1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/MC/MCAsmInfo.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/Target/TargetData.h"
18 #include "llvm/Target/TargetLoweringObjectFile.h"
19 #include "llvm/Target/TargetMachine.h"
20 #include "llvm/Target/TargetRegisterInfo.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/MathExtras.h"
30 using namespace llvm;
31 
32 namespace llvm {
33 TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
34   bool isLocal = GV->hasLocalLinkage();
35   bool isDeclaration = GV->isDeclaration();
36   // FIXME: what should we do for protected and internal visibility?
37   // For variables, is internal different from hidden?
38   bool isHidden = GV->hasHiddenVisibility();
39 
40   if (reloc == Reloc::PIC_) {
41     if (isLocal || isHidden)
42       return TLSModel::LocalDynamic;
43     else
44       return TLSModel::GeneralDynamic;
45   } else {
46     if (!isDeclaration || isHidden)
47       return TLSModel::LocalExec;
48     else
49       return TLSModel::InitialExec;
50   }
51 }
52 }
53 
54 /// InitLibcallNames - Set default libcall names.
55 ///
56 static void InitLibcallNames(const char **Names) {
57   Names[RTLIB::SHL_I16] = "__ashlhi3";
58   Names[RTLIB::SHL_I32] = "__ashlsi3";
59   Names[RTLIB::SHL_I64] = "__ashldi3";
60   Names[RTLIB::SHL_I128] = "__ashlti3";
61   Names[RTLIB::SRL_I16] = "__lshrhi3";
62   Names[RTLIB::SRL_I32] = "__lshrsi3";
63   Names[RTLIB::SRL_I64] = "__lshrdi3";
64   Names[RTLIB::SRL_I128] = "__lshrti3";
65   Names[RTLIB::SRA_I16] = "__ashrhi3";
66   Names[RTLIB::SRA_I32] = "__ashrsi3";
67   Names[RTLIB::SRA_I64] = "__ashrdi3";
68   Names[RTLIB::SRA_I128] = "__ashrti3";
69   Names[RTLIB::MUL_I8] = "__mulqi3";
70   Names[RTLIB::MUL_I16] = "__mulhi3";
71   Names[RTLIB::MUL_I32] = "__mulsi3";
72   Names[RTLIB::MUL_I64] = "__muldi3";
73   Names[RTLIB::MUL_I128] = "__multi3";
74   Names[RTLIB::SDIV_I8] = "__divqi3";
75   Names[RTLIB::SDIV_I16] = "__divhi3";
76   Names[RTLIB::SDIV_I32] = "__divsi3";
77   Names[RTLIB::SDIV_I64] = "__divdi3";
78   Names[RTLIB::SDIV_I128] = "__divti3";
79   Names[RTLIB::UDIV_I8] = "__udivqi3";
80   Names[RTLIB::UDIV_I16] = "__udivhi3";
81   Names[RTLIB::UDIV_I32] = "__udivsi3";
82   Names[RTLIB::UDIV_I64] = "__udivdi3";
83   Names[RTLIB::UDIV_I128] = "__udivti3";
84   Names[RTLIB::SREM_I8] = "__modqi3";
85   Names[RTLIB::SREM_I16] = "__modhi3";
86   Names[RTLIB::SREM_I32] = "__modsi3";
87   Names[RTLIB::SREM_I64] = "__moddi3";
88   Names[RTLIB::SREM_I128] = "__modti3";
89   Names[RTLIB::UREM_I8] = "__umodqi3";
90   Names[RTLIB::UREM_I16] = "__umodhi3";
91   Names[RTLIB::UREM_I32] = "__umodsi3";
92   Names[RTLIB::UREM_I64] = "__umoddi3";
93   Names[RTLIB::UREM_I128] = "__umodti3";
94   Names[RTLIB::NEG_I32] = "__negsi2";
95   Names[RTLIB::NEG_I64] = "__negdi2";
96   Names[RTLIB::ADD_F32] = "__addsf3";
97   Names[RTLIB::ADD_F64] = "__adddf3";
98   Names[RTLIB::ADD_F80] = "__addxf3";
99   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
100   Names[RTLIB::SUB_F32] = "__subsf3";
101   Names[RTLIB::SUB_F64] = "__subdf3";
102   Names[RTLIB::SUB_F80] = "__subxf3";
103   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
104   Names[RTLIB::MUL_F32] = "__mulsf3";
105   Names[RTLIB::MUL_F64] = "__muldf3";
106   Names[RTLIB::MUL_F80] = "__mulxf3";
107   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
108   Names[RTLIB::DIV_F32] = "__divsf3";
109   Names[RTLIB::DIV_F64] = "__divdf3";
110   Names[RTLIB::DIV_F80] = "__divxf3";
111   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
112   Names[RTLIB::REM_F32] = "fmodf";
113   Names[RTLIB::REM_F64] = "fmod";
114   Names[RTLIB::REM_F80] = "fmodl";
115   Names[RTLIB::REM_PPCF128] = "fmodl";
116   Names[RTLIB::POWI_F32] = "__powisf2";
117   Names[RTLIB::POWI_F64] = "__powidf2";
118   Names[RTLIB::POWI_F80] = "__powixf2";
119   Names[RTLIB::POWI_PPCF128] = "__powitf2";
120   Names[RTLIB::SQRT_F32] = "sqrtf";
121   Names[RTLIB::SQRT_F64] = "sqrt";
122   Names[RTLIB::SQRT_F80] = "sqrtl";
123   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
124   Names[RTLIB::LOG_F32] = "logf";
125   Names[RTLIB::LOG_F64] = "log";
126   Names[RTLIB::LOG_F80] = "logl";
127   Names[RTLIB::LOG_PPCF128] = "logl";
128   Names[RTLIB::LOG2_F32] = "log2f";
129   Names[RTLIB::LOG2_F64] = "log2";
130   Names[RTLIB::LOG2_F80] = "log2l";
131   Names[RTLIB::LOG2_PPCF128] = "log2l";
132   Names[RTLIB::LOG10_F32] = "log10f";
133   Names[RTLIB::LOG10_F64] = "log10";
134   Names[RTLIB::LOG10_F80] = "log10l";
135   Names[RTLIB::LOG10_PPCF128] = "log10l";
136   Names[RTLIB::EXP_F32] = "expf";
137   Names[RTLIB::EXP_F64] = "exp";
138   Names[RTLIB::EXP_F80] = "expl";
139   Names[RTLIB::EXP_PPCF128] = "expl";
140   Names[RTLIB::EXP2_F32] = "exp2f";
141   Names[RTLIB::EXP2_F64] = "exp2";
142   Names[RTLIB::EXP2_F80] = "exp2l";
143   Names[RTLIB::EXP2_PPCF128] = "exp2l";
144   Names[RTLIB::SIN_F32] = "sinf";
145   Names[RTLIB::SIN_F64] = "sin";
146   Names[RTLIB::SIN_F80] = "sinl";
147   Names[RTLIB::SIN_PPCF128] = "sinl";
148   Names[RTLIB::COS_F32] = "cosf";
149   Names[RTLIB::COS_F64] = "cos";
150   Names[RTLIB::COS_F80] = "cosl";
151   Names[RTLIB::COS_PPCF128] = "cosl";
152   Names[RTLIB::POW_F32] = "powf";
153   Names[RTLIB::POW_F64] = "pow";
154   Names[RTLIB::POW_F80] = "powl";
155   Names[RTLIB::POW_PPCF128] = "powl";
156   Names[RTLIB::CEIL_F32] = "ceilf";
157   Names[RTLIB::CEIL_F64] = "ceil";
158   Names[RTLIB::CEIL_F80] = "ceill";
159   Names[RTLIB::CEIL_PPCF128] = "ceill";
160   Names[RTLIB::TRUNC_F32] = "truncf";
161   Names[RTLIB::TRUNC_F64] = "trunc";
162   Names[RTLIB::TRUNC_F80] = "truncl";
163   Names[RTLIB::TRUNC_PPCF128] = "truncl";
164   Names[RTLIB::RINT_F32] = "rintf";
165   Names[RTLIB::RINT_F64] = "rint";
166   Names[RTLIB::RINT_F80] = "rintl";
167   Names[RTLIB::RINT_PPCF128] = "rintl";
168   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
169   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
170   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
171   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
172   Names[RTLIB::FLOOR_F32] = "floorf";
173   Names[RTLIB::FLOOR_F64] = "floor";
174   Names[RTLIB::FLOOR_F80] = "floorl";
175   Names[RTLIB::FLOOR_PPCF128] = "floorl";
176   Names[RTLIB::COPYSIGN_F32] = "copysignf";
177   Names[RTLIB::COPYSIGN_F64] = "copysign";
178   Names[RTLIB::COPYSIGN_F80] = "copysignl";
179   Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
180   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
181   Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
182   Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
183   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
184   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
185   Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
186   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
187   Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
188   Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
189   Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
190   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
191   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
192   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
193   Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
194   Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
195   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
196   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
197   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
198   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
199   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
200   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
201   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
202   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
203   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
204   Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
205   Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
206   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
207   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
208   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
209   Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
210   Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
211   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
212   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
213   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
214   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
215   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
216   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
217   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
218   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
219   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
220   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
221   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
222   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
223   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
224   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
225   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
226   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
227   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
228   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
229   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
230   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
231   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
232   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
233   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
234   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
235   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
236   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
237   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
238   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
239   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
240   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
241   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
242   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
243   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
244   Names[RTLIB::OEQ_F32] = "__eqsf2";
245   Names[RTLIB::OEQ_F64] = "__eqdf2";
246   Names[RTLIB::UNE_F32] = "__nesf2";
247   Names[RTLIB::UNE_F64] = "__nedf2";
248   Names[RTLIB::OGE_F32] = "__gesf2";
249   Names[RTLIB::OGE_F64] = "__gedf2";
250   Names[RTLIB::OLT_F32] = "__ltsf2";
251   Names[RTLIB::OLT_F64] = "__ltdf2";
252   Names[RTLIB::OLE_F32] = "__lesf2";
253   Names[RTLIB::OLE_F64] = "__ledf2";
254   Names[RTLIB::OGT_F32] = "__gtsf2";
255   Names[RTLIB::OGT_F64] = "__gtdf2";
256   Names[RTLIB::UO_F32] = "__unordsf2";
257   Names[RTLIB::UO_F64] = "__unorddf2";
258   Names[RTLIB::O_F32] = "__unordsf2";
259   Names[RTLIB::O_F64] = "__unorddf2";
260   Names[RTLIB::MEMCPY] = "memcpy";
261   Names[RTLIB::MEMMOVE] = "memmove";
262   Names[RTLIB::MEMSET] = "memset";
263   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
264   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
265   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
266   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
267   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
268   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
269   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
270   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
271   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
272   Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
273   Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
274   Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
275   Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
276   Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
277   Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
278   Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
279   Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
280   Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
281   Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
282   Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
283   Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
284   Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
285   Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
286   Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
287   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
288   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
289   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
290   Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
291   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
292   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
293   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
294   Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
295   Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
296 }
297 
298 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
299 ///
300 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
301   for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
302     CCs[i] = CallingConv::C;
303   }
304 }
305 
306 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
307 /// UNKNOWN_LIBCALL if there is none.
308 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
309   if (OpVT == MVT::f32) {
310     if (RetVT == MVT::f64)
311       return FPEXT_F32_F64;
312   }
313 
314   return UNKNOWN_LIBCALL;
315 }
316 
317 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
318 /// UNKNOWN_LIBCALL if there is none.
319 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
320   if (RetVT == MVT::f32) {
321     if (OpVT == MVT::f64)
322       return FPROUND_F64_F32;
323     if (OpVT == MVT::f80)
324       return FPROUND_F80_F32;
325     if (OpVT == MVT::ppcf128)
326       return FPROUND_PPCF128_F32;
327   } else if (RetVT == MVT::f64) {
328     if (OpVT == MVT::f80)
329       return FPROUND_F80_F64;
330     if (OpVT == MVT::ppcf128)
331       return FPROUND_PPCF128_F64;
332   }
333 
334   return UNKNOWN_LIBCALL;
335 }
336 
337 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
338 /// UNKNOWN_LIBCALL if there is none.
339 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
340   if (OpVT == MVT::f32) {
341     if (RetVT == MVT::i8)
342       return FPTOSINT_F32_I8;
343     if (RetVT == MVT::i16)
344       return FPTOSINT_F32_I16;
345     if (RetVT == MVT::i32)
346       return FPTOSINT_F32_I32;
347     if (RetVT == MVT::i64)
348       return FPTOSINT_F32_I64;
349     if (RetVT == MVT::i128)
350       return FPTOSINT_F32_I128;
351   } else if (OpVT == MVT::f64) {
352     if (RetVT == MVT::i8)
353       return FPTOSINT_F64_I8;
354     if (RetVT == MVT::i16)
355       return FPTOSINT_F64_I16;
356     if (RetVT == MVT::i32)
357       return FPTOSINT_F64_I32;
358     if (RetVT == MVT::i64)
359       return FPTOSINT_F64_I64;
360     if (RetVT == MVT::i128)
361       return FPTOSINT_F64_I128;
362   } else if (OpVT == MVT::f80) {
363     if (RetVT == MVT::i32)
364       return FPTOSINT_F80_I32;
365     if (RetVT == MVT::i64)
366       return FPTOSINT_F80_I64;
367     if (RetVT == MVT::i128)
368       return FPTOSINT_F80_I128;
369   } else if (OpVT == MVT::ppcf128) {
370     if (RetVT == MVT::i32)
371       return FPTOSINT_PPCF128_I32;
372     if (RetVT == MVT::i64)
373       return FPTOSINT_PPCF128_I64;
374     if (RetVT == MVT::i128)
375       return FPTOSINT_PPCF128_I128;
376   }
377   return UNKNOWN_LIBCALL;
378 }
379 
380 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
381 /// UNKNOWN_LIBCALL if there is none.
382 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
383   if (OpVT == MVT::f32) {
384     if (RetVT == MVT::i8)
385       return FPTOUINT_F32_I8;
386     if (RetVT == MVT::i16)
387       return FPTOUINT_F32_I16;
388     if (RetVT == MVT::i32)
389       return FPTOUINT_F32_I32;
390     if (RetVT == MVT::i64)
391       return FPTOUINT_F32_I64;
392     if (RetVT == MVT::i128)
393       return FPTOUINT_F32_I128;
394   } else if (OpVT == MVT::f64) {
395     if (RetVT == MVT::i8)
396       return FPTOUINT_F64_I8;
397     if (RetVT == MVT::i16)
398       return FPTOUINT_F64_I16;
399     if (RetVT == MVT::i32)
400       return FPTOUINT_F64_I32;
401     if (RetVT == MVT::i64)
402       return FPTOUINT_F64_I64;
403     if (RetVT == MVT::i128)
404       return FPTOUINT_F64_I128;
405   } else if (OpVT == MVT::f80) {
406     if (RetVT == MVT::i32)
407       return FPTOUINT_F80_I32;
408     if (RetVT == MVT::i64)
409       return FPTOUINT_F80_I64;
410     if (RetVT == MVT::i128)
411       return FPTOUINT_F80_I128;
412   } else if (OpVT == MVT::ppcf128) {
413     if (RetVT == MVT::i32)
414       return FPTOUINT_PPCF128_I32;
415     if (RetVT == MVT::i64)
416       return FPTOUINT_PPCF128_I64;
417     if (RetVT == MVT::i128)
418       return FPTOUINT_PPCF128_I128;
419   }
420   return UNKNOWN_LIBCALL;
421 }
422 
423 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
424 /// UNKNOWN_LIBCALL if there is none.
425 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
426   if (OpVT == MVT::i32) {
427     if (RetVT == MVT::f32)
428       return SINTTOFP_I32_F32;
429     else if (RetVT == MVT::f64)
430       return SINTTOFP_I32_F64;
431     else if (RetVT == MVT::f80)
432       return SINTTOFP_I32_F80;
433     else if (RetVT == MVT::ppcf128)
434       return SINTTOFP_I32_PPCF128;
435   } else if (OpVT == MVT::i64) {
436     if (RetVT == MVT::f32)
437       return SINTTOFP_I64_F32;
438     else if (RetVT == MVT::f64)
439       return SINTTOFP_I64_F64;
440     else if (RetVT == MVT::f80)
441       return SINTTOFP_I64_F80;
442     else if (RetVT == MVT::ppcf128)
443       return SINTTOFP_I64_PPCF128;
444   } else if (OpVT == MVT::i128) {
445     if (RetVT == MVT::f32)
446       return SINTTOFP_I128_F32;
447     else if (RetVT == MVT::f64)
448       return SINTTOFP_I128_F64;
449     else if (RetVT == MVT::f80)
450       return SINTTOFP_I128_F80;
451     else if (RetVT == MVT::ppcf128)
452       return SINTTOFP_I128_PPCF128;
453   }
454   return UNKNOWN_LIBCALL;
455 }
456 
457 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
458 /// UNKNOWN_LIBCALL if there is none.
459 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
460   if (OpVT == MVT::i32) {
461     if (RetVT == MVT::f32)
462       return UINTTOFP_I32_F32;
463     else if (RetVT == MVT::f64)
464       return UINTTOFP_I32_F64;
465     else if (RetVT == MVT::f80)
466       return UINTTOFP_I32_F80;
467     else if (RetVT == MVT::ppcf128)
468       return UINTTOFP_I32_PPCF128;
469   } else if (OpVT == MVT::i64) {
470     if (RetVT == MVT::f32)
471       return UINTTOFP_I64_F32;
472     else if (RetVT == MVT::f64)
473       return UINTTOFP_I64_F64;
474     else if (RetVT == MVT::f80)
475       return UINTTOFP_I64_F80;
476     else if (RetVT == MVT::ppcf128)
477       return UINTTOFP_I64_PPCF128;
478   } else if (OpVT == MVT::i128) {
479     if (RetVT == MVT::f32)
480       return UINTTOFP_I128_F32;
481     else if (RetVT == MVT::f64)
482       return UINTTOFP_I128_F64;
483     else if (RetVT == MVT::f80)
484       return UINTTOFP_I128_F80;
485     else if (RetVT == MVT::ppcf128)
486       return UINTTOFP_I128_PPCF128;
487   }
488   return UNKNOWN_LIBCALL;
489 }
490 
491 /// InitCmpLibcallCCs - Set default comparison libcall CC.
492 ///
493 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
494   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
495   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
496   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
497   CCs[RTLIB::UNE_F32] = ISD::SETNE;
498   CCs[RTLIB::UNE_F64] = ISD::SETNE;
499   CCs[RTLIB::OGE_F32] = ISD::SETGE;
500   CCs[RTLIB::OGE_F64] = ISD::SETGE;
501   CCs[RTLIB::OLT_F32] = ISD::SETLT;
502   CCs[RTLIB::OLT_F64] = ISD::SETLT;
503   CCs[RTLIB::OLE_F32] = ISD::SETLE;
504   CCs[RTLIB::OLE_F64] = ISD::SETLE;
505   CCs[RTLIB::OGT_F32] = ISD::SETGT;
506   CCs[RTLIB::OGT_F64] = ISD::SETGT;
507   CCs[RTLIB::UO_F32] = ISD::SETNE;
508   CCs[RTLIB::UO_F64] = ISD::SETNE;
509   CCs[RTLIB::O_F32] = ISD::SETEQ;
510   CCs[RTLIB::O_F64] = ISD::SETEQ;
511 }
512 
513 /// NOTE: The constructor takes ownership of TLOF.
514 TargetLowering::TargetLowering(const TargetMachine &tm,
515                                const TargetLoweringObjectFile *tlof)
516   : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
517   // All operations default to being supported.
518   memset(OpActions, 0, sizeof(OpActions));
519   memset(LoadExtActions, 0, sizeof(LoadExtActions));
520   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
521   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
522   memset(CondCodeActions, 0, sizeof(CondCodeActions));
523 
524   // Set default actions for various operations.
525   for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
526     // Default all indexed load / store to expand.
527     for (unsigned IM = (unsigned)ISD::PRE_INC;
528          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
529       setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
530       setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
531     }
532 
533     // These operations default to expand.
534     setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
535     setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
536   }
537 
538   // Most targets ignore the @llvm.prefetch intrinsic.
539   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
540 
541   // ConstantFP nodes default to expand.  Targets can either change this to
542   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
543   // to optimize expansions for certain constants.
544   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
545   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
546   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
547 
548   // These library functions default to expand.
549   setOperationAction(ISD::FLOG , MVT::f64, Expand);
550   setOperationAction(ISD::FLOG2, MVT::f64, Expand);
551   setOperationAction(ISD::FLOG10,MVT::f64, Expand);
552   setOperationAction(ISD::FEXP , MVT::f64, Expand);
553   setOperationAction(ISD::FEXP2, MVT::f64, Expand);
554   setOperationAction(ISD::FLOG , MVT::f32, Expand);
555   setOperationAction(ISD::FLOG2, MVT::f32, Expand);
556   setOperationAction(ISD::FLOG10,MVT::f32, Expand);
557   setOperationAction(ISD::FEXP , MVT::f32, Expand);
558   setOperationAction(ISD::FEXP2, MVT::f32, Expand);
559 
560   // Default ISD::TRAP to expand (which turns it into abort).
561   setOperationAction(ISD::TRAP, MVT::Other, Expand);
562 
563   IsLittleEndian = TD->isLittleEndian();
564   ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
565   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
566   memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
567   maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
568   benefitFromCodePlacementOpt = false;
569   UseUnderscoreSetJmp = false;
570   UseUnderscoreLongJmp = false;
571   SelectIsExpensive = false;
572   IntDivIsCheap = false;
573   Pow2DivIsCheap = false;
574   StackPointerRegisterToSaveRestore = 0;
575   ExceptionPointerRegister = 0;
576   ExceptionSelectorRegister = 0;
577   BooleanContents = UndefinedBooleanContent;
578   SchedPreferenceInfo = Sched::Latency;
579   JumpBufSize = 0;
580   JumpBufAlignment = 0;
581   PrefLoopAlignment = 0;
582   ShouldFoldAtomicFences = false;
583 
584   InitLibcallNames(LibcallRoutineNames);
585   InitCmpLibcallCCs(CmpLibcallCCs);
586   InitLibcallCallingConvs(LibcallCallingConvs);
587 }
588 
589 TargetLowering::~TargetLowering() {
590   delete &TLOF;
591 }
592 
593 /// canOpTrap - Returns true if the operation can trap for the value type.
594 /// VT must be a legal type.
595 bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
596   assert(isTypeLegal(VT));
597   switch (Op) {
598   default:
599     return false;
600   case ISD::FDIV:
601   case ISD::FREM:
602   case ISD::SDIV:
603   case ISD::UDIV:
604   case ISD::SREM:
605   case ISD::UREM:
606     return true;
607   }
608 }
609 
610 
611 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
612                                        unsigned &NumIntermediates,
613                                        EVT &RegisterVT,
614                                        TargetLowering* TLI) {
615   // Figure out the right, legal destination reg to copy into.
616   unsigned NumElts = VT.getVectorNumElements();
617   MVT EltTy = VT.getVectorElementType();
618 
619   unsigned NumVectorRegs = 1;
620 
621   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
622   // could break down into LHS/RHS like LegalizeDAG does.
623   if (!isPowerOf2_32(NumElts)) {
624     NumVectorRegs = NumElts;
625     NumElts = 1;
626   }
627 
628   // Divide the input until we get to a supported size.  This will always
629   // end with a scalar if the target doesn't support vectors.
630   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
631     NumElts >>= 1;
632     NumVectorRegs <<= 1;
633   }
634 
635   NumIntermediates = NumVectorRegs;
636 
637   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
638   if (!TLI->isTypeLegal(NewVT))
639     NewVT = EltTy;
640   IntermediateVT = NewVT;
641 
642   EVT DestVT = TLI->getRegisterType(NewVT);
643   RegisterVT = DestVT;
644   if (EVT(DestVT).bitsLT(NewVT)) {
645     // Value is expanded, e.g. i64 -> i16.
646     return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
647   } else {
648     // Otherwise, promotion or legal types use the same number of registers as
649     // the vector decimated to the appropriate level.
650     return NumVectorRegs;
651   }
652 
653   return 1;
654 }
655 
656 /// computeRegisterProperties - Once all of the register classes are added,
657 /// this allows us to compute derived properties we expose.
658 void TargetLowering::computeRegisterProperties() {
659   assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
660          "Too many value types for ValueTypeActions to hold!");
661 
662   // Everything defaults to needing one register.
663   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
664     NumRegistersForVT[i] = 1;
665     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
666   }
667   // ...except isVoid, which doesn't need any registers.
668   NumRegistersForVT[MVT::isVoid] = 0;
669 
670   // Find the largest integer register class.
671   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
672   for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
673     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
674 
675   // Every integer value type larger than this largest register takes twice as
676   // many registers to represent as the previous ValueType.
677   for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
678     EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
679     if (!ExpandedVT.isInteger())
680       break;
681     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
682     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
683     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
684     ValueTypeActions.setTypeAction(ExpandedVT, Expand);
685   }
686 
687   // Inspect all of the ValueType's smaller than the largest integer
688   // register to see which ones need promotion.
689   unsigned LegalIntReg = LargestIntReg;
690   for (unsigned IntReg = LargestIntReg - 1;
691        IntReg >= (unsigned)MVT::i1; --IntReg) {
692     EVT IVT = (MVT::SimpleValueType)IntReg;
693     if (isTypeLegal(IVT)) {
694       LegalIntReg = IntReg;
695     } else {
696       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
697         (MVT::SimpleValueType)LegalIntReg;
698       ValueTypeActions.setTypeAction(IVT, Promote);
699     }
700   }
701 
702   // ppcf128 type is really two f64's.
703   if (!isTypeLegal(MVT::ppcf128)) {
704     NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
705     RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
706     TransformToType[MVT::ppcf128] = MVT::f64;
707     ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
708   }
709 
710   // Decide how to handle f64. If the target does not have native f64 support,
711   // expand it to i64 and we will be generating soft float library calls.
712   if (!isTypeLegal(MVT::f64)) {
713     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
714     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
715     TransformToType[MVT::f64] = MVT::i64;
716     ValueTypeActions.setTypeAction(MVT::f64, Expand);
717   }
718 
719   // Decide how to handle f32. If the target does not have native support for
720   // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
721   if (!isTypeLegal(MVT::f32)) {
722     if (isTypeLegal(MVT::f64)) {
723       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
724       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
725       TransformToType[MVT::f32] = MVT::f64;
726       ValueTypeActions.setTypeAction(MVT::f32, Promote);
727     } else {
728       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
729       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
730       TransformToType[MVT::f32] = MVT::i32;
731       ValueTypeActions.setTypeAction(MVT::f32, Expand);
732     }
733   }
734 
735   // Loop over all of the vector value types to see which need transformations.
736   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
737        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
738     MVT VT = (MVT::SimpleValueType)i;
739     if (!isTypeLegal(VT)) {
740       MVT IntermediateVT;
741       EVT RegisterVT;
742       unsigned NumIntermediates;
743       NumRegistersForVT[i] =
744         getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
745                                   RegisterVT, this);
746       RegisterTypeForVT[i] = RegisterVT;
747 
748       // Determine if there is a legal wider type.
749       bool IsLegalWiderType = false;
750       EVT EltVT = VT.getVectorElementType();
751       unsigned NElts = VT.getVectorNumElements();
752       for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
753         EVT SVT = (MVT::SimpleValueType)nVT;
754         if (isTypeSynthesizable(SVT) && SVT.getVectorElementType() == EltVT &&
755             SVT.getVectorNumElements() > NElts && NElts != 1) {
756           TransformToType[i] = SVT;
757           ValueTypeActions.setTypeAction(VT, Promote);
758           IsLegalWiderType = true;
759           break;
760         }
761       }
762       if (!IsLegalWiderType) {
763         EVT NVT = VT.getPow2VectorType();
764         if (NVT == VT) {
765           // Type is already a power of 2.  The default action is to split.
766           TransformToType[i] = MVT::Other;
767           ValueTypeActions.setTypeAction(VT, Expand);
768         } else {
769           TransformToType[i] = NVT;
770           ValueTypeActions.setTypeAction(VT, Promote);
771         }
772       }
773     }
774   }
775 }
776 
777 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
778   return NULL;
779 }
780 
781 
782 MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
783   return PointerTy.SimpleTy;
784 }
785 
786 MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
787   return MVT::i32; // return the default value
788 }
789 
790 /// getVectorTypeBreakdown - Vector types are broken down into some number of
791 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
792 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
793 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
794 ///
795 /// This method returns the number of registers needed, and the VT for each
796 /// register.  It also returns the VT and quantity of the intermediate values
797 /// before they are promoted/expanded.
798 ///
799 unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
800                                                 EVT &IntermediateVT,
801                                                 unsigned &NumIntermediates,
802                                                 EVT &RegisterVT) const {
803   // Figure out the right, legal destination reg to copy into.
804   unsigned NumElts = VT.getVectorNumElements();
805   EVT EltTy = VT.getVectorElementType();
806 
807   unsigned NumVectorRegs = 1;
808 
809   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
810   // could break down into LHS/RHS like LegalizeDAG does.
811   if (!isPowerOf2_32(NumElts)) {
812     NumVectorRegs = NumElts;
813     NumElts = 1;
814   }
815 
816   // Divide the input until we get to a supported size.  This will always
817   // end with a scalar if the target doesn't support vectors.
818   while (NumElts > 1 && !isTypeLegal(
819                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
820     NumElts >>= 1;
821     NumVectorRegs <<= 1;
822   }
823 
824   NumIntermediates = NumVectorRegs;
825 
826   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
827   if (!isTypeLegal(NewVT))
828     NewVT = EltTy;
829   IntermediateVT = NewVT;
830 
831   EVT DestVT = getRegisterType(Context, NewVT);
832   RegisterVT = DestVT;
833   if (DestVT.bitsLT(NewVT)) {
834     // Value is expanded, e.g. i64 -> i16.
835     return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
836   } else {
837     // Otherwise, promotion or legal types use the same number of registers as
838     // the vector decimated to the appropriate level.
839     return NumVectorRegs;
840   }
841 
842   return 1;
843 }
844 
845 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
846 /// function arguments in the caller parameter area.  This is the actual
847 /// alignment, not its logarithm.
848 unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
849   return TD->getCallFrameTypeAlignment(Ty);
850 }
851 
852 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
853 /// current function.  The returned value is a member of the
854 /// MachineJumpTableInfo::JTEntryKind enum.
855 unsigned TargetLowering::getJumpTableEncoding() const {
856   // In non-pic modes, just use the address of a block.
857   if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
858     return MachineJumpTableInfo::EK_BlockAddress;
859 
860   // In PIC mode, if the target supports a GPRel32 directive, use it.
861   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
862     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
863 
864   // Otherwise, use a label difference.
865   return MachineJumpTableInfo::EK_LabelDifference32;
866 }
867 
868 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
869                                                  SelectionDAG &DAG) const {
870   // If our PIC model is GP relative, use the global offset table as the base.
871   if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
872     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
873   return Table;
874 }
875 
876 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
877 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
878 /// MCExpr.
879 const MCExpr *
880 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
881                                              unsigned JTI,MCContext &Ctx) const{
882   // The normal PIC reloc base is the label at the start of the jump table.
883   return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
884 }
885 
886 bool
887 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
888   // Assume that everything is safe in static mode.
889   if (getTargetMachine().getRelocationModel() == Reloc::Static)
890     return true;
891 
892   // In dynamic-no-pic mode, assume that known defined values are safe.
893   if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
894       GA &&
895       !GA->getGlobal()->isDeclaration() &&
896       !GA->getGlobal()->isWeakForLinker())
897     return true;
898 
899   // Otherwise assume nothing is safe.
900   return false;
901 }
902 
903 //===----------------------------------------------------------------------===//
904 //  Optimization Methods
905 //===----------------------------------------------------------------------===//
906 
907 /// ShrinkDemandedConstant - Check to see if the specified operand of the
908 /// specified instruction is a constant integer.  If so, check to see if there
909 /// are any bits set in the constant that are not demanded.  If so, shrink the
910 /// constant and return true.
911 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
912                                                         const APInt &Demanded) {
913   DebugLoc dl = Op.getDebugLoc();
914 
915   // FIXME: ISD::SELECT, ISD::SELECT_CC
916   switch (Op.getOpcode()) {
917   default: break;
918   case ISD::XOR:
919   case ISD::AND:
920   case ISD::OR: {
921     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
922     if (!C) return false;
923 
924     if (Op.getOpcode() == ISD::XOR &&
925         (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
926       return false;
927 
928     // if we can expand it to have all bits set, do it
929     if (C->getAPIntValue().intersects(~Demanded)) {
930       EVT VT = Op.getValueType();
931       SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
932                                 DAG.getConstant(Demanded &
933                                                 C->getAPIntValue(),
934                                                 VT));
935       return CombineTo(Op, New);
936     }
937 
938     break;
939   }
940   }
941 
942   return false;
943 }
944 
945 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
946 /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
947 /// cast, but it could be generalized for targets with other types of
948 /// implicit widening casts.
949 bool
950 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
951                                                     unsigned BitWidth,
952                                                     const APInt &Demanded,
953                                                     DebugLoc dl) {
954   assert(Op.getNumOperands() == 2 &&
955          "ShrinkDemandedOp only supports binary operators!");
956   assert(Op.getNode()->getNumValues() == 1 &&
957          "ShrinkDemandedOp only supports nodes with one result!");
958 
959   // Don't do this if the node has another user, which may require the
960   // full value.
961   if (!Op.getNode()->hasOneUse())
962     return false;
963 
964   // Search for the smallest integer type with free casts to and from
965   // Op's type. For expedience, just check power-of-2 integer types.
966   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
967   unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
968   if (!isPowerOf2_32(SmallVTBits))
969     SmallVTBits = NextPowerOf2(SmallVTBits);
970   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
971     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
972     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
973         TLI.isZExtFree(SmallVT, Op.getValueType())) {
974       // We found a type with free casts.
975       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
976                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
977                                           Op.getNode()->getOperand(0)),
978                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
979                                           Op.getNode()->getOperand(1)));
980       SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
981       return CombineTo(Op, Z);
982     }
983   }
984   return false;
985 }
986 
987 /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
988 /// DemandedMask bits of the result of Op are ever used downstream.  If we can
989 /// use this information to simplify Op, create a new simplified DAG node and
990 /// return true, returning the original and new nodes in Old and New. Otherwise,
991 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
992 /// the expression (used to simplify the caller).  The KnownZero/One bits may
993 /// only be accurate for those bits in the DemandedMask.
994 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
995                                           const APInt &DemandedMask,
996                                           APInt &KnownZero,
997                                           APInt &KnownOne,
998                                           TargetLoweringOpt &TLO,
999                                           unsigned Depth) const {
1000   unsigned BitWidth = DemandedMask.getBitWidth();
1001   assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1002          "Mask size mismatches value type size!");
1003   APInt NewMask = DemandedMask;
1004   DebugLoc dl = Op.getDebugLoc();
1005 
1006   // Don't know anything.
1007   KnownZero = KnownOne = APInt(BitWidth, 0);
1008 
1009   // Other users may use these bits.
1010   if (!Op.getNode()->hasOneUse()) {
1011     if (Depth != 0) {
1012       // If not at the root, Just compute the KnownZero/KnownOne bits to
1013       // simplify things downstream.
1014       TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1015       return false;
1016     }
1017     // If this is the root being simplified, allow it to have multiple uses,
1018     // just set the NewMask to all bits.
1019     NewMask = APInt::getAllOnesValue(BitWidth);
1020   } else if (DemandedMask == 0) {
1021     // Not demanding any bits from Op.
1022     if (Op.getOpcode() != ISD::UNDEF)
1023       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1024     return false;
1025   } else if (Depth == 6) {        // Limit search depth.
1026     return false;
1027   }
1028 
1029   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1030   switch (Op.getOpcode()) {
1031   case ISD::Constant:
1032     // We know all of the bits for a constant!
1033     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1034     KnownZero = ~KnownOne & NewMask;
1035     return false;   // Don't fall through, will infinitely loop.
1036   case ISD::AND:
1037     // If the RHS is a constant, check to see if the LHS would be zero without
1038     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1039     // simplify the LHS, here we're using information from the LHS to simplify
1040     // the RHS.
1041     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1042       APInt LHSZero, LHSOne;
1043       TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1044                                 LHSZero, LHSOne, Depth+1);
1045       // If the LHS already has zeros where RHSC does, this and is dead.
1046       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1047         return TLO.CombineTo(Op, Op.getOperand(0));
1048       // If any of the set bits in the RHS are known zero on the LHS, shrink
1049       // the constant.
1050       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1051         return true;
1052     }
1053 
1054     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1055                              KnownOne, TLO, Depth+1))
1056       return true;
1057     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1058     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1059                              KnownZero2, KnownOne2, TLO, Depth+1))
1060       return true;
1061     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1062 
1063     // If all of the demanded bits are known one on one side, return the other.
1064     // These bits cannot contribute to the result of the 'and'.
1065     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1066       return TLO.CombineTo(Op, Op.getOperand(0));
1067     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1068       return TLO.CombineTo(Op, Op.getOperand(1));
1069     // If all of the demanded bits in the inputs are known zeros, return zero.
1070     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1071       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1072     // If the RHS is a constant, see if we can simplify it.
1073     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1074       return true;
1075     // If the operation can be done in a smaller type, do so.
1076     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1077       return true;
1078 
1079     // Output known-1 bits are only known if set in both the LHS & RHS.
1080     KnownOne &= KnownOne2;
1081     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1082     KnownZero |= KnownZero2;
1083     break;
1084   case ISD::OR:
1085     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1086                              KnownOne, TLO, Depth+1))
1087       return true;
1088     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1089     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1090                              KnownZero2, KnownOne2, TLO, Depth+1))
1091       return true;
1092     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1093 
1094     // If all of the demanded bits are known zero on one side, return the other.
1095     // These bits cannot contribute to the result of the 'or'.
1096     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1097       return TLO.CombineTo(Op, Op.getOperand(0));
1098     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1099       return TLO.CombineTo(Op, Op.getOperand(1));
1100     // If all of the potentially set bits on one side are known to be set on
1101     // the other side, just use the 'other' side.
1102     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1103       return TLO.CombineTo(Op, Op.getOperand(0));
1104     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1105       return TLO.CombineTo(Op, Op.getOperand(1));
1106     // If the RHS is a constant, see if we can simplify it.
1107     if (TLO.ShrinkDemandedConstant(Op, NewMask))
1108       return true;
1109     // If the operation can be done in a smaller type, do so.
1110     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1111       return true;
1112 
1113     // Output known-0 bits are only known if clear in both the LHS & RHS.
1114     KnownZero &= KnownZero2;
1115     // Output known-1 are known to be set if set in either the LHS | RHS.
1116     KnownOne |= KnownOne2;
1117     break;
1118   case ISD::XOR:
1119     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1120                              KnownOne, TLO, Depth+1))
1121       return true;
1122     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1123     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1124                              KnownOne2, TLO, Depth+1))
1125       return true;
1126     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1127 
1128     // If all of the demanded bits are known zero on one side, return the other.
1129     // These bits cannot contribute to the result of the 'xor'.
1130     if ((KnownZero & NewMask) == NewMask)
1131       return TLO.CombineTo(Op, Op.getOperand(0));
1132     if ((KnownZero2 & NewMask) == NewMask)
1133       return TLO.CombineTo(Op, Op.getOperand(1));
1134     // If the operation can be done in a smaller type, do so.
1135     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1136       return true;
1137 
1138     // If all of the unknown bits are known to be zero on one side or the other
1139     // (but not both) turn this into an *inclusive* or.
1140     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1141     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1142       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1143                                                Op.getOperand(0),
1144                                                Op.getOperand(1)));
1145 
1146     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1147     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1148     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1149     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1150 
1151     // If all of the demanded bits on one side are known, and all of the set
1152     // bits on that side are also known to be set on the other side, turn this
1153     // into an AND, as we know the bits will be cleared.
1154     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1155     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1156       if ((KnownOne & KnownOne2) == KnownOne) {
1157         EVT VT = Op.getValueType();
1158         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1159         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1160                                                  Op.getOperand(0), ANDC));
1161       }
1162     }
1163 
1164     // If the RHS is a constant, see if we can simplify it.
1165     // for XOR, we prefer to force bits to 1 if they will make a -1.
1166     // if we can't force bits, try to shrink constant
1167     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1168       APInt Expanded = C->getAPIntValue() | (~NewMask);
1169       // if we can expand it to have all bits set, do it
1170       if (Expanded.isAllOnesValue()) {
1171         if (Expanded != C->getAPIntValue()) {
1172           EVT VT = Op.getValueType();
1173           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1174                                           TLO.DAG.getConstant(Expanded, VT));
1175           return TLO.CombineTo(Op, New);
1176         }
1177         // if it already has all the bits set, nothing to change
1178         // but don't shrink either!
1179       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1180         return true;
1181       }
1182     }
1183 
1184     KnownZero = KnownZeroOut;
1185     KnownOne  = KnownOneOut;
1186     break;
1187   case ISD::SELECT:
1188     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1189                              KnownOne, TLO, Depth+1))
1190       return true;
1191     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1192                              KnownOne2, TLO, Depth+1))
1193       return true;
1194     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1195     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1196 
1197     // If the operands are constants, see if we can simplify them.
1198     if (TLO.ShrinkDemandedConstant(Op, NewMask))
1199       return true;
1200 
1201     // Only known if known in both the LHS and RHS.
1202     KnownOne &= KnownOne2;
1203     KnownZero &= KnownZero2;
1204     break;
1205   case ISD::SELECT_CC:
1206     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1207                              KnownOne, TLO, Depth+1))
1208       return true;
1209     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1210                              KnownOne2, TLO, Depth+1))
1211       return true;
1212     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1213     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1214 
1215     // If the operands are constants, see if we can simplify them.
1216     if (TLO.ShrinkDemandedConstant(Op, NewMask))
1217       return true;
1218 
1219     // Only known if known in both the LHS and RHS.
1220     KnownOne &= KnownOne2;
1221     KnownZero &= KnownZero2;
1222     break;
1223   case ISD::SHL:
1224     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1225       unsigned ShAmt = SA->getZExtValue();
1226       SDValue InOp = Op.getOperand(0);
1227 
1228       // If the shift count is an invalid immediate, don't do anything.
1229       if (ShAmt >= BitWidth)
1230         break;
1231 
1232       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1233       // single shift.  We can do this if the bottom bits (which are shifted
1234       // out) are never demanded.
1235       if (InOp.getOpcode() == ISD::SRL &&
1236           isa<ConstantSDNode>(InOp.getOperand(1))) {
1237         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1238           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1239           unsigned Opc = ISD::SHL;
1240           int Diff = ShAmt-C1;
1241           if (Diff < 0) {
1242             Diff = -Diff;
1243             Opc = ISD::SRL;
1244           }
1245 
1246           SDValue NewSA =
1247             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1248           EVT VT = Op.getValueType();
1249           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1250                                                    InOp.getOperand(0), NewSA));
1251         }
1252       }
1253 
1254       if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1255                                KnownZero, KnownOne, TLO, Depth+1))
1256         return true;
1257       KnownZero <<= SA->getZExtValue();
1258       KnownOne  <<= SA->getZExtValue();
1259       // low bits known zero.
1260       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1261     }
1262     break;
1263   case ISD::SRL:
1264     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1265       EVT VT = Op.getValueType();
1266       unsigned ShAmt = SA->getZExtValue();
1267       unsigned VTSize = VT.getSizeInBits();
1268       SDValue InOp = Op.getOperand(0);
1269 
1270       // If the shift count is an invalid immediate, don't do anything.
1271       if (ShAmt >= BitWidth)
1272         break;
1273 
1274       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1275       // single shift.  We can do this if the top bits (which are shifted out)
1276       // are never demanded.
1277       if (InOp.getOpcode() == ISD::SHL &&
1278           isa<ConstantSDNode>(InOp.getOperand(1))) {
1279         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1280           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1281           unsigned Opc = ISD::SRL;
1282           int Diff = ShAmt-C1;
1283           if (Diff < 0) {
1284             Diff = -Diff;
1285             Opc = ISD::SHL;
1286           }
1287 
1288           SDValue NewSA =
1289             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1290           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1291                                                    InOp.getOperand(0), NewSA));
1292         }
1293       }
1294 
1295       // Compute the new bits that are at the top now.
1296       if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1297                                KnownZero, KnownOne, TLO, Depth+1))
1298         return true;
1299       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1300       KnownZero = KnownZero.lshr(ShAmt);
1301       KnownOne  = KnownOne.lshr(ShAmt);
1302 
1303       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1304       KnownZero |= HighBits;  // High bits known zero.
1305     }
1306     break;
1307   case ISD::SRA:
1308     // If this is an arithmetic shift right and only the low-bit is set, we can
1309     // always convert this into a logical shr, even if the shift amount is
1310     // variable.  The low bit of the shift cannot be an input sign bit unless
1311     // the shift amount is >= the size of the datatype, which is undefined.
1312     if (DemandedMask == 1)
1313       return TLO.CombineTo(Op,
1314                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1315                                            Op.getOperand(0), Op.getOperand(1)));
1316 
1317     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1318       EVT VT = Op.getValueType();
1319       unsigned ShAmt = SA->getZExtValue();
1320 
1321       // If the shift count is an invalid immediate, don't do anything.
1322       if (ShAmt >= BitWidth)
1323         break;
1324 
1325       APInt InDemandedMask = (NewMask << ShAmt);
1326 
1327       // If any of the demanded bits are produced by the sign extension, we also
1328       // demand the input sign bit.
1329       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1330       if (HighBits.intersects(NewMask))
1331         InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1332 
1333       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1334                                KnownZero, KnownOne, TLO, Depth+1))
1335         return true;
1336       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1337       KnownZero = KnownZero.lshr(ShAmt);
1338       KnownOne  = KnownOne.lshr(ShAmt);
1339 
1340       // Handle the sign bit, adjusted to where it is now in the mask.
1341       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1342 
1343       // If the input sign bit is known to be zero, or if none of the top bits
1344       // are demanded, turn this into an unsigned shift right.
1345       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1346         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1347                                                  Op.getOperand(0),
1348                                                  Op.getOperand(1)));
1349       } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1350         KnownOne |= HighBits;
1351       }
1352     }
1353     break;
1354   case ISD::SIGN_EXTEND_INREG: {
1355     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1356 
1357     // Sign extension.  Compute the demanded bits in the result that are not
1358     // present in the input.
1359     APInt NewBits =
1360       APInt::getHighBitsSet(BitWidth,
1361                             BitWidth - EVT.getScalarType().getSizeInBits()) &
1362       NewMask;
1363 
1364     // If none of the extended bits are demanded, eliminate the sextinreg.
1365     if (NewBits == 0)
1366       return TLO.CombineTo(Op, Op.getOperand(0));
1367 
1368     APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits());
1369     InSignBit.zext(BitWidth);
1370     APInt InputDemandedBits =
1371       APInt::getLowBitsSet(BitWidth,
1372                            EVT.getScalarType().getSizeInBits()) &
1373       NewMask;
1374 
1375     // Since the sign extended bits are demanded, we know that the sign
1376     // bit is demanded.
1377     InputDemandedBits |= InSignBit;
1378 
1379     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1380                              KnownZero, KnownOne, TLO, Depth+1))
1381       return true;
1382     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1383 
1384     // If the sign bit of the input is known set or clear, then we know the
1385     // top bits of the result.
1386 
1387     // If the input sign bit is known zero, convert this into a zero extension.
1388     if (KnownZero.intersects(InSignBit))
1389       return TLO.CombineTo(Op,
1390                            TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1391 
1392     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1393       KnownOne |= NewBits;
1394       KnownZero &= ~NewBits;
1395     } else {                       // Input sign bit unknown
1396       KnownZero &= ~NewBits;
1397       KnownOne &= ~NewBits;
1398     }
1399     break;
1400   }
1401   case ISD::ZERO_EXTEND: {
1402     unsigned OperandBitWidth =
1403       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1404     APInt InMask = NewMask;
1405     InMask.trunc(OperandBitWidth);
1406 
1407     // If none of the top bits are demanded, convert this into an any_extend.
1408     APInt NewBits =
1409       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1410     if (!NewBits.intersects(NewMask))
1411       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1412                                                Op.getValueType(),
1413                                                Op.getOperand(0)));
1414 
1415     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1416                              KnownZero, KnownOne, TLO, Depth+1))
1417       return true;
1418     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1419     KnownZero.zext(BitWidth);
1420     KnownOne.zext(BitWidth);
1421     KnownZero |= NewBits;
1422     break;
1423   }
1424   case ISD::SIGN_EXTEND: {
1425     EVT InVT = Op.getOperand(0).getValueType();
1426     unsigned InBits = InVT.getScalarType().getSizeInBits();
1427     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1428     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1429     APInt NewBits   = ~InMask & NewMask;
1430 
1431     // If none of the top bits are demanded, convert this into an any_extend.
1432     if (NewBits == 0)
1433       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1434                                               Op.getValueType(),
1435                                               Op.getOperand(0)));
1436 
1437     // Since some of the sign extended bits are demanded, we know that the sign
1438     // bit is demanded.
1439     APInt InDemandedBits = InMask & NewMask;
1440     InDemandedBits |= InSignBit;
1441     InDemandedBits.trunc(InBits);
1442 
1443     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1444                              KnownOne, TLO, Depth+1))
1445       return true;
1446     KnownZero.zext(BitWidth);
1447     KnownOne.zext(BitWidth);
1448 
1449     // If the sign bit is known zero, convert this to a zero extend.
1450     if (KnownZero.intersects(InSignBit))
1451       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1452                                                Op.getValueType(),
1453                                                Op.getOperand(0)));
1454 
1455     // If the sign bit is known one, the top bits match.
1456     if (KnownOne.intersects(InSignBit)) {
1457       KnownOne  |= NewBits;
1458       KnownZero &= ~NewBits;
1459     } else {   // Otherwise, top bits aren't known.
1460       KnownOne  &= ~NewBits;
1461       KnownZero &= ~NewBits;
1462     }
1463     break;
1464   }
1465   case ISD::ANY_EXTEND: {
1466     unsigned OperandBitWidth =
1467       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1468     APInt InMask = NewMask;
1469     InMask.trunc(OperandBitWidth);
1470     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1471                              KnownZero, KnownOne, TLO, Depth+1))
1472       return true;
1473     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1474     KnownZero.zext(BitWidth);
1475     KnownOne.zext(BitWidth);
1476     break;
1477   }
1478   case ISD::TRUNCATE: {
1479     // Simplify the input, using demanded bit information, and compute the known
1480     // zero/one bits live out.
1481     unsigned OperandBitWidth =
1482       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1483     APInt TruncMask = NewMask;
1484     TruncMask.zext(OperandBitWidth);
1485     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1486                              KnownZero, KnownOne, TLO, Depth+1))
1487       return true;
1488     KnownZero.trunc(BitWidth);
1489     KnownOne.trunc(BitWidth);
1490 
1491     // If the input is only used by this truncate, see if we can shrink it based
1492     // on the known demanded bits.
1493     if (Op.getOperand(0).getNode()->hasOneUse()) {
1494       SDValue In = Op.getOperand(0);
1495       switch (In.getOpcode()) {
1496       default: break;
1497       case ISD::SRL:
1498         // Shrink SRL by a constant if none of the high bits shifted in are
1499         // demanded.
1500         if (TLO.LegalTypes() &&
1501             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1502           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1503           // undesirable.
1504           break;
1505         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1506         if (!ShAmt)
1507           break;
1508         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1509                                                OperandBitWidth - BitWidth);
1510         HighBits = HighBits.lshr(ShAmt->getZExtValue());
1511         HighBits.trunc(BitWidth);
1512 
1513         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1514           // None of the shifted in bits are needed.  Add a truncate of the
1515           // shift input, then shift it.
1516           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1517                                              Op.getValueType(),
1518                                              In.getOperand(0));
1519           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1520                                                    Op.getValueType(),
1521                                                    NewTrunc,
1522                                                    In.getOperand(1)));
1523         }
1524         break;
1525       }
1526     }
1527 
1528     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1529     break;
1530   }
1531   case ISD::AssertZext: {
1532     // Demand all the bits of the input that are demanded in the output.
1533     // The low bits are obvious; the high bits are demanded because we're
1534     // asserting that they're zero here.
1535     if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1536                              KnownZero, KnownOne, TLO, Depth+1))
1537       return true;
1538     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1539 
1540     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1541     APInt InMask = APInt::getLowBitsSet(BitWidth,
1542                                         VT.getSizeInBits());
1543     KnownZero |= ~InMask & NewMask;
1544     break;
1545   }
1546   case ISD::BIT_CONVERT:
1547 #if 0
1548     // If this is an FP->Int bitcast and if the sign bit is the only thing that
1549     // is demanded, turn this into a FGETSIGN.
1550     if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1551         MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1552         !MVT::isVector(Op.getOperand(0).getValueType())) {
1553       // Only do this xform if FGETSIGN is valid or if before legalize.
1554       if (!TLO.AfterLegalize ||
1555           isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1556         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1557         // place.  We expect the SHL to be eliminated by other optimizations.
1558         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1559                                          Op.getOperand(0));
1560         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1561         SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1562         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1563                                                  Sign, ShAmt));
1564       }
1565     }
1566 #endif
1567     break;
1568   case ISD::ADD:
1569   case ISD::MUL:
1570   case ISD::SUB: {
1571     // Add, Sub, and Mul don't demand any bits in positions beyond that
1572     // of the highest bit demanded of them.
1573     APInt LoMask = APInt::getLowBitsSet(BitWidth,
1574                                         BitWidth - NewMask.countLeadingZeros());
1575     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1576                              KnownOne2, TLO, Depth+1))
1577       return true;
1578     if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1579                              KnownOne2, TLO, Depth+1))
1580       return true;
1581     // See if the operation should be performed at a smaller bit width.
1582     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1583       return true;
1584   }
1585   // FALL THROUGH
1586   default:
1587     // Just use ComputeMaskedBits to compute output bits.
1588     TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1589     break;
1590   }
1591 
1592   // If we know the value of all of the demanded bits, return this as a
1593   // constant.
1594   if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1595     return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1596 
1597   return false;
1598 }
1599 
1600 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
1601 /// in Mask are known to be either zero or one and return them in the
1602 /// KnownZero/KnownOne bitsets.
1603 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1604                                                     const APInt &Mask,
1605                                                     APInt &KnownZero,
1606                                                     APInt &KnownOne,
1607                                                     const SelectionDAG &DAG,
1608                                                     unsigned Depth) const {
1609   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1610           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1611           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1612           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1613          "Should use MaskedValueIsZero if you don't know whether Op"
1614          " is a target node!");
1615   KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1616 }
1617 
1618 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1619 /// targets that want to expose additional information about sign bits to the
1620 /// DAG Combiner.
1621 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1622                                                          unsigned Depth) const {
1623   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1624           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1625           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1626           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1627          "Should use ComputeNumSignBits if you don't know whether Op"
1628          " is a target node!");
1629   return 1;
1630 }
1631 
1632 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1633 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1634 /// determine which bit is set.
1635 ///
1636 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1637   // A left-shift of a constant one will have exactly one bit set, because
1638   // shifting the bit off the end is undefined.
1639   if (Val.getOpcode() == ISD::SHL)
1640     if (ConstantSDNode *C =
1641          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1642       if (C->getAPIntValue() == 1)
1643         return true;
1644 
1645   // Similarly, a right-shift of a constant sign-bit will have exactly
1646   // one bit set.
1647   if (Val.getOpcode() == ISD::SRL)
1648     if (ConstantSDNode *C =
1649          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1650       if (C->getAPIntValue().isSignBit())
1651         return true;
1652 
1653   // More could be done here, though the above checks are enough
1654   // to handle some common cases.
1655 
1656   // Fall back to ComputeMaskedBits to catch other known cases.
1657   EVT OpVT = Val.getValueType();
1658   unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1659   APInt Mask = APInt::getAllOnesValue(BitWidth);
1660   APInt KnownZero, KnownOne;
1661   DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1662   return (KnownZero.countPopulation() == BitWidth - 1) &&
1663          (KnownOne.countPopulation() == 1);
1664 }
1665 
1666 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1667 /// and cc. If it is unable to simplify it, return a null SDValue.
1668 SDValue
1669 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1670                               ISD::CondCode Cond, bool foldBooleans,
1671                               DAGCombinerInfo &DCI, DebugLoc dl) const {
1672   SelectionDAG &DAG = DCI.DAG;
1673   LLVMContext &Context = *DAG.getContext();
1674 
1675   // These setcc operations always fold.
1676   switch (Cond) {
1677   default: break;
1678   case ISD::SETFALSE:
1679   case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1680   case ISD::SETTRUE:
1681   case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1682   }
1683 
1684   if (isa<ConstantSDNode>(N0.getNode())) {
1685     // Ensure that the constant occurs on the RHS, and fold constant
1686     // comparisons.
1687     return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1688   }
1689 
1690   if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1691     const APInt &C1 = N1C->getAPIntValue();
1692 
1693     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1694     // equality comparison, then we're just comparing whether X itself is
1695     // zero.
1696     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1697         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1698         N0.getOperand(1).getOpcode() == ISD::Constant) {
1699       const APInt &ShAmt
1700         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1701       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1702           ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1703         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1704           // (srl (ctlz x), 5) == 0  -> X != 0
1705           // (srl (ctlz x), 5) != 1  -> X != 0
1706           Cond = ISD::SETNE;
1707         } else {
1708           // (srl (ctlz x), 5) != 0  -> X == 0
1709           // (srl (ctlz x), 5) == 1  -> X == 0
1710           Cond = ISD::SETEQ;
1711         }
1712         SDValue Zero = DAG.getConstant(0, N0.getValueType());
1713         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1714                             Zero, Cond);
1715       }
1716     }
1717 
1718     // If the LHS is '(and load, const)', the RHS is 0,
1719     // the test is for equality or unsigned, and all 1 bits of the const are
1720     // in the same partial word, see if we can shorten the load.
1721     if (DCI.isBeforeLegalize() &&
1722         N0.getOpcode() == ISD::AND && C1 == 0 &&
1723         N0.getNode()->hasOneUse() &&
1724         isa<LoadSDNode>(N0.getOperand(0)) &&
1725         N0.getOperand(0).getNode()->hasOneUse() &&
1726         isa<ConstantSDNode>(N0.getOperand(1))) {
1727       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1728       APInt bestMask;
1729       unsigned bestWidth = 0, bestOffset = 0;
1730       if (!Lod->isVolatile() && Lod->isUnindexed()) {
1731         unsigned origWidth = N0.getValueType().getSizeInBits();
1732         unsigned maskWidth = origWidth;
1733         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1734         // 8 bits, but have to be careful...
1735         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1736           origWidth = Lod->getMemoryVT().getSizeInBits();
1737         const APInt &Mask =
1738           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1739         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1740           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1741           for (unsigned offset=0; offset<origWidth/width; offset++) {
1742             if ((newMask & Mask) == Mask) {
1743               if (!TD->isLittleEndian())
1744                 bestOffset = (origWidth/width - offset - 1) * (width/8);
1745               else
1746                 bestOffset = (uint64_t)offset * (width/8);
1747               bestMask = Mask.lshr(offset * (width/8) * 8);
1748               bestWidth = width;
1749               break;
1750             }
1751             newMask = newMask << width;
1752           }
1753         }
1754       }
1755       if (bestWidth) {
1756         EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1757         if (newVT.isRound()) {
1758           EVT PtrType = Lod->getOperand(1).getValueType();
1759           SDValue Ptr = Lod->getBasePtr();
1760           if (bestOffset != 0)
1761             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1762                               DAG.getConstant(bestOffset, PtrType));
1763           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1764           SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1765                                         Lod->getSrcValue(),
1766                                         Lod->getSrcValueOffset() + bestOffset,
1767                                         false, false, NewAlign);
1768           return DAG.getSetCC(dl, VT,
1769                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1770                                       DAG.getConstant(bestMask.trunc(bestWidth),
1771                                                       newVT)),
1772                               DAG.getConstant(0LL, newVT), Cond);
1773         }
1774       }
1775     }
1776 
1777     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1778     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1779       unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1780 
1781       // If the comparison constant has bits in the upper part, the
1782       // zero-extended value could never match.
1783       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1784                                               C1.getBitWidth() - InSize))) {
1785         switch (Cond) {
1786         case ISD::SETUGT:
1787         case ISD::SETUGE:
1788         case ISD::SETEQ: return DAG.getConstant(0, VT);
1789         case ISD::SETULT:
1790         case ISD::SETULE:
1791         case ISD::SETNE: return DAG.getConstant(1, VT);
1792         case ISD::SETGT:
1793         case ISD::SETGE:
1794           // True if the sign bit of C1 is set.
1795           return DAG.getConstant(C1.isNegative(), VT);
1796         case ISD::SETLT:
1797         case ISD::SETLE:
1798           // True if the sign bit of C1 isn't set.
1799           return DAG.getConstant(C1.isNonNegative(), VT);
1800         default:
1801           break;
1802         }
1803       }
1804 
1805       // Otherwise, we can perform the comparison with the low bits.
1806       switch (Cond) {
1807       case ISD::SETEQ:
1808       case ISD::SETNE:
1809       case ISD::SETUGT:
1810       case ISD::SETUGE:
1811       case ISD::SETULT:
1812       case ISD::SETULE: {
1813         EVT newVT = N0.getOperand(0).getValueType();
1814         if (DCI.isBeforeLegalizeOps() ||
1815             (isOperationLegal(ISD::SETCC, newVT) &&
1816               getCondCodeAction(Cond, newVT)==Legal))
1817           return DAG.getSetCC(dl, VT, N0.getOperand(0),
1818                               DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1819                               Cond);
1820         break;
1821       }
1822       default:
1823         break;   // todo, be more careful with signed comparisons
1824       }
1825     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1826                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1827       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1828       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1829       EVT ExtDstTy = N0.getValueType();
1830       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1831 
1832       // If the extended part has any inconsistent bits, it cannot ever
1833       // compare equal.  In other words, they have to be all ones or all
1834       // zeros.
1835       APInt ExtBits =
1836         APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1837       if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1838         return DAG.getConstant(Cond == ISD::SETNE, VT);
1839 
1840       SDValue ZextOp;
1841       EVT Op0Ty = N0.getOperand(0).getValueType();
1842       if (Op0Ty == ExtSrcTy) {
1843         ZextOp = N0.getOperand(0);
1844       } else {
1845         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1846         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1847                               DAG.getConstant(Imm, Op0Ty));
1848       }
1849       if (!DCI.isCalledByLegalizer())
1850         DCI.AddToWorklist(ZextOp.getNode());
1851       // Otherwise, make this a use of a zext.
1852       return DAG.getSetCC(dl, VT, ZextOp,
1853                           DAG.getConstant(C1 & APInt::getLowBitsSet(
1854                                                               ExtDstTyBits,
1855                                                               ExtSrcTyBits),
1856                                           ExtDstTy),
1857                           Cond);
1858     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1859                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1860       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1861       if (N0.getOpcode() == ISD::SETCC &&
1862           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1863         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1864         if (TrueWhenTrue)
1865           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1866         // Invert the condition.
1867         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1868         CC = ISD::getSetCCInverse(CC,
1869                                   N0.getOperand(0).getValueType().isInteger());
1870         return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1871       }
1872 
1873       if ((N0.getOpcode() == ISD::XOR ||
1874            (N0.getOpcode() == ISD::AND &&
1875             N0.getOperand(0).getOpcode() == ISD::XOR &&
1876             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1877           isa<ConstantSDNode>(N0.getOperand(1)) &&
1878           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1879         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1880         // can only do this if the top bits are known zero.
1881         unsigned BitWidth = N0.getValueSizeInBits();
1882         if (DAG.MaskedValueIsZero(N0,
1883                                   APInt::getHighBitsSet(BitWidth,
1884                                                         BitWidth-1))) {
1885           // Okay, get the un-inverted input value.
1886           SDValue Val;
1887           if (N0.getOpcode() == ISD::XOR)
1888             Val = N0.getOperand(0);
1889           else {
1890             assert(N0.getOpcode() == ISD::AND &&
1891                     N0.getOperand(0).getOpcode() == ISD::XOR);
1892             // ((X^1)&1)^1 -> X & 1
1893             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1894                               N0.getOperand(0).getOperand(0),
1895                               N0.getOperand(1));
1896           }
1897 
1898           return DAG.getSetCC(dl, VT, Val, N1,
1899                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1900         }
1901       } else if (N1C->getAPIntValue() == 1 &&
1902                  (VT == MVT::i1 ||
1903                   getBooleanContents() == ZeroOrOneBooleanContent)) {
1904         SDValue Op0 = N0;
1905         if (Op0.getOpcode() == ISD::TRUNCATE)
1906           Op0 = Op0.getOperand(0);
1907 
1908         if ((Op0.getOpcode() == ISD::XOR) &&
1909             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1910             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1911           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1912           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1913           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1914                               Cond);
1915         } else if (Op0.getOpcode() == ISD::AND &&
1916                 isa<ConstantSDNode>(Op0.getOperand(1)) &&
1917                 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1918           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1919           if (Op0.getValueType().bitsGT(VT))
1920             Op0 = DAG.getNode(ISD::AND, dl, VT,
1921                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1922                           DAG.getConstant(1, VT));
1923           else if (Op0.getValueType().bitsLT(VT))
1924             Op0 = DAG.getNode(ISD::AND, dl, VT,
1925                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1926                         DAG.getConstant(1, VT));
1927 
1928           return DAG.getSetCC(dl, VT, Op0,
1929                               DAG.getConstant(0, Op0.getValueType()),
1930                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1931         }
1932       }
1933     }
1934 
1935     APInt MinVal, MaxVal;
1936     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1937     if (ISD::isSignedIntSetCC(Cond)) {
1938       MinVal = APInt::getSignedMinValue(OperandBitSize);
1939       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1940     } else {
1941       MinVal = APInt::getMinValue(OperandBitSize);
1942       MaxVal = APInt::getMaxValue(OperandBitSize);
1943     }
1944 
1945     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1946     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1947       if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1948       // X >= C0 --> X > (C0-1)
1949       return DAG.getSetCC(dl, VT, N0,
1950                           DAG.getConstant(C1-1, N1.getValueType()),
1951                           (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1952     }
1953 
1954     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1955       if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1956       // X <= C0 --> X < (C0+1)
1957       return DAG.getSetCC(dl, VT, N0,
1958                           DAG.getConstant(C1+1, N1.getValueType()),
1959                           (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1960     }
1961 
1962     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1963       return DAG.getConstant(0, VT);      // X < MIN --> false
1964     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1965       return DAG.getConstant(1, VT);      // X >= MIN --> true
1966     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1967       return DAG.getConstant(0, VT);      // X > MAX --> false
1968     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1969       return DAG.getConstant(1, VT);      // X <= MAX --> true
1970 
1971     // Canonicalize setgt X, Min --> setne X, Min
1972     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1973       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1974     // Canonicalize setlt X, Max --> setne X, Max
1975     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1976       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1977 
1978     // If we have setult X, 1, turn it into seteq X, 0
1979     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1980       return DAG.getSetCC(dl, VT, N0,
1981                           DAG.getConstant(MinVal, N0.getValueType()),
1982                           ISD::SETEQ);
1983     // If we have setugt X, Max-1, turn it into seteq X, Max
1984     else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1985       return DAG.getSetCC(dl, VT, N0,
1986                           DAG.getConstant(MaxVal, N0.getValueType()),
1987                           ISD::SETEQ);
1988 
1989     // If we have "setcc X, C0", check to see if we can shrink the immediate
1990     // by changing cc.
1991 
1992     // SETUGT X, SINTMAX  -> SETLT X, 0
1993     if (Cond == ISD::SETUGT &&
1994         C1 == APInt::getSignedMaxValue(OperandBitSize))
1995       return DAG.getSetCC(dl, VT, N0,
1996                           DAG.getConstant(0, N1.getValueType()),
1997                           ISD::SETLT);
1998 
1999     // SETULT X, SINTMIN  -> SETGT X, -1
2000     if (Cond == ISD::SETULT &&
2001         C1 == APInt::getSignedMinValue(OperandBitSize)) {
2002       SDValue ConstMinusOne =
2003           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2004                           N1.getValueType());
2005       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2006     }
2007 
2008     // Fold bit comparisons when we can.
2009     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2010         (VT == N0.getValueType() ||
2011          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2012         N0.getOpcode() == ISD::AND)
2013       if (ConstantSDNode *AndRHS =
2014                   dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2015         EVT ShiftTy = DCI.isBeforeLegalize() ?
2016           getPointerTy() : getShiftAmountTy();
2017         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2018           // Perform the xform if the AND RHS is a single bit.
2019           if (AndRHS->getAPIntValue().isPowerOf2()) {
2020             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2021                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2022                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2023           }
2024         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2025           // (X & 8) == 8  -->  (X & 8) >> 3
2026           // Perform the xform if C1 is a single bit.
2027           if (C1.isPowerOf2()) {
2028             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2029                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2030                                       DAG.getConstant(C1.logBase2(), ShiftTy)));
2031           }
2032         }
2033       }
2034   }
2035 
2036   if (isa<ConstantFPSDNode>(N0.getNode())) {
2037     // Constant fold or commute setcc.
2038     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2039     if (O.getNode()) return O;
2040   } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2041     // If the RHS of an FP comparison is a constant, simplify it away in
2042     // some cases.
2043     if (CFP->getValueAPF().isNaN()) {
2044       // If an operand is known to be a nan, we can fold it.
2045       switch (ISD::getUnorderedFlavor(Cond)) {
2046       default: llvm_unreachable("Unknown flavor!");
2047       case 0:  // Known false.
2048         return DAG.getConstant(0, VT);
2049       case 1:  // Known true.
2050         return DAG.getConstant(1, VT);
2051       case 2:  // Undefined.
2052         return DAG.getUNDEF(VT);
2053       }
2054     }
2055 
2056     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2057     // constant if knowing that the operand is non-nan is enough.  We prefer to
2058     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2059     // materialize 0.0.
2060     if (Cond == ISD::SETO || Cond == ISD::SETUO)
2061       return DAG.getSetCC(dl, VT, N0, N0, Cond);
2062 
2063     // If the condition is not legal, see if we can find an equivalent one
2064     // which is legal.
2065     if (!isCondCodeLegal(Cond, N0.getValueType())) {
2066       // If the comparison was an awkward floating-point == or != and one of
2067       // the comparison operands is infinity or negative infinity, convert the
2068       // condition to a less-awkward <= or >=.
2069       if (CFP->getValueAPF().isInfinity()) {
2070         if (CFP->getValueAPF().isNegative()) {
2071           if (Cond == ISD::SETOEQ &&
2072               isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2073             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2074           if (Cond == ISD::SETUEQ &&
2075               isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2076             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2077           if (Cond == ISD::SETUNE &&
2078               isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2079             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2080           if (Cond == ISD::SETONE &&
2081               isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2082             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2083         } else {
2084           if (Cond == ISD::SETOEQ &&
2085               isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2086             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2087           if (Cond == ISD::SETUEQ &&
2088               isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2089             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2090           if (Cond == ISD::SETUNE &&
2091               isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2092             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2093           if (Cond == ISD::SETONE &&
2094               isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2095             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2096         }
2097       }
2098     }
2099   }
2100 
2101   if (N0 == N1) {
2102     // We can always fold X == X for integer setcc's.
2103     if (N0.getValueType().isInteger())
2104       return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2105     unsigned UOF = ISD::getUnorderedFlavor(Cond);
2106     if (UOF == 2)   // FP operators that are undefined on NaNs.
2107       return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2108     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2109       return DAG.getConstant(UOF, VT);
2110     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2111     // if it is not already.
2112     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2113     if (NewCond != Cond)
2114       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2115   }
2116 
2117   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2118       N0.getValueType().isInteger()) {
2119     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2120         N0.getOpcode() == ISD::XOR) {
2121       // Simplify (X+Y) == (X+Z) -->  Y == Z
2122       if (N0.getOpcode() == N1.getOpcode()) {
2123         if (N0.getOperand(0) == N1.getOperand(0))
2124           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2125         if (N0.getOperand(1) == N1.getOperand(1))
2126           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2127         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2128           // If X op Y == Y op X, try other combinations.
2129           if (N0.getOperand(0) == N1.getOperand(1))
2130             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2131                                 Cond);
2132           if (N0.getOperand(1) == N1.getOperand(0))
2133             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2134                                 Cond);
2135         }
2136       }
2137 
2138       if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2139         if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2140           // Turn (X+C1) == C2 --> X == C2-C1
2141           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2142             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2143                                 DAG.getConstant(RHSC->getAPIntValue()-
2144                                                 LHSR->getAPIntValue(),
2145                                 N0.getValueType()), Cond);
2146           }
2147 
2148           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2149           if (N0.getOpcode() == ISD::XOR)
2150             // If we know that all of the inverted bits are zero, don't bother
2151             // performing the inversion.
2152             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2153               return
2154                 DAG.getSetCC(dl, VT, N0.getOperand(0),
2155                              DAG.getConstant(LHSR->getAPIntValue() ^
2156                                                RHSC->getAPIntValue(),
2157                                              N0.getValueType()),
2158                              Cond);
2159         }
2160 
2161         // Turn (C1-X) == C2 --> X == C1-C2
2162         if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2163           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2164             return
2165               DAG.getSetCC(dl, VT, N0.getOperand(1),
2166                            DAG.getConstant(SUBC->getAPIntValue() -
2167                                              RHSC->getAPIntValue(),
2168                                            N0.getValueType()),
2169                            Cond);
2170           }
2171         }
2172       }
2173 
2174       // Simplify (X+Z) == X -->  Z == 0
2175       if (N0.getOperand(0) == N1)
2176         return DAG.getSetCC(dl, VT, N0.getOperand(1),
2177                         DAG.getConstant(0, N0.getValueType()), Cond);
2178       if (N0.getOperand(1) == N1) {
2179         if (DAG.isCommutativeBinOp(N0.getOpcode()))
2180           return DAG.getSetCC(dl, VT, N0.getOperand(0),
2181                           DAG.getConstant(0, N0.getValueType()), Cond);
2182         else if (N0.getNode()->hasOneUse()) {
2183           assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2184           // (Z-X) == X  --> Z == X<<1
2185           SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2186                                      N1,
2187                                      DAG.getConstant(1, getShiftAmountTy()));
2188           if (!DCI.isCalledByLegalizer())
2189             DCI.AddToWorklist(SH.getNode());
2190           return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2191         }
2192       }
2193     }
2194 
2195     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2196         N1.getOpcode() == ISD::XOR) {
2197       // Simplify  X == (X+Z) -->  Z == 0
2198       if (N1.getOperand(0) == N0) {
2199         return DAG.getSetCC(dl, VT, N1.getOperand(1),
2200                         DAG.getConstant(0, N1.getValueType()), Cond);
2201       } else if (N1.getOperand(1) == N0) {
2202         if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2203           return DAG.getSetCC(dl, VT, N1.getOperand(0),
2204                           DAG.getConstant(0, N1.getValueType()), Cond);
2205         } else if (N1.getNode()->hasOneUse()) {
2206           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2207           // X == (Z-X)  --> X<<1 == Z
2208           SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2209                                      DAG.getConstant(1, getShiftAmountTy()));
2210           if (!DCI.isCalledByLegalizer())
2211             DCI.AddToWorklist(SH.getNode());
2212           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2213         }
2214       }
2215     }
2216 
2217     // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2218     // Note that where y is variable and is known to have at most
2219     // one bit set (for example, if it is z&1) we cannot do this;
2220     // the expressions are not equivalent when y==0.
2221     if (N0.getOpcode() == ISD::AND)
2222       if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2223         if (ValueHasExactlyOneBitSet(N1, DAG)) {
2224           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2225           SDValue Zero = DAG.getConstant(0, N1.getValueType());
2226           return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2227         }
2228       }
2229     if (N1.getOpcode() == ISD::AND)
2230       if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2231         if (ValueHasExactlyOneBitSet(N0, DAG)) {
2232           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2233           SDValue Zero = DAG.getConstant(0, N0.getValueType());
2234           return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2235         }
2236       }
2237   }
2238 
2239   // Fold away ALL boolean setcc's.
2240   SDValue Temp;
2241   if (N0.getValueType() == MVT::i1 && foldBooleans) {
2242     switch (Cond) {
2243     default: llvm_unreachable("Unknown integer setcc!");
2244     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2245       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2246       N0 = DAG.getNOT(dl, Temp, MVT::i1);
2247       if (!DCI.isCalledByLegalizer())
2248         DCI.AddToWorklist(Temp.getNode());
2249       break;
2250     case ISD::SETNE:  // X != Y   -->  (X^Y)
2251       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2252       break;
2253     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2254     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2255       Temp = DAG.getNOT(dl, N0, MVT::i1);
2256       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2257       if (!DCI.isCalledByLegalizer())
2258         DCI.AddToWorklist(Temp.getNode());
2259       break;
2260     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2261     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2262       Temp = DAG.getNOT(dl, N1, MVT::i1);
2263       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2264       if (!DCI.isCalledByLegalizer())
2265         DCI.AddToWorklist(Temp.getNode());
2266       break;
2267     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2268     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2269       Temp = DAG.getNOT(dl, N0, MVT::i1);
2270       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2271       if (!DCI.isCalledByLegalizer())
2272         DCI.AddToWorklist(Temp.getNode());
2273       break;
2274     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2275     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2276       Temp = DAG.getNOT(dl, N1, MVT::i1);
2277       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2278       break;
2279     }
2280     if (VT != MVT::i1) {
2281       if (!DCI.isCalledByLegalizer())
2282         DCI.AddToWorklist(N0.getNode());
2283       // FIXME: If running after legalize, we probably can't do this.
2284       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2285     }
2286     return N0;
2287   }
2288 
2289   // Could not fold it.
2290   return SDValue();
2291 }
2292 
2293 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2294 /// node is a GlobalAddress + offset.
2295 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
2296                                     int64_t &Offset) const {
2297   if (isa<GlobalAddressSDNode>(N)) {
2298     GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2299     GA = GASD->getGlobal();
2300     Offset += GASD->getOffset();
2301     return true;
2302   }
2303 
2304   if (N->getOpcode() == ISD::ADD) {
2305     SDValue N1 = N->getOperand(0);
2306     SDValue N2 = N->getOperand(1);
2307     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2308       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2309       if (V) {
2310         Offset += V->getSExtValue();
2311         return true;
2312       }
2313     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2314       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2315       if (V) {
2316         Offset += V->getSExtValue();
2317         return true;
2318       }
2319     }
2320   }
2321   return false;
2322 }
2323 
2324 
2325 SDValue TargetLowering::
2326 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2327   // Default implementation: no optimization.
2328   return SDValue();
2329 }
2330 
2331 //===----------------------------------------------------------------------===//
2332 //  Inline Assembler Implementation Methods
2333 //===----------------------------------------------------------------------===//
2334 
2335 
2336 TargetLowering::ConstraintType
2337 TargetLowering::getConstraintType(const std::string &Constraint) const {
2338   // FIXME: lots more standard ones to handle.
2339   if (Constraint.size() == 1) {
2340     switch (Constraint[0]) {
2341     default: break;
2342     case 'r': return C_RegisterClass;
2343     case 'm':    // memory
2344     case 'o':    // offsetable
2345     case 'V':    // not offsetable
2346       return C_Memory;
2347     case 'i':    // Simple Integer or Relocatable Constant
2348     case 'n':    // Simple Integer
2349     case 's':    // Relocatable Constant
2350     case 'X':    // Allow ANY value.
2351     case 'I':    // Target registers.
2352     case 'J':
2353     case 'K':
2354     case 'L':
2355     case 'M':
2356     case 'N':
2357     case 'O':
2358     case 'P':
2359       return C_Other;
2360     }
2361   }
2362 
2363   if (Constraint.size() > 1 && Constraint[0] == '{' &&
2364       Constraint[Constraint.size()-1] == '}')
2365     return C_Register;
2366   return C_Unknown;
2367 }
2368 
2369 /// LowerXConstraint - try to replace an X constraint, which matches anything,
2370 /// with another that has more specific requirements based on the type of the
2371 /// corresponding operand.
2372 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2373   if (ConstraintVT.isInteger())
2374     return "r";
2375   if (ConstraintVT.isFloatingPoint())
2376     return "f";      // works for many targets
2377   return 0;
2378 }
2379 
2380 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2381 /// vector.  If it is invalid, don't add anything to Ops.
2382 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2383                                                   char ConstraintLetter,
2384                                                   std::vector<SDValue> &Ops,
2385                                                   SelectionDAG &DAG) const {
2386   switch (ConstraintLetter) {
2387   default: break;
2388   case 'X':     // Allows any operand; labels (basic block) use this.
2389     if (Op.getOpcode() == ISD::BasicBlock) {
2390       Ops.push_back(Op);
2391       return;
2392     }
2393     // fall through
2394   case 'i':    // Simple Integer or Relocatable Constant
2395   case 'n':    // Simple Integer
2396   case 's': {  // Relocatable Constant
2397     // These operands are interested in values of the form (GV+C), where C may
2398     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2399     // is possible and fine if either GV or C are missing.
2400     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2401     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2402 
2403     // If we have "(add GV, C)", pull out GV/C
2404     if (Op.getOpcode() == ISD::ADD) {
2405       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2406       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2407       if (C == 0 || GA == 0) {
2408         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2409         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2410       }
2411       if (C == 0 || GA == 0)
2412         C = 0, GA = 0;
2413     }
2414 
2415     // If we find a valid operand, map to the TargetXXX version so that the
2416     // value itself doesn't get selected.
2417     if (GA) {   // Either &GV   or   &GV+C
2418       if (ConstraintLetter != 'n') {
2419         int64_t Offs = GA->getOffset();
2420         if (C) Offs += C->getZExtValue();
2421         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2422                                                  Op.getValueType(), Offs));
2423         return;
2424       }
2425     }
2426     if (C) {   // just C, no GV.
2427       // Simple constants are not allowed for 's'.
2428       if (ConstraintLetter != 's') {
2429         // gcc prints these as sign extended.  Sign extend value to 64 bits
2430         // now; without this it would get ZExt'd later in
2431         // ScheduleDAGSDNodes::EmitNode, which is very generic.
2432         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2433                                             MVT::i64));
2434         return;
2435       }
2436     }
2437     break;
2438   }
2439   }
2440 }
2441 
2442 std::vector<unsigned> TargetLowering::
2443 getRegClassForInlineAsmConstraint(const std::string &Constraint,
2444                                   EVT VT) const {
2445   return std::vector<unsigned>();
2446 }
2447 
2448 
2449 std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2450 getRegForInlineAsmConstraint(const std::string &Constraint,
2451                              EVT VT) const {
2452   if (Constraint[0] != '{')
2453     return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2454   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2455 
2456   // Remove the braces from around the name.
2457   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2458 
2459   // Figure out which register class contains this reg.
2460   const TargetRegisterInfo *RI = TM.getRegisterInfo();
2461   for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2462        E = RI->regclass_end(); RCI != E; ++RCI) {
2463     const TargetRegisterClass *RC = *RCI;
2464 
2465     // If none of the value types for this register class are valid, we
2466     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2467     bool isLegal = false;
2468     for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2469          I != E; ++I) {
2470       if (isTypeLegal(*I)) {
2471         isLegal = true;
2472         break;
2473       }
2474     }
2475 
2476     if (!isLegal) continue;
2477 
2478     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2479          I != E; ++I) {
2480       if (RegName.equals_lower(RI->getName(*I)))
2481         return std::make_pair(*I, RC);
2482     }
2483   }
2484 
2485   return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2486 }
2487 
2488 //===----------------------------------------------------------------------===//
2489 // Constraint Selection.
2490 
2491 /// isMatchingInputConstraint - Return true of this is an input operand that is
2492 /// a matching constraint like "4".
2493 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2494   assert(!ConstraintCode.empty() && "No known constraint!");
2495   return isdigit(ConstraintCode[0]);
2496 }
2497 
2498 /// getMatchedOperand - If this is an input matching constraint, this method
2499 /// returns the output operand it matches.
2500 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2501   assert(!ConstraintCode.empty() && "No known constraint!");
2502   return atoi(ConstraintCode.c_str());
2503 }
2504 
2505 
2506 /// getConstraintGenerality - Return an integer indicating how general CT
2507 /// is.
2508 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2509   switch (CT) {
2510   default: llvm_unreachable("Unknown constraint type!");
2511   case TargetLowering::C_Other:
2512   case TargetLowering::C_Unknown:
2513     return 0;
2514   case TargetLowering::C_Register:
2515     return 1;
2516   case TargetLowering::C_RegisterClass:
2517     return 2;
2518   case TargetLowering::C_Memory:
2519     return 3;
2520   }
2521 }
2522 
2523 /// ChooseConstraint - If there are multiple different constraints that we
2524 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2525 /// This is somewhat tricky: constraints fall into four classes:
2526 ///    Other         -> immediates and magic values
2527 ///    Register      -> one specific register
2528 ///    RegisterClass -> a group of regs
2529 ///    Memory        -> memory
2530 /// Ideally, we would pick the most specific constraint possible: if we have
2531 /// something that fits into a register, we would pick it.  The problem here
2532 /// is that if we have something that could either be in a register or in
2533 /// memory that use of the register could cause selection of *other*
2534 /// operands to fail: they might only succeed if we pick memory.  Because of
2535 /// this the heuristic we use is:
2536 ///
2537 ///  1) If there is an 'other' constraint, and if the operand is valid for
2538 ///     that constraint, use it.  This makes us take advantage of 'i'
2539 ///     constraints when available.
2540 ///  2) Otherwise, pick the most general constraint present.  This prefers
2541 ///     'm' over 'r', for example.
2542 ///
2543 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2544                              const TargetLowering &TLI,
2545                              SDValue Op, SelectionDAG *DAG) {
2546   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2547   unsigned BestIdx = 0;
2548   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2549   int BestGenerality = -1;
2550 
2551   // Loop over the options, keeping track of the most general one.
2552   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2553     TargetLowering::ConstraintType CType =
2554       TLI.getConstraintType(OpInfo.Codes[i]);
2555 
2556     // If this is an 'other' constraint, see if the operand is valid for it.
2557     // For example, on X86 we might have an 'rI' constraint.  If the operand
2558     // is an integer in the range [0..31] we want to use I (saving a load
2559     // of a register), otherwise we must use 'r'.
2560     if (CType == TargetLowering::C_Other && Op.getNode()) {
2561       assert(OpInfo.Codes[i].size() == 1 &&
2562              "Unhandled multi-letter 'other' constraint");
2563       std::vector<SDValue> ResultOps;
2564       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
2565                                        ResultOps, *DAG);
2566       if (!ResultOps.empty()) {
2567         BestType = CType;
2568         BestIdx = i;
2569         break;
2570       }
2571     }
2572 
2573     // Things with matching constraints can only be registers, per gcc
2574     // documentation.  This mainly affects "g" constraints.
2575     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2576       continue;
2577 
2578     // This constraint letter is more general than the previous one, use it.
2579     int Generality = getConstraintGenerality(CType);
2580     if (Generality > BestGenerality) {
2581       BestType = CType;
2582       BestIdx = i;
2583       BestGenerality = Generality;
2584     }
2585   }
2586 
2587   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2588   OpInfo.ConstraintType = BestType;
2589 }
2590 
2591 /// ComputeConstraintToUse - Determines the constraint code and constraint
2592 /// type to use for the specific AsmOperandInfo, setting
2593 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2594 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2595                                             SDValue Op,
2596                                             SelectionDAG *DAG) const {
2597   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2598 
2599   // Single-letter constraints ('r') are very common.
2600   if (OpInfo.Codes.size() == 1) {
2601     OpInfo.ConstraintCode = OpInfo.Codes[0];
2602     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2603   } else {
2604     ChooseConstraint(OpInfo, *this, Op, DAG);
2605   }
2606 
2607   // 'X' matches anything.
2608   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2609     // Labels and constants are handled elsewhere ('X' is the only thing
2610     // that matches labels).  For Functions, the type here is the type of
2611     // the result, which is not what we want to look at; leave them alone.
2612     Value *v = OpInfo.CallOperandVal;
2613     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2614       OpInfo.CallOperandVal = v;
2615       return;
2616     }
2617 
2618     // Otherwise, try to resolve it to something we know about by looking at
2619     // the actual operand type.
2620     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2621       OpInfo.ConstraintCode = Repl;
2622       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2623     }
2624   }
2625 }
2626 
2627 //===----------------------------------------------------------------------===//
2628 //  Loop Strength Reduction hooks
2629 //===----------------------------------------------------------------------===//
2630 
2631 /// isLegalAddressingMode - Return true if the addressing mode represented
2632 /// by AM is legal for this target, for a load/store of the specified type.
2633 bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2634                                            const Type *Ty) const {
2635   // The default implementation of this implements a conservative RISCy, r+r and
2636   // r+i addr mode.
2637 
2638   // Allows a sign-extended 16-bit immediate field.
2639   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2640     return false;
2641 
2642   // No global is ever allowed as a base.
2643   if (AM.BaseGV)
2644     return false;
2645 
2646   // Only support r+r,
2647   switch (AM.Scale) {
2648   case 0:  // "r+i" or just "i", depending on HasBaseReg.
2649     break;
2650   case 1:
2651     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2652       return false;
2653     // Otherwise we have r+r or r+i.
2654     break;
2655   case 2:
2656     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2657       return false;
2658     // Allow 2*r as r+r.
2659     break;
2660   }
2661 
2662   return true;
2663 }
2664 
2665 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2666 /// return a DAG expression to select that will generate the same value by
2667 /// multiplying by a magic number.  See:
2668 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2669 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2670                                   std::vector<SDNode*>* Created) const {
2671   EVT VT = N->getValueType(0);
2672   DebugLoc dl= N->getDebugLoc();
2673 
2674   // Check to see if we can do this.
2675   // FIXME: We should be more aggressive here.
2676   if (!isTypeLegal(VT))
2677     return SDValue();
2678 
2679   APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2680   APInt::ms magics = d.magic();
2681 
2682   // Multiply the numerator (operand 0) by the magic value
2683   // FIXME: We should support doing a MUL in a wider type
2684   SDValue Q;
2685   if (isOperationLegalOrCustom(ISD::MULHS, VT))
2686     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2687                     DAG.getConstant(magics.m, VT));
2688   else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2689     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2690                               N->getOperand(0),
2691                               DAG.getConstant(magics.m, VT)).getNode(), 1);
2692   else
2693     return SDValue();       // No mulhs or equvialent
2694   // If d > 0 and m < 0, add the numerator
2695   if (d.isStrictlyPositive() && magics.m.isNegative()) {
2696     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2697     if (Created)
2698       Created->push_back(Q.getNode());
2699   }
2700   // If d < 0 and m > 0, subtract the numerator.
2701   if (d.isNegative() && magics.m.isStrictlyPositive()) {
2702     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2703     if (Created)
2704       Created->push_back(Q.getNode());
2705   }
2706   // Shift right algebraic if shift value is nonzero
2707   if (magics.s > 0) {
2708     Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2709                     DAG.getConstant(magics.s, getShiftAmountTy()));
2710     if (Created)
2711       Created->push_back(Q.getNode());
2712   }
2713   // Extract the sign bit and add it to the quotient
2714   SDValue T =
2715     DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2716                                                  getShiftAmountTy()));
2717   if (Created)
2718     Created->push_back(T.getNode());
2719   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2720 }
2721 
2722 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2723 /// return a DAG expression to select that will generate the same value by
2724 /// multiplying by a magic number.  See:
2725 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2726 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2727                                   std::vector<SDNode*>* Created) const {
2728   EVT VT = N->getValueType(0);
2729   DebugLoc dl = N->getDebugLoc();
2730 
2731   // Check to see if we can do this.
2732   // FIXME: We should be more aggressive here.
2733   if (!isTypeLegal(VT))
2734     return SDValue();
2735 
2736   // FIXME: We should use a narrower constant when the upper
2737   // bits are known to be zero.
2738   ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2739   APInt::mu magics = N1C->getAPIntValue().magicu();
2740 
2741   // Multiply the numerator (operand 0) by the magic value
2742   // FIXME: We should support doing a MUL in a wider type
2743   SDValue Q;
2744   if (isOperationLegalOrCustom(ISD::MULHU, VT))
2745     Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2746                     DAG.getConstant(magics.m, VT));
2747   else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2748     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2749                               N->getOperand(0),
2750                               DAG.getConstant(magics.m, VT)).getNode(), 1);
2751   else
2752     return SDValue();       // No mulhu or equvialent
2753   if (Created)
2754     Created->push_back(Q.getNode());
2755 
2756   if (magics.a == 0) {
2757     assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2758            "We shouldn't generate an undefined shift!");
2759     return DAG.getNode(ISD::SRL, dl, VT, Q,
2760                        DAG.getConstant(magics.s, getShiftAmountTy()));
2761   } else {
2762     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2763     if (Created)
2764       Created->push_back(NPQ.getNode());
2765     NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2766                       DAG.getConstant(1, getShiftAmountTy()));
2767     if (Created)
2768       Created->push_back(NPQ.getNode());
2769     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2770     if (Created)
2771       Created->push_back(NPQ.getNode());
2772     return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2773                        DAG.getConstant(magics.s-1, getShiftAmountTy()));
2774   }
2775 }
2776