) != 0  -> X == 0
4184             // (srl (ctlz x), 5) == 1  -> X == 0
4185             Cond = ISD::SETEQ;
4186           }
4187           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4188           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4189                               Cond);
4190         }
4191       }
4192     }
4193   }
4194 
4195   // FIXME: Support vectors.
4196   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4197     const APInt &C1 = N1C->getAPIntValue();
4198 
4199     // (zext x) == C --> x == (trunc C)
4200     // (sext x) == C --> x == (trunc C)
4201     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4202         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4203       unsigned MinBits = N0.getValueSizeInBits();
4204       SDValue PreExt;
4205       bool Signed = false;
4206       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4207         // ZExt
4208         MinBits = N0->getOperand(0).getValueSizeInBits();
4209         PreExt = N0->getOperand(0);
4210       } else if (N0->getOpcode() == ISD::AND) {
4211         // DAGCombine turns costly ZExts into ANDs
4212         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4213           if ((C->getAPIntValue()+1).isPowerOf2()) {
4214             MinBits = C->getAPIntValue().countTrailingOnes();
4215             PreExt = N0->getOperand(0);
4216           }
4217       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4218         // SExt
4219         MinBits = N0->getOperand(0).getValueSizeInBits();
4220         PreExt = N0->getOperand(0);
4221         Signed = true;
4222       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4223         // ZEXTLOAD / SEXTLOAD
4224         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4225           MinBits = LN0->getMemoryVT().getSizeInBits();
4226           PreExt = N0;
4227         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4228           Signed = true;
4229           MinBits = LN0->getMemoryVT().getSizeInBits();
4230           PreExt = N0;
4231         }
4232       }
4233 
4234       // Figure out how many bits we need to preserve this constant.
4235       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
4236 
4237       // Make sure we're not losing bits from the constant.
4238       if (MinBits > 0 &&
4239           MinBits < C1.getBitWidth() &&
4240           MinBits >= ReqdBits) {
4241         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4242         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4243           // Will get folded away.
4244           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4245           if (MinBits == 1 && C1 == 1)
4246             // Invert the condition.
4247             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4248                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4249           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4250           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4251         }
4252 
4253         // If truncating the setcc operands is not desirable, we can still
4254         // simplify the expression in some cases:
4255         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4256         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4257         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4258         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4259         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4260         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4261         SDValue TopSetCC = N0->getOperand(0);
4262         unsigned N0Opc = N0->getOpcode();
4263         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4264         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4265             TopSetCC.getOpcode() == ISD::SETCC &&
4266             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4267             (isConstFalseVal(N1) ||
4268              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4269 
4270           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4271                          (!N1C->isZero() && Cond == ISD::SETNE);
4272 
4273           if (!Inverse)
4274             return TopSetCC;
4275 
4276           ISD::CondCode InvCond = ISD::getSetCCInverse(
4277               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4278               TopSetCC.getOperand(0).getValueType());
4279           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4280                                       TopSetCC.getOperand(1),
4281                                       InvCond);
4282         }
4283       }
4284     }
4285 
4286     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4287     // equality or unsigned, and all 1 bits of the const are in the same
4288     // partial word, see if we can shorten the load.
4289     if (DCI.isBeforeLegalize() &&
4290         !ISD::isSignedIntSetCC(Cond) &&
4291         N0.getOpcode() == ISD::AND && C1 == 0 &&
4292         N0.getNode()->hasOneUse() &&
4293         isa<LoadSDNode>(N0.getOperand(0)) &&
4294         N0.getOperand(0).getNode()->hasOneUse() &&
4295         isa<ConstantSDNode>(N0.getOperand(1))) {
4296       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
4297       APInt bestMask;
4298       unsigned bestWidth = 0, bestOffset = 0;
4299       if (Lod->isSimple() && Lod->isUnindexed()) {
4300         unsigned origWidth = N0.getValueSizeInBits();
4301         unsigned maskWidth = origWidth;
4302         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4303         // 8 bits, but have to be careful...
4304         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4305           origWidth = Lod->getMemoryVT().getSizeInBits();
4306         const APInt &Mask = N0.getConstantOperandAPInt(1);
4307         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
4308           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4309           for (unsigned offset=0; offset<origWidth/width; offset++) {
4310             if (Mask.isSubsetOf(newMask)) {
4311               if (Layout.isLittleEndian())
4312                 bestOffset = (uint64_t)offset * (width/8);
4313               else
4314                 bestOffset = (origWidth/width - offset - 1) * (width/8);
4315               bestMask = Mask.lshr(offset * (width/8) * 8);
4316               bestWidth = width;
4317               break;
4318             }
4319             newMask <<= width;
4320           }
4321         }
4322       }
4323       if (bestWidth) {
4324         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4325         if (newVT.isRound() &&
4326             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
4327           SDValue Ptr = Lod->getBasePtr();
4328           if (bestOffset != 0)
4329             Ptr =
4330                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
4331           SDValue NewLoad =
4332               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4333                           Lod->getPointerInfo().getWithOffset(bestOffset),
4334                           Lod->getOriginalAlign());
4335           return DAG.getSetCC(dl, VT,
4336                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4337                                       DAG.getConstant(bestMask.trunc(bestWidth),
4338                                                       dl, newVT)),
4339                               DAG.getConstant(0LL, dl, newVT), Cond);
4340         }
4341       }
4342     }
4343 
4344     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4345     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4346       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4347 
4348       // If the comparison constant has bits in the upper part, the
4349       // zero-extended value could never match.
4350       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4351                                               C1.getBitWidth() - InSize))) {
4352         switch (Cond) {
4353         case ISD::SETUGT:
4354         case ISD::SETUGE:
4355         case ISD::SETEQ:
4356           return DAG.getConstant(0, dl, VT);
4357         case ISD::SETULT:
4358         case ISD::SETULE:
4359         case ISD::SETNE:
4360           return DAG.getConstant(1, dl, VT);
4361         case ISD::SETGT:
4362         case ISD::SETGE:
4363           // True if the sign bit of C1 is set.
4364           return DAG.getConstant(C1.isNegative(), dl, VT);
4365         case ISD::SETLT:
4366         case ISD::SETLE:
4367           // True if the sign bit of C1 isn't set.
4368           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4369         default:
4370           break;
4371         }
4372       }
4373 
4374       // Otherwise, we can perform the comparison with the low bits.
4375       switch (Cond) {
4376       case ISD::SETEQ:
4377       case ISD::SETNE:
4378       case ISD::SETUGT:
4379       case ISD::SETUGE:
4380       case ISD::SETULT:
4381       case ISD::SETULE: {
4382         EVT newVT = N0.getOperand(0).getValueType();
4383         if (DCI.isBeforeLegalizeOps() ||
4384             (isOperationLegal(ISD::SETCC, newVT) &&
4385              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4386           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4387           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4388 
4389           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4390                                           NewConst, Cond);
4391           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4392         }
4393         break;
4394       }
4395       default:
4396         break; // todo, be more careful with signed comparisons
4397       }
4398     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4399                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4400                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4401                                       OpVT)) {
4402       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4403       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4404       EVT ExtDstTy = N0.getValueType();
4405       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4406 
4407       // If the constant doesn't fit into the number of bits for the source of
4408       // the sign extension, it is impossible for both sides to be equal.
4409       if (C1.getMinSignedBits() > ExtSrcTyBits)
4410         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4411 
4412       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4413              ExtDstTy != ExtSrcTy && "Unexpected types!");
4414       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4415       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4416                                    DAG.getConstant(Imm, dl, ExtDstTy));
4417       if (!DCI.isCalledByLegalizer())
4418         DCI.AddToWorklist(ZextOp.getNode());
4419       // Otherwise, make this a use of a zext.
4420       return DAG.getSetCC(dl, VT, ZextOp,
4421                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4422     } else if ((N1C->isZero() || N1C->isOne()) &&
4423                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4424       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
4425       if (N0.getOpcode() == ISD::SETCC &&
4426           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4427           (N0.getValueType() == MVT::i1 ||
4428            getBooleanContents(N0.getOperand(0).getValueType()) ==
4429                        ZeroOrOneBooleanContent)) {
4430         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4431         if (TrueWhenTrue)
4432           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4433         // Invert the condition.
4434         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4435         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4436         if (DCI.isBeforeLegalizeOps() ||
4437             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4438           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4439       }
4440 
4441       if ((N0.getOpcode() == ISD::XOR ||
4442            (N0.getOpcode() == ISD::AND &&
4443             N0.getOperand(0).getOpcode() == ISD::XOR &&
4444             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4445           isOneConstant(N0.getOperand(1))) {
4446         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4447         // can only do this if the top bits are known zero.
4448         unsigned BitWidth = N0.getValueSizeInBits();
4449         if (DAG.MaskedValueIsZero(N0,
4450                                   APInt::getHighBitsSet(BitWidth,
4451                                                         BitWidth-1))) {
4452           // Okay, get the un-inverted input value.
4453           SDValue Val;
4454           if (N0.getOpcode() == ISD::XOR) {
4455             Val = N0.getOperand(0);
4456           } else {
4457             assert(N0.getOpcode() == ISD::AND &&
4458                     N0.getOperand(0).getOpcode() == ISD::XOR);
4459             // ((X^1)&1)^1 -> X & 1
4460             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4461                               N0.getOperand(0).getOperand(0),
4462                               N0.getOperand(1));
4463           }
4464 
4465           return DAG.getSetCC(dl, VT, Val, N1,
4466                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4467         }
4468       } else if (N1C->isOne()) {
4469         SDValue Op0 = N0;
4470         if (Op0.getOpcode() == ISD::TRUNCATE)
4471           Op0 = Op0.getOperand(0);
4472 
4473         if ((Op0.getOpcode() == ISD::XOR) &&
4474             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4475             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4476           SDValue XorLHS = Op0.getOperand(0);
4477           SDValue XorRHS = Op0.getOperand(1);
4478           // Ensure that the input setccs return an i1 type or 0/1 value.
4479           if (Op0.getValueType() == MVT::i1 ||
4480               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4481                       ZeroOrOneBooleanContent &&
4482                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4483                         ZeroOrOneBooleanContent)) {
4484             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4485             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4486             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4487           }
4488         }
4489         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4490           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4491           if (Op0.getValueType().bitsGT(VT))
4492             Op0 = DAG.getNode(ISD::AND, dl, VT,
4493                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4494                           DAG.getConstant(1, dl, VT));
4495           else if (Op0.getValueType().bitsLT(VT))
4496             Op0 = DAG.getNode(ISD::AND, dl, VT,
4497                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4498                         DAG.getConstant(1, dl, VT));
4499 
4500           return DAG.getSetCC(dl, VT, Op0,
4501                               DAG.getConstant(0, dl, Op0.getValueType()),
4502                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4503         }
4504         if (Op0.getOpcode() == ISD::AssertZext &&
4505             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4506           return DAG.getSetCC(dl, VT, Op0,
4507                               DAG.getConstant(0, dl, Op0.getValueType()),
4508                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4509       }
4510     }
4511 
4512     // Given:
4513     //   icmp eq/ne (urem %x, %y), 0
4514     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4515     //   icmp eq/ne %x, 0
4516     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4517         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4518       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4519       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4520       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4521         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4522     }
4523 
4524     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4525     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4526     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4527         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4528         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4529         N1C && N1C->isAllOnes()) {
4530       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4531                           DAG.getConstant(0, dl, OpVT),
4532                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4533     }
4534 
4535     if (SDValue V =
4536             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4537       return V;
4538   }
4539 
4540   // These simplifications apply to splat vectors as well.
4541   // TODO: Handle more splat vector cases.
4542   if (auto *N1C = isConstOrConstSplat(N1)) {
4543     const APInt &C1 = N1C->getAPIntValue();
4544 
4545     APInt MinVal, MaxVal;
4546     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4547     if (ISD::isSignedIntSetCC(Cond)) {
4548       MinVal = APInt::getSignedMinValue(OperandBitSize);
4549       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4550     } else {
4551       MinVal = APInt::getMinValue(OperandBitSize);
4552       MaxVal = APInt::getMaxValue(OperandBitSize);
4553     }
4554 
4555     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4556     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4557       // X >= MIN --> true
4558       if (C1 == MinVal)
4559         return DAG.getBoolConstant(true, dl, VT, OpVT);
4560 
4561       if (!VT.isVector()) { // TODO: Support this for vectors.
4562         // X >= C0 --> X > (C0 - 1)
4563         APInt C = C1 - 1;
4564         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4565         if ((DCI.isBeforeLegalizeOps() ||
4566              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4567             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4568                                   isLegalICmpImmediate(C.getSExtValue())))) {
4569           return DAG.getSetCC(dl, VT, N0,
4570                               DAG.getConstant(C, dl, N1.getValueType()),
4571                               NewCC);
4572         }
4573       }
4574     }
4575 
4576     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4577       // X <= MAX --> true
4578       if (C1 == MaxVal)
4579         return DAG.getBoolConstant(true, dl, VT, OpVT);
4580 
4581       // X <= C0 --> X < (C0 + 1)
4582       if (!VT.isVector()) { // TODO: Support this for vectors.
4583         APInt C = C1 + 1;
4584         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4585         if ((DCI.isBeforeLegalizeOps() ||
4586              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4587             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4588                                   isLegalICmpImmediate(C.getSExtValue())))) {
4589           return DAG.getSetCC(dl, VT, N0,
4590                               DAG.getConstant(C, dl, N1.getValueType()),
4591                               NewCC);
4592         }
4593       }
4594     }
4595 
4596     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4597       if (C1 == MinVal)
4598         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4599 
4600       // TODO: Support this for vectors after legalize ops.
4601       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4602         // Canonicalize setlt X, Max --> setne X, Max
4603         if (C1 == MaxVal)
4604           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4605 
4606         // If we have setult X, 1, turn it into seteq X, 0
4607         if (C1 == MinVal+1)
4608           return DAG.getSetCC(dl, VT, N0,
4609                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4610                               ISD::SETEQ);
4611       }
4612     }
4613 
4614     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4615       if (C1 == MaxVal)
4616         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4617 
4618       // TODO: Support this for vectors after legalize ops.
4619       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4620         // Canonicalize setgt X, Min --> setne X, Min
4621         if (C1 == MinVal)
4622           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4623 
4624         // If we have setugt X, Max-1, turn it into seteq X, Max
4625         if (C1 == MaxVal-1)
4626           return DAG.getSetCC(dl, VT, N0,
4627                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4628                               ISD::SETEQ);
4629       }
4630     }
4631 
4632     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4633       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4634       if (C1.isZero())
4635         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4636                 VT, N0, N1, Cond, DCI, dl))
4637           return CC;
4638 
4639       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4640       // For example, when high 32-bits of i64 X are known clear:
4641       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4642       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4643       bool CmpZero = N1C->getAPIntValue().isZero();
4644       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4645       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4646         // Match or(lo,shl(hi,bw/2)) pattern.
4647         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4648           unsigned EltBits = V.getScalarValueSizeInBits();
4649           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4650             return false;
4651           SDValue LHS = V.getOperand(0);
4652           SDValue RHS = V.getOperand(1);
4653           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4654           // Unshifted element must have zero upperbits.
4655           if (RHS.getOpcode() == ISD::SHL &&
4656               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4657               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4658               DAG.MaskedValueIsZero(LHS, HiBits)) {
4659             Lo = LHS;
4660             Hi = RHS.getOperand(0);
4661             return true;
4662           }
4663           if (LHS.getOpcode() == ISD::SHL &&
4664               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4665               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4666               DAG.MaskedValueIsZero(RHS, HiBits)) {
4667             Lo = RHS;
4668             Hi = LHS.getOperand(0);
4669             return true;
4670           }
4671           return false;
4672         };
4673 
4674         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4675           unsigned EltBits = N0.getScalarValueSizeInBits();
4676           unsigned HalfBits = EltBits / 2;
4677           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4678           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4679           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4680           SDValue NewN0 =
4681               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4682           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4683           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4684         };
4685 
4686         SDValue Lo, Hi;
4687         if (IsConcat(N0, Lo, Hi))
4688           return MergeConcat(Lo, Hi);
4689 
4690         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4691           SDValue Lo0, Lo1, Hi0, Hi1;
4692           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4693               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4694             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4695                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4696           }
4697         }
4698       }
4699     }
4700 
4701     // If we have "setcc X, C0", check to see if we can shrink the immediate
4702     // by changing cc.
4703     // TODO: Support this for vectors after legalize ops.
4704     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4705       // SETUGT X, SINTMAX  -> SETLT X, 0
4706       // SETUGE X, SINTMIN -> SETLT X, 0
4707       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4708           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4709         return DAG.getSetCC(dl, VT, N0,
4710                             DAG.getConstant(0, dl, N1.getValueType()),
4711                             ISD::SETLT);
4712 
4713       // SETULT X, SINTMIN  -> SETGT X, -1
4714       // SETULE X, SINTMAX  -> SETGT X, -1
4715       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4716           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4717         return DAG.getSetCC(dl, VT, N0,
4718                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4719                             ISD::SETGT);
4720     }
4721   }
4722 
4723   // Back to non-vector simplifications.
4724   // TODO: Can we do these for vector splats?
4725   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4726     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4727     const APInt &C1 = N1C->getAPIntValue();
4728     EVT ShValTy = N0.getValueType();
4729 
4730     // Fold bit comparisons when we can. This will result in an
4731     // incorrect value when boolean false is negative one, unless
4732     // the bitsize is 1 in which case the false value is the same
4733     // in practice regardless of the representation.
4734     if ((VT.getSizeInBits() == 1 ||
4735          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4736         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4737         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4738         N0.getOpcode() == ISD::AND) {
4739       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4740         EVT ShiftTy =
4741             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4742         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4743           // Perform the xform if the AND RHS is a single bit.
4744           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4745           if (AndRHS->getAPIntValue().isPowerOf2() &&
4746               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4747             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4748                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4749                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4750           }
4751         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4752           // (X & 8) == 8  -->  (X & 8) >> 3
4753           // Perform the xform if C1 is a single bit.
4754           unsigned ShCt = C1.logBase2();
4755           if (C1.isPowerOf2() &&
4756               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4757             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4758                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4759                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4760           }
4761         }
4762       }
4763     }
4764 
4765     if (C1.getMinSignedBits() <= 64 &&
4766         !isLegalICmpImmediate(C1.getSExtValue())) {
4767       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4768       // (X & -256) == 256 -> (X >> 8) == 1
4769       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4770           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4771         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4772           const APInt &AndRHSC = AndRHS->getAPIntValue();
4773           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4774             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4775             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4776               SDValue Shift =
4777                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4778                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4779               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4780               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4781             }
4782           }
4783         }
4784       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4785                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4786         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4787         // X <  0x100000000 -> (X >> 32) <  1
4788         // X >= 0x100000000 -> (X >> 32) >= 1
4789         // X <= 0x0ffffffff -> (X >> 32) <  1
4790         // X >  0x0ffffffff -> (X >> 32) >= 1
4791         unsigned ShiftBits;
4792         APInt NewC = C1;
4793         ISD::CondCode NewCond = Cond;
4794         if (AdjOne) {
4795           ShiftBits = C1.countTrailingOnes();
4796           NewC = NewC + 1;
4797           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4798         } else {
4799           ShiftBits = C1.countTrailingZeros();
4800         }
4801         NewC.lshrInPlace(ShiftBits);
4802         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4803             isLegalICmpImmediate(NewC.getSExtValue()) &&
4804             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4805           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4806                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4807           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4808           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4809         }
4810       }
4811     }
4812   }
4813 
4814   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4815     auto *CFP = cast<ConstantFPSDNode>(N1);
4816     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4817 
4818     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4819     // constant if knowing that the operand is non-nan is enough.  We prefer to
4820     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4821     // materialize 0.0.
4822     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4823       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4824 
4825     // setcc (fneg x), C -> setcc swap(pred) x, -C
4826     if (N0.getOpcode() == ISD::FNEG) {
4827       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4828       if (DCI.isBeforeLegalizeOps() ||
4829           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4830         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4831         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4832       }
4833     }
4834 
4835     // If the condition is not legal, see if we can find an equivalent one
4836     // which is legal.
4837     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4838       // If the comparison was an awkward floating-point == or != and one of
4839       // the comparison operands is infinity or negative infinity, convert the
4840       // condition to a less-awkward <= or >=.
4841       if (CFP->getValueAPF().isInfinity()) {
4842         bool IsNegInf = CFP->getValueAPF().isNegative();
4843         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4844         switch (Cond) {
4845         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4846         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4847         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4848         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4849         default: break;
4850         }
4851         if (NewCond != ISD::SETCC_INVALID &&
4852             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4853           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4854       }
4855     }
4856   }
4857 
4858   if (N0 == N1) {
4859     // The sext(setcc()) => setcc() optimization relies on the appropriate
4860     // constant being emitted.
4861     assert(!N0.getValueType().isInteger() &&
4862            "Integer types should be handled by FoldSetCC");
4863 
4864     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4865     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4866     if (UOF == 2) // FP operators that are undefined on NaNs.
4867       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4868     if (UOF == unsigned(EqTrue))
4869       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4870     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4871     // if it is not already.
4872     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4873     if (NewCond != Cond &&
4874         (DCI.isBeforeLegalizeOps() ||
4875                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4876       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4877   }
4878 
4879   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4880       N0.getValueType().isInteger()) {
4881     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4882         N0.getOpcode() == ISD::XOR) {
4883       // Simplify (X+Y) == (X+Z) -->  Y == Z
4884       if (N0.getOpcode() == N1.getOpcode()) {
4885         if (N0.getOperand(0) == N1.getOperand(0))
4886           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4887         if (N0.getOperand(1) == N1.getOperand(1))
4888           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4889         if (isCommutativeBinOp(N0.getOpcode())) {
4890           // If X op Y == Y op X, try other combinations.
4891           if (N0.getOperand(0) == N1.getOperand(1))
4892             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4893                                 Cond);
4894           if (N0.getOperand(1) == N1.getOperand(0))
4895             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4896                                 Cond);
4897         }
4898       }
4899 
4900       // If RHS is a legal immediate value for a compare instruction, we need
4901       // to be careful about increasing register pressure needlessly.
4902       bool LegalRHSImm = false;
4903 
4904       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4905         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4906           // Turn (X+C1) == C2 --> X == C2-C1
4907           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
4908             return DAG.getSetCC(
4909                 dl, VT, N0.getOperand(0),
4910                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
4911                                 dl, N0.getValueType()),
4912                 Cond);
4913 
4914           // Turn (X^C1) == C2 --> X == C1^C2
4915           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
4916             return DAG.getSetCC(
4917                 dl, VT, N0.getOperand(0),
4918                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
4919                                 dl, N0.getValueType()),
4920                 Cond);
4921         }
4922 
4923         // Turn (C1-X) == C2 --> X == C1-C2
4924         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
4925           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
4926             return DAG.getSetCC(
4927                 dl, VT, N0.getOperand(1),
4928                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
4929                                 dl, N0.getValueType()),
4930                 Cond);
4931 
4932         // Could RHSC fold directly into a compare?
4933         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4934           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4935       }
4936 
4937       // (X+Y) == X --> Y == 0 and similar folds.
4938       // Don't do this if X is an immediate that can fold into a cmp
4939       // instruction and X+Y has other uses. It could be an induction variable
4940       // chain, and the transform would increase register pressure.
4941       if (!LegalRHSImm || N0.hasOneUse())
4942         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4943           return V;
4944     }
4945 
4946     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4947         N1.getOpcode() == ISD::XOR)
4948       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4949         return V;
4950 
4951     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4952       return V;
4953   }
4954 
4955   // Fold remainder of division by a constant.
4956   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4957       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4958     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4959 
4960     // When division is cheap or optimizing for minimum size,
4961     // fall through to DIVREM creation by skipping this fold.
4962     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4963       if (N0.getOpcode() == ISD::UREM) {
4964         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4965           return Folded;
4966       } else if (N0.getOpcode() == ISD::SREM) {
4967         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4968           return Folded;
4969       }
4970     }
4971   }
4972 
4973   // Fold away ALL boolean setcc's.
4974   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4975     SDValue Temp;
4976     switch (Cond) {
4977     default: llvm_unreachable("Unknown integer setcc!");
4978     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4979       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4980       N0 = DAG.getNOT(dl, Temp, OpVT);
4981       if (!DCI.isCalledByLegalizer())
4982         DCI.AddToWorklist(Temp.getNode());
4983       break;
4984     case ISD::SETNE:  // X != Y   -->  (X^Y)
4985       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4986       break;
4987     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4988     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4989       Temp = DAG.getNOT(dl, N0, OpVT);
4990       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4991       if (!DCI.isCalledByLegalizer())
4992         DCI.AddToWorklist(Temp.getNode());
4993       break;
4994     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4995     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4996       Temp = DAG.getNOT(dl, N1, OpVT);
4997       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4998       if (!DCI.isCalledByLegalizer())
4999         DCI.AddToWorklist(Temp.getNode());
5000       break;
5001     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
5002     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
5003       Temp = DAG.getNOT(dl, N0, OpVT);
5004       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
5005       if (!DCI.isCalledByLegalizer())
5006         DCI.AddToWorklist(Temp.getNode());
5007       break;
5008     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
5009     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
5010       Temp = DAG.getNOT(dl, N1, OpVT);
5011       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
5012       break;
5013     }
5014     if (VT.getScalarType() != MVT::i1) {
5015       if (!DCI.isCalledByLegalizer())
5016         DCI.AddToWorklist(N0.getNode());
5017       // FIXME: If running after legalize, we probably can't do this.
5018       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
5019       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
5020     }
5021     return N0;
5022   }
5023 
5024   // Could not fold it.
5025   return SDValue();
5026 }
5027 
5028 /// Returns true (and the GlobalValue and the offset) if the node is a
5029 /// GlobalAddress + offset.
5030 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
5031                                     int64_t &Offset) const {
5032 
5033   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
5034 
5035   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
5036     GA = GASD->getGlobal();
5037     Offset += GASD->getOffset();
5038     return true;
5039   }
5040 
5041   if (N->getOpcode() == ISD::ADD) {
5042     SDValue N1 = N->getOperand(0);
5043     SDValue N2 = N->getOperand(1);
5044     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
5045       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
5046         Offset += V->getSExtValue();
5047         return true;
5048       }
5049     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
5050       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
5051         Offset += V->getSExtValue();
5052         return true;
5053       }
5054     }
5055   }
5056 
5057   return false;
5058 }
5059 
5060 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
5061                                           DAGCombinerInfo &DCI) const {
5062   // Default implementation: no optimization.
5063   return SDValue();
5064 }
5065 
5066 //===----------------------------------------------------------------------===//
5067 //  Inline Assembler Implementation Methods
5068 //===----------------------------------------------------------------------===//
5069 
5070 TargetLowering::ConstraintType
5071 TargetLowering::getConstraintType(StringRef Constraint) const {
5072   unsigned S = Constraint.size();
5073 
5074   if (S == 1) {
5075     switch (Constraint[0]) {
5076     default: break;
5077     case 'r':
5078       return C_RegisterClass;
5079     case 'm': // memory
5080     case 'o': // offsetable
5081     case 'V': // not offsetable
5082       return C_Memory;
5083     case 'p': // Address.
5084       return C_Address;
5085     case 'n': // Simple Integer
5086     case 'E': // Floating Point Constant
5087     case 'F': // Floating Point Constant
5088       return C_Immediate;
5089     case 'i': // Simple Integer or Relocatable Constant
5090     case 's': // Relocatable Constant
5091     case 'X': // Allow ANY value.
5092     case 'I': // Target registers.
5093     case 'J':
5094     case 'K':
5095     case 'L':
5096     case 'M':
5097     case 'N':
5098     case 'O':
5099     case 'P':
5100     case '<':
5101     case '>':
5102       return C_Other;
5103     }
5104   }
5105 
5106   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5107     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5108       return C_Memory;
5109     return C_Register;
5110   }
5111   return C_Unknown;
5112 }
5113 
5114 /// Try to replace an X constraint, which matches anything, with another that
5115 /// has more specific requirements based on the type of the corresponding
5116 /// operand.
5117 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5118   if (ConstraintVT.isInteger())
5119     return "r";
5120   if (ConstraintVT.isFloatingPoint())
5121     return "f"; // works for many targets
5122   return nullptr;
5123 }
5124 
5125 SDValue TargetLowering::LowerAsmOutputForConstraint(
5126     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
5127     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5128   return SDValue();
5129 }
5130 
5131 /// Lower the specified operand into the Ops vector.
5132 /// If it is invalid, don't add anything to Ops.
5133 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5134                                                   std::string &Constraint,
5135                                                   std::vector<SDValue> &Ops,
5136                                                   SelectionDAG &DAG) const {
5137 
5138   if (Constraint.length() > 1) return;
5139 
5140   char ConstraintLetter = Constraint[0];
5141   switch (ConstraintLetter) {
5142   default: break;
5143   case 'X':    // Allows any operand
5144   case 'i':    // Simple Integer or Relocatable Constant
5145   case 'n':    // Simple Integer
5146   case 's': {  // Relocatable Constant
5147 
5148     ConstantSDNode *C;
5149     uint64_t Offset = 0;
5150 
5151     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5152     // etc., since getelementpointer is variadic. We can't use
5153     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5154     // while in this case the GA may be furthest from the root node which is
5155     // likely an ISD::ADD.
5156     while (true) {
5157       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5158         // gcc prints these as sign extended.  Sign extend value to 64 bits
5159         // now; without this it would get ZExt'd later in
5160         // ScheduleDAGSDNodes::EmitNode, which is very generic.
5161         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5162         BooleanContent BCont = getBooleanContents(MVT::i64);
5163         ISD::NodeType ExtOpc =
5164             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5165         int64_t ExtVal =
5166             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5167         Ops.push_back(
5168             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5169         return;
5170       }
5171       if (ConstraintLetter != 'n') {
5172         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5173           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5174                                                    GA->getValueType(0),
5175                                                    Offset + GA->getOffset()));
5176           return;
5177         }
5178         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5179           Ops.push_back(DAG.getTargetBlockAddress(
5180               BA->getBlockAddress(), BA->getValueType(0),
5181               Offset + BA->getOffset(), BA->getTargetFlags()));
5182           return;
5183         }
5184         if (isa<BasicBlockSDNode>(Op)) {
5185           Ops.push_back(Op);
5186           return;
5187         }
5188       }
5189       const unsigned OpCode = Op.getOpcode();
5190       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5191         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5192           Op = Op.getOperand(1);
5193         // Subtraction is not commutative.
5194         else if (OpCode == ISD::ADD &&
5195                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5196           Op = Op.getOperand(0);
5197         else
5198           return;
5199         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5200         continue;
5201       }
5202       return;
5203     }
5204     break;
5205   }
5206   }
5207 }
5208 
5209 std::pair<unsigned, const TargetRegisterClass *>
5210 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5211                                              StringRef Constraint,
5212                                              MVT VT) const {
5213   if (Constraint.empty() || Constraint[0] != '{')
5214     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5215   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5216 
5217   // Remove the braces from around the name.
5218   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5219 
5220   std::pair<unsigned, const TargetRegisterClass *> R =
5221       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5222 
5223   // Figure out which register class contains this reg.
5224   for (const TargetRegisterClass *RC : RI->regclasses()) {
5225     // If none of the value types for this register class are valid, we
5226     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5227     if (!isLegalRC(*RI, *RC))
5228       continue;
5229 
5230     for (const MCPhysReg &PR : *RC) {
5231       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5232         std::pair<unsigned, const TargetRegisterClass *> S =
5233             std::make_pair(PR, RC);
5234 
5235         // If this register class has the requested value type, return it,
5236         // otherwise keep searching and return the first class found
5237         // if no other is found which explicitly has the requested type.
5238         if (RI->isTypeLegalForClass(*RC, VT))
5239           return S;
5240         if (!R.second)
5241           R = S;
5242       }
5243     }
5244   }
5245 
5246   return R;
5247 }
5248 
5249 //===----------------------------------------------------------------------===//
5250 // Constraint Selection.
5251 
5252 /// Return true of this is an input operand that is a matching constraint like
5253 /// "4".
5254 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5255   assert(!ConstraintCode.empty() && "No known constraint!");
5256   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5257 }
5258 
5259 /// If this is an input matching constraint, this method returns the output
5260 /// operand it matches.
5261 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5262   assert(!ConstraintCode.empty() && "No known constraint!");
5263   return atoi(ConstraintCode.c_str());
5264 }
5265 
5266 /// Split up the constraint string from the inline assembly value into the
5267 /// specific constraints and their prefixes, and also tie in the associated
5268 /// operand values.
5269 /// If this returns an empty vector, and if the constraint string itself
5270 /// isn't empty, there was an error parsing.
5271 TargetLowering::AsmOperandInfoVector
5272 TargetLowering::ParseConstraints(const DataLayout &DL,
5273                                  const TargetRegisterInfo *TRI,
5274                                  const CallBase &Call) const {
5275   /// Information about all of the constraints.
5276   AsmOperandInfoVector ConstraintOperands;
5277   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5278   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5279 
5280   // Do a prepass over the constraints, canonicalizing them, and building up the
5281   // ConstraintOperands list.
5282   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5283   unsigned ResNo = 0; // ResNo - The result number of the next output.
5284   unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number.
5285 
5286   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5287     ConstraintOperands.emplace_back(std::move(CI));
5288     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5289 
5290     // Update multiple alternative constraint count.
5291     if (OpInfo.multipleAlternatives.size() > maCount)
5292       maCount = OpInfo.multipleAlternatives.size();
5293 
5294     OpInfo.ConstraintVT = MVT::Other;
5295 
5296     // Compute the value type for each operand.
5297     switch (OpInfo.Type) {
5298     case InlineAsm::isOutput:
5299       // Indirect outputs just consume an argument.
5300       if (OpInfo.isIndirect) {
5301         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5302         break;
5303       }
5304 
5305       // The return value of the call is this value.  As such, there is no
5306       // corresponding argument.
5307       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5308       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
5309         OpInfo.ConstraintVT =
5310             getSimpleValueType(DL, STy->getElementType(ResNo));
5311       } else {
5312         assert(ResNo == 0 && "Asm only has one result!");
5313         OpInfo.ConstraintVT =
5314             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5315       }
5316       ++ResNo;
5317       break;
5318     case InlineAsm::isInput:
5319       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5320       break;
5321     case InlineAsm::isLabel:
5322       OpInfo.CallOperandVal =
5323           cast<CallBrInst>(&Call)->getBlockAddressForIndirectDest(LabelNo);
5324       OpInfo.ConstraintVT =
5325           getAsmOperandValueType(DL, OpInfo.CallOperandVal->getType())
5326               .getSimpleVT();
5327       ++LabelNo;
5328       continue;
5329     case InlineAsm::isClobber:
5330       // Nothing to do.
5331       break;
5332     }
5333 
5334     if (OpInfo.CallOperandVal) {
5335       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5336       if (OpInfo.isIndirect) {
5337         OpTy = Call.getParamElementType(ArgNo);
5338         assert(OpTy && "Indirect operand must have elementtype attribute");
5339       }
5340 
5341       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5342       if (StructType *STy = dyn_cast<StructType>(OpTy))
5343         if (STy->getNumElements() == 1)
5344           OpTy = STy->getElementType(0);
5345 
5346       // If OpTy is not a single value, it may be a struct/union that we
5347       // can tile with integers.
5348       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5349         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5350         switch (BitSize) {
5351         default: break;
5352         case 1:
5353         case 8:
5354         case 16:
5355         case 32:
5356         case 64:
5357         case 128:
5358           OpTy = IntegerType::get(OpTy->getContext(), BitSize);
5359           break;
5360         }
5361       }
5362 
5363       EVT VT = getAsmOperandValueType(DL, OpTy, true);
5364       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
5365       ArgNo++;
5366     }
5367   }
5368 
5369   // If we have multiple alternative constraints, select the best alternative.
5370   if (!ConstraintOperands.empty()) {
5371     if (maCount) {
5372       unsigned bestMAIndex = 0;
5373       int bestWeight = -1;
5374       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5375       int weight = -1;
5376       unsigned maIndex;
5377       // Compute the sums of the weights for each alternative, keeping track
5378       // of the best (highest weight) one so far.
5379       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5380         int weightSum = 0;
5381         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5382              cIndex != eIndex; ++cIndex) {
5383           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5384           if (OpInfo.Type == InlineAsm::isClobber)
5385             continue;
5386 
5387           // If this is an output operand with a matching input operand,
5388           // look up the matching input. If their types mismatch, e.g. one
5389           // is an integer, the other is floating point, or their sizes are
5390           // different, flag it as an maCantMatch.
5391           if (OpInfo.hasMatchingInput()) {
5392             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5393             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5394               if ((OpInfo.ConstraintVT.isInteger() !=
5395                    Input.ConstraintVT.isInteger()) ||
5396                   (OpInfo.ConstraintVT.getSizeInBits() !=
5397                    Input.ConstraintVT.getSizeInBits())) {
5398                 weightSum = -1; // Can't match.
5399                 break;
5400               }
5401             }
5402           }
5403           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5404           if (weight == -1) {
5405             weightSum = -1;
5406             break;
5407           }
5408           weightSum += weight;
5409         }
5410         // Update best.
5411         if (weightSum > bestWeight) {
5412           bestWeight = weightSum;
5413           bestMAIndex = maIndex;
5414         }
5415       }
5416 
5417       // Now select chosen alternative in each constraint.
5418       for (AsmOperandInfo &cInfo : ConstraintOperands)
5419         if (cInfo.Type != InlineAsm::isClobber)
5420           cInfo.selectAlternative(bestMAIndex);
5421     }
5422   }
5423 
5424   // Check and hook up tied operands, choose constraint code to use.
5425   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5426        cIndex != eIndex; ++cIndex) {
5427     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5428 
5429     // If this is an output operand with a matching input operand, look up the
5430     // matching input. If their types mismatch, e.g. one is an integer, the
5431     // other is floating point, or their sizes are different, flag it as an
5432     // error.
5433     if (OpInfo.hasMatchingInput()) {
5434       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5435 
5436       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5437         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5438             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5439                                          OpInfo.ConstraintVT);
5440         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5441             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5442                                          Input.ConstraintVT);
5443         if ((OpInfo.ConstraintVT.isInteger() !=
5444              Input.ConstraintVT.isInteger()) ||
5445             (MatchRC.second != InputRC.second)) {
5446           report_fatal_error("Unsupported asm: input constraint"
5447                              " with a matching output constraint of"
5448                              " incompatible type!");
5449         }
5450       }
5451     }
5452   }
5453 
5454   return ConstraintOperands;
5455 }
5456 
5457 /// Return an integer indicating how general CT is.
5458 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5459   switch (CT) {
5460   case TargetLowering::C_Immediate:
5461   case TargetLowering::C_Other:
5462   case TargetLowering::C_Unknown:
5463     return 0;
5464   case TargetLowering::C_Register:
5465     return 1;
5466   case TargetLowering::C_RegisterClass:
5467     return 2;
5468   case TargetLowering::C_Memory:
5469   case TargetLowering::C_Address:
5470     return 3;
5471   }
5472   llvm_unreachable("Invalid constraint type");
5473 }
5474 
5475 /// Examine constraint type and operand type and determine a weight value.
5476 /// This object must already have been set up with the operand type
5477 /// and the current alternative constraint selected.
5478 TargetLowering::ConstraintWeight
5479   TargetLowering::getMultipleConstraintMatchWeight(
5480     AsmOperandInfo &info, int maIndex) const {
5481   InlineAsm::ConstraintCodeVector *rCodes;
5482   if (maIndex >= (int)info.multipleAlternatives.size())
5483     rCodes = &info.Codes;
5484   else
5485     rCodes = &info.multipleAlternatives[maIndex].Codes;
5486   ConstraintWeight BestWeight = CW_Invalid;
5487 
5488   // Loop over the options, keeping track of the most general one.
5489   for (const std::string &rCode : *rCodes) {
5490     ConstraintWeight weight =
5491         getSingleConstraintMatchWeight(info, rCode.c_str());
5492     if (weight > BestWeight)
5493       BestWeight = weight;
5494   }
5495 
5496   return BestWeight;
5497 }
5498 
5499 /// Examine constraint type and operand type and determine a weight value.
5500 /// This object must already have been set up with the operand type
5501 /// and the current alternative constraint selected.
5502 TargetLowering::ConstraintWeight
5503   TargetLowering::getSingleConstraintMatchWeight(
5504     AsmOperandInfo &info, const char *constraint) const {
5505   ConstraintWeight weight = CW_Invalid;
5506   Value *CallOperandVal = info.CallOperandVal;
5507     // If we don't have a value, we can't do a match,
5508     // but allow it at the lowest weight.
5509   if (!CallOperandVal)
5510     return CW_Default;
5511   // Look at the constraint type.
5512   switch (*constraint) {
5513     case 'i': // immediate integer.
5514     case 'n': // immediate integer with a known value.
5515       if (isa<ConstantInt>(CallOperandVal))
5516         weight = CW_Constant;
5517       break;
5518     case 's': // non-explicit intregal immediate.
5519       if (isa<GlobalValue>(CallOperandVal))
5520         weight = CW_Constant;
5521       break;
5522     case 'E': // immediate float if host format.
5523     case 'F': // immediate float.
5524       if (isa<ConstantFP>(CallOperandVal))
5525         weight = CW_Constant;
5526       break;
5527     case '<': // memory operand with autodecrement.
5528     case '>': // memory operand with autoincrement.
5529     case 'm': // memory operand.
5530     case 'o': // offsettable memory operand
5531     case 'V': // non-offsettable memory operand
5532       weight = CW_Memory;
5533       break;
5534     case 'r': // general register.
5535     case 'g': // general register, memory operand or immediate integer.
5536               // note: Clang converts "g" to "imr".
5537       if (CallOperandVal->getType()->isIntegerTy())
5538         weight = CW_Register;
5539       break;
5540     case 'X': // any operand.
5541   default:
5542     weight = CW_Default;
5543     break;
5544   }
5545   return weight;
5546 }
5547 
5548 /// If there are multiple different constraints that we could pick for this
5549 /// operand (e.g. "imr") try to pick the 'best' one.
5550 /// This is somewhat tricky: constraints fall into four classes:
5551 ///    Other         -> immediates and magic values
5552 ///    Register      -> one specific register
5553 ///    RegisterClass -> a group of regs
5554 ///    Memory        -> memory
5555 /// Ideally, we would pick the most specific constraint possible: if we have
5556 /// something that fits into a register, we would pick it.  The problem here
5557 /// is that if we have something that could either be in a register or in
5558 /// memory that use of the register could cause selection of *other*
5559 /// operands to fail: they might only succeed if we pick memory.  Because of
5560 /// this the heuristic we use is:
5561 ///
5562 ///  1) If there is an 'other' constraint, and if the operand is valid for
5563 ///     that constraint, use it.  This makes us take advantage of 'i'
5564 ///     constraints when available.
5565 ///  2) Otherwise, pick the most general constraint present.  This prefers
5566 ///     'm' over 'r', for example.
5567 ///
5568 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5569                              const TargetLowering &TLI,
5570                              SDValue Op, SelectionDAG *DAG) {
5571   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5572   unsigned BestIdx = 0;
5573   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5574   int BestGenerality = -1;
5575 
5576   // Loop over the options, keeping track of the most general one.
5577   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5578     TargetLowering::ConstraintType CType =
5579       TLI.getConstraintType(OpInfo.Codes[i]);
5580 
5581     // Indirect 'other' or 'immediate' constraints are not allowed.
5582     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5583                                CType == TargetLowering::C_Register ||
5584                                CType == TargetLowering::C_RegisterClass))
5585       continue;
5586 
5587     // If this is an 'other' or 'immediate' constraint, see if the operand is
5588     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5589     // the operand is an integer in the range [0..31] we want to use I (saving a
5590     // load of a register), otherwise we must use 'r'.
5591     if ((CType == TargetLowering::C_Other ||
5592          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5593       assert(OpInfo.Codes[i].size() == 1 &&
5594              "Unhandled multi-letter 'other' constraint");
5595       std::vector<SDValue> ResultOps;
5596       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5597                                        ResultOps, *DAG);
5598       if (!ResultOps.empty()) {
5599         BestType = CType;
5600         BestIdx = i;
5601         break;
5602       }
5603     }
5604 
5605     // Things with matching constraints can only be registers, per gcc
5606     // documentation.  This mainly affects "g" constraints.
5607     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5608       continue;
5609 
5610     // This constraint letter is more general than the previous one, use it.
5611     int Generality = getConstraintGenerality(CType);
5612     if (Generality > BestGenerality) {
5613       BestType = CType;
5614       BestIdx = i;
5615       BestGenerality = Generality;
5616     }
5617   }
5618 
5619   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5620   OpInfo.ConstraintType = BestType;
5621 }
5622 
5623 /// Determines the constraint code and constraint type to use for the specific
5624 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5625 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5626                                             SDValue Op,
5627                                             SelectionDAG *DAG) const {
5628   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5629 
5630   // Single-letter constraints ('r') are very common.
5631   if (OpInfo.Codes.size() == 1) {
5632     OpInfo.ConstraintCode = OpInfo.Codes[0];
5633     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5634   } else {
5635     ChooseConstraint(OpInfo, *this, Op, DAG);
5636   }
5637 
5638   // 'X' matches anything.
5639   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5640     // Constants are handled elsewhere.  For Functions, the type here is the
5641     // type of the result, which is not what we want to look at; leave them
5642     // alone.
5643     Value *v = OpInfo.CallOperandVal;
5644     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5645       return;
5646     }
5647 
5648     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5649       OpInfo.ConstraintCode = "i";
5650       return;
5651     }
5652 
5653     // Otherwise, try to resolve it to something we know about by looking at
5654     // the actual operand type.
5655     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5656       OpInfo.ConstraintCode = Repl;
5657       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5658     }
5659   }
5660 }
5661 
5662 /// Given an exact SDIV by a constant, create a multiplication
5663 /// with the multiplicative inverse of the constant.
5664 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5665                               const SDLoc &dl, SelectionDAG &DAG,
5666                               SmallVectorImpl<SDNode *> &Created) {
5667   SDValue Op0 = N->getOperand(0);
5668   SDValue Op1 = N->getOperand(1);
5669   EVT VT = N->getValueType(0);
5670   EVT SVT = VT.getScalarType();
5671   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5672   EVT ShSVT = ShVT.getScalarType();
5673 
5674   bool UseSRA = false;
5675   SmallVector<SDValue, 16> Shifts, Factors;
5676 
5677   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5678     if (C->isZero())
5679       return false;
5680     APInt Divisor = C->getAPIntValue();
5681     unsigned Shift = Divisor.countTrailingZeros();
5682     if (Shift) {
5683       Divisor.ashrInPlace(Shift);
5684       UseSRA = true;
5685     }
5686     // Calculate the multiplicative inverse, using Newton's method.
5687     APInt t;
5688     APInt Factor = Divisor;
5689     while ((t = Divisor * Factor) != 1)
5690       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5691     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5692     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5693     return true;
5694   };
5695 
5696   // Collect all magic values from the build vector.
5697   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5698     return SDValue();
5699 
5700   SDValue Shift, Factor;
5701   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5702     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5703     Factor = DAG.getBuildVector(VT, dl, Factors);
5704   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5705     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5706            "Expected matchUnaryPredicate to return one element for scalable "
5707            "vectors");
5708     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5709     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5710   } else {
5711     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5712     Shift = Shifts[0];
5713     Factor = Factors[0];
5714   }
5715 
5716   SDValue Res = Op0;
5717 
5718   // Shift the value upfront if it is even, so the LSB is one.
5719   if (UseSRA) {
5720     // TODO: For UDIV use SRL instead of SRA.
5721     SDNodeFlags Flags;
5722     Flags.setExact(true);
5723     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5724     Created.push_back(Res.getNode());
5725   }
5726 
5727   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5728 }
5729 
5730 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5731                               SelectionDAG &DAG,
5732                               SmallVectorImpl<SDNode *> &Created) const {
5733   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5734   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5735   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5736     return SDValue(N, 0); // Lower SDIV as SDIV
5737   return SDValue();
5738 }
5739 
5740 SDValue
5741 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
5742                               SelectionDAG &DAG,
5743                               SmallVectorImpl<SDNode *> &Created) const {
5744   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5745   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5746   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5747     return SDValue(N, 0); // Lower SREM as SREM
5748   return SDValue();
5749 }
5750 
5751 /// Given an ISD::SDIV node expressing a divide by constant,
5752 /// return a DAG expression to select that will generate the same value by
5753 /// multiplying by a magic number.
5754 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5755 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5756                                   bool IsAfterLegalization,
5757                                   SmallVectorImpl<SDNode *> &Created) const {
5758   SDLoc dl(N);
5759   EVT VT = N->getValueType(0);
5760   EVT SVT = VT.getScalarType();
5761   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5762   EVT ShSVT = ShVT.getScalarType();
5763   unsigned EltBits = VT.getScalarSizeInBits();
5764   EVT MulVT;
5765 
5766   // Check to see if we can do this.
5767   // FIXME: We should be more aggressive here.
5768   if (!isTypeLegal(VT)) {
5769     // Limit this to simple scalars for now.
5770     if (VT.isVector() || !VT.isSimple())
5771       return SDValue();
5772 
5773     // If this type will be promoted to a large enough type with a legal
5774     // multiply operation, we can go ahead and do this transform.
5775     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5776       return SDValue();
5777 
5778     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5779     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5780         !isOperationLegal(ISD::MUL, MulVT))
5781       return SDValue();
5782   }
5783 
5784   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5785   if (N->getFlags().hasExact())
5786     return BuildExactSDIV(*this, N, dl, DAG, Created);
5787 
5788   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5789 
5790   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5791     if (C->isZero())
5792       return false;
5793 
5794     const APInt &Divisor = C->getAPIntValue();
5795     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5796     int NumeratorFactor = 0;
5797     int ShiftMask = -1;
5798 
5799     if (Divisor.isOne() || Divisor.isAllOnes()) {
5800       // If d is +1/-1, we just multiply the numerator by +1/-1.
5801       NumeratorFactor = Divisor.getSExtValue();
5802       magics.Magic = 0;
5803       magics.ShiftAmount = 0;
5804       ShiftMask = 0;
5805     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5806       // If d > 0 and m < 0, add the numerator.
5807       NumeratorFactor = 1;
5808     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5809       // If d < 0 and m > 0, subtract the numerator.
5810       NumeratorFactor = -1;
5811     }
5812 
5813     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5814     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5815     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5816     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5817     return true;
5818   };
5819 
5820   SDValue N0 = N->getOperand(0);
5821   SDValue N1 = N->getOperand(1);
5822 
5823   // Collect the shifts / magic values from each element.
5824   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5825     return SDValue();
5826 
5827   SDValue MagicFactor, Factor, Shift, ShiftMask;
5828   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5829     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5830     Factor = DAG.getBuildVector(VT, dl, Factors);
5831     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5832     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5833   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5834     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5835            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5836            "Expected matchUnaryPredicate to return one element for scalable "
5837            "vectors");
5838     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5839     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5840     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5841     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5842   } else {
5843     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5844     MagicFactor = MagicFactors[0];
5845     Factor = Factors[0];
5846     Shift = Shifts[0];
5847     ShiftMask = ShiftMasks[0];
5848   }
5849 
5850   // Multiply the numerator (operand 0) by the magic value.
5851   // FIXME: We should support doing a MUL in a wider type.
5852   auto GetMULHS = [&](SDValue X, SDValue Y) {
5853     // If the type isn't legal, use a wider mul of the the type calculated
5854     // earlier.
5855     if (!isTypeLegal(VT)) {
5856       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5857       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5858       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5859       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5860                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5861       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5862     }
5863 
5864     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5865       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5866     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5867       SDValue LoHi =
5868           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5869       return SDValue(LoHi.getNode(), 1);
5870     }
5871     return SDValue();
5872   };
5873 
5874   SDValue Q = GetMULHS(N0, MagicFactor);
5875   if (!Q)
5876     return SDValue();
5877 
5878   Created.push_back(Q.getNode());
5879 
5880   // (Optionally) Add/subtract the numerator using Factor.
5881   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5882   Created.push_back(Factor.getNode());
5883   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5884   Created.push_back(Q.getNode());
5885 
5886   // Shift right algebraic by shift value.
5887   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5888   Created.push_back(Q.getNode());
5889 
5890   // Extract the sign bit, mask it and add it to the quotient.
5891   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5892   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5893   Created.push_back(T.getNode());
5894   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5895   Created.push_back(T.getNode());
5896   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5897 }
5898 
5899 /// Given an ISD::UDIV node expressing a divide by constant,
5900 /// return a DAG expression to select that will generate the same value by
5901 /// multiplying by a magic number.
5902 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5903 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5904                                   bool IsAfterLegalization,
5905                                   SmallVectorImpl<SDNode *> &Created) const {
5906   SDLoc dl(N);
5907   EVT VT = N->getValueType(0);
5908   EVT SVT = VT.getScalarType();
5909   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5910   EVT ShSVT = ShVT.getScalarType();
5911   unsigned EltBits = VT.getScalarSizeInBits();
5912   EVT MulVT;
5913 
5914   // Check to see if we can do this.
5915   // FIXME: We should be more aggressive here.
5916   if (!isTypeLegal(VT)) {
5917     // Limit this to simple scalars for now.
5918     if (VT.isVector() || !VT.isSimple())
5919       return SDValue();
5920 
5921     // If this type will be promoted to a large enough type with a legal
5922     // multiply operation, we can go ahead and do this transform.
5923     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5924       return SDValue();
5925 
5926     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5927     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5928         !isOperationLegal(ISD::MUL, MulVT))
5929       return SDValue();
5930   }
5931 
5932   bool UseNPQ = false;
5933   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5934 
5935   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5936     if (C->isZero())
5937       return false;
5938     // FIXME: We should use a narrower constant when the upper
5939     // bits are known to be zero.
5940     const APInt& Divisor = C->getAPIntValue();
5941     UnsignedDivisionByConstantInfo magics =
5942         UnsignedDivisionByConstantInfo::get(Divisor);
5943     unsigned PreShift = 0, PostShift = 0;
5944 
5945     // If the divisor is even, we can avoid using the expensive fixup by
5946     // shifting the divided value upfront.
5947     if (magics.IsAdd && !Divisor[0]) {
5948       PreShift = Divisor.countTrailingZeros();
5949       // Get magic number for the shifted divisor.
5950       magics =
5951           UnsignedDivisionByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5952       assert(!magics.IsAdd && "Should use cheap fixup now");
5953     }
5954 
5955     unsigned SelNPQ;
5956     if (!magics.IsAdd || Divisor.isOne()) {
5957       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5958              "We shouldn't generate an undefined shift!");
5959       PostShift = magics.ShiftAmount;
5960       SelNPQ = false;
5961     } else {
5962       PostShift = magics.ShiftAmount - 1;
5963       SelNPQ = true;
5964     }
5965 
5966     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5967     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5968     NPQFactors.push_back(
5969         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5970                                : APInt::getZero(EltBits),
5971                         dl, SVT));
5972     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5973     UseNPQ |= SelNPQ;
5974     return true;
5975   };
5976 
5977   SDValue N0 = N->getOperand(0);
5978   SDValue N1 = N->getOperand(1);
5979 
5980   // Collect the shifts/magic values from each element.
5981   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5982     return SDValue();
5983 
5984   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5985   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5986     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5987     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5988     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5989     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5990   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5991     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5992            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5993            "Expected matchUnaryPredicate to return one for scalable vectors");
5994     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5995     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5996     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5997     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5998   } else {
5999     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6000     PreShift = PreShifts[0];
6001     MagicFactor = MagicFactors[0];
6002     PostShift = PostShifts[0];
6003   }
6004 
6005   SDValue Q = N0;
6006   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
6007   Created.push_back(Q.getNode());
6008 
6009   // FIXME: We should support doing a MUL in a wider type.
6010   auto GetMULHU = [&](SDValue X, SDValue Y) {
6011     // If the type isn't legal, use a wider mul of the the type calculated
6012     // earlier.
6013     if (!isTypeLegal(VT)) {
6014       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
6015       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
6016       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6017       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6018                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6019       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6020     }
6021 
6022     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
6023       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
6024     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
6025       SDValue LoHi =
6026           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6027       return SDValue(LoHi.getNode(), 1);
6028     }
6029     return SDValue(); // No mulhu or equivalent
6030   };
6031 
6032   // Multiply the numerator (operand 0) by the magic value.
6033   Q = GetMULHU(Q, MagicFactor);
6034   if (!Q)
6035     return SDValue();
6036 
6037   Created.push_back(Q.getNode());
6038 
6039   if (UseNPQ) {
6040     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
6041     Created.push_back(NPQ.getNode());
6042 
6043     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
6044     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
6045     if (VT.isVector())
6046       NPQ = GetMULHU(NPQ, NPQFactor);
6047     else
6048       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
6049 
6050     Created.push_back(NPQ.getNode());
6051 
6052     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
6053     Created.push_back(Q.getNode());
6054   }
6055 
6056   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
6057   Created.push_back(Q.getNode());
6058 
6059   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6060 
6061   SDValue One = DAG.getConstant(1, dl, VT);
6062   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
6063   return DAG.getSelect(dl, VT, IsOne, N0, Q);
6064 }
6065 
6066 /// If all values in Values that *don't* match the predicate are same 'splat'
6067 /// value, then replace all values with that splat value.
6068 /// Else, if AlternativeReplacement was provided, then replace all values that
6069 /// do match predicate with AlternativeReplacement value.
6070 static void
6071 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
6072                           std::function<bool(SDValue)> Predicate,
6073                           SDValue AlternativeReplacement = SDValue()) {
6074   SDValue Replacement;
6075   // Is there a value for which the Predicate does *NOT* match? What is it?
6076   auto SplatValue = llvm::find_if_not(Values, Predicate);
6077   if (SplatValue != Values.end()) {
6078     // Does Values consist only of SplatValue's and values matching Predicate?
6079     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
6080           return Value == *SplatValue || Predicate(Value);
6081         })) // Then we shall replace values matching predicate with SplatValue.
6082       Replacement = *SplatValue;
6083   }
6084   if (!Replacement) {
6085     // Oops, we did not find the "baseline" splat value.
6086     if (!AlternativeReplacement)
6087       return; // Nothing to do.
6088     // Let's replace with provided value then.
6089     Replacement = AlternativeReplacement;
6090   }
6091   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
6092 }
6093 
6094 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
6095 /// where the divisor is constant and the comparison target is zero,
6096 /// return a DAG expression that will generate the same comparison result
6097 /// using only multiplications, additions and shifts/rotations.
6098 /// Ref: "Hacker's Delight" 10-17.
6099 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
6100                                         SDValue CompTargetNode,
6101                                         ISD::CondCode Cond,
6102                                         DAGCombinerInfo &DCI,
6103                                         const SDLoc &DL) const {
6104   SmallVector<SDNode *, 5> Built;
6105   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6106                                          DCI, DL, Built)) {
6107     for (SDNode *N : Built)
6108       DCI.AddToWorklist(N);
6109     return Folded;
6110   }
6111 
6112   return SDValue();
6113 }
6114 
6115 SDValue
6116 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6117                                   SDValue CompTargetNode, ISD::CondCode Cond,
6118                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6119                                   SmallVectorImpl<SDNode *> &Created) const {
6120   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6121   // - D must be constant, with D = D0 * 2^K where D0 is odd
6122   // - P is the multiplicative inverse of D0 modulo 2^W
6123   // - Q = floor(((2^W) - 1) / D)
6124   // where W is the width of the common type of N and D.
6125   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6126          "Only applicable for (in)equality comparisons.");
6127 
6128   SelectionDAG &DAG = DCI.DAG;
6129 
6130   EVT VT = REMNode.getValueType();
6131   EVT SVT = VT.getScalarType();
6132   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6133   EVT ShSVT = ShVT.getScalarType();
6134 
6135   // If MUL is unavailable, we cannot proceed in any case.
6136   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6137     return SDValue();
6138 
6139   bool ComparingWithAllZeros = true;
6140   bool AllComparisonsWithNonZerosAreTautological = true;
6141   bool HadTautologicalLanes = false;
6142   bool AllLanesAreTautological = true;
6143   bool HadEvenDivisor = false;
6144   bool AllDivisorsArePowerOfTwo = true;
6145   bool HadTautologicalInvertedLanes = false;
6146   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6147 
6148   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6149     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6150     if (CDiv->isZero())
6151       return false;
6152 
6153     const APInt &D = CDiv->getAPIntValue();
6154     const APInt &Cmp = CCmp->getAPIntValue();
6155 
6156     ComparingWithAllZeros &= Cmp.isZero();
6157 
6158     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6159     // if C2 is not less than C1, the comparison is always false.
6160     // But we will only be able to produce the comparison that will give the
6161     // opposive tautological answer. So this lane would need to be fixed up.
6162     bool TautologicalInvertedLane = D.ule(Cmp);
6163     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6164 
6165     // If all lanes are tautological (either all divisors are ones, or divisor
6166     // is not greater than the constant we are comparing with),
6167     // we will prefer to avoid the fold.
6168     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6169     HadTautologicalLanes |= TautologicalLane;
6170     AllLanesAreTautological &= TautologicalLane;
6171 
6172     // If we are comparing with non-zero, we need'll need  to subtract said
6173     // comparison value from the LHS. But there is no point in doing that if
6174     // every lane where we are comparing with non-zero is tautological..
6175     if (!Cmp.isZero())
6176       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6177 
6178     // Decompose D into D0 * 2^K
6179     unsigned K = D.countTrailingZeros();
6180     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6181     APInt D0 = D.lshr(K);
6182 
6183     // D is even if it has trailing zeros.
6184     HadEvenDivisor |= (K != 0);
6185     // D is a power-of-two if D0 is one.
6186     // If all divisors are power-of-two, we will prefer to avoid the fold.
6187     AllDivisorsArePowerOfTwo &= D0.isOne();
6188 
6189     // P = inv(D0, 2^W)
6190     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6191     unsigned W = D.getBitWidth();
6192     APInt P = D0.zext(W + 1)
6193                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6194                   .trunc(W);
6195     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6196     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6197 
6198     // Q = floor((2^W - 1) u/ D)
6199     // R = ((2^W - 1) u% D)
6200     APInt Q, R;
6201     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6202 
6203     // If we are comparing with zero, then that comparison constant is okay,
6204     // else it may need to be one less than that.
6205     if (Cmp.ugt(R))
6206       Q -= 1;
6207 
6208     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6209            "We are expecting that K is always less than all-ones for ShSVT");
6210 
6211     // If the lane is tautological the result can be constant-folded.
6212     if (TautologicalLane) {
6213       // Set P and K amount to a bogus values so we can try to splat them.
6214       P = 0;
6215       K = -1;
6216       // And ensure that comparison constant is tautological,
6217       // it will always compare true/false.
6218       Q = -1;
6219     }
6220 
6221     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6222     KAmts.push_back(
6223         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6224     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6225     return true;
6226   };
6227 
6228   SDValue N = REMNode.getOperand(0);
6229   SDValue D = REMNode.getOperand(1);
6230 
6231   // Collect the values from each element.
6232   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6233     return SDValue();
6234 
6235   // If all lanes are tautological, the result can be constant-folded.
6236   if (AllLanesAreTautological)
6237     return SDValue();
6238 
6239   // If this is a urem by a powers-of-two, avoid the fold since it can be
6240   // best implemented as a bit test.
6241   if (AllDivisorsArePowerOfTwo)
6242     return SDValue();
6243 
6244   SDValue PVal, KVal, QVal;
6245   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6246     if (HadTautologicalLanes) {
6247       // Try to turn PAmts into a splat, since we don't care about the values
6248       // that are currently '0'. If we can't, just keep '0'`s.
6249       turnVectorIntoSplatVector(PAmts, isNullConstant);
6250       // Try to turn KAmts into a splat, since we don't care about the values
6251       // that are currently '-1'. If we can't, change them to '0'`s.
6252       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6253                                 DAG.getConstant(0, DL, ShSVT));
6254     }
6255 
6256     PVal = DAG.getBuildVector(VT, DL, PAmts);
6257     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6258     QVal = DAG.getBuildVector(VT, DL, QAmts);
6259   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6260     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6261            "Expected matchBinaryPredicate to return one element for "
6262            "SPLAT_VECTORs");
6263     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6264     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6265     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6266   } else {
6267     PVal = PAmts[0];
6268     KVal = KAmts[0];
6269     QVal = QAmts[0];
6270   }
6271 
6272   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6273     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6274       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6275     assert(CompTargetNode.getValueType() == N.getValueType() &&
6276            "Expecting that the types on LHS and RHS of comparisons match.");
6277     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6278   }
6279 
6280   // (mul N, P)
6281   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6282   Created.push_back(Op0.getNode());
6283 
6284   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6285   // divisors as a performance improvement, since rotating by 0 is a no-op.
6286   if (HadEvenDivisor) {
6287     // We need ROTR to do this.
6288     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6289       return SDValue();
6290     // UREM: (rotr (mul N, P), K)
6291     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6292     Created.push_back(Op0.getNode());
6293   }
6294 
6295   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6296   SDValue NewCC =
6297       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6298                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6299   if (!HadTautologicalInvertedLanes)
6300     return NewCC;
6301 
6302   // If any lanes previously compared always-false, the NewCC will give
6303   // always-true result for them, so we need to fixup those lanes.
6304   // Or the other way around for inequality predicate.
6305   assert(VT.isVector() && "Can/should only get here for vectors.");
6306   Created.push_back(NewCC.getNode());
6307 
6308   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6309   // if C2 is not less than C1, the comparison is always false.
6310   // But we have produced the comparison that will give the
6311   // opposive tautological answer. So these lanes would need to be fixed up.
6312   SDValue TautologicalInvertedChannels =
6313       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6314   Created.push_back(TautologicalInvertedChannels.getNode());
6315 
6316   // NOTE: we avoid letting illegal types through even if we're before legalize
6317   // ops – legalization has a hard time producing good code for this.
6318   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6319     // If we have a vector select, let's replace the comparison results in the
6320     // affected lanes with the correct tautological result.
6321     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6322                                               DL, SETCCVT, SETCCVT);
6323     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6324                        Replacement, NewCC);
6325   }
6326 
6327   // Else, we can just invert the comparison result in the appropriate lanes.
6328   //
6329   // NOTE: see the note above VSELECT above.
6330   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6331     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6332                        TautologicalInvertedChannels);
6333 
6334   return SDValue(); // Don't know how to lower.
6335 }
6336 
6337 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6338 /// where the divisor is constant and the comparison target is zero,
6339 /// return a DAG expression that will generate the same comparison result
6340 /// using only multiplications, additions and shifts/rotations.
6341 /// Ref: "Hacker's Delight" 10-17.
6342 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6343                                         SDValue CompTargetNode,
6344                                         ISD::CondCode Cond,
6345                                         DAGCombinerInfo &DCI,
6346                                         const SDLoc &DL) const {
6347   SmallVector<SDNode *, 7> Built;
6348   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6349                                          DCI, DL, Built)) {
6350     assert(Built.size() <= 7 && "Max size prediction failed.");
6351     for (SDNode *N : Built)
6352       DCI.AddToWorklist(N);
6353     return Folded;
6354   }
6355 
6356   return SDValue();
6357 }
6358 
6359 SDValue
6360 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6361                                   SDValue CompTargetNode, ISD::CondCode Cond,
6362                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6363                                   SmallVectorImpl<SDNode *> &Created) const {
6364   // Fold:
6365   //   (seteq/ne (srem N, D), 0)
6366   // To:
6367   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6368   //
6369   // - D must be constant, with D = D0 * 2^K where D0 is odd
6370   // - P is the multiplicative inverse of D0 modulo 2^W
6371   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6372   // - Q = floor((2 * A) / (2^K))
6373   // where W is the width of the common type of N and D.
6374   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6375          "Only applicable for (in)equality comparisons.");
6376 
6377   SelectionDAG &DAG = DCI.DAG;
6378 
6379   EVT VT = REMNode.getValueType();
6380   EVT SVT = VT.getScalarType();
6381   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6382   EVT ShSVT = ShVT.getScalarType();
6383 
6384   // If we are after ops legalization, and MUL is unavailable, we can not
6385   // proceed.
6386   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6387     return SDValue();
6388 
6389   // TODO: Could support comparing with non-zero too.
6390   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6391   if (!CompTarget || !CompTarget->isZero())
6392     return SDValue();
6393 
6394   bool HadIntMinDivisor = false;
6395   bool HadOneDivisor = false;
6396   bool AllDivisorsAreOnes = true;
6397   bool HadEvenDivisor = false;
6398   bool NeedToApplyOffset = false;
6399   bool AllDivisorsArePowerOfTwo = true;
6400   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6401 
6402   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6403     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6404     if (C->isZero())
6405       return false;
6406 
6407     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6408 
6409     // WARNING: this fold is only valid for positive divisors!
6410     APInt D = C->getAPIntValue();
6411     if (D.isNegative())
6412       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6413 
6414     HadIntMinDivisor |= D.isMinSignedValue();
6415 
6416     // If all divisors are ones, we will prefer to avoid the fold.
6417     HadOneDivisor |= D.isOne();
6418     AllDivisorsAreOnes &= D.isOne();
6419 
6420     // Decompose D into D0 * 2^K
6421     unsigned K = D.countTrailingZeros();
6422     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6423     APInt D0 = D.lshr(K);
6424 
6425     if (!D.isMinSignedValue()) {
6426       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6427       // we don't care about this lane in this fold, we'll special-handle it.
6428       HadEvenDivisor |= (K != 0);
6429     }
6430 
6431     // D is a power-of-two if D0 is one. This includes INT_MIN.
6432     // If all divisors are power-of-two, we will prefer to avoid the fold.
6433     AllDivisorsArePowerOfTwo &= D0.isOne();
6434 
6435     // P = inv(D0, 2^W)
6436     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6437     unsigned W = D.getBitWidth();
6438     APInt P = D0.zext(W + 1)
6439                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6440                   .trunc(W);
6441     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6442     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6443 
6444     // A = floor((2^(W - 1) - 1) / D0) & -2^K
6445     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6446     A.clearLowBits(K);
6447 
6448     if (!D.isMinSignedValue()) {
6449       // If divisor INT_MIN, then we don't care about this lane in this fold,
6450       // we'll special-handle it.
6451       NeedToApplyOffset |= A != 0;
6452     }
6453 
6454     // Q = floor((2 * A) / (2^K))
6455     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6456 
6457     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6458            "We are expecting that A is always less than all-ones for SVT");
6459     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6460            "We are expecting that K is always less than all-ones for ShSVT");
6461 
6462     // If the divisor is 1 the result can be constant-folded. Likewise, we
6463     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6464     if (D.isOne()) {
6465       // Set P, A and K to a bogus values so we can try to splat them.
6466       P = 0;
6467       A = -1;
6468       K = -1;
6469 
6470       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
6471       Q = -1;
6472     }
6473 
6474     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6475     AAmts.push_back(DAG.getConstant(A, DL, SVT));
6476     KAmts.push_back(
6477         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6478     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6479     return true;
6480   };
6481 
6482   SDValue N = REMNode.getOperand(0);
6483   SDValue D = REMNode.getOperand(1);
6484 
6485   // Collect the values from each element.
6486   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6487     return SDValue();
6488 
6489   // If this is a srem by a one, avoid the fold since it can be constant-folded.
6490   if (AllDivisorsAreOnes)
6491     return SDValue();
6492 
6493   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6494   // since it can be best implemented as a bit test.
6495   if (AllDivisorsArePowerOfTwo)
6496     return SDValue();
6497 
6498   SDValue PVal, AVal, KVal, QVal;
6499   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6500     if (HadOneDivisor) {
6501       // Try to turn PAmts into a splat, since we don't care about the values
6502       // that are currently '0'. If we can't, just keep '0'`s.
6503       turnVectorIntoSplatVector(PAmts, isNullConstant);
6504       // Try to turn AAmts into a splat, since we don't care about the
6505       // values that are currently '-1'. If we can't, change them to '0'`s.
6506       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6507                                 DAG.getConstant(0, DL, SVT));
6508       // Try to turn KAmts into a splat, since we don't care about the values
6509       // that are currently '-1'. If we can't, change them to '0'`s.
6510       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6511                                 DAG.getConstant(0, DL, ShSVT));
6512     }
6513 
6514     PVal = DAG.getBuildVector(VT, DL, PAmts);
6515     AVal = DAG.getBuildVector(VT, DL, AAmts);
6516     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6517     QVal = DAG.getBuildVector(VT, DL, QAmts);
6518   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6519     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6520            QAmts.size() == 1 &&
6521            "Expected matchUnaryPredicate to return one element for scalable "
6522            "vectors");
6523     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6524     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6525     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6526     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6527   } else {
6528     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6529     PVal = PAmts[0];
6530     AVal = AAmts[0];
6531     KVal = KAmts[0];
6532     QVal = QAmts[0];
6533   }
6534 
6535   // (mul N, P)
6536   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6537   Created.push_back(Op0.getNode());
6538 
6539   if (NeedToApplyOffset) {
6540     // We need ADD to do this.
6541     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6542       return SDValue();
6543 
6544     // (add (mul N, P), A)
6545     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6546     Created.push_back(Op0.getNode());
6547   }
6548 
6549   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6550   // divisors as a performance improvement, since rotating by 0 is a no-op.
6551   if (HadEvenDivisor) {
6552     // We need ROTR to do this.
6553     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6554       return SDValue();
6555     // SREM: (rotr (add (mul N, P), A), K)
6556     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6557     Created.push_back(Op0.getNode());
6558   }
6559 
6560   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6561   SDValue Fold =
6562       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6563                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6564 
6565   // If we didn't have lanes with INT_MIN divisor, then we're done.
6566   if (!HadIntMinDivisor)
6567     return Fold;
6568 
6569   // That fold is only valid for positive divisors. Which effectively means,
6570   // it is invalid for INT_MIN divisors. So if we have such a lane,
6571   // we must fix-up results for said lanes.
6572   assert(VT.isVector() && "Can/should only get here for vectors.");
6573 
6574   // NOTE: we avoid letting illegal types through even if we're before legalize
6575   // ops – legalization has a hard time producing good code for the code that
6576   // follows.
6577   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6578       !isOperationLegalOrCustom(ISD::AND, VT) ||
6579       !isOperationLegalOrCustom(Cond, VT) ||
6580       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6581     return SDValue();
6582 
6583   Created.push_back(Fold.getNode());
6584 
6585   SDValue IntMin = DAG.getConstant(
6586       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6587   SDValue IntMax = DAG.getConstant(
6588       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6589   SDValue Zero =
6590       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6591 
6592   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6593   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6594   Created.push_back(DivisorIsIntMin.getNode());
6595 
6596   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6597   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6598   Created.push_back(Masked.getNode());
6599   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6600   Created.push_back(MaskedIsZero.getNode());
6601 
6602   // To produce final result we need to blend 2 vectors: 'SetCC' and
6603   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6604   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6605   // constant-folded, select can get lowered to a shuffle with constant mask.
6606   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6607                                 MaskedIsZero, Fold);
6608 
6609   return Blended;
6610 }
6611 
6612 bool TargetLowering::
6613 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6614   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6615     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6616                                 "be a constant integer");
6617     return true;
6618   }
6619 
6620   return false;
6621 }
6622 
6623 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6624                                          const DenormalMode &Mode) const {
6625   SDLoc DL(Op);
6626   EVT VT = Op.getValueType();
6627   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6628   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6629   // Testing it with denormal inputs to avoid wrong estimate.
6630   if (Mode.Input == DenormalMode::IEEE) {
6631     // This is specifically a check for the handling of denormal inputs,
6632     // not the result.
6633 
6634     // Test = fabs(X) < SmallestNormal
6635     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6636     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6637     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6638     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6639     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6640   }
6641   // Test = X == 0.0
6642   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6643 }
6644 
6645 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6646                                              bool LegalOps, bool OptForSize,
6647                                              NegatibleCost &Cost,
6648                                              unsigned Depth) const {
6649   // fneg is removable even if it has multiple uses.
6650   if (Op.getOpcode() == ISD::FNEG) {
6651     Cost = NegatibleCost::Cheaper;
6652     return Op.getOperand(0);
6653   }
6654 
6655   // Don't recurse exponentially.
6656   if (Depth > SelectionDAG::MaxRecursionDepth)
6657     return SDValue();
6658 
6659   // Pre-increment recursion depth for use in recursive calls.
6660   ++Depth;
6661   const SDNodeFlags Flags = Op->getFlags();
6662   const TargetOptions &Options = DAG.getTarget().Options;
6663   EVT VT = Op.getValueType();
6664   unsigned Opcode = Op.getOpcode();
6665 
6666   // Don't allow anything with multiple uses unless we know it is free.
6667   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6668     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6669                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6670     if (!IsFreeExtend)
6671       return SDValue();
6672   }
6673 
6674   auto RemoveDeadNode = [&](SDValue N) {
6675     if (N && N.getNode()->use_empty())
6676       DAG.RemoveDeadNode(N.getNode());
6677   };
6678 
6679   SDLoc DL(Op);
6680 
6681   // Because getNegatedExpression can delete nodes we need a handle to keep
6682   // temporary nodes alive in case the recursion manages to create an identical
6683   // node.
6684   std::list<HandleSDNode> Handles;
6685 
6686   switch (Opcode) {
6687   case ISD::ConstantFP: {
6688     // Don't invert constant FP values after legalization unless the target says
6689     // the negated constant is legal.
6690     bool IsOpLegal =
6691         isOperationLegal(ISD::ConstantFP, VT) ||
6692         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6693                      OptForSize);
6694 
6695     if (LegalOps && !IsOpLegal)
6696       break;
6697 
6698     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6699     V.changeSign();
6700     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6701 
6702     // If we already have the use of the negated floating constant, it is free
6703     // to negate it even it has multiple uses.
6704     if (!Op.hasOneUse() && CFP.use_empty())
6705       break;
6706     Cost = NegatibleCost::Neutral;
6707     return CFP;
6708   }
6709   case ISD::BUILD_VECTOR: {
6710     // Only permit BUILD_VECTOR of constants.
6711     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6712           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6713         }))
6714       break;
6715 
6716     bool IsOpLegal =
6717         (isOperationLegal(ISD::ConstantFP, VT) &&
6718          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6719         llvm::all_of(Op->op_values(), [&](SDValue N) {
6720           return N.isUndef() ||
6721                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6722                               OptForSize);
6723         });
6724 
6725     if (LegalOps && !IsOpLegal)
6726       break;
6727 
6728     SmallVector<SDValue, 4> Ops;
6729     for (SDValue C : Op->op_values()) {
6730       if (C.isUndef()) {
6731         Ops.push_back(C);
6732         continue;
6733       }
6734       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6735       V.changeSign();
6736       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6737     }
6738     Cost = NegatibleCost::Neutral;
6739     return DAG.getBuildVector(VT, DL, Ops);
6740   }
6741   case ISD::FADD: {
6742     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6743       break;
6744 
6745     // After operation legalization, it might not be legal to create new FSUBs.
6746     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6747       break;
6748     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6749 
6750     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6751     NegatibleCost CostX = NegatibleCost::Expensive;
6752     SDValue NegX =
6753         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6754     // Prevent this node from being deleted by the next call.
6755     if (NegX)
6756       Handles.emplace_back(NegX);
6757 
6758     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6759     NegatibleCost CostY = NegatibleCost::Expensive;
6760     SDValue NegY =
6761         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6762 
6763     // We're done with the handles.
6764     Handles.clear();
6765 
6766     // Negate the X if its cost is less or equal than Y.
6767     if (NegX && (CostX <= CostY)) {
6768       Cost = CostX;
6769       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6770       if (NegY != N)
6771         RemoveDeadNode(NegY);
6772       return N;
6773     }
6774 
6775     // Negate the Y if it is not expensive.
6776     if (NegY) {
6777       Cost = CostY;
6778       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6779       if (NegX != N)
6780         RemoveDeadNode(NegX);
6781       return N;
6782     }
6783     break;
6784   }
6785   case ISD::FSUB: {
6786     // We can't turn -(A-B) into B-A when we honor signed zeros.
6787     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6788       break;
6789 
6790     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6791     // fold (fneg (fsub 0, Y)) -> Y
6792     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6793       if (C->isZero()) {
6794         Cost = NegatibleCost::Cheaper;
6795         return Y;
6796       }
6797 
6798     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6799     Cost = NegatibleCost::Neutral;
6800     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6801   }
6802   case ISD::FMUL:
6803   case ISD::FDIV: {
6804     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6805 
6806     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6807     NegatibleCost CostX = NegatibleCost::Expensive;
6808     SDValue NegX =
6809         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6810     // Prevent this node from being deleted by the next call.
6811     if (NegX)
6812       Handles.emplace_back(NegX);
6813 
6814     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6815     NegatibleCost CostY = NegatibleCost::Expensive;
6816     SDValue NegY =
6817         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6818 
6819     // We're done with the handles.
6820     Handles.clear();
6821 
6822     // Negate the X if its cost is less or equal than Y.
6823     if (NegX && (CostX <= CostY)) {
6824       Cost = CostX;
6825       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6826       if (NegY != N)
6827         RemoveDeadNode(NegY);
6828       return N;
6829     }
6830 
6831     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6832     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6833       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6834         break;
6835 
6836     // Negate the Y if it is not expensive.
6837     if (NegY) {
6838       Cost = CostY;
6839       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6840       if (NegX != N)
6841         RemoveDeadNode(NegX);
6842       return N;
6843     }
6844     break;
6845   }
6846   case ISD::FMA:
6847   case ISD::FMAD: {
6848     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6849       break;
6850 
6851     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6852     NegatibleCost CostZ = NegatibleCost::Expensive;
6853     SDValue NegZ =
6854         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6855     // Give up if fail to negate the Z.
6856     if (!NegZ)
6857       break;
6858 
6859     // Prevent this node from being deleted by the next two calls.
6860     Handles.emplace_back(NegZ);
6861 
6862     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6863     NegatibleCost CostX = NegatibleCost::Expensive;
6864     SDValue NegX =
6865         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6866     // Prevent this node from being deleted by the next call.
6867     if (NegX)
6868       Handles.emplace_back(NegX);
6869 
6870     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6871     NegatibleCost CostY = NegatibleCost::Expensive;
6872     SDValue NegY =
6873         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6874 
6875     // We're done with the handles.
6876     Handles.clear();
6877 
6878     // Negate the X if its cost is less or equal than Y.
6879     if (NegX && (CostX <= CostY)) {
6880       Cost = std::min(CostX, CostZ);
6881       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6882       if (NegY != N)
6883         RemoveDeadNode(NegY);
6884       return N;
6885     }
6886 
6887     // Negate the Y if it is not expensive.
6888     if (NegY) {
6889       Cost = std::min(CostY, CostZ);
6890       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6891       if (NegX != N)
6892         RemoveDeadNode(NegX);
6893       return N;
6894     }
6895     break;
6896   }
6897 
6898   case ISD::FP_EXTEND:
6899   case ISD::FSIN:
6900     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6901                                             OptForSize, Cost, Depth))
6902       return DAG.getNode(Opcode, DL, VT, NegV);
6903     break;
6904   case ISD::FP_ROUND:
6905     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6906                                             OptForSize, Cost, Depth))
6907       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6908     break;
6909   }
6910 
6911   return SDValue();
6912 }
6913 
6914 //===----------------------------------------------------------------------===//
6915 // Legalization Utilities
6916 //===----------------------------------------------------------------------===//
6917 
6918 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6919                                     SDValue LHS, SDValue RHS,
6920                                     SmallVectorImpl<SDValue> &Result,
6921                                     EVT HiLoVT, SelectionDAG &DAG,
6922                                     MulExpansionKind Kind, SDValue LL,
6923                                     SDValue LH, SDValue RL, SDValue RH) const {
6924   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6925          Opcode == ISD::SMUL_LOHI);
6926 
6927   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6928                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6929   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6930                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6931   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6932                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6933   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6934                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6935 
6936   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6937     return false;
6938 
6939   unsigned OuterBitSize = VT.getScalarSizeInBits();
6940   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6941 
6942   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6943   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6944          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6945 
6946   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6947   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6948                           bool Signed) -> bool {
6949     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6950       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6951       Hi = SDValue(Lo.getNode(), 1);
6952       return true;
6953     }
6954     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6955       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6956       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6957       return true;
6958     }
6959     return false;
6960   };
6961 
6962   SDValue Lo, Hi;
6963 
6964   if (!LL.getNode() && !RL.getNode() &&
6965       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6966     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6967     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6968   }
6969 
6970   if (!LL.getNode())
6971     return false;
6972 
6973   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6974   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6975       DAG.MaskedValueIsZero(RHS, HighMask)) {
6976     // The inputs are both zero-extended.
6977     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6978       Result.push_back(Lo);
6979       Result.push_back(Hi);
6980       if (Opcode != ISD::MUL) {
6981         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6982         Result.push_back(Zero);
6983         Result.push_back(Zero);
6984       }
6985       return true;
6986     }
6987   }
6988 
6989   if (!VT.isVector() && Opcode == ISD::MUL &&
6990       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6991       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6992     // The input values are both sign-extended.
6993     // TODO non-MUL case?
6994     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6995       Result.push_back(Lo);
6996       Result.push_back(Hi);
6997       return true;
6998     }
6999   }
7000 
7001   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
7002   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
7003   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
7004 
7005   if (!LH.getNode() && !RH.getNode() &&
7006       isOperationLegalOrCustom(ISD::SRL, VT) &&
7007       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7008     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
7009     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
7010     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
7011     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
7012   }
7013 
7014   if (!LH.getNode())
7015     return false;
7016 
7017   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
7018     return false;
7019 
7020   Result.push_back(Lo);
7021 
7022   if (Opcode == ISD::MUL) {
7023     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
7024     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
7025     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
7026     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
7027     Result.push_back(Hi);
7028     return true;
7029   }
7030 
7031   // Compute the full width result.
7032   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
7033     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
7034     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7035     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
7036     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
7037   };
7038 
7039   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7040   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
7041     return false;
7042 
7043   // This is effectively the add part of a multiply-add of half-sized operands,
7044   // so it cannot overflow.
7045   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7046 
7047   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
7048     return false;
7049 
7050   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7051   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7052 
7053   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
7054                   isOperationLegalOrCustom(ISD::ADDE, VT));
7055   if (UseGlue)
7056     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
7057                        Merge(Lo, Hi));
7058   else
7059     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
7060                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
7061 
7062   SDValue Carry = Next.getValue(1);
7063   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7064   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7065 
7066   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
7067     return false;
7068 
7069   if (UseGlue)
7070     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
7071                      Carry);
7072   else
7073     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
7074                      Zero, Carry);
7075 
7076   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7077 
7078   if (Opcode == ISD::SMUL_LOHI) {
7079     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7080                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
7081     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
7082 
7083     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7084                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
7085     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
7086   }
7087 
7088   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7089   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7090   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7091   return true;
7092 }
7093 
7094 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
7095                                SelectionDAG &DAG, MulExpansionKind Kind,
7096                                SDValue LL, SDValue LH, SDValue RL,
7097                                SDValue RH) const {
7098   SmallVector<SDValue, 2> Result;
7099   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
7100                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
7101                            DAG, Kind, LL, LH, RL, RH);
7102   if (Ok) {
7103     assert(Result.size() == 2);
7104     Lo = Result[0];
7105     Hi = Result[1];
7106   }
7107   return Ok;
7108 }
7109 
7110 // Check that (every element of) Z is undef or not an exact multiple of BW.
7111 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
7112   return ISD::matchUnaryPredicate(
7113       Z,
7114       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
7115       true);
7116 }
7117 
7118 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
7119                                           SelectionDAG &DAG) const {
7120   EVT VT = Node->getValueType(0);
7121 
7122   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7123                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7124                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7125                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7126     return SDValue();
7127 
7128   SDValue X = Node->getOperand(0);
7129   SDValue Y = Node->getOperand(1);
7130   SDValue Z = Node->getOperand(2);
7131 
7132   unsigned BW = VT.getScalarSizeInBits();
7133   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
7134   SDLoc DL(SDValue(Node, 0));
7135 
7136   EVT ShVT = Z.getValueType();
7137 
7138   // If a funnel shift in the other direction is more supported, use it.
7139   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
7140   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7141       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
7142     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7143       // fshl X, Y, Z -> fshr X, Y, -Z
7144       // fshr X, Y, Z -> fshl X, Y, -Z
7145       SDValue Zero = DAG.getConstant(0, DL, ShVT);
7146       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
7147     } else {
7148       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
7149       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
7150       SDValue One = DAG.getConstant(1, DL, ShVT);
7151       if (IsFSHL) {
7152         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7153         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
7154       } else {
7155         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7156         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
7157       }
7158       Z = DAG.getNOT(DL, Z, ShVT);
7159     }
7160     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
7161   }
7162 
7163   SDValue ShX, ShY;
7164   SDValue ShAmt, InvShAmt;
7165   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7166     // fshl: X << C | Y >> (BW - C)
7167     // fshr: X << (BW - C) | Y >> C
7168     // where C = Z % BW is not zero
7169     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7170     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7171     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
7172     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
7173     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
7174   } else {
7175     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7176     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7177     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
7178     if (isPowerOf2_32(BW)) {
7179       // Z % BW -> Z & (BW - 1)
7180       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
7181       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7182       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
7183     } else {
7184       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7185       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7186       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
7187     }
7188 
7189     SDValue One = DAG.getConstant(1, DL, ShVT);
7190     if (IsFSHL) {
7191       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
7192       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
7193       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
7194     } else {
7195       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
7196       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
7197       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
7198     }
7199   }
7200   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
7201 }
7202 
7203 // TODO: Merge with expandFunnelShift.
7204 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
7205                                   SelectionDAG &DAG) const {
7206   EVT VT = Node->getValueType(0);
7207   unsigned EltSizeInBits = VT.getScalarSizeInBits();
7208   bool IsLeft = Node->getOpcode() == ISD::ROTL;
7209   SDValue Op0 = Node->getOperand(0);
7210   SDValue Op1 = Node->getOperand(1);
7211   SDLoc DL(SDValue(Node, 0));
7212 
7213   EVT ShVT = Op1.getValueType();
7214   SDValue Zero = DAG.getConstant(0, DL, ShVT);
7215 
7216   // If a rotate in the other direction is more supported, use it.
7217   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
7218   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7219       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
7220     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7221     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
7222   }
7223 
7224   if (!AllowVectorOps && VT.isVector() &&
7225       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7226        !isOperationLegalOrCustom(ISD::SRL, VT) ||
7227        !isOperationLegalOrCustom(ISD::SUB, VT) ||
7228        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
7229        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7230     return SDValue();
7231 
7232   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
7233   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
7234   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
7235   SDValue ShVal;
7236   SDValue HsVal;
7237   if (isPowerOf2_32(EltSizeInBits)) {
7238     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
7239     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
7240     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7241     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
7242     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7243     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
7244     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
7245   } else {
7246     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
7247     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
7248     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
7249     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
7250     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7251     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
7252     SDValue One = DAG.getConstant(1, DL, ShVT);
7253     HsVal =
7254         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
7255   }
7256   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
7257 }
7258 
7259 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
7260                                       SelectionDAG &DAG) const {
7261   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
7262   EVT VT = Node->getValueType(0);
7263   unsigned VTBits = VT.getScalarSizeInBits();
7264   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
7265 
7266   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
7267   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
7268   SDValue ShOpLo = Node->getOperand(0);
7269   SDValue ShOpHi = Node->getOperand(1);
7270   SDValue ShAmt = Node->getOperand(2);
7271   EVT ShAmtVT = ShAmt.getValueType();
7272   EVT ShAmtCCVT =
7273       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
7274   SDLoc dl(Node);
7275 
7276   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
7277   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
7278   // away during isel.
7279   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7280                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
7281   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7282                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
7283                        : DAG.getConstant(0, dl, VT);
7284 
7285   SDValue Tmp2, Tmp3;
7286   if (IsSHL) {
7287     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
7288     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
7289   } else {
7290     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
7291     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
7292   }
7293 
7294   // If the shift amount is larger or equal than the width of a part we don't
7295   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
7296   // values for large shift amounts.
7297   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7298                                 DAG.getConstant(VTBits, dl, ShAmtVT));
7299   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
7300                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
7301 
7302   if (IsSHL) {
7303     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7304     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7305   } else {
7306     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7307     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7308   }
7309 }
7310 
7311 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
7312                                       SelectionDAG &DAG) const {
7313   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7314   SDValue Src = Node->getOperand(OpNo);
7315   EVT SrcVT = Src.getValueType();
7316   EVT DstVT = Node->getValueType(0);
7317   SDLoc dl(SDValue(Node, 0));
7318 
7319   // FIXME: Only f32 to i64 conversions are supported.
7320   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
7321     return false;
7322 
7323   if (Node->isStrictFPOpcode())
7324     // When a NaN is converted to an integer a trap is allowed. We can't
7325     // use this expansion here because it would eliminate that trap. Other
7326     // traps are also allowed and cannot be eliminated. See
7327     // IEEE 754-2008 sec 5.8.
7328     return false;
7329 
7330   // Expand f32 -> i64 conversion
7331   // This algorithm comes from compiler-rt's implementation of fixsfdi:
7332   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7333   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
7334   EVT IntVT = SrcVT.changeTypeToInteger();
7335   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
7336 
7337   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
7338   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
7339   SDValue Bias = DAG.getConstant(127, dl, IntVT);
7340   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
7341   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
7342   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
7343 
7344   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
7345 
7346   SDValue ExponentBits = DAG.getNode(
7347       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
7348       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
7349   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
7350 
7351   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
7352                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
7353                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
7354   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
7355 
7356   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
7357                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
7358                           DAG.getConstant(0x00800000, dl, IntVT));
7359 
7360   R = DAG.getZExtOrTrunc(R, dl, DstVT);
7361 
7362   R = DAG.getSelectCC(
7363       dl, Exponent, ExponentLoBit,
7364       DAG.getNode(ISD::SHL, dl, DstVT, R,
7365                   DAG.getZExtOrTrunc(
7366                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7367                       dl, IntShVT)),
7368       DAG.getNode(ISD::SRL, dl, DstVT, R,
7369                   DAG.getZExtOrTrunc(
7370                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7371                       dl, IntShVT)),
7372       ISD::SETGT);
7373 
7374   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7375                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7376 
7377   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7378                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7379   return true;
7380 }
7381 
7382 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7383                                       SDValue &Chain,
7384                                       SelectionDAG &DAG) const {
7385   SDLoc dl(SDValue(Node, 0));
7386   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7387   SDValue Src = Node->getOperand(OpNo);
7388 
7389   EVT SrcVT = Src.getValueType();
7390   EVT DstVT = Node->getValueType(0);
7391   EVT SetCCVT =
7392       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7393   EVT DstSetCCVT =
7394       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7395 
7396   // Only expand vector types if we have the appropriate vector bit operations.
7397   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7398                                                    ISD::FP_TO_SINT;
7399   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7400                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7401     return false;
7402 
7403   // If the maximum float value is smaller then the signed integer range,
7404   // the destination signmask can't be represented by the float, so we can
7405   // just use FP_TO_SINT directly.
7406   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7407   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7408   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7409   if (APFloat::opOverflow &
7410       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7411     if (Node->isStrictFPOpcode()) {
7412       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7413                            { Node->getOperand(0), Src });
7414       Chain = Result.getValue(1);
7415     } else
7416       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7417     return true;
7418   }
7419 
7420   // Don't expand it if there isn't cheap fsub instruction.
7421   if (!isOperationLegalOrCustom(
7422           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7423     return false;
7424 
7425   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7426   SDValue Sel;
7427 
7428   if (Node->isStrictFPOpcode()) {
7429     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7430                        Node->getOperand(0), /*IsSignaling*/ true);
7431     Chain = Sel.getValue(1);
7432   } else {
7433     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7434   }
7435 
7436   bool Strict = Node->isStrictFPOpcode() ||
7437                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7438 
7439   if (Strict) {
7440     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7441     // signmask then offset (the result of which should be fully representable).
7442     // Sel = Src < 0x8000000000000000
7443     // FltOfs = select Sel, 0, 0x8000000000000000
7444     // IntOfs = select Sel, 0, 0x8000000000000000
7445     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7446 
7447     // TODO: Should any fast-math-flags be set for the FSUB?
7448     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7449                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7450     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7451     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7452                                    DAG.getConstant(0, dl, DstVT),
7453                                    DAG.getConstant(SignMask, dl, DstVT));
7454     SDValue SInt;
7455     if (Node->isStrictFPOpcode()) {
7456       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7457                                 { Chain, Src, FltOfs });
7458       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7459                          { Val.getValue(1), Val });
7460       Chain = SInt.getValue(1);
7461     } else {
7462       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7463       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7464     }
7465     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7466   } else {
7467     // Expand based on maximum range of FP_TO_SINT:
7468     // True = fp_to_sint(Src)
7469     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7470     // Result = select (Src < 0x8000000000000000), True, False
7471 
7472     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7473     // TODO: Should any fast-math-flags be set for the FSUB?
7474     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7475                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7476     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7477                         DAG.getConstant(SignMask, dl, DstVT));
7478     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7479     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7480   }
7481   return true;
7482 }
7483 
7484 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7485                                       SDValue &Chain,
7486                                       SelectionDAG &DAG) const {
7487   // This transform is not correct for converting 0 when rounding mode is set
7488   // to round toward negative infinity which will produce -0.0. So disable under
7489   // strictfp.
7490   if (Node->isStrictFPOpcode())
7491     return false;
7492 
7493   SDValue Src = Node->getOperand(0);
7494   EVT SrcVT = Src.getValueType();
7495   EVT DstVT = Node->getValueType(0);
7496 
7497   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7498     return false;
7499 
7500   // Only expand vector types if we have the appropriate vector bit operations.
7501   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7502                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7503                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7504                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7505                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7506     return false;
7507 
7508   SDLoc dl(SDValue(Node, 0));
7509   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7510 
7511   // Implementation of unsigned i64 to f64 following the algorithm in
7512   // __floatundidf in compiler_rt.  This implementation performs rounding
7513   // correctly in all rounding modes with the exception of converting 0
7514   // when rounding toward negative infinity. In that case the fsub will produce
7515   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7516   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7517   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7518       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7519   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7520   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7521   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7522 
7523   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7524   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7525   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7526   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7527   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7528   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7529   SDValue HiSub =
7530       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7531   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7532   return true;
7533 }
7534 
7535 SDValue
7536 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
7537                                                SelectionDAG &DAG) const {
7538   unsigned Opcode = Node->getOpcode();
7539   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
7540           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
7541          "Wrong opcode");
7542 
7543   if (Node->getFlags().hasNoNaNs()) {
7544     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7545     SDValue Op1 = Node->getOperand(0);
7546     SDValue Op2 = Node->getOperand(1);
7547     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
7548     // Copy FMF flags, but always set the no-signed-zeros flag
7549     // as this is implied by the FMINNUM/FMAXNUM semantics.
7550     SDNodeFlags Flags = Node->getFlags();
7551     Flags.setNoSignedZeros(true);
7552     SelCC->setFlags(Flags);
7553     return SelCC;
7554   }
7555 
7556   return SDValue();
7557 }
7558 
7559 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7560                                               SelectionDAG &DAG) const {
7561   SDLoc dl(Node);
7562   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7563     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7564   EVT VT = Node->getValueType(0);
7565 
7566   if (VT.isScalableVector())
7567     report_fatal_error(
7568         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7569 
7570   if (isOperationLegalOrCustom(NewOp, VT)) {
7571     SDValue Quiet0 = Node->getOperand(0);
7572     SDValue Quiet1 = Node->getOperand(1);
7573 
7574     if (!Node->getFlags().hasNoNaNs()) {
7575       // Insert canonicalizes if it's possible we need to quiet to get correct
7576       // sNaN behavior.
7577       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7578         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7579                              Node->getFlags());
7580       }
7581       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7582         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7583                              Node->getFlags());
7584       }
7585     }
7586 
7587     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7588   }
7589 
7590   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7591   // instead if there are no NaNs.
7592   if (Node->getFlags().hasNoNaNs()) {
7593     unsigned IEEE2018Op =
7594         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7595     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7596       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7597                          Node->getOperand(1), Node->getFlags());
7598     }
7599   }
7600 
7601   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
7602     return SelCC;
7603 
7604   return SDValue();
7605 }
7606 
7607 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
7608                                          unsigned Test, SDNodeFlags Flags,
7609                                          const SDLoc &DL,
7610                                          SelectionDAG &DAG) const {
7611   EVT OperandVT = Op.getValueType();
7612   assert(OperandVT.isFloatingPoint());
7613 
7614   // Degenerated cases.
7615   if (Test == 0)
7616     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
7617   if ((Test & fcAllFlags) == fcAllFlags)
7618     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
7619 
7620   // PPC double double is a pair of doubles, of which the higher part determines
7621   // the value class.
7622   if (OperandVT == MVT::ppcf128) {
7623     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
7624                      DAG.getConstant(1, DL, MVT::i32));
7625     OperandVT = MVT::f64;
7626   }
7627 
7628   // Some checks may be represented as inversion of simpler check, for example
7629   // "inf|normal|subnormal|zero" => !"nan".
7630   bool IsInverted = false;
7631   if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) {
7632     IsInverted = true;
7633     Test = InvertedCheck;
7634   }
7635 
7636   // Floating-point type properties.
7637   EVT ScalarFloatVT = OperandVT.getScalarType();
7638   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
7639   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
7640   bool IsF80 = (ScalarFloatVT == MVT::f80);
7641 
7642   // Some checks can be implemented using float comparisons, if floating point
7643   // exceptions are ignored.
7644   if (Flags.hasNoFPExcept() &&
7645       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
7646     if (Test == fcZero)
7647       return DAG.getSetCC(DL, ResultVT, Op,
7648                           DAG.getConstantFP(0.0, DL, OperandVT),
7649                           IsInverted ? ISD::SETUNE : ISD::SETOEQ);
7650     if (Test == fcNan)
7651       return DAG.getSetCC(DL, ResultVT, Op, Op,
7652                           IsInverted ? ISD::SETO : ISD::SETUO);
7653   }
7654 
7655   // In the general case use integer operations.
7656   unsigned BitSize = OperandVT.getScalarSizeInBits();
7657   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
7658   if (OperandVT.isVector())
7659     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
7660                              OperandVT.getVectorElementCount());
7661   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
7662 
7663   // Various masks.
7664   APInt SignBit = APInt::getSignMask(BitSize);
7665   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
7666   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
7667   const unsigned ExplicitIntBitInF80 = 63;
7668   APInt ExpMask = Inf;
7669   if (IsF80)
7670     ExpMask.clearBit(ExplicitIntBitInF80);
7671   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
7672   APInt QNaNBitMask =
7673       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
7674   APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits());
7675 
7676   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
7677   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
7678   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
7679   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
7680   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
7681   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
7682 
7683   SDValue Res;
7684   const auto appendResult = [&](SDValue PartialRes) {
7685     if (PartialRes) {
7686       if (Res)
7687         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
7688       else
7689         Res = PartialRes;
7690     }
7691   };
7692 
7693   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
7694   const auto getIntBitIsSet = [&]() -> SDValue {
7695     if (!IntBitIsSetV) {
7696       APInt IntBitMask(BitSize, 0);
7697       IntBitMask.setBit(ExplicitIntBitInF80);
7698       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
7699       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
7700       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
7701     }
7702     return IntBitIsSetV;
7703   };
7704 
7705   // Split the value into sign bit and absolute value.
7706   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
7707   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
7708                                DAG.getConstant(0.0, DL, IntVT), ISD::SETLT);
7709 
7710   // Tests that involve more than one class should be processed first.
7711   SDValue PartialRes;
7712 
7713   if (IsF80)
7714     ; // Detect finite numbers of f80 by checking individual classes because
7715       // they have different settings of the explicit integer bit.
7716   else if ((Test & fcFinite) == fcFinite) {
7717     // finite(V) ==> abs(V) < exp_mask
7718     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7719     Test &= ~fcFinite;
7720   } else if ((Test & fcFinite) == fcPosFinite) {
7721     // finite(V) && V > 0 ==> V < exp_mask
7722     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
7723     Test &= ~fcPosFinite;
7724   } else if ((Test & fcFinite) == fcNegFinite) {
7725     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
7726     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7727     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7728     Test &= ~fcNegFinite;
7729   }
7730   appendResult(PartialRes);
7731 
7732   // Check for individual classes.
7733 
7734   if (unsigned PartialCheck = Test & fcZero) {
7735     if (PartialCheck == fcPosZero)
7736       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
7737     else if (PartialCheck == fcZero)
7738       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
7739     else // ISD::fcNegZero
7740       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
7741     appendResult(PartialRes);
7742   }
7743 
7744   if (unsigned PartialCheck = Test & fcInf) {
7745     if (PartialCheck == fcPosInf)
7746       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
7747     else if (PartialCheck == fcInf)
7748       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
7749     else { // ISD::fcNegInf
7750       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
7751       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
7752       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
7753     }
7754     appendResult(PartialRes);
7755   }
7756 
7757   if (unsigned PartialCheck = Test & fcNan) {
7758     APInt InfWithQnanBit = Inf | QNaNBitMask;
7759     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
7760     if (PartialCheck == fcNan) {
7761       // isnan(V) ==> abs(V) > int(inf)
7762       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7763       if (IsF80) {
7764         // Recognize unsupported values as NaNs for compatibility with glibc.
7765         // In them (exp(V)==0) == int_bit.
7766         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
7767         SDValue ExpIsZero =
7768             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
7769         SDValue IsPseudo =
7770             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
7771         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
7772       }
7773     } else if (PartialCheck == fcQNan) {
7774       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
7775       PartialRes =
7776           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
7777     } else { // ISD::fcSNan
7778       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
7779       //                    abs(V) < (unsigned(Inf) | quiet_bit)
7780       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7781       SDValue IsNotQnan =
7782           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
7783       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
7784     }
7785     appendResult(PartialRes);
7786   }
7787 
7788   if (unsigned PartialCheck = Test & fcSubnormal) {
7789     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
7790     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
7791     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
7792     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
7793     SDValue VMinusOneV =
7794         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
7795     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
7796     if (PartialCheck == fcNegSubnormal)
7797       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7798     appendResult(PartialRes);
7799   }
7800 
7801   if (unsigned PartialCheck = Test & fcNormal) {
7802     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
7803     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
7804     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
7805     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
7806     APInt ExpLimit = ExpMask - ExpLSB;
7807     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
7808     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
7809     if (PartialCheck == fcNegNormal)
7810       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7811     else if (PartialCheck == fcPosNormal) {
7812       SDValue PosSignV =
7813           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
7814       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
7815     }
7816     if (IsF80)
7817       PartialRes =
7818           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
7819     appendResult(PartialRes);
7820   }
7821 
7822   if (!Res)
7823     return DAG.getConstant(IsInverted, DL, ResultVT);
7824   if (IsInverted)
7825     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
7826   return Res;
7827 }
7828 
7829 // Only expand vector types if we have the appropriate vector bit operations.
7830 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7831   assert(VT.isVector() && "Expected vector type");
7832   unsigned Len = VT.getScalarSizeInBits();
7833   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7834          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7835          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7836          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7837          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7838 }
7839 
7840 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7841   SDLoc dl(Node);
7842   EVT VT = Node->getValueType(0);
7843   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7844   SDValue Op = Node->getOperand(0);
7845   unsigned Len = VT.getScalarSizeInBits();
7846   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7847 
7848   // TODO: Add support for irregular type lengths.
7849   if (!(Len <= 128 && Len % 8 == 0))
7850     return SDValue();
7851 
7852   // Only expand vector types if we have the appropriate vector bit operations.
7853   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7854     return SDValue();
7855 
7856   // This is the "best" algorithm from
7857   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7858   SDValue Mask55 =
7859       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7860   SDValue Mask33 =
7861       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7862   SDValue Mask0F =
7863       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7864 
7865   // v = v - ((v >> 1) & 0x55555555...)
7866   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7867                    DAG.getNode(ISD::AND, dl, VT,
7868                                DAG.getNode(ISD::SRL, dl, VT, Op,
7869                                            DAG.getConstant(1, dl, ShVT)),
7870                                Mask55));
7871   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7872   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7873                    DAG.getNode(ISD::AND, dl, VT,
7874                                DAG.getNode(ISD::SRL, dl, VT, Op,
7875                                            DAG.getConstant(2, dl, ShVT)),
7876                                Mask33));
7877   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7878   Op = DAG.getNode(ISD::AND, dl, VT,
7879                    DAG.getNode(ISD::ADD, dl, VT, Op,
7880                                DAG.getNode(ISD::SRL, dl, VT, Op,
7881                                            DAG.getConstant(4, dl, ShVT))),
7882                    Mask0F);
7883 
7884   if (Len <= 8)
7885     return Op;
7886 
7887   // Avoid the multiply if we only have 2 bytes to add.
7888   // TODO: Only doing this for scalars because vectors weren't as obviously
7889   // improved.
7890   if (Len == 16 && !VT.isVector()) {
7891     // v = (v + (v >> 8)) & 0x00FF;
7892     return DAG.getNode(ISD::AND, dl, VT,
7893                      DAG.getNode(ISD::ADD, dl, VT, Op,
7894                                  DAG.getNode(ISD::SRL, dl, VT, Op,
7895                                              DAG.getConstant(8, dl, ShVT))),
7896                      DAG.getConstant(0xFF, dl, VT));
7897   }
7898 
7899   // v = (v * 0x01010101...) >> (Len - 8)
7900   SDValue Mask01 =
7901       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7902   return DAG.getNode(ISD::SRL, dl, VT,
7903                      DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7904                      DAG.getConstant(Len - 8, dl, ShVT));
7905 }
7906 
7907 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7908   SDLoc dl(Node);
7909   EVT VT = Node->getValueType(0);
7910   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7911   SDValue Op = Node->getOperand(0);
7912   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7913 
7914   // If the non-ZERO_UNDEF version is supported we can use that instead.
7915   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7916       isOperationLegalOrCustom(ISD::CTLZ, VT))
7917     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7918 
7919   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7920   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7921     EVT SetCCVT =
7922         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7923     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7924     SDValue Zero = DAG.getConstant(0, dl, VT);
7925     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7926     return DAG.getSelect(dl, VT, SrcIsZero,
7927                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7928   }
7929 
7930   // Only expand vector types if we have the appropriate vector bit operations.
7931   // This includes the operations needed to expand CTPOP if it isn't supported.
7932   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7933                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7934                          !canExpandVectorCTPOP(*this, VT)) ||
7935                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7936                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7937     return SDValue();
7938 
7939   // for now, we do this:
7940   // x = x | (x >> 1);
7941   // x = x | (x >> 2);
7942   // ...
7943   // x = x | (x >>16);
7944   // x = x | (x >>32); // for 64-bit input
7945   // return popcount(~x);
7946   //
7947   // Ref: "Hacker's Delight" by Henry Warren
7948   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
7949     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7950     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7951                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7952   }
7953   Op = DAG.getNOT(dl, Op, VT);
7954   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7955 }
7956 
7957 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7958   SDLoc dl(Node);
7959   EVT VT = Node->getValueType(0);
7960   SDValue Op = Node->getOperand(0);
7961   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7962 
7963   // If the non-ZERO_UNDEF version is supported we can use that instead.
7964   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7965       isOperationLegalOrCustom(ISD::CTTZ, VT))
7966     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7967 
7968   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7969   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7970     EVT SetCCVT =
7971         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7972     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7973     SDValue Zero = DAG.getConstant(0, dl, VT);
7974     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7975     return DAG.getSelect(dl, VT, SrcIsZero,
7976                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7977   }
7978 
7979   // Only expand vector types if we have the appropriate vector bit operations.
7980   // This includes the operations needed to expand CTPOP if it isn't supported.
7981   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7982                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7983                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7984                          !canExpandVectorCTPOP(*this, VT)) ||
7985                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7986                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7987                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7988     return SDValue();
7989 
7990   // for now, we use: { return popcount(~x & (x - 1)); }
7991   // unless the target has ctlz but not ctpop, in which case we use:
7992   // { return 32 - nlz(~x & (x-1)); }
7993   // Ref: "Hacker's Delight" by Henry Warren
7994   SDValue Tmp = DAG.getNode(
7995       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7996       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7997 
7998   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7999   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
8000     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
8001                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
8002   }
8003 
8004   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
8005 }
8006 
8007 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
8008                                   bool IsNegative) const {
8009   SDLoc dl(N);
8010   EVT VT = N->getValueType(0);
8011   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
8012   SDValue Op = N->getOperand(0);
8013 
8014   // abs(x) -> smax(x,sub(0,x))
8015   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
8016       isOperationLegal(ISD::SMAX, VT)) {
8017     SDValue Zero = DAG.getConstant(0, dl, VT);
8018     return DAG.getNode(ISD::SMAX, dl, VT, Op,
8019                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
8020   }
8021 
8022   // abs(x) -> umin(x,sub(0,x))
8023   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
8024       isOperationLegal(ISD::UMIN, VT)) {
8025     SDValue Zero = DAG.getConstant(0, dl, VT);
8026     Op = DAG.getFreeze(Op);
8027     return DAG.getNode(ISD::UMIN, dl, VT, Op,
8028                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
8029   }
8030 
8031   // 0 - abs(x) -> smin(x, sub(0,x))
8032   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
8033       isOperationLegal(ISD::SMIN, VT)) {
8034     Op = DAG.getFreeze(Op);
8035     SDValue Zero = DAG.getConstant(0, dl, VT);
8036     return DAG.getNode(ISD::SMIN, dl, VT, Op,
8037                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
8038   }
8039 
8040   // Only expand vector types if we have the appropriate vector operations.
8041   if (VT.isVector() &&
8042       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
8043        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
8044        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
8045        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
8046     return SDValue();
8047 
8048   Op = DAG.getFreeze(Op);
8049   SDValue Shift =
8050       DAG.getNode(ISD::SRA, dl, VT, Op,
8051                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
8052   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
8053 
8054   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
8055   if (!IsNegative)
8056     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
8057 
8058   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
8059   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
8060 }
8061 
8062 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
8063   SDLoc dl(N);
8064   EVT VT = N->getValueType(0);
8065   SDValue Op = N->getOperand(0);
8066 
8067   if (!VT.isSimple())
8068     return SDValue();
8069 
8070   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8071   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
8072   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
8073   default:
8074     return SDValue();
8075   case MVT::i16:
8076     // Use a rotate by 8. This can be further expanded if necessary.
8077     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8078   case MVT::i32:
8079     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8080     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8081     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8082     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8083     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
8084                        DAG.getConstant(0xFF0000, dl, VT));
8085     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
8086     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
8087     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8088     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8089   case MVT::i64:
8090     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
8091     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
8092     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8093     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8094     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8095     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8096     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
8097     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
8098     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
8099                        DAG.getConstant(255ULL<<48, dl, VT));
8100     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
8101                        DAG.getConstant(255ULL<<40, dl, VT));
8102     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
8103                        DAG.getConstant(255ULL<<32, dl, VT));
8104     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
8105                        DAG.getConstant(255ULL<<24, dl, VT));
8106     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
8107                        DAG.getConstant(255ULL<<16, dl, VT));
8108     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
8109                        DAG.getConstant(255ULL<<8 , dl, VT));
8110     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
8111     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
8112     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
8113     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8114     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
8115     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8116     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
8117   }
8118 }
8119 
8120 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
8121   SDLoc dl(N);
8122   EVT VT = N->getValueType(0);
8123   SDValue Op = N->getOperand(0);
8124   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8125   unsigned Sz = VT.getScalarSizeInBits();
8126 
8127   SDValue Tmp, Tmp2, Tmp3;
8128 
8129   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
8130   // and finally the i1 pairs.
8131   // TODO: We can easily support i4/i2 legal types if any target ever does.
8132   if (Sz >= 8 && isPowerOf2_32(Sz)) {
8133     // Create the masks - repeating the pattern every byte.
8134     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
8135     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
8136     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
8137 
8138     // BSWAP if the type is wider than a single byte.
8139     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
8140 
8141     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
8142     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
8143     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
8144     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
8145     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
8146     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8147 
8148     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
8149     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
8150     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
8151     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
8152     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
8153     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8154 
8155     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
8156     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
8157     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
8158     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
8159     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
8160     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8161     return Tmp;
8162   }
8163 
8164   Tmp = DAG.getConstant(0, dl, VT);
8165   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
8166     if (I < J)
8167       Tmp2 =
8168           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
8169     else
8170       Tmp2 =
8171           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
8172 
8173     APInt Shift(Sz, 1);
8174     Shift <<= J;
8175     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
8176     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
8177   }
8178 
8179   return Tmp;
8180 }
8181 
8182 std::pair<SDValue, SDValue>
8183 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
8184                                     SelectionDAG &DAG) const {
8185   SDLoc SL(LD);
8186   SDValue Chain = LD->getChain();
8187   SDValue BasePTR = LD->getBasePtr();
8188   EVT SrcVT = LD->getMemoryVT();
8189   EVT DstVT = LD->getValueType(0);
8190   ISD::LoadExtType ExtType = LD->getExtensionType();
8191 
8192   if (SrcVT.isScalableVector())
8193     report_fatal_error("Cannot scalarize scalable vector loads");
8194 
8195   unsigned NumElem = SrcVT.getVectorNumElements();
8196 
8197   EVT SrcEltVT = SrcVT.getScalarType();
8198   EVT DstEltVT = DstVT.getScalarType();
8199 
8200   // A vector must always be stored in memory as-is, i.e. without any padding
8201   // between the elements, since various code depend on it, e.g. in the
8202   // handling of a bitcast of a vector type to int, which may be done with a
8203   // vector store followed by an integer load. A vector that does not have
8204   // elements that are byte-sized must therefore be stored as an integer
8205   // built out of the extracted vector elements.
8206   if (!SrcEltVT.isByteSized()) {
8207     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
8208     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
8209 
8210     unsigned NumSrcBits = SrcVT.getSizeInBits();
8211     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
8212 
8213     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
8214     SDValue SrcEltBitMask = DAG.getConstant(
8215         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
8216 
8217     // Load the whole vector and avoid masking off the top bits as it makes
8218     // the codegen worse.
8219     SDValue Load =
8220         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
8221                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
8222                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8223 
8224     SmallVector<SDValue, 8> Vals;
8225     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8226       unsigned ShiftIntoIdx =
8227           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8228       SDValue ShiftAmount =
8229           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
8230                                      LoadVT, SL, /*LegalTypes=*/false);
8231       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
8232       SDValue Elt =
8233           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
8234       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
8235 
8236       if (ExtType != ISD::NON_EXTLOAD) {
8237         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
8238         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
8239       }
8240 
8241       Vals.push_back(Scalar);
8242     }
8243 
8244     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8245     return std::make_pair(Value, Load.getValue(1));
8246   }
8247 
8248   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
8249   assert(SrcEltVT.isByteSized());
8250 
8251   SmallVector<SDValue, 8> Vals;
8252   SmallVector<SDValue, 8> LoadChains;
8253 
8254   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8255     SDValue ScalarLoad =
8256         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
8257                        LD->getPointerInfo().getWithOffset(Idx * Stride),
8258                        SrcEltVT, LD->getOriginalAlign(),
8259                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8260 
8261     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
8262 
8263     Vals.push_back(ScalarLoad.getValue(0));
8264     LoadChains.push_back(ScalarLoad.getValue(1));
8265   }
8266 
8267   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
8268   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8269 
8270   return std::make_pair(Value, NewChain);
8271 }
8272 
8273 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
8274                                              SelectionDAG &DAG) const {
8275   SDLoc SL(ST);
8276 
8277   SDValue Chain = ST->getChain();
8278   SDValue BasePtr = ST->getBasePtr();
8279   SDValue Value = ST->getValue();
8280   EVT StVT = ST->getMemoryVT();
8281 
8282   if (StVT.isScalableVector())
8283     report_fatal_error("Cannot scalarize scalable vector stores");
8284 
8285   // The type of the data we want to save
8286   EVT RegVT = Value.getValueType();
8287   EVT RegSclVT = RegVT.getScalarType();
8288 
8289   // The type of data as saved in memory.
8290   EVT MemSclVT = StVT.getScalarType();
8291 
8292   unsigned NumElem = StVT.getVectorNumElements();
8293 
8294   // A vector must always be stored in memory as-is, i.e. without any padding
8295   // between the elements, since various code depend on it, e.g. in the
8296   // handling of a bitcast of a vector type to int, which may be done with a
8297   // vector store followed by an integer load. A vector that does not have
8298   // elements that are byte-sized must therefore be stored as an integer
8299   // built out of the extracted vector elements.
8300   if (!MemSclVT.isByteSized()) {
8301     unsigned NumBits = StVT.getSizeInBits();
8302     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
8303 
8304     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
8305 
8306     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8307       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8308                                 DAG.getVectorIdxConstant(Idx, SL));
8309       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
8310       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
8311       unsigned ShiftIntoIdx =
8312           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8313       SDValue ShiftAmount =
8314           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
8315       SDValue ShiftedElt =
8316           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
8317       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
8318     }
8319 
8320     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
8321                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8322                         ST->getAAInfo());
8323   }
8324 
8325   // Store Stride in bytes
8326   unsigned Stride = MemSclVT.getSizeInBits() / 8;
8327   assert(Stride && "Zero stride!");
8328   // Extract each of the elements from the original vector and save them into
8329   // memory individually.
8330   SmallVector<SDValue, 8> Stores;
8331   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8332     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8333                               DAG.getVectorIdxConstant(Idx, SL));
8334 
8335     SDValue Ptr =
8336         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
8337 
8338     // This scalar TruncStore may be illegal, but we legalize it later.
8339     SDValue Store = DAG.getTruncStore(
8340         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
8341         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8342         ST->getAAInfo());
8343 
8344     Stores.push_back(Store);
8345   }
8346 
8347   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
8348 }
8349 
8350 std::pair<SDValue, SDValue>
8351 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
8352   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
8353          "unaligned indexed loads not implemented!");
8354   SDValue Chain = LD->getChain();
8355   SDValue Ptr = LD->getBasePtr();
8356   EVT VT = LD->getValueType(0);
8357   EVT LoadedVT = LD->getMemoryVT();
8358   SDLoc dl(LD);
8359   auto &MF = DAG.getMachineFunction();
8360 
8361   if (VT.isFloatingPoint() || VT.isVector()) {
8362     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
8363     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
8364       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
8365           LoadedVT.isVector()) {
8366         // Scalarize the load and let the individual components be handled.
8367         return scalarizeVectorLoad(LD, DAG);
8368       }
8369 
8370       // Expand to a (misaligned) integer load of the same size,
8371       // then bitconvert to floating point or vector.
8372       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
8373                                     LD->getMemOperand());
8374       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
8375       if (LoadedVT != VT)
8376         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
8377                              ISD::ANY_EXTEND, dl, VT, Result);
8378 
8379       return std::make_pair(Result, newLoad.getValue(1));
8380     }
8381 
8382     // Copy the value to a (aligned) stack slot using (unaligned) integer
8383     // loads and stores, then do a (aligned) load from the stack slot.
8384     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
8385     unsigned LoadedBytes = LoadedVT.getStoreSize();
8386     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8387     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
8388 
8389     // Make sure the stack slot is also aligned for the register type.
8390     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
8391     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
8392     SmallVector<SDValue, 8> Stores;
8393     SDValue StackPtr = StackBase;
8394     unsigned Offset = 0;
8395 
8396     EVT PtrVT = Ptr.getValueType();
8397     EVT StackPtrVT = StackPtr.getValueType();
8398 
8399     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8400     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8401 
8402     // Do all but one copies using the full register width.
8403     for (unsigned i = 1; i < NumRegs; i++) {
8404       // Load one integer register's worth from the original location.
8405       SDValue Load = DAG.getLoad(
8406           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
8407           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8408           LD->getAAInfo());
8409       // Follow the load with a store to the stack slot.  Remember the store.
8410       Stores.push_back(DAG.getStore(
8411           Load.getValue(1), dl, Load, StackPtr,
8412           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
8413       // Increment the pointers.
8414       Offset += RegBytes;
8415 
8416       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8417       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8418     }
8419 
8420     // The last copy may be partial.  Do an extending load.
8421     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
8422                                   8 * (LoadedBytes - Offset));
8423     SDValue Load =
8424         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
8425                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
8426                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8427                        LD->getAAInfo());
8428     // Follow the load with a store to the stack slot.  Remember the store.
8429     // On big-endian machines this requires a truncating store to ensure
8430     // that the bits end up in the right place.
8431     Stores.push_back(DAG.getTruncStore(
8432         Load.getValue(1), dl, Load, StackPtr,
8433         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
8434 
8435     // The order of the stores doesn't matter - say it with a TokenFactor.
8436     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8437 
8438     // Finally, perform the original load only redirected to the stack slot.
8439     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
8440                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
8441                           LoadedVT);
8442 
8443     // Callers expect a MERGE_VALUES node.
8444     return std::make_pair(Load, TF);
8445   }
8446 
8447   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
8448          "Unaligned load of unsupported type.");
8449 
8450   // Compute the new VT that is half the size of the old one.  This is an
8451   // integer MVT.
8452   unsigned NumBits = LoadedVT.getSizeInBits();
8453   EVT NewLoadedVT;
8454   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
8455   NumBits >>= 1;
8456 
8457   Align Alignment = LD->getOriginalAlign();
8458   unsigned IncrementSize = NumBits / 8;
8459   ISD::LoadExtType HiExtType = LD->getExtensionType();
8460 
8461   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
8462   if (HiExtType == ISD::NON_EXTLOAD)
8463     HiExtType = ISD::ZEXTLOAD;
8464 
8465   // Load the value in two parts
8466   SDValue Lo, Hi;
8467   if (DAG.getDataLayout().isLittleEndian()) {
8468     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8469                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8470                         LD->getAAInfo());
8471 
8472     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8473     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
8474                         LD->getPointerInfo().getWithOffset(IncrementSize),
8475                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8476                         LD->getAAInfo());
8477   } else {
8478     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8479                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8480                         LD->getAAInfo());
8481 
8482     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8483     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
8484                         LD->getPointerInfo().getWithOffset(IncrementSize),
8485                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8486                         LD->getAAInfo());
8487   }
8488 
8489   // aggregate the two parts
8490   SDValue ShiftAmount =
8491       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
8492                                                     DAG.getDataLayout()));
8493   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
8494   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
8495 
8496   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
8497                              Hi.getValue(1));
8498 
8499   return std::make_pair(Result, TF);
8500 }
8501 
8502 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
8503                                              SelectionDAG &DAG) const {
8504   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
8505          "unaligned indexed stores not implemented!");
8506   SDValue Chain = ST->getChain();
8507   SDValue Ptr = ST->getBasePtr();
8508   SDValue Val = ST->getValue();
8509   EVT VT = Val.getValueType();
8510   Align Alignment = ST->getOriginalAlign();
8511   auto &MF = DAG.getMachineFunction();
8512   EVT StoreMemVT = ST->getMemoryVT();
8513 
8514   SDLoc dl(ST);
8515   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
8516     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8517     if (isTypeLegal(intVT)) {
8518       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
8519           StoreMemVT.isVector()) {
8520         // Scalarize the store and let the individual components be handled.
8521         SDValue Result = scalarizeVectorStore(ST, DAG);
8522         return Result;
8523       }
8524       // Expand to a bitconvert of the value to the integer type of the
8525       // same size, then a (misaligned) int store.
8526       // FIXME: Does not handle truncating floating point stores!
8527       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
8528       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
8529                             Alignment, ST->getMemOperand()->getFlags());
8530       return Result;
8531     }
8532     // Do a (aligned) store to a stack slot, then copy from the stack slot
8533     // to the final destination using (unaligned) integer loads and stores.
8534     MVT RegVT = getRegisterType(
8535         *DAG.getContext(),
8536         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
8537     EVT PtrVT = Ptr.getValueType();
8538     unsigned StoredBytes = StoreMemVT.getStoreSize();
8539     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8540     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
8541 
8542     // Make sure the stack slot is also aligned for the register type.
8543     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
8544     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8545 
8546     // Perform the original store, only redirected to the stack slot.
8547     SDValue Store = DAG.getTruncStore(
8548         Chain, dl, Val, StackPtr,
8549         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
8550 
8551     EVT StackPtrVT = StackPtr.getValueType();
8552 
8553     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8554     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8555     SmallVector<SDValue, 8> Stores;
8556     unsigned Offset = 0;
8557 
8558     // Do all but one copies using the full register width.
8559     for (unsigned i = 1; i < NumRegs; i++) {
8560       // Load one integer register's worth from the stack slot.
8561       SDValue Load = DAG.getLoad(
8562           RegVT, dl, Store, StackPtr,
8563           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
8564       // Store it to the final location.  Remember the store.
8565       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
8566                                     ST->getPointerInfo().getWithOffset(Offset),
8567                                     ST->getOriginalAlign(),
8568                                     ST->getMemOperand()->getFlags()));
8569       // Increment the pointers.
8570       Offset += RegBytes;
8571       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8572       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8573     }
8574 
8575     // The last store may be partial.  Do a truncating store.  On big-endian
8576     // machines this requires an extending load from the stack slot to ensure
8577     // that the bits are in the right place.
8578     EVT LoadMemVT =
8579         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
8580 
8581     // Load from the stack slot.
8582     SDValue Load = DAG.getExtLoad(
8583         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
8584         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
8585 
8586     Stores.push_back(
8587         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
8588                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
8589                           ST->getOriginalAlign(),
8590                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
8591     // The order of the stores doesn't matter - say it with a TokenFactor.
8592     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8593     return Result;
8594   }
8595 
8596   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
8597          "Unaligned store of unknown type.");
8598   // Get the half-size VT
8599   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
8600   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
8601   unsigned IncrementSize = NumBits / 8;
8602 
8603   // Divide the stored value in two parts.
8604   SDValue ShiftAmount = DAG.getConstant(
8605       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
8606   SDValue Lo = Val;
8607   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
8608 
8609   // Store the two parts
8610   SDValue Store1, Store2;
8611   Store1 = DAG.getTruncStore(Chain, dl,
8612                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
8613                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
8614                              ST->getMemOperand()->getFlags());
8615 
8616   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8617   Store2 = DAG.getTruncStore(
8618       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
8619       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
8620       ST->getMemOperand()->getFlags(), ST->getAAInfo());
8621 
8622   SDValue Result =
8623       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
8624   return Result;
8625 }
8626 
8627 SDValue
8628 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
8629                                        const SDLoc &DL, EVT DataVT,
8630                                        SelectionDAG &DAG,
8631                                        bool IsCompressedMemory) const {
8632   SDValue Increment;
8633   EVT AddrVT = Addr.getValueType();
8634   EVT MaskVT = Mask.getValueType();
8635   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
8636          "Incompatible types of Data and Mask");
8637   if (IsCompressedMemory) {
8638     if (DataVT.isScalableVector())
8639       report_fatal_error(
8640           "Cannot currently handle compressed memory with scalable vectors");
8641     // Incrementing the pointer according to number of '1's in the mask.
8642     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
8643     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
8644     if (MaskIntVT.getSizeInBits() < 32) {
8645       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
8646       MaskIntVT = MVT::i32;
8647     }
8648 
8649     // Count '1's with POPCNT.
8650     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
8651     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
8652     // Scale is an element size in bytes.
8653     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
8654                                     AddrVT);
8655     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
8656   } else if (DataVT.isScalableVector()) {
8657     Increment = DAG.getVScale(DL, AddrVT,
8658                               APInt(AddrVT.getFixedSizeInBits(),
8659                                     DataVT.getStoreSize().getKnownMinSize()));
8660   } else
8661     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
8662 
8663   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
8664 }
8665 
8666 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
8667                                        EVT VecVT, const SDLoc &dl,
8668                                        ElementCount SubEC) {
8669   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
8670          "Cannot index a scalable vector within a fixed-width vector");
8671 
8672   unsigned NElts = VecVT.getVectorMinNumElements();
8673   unsigned NumSubElts = SubEC.getKnownMinValue();
8674   EVT IdxVT = Idx.getValueType();
8675 
8676   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
8677     // If this is a constant index and we know the value plus the number of the
8678     // elements in the subvector minus one is less than the minimum number of
8679     // elements then it's safe to return Idx.
8680     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
8681       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
8682         return Idx;
8683     SDValue VS =
8684         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
8685     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
8686     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
8687                               DAG.getConstant(NumSubElts, dl, IdxVT));
8688     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
8689   }
8690   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
8691     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
8692     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
8693                        DAG.getConstant(Imm, dl, IdxVT));
8694   }
8695   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
8696   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
8697                      DAG.getConstant(MaxIndex, dl, IdxVT));
8698 }
8699 
8700 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
8701                                                 SDValue VecPtr, EVT VecVT,
8702                                                 SDValue Index) const {
8703   return getVectorSubVecPointer(
8704       DAG, VecPtr, VecVT,
8705       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
8706       Index);
8707 }
8708 
8709 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
8710                                                SDValue VecPtr, EVT VecVT,
8711                                                EVT SubVecVT,
8712                                                SDValue Index) const {
8713   SDLoc dl(Index);
8714   // Make sure the index type is big enough to compute in.
8715   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
8716 
8717   EVT EltVT = VecVT.getVectorElementType();
8718 
8719   // Calculate the element offset and add it to the pointer.
8720   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
8721   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
8722          "Converting bits to bytes lost precision");
8723   assert(SubVecVT.getVectorElementType() == EltVT &&
8724          "Sub-vector must be a vector with matching element type");
8725   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
8726                                   SubVecVT.getVectorElementCount());
8727 
8728   EVT IdxVT = Index.getValueType();
8729   if (SubVecVT.isScalableVector())
8730     Index =
8731         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8732                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
8733 
8734   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8735                       DAG.getConstant(EltSize, dl, IdxVT));
8736   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
8737 }
8738 
8739 //===----------------------------------------------------------------------===//
8740 // Implementation of Emulated TLS Model
8741 //===----------------------------------------------------------------------===//
8742 
8743 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8744                                                 SelectionDAG &DAG) const {
8745   // Access to address of TLS varialbe xyz is lowered to a function call:
8746   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8747   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8748   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8749   SDLoc dl(GA);
8750 
8751   ArgListTy Args;
8752   ArgListEntry Entry;
8753   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8754   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8755   StringRef EmuTlsVarName(NameString);
8756   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8757   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8758   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8759   Entry.Ty = VoidPtrType;
8760   Args.push_back(Entry);
8761 
8762   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8763 
8764   TargetLowering::CallLoweringInfo CLI(DAG);
8765   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8766   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8767   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8768 
8769   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8770   // At last for X86 targets, maybe good for other targets too?
8771   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8772   MFI.setAdjustsStack(true); // Is this only for X86 target?
8773   MFI.setHasCalls(true);
8774 
8775   assert((GA->getOffset() == 0) &&
8776          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8777   return CallResult.first;
8778 }
8779 
8780 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8781                                                 SelectionDAG &DAG) const {
8782   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8783   if (!isCtlzFast())
8784     return SDValue();
8785   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8786   SDLoc dl(Op);
8787   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8788     if (C->isZero() && CC == ISD::SETEQ) {
8789       EVT VT = Op.getOperand(0).getValueType();
8790       SDValue Zext = Op.getOperand(0);
8791       if (VT.bitsLT(MVT::i32)) {
8792         VT = MVT::i32;
8793         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8794       }
8795       unsigned Log2b = Log2_32(VT.getSizeInBits());
8796       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8797       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8798                                 DAG.getConstant(Log2b, dl, MVT::i32));
8799       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8800     }
8801   }
8802   return SDValue();
8803 }
8804 
8805 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8806   SDValue Op0 = Node->getOperand(0);
8807   SDValue Op1 = Node->getOperand(1);
8808   EVT VT = Op0.getValueType();
8809   unsigned Opcode = Node->getOpcode();
8810   SDLoc DL(Node);
8811 
8812   // umin(x,y) -> sub(x,usubsat(x,y))
8813   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8814       isOperationLegal(ISD::USUBSAT, VT)) {
8815     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8816                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8817   }
8818 
8819   // umax(x,y) -> add(x,usubsat(y,x))
8820   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8821       isOperationLegal(ISD::USUBSAT, VT)) {
8822     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8823                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8824   }
8825 
8826   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8827   ISD::CondCode CC;
8828   switch (Opcode) {
8829   default: llvm_unreachable("How did we get here?");
8830   case ISD::SMAX: CC = ISD::SETGT; break;
8831   case ISD::SMIN: CC = ISD::SETLT; break;
8832   case ISD::UMAX: CC = ISD::SETUGT; break;
8833   case ISD::UMIN: CC = ISD::SETULT; break;
8834   }
8835 
8836   // FIXME: Should really try to split the vector in case it's legal on a
8837   // subvector.
8838   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8839     return DAG.UnrollVectorOp(Node);
8840 
8841   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8842   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8843   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8844 }
8845 
8846 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8847   unsigned Opcode = Node->getOpcode();
8848   SDValue LHS = Node->getOperand(0);
8849   SDValue RHS = Node->getOperand(1);
8850   EVT VT = LHS.getValueType();
8851   SDLoc dl(Node);
8852 
8853   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8854   assert(VT.isInteger() && "Expected operands to be integers");
8855 
8856   // usub.sat(a, b) -> umax(a, b) - b
8857   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8858     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8859     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8860   }
8861 
8862   // uadd.sat(a, b) -> umin(a, ~b) + b
8863   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8864     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8865     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8866     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8867   }
8868 
8869   unsigned OverflowOp;
8870   switch (Opcode) {
8871   case ISD::SADDSAT:
8872     OverflowOp = ISD::SADDO;
8873     break;
8874   case ISD::UADDSAT:
8875     OverflowOp = ISD::UADDO;
8876     break;
8877   case ISD::SSUBSAT:
8878     OverflowOp = ISD::SSUBO;
8879     break;
8880   case ISD::USUBSAT:
8881     OverflowOp = ISD::USUBO;
8882     break;
8883   default:
8884     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8885                      "addition or subtraction node.");
8886   }
8887 
8888   // FIXME: Should really try to split the vector in case it's legal on a
8889   // subvector.
8890   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8891     return DAG.UnrollVectorOp(Node);
8892 
8893   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8894   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8895   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8896   SDValue SumDiff = Result.getValue(0);
8897   SDValue Overflow = Result.getValue(1);
8898   SDValue Zero = DAG.getConstant(0, dl, VT);
8899   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8900 
8901   if (Opcode == ISD::UADDSAT) {
8902     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8903       // (LHS + RHS) | OverflowMask
8904       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8905       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8906     }
8907     // Overflow ? 0xffff.... : (LHS + RHS)
8908     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8909   }
8910 
8911   if (Opcode == ISD::USUBSAT) {
8912     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8913       // (LHS - RHS) & ~OverflowMask
8914       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8915       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8916       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8917     }
8918     // Overflow ? 0 : (LHS - RHS)
8919     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8920   }
8921 
8922   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8923   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8924   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8925   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8926                               DAG.getConstant(BitWidth - 1, dl, VT));
8927   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8928   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8929 }
8930 
8931 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8932   unsigned Opcode = Node->getOpcode();
8933   bool IsSigned = Opcode == ISD::SSHLSAT;
8934   SDValue LHS = Node->getOperand(0);
8935   SDValue RHS = Node->getOperand(1);
8936   EVT VT = LHS.getValueType();
8937   SDLoc dl(Node);
8938 
8939   assert((Node->getOpcode() == ISD::SSHLSAT ||
8940           Node->getOpcode() == ISD::USHLSAT) &&
8941           "Expected a SHLSAT opcode");
8942   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8943   assert(VT.isInteger() && "Expected operands to be integers");
8944 
8945   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8946 
8947   unsigned BW = VT.getScalarSizeInBits();
8948   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8949   SDValue Orig =
8950       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8951 
8952   SDValue SatVal;
8953   if (IsSigned) {
8954     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8955     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8956     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8957                              SatMin, SatMax, ISD::SETLT);
8958   } else {
8959     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8960   }
8961   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8962 
8963   return Result;
8964 }
8965 
8966 SDValue
8967 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8968   assert((Node->getOpcode() == ISD::SMULFIX ||
8969           Node->getOpcode() == ISD::UMULFIX ||
8970           Node->getOpcode() == ISD::SMULFIXSAT ||
8971           Node->getOpcode() == ISD::UMULFIXSAT) &&
8972          "Expected a fixed point multiplication opcode");
8973 
8974   SDLoc dl(Node);
8975   SDValue LHS = Node->getOperand(0);
8976   SDValue RHS = Node->getOperand(1);
8977   EVT VT = LHS.getValueType();
8978   unsigned Scale = Node->getConstantOperandVal(2);
8979   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8980                      Node->getOpcode() == ISD::UMULFIXSAT);
8981   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8982                  Node->getOpcode() == ISD::SMULFIXSAT);
8983   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8984   unsigned VTSize = VT.getScalarSizeInBits();
8985 
8986   if (!Scale) {
8987     // [us]mul.fix(a, b, 0) -> mul(a, b)
8988     if (!Saturating) {
8989       if (isOperationLegalOrCustom(ISD::MUL, VT))
8990         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8991     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8992       SDValue Result =
8993           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8994       SDValue Product = Result.getValue(0);
8995       SDValue Overflow = Result.getValue(1);
8996       SDValue Zero = DAG.getConstant(0, dl, VT);
8997 
8998       APInt MinVal = APInt::getSignedMinValue(VTSize);
8999       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
9000       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
9001       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
9002       // Xor the inputs, if resulting sign bit is 0 the product will be
9003       // positive, else negative.
9004       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
9005       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
9006       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
9007       return DAG.getSelect(dl, VT, Overflow, Result, Product);
9008     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
9009       SDValue Result =
9010           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
9011       SDValue Product = Result.getValue(0);
9012       SDValue Overflow = Result.getValue(1);
9013 
9014       APInt MaxVal = APInt::getMaxValue(VTSize);
9015       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
9016       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
9017     }
9018   }
9019 
9020   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
9021          "Expected scale to be less than the number of bits if signed or at "
9022          "most the number of bits if unsigned.");
9023   assert(LHS.getValueType() == RHS.getValueType() &&
9024          "Expected both operands to be the same type");
9025 
9026   // Get the upper and lower bits of the result.
9027   SDValue Lo, Hi;
9028   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
9029   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
9030   if (isOperationLegalOrCustom(LoHiOp, VT)) {
9031     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
9032     Lo = Result.getValue(0);
9033     Hi = Result.getValue(1);
9034   } else if (isOperationLegalOrCustom(HiOp, VT)) {
9035     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9036     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
9037   } else if (VT.isVector()) {
9038     return SDValue();
9039   } else {
9040     report_fatal_error("Unable to expand fixed point multiplication.");
9041   }
9042 
9043   if (Scale == VTSize)
9044     // Result is just the top half since we'd be shifting by the width of the
9045     // operand. Overflow impossible so this works for both UMULFIX and
9046     // UMULFIXSAT.
9047     return Hi;
9048 
9049   // The result will need to be shifted right by the scale since both operands
9050   // are scaled. The result is given to us in 2 halves, so we only want part of
9051   // both in the result.
9052   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
9053   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
9054                                DAG.getConstant(Scale, dl, ShiftTy));
9055   if (!Saturating)
9056     return Result;
9057 
9058   if (!Signed) {
9059     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
9060     // widened multiplication) aren't all zeroes.
9061 
9062     // Saturate to max if ((Hi >> Scale) != 0),
9063     // which is the same as if (Hi > ((1 << Scale) - 1))
9064     APInt MaxVal = APInt::getMaxValue(VTSize);
9065     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
9066                                       dl, VT);
9067     Result = DAG.getSelectCC(dl, Hi, LowMask,
9068                              DAG.getConstant(MaxVal, dl, VT), Result,
9069                              ISD::SETUGT);
9070 
9071     return Result;
9072   }
9073 
9074   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
9075   // widened multiplication) aren't all ones or all zeroes.
9076 
9077   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
9078   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
9079 
9080   if (Scale == 0) {
9081     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
9082                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
9083     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
9084     // Saturated to SatMin if wide product is negative, and SatMax if wide
9085     // product is positive ...
9086     SDValue Zero = DAG.getConstant(0, dl, VT);
9087     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
9088                                                ISD::SETLT);
9089     // ... but only if we overflowed.
9090     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
9091   }
9092 
9093   //  We handled Scale==0 above so all the bits to examine is in Hi.
9094 
9095   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
9096   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
9097   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
9098                                     dl, VT);
9099   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
9100   // Saturate to min if (Hi >> (Scale - 1)) < -1),
9101   // which is the same as if (HI < (-1 << (Scale - 1))
9102   SDValue HighMask =
9103       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
9104                       dl, VT);
9105   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
9106   return Result;
9107 }
9108 
9109 SDValue
9110 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
9111                                     SDValue LHS, SDValue RHS,
9112                                     unsigned Scale, SelectionDAG &DAG) const {
9113   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
9114           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
9115          "Expected a fixed point division opcode");
9116 
9117   EVT VT = LHS.getValueType();
9118   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
9119   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
9120   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9121 
9122   // If there is enough room in the type to upscale the LHS or downscale the
9123   // RHS before the division, we can perform it in this type without having to
9124   // resize. For signed operations, the LHS headroom is the number of
9125   // redundant sign bits, and for unsigned ones it is the number of zeroes.
9126   // The headroom for the RHS is the number of trailing zeroes.
9127   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
9128                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
9129   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
9130 
9131   // For signed saturating operations, we need to be able to detect true integer
9132   // division overflow; that is, when you have MIN / -EPS. However, this
9133   // is undefined behavior and if we emit divisions that could take such
9134   // values it may cause undesired behavior (arithmetic exceptions on x86, for
9135   // example).
9136   // Avoid this by requiring an extra bit so that we never get this case.
9137   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
9138   // signed saturating division, we need to emit a whopping 32-bit division.
9139   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
9140     return SDValue();
9141 
9142   unsigned LHSShift = std::min(LHSLead, Scale);
9143   unsigned RHSShift = Scale - LHSShift;
9144 
9145   // At this point, we know that if we shift the LHS up by LHSShift and the
9146   // RHS down by RHSShift, we can emit a regular division with a final scaling
9147   // factor of Scale.
9148 
9149   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
9150   if (LHSShift)
9151     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
9152                       DAG.getConstant(LHSShift, dl, ShiftTy));
9153   if (RHSShift)
9154     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
9155                       DAG.getConstant(RHSShift, dl, ShiftTy));
9156 
9157   SDValue Quot;
9158   if (Signed) {
9159     // For signed operations, if the resulting quotient is negative and the
9160     // remainder is nonzero, subtract 1 from the quotient to round towards
9161     // negative infinity.
9162     SDValue Rem;
9163     // FIXME: Ideally we would always produce an SDIVREM here, but if the
9164     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
9165     // we couldn't just form a libcall, but the type legalizer doesn't do it.
9166     if (isTypeLegal(VT) &&
9167         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
9168       Quot = DAG.getNode(ISD::SDIVREM, dl,
9169                          DAG.getVTList(VT, VT),
9170                          LHS, RHS);
9171       Rem = Quot.getValue(1);
9172       Quot = Quot.getValue(0);
9173     } else {
9174       Quot = DAG.getNode(ISD::SDIV, dl, VT,
9175                          LHS, RHS);
9176       Rem = DAG.getNode(ISD::SREM, dl, VT,
9177                         LHS, RHS);
9178     }
9179     SDValue Zero = DAG.getConstant(0, dl, VT);
9180     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
9181     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
9182     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
9183     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
9184     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
9185                                DAG.getConstant(1, dl, VT));
9186     Quot = DAG.getSelect(dl, VT,
9187                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
9188                          Sub1, Quot);
9189   } else
9190     Quot = DAG.getNode(ISD::UDIV, dl, VT,
9191                        LHS, RHS);
9192 
9193   return Quot;
9194 }
9195 
9196 void TargetLowering::expandUADDSUBO(
9197     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9198   SDLoc dl(Node);
9199   SDValue LHS = Node->getOperand(0);
9200   SDValue RHS = Node->getOperand(1);
9201   bool IsAdd = Node->getOpcode() == ISD::UADDO;
9202 
9203   // If ADD/SUBCARRY is legal, use that instead.
9204   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
9205   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
9206     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
9207     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
9208                                     { LHS, RHS, CarryIn });
9209     Result = SDValue(NodeCarry.getNode(), 0);
9210     Overflow = SDValue(NodeCarry.getNode(), 1);
9211     return;
9212   }
9213 
9214   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9215                             LHS.getValueType(), LHS, RHS);
9216 
9217   EVT ResultType = Node->getValueType(1);
9218   EVT SetCCType = getSetCCResultType(
9219       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9220   SDValue SetCC;
9221   if (IsAdd && isOneConstant(RHS)) {
9222     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
9223     // the live range of X. We assume comparing with 0 is cheap.
9224     // The general case (X + C) < C is not necessarily beneficial. Although we
9225     // reduce the live range of X, we may introduce the materialization of
9226     // constant C.
9227     SetCC =
9228         DAG.getSetCC(dl, SetCCType, Result,
9229                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
9230   } else {
9231     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
9232     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
9233   }
9234   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9235 }
9236 
9237 void TargetLowering::expandSADDSUBO(
9238     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9239   SDLoc dl(Node);
9240   SDValue LHS = Node->getOperand(0);
9241   SDValue RHS = Node->getOperand(1);
9242   bool IsAdd = Node->getOpcode() == ISD::SADDO;
9243 
9244   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9245                             LHS.getValueType(), LHS, RHS);
9246 
9247   EVT ResultType = Node->getValueType(1);
9248   EVT OType = getSetCCResultType(
9249       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9250 
9251   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
9252   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
9253   if (isOperationLegal(OpcSat, LHS.getValueType())) {
9254     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
9255     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
9256     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9257     return;
9258   }
9259 
9260   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
9261 
9262   // For an addition, the result should be less than one of the operands (LHS)
9263   // if and only if the other operand (RHS) is negative, otherwise there will
9264   // be overflow.
9265   // For a subtraction, the result should be less than one of the operands
9266   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
9267   // otherwise there will be overflow.
9268   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
9269   SDValue ConditionRHS =
9270       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
9271 
9272   Overflow = DAG.getBoolExtOrTrunc(
9273       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
9274       ResultType, ResultType);
9275 }
9276 
9277 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
9278                                 SDValue &Overflow, SelectionDAG &DAG) const {
9279   SDLoc dl(Node);
9280   EVT VT = Node->getValueType(0);
9281   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9282   SDValue LHS = Node->getOperand(0);
9283   SDValue RHS = Node->getOperand(1);
9284   bool isSigned = Node->getOpcode() == ISD::SMULO;
9285 
9286   // For power-of-two multiplications we can use a simpler shift expansion.
9287   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
9288     const APInt &C = RHSC->getAPIntValue();
9289     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
9290     if (C.isPowerOf2()) {
9291       // smulo(x, signed_min) is same as umulo(x, signed_min).
9292       bool UseArithShift = isSigned && !C.isMinSignedValue();
9293       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
9294       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
9295       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
9296       Overflow = DAG.getSetCC(dl, SetCCVT,
9297           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
9298                       dl, VT, Result, ShiftAmt),
9299           LHS, ISD::SETNE);
9300       return true;
9301     }
9302   }
9303 
9304   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
9305   if (VT.isVector())
9306     WideVT =
9307         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
9308 
9309   SDValue BottomHalf;
9310   SDValue TopHalf;
9311   static const unsigned Ops[2][3] =
9312       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
9313         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
9314   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
9315     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9316     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
9317   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
9318     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
9319                              RHS);
9320     TopHalf = BottomHalf.getValue(1);
9321   } else if (isTypeLegal(WideVT)) {
9322     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
9323     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
9324     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
9325     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
9326     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
9327         getShiftAmountTy(WideVT, DAG.getDataLayout()));
9328     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
9329                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
9330   } else {
9331     if (VT.isVector())
9332       return false;
9333 
9334     // We can fall back to a libcall with an illegal type for the MUL if we
9335     // have a libcall big enough.
9336     // Also, we can fall back to a division in some cases, but that's a big
9337     // performance hit in the general case.
9338     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
9339     if (WideVT == MVT::i16)
9340       LC = RTLIB::MUL_I16;
9341     else if (WideVT == MVT::i32)
9342       LC = RTLIB::MUL_I32;
9343     else if (WideVT == MVT::i64)
9344       LC = RTLIB::MUL_I64;
9345     else if (WideVT == MVT::i128)
9346       LC = RTLIB::MUL_I128;
9347     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
9348 
9349     SDValue HiLHS;
9350     SDValue HiRHS;
9351     if (isSigned) {
9352       // The high part is obtained by SRA'ing all but one of the bits of low
9353       // part.
9354       unsigned LoSize = VT.getFixedSizeInBits();
9355       HiLHS =
9356           DAG.getNode(ISD::SRA, dl, VT, LHS,
9357                       DAG.getConstant(LoSize - 1, dl,
9358                                       getPointerTy(DAG.getDataLayout())));
9359       HiRHS =
9360           DAG.getNode(ISD::SRA, dl, VT, RHS,
9361                       DAG.getConstant(LoSize - 1, dl,
9362                                       getPointerTy(DAG.getDataLayout())));
9363     } else {
9364         HiLHS = DAG.getConstant(0, dl, VT);
9365         HiRHS = DAG.getConstant(0, dl, VT);
9366     }
9367 
9368     // Here we're passing the 2 arguments explicitly as 4 arguments that are
9369     // pre-lowered to the correct types. This all depends upon WideVT not
9370     // being a legal type for the architecture and thus has to be split to
9371     // two arguments.
9372     SDValue Ret;
9373     TargetLowering::MakeLibCallOptions CallOptions;
9374     CallOptions.setSExt(isSigned);
9375     CallOptions.setIsPostTypeLegalization(true);
9376     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
9377       // Halves of WideVT are packed into registers in different order
9378       // depending on platform endianness. This is usually handled by
9379       // the C calling convention, but we can't defer to it in
9380       // the legalizer.
9381       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
9382       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9383     } else {
9384       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
9385       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9386     }
9387     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
9388            "Ret value is a collection of constituent nodes holding result.");
9389     if (DAG.getDataLayout().isLittleEndian()) {
9390       // Same as above.
9391       BottomHalf = Ret.getOperand(0);
9392       TopHalf = Ret.getOperand(1);
9393     } else {
9394       BottomHalf = Ret.getOperand(1);
9395       TopHalf = Ret.getOperand(0);
9396     }
9397   }
9398 
9399   Result = BottomHalf;
9400   if (isSigned) {
9401     SDValue ShiftAmt = DAG.getConstant(
9402         VT.getScalarSizeInBits() - 1, dl,
9403         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
9404     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
9405     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
9406   } else {
9407     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
9408                             DAG.getConstant(0, dl, VT), ISD::SETNE);
9409   }
9410 
9411   // Truncate the result if SetCC returns a larger type than needed.
9412   EVT RType = Node->getValueType(1);
9413   if (RType.bitsLT(Overflow.getValueType()))
9414     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
9415 
9416   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
9417          "Unexpected result type for S/UMULO legalization");
9418   return true;
9419 }
9420 
9421 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
9422   SDLoc dl(Node);
9423   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9424   SDValue Op = Node->getOperand(0);
9425   EVT VT = Op.getValueType();
9426 
9427   if (VT.isScalableVector())
9428     report_fatal_error(
9429         "Expanding reductions for scalable vectors is undefined.");
9430 
9431   // Try to use a shuffle reduction for power of two vectors.
9432   if (VT.isPow2VectorType()) {
9433     while (VT.getVectorNumElements() > 1) {
9434       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
9435       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
9436         break;
9437 
9438       SDValue Lo, Hi;
9439       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
9440       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
9441       VT = HalfVT;
9442     }
9443   }
9444 
9445   EVT EltVT = VT.getVectorElementType();
9446   unsigned NumElts = VT.getVectorNumElements();
9447 
9448   SmallVector<SDValue, 8> Ops;
9449   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
9450 
9451   SDValue Res = Ops[0];
9452   for (unsigned i = 1; i < NumElts; i++)
9453     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
9454 
9455   // Result type may be wider than element type.
9456   if (EltVT != Node->getValueType(0))
9457     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
9458   return Res;
9459 }
9460 
9461 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
9462   SDLoc dl(Node);
9463   SDValue AccOp = Node->getOperand(0);
9464   SDValue VecOp = Node->getOperand(1);
9465   SDNodeFlags Flags = Node->getFlags();
9466 
9467   EVT VT = VecOp.getValueType();
9468   EVT EltVT = VT.getVectorElementType();
9469 
9470   if (VT.isScalableVector())
9471     report_fatal_error(
9472         "Expanding reductions for scalable vectors is undefined.");
9473 
9474   unsigned NumElts = VT.getVectorNumElements();
9475 
9476   SmallVector<SDValue, 8> Ops;
9477   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
9478 
9479   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9480 
9481   SDValue Res = AccOp;
9482   for (unsigned i = 0; i < NumElts; i++)
9483     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
9484 
9485   return Res;
9486 }
9487 
9488 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
9489                                SelectionDAG &DAG) const {
9490   EVT VT = Node->getValueType(0);
9491   SDLoc dl(Node);
9492   bool isSigned = Node->getOpcode() == ISD::SREM;
9493   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
9494   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
9495   SDValue Dividend = Node->getOperand(0);
9496   SDValue Divisor = Node->getOperand(1);
9497   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
9498     SDVTList VTs = DAG.getVTList(VT, VT);
9499     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
9500     return true;
9501   }
9502   if (isOperationLegalOrCustom(DivOpc, VT)) {
9503     // X % Y -> X-X/Y*Y
9504     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
9505     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
9506     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
9507     return true;
9508   }
9509   return false;
9510 }
9511 
9512 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
9513                                             SelectionDAG &DAG) const {
9514   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
9515   SDLoc dl(SDValue(Node, 0));
9516   SDValue Src = Node->getOperand(0);
9517 
9518   // DstVT is the result type, while SatVT is the size to which we saturate
9519   EVT SrcVT = Src.getValueType();
9520   EVT DstVT = Node->getValueType(0);
9521 
9522   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9523   unsigned SatWidth = SatVT.getScalarSizeInBits();
9524   unsigned DstWidth = DstVT.getScalarSizeInBits();
9525   assert(SatWidth <= DstWidth &&
9526          "Expected saturation width smaller than result width");
9527 
9528   // Determine minimum and maximum integer values and their corresponding
9529   // floating-point values.
9530   APInt MinInt, MaxInt;
9531   if (IsSigned) {
9532     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
9533     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
9534   } else {
9535     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
9536     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
9537   }
9538 
9539   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
9540   // libcall emission cannot handle this. Large result types will fail.
9541   if (SrcVT == MVT::f16) {
9542     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
9543     SrcVT = Src.getValueType();
9544   }
9545 
9546   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9547   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9548 
9549   APFloat::opStatus MinStatus =
9550       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
9551   APFloat::opStatus MaxStatus =
9552       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
9553   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
9554                              !(MaxStatus & APFloat::opStatus::opInexact);
9555 
9556   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
9557   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
9558 
9559   // If the integer bounds are exactly representable as floats and min/max are
9560   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
9561   // of comparisons and selects.
9562   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
9563                      isOperationLegal(ISD::FMAXNUM, SrcVT);
9564   if (AreExactFloatBounds && MinMaxLegal) {
9565     SDValue Clamped = Src;
9566 
9567     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
9568     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
9569     // Clamp by MaxFloat from above. NaN cannot occur.
9570     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
9571     // Convert clamped value to integer.
9572     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
9573                                   dl, DstVT, Clamped);
9574 
9575     // In the unsigned case we're done, because we mapped NaN to MinFloat,
9576     // which will cast to zero.
9577     if (!IsSigned)
9578       return FpToInt;
9579 
9580     // Otherwise, select 0 if Src is NaN.
9581     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9582     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
9583                            ISD::CondCode::SETUO);
9584   }
9585 
9586   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
9587   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
9588 
9589   // Result of direct conversion. The assumption here is that the operation is
9590   // non-trapping and it's fine to apply it to an out-of-range value if we
9591   // select it away later.
9592   SDValue FpToInt =
9593       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
9594 
9595   SDValue Select = FpToInt;
9596 
9597   // If Src ULT MinFloat, select MinInt. In particular, this also selects
9598   // MinInt if Src is NaN.
9599   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
9600                            ISD::CondCode::SETULT);
9601   // If Src OGT MaxFloat, select MaxInt.
9602   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
9603                            ISD::CondCode::SETOGT);
9604 
9605   // In the unsigned case we are done, because we mapped NaN to MinInt, which
9606   // is already zero.
9607   if (!IsSigned)
9608     return Select;
9609 
9610   // Otherwise, select 0 if Src is NaN.
9611   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9612   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
9613 }
9614 
9615 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
9616                                            SelectionDAG &DAG) const {
9617   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
9618   assert(Node->getValueType(0).isScalableVector() &&
9619          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
9620 
9621   EVT VT = Node->getValueType(0);
9622   SDValue V1 = Node->getOperand(0);
9623   SDValue V2 = Node->getOperand(1);
9624   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
9625   SDLoc DL(Node);
9626 
9627   // Expand through memory thusly:
9628   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
9629   //  Store V1, Ptr
9630   //  Store V2, Ptr + sizeof(V1)
9631   //  If (Imm < 0)
9632   //    TrailingElts = -Imm
9633   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
9634   //  else
9635   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
9636   //  Res = Load Ptr
9637 
9638   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
9639 
9640   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9641                                VT.getVectorElementCount() * 2);
9642   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
9643   EVT PtrVT = StackPtr.getValueType();
9644   auto &MF = DAG.getMachineFunction();
9645   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9646   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
9647 
9648   // Store the lo part of CONCAT_VECTORS(V1, V2)
9649   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
9650   // Store the hi part of CONCAT_VECTORS(V1, V2)
9651   SDValue OffsetToV2 = DAG.getVScale(
9652       DL, PtrVT,
9653       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9654   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
9655   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
9656 
9657   if (Imm >= 0) {
9658     // Load back the required element. getVectorElementPointer takes care of
9659     // clamping the index if it's out-of-bounds.
9660     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
9661     // Load the spliced result
9662     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
9663                        MachinePointerInfo::getUnknownStack(MF));
9664   }
9665 
9666   uint64_t TrailingElts = -Imm;
9667 
9668   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
9669   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
9670   SDValue TrailingBytes =
9671       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
9672 
9673   if (TrailingElts > VT.getVectorMinNumElements()) {
9674     SDValue VLBytes = DAG.getVScale(
9675         DL, PtrVT,
9676         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9677     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
9678   }
9679 
9680   // Calculate the start address of the spliced result.
9681   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
9682 
9683   // Load the spliced result
9684   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
9685                      MachinePointerInfo::getUnknownStack(MF));
9686 }
9687 
9688 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
9689                                            SDValue &LHS, SDValue &RHS,
9690                                            SDValue &CC, SDValue Mask,
9691                                            SDValue EVL, bool &NeedInvert,
9692                                            const SDLoc &dl, SDValue &Chain,
9693                                            bool IsSignaling) const {
9694   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9695   MVT OpVT = LHS.getSimpleValueType();
9696   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
9697   NeedInvert = false;
9698   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
9699   bool IsNonVP = !EVL;
9700   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
9701   default:
9702     llvm_unreachable("Unknown condition code action!");
9703   case TargetLowering::Legal:
9704     // Nothing to do.
9705     break;
9706   case TargetLowering::Expand: {
9707     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
9708     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9709       std::swap(LHS, RHS);
9710       CC = DAG.getCondCode(InvCC);
9711       return true;
9712     }
9713     // Swapping operands didn't work. Try inverting the condition.
9714     bool NeedSwap = false;
9715     InvCC = getSetCCInverse(CCCode, OpVT);
9716     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9717       // If inverting the condition is not enough, try swapping operands
9718       // on top of it.
9719       InvCC = ISD::getSetCCSwappedOperands(InvCC);
9720       NeedSwap = true;
9721     }
9722     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9723       CC = DAG.getCondCode(InvCC);
9724       NeedInvert = true;
9725       if (NeedSwap)
9726         std::swap(LHS, RHS);
9727       return true;
9728     }
9729 
9730     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
9731     unsigned Opc = 0;
9732     switch (CCCode) {
9733     default:
9734       llvm_unreachable("Don't know how to expand this condition!");
9735     case ISD::SETUO:
9736       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
9737         CC1 = ISD::SETUNE;
9738         CC2 = ISD::SETUNE;
9739         Opc = ISD::OR;
9740         break;
9741       }
9742       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9743              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9744       NeedInvert = true;
9745       LLVM_FALLTHROUGH;
9746     case ISD::SETO:
9747       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9748              "If SETO is expanded, SETOEQ must be legal!");
9749       CC1 = ISD::SETOEQ;
9750       CC2 = ISD::SETOEQ;
9751       Opc = ISD::AND;
9752       break;
9753     case ISD::SETONE:
9754     case ISD::SETUEQ:
9755       // If the SETUO or SETO CC isn't legal, we might be able to use
9756       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9757       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9758       // the operands.
9759       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9760       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9761           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9762            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9763         CC1 = ISD::SETOGT;
9764         CC2 = ISD::SETOLT;
9765         Opc = ISD::OR;
9766         NeedInvert = ((unsigned)CCCode & 0x8U);
9767         break;
9768       }
9769       LLVM_FALLTHROUGH;
9770     case ISD::SETOEQ:
9771     case ISD::SETOGT:
9772     case ISD::SETOGE:
9773     case ISD::SETOLT:
9774     case ISD::SETOLE:
9775     case ISD::SETUNE:
9776     case ISD::SETUGT:
9777     case ISD::SETUGE:
9778     case ISD::SETULT:
9779     case ISD::SETULE:
9780       // If we are floating point, assign and break, otherwise fall through.
9781       if (!OpVT.isInteger()) {
9782         // We can use the 4th bit to tell if we are the unordered
9783         // or ordered version of the opcode.
9784         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9785         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9786         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9787         break;
9788       }
9789       // Fallthrough if we are unsigned integer.
9790       LLVM_FALLTHROUGH;
9791     case ISD::SETLE:
9792     case ISD::SETGT:
9793     case ISD::SETGE:
9794     case ISD::SETLT:
9795     case ISD::SETNE:
9796     case ISD::SETEQ:
9797       // If all combinations of inverting the condition and swapping operands
9798       // didn't work then we have no means to expand the condition.
9799       llvm_unreachable("Don't know how to expand this condition!");
9800     }
9801 
9802     SDValue SetCC1, SetCC2;
9803     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9804       // If we aren't the ordered or unorder operation,
9805       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9806       if (IsNonVP) {
9807         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9808         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9809       } else {
9810         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
9811         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
9812       }
9813     } else {
9814       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9815       if (IsNonVP) {
9816         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9817         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9818       } else {
9819         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
9820         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
9821       }
9822     }
9823     if (Chain)
9824       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9825                           SetCC2.getValue(1));
9826     if (IsNonVP)
9827       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9828     else {
9829       // Transform the binary opcode to the VP equivalent.
9830       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
9831       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
9832       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
9833     }
9834     RHS = SDValue();
9835     CC = SDValue();
9836     return true;
9837   }
9838   }
9839   return false;
9840 }
9841