1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore following attributes because they don't affect the 61 // call sequence. 62 AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex); 63 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 64 Attribute::DereferenceableOrNull, Attribute::NoAlias, 65 Attribute::NonNull}) 66 CallerAttrs.removeAttribute(Attr); 67 68 if (CallerAttrs.hasAttributes()) 69 return false; 70 71 // It's not safe to eliminate the sign / zero extension of the return value. 72 if (CallerAttrs.contains(Attribute::ZExt) || 73 CallerAttrs.contains(Attribute::SExt)) 74 return false; 75 76 // Check if the only use is a function return node. 77 return isUsedByReturnOnly(Node, Chain); 78 } 79 80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 81 const uint32_t *CallerPreservedMask, 82 const SmallVectorImpl<CCValAssign> &ArgLocs, 83 const SmallVectorImpl<SDValue> &OutVals) const { 84 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 85 const CCValAssign &ArgLoc = ArgLocs[I]; 86 if (!ArgLoc.isRegLoc()) 87 continue; 88 MCRegister Reg = ArgLoc.getLocReg(); 89 // Only look at callee saved registers. 90 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 91 continue; 92 // Check that we pass the value used for the caller. 93 // (We look for a CopyFromReg reading a virtual register that is used 94 // for the function live-in value of register Reg) 95 SDValue Value = OutVals[I]; 96 if (Value->getOpcode() != ISD::CopyFromReg) 97 return false; 98 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 99 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 100 return false; 101 } 102 return true; 103 } 104 105 /// Set CallLoweringInfo attribute flags based on the call instruction's 106 /// argument attributes. 107 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 108 unsigned ArgIdx) { 109 auto Attrs = Call->getAttributes(); 110 111 IsSExt = Attrs.hasParamAttribute(ArgIdx, Attribute::SExt); 112 IsZExt = Attrs.hasParamAttribute(ArgIdx, Attribute::ZExt); 113 IsInReg = Attrs.hasParamAttribute(ArgIdx, Attribute::InReg); 114 IsSRet = Attrs.hasParamAttribute(ArgIdx, Attribute::StructRet); 115 IsNest = Attrs.hasParamAttribute(ArgIdx, Attribute::Nest); 116 IsReturned = Attrs.hasParamAttribute(ArgIdx, Attribute::Returned); 117 IsSwiftSelf = Attrs.hasParamAttribute(ArgIdx, Attribute::SwiftSelf); 118 IsSwiftError = Attrs.hasParamAttribute(ArgIdx, Attribute::SwiftError); 119 Alignment = Attrs.getParamStackAlignment(ArgIdx); 120 121 IsByVal = Attrs.hasParamAttribute(ArgIdx, Attribute::ByVal); 122 IsInAlloca = Attrs.hasParamAttribute(ArgIdx, Attribute::InAlloca); 123 IsPreallocated = Attrs.hasParamAttribute(ArgIdx, Attribute::Preallocated); 124 125 assert(IsByVal + IsInAlloca + IsPreallocated <= 1 && 126 "can't have multiple indirect attributes"); 127 IndirectType = nullptr; 128 if (IsByVal) { 129 IndirectType = Call->getParamByValType(ArgIdx); 130 assert(IndirectType && "no byval type?"); 131 if (!Alignment) 132 Alignment = Call->getParamAlign(ArgIdx); 133 } 134 if (IsInAlloca) { 135 IndirectType = Call->getParamInAllocaType(ArgIdx); 136 assert(IndirectType && "no inalloca type?"); 137 } 138 if (IsPreallocated) { 139 IndirectType = Call->getParamPreallocatedType(ArgIdx); 140 assert(IndirectType && "no preallocated type?"); 141 } 142 } 143 144 /// Generate a libcall taking the given operands as arguments and returning a 145 /// result of type RetVT. 146 std::pair<SDValue, SDValue> 147 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 148 ArrayRef<SDValue> Ops, 149 MakeLibCallOptions CallOptions, 150 const SDLoc &dl, 151 SDValue InChain) const { 152 if (!InChain) 153 InChain = DAG.getEntryNode(); 154 155 TargetLowering::ArgListTy Args; 156 Args.reserve(Ops.size()); 157 158 TargetLowering::ArgListEntry Entry; 159 for (unsigned i = 0; i < Ops.size(); ++i) { 160 SDValue NewOp = Ops[i]; 161 Entry.Node = NewOp; 162 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 163 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 164 CallOptions.IsSExt); 165 Entry.IsZExt = !Entry.IsSExt; 166 167 if (CallOptions.IsSoften && 168 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 169 Entry.IsSExt = Entry.IsZExt = false; 170 } 171 Args.push_back(Entry); 172 } 173 174 if (LC == RTLIB::UNKNOWN_LIBCALL) 175 report_fatal_error("Unsupported library call operation!"); 176 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 177 getPointerTy(DAG.getDataLayout())); 178 179 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 180 TargetLowering::CallLoweringInfo CLI(DAG); 181 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 182 bool zeroExtend = !signExtend; 183 184 if (CallOptions.IsSoften && 185 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 186 signExtend = zeroExtend = false; 187 } 188 189 CLI.setDebugLoc(dl) 190 .setChain(InChain) 191 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 192 .setNoReturn(CallOptions.DoesNotReturn) 193 .setDiscardResult(!CallOptions.IsReturnValueUsed) 194 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 195 .setSExtResult(signExtend) 196 .setZExtResult(zeroExtend); 197 return LowerCallTo(CLI); 198 } 199 200 bool TargetLowering::findOptimalMemOpLowering( 201 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 202 unsigned SrcAS, const AttributeList &FuncAttributes) const { 203 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 204 return false; 205 206 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 207 208 if (VT == MVT::Other) { 209 // Use the largest integer type whose alignment constraints are satisfied. 210 // We only need to check DstAlign here as SrcAlign is always greater or 211 // equal to DstAlign (or zero). 212 VT = MVT::i64; 213 if (Op.isFixedDstAlign()) 214 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 215 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 216 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 217 assert(VT.isInteger()); 218 219 // Find the largest legal integer type. 220 MVT LVT = MVT::i64; 221 while (!isTypeLegal(LVT)) 222 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 223 assert(LVT.isInteger()); 224 225 // If the type we've chosen is larger than the largest legal integer type 226 // then use that instead. 227 if (VT.bitsGT(LVT)) 228 VT = LVT; 229 } 230 231 unsigned NumMemOps = 0; 232 uint64_t Size = Op.size(); 233 while (Size) { 234 unsigned VTSize = VT.getSizeInBits() / 8; 235 while (VTSize > Size) { 236 // For now, only use non-vector load / store's for the left-over pieces. 237 EVT NewVT = VT; 238 unsigned NewVTSize; 239 240 bool Found = false; 241 if (VT.isVector() || VT.isFloatingPoint()) { 242 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 243 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 244 isSafeMemOpType(NewVT.getSimpleVT())) 245 Found = true; 246 else if (NewVT == MVT::i64 && 247 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 248 isSafeMemOpType(MVT::f64)) { 249 // i64 is usually not legal on 32-bit targets, but f64 may be. 250 NewVT = MVT::f64; 251 Found = true; 252 } 253 } 254 255 if (!Found) { 256 do { 257 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 258 if (NewVT == MVT::i8) 259 break; 260 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 261 } 262 NewVTSize = NewVT.getSizeInBits() / 8; 263 264 // If the new VT cannot cover all of the remaining bits, then consider 265 // issuing a (or a pair of) unaligned and overlapping load / store. 266 bool Fast; 267 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 268 allowsMisalignedMemoryAccesses( 269 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 270 MachineMemOperand::MONone, &Fast) && 271 Fast) 272 VTSize = Size; 273 else { 274 VT = NewVT; 275 VTSize = NewVTSize; 276 } 277 } 278 279 if (++NumMemOps > Limit) 280 return false; 281 282 MemOps.push_back(VT); 283 Size -= VTSize; 284 } 285 286 return true; 287 } 288 289 /// Soften the operands of a comparison. This code is shared among BR_CC, 290 /// SELECT_CC, and SETCC handlers. 291 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 292 SDValue &NewLHS, SDValue &NewRHS, 293 ISD::CondCode &CCCode, 294 const SDLoc &dl, const SDValue OldLHS, 295 const SDValue OldRHS) const { 296 SDValue Chain; 297 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 298 OldRHS, Chain); 299 } 300 301 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 302 SDValue &NewLHS, SDValue &NewRHS, 303 ISD::CondCode &CCCode, 304 const SDLoc &dl, const SDValue OldLHS, 305 const SDValue OldRHS, 306 SDValue &Chain, 307 bool IsSignaling) const { 308 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 309 // not supporting it. We can update this code when libgcc provides such 310 // functions. 311 312 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 313 && "Unsupported setcc type!"); 314 315 // Expand into one or more soft-fp libcall(s). 316 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 317 bool ShouldInvertCC = false; 318 switch (CCCode) { 319 case ISD::SETEQ: 320 case ISD::SETOEQ: 321 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 322 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 323 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 324 break; 325 case ISD::SETNE: 326 case ISD::SETUNE: 327 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 328 (VT == MVT::f64) ? RTLIB::UNE_F64 : 329 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 330 break; 331 case ISD::SETGE: 332 case ISD::SETOGE: 333 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 334 (VT == MVT::f64) ? RTLIB::OGE_F64 : 335 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 336 break; 337 case ISD::SETLT: 338 case ISD::SETOLT: 339 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 340 (VT == MVT::f64) ? RTLIB::OLT_F64 : 341 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 342 break; 343 case ISD::SETLE: 344 case ISD::SETOLE: 345 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 346 (VT == MVT::f64) ? RTLIB::OLE_F64 : 347 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 348 break; 349 case ISD::SETGT: 350 case ISD::SETOGT: 351 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 352 (VT == MVT::f64) ? RTLIB::OGT_F64 : 353 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 354 break; 355 case ISD::SETO: 356 ShouldInvertCC = true; 357 LLVM_FALLTHROUGH; 358 case ISD::SETUO: 359 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 360 (VT == MVT::f64) ? RTLIB::UO_F64 : 361 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 362 break; 363 case ISD::SETONE: 364 // SETONE = O && UNE 365 ShouldInvertCC = true; 366 LLVM_FALLTHROUGH; 367 case ISD::SETUEQ: 368 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 369 (VT == MVT::f64) ? RTLIB::UO_F64 : 370 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 371 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 372 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 373 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 374 break; 375 default: 376 // Invert CC for unordered comparisons 377 ShouldInvertCC = true; 378 switch (CCCode) { 379 case ISD::SETULT: 380 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 381 (VT == MVT::f64) ? RTLIB::OGE_F64 : 382 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 383 break; 384 case ISD::SETULE: 385 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 386 (VT == MVT::f64) ? RTLIB::OGT_F64 : 387 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 388 break; 389 case ISD::SETUGT: 390 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 391 (VT == MVT::f64) ? RTLIB::OLE_F64 : 392 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 393 break; 394 case ISD::SETUGE: 395 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 396 (VT == MVT::f64) ? RTLIB::OLT_F64 : 397 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 398 break; 399 default: llvm_unreachable("Do not know how to soften this setcc!"); 400 } 401 } 402 403 // Use the target specific return value for comparions lib calls. 404 EVT RetVT = getCmpLibcallReturnType(); 405 SDValue Ops[2] = {NewLHS, NewRHS}; 406 TargetLowering::MakeLibCallOptions CallOptions; 407 EVT OpsVT[2] = { OldLHS.getValueType(), 408 OldRHS.getValueType() }; 409 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 410 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 411 NewLHS = Call.first; 412 NewRHS = DAG.getConstant(0, dl, RetVT); 413 414 CCCode = getCmpLibcallCC(LC1); 415 if (ShouldInvertCC) { 416 assert(RetVT.isInteger()); 417 CCCode = getSetCCInverse(CCCode, RetVT); 418 } 419 420 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 421 // Update Chain. 422 Chain = Call.second; 423 } else { 424 EVT SetCCVT = 425 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 426 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 427 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 428 CCCode = getCmpLibcallCC(LC2); 429 if (ShouldInvertCC) 430 CCCode = getSetCCInverse(CCCode, RetVT); 431 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 432 if (Chain) 433 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 434 Call2.second); 435 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 436 Tmp.getValueType(), Tmp, NewLHS); 437 NewRHS = SDValue(); 438 } 439 } 440 441 /// Return the entry encoding for a jump table in the current function. The 442 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 443 unsigned TargetLowering::getJumpTableEncoding() const { 444 // In non-pic modes, just use the address of a block. 445 if (!isPositionIndependent()) 446 return MachineJumpTableInfo::EK_BlockAddress; 447 448 // In PIC mode, if the target supports a GPRel32 directive, use it. 449 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 450 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 451 452 // Otherwise, use a label difference. 453 return MachineJumpTableInfo::EK_LabelDifference32; 454 } 455 456 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 457 SelectionDAG &DAG) const { 458 // If our PIC model is GP relative, use the global offset table as the base. 459 unsigned JTEncoding = getJumpTableEncoding(); 460 461 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 462 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 463 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 464 465 return Table; 466 } 467 468 /// This returns the relocation base for the given PIC jumptable, the same as 469 /// getPICJumpTableRelocBase, but as an MCExpr. 470 const MCExpr * 471 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 472 unsigned JTI,MCContext &Ctx) const{ 473 // The normal PIC reloc base is the label at the start of the jump table. 474 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 475 } 476 477 bool 478 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 479 const TargetMachine &TM = getTargetMachine(); 480 const GlobalValue *GV = GA->getGlobal(); 481 482 // If the address is not even local to this DSO we will have to load it from 483 // a got and then add the offset. 484 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 485 return false; 486 487 // If the code is position independent we will have to add a base register. 488 if (isPositionIndependent()) 489 return false; 490 491 // Otherwise we can do it. 492 return true; 493 } 494 495 //===----------------------------------------------------------------------===// 496 // Optimization Methods 497 //===----------------------------------------------------------------------===// 498 499 /// If the specified instruction has a constant integer operand and there are 500 /// bits set in that constant that are not demanded, then clear those bits and 501 /// return true. 502 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 503 const APInt &DemandedBits, 504 const APInt &DemandedElts, 505 TargetLoweringOpt &TLO) const { 506 SDLoc DL(Op); 507 unsigned Opcode = Op.getOpcode(); 508 509 // Do target-specific constant optimization. 510 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 511 return TLO.New.getNode(); 512 513 // FIXME: ISD::SELECT, ISD::SELECT_CC 514 switch (Opcode) { 515 default: 516 break; 517 case ISD::XOR: 518 case ISD::AND: 519 case ISD::OR: { 520 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 521 if (!Op1C) 522 return false; 523 524 // If this is a 'not' op, don't touch it because that's a canonical form. 525 const APInt &C = Op1C->getAPIntValue(); 526 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 527 return false; 528 529 if (!C.isSubsetOf(DemandedBits)) { 530 EVT VT = Op.getValueType(); 531 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 532 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 533 return TLO.CombineTo(Op, NewOp); 534 } 535 536 break; 537 } 538 } 539 540 return false; 541 } 542 543 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 544 const APInt &DemandedBits, 545 TargetLoweringOpt &TLO) const { 546 EVT VT = Op.getValueType(); 547 APInt DemandedElts = VT.isVector() 548 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 549 : APInt(1, 1); 550 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 551 } 552 553 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 554 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 555 /// generalized for targets with other types of implicit widening casts. 556 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 557 const APInt &Demanded, 558 TargetLoweringOpt &TLO) const { 559 assert(Op.getNumOperands() == 2 && 560 "ShrinkDemandedOp only supports binary operators!"); 561 assert(Op.getNode()->getNumValues() == 1 && 562 "ShrinkDemandedOp only supports nodes with one result!"); 563 564 SelectionDAG &DAG = TLO.DAG; 565 SDLoc dl(Op); 566 567 // Early return, as this function cannot handle vector types. 568 if (Op.getValueType().isVector()) 569 return false; 570 571 // Don't do this if the node has another user, which may require the 572 // full value. 573 if (!Op.getNode()->hasOneUse()) 574 return false; 575 576 // Search for the smallest integer type with free casts to and from 577 // Op's type. For expedience, just check power-of-2 integer types. 578 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 579 unsigned DemandedSize = Demanded.getActiveBits(); 580 unsigned SmallVTBits = DemandedSize; 581 if (!isPowerOf2_32(SmallVTBits)) 582 SmallVTBits = NextPowerOf2(SmallVTBits); 583 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 584 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 585 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 586 TLI.isZExtFree(SmallVT, Op.getValueType())) { 587 // We found a type with free casts. 588 SDValue X = DAG.getNode( 589 Op.getOpcode(), dl, SmallVT, 590 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 591 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 592 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 593 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 594 return TLO.CombineTo(Op, Z); 595 } 596 } 597 return false; 598 } 599 600 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 601 DAGCombinerInfo &DCI) const { 602 SelectionDAG &DAG = DCI.DAG; 603 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 604 !DCI.isBeforeLegalizeOps()); 605 KnownBits Known; 606 607 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 608 if (Simplified) { 609 DCI.AddToWorklist(Op.getNode()); 610 DCI.CommitTargetLoweringOpt(TLO); 611 } 612 return Simplified; 613 } 614 615 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 616 KnownBits &Known, 617 TargetLoweringOpt &TLO, 618 unsigned Depth, 619 bool AssumeSingleUse) const { 620 EVT VT = Op.getValueType(); 621 622 // TODO: We can probably do more work on calculating the known bits and 623 // simplifying the operations for scalable vectors, but for now we just 624 // bail out. 625 if (VT.isScalableVector()) { 626 // Pretend we don't know anything for now. 627 Known = KnownBits(DemandedBits.getBitWidth()); 628 return false; 629 } 630 631 APInt DemandedElts = VT.isVector() 632 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 633 : APInt(1, 1); 634 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 635 AssumeSingleUse); 636 } 637 638 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 639 // TODO: Under what circumstances can we create nodes? Constant folding? 640 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 641 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 642 SelectionDAG &DAG, unsigned Depth) const { 643 // Limit search depth. 644 if (Depth >= SelectionDAG::MaxRecursionDepth) 645 return SDValue(); 646 647 // Ignore UNDEFs. 648 if (Op.isUndef()) 649 return SDValue(); 650 651 // Not demanding any bits/elts from Op. 652 if (DemandedBits == 0 || DemandedElts == 0) 653 return DAG.getUNDEF(Op.getValueType()); 654 655 unsigned NumElts = DemandedElts.getBitWidth(); 656 unsigned BitWidth = DemandedBits.getBitWidth(); 657 KnownBits LHSKnown, RHSKnown; 658 switch (Op.getOpcode()) { 659 case ISD::BITCAST: { 660 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 661 EVT SrcVT = Src.getValueType(); 662 EVT DstVT = Op.getValueType(); 663 if (SrcVT == DstVT) 664 return Src; 665 666 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 667 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 668 if (NumSrcEltBits == NumDstEltBits) 669 if (SDValue V = SimplifyMultipleUseDemandedBits( 670 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 671 return DAG.getBitcast(DstVT, V); 672 673 // TODO - bigendian once we have test coverage. 674 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 675 DAG.getDataLayout().isLittleEndian()) { 676 unsigned Scale = NumDstEltBits / NumSrcEltBits; 677 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 678 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 679 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 680 for (unsigned i = 0; i != Scale; ++i) { 681 unsigned Offset = i * NumSrcEltBits; 682 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 683 if (!Sub.isNullValue()) { 684 DemandedSrcBits |= Sub; 685 for (unsigned j = 0; j != NumElts; ++j) 686 if (DemandedElts[j]) 687 DemandedSrcElts.setBit((j * Scale) + i); 688 } 689 } 690 691 if (SDValue V = SimplifyMultipleUseDemandedBits( 692 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 693 return DAG.getBitcast(DstVT, V); 694 } 695 696 // TODO - bigendian once we have test coverage. 697 if ((NumSrcEltBits % NumDstEltBits) == 0 && 698 DAG.getDataLayout().isLittleEndian()) { 699 unsigned Scale = NumSrcEltBits / NumDstEltBits; 700 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 701 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 702 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 703 for (unsigned i = 0; i != NumElts; ++i) 704 if (DemandedElts[i]) { 705 unsigned Offset = (i % Scale) * NumDstEltBits; 706 DemandedSrcBits.insertBits(DemandedBits, Offset); 707 DemandedSrcElts.setBit(i / Scale); 708 } 709 710 if (SDValue V = SimplifyMultipleUseDemandedBits( 711 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 712 return DAG.getBitcast(DstVT, V); 713 } 714 715 break; 716 } 717 case ISD::AND: { 718 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 719 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 720 721 // If all of the demanded bits are known 1 on one side, return the other. 722 // These bits cannot contribute to the result of the 'and' in this 723 // context. 724 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 725 return Op.getOperand(0); 726 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 727 return Op.getOperand(1); 728 break; 729 } 730 case ISD::OR: { 731 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 732 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 733 734 // If all of the demanded bits are known zero on one side, return the 735 // other. These bits cannot contribute to the result of the 'or' in this 736 // context. 737 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 738 return Op.getOperand(0); 739 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 740 return Op.getOperand(1); 741 break; 742 } 743 case ISD::XOR: { 744 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 745 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 746 747 // If all of the demanded bits are known zero on one side, return the 748 // other. 749 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 750 return Op.getOperand(0); 751 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 752 return Op.getOperand(1); 753 break; 754 } 755 case ISD::SHL: { 756 // If we are only demanding sign bits then we can use the shift source 757 // directly. 758 if (const APInt *MaxSA = 759 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 760 SDValue Op0 = Op.getOperand(0); 761 unsigned ShAmt = MaxSA->getZExtValue(); 762 unsigned NumSignBits = 763 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 764 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 765 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 766 return Op0; 767 } 768 break; 769 } 770 case ISD::SETCC: { 771 SDValue Op0 = Op.getOperand(0); 772 SDValue Op1 = Op.getOperand(1); 773 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 774 // If (1) we only need the sign-bit, (2) the setcc operands are the same 775 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 776 // -1, we may be able to bypass the setcc. 777 if (DemandedBits.isSignMask() && 778 Op0.getScalarValueSizeInBits() == BitWidth && 779 getBooleanContents(Op0.getValueType()) == 780 BooleanContent::ZeroOrNegativeOneBooleanContent) { 781 // If we're testing X < 0, then this compare isn't needed - just use X! 782 // FIXME: We're limiting to integer types here, but this should also work 783 // if we don't care about FP signed-zero. The use of SETLT with FP means 784 // that we don't care about NaNs. 785 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 786 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 787 return Op0; 788 } 789 break; 790 } 791 case ISD::SIGN_EXTEND_INREG: { 792 // If none of the extended bits are demanded, eliminate the sextinreg. 793 SDValue Op0 = Op.getOperand(0); 794 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 795 unsigned ExBits = ExVT.getScalarSizeInBits(); 796 if (DemandedBits.getActiveBits() <= ExBits) 797 return Op0; 798 // If the input is already sign extended, just drop the extension. 799 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 800 if (NumSignBits >= (BitWidth - ExBits + 1)) 801 return Op0; 802 break; 803 } 804 case ISD::ANY_EXTEND_VECTOR_INREG: 805 case ISD::SIGN_EXTEND_VECTOR_INREG: 806 case ISD::ZERO_EXTEND_VECTOR_INREG: { 807 // If we only want the lowest element and none of extended bits, then we can 808 // return the bitcasted source vector. 809 SDValue Src = Op.getOperand(0); 810 EVT SrcVT = Src.getValueType(); 811 EVT DstVT = Op.getValueType(); 812 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 813 DAG.getDataLayout().isLittleEndian() && 814 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 815 return DAG.getBitcast(DstVT, Src); 816 } 817 break; 818 } 819 case ISD::INSERT_VECTOR_ELT: { 820 // If we don't demand the inserted element, return the base vector. 821 SDValue Vec = Op.getOperand(0); 822 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 823 EVT VecVT = Vec.getValueType(); 824 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 825 !DemandedElts[CIdx->getZExtValue()]) 826 return Vec; 827 break; 828 } 829 case ISD::INSERT_SUBVECTOR: { 830 // If we don't demand the inserted subvector, return the base vector. 831 SDValue Vec = Op.getOperand(0); 832 SDValue Sub = Op.getOperand(1); 833 uint64_t Idx = Op.getConstantOperandVal(2); 834 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 835 if (DemandedElts.extractBits(NumSubElts, Idx) == 0) 836 return Vec; 837 break; 838 } 839 case ISD::VECTOR_SHUFFLE: { 840 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 841 842 // If all the demanded elts are from one operand and are inline, 843 // then we can use the operand directly. 844 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 845 for (unsigned i = 0; i != NumElts; ++i) { 846 int M = ShuffleMask[i]; 847 if (M < 0 || !DemandedElts[i]) 848 continue; 849 AllUndef = false; 850 IdentityLHS &= (M == (int)i); 851 IdentityRHS &= ((M - NumElts) == i); 852 } 853 854 if (AllUndef) 855 return DAG.getUNDEF(Op.getValueType()); 856 if (IdentityLHS) 857 return Op.getOperand(0); 858 if (IdentityRHS) 859 return Op.getOperand(1); 860 break; 861 } 862 default: 863 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 864 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 865 Op, DemandedBits, DemandedElts, DAG, Depth)) 866 return V; 867 break; 868 } 869 return SDValue(); 870 } 871 872 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 873 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 874 unsigned Depth) const { 875 EVT VT = Op.getValueType(); 876 APInt DemandedElts = VT.isVector() 877 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 878 : APInt(1, 1); 879 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 880 Depth); 881 } 882 883 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 884 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 885 unsigned Depth) const { 886 APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits()); 887 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 888 Depth); 889 } 890 891 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 892 /// result of Op are ever used downstream. If we can use this information to 893 /// simplify Op, create a new simplified DAG node and return true, returning the 894 /// original and new nodes in Old and New. Otherwise, analyze the expression and 895 /// return a mask of Known bits for the expression (used to simplify the 896 /// caller). The Known bits may only be accurate for those bits in the 897 /// OriginalDemandedBits and OriginalDemandedElts. 898 bool TargetLowering::SimplifyDemandedBits( 899 SDValue Op, const APInt &OriginalDemandedBits, 900 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 901 unsigned Depth, bool AssumeSingleUse) const { 902 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 903 assert(Op.getScalarValueSizeInBits() == BitWidth && 904 "Mask size mismatches value type size!"); 905 906 // Don't know anything. 907 Known = KnownBits(BitWidth); 908 909 // TODO: We can probably do more work on calculating the known bits and 910 // simplifying the operations for scalable vectors, but for now we just 911 // bail out. 912 if (Op.getValueType().isScalableVector()) 913 return false; 914 915 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 916 assert((!Op.getValueType().isVector() || 917 NumElts == Op.getValueType().getVectorNumElements()) && 918 "Unexpected vector size"); 919 920 APInt DemandedBits = OriginalDemandedBits; 921 APInt DemandedElts = OriginalDemandedElts; 922 SDLoc dl(Op); 923 auto &DL = TLO.DAG.getDataLayout(); 924 925 // Undef operand. 926 if (Op.isUndef()) 927 return false; 928 929 if (Op.getOpcode() == ISD::Constant) { 930 // We know all of the bits for a constant! 931 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 932 return false; 933 } 934 935 if (Op.getOpcode() == ISD::ConstantFP) { 936 // We know all of the bits for a floating point constant! 937 Known = KnownBits::makeConstant( 938 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 939 return false; 940 } 941 942 // Other users may use these bits. 943 EVT VT = Op.getValueType(); 944 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 945 if (Depth != 0) { 946 // If not at the root, Just compute the Known bits to 947 // simplify things downstream. 948 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 949 return false; 950 } 951 // If this is the root being simplified, allow it to have multiple uses, 952 // just set the DemandedBits/Elts to all bits. 953 DemandedBits = APInt::getAllOnesValue(BitWidth); 954 DemandedElts = APInt::getAllOnesValue(NumElts); 955 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 956 // Not demanding any bits/elts from Op. 957 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 958 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 959 // Limit search depth. 960 return false; 961 } 962 963 KnownBits Known2; 964 switch (Op.getOpcode()) { 965 case ISD::TargetConstant: 966 llvm_unreachable("Can't simplify this node"); 967 case ISD::SCALAR_TO_VECTOR: { 968 if (!DemandedElts[0]) 969 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 970 971 KnownBits SrcKnown; 972 SDValue Src = Op.getOperand(0); 973 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 974 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 975 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 976 return true; 977 978 // Upper elements are undef, so only get the knownbits if we just demand 979 // the bottom element. 980 if (DemandedElts == 1) 981 Known = SrcKnown.anyextOrTrunc(BitWidth); 982 break; 983 } 984 case ISD::BUILD_VECTOR: 985 // Collect the known bits that are shared by every demanded element. 986 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 987 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 988 return false; // Don't fall through, will infinitely loop. 989 case ISD::LOAD: { 990 auto *LD = cast<LoadSDNode>(Op); 991 if (getTargetConstantFromLoad(LD)) { 992 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 993 return false; // Don't fall through, will infinitely loop. 994 } 995 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 996 // If this is a ZEXTLoad and we are looking at the loaded value. 997 EVT MemVT = LD->getMemoryVT(); 998 unsigned MemBits = MemVT.getScalarSizeInBits(); 999 Known.Zero.setBitsFrom(MemBits); 1000 return false; // Don't fall through, will infinitely loop. 1001 } 1002 break; 1003 } 1004 case ISD::INSERT_VECTOR_ELT: { 1005 SDValue Vec = Op.getOperand(0); 1006 SDValue Scl = Op.getOperand(1); 1007 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1008 EVT VecVT = Vec.getValueType(); 1009 1010 // If index isn't constant, assume we need all vector elements AND the 1011 // inserted element. 1012 APInt DemandedVecElts(DemandedElts); 1013 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1014 unsigned Idx = CIdx->getZExtValue(); 1015 DemandedVecElts.clearBit(Idx); 1016 1017 // Inserted element is not required. 1018 if (!DemandedElts[Idx]) 1019 return TLO.CombineTo(Op, Vec); 1020 } 1021 1022 KnownBits KnownScl; 1023 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1024 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1025 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1026 return true; 1027 1028 Known = KnownScl.anyextOrTrunc(BitWidth); 1029 1030 KnownBits KnownVec; 1031 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1032 Depth + 1)) 1033 return true; 1034 1035 if (!!DemandedVecElts) 1036 Known = KnownBits::commonBits(Known, KnownVec); 1037 1038 return false; 1039 } 1040 case ISD::INSERT_SUBVECTOR: { 1041 // Demand any elements from the subvector and the remainder from the src its 1042 // inserted into. 1043 SDValue Src = Op.getOperand(0); 1044 SDValue Sub = Op.getOperand(1); 1045 uint64_t Idx = Op.getConstantOperandVal(2); 1046 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1047 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1048 APInt DemandedSrcElts = DemandedElts; 1049 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 1050 1051 KnownBits KnownSub, KnownSrc; 1052 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1053 Depth + 1)) 1054 return true; 1055 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1056 Depth + 1)) 1057 return true; 1058 1059 Known.Zero.setAllBits(); 1060 Known.One.setAllBits(); 1061 if (!!DemandedSubElts) 1062 Known = KnownBits::commonBits(Known, KnownSub); 1063 if (!!DemandedSrcElts) 1064 Known = KnownBits::commonBits(Known, KnownSrc); 1065 1066 // Attempt to avoid multi-use src if we don't need anything from it. 1067 if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() || 1068 !DemandedSrcElts.isAllOnesValue()) { 1069 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1070 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1071 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1072 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1073 if (NewSub || NewSrc) { 1074 NewSub = NewSub ? NewSub : Sub; 1075 NewSrc = NewSrc ? NewSrc : Src; 1076 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1077 Op.getOperand(2)); 1078 return TLO.CombineTo(Op, NewOp); 1079 } 1080 } 1081 break; 1082 } 1083 case ISD::EXTRACT_SUBVECTOR: { 1084 // Offset the demanded elts by the subvector index. 1085 SDValue Src = Op.getOperand(0); 1086 if (Src.getValueType().isScalableVector()) 1087 break; 1088 uint64_t Idx = Op.getConstantOperandVal(1); 1089 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1090 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1091 1092 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1093 Depth + 1)) 1094 return true; 1095 1096 // Attempt to avoid multi-use src if we don't need anything from it. 1097 if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) { 1098 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1099 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1100 if (DemandedSrc) { 1101 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1102 Op.getOperand(1)); 1103 return TLO.CombineTo(Op, NewOp); 1104 } 1105 } 1106 break; 1107 } 1108 case ISD::CONCAT_VECTORS: { 1109 Known.Zero.setAllBits(); 1110 Known.One.setAllBits(); 1111 EVT SubVT = Op.getOperand(0).getValueType(); 1112 unsigned NumSubVecs = Op.getNumOperands(); 1113 unsigned NumSubElts = SubVT.getVectorNumElements(); 1114 for (unsigned i = 0; i != NumSubVecs; ++i) { 1115 APInt DemandedSubElts = 1116 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1117 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1118 Known2, TLO, Depth + 1)) 1119 return true; 1120 // Known bits are shared by every demanded subvector element. 1121 if (!!DemandedSubElts) 1122 Known = KnownBits::commonBits(Known, Known2); 1123 } 1124 break; 1125 } 1126 case ISD::VECTOR_SHUFFLE: { 1127 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1128 1129 // Collect demanded elements from shuffle operands.. 1130 APInt DemandedLHS(NumElts, 0); 1131 APInt DemandedRHS(NumElts, 0); 1132 for (unsigned i = 0; i != NumElts; ++i) { 1133 if (!DemandedElts[i]) 1134 continue; 1135 int M = ShuffleMask[i]; 1136 if (M < 0) { 1137 // For UNDEF elements, we don't know anything about the common state of 1138 // the shuffle result. 1139 DemandedLHS.clearAllBits(); 1140 DemandedRHS.clearAllBits(); 1141 break; 1142 } 1143 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1144 if (M < (int)NumElts) 1145 DemandedLHS.setBit(M); 1146 else 1147 DemandedRHS.setBit(M - NumElts); 1148 } 1149 1150 if (!!DemandedLHS || !!DemandedRHS) { 1151 SDValue Op0 = Op.getOperand(0); 1152 SDValue Op1 = Op.getOperand(1); 1153 1154 Known.Zero.setAllBits(); 1155 Known.One.setAllBits(); 1156 if (!!DemandedLHS) { 1157 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1158 Depth + 1)) 1159 return true; 1160 Known = KnownBits::commonBits(Known, Known2); 1161 } 1162 if (!!DemandedRHS) { 1163 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1164 Depth + 1)) 1165 return true; 1166 Known = KnownBits::commonBits(Known, Known2); 1167 } 1168 1169 // Attempt to avoid multi-use ops if we don't need anything from them. 1170 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1171 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1172 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1173 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1174 if (DemandedOp0 || DemandedOp1) { 1175 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1176 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1177 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1178 return TLO.CombineTo(Op, NewOp); 1179 } 1180 } 1181 break; 1182 } 1183 case ISD::AND: { 1184 SDValue Op0 = Op.getOperand(0); 1185 SDValue Op1 = Op.getOperand(1); 1186 1187 // If the RHS is a constant, check to see if the LHS would be zero without 1188 // using the bits from the RHS. Below, we use knowledge about the RHS to 1189 // simplify the LHS, here we're using information from the LHS to simplify 1190 // the RHS. 1191 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1192 // Do not increment Depth here; that can cause an infinite loop. 1193 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1194 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1195 if ((LHSKnown.Zero & DemandedBits) == 1196 (~RHSC->getAPIntValue() & DemandedBits)) 1197 return TLO.CombineTo(Op, Op0); 1198 1199 // If any of the set bits in the RHS are known zero on the LHS, shrink 1200 // the constant. 1201 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1202 DemandedElts, TLO)) 1203 return true; 1204 1205 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1206 // constant, but if this 'and' is only clearing bits that were just set by 1207 // the xor, then this 'and' can be eliminated by shrinking the mask of 1208 // the xor. For example, for a 32-bit X: 1209 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1210 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1211 LHSKnown.One == ~RHSC->getAPIntValue()) { 1212 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1213 return TLO.CombineTo(Op, Xor); 1214 } 1215 } 1216 1217 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1218 Depth + 1)) 1219 return true; 1220 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1221 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1222 Known2, TLO, Depth + 1)) 1223 return true; 1224 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1225 1226 // Attempt to avoid multi-use ops if we don't need anything from them. 1227 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1228 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1229 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1230 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1231 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1232 if (DemandedOp0 || DemandedOp1) { 1233 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1234 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1235 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1236 return TLO.CombineTo(Op, NewOp); 1237 } 1238 } 1239 1240 // If all of the demanded bits are known one on one side, return the other. 1241 // These bits cannot contribute to the result of the 'and'. 1242 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1243 return TLO.CombineTo(Op, Op0); 1244 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1245 return TLO.CombineTo(Op, Op1); 1246 // If all of the demanded bits in the inputs are known zeros, return zero. 1247 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1248 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1249 // If the RHS is a constant, see if we can simplify it. 1250 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1251 TLO)) 1252 return true; 1253 // If the operation can be done in a smaller type, do so. 1254 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1255 return true; 1256 1257 Known &= Known2; 1258 break; 1259 } 1260 case ISD::OR: { 1261 SDValue Op0 = Op.getOperand(0); 1262 SDValue Op1 = Op.getOperand(1); 1263 1264 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1265 Depth + 1)) 1266 return true; 1267 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1268 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1269 Known2, TLO, Depth + 1)) 1270 return true; 1271 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1272 1273 // Attempt to avoid multi-use ops if we don't need anything from them. 1274 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1275 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1276 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1277 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1278 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1279 if (DemandedOp0 || DemandedOp1) { 1280 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1281 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1282 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1283 return TLO.CombineTo(Op, NewOp); 1284 } 1285 } 1286 1287 // If all of the demanded bits are known zero on one side, return the other. 1288 // These bits cannot contribute to the result of the 'or'. 1289 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1290 return TLO.CombineTo(Op, Op0); 1291 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1292 return TLO.CombineTo(Op, Op1); 1293 // If the RHS is a constant, see if we can simplify it. 1294 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1295 return true; 1296 // If the operation can be done in a smaller type, do so. 1297 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1298 return true; 1299 1300 Known |= Known2; 1301 break; 1302 } 1303 case ISD::XOR: { 1304 SDValue Op0 = Op.getOperand(0); 1305 SDValue Op1 = Op.getOperand(1); 1306 1307 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1308 Depth + 1)) 1309 return true; 1310 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1311 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1312 Depth + 1)) 1313 return true; 1314 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1315 1316 // Attempt to avoid multi-use ops if we don't need anything from them. 1317 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1318 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1319 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1320 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1321 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1322 if (DemandedOp0 || DemandedOp1) { 1323 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1324 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1325 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1326 return TLO.CombineTo(Op, NewOp); 1327 } 1328 } 1329 1330 // If all of the demanded bits are known zero on one side, return the other. 1331 // These bits cannot contribute to the result of the 'xor'. 1332 if (DemandedBits.isSubsetOf(Known.Zero)) 1333 return TLO.CombineTo(Op, Op0); 1334 if (DemandedBits.isSubsetOf(Known2.Zero)) 1335 return TLO.CombineTo(Op, Op1); 1336 // If the operation can be done in a smaller type, do so. 1337 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1338 return true; 1339 1340 // If all of the unknown bits are known to be zero on one side or the other 1341 // turn this into an *inclusive* or. 1342 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1343 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1344 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1345 1346 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1347 if (C) { 1348 // If one side is a constant, and all of the set bits in the constant are 1349 // also known set on the other side, turn this into an AND, as we know 1350 // the bits will be cleared. 1351 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1352 // NB: it is okay if more bits are known than are requested 1353 if (C->getAPIntValue() == Known2.One) { 1354 SDValue ANDC = 1355 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1356 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1357 } 1358 1359 // If the RHS is a constant, see if we can change it. Don't alter a -1 1360 // constant because that's a 'not' op, and that is better for combining 1361 // and codegen. 1362 if (!C->isAllOnesValue() && 1363 DemandedBits.isSubsetOf(C->getAPIntValue())) { 1364 // We're flipping all demanded bits. Flip the undemanded bits too. 1365 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1366 return TLO.CombineTo(Op, New); 1367 } 1368 } 1369 1370 // If we can't turn this into a 'not', try to shrink the constant. 1371 if (!C || !C->isAllOnesValue()) 1372 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1373 return true; 1374 1375 Known ^= Known2; 1376 break; 1377 } 1378 case ISD::SELECT: 1379 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1380 Depth + 1)) 1381 return true; 1382 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1383 Depth + 1)) 1384 return true; 1385 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1386 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1387 1388 // If the operands are constants, see if we can simplify them. 1389 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1390 return true; 1391 1392 // Only known if known in both the LHS and RHS. 1393 Known = KnownBits::commonBits(Known, Known2); 1394 break; 1395 case ISD::SELECT_CC: 1396 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1397 Depth + 1)) 1398 return true; 1399 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1400 Depth + 1)) 1401 return true; 1402 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1403 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1404 1405 // If the operands are constants, see if we can simplify them. 1406 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1407 return true; 1408 1409 // Only known if known in both the LHS and RHS. 1410 Known = KnownBits::commonBits(Known, Known2); 1411 break; 1412 case ISD::SETCC: { 1413 SDValue Op0 = Op.getOperand(0); 1414 SDValue Op1 = Op.getOperand(1); 1415 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1416 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1417 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1418 // -1, we may be able to bypass the setcc. 1419 if (DemandedBits.isSignMask() && 1420 Op0.getScalarValueSizeInBits() == BitWidth && 1421 getBooleanContents(Op0.getValueType()) == 1422 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1423 // If we're testing X < 0, then this compare isn't needed - just use X! 1424 // FIXME: We're limiting to integer types here, but this should also work 1425 // if we don't care about FP signed-zero. The use of SETLT with FP means 1426 // that we don't care about NaNs. 1427 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1428 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1429 return TLO.CombineTo(Op, Op0); 1430 1431 // TODO: Should we check for other forms of sign-bit comparisons? 1432 // Examples: X <= -1, X >= 0 1433 } 1434 if (getBooleanContents(Op0.getValueType()) == 1435 TargetLowering::ZeroOrOneBooleanContent && 1436 BitWidth > 1) 1437 Known.Zero.setBitsFrom(1); 1438 break; 1439 } 1440 case ISD::SHL: { 1441 SDValue Op0 = Op.getOperand(0); 1442 SDValue Op1 = Op.getOperand(1); 1443 EVT ShiftVT = Op1.getValueType(); 1444 1445 if (const APInt *SA = 1446 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1447 unsigned ShAmt = SA->getZExtValue(); 1448 if (ShAmt == 0) 1449 return TLO.CombineTo(Op, Op0); 1450 1451 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1452 // single shift. We can do this if the bottom bits (which are shifted 1453 // out) are never demanded. 1454 // TODO - support non-uniform vector amounts. 1455 if (Op0.getOpcode() == ISD::SRL) { 1456 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1457 if (const APInt *SA2 = 1458 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1459 unsigned C1 = SA2->getZExtValue(); 1460 unsigned Opc = ISD::SHL; 1461 int Diff = ShAmt - C1; 1462 if (Diff < 0) { 1463 Diff = -Diff; 1464 Opc = ISD::SRL; 1465 } 1466 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1467 return TLO.CombineTo( 1468 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1469 } 1470 } 1471 } 1472 1473 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1474 // are not demanded. This will likely allow the anyext to be folded away. 1475 // TODO - support non-uniform vector amounts. 1476 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1477 SDValue InnerOp = Op0.getOperand(0); 1478 EVT InnerVT = InnerOp.getValueType(); 1479 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1480 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1481 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1482 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1483 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1484 ShTy = InnerVT; 1485 SDValue NarrowShl = 1486 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1487 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1488 return TLO.CombineTo( 1489 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1490 } 1491 1492 // Repeat the SHL optimization above in cases where an extension 1493 // intervenes: (shl (anyext (shr x, c1)), c2) to 1494 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1495 // aren't demanded (as above) and that the shifted upper c1 bits of 1496 // x aren't demanded. 1497 // TODO - support non-uniform vector amounts. 1498 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1499 InnerOp.hasOneUse()) { 1500 if (const APInt *SA2 = 1501 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1502 unsigned InnerShAmt = SA2->getZExtValue(); 1503 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1504 DemandedBits.getActiveBits() <= 1505 (InnerBits - InnerShAmt + ShAmt) && 1506 DemandedBits.countTrailingZeros() >= ShAmt) { 1507 SDValue NewSA = 1508 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1509 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1510 InnerOp.getOperand(0)); 1511 return TLO.CombineTo( 1512 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1513 } 1514 } 1515 } 1516 } 1517 1518 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1519 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1520 Depth + 1)) 1521 return true; 1522 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1523 Known.Zero <<= ShAmt; 1524 Known.One <<= ShAmt; 1525 // low bits known zero. 1526 Known.Zero.setLowBits(ShAmt); 1527 1528 // Try shrinking the operation as long as the shift amount will still be 1529 // in range. 1530 if ((ShAmt < DemandedBits.getActiveBits()) && 1531 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1532 return true; 1533 } 1534 1535 // If we are only demanding sign bits then we can use the shift source 1536 // directly. 1537 if (const APInt *MaxSA = 1538 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1539 unsigned ShAmt = MaxSA->getZExtValue(); 1540 unsigned NumSignBits = 1541 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1542 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1543 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1544 return TLO.CombineTo(Op, Op0); 1545 } 1546 break; 1547 } 1548 case ISD::SRL: { 1549 SDValue Op0 = Op.getOperand(0); 1550 SDValue Op1 = Op.getOperand(1); 1551 EVT ShiftVT = Op1.getValueType(); 1552 1553 if (const APInt *SA = 1554 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1555 unsigned ShAmt = SA->getZExtValue(); 1556 if (ShAmt == 0) 1557 return TLO.CombineTo(Op, Op0); 1558 1559 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1560 // single shift. We can do this if the top bits (which are shifted out) 1561 // are never demanded. 1562 // TODO - support non-uniform vector amounts. 1563 if (Op0.getOpcode() == ISD::SHL) { 1564 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1565 if (const APInt *SA2 = 1566 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1567 unsigned C1 = SA2->getZExtValue(); 1568 unsigned Opc = ISD::SRL; 1569 int Diff = ShAmt - C1; 1570 if (Diff < 0) { 1571 Diff = -Diff; 1572 Opc = ISD::SHL; 1573 } 1574 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1575 return TLO.CombineTo( 1576 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1577 } 1578 } 1579 } 1580 1581 APInt InDemandedMask = (DemandedBits << ShAmt); 1582 1583 // If the shift is exact, then it does demand the low bits (and knows that 1584 // they are zero). 1585 if (Op->getFlags().hasExact()) 1586 InDemandedMask.setLowBits(ShAmt); 1587 1588 // Compute the new bits that are at the top now. 1589 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1590 Depth + 1)) 1591 return true; 1592 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1593 Known.Zero.lshrInPlace(ShAmt); 1594 Known.One.lshrInPlace(ShAmt); 1595 // High bits known zero. 1596 Known.Zero.setHighBits(ShAmt); 1597 } 1598 break; 1599 } 1600 case ISD::SRA: { 1601 SDValue Op0 = Op.getOperand(0); 1602 SDValue Op1 = Op.getOperand(1); 1603 EVT ShiftVT = Op1.getValueType(); 1604 1605 // If we only want bits that already match the signbit then we don't need 1606 // to shift. 1607 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1608 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1609 NumHiDemandedBits) 1610 return TLO.CombineTo(Op, Op0); 1611 1612 // If this is an arithmetic shift right and only the low-bit is set, we can 1613 // always convert this into a logical shr, even if the shift amount is 1614 // variable. The low bit of the shift cannot be an input sign bit unless 1615 // the shift amount is >= the size of the datatype, which is undefined. 1616 if (DemandedBits.isOneValue()) 1617 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1618 1619 if (const APInt *SA = 1620 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1621 unsigned ShAmt = SA->getZExtValue(); 1622 if (ShAmt == 0) 1623 return TLO.CombineTo(Op, Op0); 1624 1625 APInt InDemandedMask = (DemandedBits << ShAmt); 1626 1627 // If the shift is exact, then it does demand the low bits (and knows that 1628 // they are zero). 1629 if (Op->getFlags().hasExact()) 1630 InDemandedMask.setLowBits(ShAmt); 1631 1632 // If any of the demanded bits are produced by the sign extension, we also 1633 // demand the input sign bit. 1634 if (DemandedBits.countLeadingZeros() < ShAmt) 1635 InDemandedMask.setSignBit(); 1636 1637 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1638 Depth + 1)) 1639 return true; 1640 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1641 Known.Zero.lshrInPlace(ShAmt); 1642 Known.One.lshrInPlace(ShAmt); 1643 1644 // If the input sign bit is known to be zero, or if none of the top bits 1645 // are demanded, turn this into an unsigned shift right. 1646 if (Known.Zero[BitWidth - ShAmt - 1] || 1647 DemandedBits.countLeadingZeros() >= ShAmt) { 1648 SDNodeFlags Flags; 1649 Flags.setExact(Op->getFlags().hasExact()); 1650 return TLO.CombineTo( 1651 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1652 } 1653 1654 int Log2 = DemandedBits.exactLogBase2(); 1655 if (Log2 >= 0) { 1656 // The bit must come from the sign. 1657 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1658 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1659 } 1660 1661 if (Known.One[BitWidth - ShAmt - 1]) 1662 // New bits are known one. 1663 Known.One.setHighBits(ShAmt); 1664 1665 // Attempt to avoid multi-use ops if we don't need anything from them. 1666 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1667 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1668 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1669 if (DemandedOp0) { 1670 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1671 return TLO.CombineTo(Op, NewOp); 1672 } 1673 } 1674 } 1675 break; 1676 } 1677 case ISD::FSHL: 1678 case ISD::FSHR: { 1679 SDValue Op0 = Op.getOperand(0); 1680 SDValue Op1 = Op.getOperand(1); 1681 SDValue Op2 = Op.getOperand(2); 1682 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1683 1684 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1685 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1686 1687 // For fshl, 0-shift returns the 1st arg. 1688 // For fshr, 0-shift returns the 2nd arg. 1689 if (Amt == 0) { 1690 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1691 Known, TLO, Depth + 1)) 1692 return true; 1693 break; 1694 } 1695 1696 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1697 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1698 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1699 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1700 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1701 Depth + 1)) 1702 return true; 1703 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1704 Depth + 1)) 1705 return true; 1706 1707 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1708 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1709 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1710 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1711 Known.One |= Known2.One; 1712 Known.Zero |= Known2.Zero; 1713 } 1714 1715 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1716 if (isPowerOf2_32(BitWidth)) { 1717 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1718 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1719 Known2, TLO, Depth + 1)) 1720 return true; 1721 } 1722 break; 1723 } 1724 case ISD::ROTL: 1725 case ISD::ROTR: { 1726 SDValue Op0 = Op.getOperand(0); 1727 SDValue Op1 = Op.getOperand(1); 1728 1729 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1730 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1731 return TLO.CombineTo(Op, Op0); 1732 1733 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1734 if (isPowerOf2_32(BitWidth)) { 1735 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1736 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1737 Depth + 1)) 1738 return true; 1739 } 1740 break; 1741 } 1742 case ISD::UMIN: { 1743 // Check if one arg is always less than (or equal) to the other arg. 1744 SDValue Op0 = Op.getOperand(0); 1745 SDValue Op1 = Op.getOperand(1); 1746 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1747 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1748 Known = KnownBits::umin(Known0, Known1); 1749 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1750 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1751 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1752 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1753 break; 1754 } 1755 case ISD::UMAX: { 1756 // Check if one arg is always greater than (or equal) to the other arg. 1757 SDValue Op0 = Op.getOperand(0); 1758 SDValue Op1 = Op.getOperand(1); 1759 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1760 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1761 Known = KnownBits::umax(Known0, Known1); 1762 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1763 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1764 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1765 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1766 break; 1767 } 1768 case ISD::BITREVERSE: { 1769 SDValue Src = Op.getOperand(0); 1770 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1771 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1772 Depth + 1)) 1773 return true; 1774 Known.One = Known2.One.reverseBits(); 1775 Known.Zero = Known2.Zero.reverseBits(); 1776 break; 1777 } 1778 case ISD::BSWAP: { 1779 SDValue Src = Op.getOperand(0); 1780 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1781 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1782 Depth + 1)) 1783 return true; 1784 Known.One = Known2.One.byteSwap(); 1785 Known.Zero = Known2.Zero.byteSwap(); 1786 break; 1787 } 1788 case ISD::CTPOP: { 1789 // If only 1 bit is demanded, replace with PARITY as long as we're before 1790 // op legalization. 1791 // FIXME: Limit to scalars for now. 1792 if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector()) 1793 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1794 Op.getOperand(0))); 1795 1796 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1797 break; 1798 } 1799 case ISD::SIGN_EXTEND_INREG: { 1800 SDValue Op0 = Op.getOperand(0); 1801 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1802 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1803 1804 // If we only care about the highest bit, don't bother shifting right. 1805 if (DemandedBits.isSignMask()) { 1806 unsigned NumSignBits = 1807 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1808 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1809 // However if the input is already sign extended we expect the sign 1810 // extension to be dropped altogether later and do not simplify. 1811 if (!AlreadySignExtended) { 1812 // Compute the correct shift amount type, which must be getShiftAmountTy 1813 // for scalar types after legalization. 1814 EVT ShiftAmtTy = VT; 1815 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1816 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1817 1818 SDValue ShiftAmt = 1819 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1820 return TLO.CombineTo(Op, 1821 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1822 } 1823 } 1824 1825 // If none of the extended bits are demanded, eliminate the sextinreg. 1826 if (DemandedBits.getActiveBits() <= ExVTBits) 1827 return TLO.CombineTo(Op, Op0); 1828 1829 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1830 1831 // Since the sign extended bits are demanded, we know that the sign 1832 // bit is demanded. 1833 InputDemandedBits.setBit(ExVTBits - 1); 1834 1835 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1836 return true; 1837 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1838 1839 // If the sign bit of the input is known set or clear, then we know the 1840 // top bits of the result. 1841 1842 // If the input sign bit is known zero, convert this into a zero extension. 1843 if (Known.Zero[ExVTBits - 1]) 1844 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1845 1846 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1847 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1848 Known.One.setBitsFrom(ExVTBits); 1849 Known.Zero &= Mask; 1850 } else { // Input sign bit unknown 1851 Known.Zero &= Mask; 1852 Known.One &= Mask; 1853 } 1854 break; 1855 } 1856 case ISD::BUILD_PAIR: { 1857 EVT HalfVT = Op.getOperand(0).getValueType(); 1858 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1859 1860 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1861 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1862 1863 KnownBits KnownLo, KnownHi; 1864 1865 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1866 return true; 1867 1868 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1869 return true; 1870 1871 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1872 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1873 1874 Known.One = KnownLo.One.zext(BitWidth) | 1875 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1876 break; 1877 } 1878 case ISD::ZERO_EXTEND: 1879 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1880 SDValue Src = Op.getOperand(0); 1881 EVT SrcVT = Src.getValueType(); 1882 unsigned InBits = SrcVT.getScalarSizeInBits(); 1883 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1884 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1885 1886 // If none of the top bits are demanded, convert this into an any_extend. 1887 if (DemandedBits.getActiveBits() <= InBits) { 1888 // If we only need the non-extended bits of the bottom element 1889 // then we can just bitcast to the result. 1890 if (IsVecInReg && DemandedElts == 1 && 1891 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1892 TLO.DAG.getDataLayout().isLittleEndian()) 1893 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1894 1895 unsigned Opc = 1896 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1897 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1898 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1899 } 1900 1901 APInt InDemandedBits = DemandedBits.trunc(InBits); 1902 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1903 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1904 Depth + 1)) 1905 return true; 1906 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1907 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1908 Known = Known.zext(BitWidth); 1909 1910 // Attempt to avoid multi-use ops if we don't need anything from them. 1911 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1912 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1913 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1914 break; 1915 } 1916 case ISD::SIGN_EXTEND: 1917 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1918 SDValue Src = Op.getOperand(0); 1919 EVT SrcVT = Src.getValueType(); 1920 unsigned InBits = SrcVT.getScalarSizeInBits(); 1921 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1922 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1923 1924 // If none of the top bits are demanded, convert this into an any_extend. 1925 if (DemandedBits.getActiveBits() <= InBits) { 1926 // If we only need the non-extended bits of the bottom element 1927 // then we can just bitcast to the result. 1928 if (IsVecInReg && DemandedElts == 1 && 1929 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1930 TLO.DAG.getDataLayout().isLittleEndian()) 1931 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1932 1933 unsigned Opc = 1934 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1935 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1936 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1937 } 1938 1939 APInt InDemandedBits = DemandedBits.trunc(InBits); 1940 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1941 1942 // Since some of the sign extended bits are demanded, we know that the sign 1943 // bit is demanded. 1944 InDemandedBits.setBit(InBits - 1); 1945 1946 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1947 Depth + 1)) 1948 return true; 1949 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1950 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1951 1952 // If the sign bit is known one, the top bits match. 1953 Known = Known.sext(BitWidth); 1954 1955 // If the sign bit is known zero, convert this to a zero extend. 1956 if (Known.isNonNegative()) { 1957 unsigned Opc = 1958 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1959 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1960 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1961 } 1962 1963 // Attempt to avoid multi-use ops if we don't need anything from them. 1964 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1965 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1966 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1967 break; 1968 } 1969 case ISD::ANY_EXTEND: 1970 case ISD::ANY_EXTEND_VECTOR_INREG: { 1971 SDValue Src = Op.getOperand(0); 1972 EVT SrcVT = Src.getValueType(); 1973 unsigned InBits = SrcVT.getScalarSizeInBits(); 1974 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1975 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1976 1977 // If we only need the bottom element then we can just bitcast. 1978 // TODO: Handle ANY_EXTEND? 1979 if (IsVecInReg && DemandedElts == 1 && 1980 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1981 TLO.DAG.getDataLayout().isLittleEndian()) 1982 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1983 1984 APInt InDemandedBits = DemandedBits.trunc(InBits); 1985 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1986 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1987 Depth + 1)) 1988 return true; 1989 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1990 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1991 Known = Known.anyext(BitWidth); 1992 1993 // Attempt to avoid multi-use ops if we don't need anything from them. 1994 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1995 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1996 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1997 break; 1998 } 1999 case ISD::TRUNCATE: { 2000 SDValue Src = Op.getOperand(0); 2001 2002 // Simplify the input, using demanded bit information, and compute the known 2003 // zero/one bits live out. 2004 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2005 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2006 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2007 Depth + 1)) 2008 return true; 2009 Known = Known.trunc(BitWidth); 2010 2011 // Attempt to avoid multi-use ops if we don't need anything from them. 2012 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2013 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2014 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2015 2016 // If the input is only used by this truncate, see if we can shrink it based 2017 // on the known demanded bits. 2018 if (Src.getNode()->hasOneUse()) { 2019 switch (Src.getOpcode()) { 2020 default: 2021 break; 2022 case ISD::SRL: 2023 // Shrink SRL by a constant if none of the high bits shifted in are 2024 // demanded. 2025 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2026 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2027 // undesirable. 2028 break; 2029 2030 const APInt *ShAmtC = 2031 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2032 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2033 break; 2034 uint64_t ShVal = ShAmtC->getZExtValue(); 2035 2036 APInt HighBits = 2037 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2038 HighBits.lshrInPlace(ShVal); 2039 HighBits = HighBits.trunc(BitWidth); 2040 2041 if (!(HighBits & DemandedBits)) { 2042 // None of the shifted in bits are needed. Add a truncate of the 2043 // shift input, then shift it. 2044 SDValue NewShAmt = TLO.DAG.getConstant( 2045 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2046 SDValue NewTrunc = 2047 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2048 return TLO.CombineTo( 2049 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2050 } 2051 break; 2052 } 2053 } 2054 2055 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2056 break; 2057 } 2058 case ISD::AssertZext: { 2059 // AssertZext demands all of the high bits, plus any of the low bits 2060 // demanded by its users. 2061 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2062 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2063 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2064 TLO, Depth + 1)) 2065 return true; 2066 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2067 2068 Known.Zero |= ~InMask; 2069 break; 2070 } 2071 case ISD::EXTRACT_VECTOR_ELT: { 2072 SDValue Src = Op.getOperand(0); 2073 SDValue Idx = Op.getOperand(1); 2074 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2075 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2076 2077 if (SrcEltCnt.isScalable()) 2078 return false; 2079 2080 // Demand the bits from every vector element without a constant index. 2081 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2082 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 2083 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2084 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2085 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2086 2087 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2088 // anything about the extended bits. 2089 APInt DemandedSrcBits = DemandedBits; 2090 if (BitWidth > EltBitWidth) 2091 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2092 2093 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2094 Depth + 1)) 2095 return true; 2096 2097 // Attempt to avoid multi-use ops if we don't need anything from them. 2098 if (!DemandedSrcBits.isAllOnesValue() || 2099 !DemandedSrcElts.isAllOnesValue()) { 2100 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2101 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2102 SDValue NewOp = 2103 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2104 return TLO.CombineTo(Op, NewOp); 2105 } 2106 } 2107 2108 Known = Known2; 2109 if (BitWidth > EltBitWidth) 2110 Known = Known.anyext(BitWidth); 2111 break; 2112 } 2113 case ISD::BITCAST: { 2114 SDValue Src = Op.getOperand(0); 2115 EVT SrcVT = Src.getValueType(); 2116 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2117 2118 // If this is an FP->Int bitcast and if the sign bit is the only 2119 // thing demanded, turn this into a FGETSIGN. 2120 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2121 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2122 SrcVT.isFloatingPoint()) { 2123 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2124 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2125 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2126 SrcVT != MVT::f128) { 2127 // Cannot eliminate/lower SHL for f128 yet. 2128 EVT Ty = OpVTLegal ? VT : MVT::i32; 2129 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2130 // place. We expect the SHL to be eliminated by other optimizations. 2131 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2132 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2133 if (!OpVTLegal && OpVTSizeInBits > 32) 2134 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2135 unsigned ShVal = Op.getValueSizeInBits() - 1; 2136 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2137 return TLO.CombineTo(Op, 2138 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2139 } 2140 } 2141 2142 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2143 // Demand the elt/bit if any of the original elts/bits are demanded. 2144 // TODO - bigendian once we have test coverage. 2145 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2146 TLO.DAG.getDataLayout().isLittleEndian()) { 2147 unsigned Scale = BitWidth / NumSrcEltBits; 2148 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2149 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2150 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2151 for (unsigned i = 0; i != Scale; ++i) { 2152 unsigned Offset = i * NumSrcEltBits; 2153 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2154 if (!Sub.isNullValue()) { 2155 DemandedSrcBits |= Sub; 2156 for (unsigned j = 0; j != NumElts; ++j) 2157 if (DemandedElts[j]) 2158 DemandedSrcElts.setBit((j * Scale) + i); 2159 } 2160 } 2161 2162 APInt KnownSrcUndef, KnownSrcZero; 2163 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2164 KnownSrcZero, TLO, Depth + 1)) 2165 return true; 2166 2167 KnownBits KnownSrcBits; 2168 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2169 KnownSrcBits, TLO, Depth + 1)) 2170 return true; 2171 } else if ((NumSrcEltBits % BitWidth) == 0 && 2172 TLO.DAG.getDataLayout().isLittleEndian()) { 2173 unsigned Scale = NumSrcEltBits / BitWidth; 2174 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2175 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2176 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2177 for (unsigned i = 0; i != NumElts; ++i) 2178 if (DemandedElts[i]) { 2179 unsigned Offset = (i % Scale) * BitWidth; 2180 DemandedSrcBits.insertBits(DemandedBits, Offset); 2181 DemandedSrcElts.setBit(i / Scale); 2182 } 2183 2184 if (SrcVT.isVector()) { 2185 APInt KnownSrcUndef, KnownSrcZero; 2186 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2187 KnownSrcZero, TLO, Depth + 1)) 2188 return true; 2189 } 2190 2191 KnownBits KnownSrcBits; 2192 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2193 KnownSrcBits, TLO, Depth + 1)) 2194 return true; 2195 } 2196 2197 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2198 // recursive call where Known may be useful to the caller. 2199 if (Depth > 0) { 2200 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2201 return false; 2202 } 2203 break; 2204 } 2205 case ISD::ADD: 2206 case ISD::MUL: 2207 case ISD::SUB: { 2208 // Add, Sub, and Mul don't demand any bits in positions beyond that 2209 // of the highest bit demanded of them. 2210 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2211 SDNodeFlags Flags = Op.getNode()->getFlags(); 2212 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2213 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2214 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2215 Depth + 1) || 2216 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2217 Depth + 1) || 2218 // See if the operation should be performed at a smaller bit width. 2219 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2220 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2221 // Disable the nsw and nuw flags. We can no longer guarantee that we 2222 // won't wrap after simplification. 2223 Flags.setNoSignedWrap(false); 2224 Flags.setNoUnsignedWrap(false); 2225 SDValue NewOp = 2226 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2227 return TLO.CombineTo(Op, NewOp); 2228 } 2229 return true; 2230 } 2231 2232 // Attempt to avoid multi-use ops if we don't need anything from them. 2233 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2234 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2235 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2236 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2237 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2238 if (DemandedOp0 || DemandedOp1) { 2239 Flags.setNoSignedWrap(false); 2240 Flags.setNoUnsignedWrap(false); 2241 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2242 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2243 SDValue NewOp = 2244 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2245 return TLO.CombineTo(Op, NewOp); 2246 } 2247 } 2248 2249 // If we have a constant operand, we may be able to turn it into -1 if we 2250 // do not demand the high bits. This can make the constant smaller to 2251 // encode, allow more general folding, or match specialized instruction 2252 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2253 // is probably not useful (and could be detrimental). 2254 ConstantSDNode *C = isConstOrConstSplat(Op1); 2255 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2256 if (C && !C->isAllOnesValue() && !C->isOne() && 2257 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2258 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2259 // Disable the nsw and nuw flags. We can no longer guarantee that we 2260 // won't wrap after simplification. 2261 Flags.setNoSignedWrap(false); 2262 Flags.setNoUnsignedWrap(false); 2263 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2264 return TLO.CombineTo(Op, NewOp); 2265 } 2266 2267 LLVM_FALLTHROUGH; 2268 } 2269 default: 2270 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2271 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2272 Known, TLO, Depth)) 2273 return true; 2274 break; 2275 } 2276 2277 // Just use computeKnownBits to compute output bits. 2278 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2279 break; 2280 } 2281 2282 // If we know the value of all of the demanded bits, return this as a 2283 // constant. 2284 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2285 // Avoid folding to a constant if any OpaqueConstant is involved. 2286 const SDNode *N = Op.getNode(); 2287 for (SDNode *Op : 2288 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2289 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2290 if (C->isOpaque()) 2291 return false; 2292 } 2293 if (VT.isInteger()) 2294 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2295 if (VT.isFloatingPoint()) 2296 return TLO.CombineTo( 2297 Op, 2298 TLO.DAG.getConstantFP( 2299 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2300 } 2301 2302 return false; 2303 } 2304 2305 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2306 const APInt &DemandedElts, 2307 APInt &KnownUndef, 2308 APInt &KnownZero, 2309 DAGCombinerInfo &DCI) const { 2310 SelectionDAG &DAG = DCI.DAG; 2311 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2312 !DCI.isBeforeLegalizeOps()); 2313 2314 bool Simplified = 2315 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2316 if (Simplified) { 2317 DCI.AddToWorklist(Op.getNode()); 2318 DCI.CommitTargetLoweringOpt(TLO); 2319 } 2320 2321 return Simplified; 2322 } 2323 2324 /// Given a vector binary operation and known undefined elements for each input 2325 /// operand, compute whether each element of the output is undefined. 2326 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2327 const APInt &UndefOp0, 2328 const APInt &UndefOp1) { 2329 EVT VT = BO.getValueType(); 2330 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2331 "Vector binop only"); 2332 2333 EVT EltVT = VT.getVectorElementType(); 2334 unsigned NumElts = VT.getVectorNumElements(); 2335 assert(UndefOp0.getBitWidth() == NumElts && 2336 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2337 2338 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2339 const APInt &UndefVals) { 2340 if (UndefVals[Index]) 2341 return DAG.getUNDEF(EltVT); 2342 2343 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2344 // Try hard to make sure that the getNode() call is not creating temporary 2345 // nodes. Ignore opaque integers because they do not constant fold. 2346 SDValue Elt = BV->getOperand(Index); 2347 auto *C = dyn_cast<ConstantSDNode>(Elt); 2348 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2349 return Elt; 2350 } 2351 2352 return SDValue(); 2353 }; 2354 2355 APInt KnownUndef = APInt::getNullValue(NumElts); 2356 for (unsigned i = 0; i != NumElts; ++i) { 2357 // If both inputs for this element are either constant or undef and match 2358 // the element type, compute the constant/undef result for this element of 2359 // the vector. 2360 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2361 // not handle FP constants. The code within getNode() should be refactored 2362 // to avoid the danger of creating a bogus temporary node here. 2363 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2364 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2365 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2366 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2367 KnownUndef.setBit(i); 2368 } 2369 return KnownUndef; 2370 } 2371 2372 bool TargetLowering::SimplifyDemandedVectorElts( 2373 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2374 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2375 bool AssumeSingleUse) const { 2376 EVT VT = Op.getValueType(); 2377 unsigned Opcode = Op.getOpcode(); 2378 APInt DemandedElts = OriginalDemandedElts; 2379 unsigned NumElts = DemandedElts.getBitWidth(); 2380 assert(VT.isVector() && "Expected vector op"); 2381 2382 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2383 2384 // TODO: For now we assume we know nothing about scalable vectors. 2385 if (VT.isScalableVector()) 2386 return false; 2387 2388 assert(VT.getVectorNumElements() == NumElts && 2389 "Mask size mismatches value type element count!"); 2390 2391 // Undef operand. 2392 if (Op.isUndef()) { 2393 KnownUndef.setAllBits(); 2394 return false; 2395 } 2396 2397 // If Op has other users, assume that all elements are needed. 2398 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2399 DemandedElts.setAllBits(); 2400 2401 // Not demanding any elements from Op. 2402 if (DemandedElts == 0) { 2403 KnownUndef.setAllBits(); 2404 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2405 } 2406 2407 // Limit search depth. 2408 if (Depth >= SelectionDAG::MaxRecursionDepth) 2409 return false; 2410 2411 SDLoc DL(Op); 2412 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2413 2414 // Helper for demanding the specified elements and all the bits of both binary 2415 // operands. 2416 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2417 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2418 TLO.DAG, Depth + 1); 2419 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2420 TLO.DAG, Depth + 1); 2421 if (NewOp0 || NewOp1) { 2422 SDValue NewOp = TLO.DAG.getNode( 2423 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2424 return TLO.CombineTo(Op, NewOp); 2425 } 2426 return false; 2427 }; 2428 2429 switch (Opcode) { 2430 case ISD::SCALAR_TO_VECTOR: { 2431 if (!DemandedElts[0]) { 2432 KnownUndef.setAllBits(); 2433 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2434 } 2435 KnownUndef.setHighBits(NumElts - 1); 2436 break; 2437 } 2438 case ISD::BITCAST: { 2439 SDValue Src = Op.getOperand(0); 2440 EVT SrcVT = Src.getValueType(); 2441 2442 // We only handle vectors here. 2443 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2444 if (!SrcVT.isVector()) 2445 break; 2446 2447 // Fast handling of 'identity' bitcasts. 2448 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2449 if (NumSrcElts == NumElts) 2450 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2451 KnownZero, TLO, Depth + 1); 2452 2453 APInt SrcZero, SrcUndef; 2454 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2455 2456 // Bitcast from 'large element' src vector to 'small element' vector, we 2457 // must demand a source element if any DemandedElt maps to it. 2458 if ((NumElts % NumSrcElts) == 0) { 2459 unsigned Scale = NumElts / NumSrcElts; 2460 for (unsigned i = 0; i != NumElts; ++i) 2461 if (DemandedElts[i]) 2462 SrcDemandedElts.setBit(i / Scale); 2463 2464 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2465 TLO, Depth + 1)) 2466 return true; 2467 2468 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2469 // of the large element. 2470 // TODO - bigendian once we have test coverage. 2471 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2472 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2473 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2474 for (unsigned i = 0; i != NumElts; ++i) 2475 if (DemandedElts[i]) { 2476 unsigned Ofs = (i % Scale) * EltSizeInBits; 2477 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2478 } 2479 2480 KnownBits Known; 2481 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2482 TLO, Depth + 1)) 2483 return true; 2484 } 2485 2486 // If the src element is zero/undef then all the output elements will be - 2487 // only demanded elements are guaranteed to be correct. 2488 for (unsigned i = 0; i != NumSrcElts; ++i) { 2489 if (SrcDemandedElts[i]) { 2490 if (SrcZero[i]) 2491 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2492 if (SrcUndef[i]) 2493 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2494 } 2495 } 2496 } 2497 2498 // Bitcast from 'small element' src vector to 'large element' vector, we 2499 // demand all smaller source elements covered by the larger demanded element 2500 // of this vector. 2501 if ((NumSrcElts % NumElts) == 0) { 2502 unsigned Scale = NumSrcElts / NumElts; 2503 for (unsigned i = 0; i != NumElts; ++i) 2504 if (DemandedElts[i]) 2505 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2506 2507 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2508 TLO, Depth + 1)) 2509 return true; 2510 2511 // If all the src elements covering an output element are zero/undef, then 2512 // the output element will be as well, assuming it was demanded. 2513 for (unsigned i = 0; i != NumElts; ++i) { 2514 if (DemandedElts[i]) { 2515 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2516 KnownZero.setBit(i); 2517 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2518 KnownUndef.setBit(i); 2519 } 2520 } 2521 } 2522 break; 2523 } 2524 case ISD::BUILD_VECTOR: { 2525 // Check all elements and simplify any unused elements with UNDEF. 2526 if (!DemandedElts.isAllOnesValue()) { 2527 // Don't simplify BROADCASTS. 2528 if (llvm::any_of(Op->op_values(), 2529 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2530 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2531 bool Updated = false; 2532 for (unsigned i = 0; i != NumElts; ++i) { 2533 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2534 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2535 KnownUndef.setBit(i); 2536 Updated = true; 2537 } 2538 } 2539 if (Updated) 2540 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2541 } 2542 } 2543 for (unsigned i = 0; i != NumElts; ++i) { 2544 SDValue SrcOp = Op.getOperand(i); 2545 if (SrcOp.isUndef()) { 2546 KnownUndef.setBit(i); 2547 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2548 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2549 KnownZero.setBit(i); 2550 } 2551 } 2552 break; 2553 } 2554 case ISD::CONCAT_VECTORS: { 2555 EVT SubVT = Op.getOperand(0).getValueType(); 2556 unsigned NumSubVecs = Op.getNumOperands(); 2557 unsigned NumSubElts = SubVT.getVectorNumElements(); 2558 for (unsigned i = 0; i != NumSubVecs; ++i) { 2559 SDValue SubOp = Op.getOperand(i); 2560 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2561 APInt SubUndef, SubZero; 2562 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2563 Depth + 1)) 2564 return true; 2565 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2566 KnownZero.insertBits(SubZero, i * NumSubElts); 2567 } 2568 break; 2569 } 2570 case ISD::INSERT_SUBVECTOR: { 2571 // Demand any elements from the subvector and the remainder from the src its 2572 // inserted into. 2573 SDValue Src = Op.getOperand(0); 2574 SDValue Sub = Op.getOperand(1); 2575 uint64_t Idx = Op.getConstantOperandVal(2); 2576 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2577 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2578 APInt DemandedSrcElts = DemandedElts; 2579 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2580 2581 APInt SubUndef, SubZero; 2582 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2583 Depth + 1)) 2584 return true; 2585 2586 // If none of the src operand elements are demanded, replace it with undef. 2587 if (!DemandedSrcElts && !Src.isUndef()) 2588 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2589 TLO.DAG.getUNDEF(VT), Sub, 2590 Op.getOperand(2))); 2591 2592 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2593 TLO, Depth + 1)) 2594 return true; 2595 KnownUndef.insertBits(SubUndef, Idx); 2596 KnownZero.insertBits(SubZero, Idx); 2597 2598 // Attempt to avoid multi-use ops if we don't need anything from them. 2599 if (!DemandedSrcElts.isAllOnesValue() || 2600 !DemandedSubElts.isAllOnesValue()) { 2601 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2602 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2603 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2604 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2605 if (NewSrc || NewSub) { 2606 NewSrc = NewSrc ? NewSrc : Src; 2607 NewSub = NewSub ? NewSub : Sub; 2608 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2609 NewSub, Op.getOperand(2)); 2610 return TLO.CombineTo(Op, NewOp); 2611 } 2612 } 2613 break; 2614 } 2615 case ISD::EXTRACT_SUBVECTOR: { 2616 // Offset the demanded elts by the subvector index. 2617 SDValue Src = Op.getOperand(0); 2618 if (Src.getValueType().isScalableVector()) 2619 break; 2620 uint64_t Idx = Op.getConstantOperandVal(1); 2621 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2622 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2623 2624 APInt SrcUndef, SrcZero; 2625 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2626 Depth + 1)) 2627 return true; 2628 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2629 KnownZero = SrcZero.extractBits(NumElts, Idx); 2630 2631 // Attempt to avoid multi-use ops if we don't need anything from them. 2632 if (!DemandedElts.isAllOnesValue()) { 2633 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2634 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2635 if (NewSrc) { 2636 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2637 Op.getOperand(1)); 2638 return TLO.CombineTo(Op, NewOp); 2639 } 2640 } 2641 break; 2642 } 2643 case ISD::INSERT_VECTOR_ELT: { 2644 SDValue Vec = Op.getOperand(0); 2645 SDValue Scl = Op.getOperand(1); 2646 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2647 2648 // For a legal, constant insertion index, if we don't need this insertion 2649 // then strip it, else remove it from the demanded elts. 2650 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2651 unsigned Idx = CIdx->getZExtValue(); 2652 if (!DemandedElts[Idx]) 2653 return TLO.CombineTo(Op, Vec); 2654 2655 APInt DemandedVecElts(DemandedElts); 2656 DemandedVecElts.clearBit(Idx); 2657 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2658 KnownZero, TLO, Depth + 1)) 2659 return true; 2660 2661 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2662 2663 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2664 break; 2665 } 2666 2667 APInt VecUndef, VecZero; 2668 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2669 Depth + 1)) 2670 return true; 2671 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2672 break; 2673 } 2674 case ISD::VSELECT: { 2675 // Try to transform the select condition based on the current demanded 2676 // elements. 2677 // TODO: If a condition element is undef, we can choose from one arm of the 2678 // select (and if one arm is undef, then we can propagate that to the 2679 // result). 2680 // TODO - add support for constant vselect masks (see IR version of this). 2681 APInt UnusedUndef, UnusedZero; 2682 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2683 UnusedZero, TLO, Depth + 1)) 2684 return true; 2685 2686 // See if we can simplify either vselect operand. 2687 APInt DemandedLHS(DemandedElts); 2688 APInt DemandedRHS(DemandedElts); 2689 APInt UndefLHS, ZeroLHS; 2690 APInt UndefRHS, ZeroRHS; 2691 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2692 ZeroLHS, TLO, Depth + 1)) 2693 return true; 2694 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2695 ZeroRHS, TLO, Depth + 1)) 2696 return true; 2697 2698 KnownUndef = UndefLHS & UndefRHS; 2699 KnownZero = ZeroLHS & ZeroRHS; 2700 break; 2701 } 2702 case ISD::VECTOR_SHUFFLE: { 2703 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2704 2705 // Collect demanded elements from shuffle operands.. 2706 APInt DemandedLHS(NumElts, 0); 2707 APInt DemandedRHS(NumElts, 0); 2708 for (unsigned i = 0; i != NumElts; ++i) { 2709 int M = ShuffleMask[i]; 2710 if (M < 0 || !DemandedElts[i]) 2711 continue; 2712 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2713 if (M < (int)NumElts) 2714 DemandedLHS.setBit(M); 2715 else 2716 DemandedRHS.setBit(M - NumElts); 2717 } 2718 2719 // See if we can simplify either shuffle operand. 2720 APInt UndefLHS, ZeroLHS; 2721 APInt UndefRHS, ZeroRHS; 2722 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2723 ZeroLHS, TLO, Depth + 1)) 2724 return true; 2725 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2726 ZeroRHS, TLO, Depth + 1)) 2727 return true; 2728 2729 // Simplify mask using undef elements from LHS/RHS. 2730 bool Updated = false; 2731 bool IdentityLHS = true, IdentityRHS = true; 2732 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2733 for (unsigned i = 0; i != NumElts; ++i) { 2734 int &M = NewMask[i]; 2735 if (M < 0) 2736 continue; 2737 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2738 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2739 Updated = true; 2740 M = -1; 2741 } 2742 IdentityLHS &= (M < 0) || (M == (int)i); 2743 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2744 } 2745 2746 // Update legal shuffle masks based on demanded elements if it won't reduce 2747 // to Identity which can cause premature removal of the shuffle mask. 2748 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2749 SDValue LegalShuffle = 2750 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2751 NewMask, TLO.DAG); 2752 if (LegalShuffle) 2753 return TLO.CombineTo(Op, LegalShuffle); 2754 } 2755 2756 // Propagate undef/zero elements from LHS/RHS. 2757 for (unsigned i = 0; i != NumElts; ++i) { 2758 int M = ShuffleMask[i]; 2759 if (M < 0) { 2760 KnownUndef.setBit(i); 2761 } else if (M < (int)NumElts) { 2762 if (UndefLHS[M]) 2763 KnownUndef.setBit(i); 2764 if (ZeroLHS[M]) 2765 KnownZero.setBit(i); 2766 } else { 2767 if (UndefRHS[M - NumElts]) 2768 KnownUndef.setBit(i); 2769 if (ZeroRHS[M - NumElts]) 2770 KnownZero.setBit(i); 2771 } 2772 } 2773 break; 2774 } 2775 case ISD::ANY_EXTEND_VECTOR_INREG: 2776 case ISD::SIGN_EXTEND_VECTOR_INREG: 2777 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2778 APInt SrcUndef, SrcZero; 2779 SDValue Src = Op.getOperand(0); 2780 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2781 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2782 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2783 Depth + 1)) 2784 return true; 2785 KnownZero = SrcZero.zextOrTrunc(NumElts); 2786 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2787 2788 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2789 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2790 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2791 // aext - if we just need the bottom element then we can bitcast. 2792 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2793 } 2794 2795 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2796 // zext(undef) upper bits are guaranteed to be zero. 2797 if (DemandedElts.isSubsetOf(KnownUndef)) 2798 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2799 KnownUndef.clearAllBits(); 2800 } 2801 break; 2802 } 2803 2804 // TODO: There are more binop opcodes that could be handled here - MIN, 2805 // MAX, saturated math, etc. 2806 case ISD::OR: 2807 case ISD::XOR: 2808 case ISD::ADD: 2809 case ISD::SUB: 2810 case ISD::FADD: 2811 case ISD::FSUB: 2812 case ISD::FMUL: 2813 case ISD::FDIV: 2814 case ISD::FREM: { 2815 SDValue Op0 = Op.getOperand(0); 2816 SDValue Op1 = Op.getOperand(1); 2817 2818 APInt UndefRHS, ZeroRHS; 2819 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2820 Depth + 1)) 2821 return true; 2822 APInt UndefLHS, ZeroLHS; 2823 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2824 Depth + 1)) 2825 return true; 2826 2827 KnownZero = ZeroLHS & ZeroRHS; 2828 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2829 2830 // Attempt to avoid multi-use ops if we don't need anything from them. 2831 // TODO - use KnownUndef to relax the demandedelts? 2832 if (!DemandedElts.isAllOnesValue()) 2833 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2834 return true; 2835 break; 2836 } 2837 case ISD::SHL: 2838 case ISD::SRL: 2839 case ISD::SRA: 2840 case ISD::ROTL: 2841 case ISD::ROTR: { 2842 SDValue Op0 = Op.getOperand(0); 2843 SDValue Op1 = Op.getOperand(1); 2844 2845 APInt UndefRHS, ZeroRHS; 2846 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2847 Depth + 1)) 2848 return true; 2849 APInt UndefLHS, ZeroLHS; 2850 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2851 Depth + 1)) 2852 return true; 2853 2854 KnownZero = ZeroLHS; 2855 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2856 2857 // Attempt to avoid multi-use ops if we don't need anything from them. 2858 // TODO - use KnownUndef to relax the demandedelts? 2859 if (!DemandedElts.isAllOnesValue()) 2860 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2861 return true; 2862 break; 2863 } 2864 case ISD::MUL: 2865 case ISD::AND: { 2866 SDValue Op0 = Op.getOperand(0); 2867 SDValue Op1 = Op.getOperand(1); 2868 2869 APInt SrcUndef, SrcZero; 2870 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2871 Depth + 1)) 2872 return true; 2873 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2874 TLO, Depth + 1)) 2875 return true; 2876 2877 // If either side has a zero element, then the result element is zero, even 2878 // if the other is an UNDEF. 2879 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2880 // and then handle 'and' nodes with the rest of the binop opcodes. 2881 KnownZero |= SrcZero; 2882 KnownUndef &= SrcUndef; 2883 KnownUndef &= ~KnownZero; 2884 2885 // Attempt to avoid multi-use ops if we don't need anything from them. 2886 // TODO - use KnownUndef to relax the demandedelts? 2887 if (!DemandedElts.isAllOnesValue()) 2888 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2889 return true; 2890 break; 2891 } 2892 case ISD::TRUNCATE: 2893 case ISD::SIGN_EXTEND: 2894 case ISD::ZERO_EXTEND: 2895 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2896 KnownZero, TLO, Depth + 1)) 2897 return true; 2898 2899 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2900 // zext(undef) upper bits are guaranteed to be zero. 2901 if (DemandedElts.isSubsetOf(KnownUndef)) 2902 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2903 KnownUndef.clearAllBits(); 2904 } 2905 break; 2906 default: { 2907 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2908 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2909 KnownZero, TLO, Depth)) 2910 return true; 2911 } else { 2912 KnownBits Known; 2913 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2914 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2915 TLO, Depth, AssumeSingleUse)) 2916 return true; 2917 } 2918 break; 2919 } 2920 } 2921 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2922 2923 // Constant fold all undef cases. 2924 // TODO: Handle zero cases as well. 2925 if (DemandedElts.isSubsetOf(KnownUndef)) 2926 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2927 2928 return false; 2929 } 2930 2931 /// Determine which of the bits specified in Mask are known to be either zero or 2932 /// one and return them in the Known. 2933 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2934 KnownBits &Known, 2935 const APInt &DemandedElts, 2936 const SelectionDAG &DAG, 2937 unsigned Depth) const { 2938 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2939 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2940 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2941 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2942 "Should use MaskedValueIsZero if you don't know whether Op" 2943 " is a target node!"); 2944 Known.resetAll(); 2945 } 2946 2947 void TargetLowering::computeKnownBitsForTargetInstr( 2948 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2949 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2950 unsigned Depth) const { 2951 Known.resetAll(); 2952 } 2953 2954 void TargetLowering::computeKnownBitsForFrameIndex( 2955 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2956 // The low bits are known zero if the pointer is aligned. 2957 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2958 } 2959 2960 Align TargetLowering::computeKnownAlignForTargetInstr( 2961 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 2962 unsigned Depth) const { 2963 return Align(1); 2964 } 2965 2966 /// This method can be implemented by targets that want to expose additional 2967 /// information about sign bits to the DAG Combiner. 2968 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2969 const APInt &, 2970 const SelectionDAG &, 2971 unsigned Depth) const { 2972 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2973 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2974 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2975 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2976 "Should use ComputeNumSignBits if you don't know whether Op" 2977 " is a target node!"); 2978 return 1; 2979 } 2980 2981 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2982 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2983 const MachineRegisterInfo &MRI, unsigned Depth) const { 2984 return 1; 2985 } 2986 2987 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2988 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2989 TargetLoweringOpt &TLO, unsigned Depth) const { 2990 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2991 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2992 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2993 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2994 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2995 " is a target node!"); 2996 return false; 2997 } 2998 2999 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3000 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3001 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3002 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3003 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3004 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3005 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3006 "Should use SimplifyDemandedBits if you don't know whether Op" 3007 " is a target node!"); 3008 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3009 return false; 3010 } 3011 3012 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3013 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3014 SelectionDAG &DAG, unsigned Depth) const { 3015 assert( 3016 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3017 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3018 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3019 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3020 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3021 " is a target node!"); 3022 return SDValue(); 3023 } 3024 3025 SDValue 3026 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3027 SDValue N1, MutableArrayRef<int> Mask, 3028 SelectionDAG &DAG) const { 3029 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3030 if (!LegalMask) { 3031 std::swap(N0, N1); 3032 ShuffleVectorSDNode::commuteMask(Mask); 3033 LegalMask = isShuffleMaskLegal(Mask, VT); 3034 } 3035 3036 if (!LegalMask) 3037 return SDValue(); 3038 3039 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3040 } 3041 3042 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3043 return nullptr; 3044 } 3045 3046 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3047 const SelectionDAG &DAG, 3048 bool SNaN, 3049 unsigned Depth) const { 3050 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3051 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3052 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3053 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3054 "Should use isKnownNeverNaN if you don't know whether Op" 3055 " is a target node!"); 3056 return false; 3057 } 3058 3059 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3060 // work with truncating build vectors and vectors with elements of less than 3061 // 8 bits. 3062 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3063 if (!N) 3064 return false; 3065 3066 APInt CVal; 3067 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3068 CVal = CN->getAPIntValue(); 3069 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3070 auto *CN = BV->getConstantSplatNode(); 3071 if (!CN) 3072 return false; 3073 3074 // If this is a truncating build vector, truncate the splat value. 3075 // Otherwise, we may fail to match the expected values below. 3076 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3077 CVal = CN->getAPIntValue(); 3078 if (BVEltWidth < CVal.getBitWidth()) 3079 CVal = CVal.trunc(BVEltWidth); 3080 } else { 3081 return false; 3082 } 3083 3084 switch (getBooleanContents(N->getValueType(0))) { 3085 case UndefinedBooleanContent: 3086 return CVal[0]; 3087 case ZeroOrOneBooleanContent: 3088 return CVal.isOneValue(); 3089 case ZeroOrNegativeOneBooleanContent: 3090 return CVal.isAllOnesValue(); 3091 } 3092 3093 llvm_unreachable("Invalid boolean contents"); 3094 } 3095 3096 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3097 if (!N) 3098 return false; 3099 3100 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3101 if (!CN) { 3102 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3103 if (!BV) 3104 return false; 3105 3106 // Only interested in constant splats, we don't care about undef 3107 // elements in identifying boolean constants and getConstantSplatNode 3108 // returns NULL if all ops are undef; 3109 CN = BV->getConstantSplatNode(); 3110 if (!CN) 3111 return false; 3112 } 3113 3114 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3115 return !CN->getAPIntValue()[0]; 3116 3117 return CN->isNullValue(); 3118 } 3119 3120 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3121 bool SExt) const { 3122 if (VT == MVT::i1) 3123 return N->isOne(); 3124 3125 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3126 switch (Cnt) { 3127 case TargetLowering::ZeroOrOneBooleanContent: 3128 // An extended value of 1 is always true, unless its original type is i1, 3129 // in which case it will be sign extended to -1. 3130 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3131 case TargetLowering::UndefinedBooleanContent: 3132 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3133 return N->isAllOnesValue() && SExt; 3134 } 3135 llvm_unreachable("Unexpected enumeration."); 3136 } 3137 3138 /// This helper function of SimplifySetCC tries to optimize the comparison when 3139 /// either operand of the SetCC node is a bitwise-and instruction. 3140 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3141 ISD::CondCode Cond, const SDLoc &DL, 3142 DAGCombinerInfo &DCI) const { 3143 // Match these patterns in any of their permutations: 3144 // (X & Y) == Y 3145 // (X & Y) != Y 3146 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3147 std::swap(N0, N1); 3148 3149 EVT OpVT = N0.getValueType(); 3150 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3151 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3152 return SDValue(); 3153 3154 SDValue X, Y; 3155 if (N0.getOperand(0) == N1) { 3156 X = N0.getOperand(1); 3157 Y = N0.getOperand(0); 3158 } else if (N0.getOperand(1) == N1) { 3159 X = N0.getOperand(0); 3160 Y = N0.getOperand(1); 3161 } else { 3162 return SDValue(); 3163 } 3164 3165 SelectionDAG &DAG = DCI.DAG; 3166 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3167 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3168 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3169 // Note that where Y is variable and is known to have at most one bit set 3170 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3171 // equivalent when Y == 0. 3172 assert(OpVT.isInteger()); 3173 Cond = ISD::getSetCCInverse(Cond, OpVT); 3174 if (DCI.isBeforeLegalizeOps() || 3175 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3176 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3177 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3178 // If the target supports an 'and-not' or 'and-complement' logic operation, 3179 // try to use that to make a comparison operation more efficient. 3180 // But don't do this transform if the mask is a single bit because there are 3181 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3182 // 'rlwinm' on PPC). 3183 3184 // Bail out if the compare operand that we want to turn into a zero is 3185 // already a zero (otherwise, infinite loop). 3186 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3187 if (YConst && YConst->isNullValue()) 3188 return SDValue(); 3189 3190 // Transform this into: ~X & Y == 0. 3191 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3192 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3193 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3194 } 3195 3196 return SDValue(); 3197 } 3198 3199 /// There are multiple IR patterns that could be checking whether certain 3200 /// truncation of a signed number would be lossy or not. The pattern which is 3201 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3202 /// We are looking for the following pattern: (KeptBits is a constant) 3203 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3204 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3205 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3206 /// We will unfold it into the natural trunc+sext pattern: 3207 /// ((%x << C) a>> C) dstcond %x 3208 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3209 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3210 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3211 const SDLoc &DL) const { 3212 // We must be comparing with a constant. 3213 ConstantSDNode *C1; 3214 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3215 return SDValue(); 3216 3217 // N0 should be: add %x, (1 << (KeptBits-1)) 3218 if (N0->getOpcode() != ISD::ADD) 3219 return SDValue(); 3220 3221 // And we must be 'add'ing a constant. 3222 ConstantSDNode *C01; 3223 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3224 return SDValue(); 3225 3226 SDValue X = N0->getOperand(0); 3227 EVT XVT = X.getValueType(); 3228 3229 // Validate constants ... 3230 3231 APInt I1 = C1->getAPIntValue(); 3232 3233 ISD::CondCode NewCond; 3234 if (Cond == ISD::CondCode::SETULT) { 3235 NewCond = ISD::CondCode::SETEQ; 3236 } else if (Cond == ISD::CondCode::SETULE) { 3237 NewCond = ISD::CondCode::SETEQ; 3238 // But need to 'canonicalize' the constant. 3239 I1 += 1; 3240 } else if (Cond == ISD::CondCode::SETUGT) { 3241 NewCond = ISD::CondCode::SETNE; 3242 // But need to 'canonicalize' the constant. 3243 I1 += 1; 3244 } else if (Cond == ISD::CondCode::SETUGE) { 3245 NewCond = ISD::CondCode::SETNE; 3246 } else 3247 return SDValue(); 3248 3249 APInt I01 = C01->getAPIntValue(); 3250 3251 auto checkConstants = [&I1, &I01]() -> bool { 3252 // Both of them must be power-of-two, and the constant from setcc is bigger. 3253 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3254 }; 3255 3256 if (checkConstants()) { 3257 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3258 } else { 3259 // What if we invert constants? (and the target predicate) 3260 I1.negate(); 3261 I01.negate(); 3262 assert(XVT.isInteger()); 3263 NewCond = getSetCCInverse(NewCond, XVT); 3264 if (!checkConstants()) 3265 return SDValue(); 3266 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3267 } 3268 3269 // They are power-of-two, so which bit is set? 3270 const unsigned KeptBits = I1.logBase2(); 3271 const unsigned KeptBitsMinusOne = I01.logBase2(); 3272 3273 // Magic! 3274 if (KeptBits != (KeptBitsMinusOne + 1)) 3275 return SDValue(); 3276 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3277 3278 // We don't want to do this in every single case. 3279 SelectionDAG &DAG = DCI.DAG; 3280 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3281 XVT, KeptBits)) 3282 return SDValue(); 3283 3284 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3285 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3286 3287 // Unfold into: ((%x << C) a>> C) cond %x 3288 // Where 'cond' will be either 'eq' or 'ne'. 3289 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3290 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3291 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3292 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3293 3294 return T2; 3295 } 3296 3297 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3298 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3299 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3300 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3301 assert(isConstOrConstSplat(N1C) && 3302 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3303 "Should be a comparison with 0."); 3304 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3305 "Valid only for [in]equality comparisons."); 3306 3307 unsigned NewShiftOpcode; 3308 SDValue X, C, Y; 3309 3310 SelectionDAG &DAG = DCI.DAG; 3311 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3312 3313 // Look for '(C l>>/<< Y)'. 3314 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3315 // The shift should be one-use. 3316 if (!V.hasOneUse()) 3317 return false; 3318 unsigned OldShiftOpcode = V.getOpcode(); 3319 switch (OldShiftOpcode) { 3320 case ISD::SHL: 3321 NewShiftOpcode = ISD::SRL; 3322 break; 3323 case ISD::SRL: 3324 NewShiftOpcode = ISD::SHL; 3325 break; 3326 default: 3327 return false; // must be a logical shift. 3328 } 3329 // We should be shifting a constant. 3330 // FIXME: best to use isConstantOrConstantVector(). 3331 C = V.getOperand(0); 3332 ConstantSDNode *CC = 3333 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3334 if (!CC) 3335 return false; 3336 Y = V.getOperand(1); 3337 3338 ConstantSDNode *XC = 3339 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3340 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3341 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3342 }; 3343 3344 // LHS of comparison should be an one-use 'and'. 3345 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3346 return SDValue(); 3347 3348 X = N0.getOperand(0); 3349 SDValue Mask = N0.getOperand(1); 3350 3351 // 'and' is commutative! 3352 if (!Match(Mask)) { 3353 std::swap(X, Mask); 3354 if (!Match(Mask)) 3355 return SDValue(); 3356 } 3357 3358 EVT VT = X.getValueType(); 3359 3360 // Produce: 3361 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3362 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3363 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3364 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3365 return T2; 3366 } 3367 3368 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3369 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3370 /// handle the commuted versions of these patterns. 3371 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3372 ISD::CondCode Cond, const SDLoc &DL, 3373 DAGCombinerInfo &DCI) const { 3374 unsigned BOpcode = N0.getOpcode(); 3375 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3376 "Unexpected binop"); 3377 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3378 3379 // (X + Y) == X --> Y == 0 3380 // (X - Y) == X --> Y == 0 3381 // (X ^ Y) == X --> Y == 0 3382 SelectionDAG &DAG = DCI.DAG; 3383 EVT OpVT = N0.getValueType(); 3384 SDValue X = N0.getOperand(0); 3385 SDValue Y = N0.getOperand(1); 3386 if (X == N1) 3387 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3388 3389 if (Y != N1) 3390 return SDValue(); 3391 3392 // (X + Y) == Y --> X == 0 3393 // (X ^ Y) == Y --> X == 0 3394 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3395 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3396 3397 // The shift would not be valid if the operands are boolean (i1). 3398 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3399 return SDValue(); 3400 3401 // (X - Y) == Y --> X == Y << 1 3402 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3403 !DCI.isBeforeLegalize()); 3404 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3405 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3406 if (!DCI.isCalledByLegalizer()) 3407 DCI.AddToWorklist(YShl1.getNode()); 3408 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3409 } 3410 3411 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3412 SDValue N0, const APInt &C1, 3413 ISD::CondCode Cond, const SDLoc &dl, 3414 SelectionDAG &DAG) { 3415 // Look through truncs that don't change the value of a ctpop. 3416 // FIXME: Add vector support? Need to be careful with setcc result type below. 3417 SDValue CTPOP = N0; 3418 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3419 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3420 CTPOP = N0.getOperand(0); 3421 3422 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3423 return SDValue(); 3424 3425 EVT CTVT = CTPOP.getValueType(); 3426 SDValue CTOp = CTPOP.getOperand(0); 3427 3428 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3429 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3430 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3431 return SDValue(); 3432 3433 // (ctpop x) u< 2 -> (x & x-1) == 0 3434 // (ctpop x) u> 1 -> (x & x-1) != 0 3435 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3436 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3437 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3438 return SDValue(); 3439 if (C1 == 0 && (Cond == ISD::SETULT)) 3440 return SDValue(); // This is handled elsewhere. 3441 3442 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3443 3444 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3445 SDValue Result = CTOp; 3446 for (unsigned i = 0; i < Passes; i++) { 3447 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3448 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3449 } 3450 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3451 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3452 } 3453 3454 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3455 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3456 // For scalars, keep CTPOP if it is legal or custom. 3457 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3458 return SDValue(); 3459 // This is based on X86's custom lowering for CTPOP which produces more 3460 // instructions than the expansion here. 3461 3462 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3463 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3464 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3465 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3466 assert(CTVT.isInteger()); 3467 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3468 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3469 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3470 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3471 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3472 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3473 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3474 } 3475 3476 return SDValue(); 3477 } 3478 3479 /// Try to simplify a setcc built with the specified operands and cc. If it is 3480 /// unable to simplify it, return a null SDValue. 3481 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3482 ISD::CondCode Cond, bool foldBooleans, 3483 DAGCombinerInfo &DCI, 3484 const SDLoc &dl) const { 3485 SelectionDAG &DAG = DCI.DAG; 3486 const DataLayout &Layout = DAG.getDataLayout(); 3487 EVT OpVT = N0.getValueType(); 3488 3489 // Constant fold or commute setcc. 3490 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3491 return Fold; 3492 3493 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3494 // TODO: Handle non-splat vector constants. All undef causes trouble. 3495 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3496 // infinite loop here when we encounter one. 3497 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3498 if (isConstOrConstSplat(N0) && 3499 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3500 (DCI.isBeforeLegalizeOps() || 3501 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3502 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3503 3504 // If we have a subtract with the same 2 non-constant operands as this setcc 3505 // -- but in reverse order -- then try to commute the operands of this setcc 3506 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3507 // instruction on some targets. 3508 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3509 (DCI.isBeforeLegalizeOps() || 3510 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3511 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3512 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3513 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3514 3515 if (auto *N1C = isConstOrConstSplat(N1)) { 3516 const APInt &C1 = N1C->getAPIntValue(); 3517 3518 // Optimize some CTPOP cases. 3519 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3520 return V; 3521 3522 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3523 // equality comparison, then we're just comparing whether X itself is 3524 // zero. 3525 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3526 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3527 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3528 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3529 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3530 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3531 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3532 // (srl (ctlz x), 5) == 0 -> X != 0 3533 // (srl (ctlz x), 5) != 1 -> X != 0 3534 Cond = ISD::SETNE; 3535 } else { 3536 // (srl (ctlz x), 5) != 0 -> X == 0 3537 // (srl (ctlz x), 5) == 1 -> X == 0 3538 Cond = ISD::SETEQ; 3539 } 3540 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3541 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3542 Cond); 3543 } 3544 } 3545 } 3546 } 3547 3548 // FIXME: Support vectors. 3549 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3550 const APInt &C1 = N1C->getAPIntValue(); 3551 3552 // (zext x) == C --> x == (trunc C) 3553 // (sext x) == C --> x == (trunc C) 3554 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3555 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3556 unsigned MinBits = N0.getValueSizeInBits(); 3557 SDValue PreExt; 3558 bool Signed = false; 3559 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3560 // ZExt 3561 MinBits = N0->getOperand(0).getValueSizeInBits(); 3562 PreExt = N0->getOperand(0); 3563 } else if (N0->getOpcode() == ISD::AND) { 3564 // DAGCombine turns costly ZExts into ANDs 3565 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3566 if ((C->getAPIntValue()+1).isPowerOf2()) { 3567 MinBits = C->getAPIntValue().countTrailingOnes(); 3568 PreExt = N0->getOperand(0); 3569 } 3570 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3571 // SExt 3572 MinBits = N0->getOperand(0).getValueSizeInBits(); 3573 PreExt = N0->getOperand(0); 3574 Signed = true; 3575 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3576 // ZEXTLOAD / SEXTLOAD 3577 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3578 MinBits = LN0->getMemoryVT().getSizeInBits(); 3579 PreExt = N0; 3580 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3581 Signed = true; 3582 MinBits = LN0->getMemoryVT().getSizeInBits(); 3583 PreExt = N0; 3584 } 3585 } 3586 3587 // Figure out how many bits we need to preserve this constant. 3588 unsigned ReqdBits = Signed ? 3589 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3590 C1.getActiveBits(); 3591 3592 // Make sure we're not losing bits from the constant. 3593 if (MinBits > 0 && 3594 MinBits < C1.getBitWidth() && 3595 MinBits >= ReqdBits) { 3596 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3597 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3598 // Will get folded away. 3599 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3600 if (MinBits == 1 && C1 == 1) 3601 // Invert the condition. 3602 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3603 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3604 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3605 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3606 } 3607 3608 // If truncating the setcc operands is not desirable, we can still 3609 // simplify the expression in some cases: 3610 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3611 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3612 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3613 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3614 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3615 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3616 SDValue TopSetCC = N0->getOperand(0); 3617 unsigned N0Opc = N0->getOpcode(); 3618 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3619 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3620 TopSetCC.getOpcode() == ISD::SETCC && 3621 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3622 (isConstFalseVal(N1C) || 3623 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3624 3625 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3626 (!N1C->isNullValue() && Cond == ISD::SETNE); 3627 3628 if (!Inverse) 3629 return TopSetCC; 3630 3631 ISD::CondCode InvCond = ISD::getSetCCInverse( 3632 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3633 TopSetCC.getOperand(0).getValueType()); 3634 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3635 TopSetCC.getOperand(1), 3636 InvCond); 3637 } 3638 } 3639 } 3640 3641 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3642 // equality or unsigned, and all 1 bits of the const are in the same 3643 // partial word, see if we can shorten the load. 3644 if (DCI.isBeforeLegalize() && 3645 !ISD::isSignedIntSetCC(Cond) && 3646 N0.getOpcode() == ISD::AND && C1 == 0 && 3647 N0.getNode()->hasOneUse() && 3648 isa<LoadSDNode>(N0.getOperand(0)) && 3649 N0.getOperand(0).getNode()->hasOneUse() && 3650 isa<ConstantSDNode>(N0.getOperand(1))) { 3651 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3652 APInt bestMask; 3653 unsigned bestWidth = 0, bestOffset = 0; 3654 if (Lod->isSimple() && Lod->isUnindexed()) { 3655 unsigned origWidth = N0.getValueSizeInBits(); 3656 unsigned maskWidth = origWidth; 3657 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3658 // 8 bits, but have to be careful... 3659 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3660 origWidth = Lod->getMemoryVT().getSizeInBits(); 3661 const APInt &Mask = N0.getConstantOperandAPInt(1); 3662 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3663 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3664 for (unsigned offset=0; offset<origWidth/width; offset++) { 3665 if (Mask.isSubsetOf(newMask)) { 3666 if (Layout.isLittleEndian()) 3667 bestOffset = (uint64_t)offset * (width/8); 3668 else 3669 bestOffset = (origWidth/width - offset - 1) * (width/8); 3670 bestMask = Mask.lshr(offset * (width/8) * 8); 3671 bestWidth = width; 3672 break; 3673 } 3674 newMask <<= width; 3675 } 3676 } 3677 } 3678 if (bestWidth) { 3679 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3680 if (newVT.isRound() && 3681 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3682 SDValue Ptr = Lod->getBasePtr(); 3683 if (bestOffset != 0) 3684 Ptr = 3685 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3686 SDValue NewLoad = 3687 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3688 Lod->getPointerInfo().getWithOffset(bestOffset), 3689 Lod->getOriginalAlign()); 3690 return DAG.getSetCC(dl, VT, 3691 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3692 DAG.getConstant(bestMask.trunc(bestWidth), 3693 dl, newVT)), 3694 DAG.getConstant(0LL, dl, newVT), Cond); 3695 } 3696 } 3697 } 3698 3699 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3700 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3701 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3702 3703 // If the comparison constant has bits in the upper part, the 3704 // zero-extended value could never match. 3705 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3706 C1.getBitWidth() - InSize))) { 3707 switch (Cond) { 3708 case ISD::SETUGT: 3709 case ISD::SETUGE: 3710 case ISD::SETEQ: 3711 return DAG.getConstant(0, dl, VT); 3712 case ISD::SETULT: 3713 case ISD::SETULE: 3714 case ISD::SETNE: 3715 return DAG.getConstant(1, dl, VT); 3716 case ISD::SETGT: 3717 case ISD::SETGE: 3718 // True if the sign bit of C1 is set. 3719 return DAG.getConstant(C1.isNegative(), dl, VT); 3720 case ISD::SETLT: 3721 case ISD::SETLE: 3722 // True if the sign bit of C1 isn't set. 3723 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3724 default: 3725 break; 3726 } 3727 } 3728 3729 // Otherwise, we can perform the comparison with the low bits. 3730 switch (Cond) { 3731 case ISD::SETEQ: 3732 case ISD::SETNE: 3733 case ISD::SETUGT: 3734 case ISD::SETUGE: 3735 case ISD::SETULT: 3736 case ISD::SETULE: { 3737 EVT newVT = N0.getOperand(0).getValueType(); 3738 if (DCI.isBeforeLegalizeOps() || 3739 (isOperationLegal(ISD::SETCC, newVT) && 3740 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3741 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3742 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3743 3744 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3745 NewConst, Cond); 3746 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3747 } 3748 break; 3749 } 3750 default: 3751 break; // todo, be more careful with signed comparisons 3752 } 3753 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3754 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3755 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3756 OpVT)) { 3757 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3758 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3759 EVT ExtDstTy = N0.getValueType(); 3760 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3761 3762 // If the constant doesn't fit into the number of bits for the source of 3763 // the sign extension, it is impossible for both sides to be equal. 3764 if (C1.getMinSignedBits() > ExtSrcTyBits) 3765 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3766 3767 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3768 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3769 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3770 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3771 DAG.getConstant(Imm, dl, ExtDstTy)); 3772 if (!DCI.isCalledByLegalizer()) 3773 DCI.AddToWorklist(ZextOp.getNode()); 3774 // Otherwise, make this a use of a zext. 3775 return DAG.getSetCC(dl, VT, ZextOp, 3776 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3777 } else if ((N1C->isNullValue() || N1C->isOne()) && 3778 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3779 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3780 if (N0.getOpcode() == ISD::SETCC && 3781 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3782 (N0.getValueType() == MVT::i1 || 3783 getBooleanContents(N0.getOperand(0).getValueType()) == 3784 ZeroOrOneBooleanContent)) { 3785 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3786 if (TrueWhenTrue) 3787 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3788 // Invert the condition. 3789 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3790 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3791 if (DCI.isBeforeLegalizeOps() || 3792 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3793 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3794 } 3795 3796 if ((N0.getOpcode() == ISD::XOR || 3797 (N0.getOpcode() == ISD::AND && 3798 N0.getOperand(0).getOpcode() == ISD::XOR && 3799 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3800 isOneConstant(N0.getOperand(1))) { 3801 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3802 // can only do this if the top bits are known zero. 3803 unsigned BitWidth = N0.getValueSizeInBits(); 3804 if (DAG.MaskedValueIsZero(N0, 3805 APInt::getHighBitsSet(BitWidth, 3806 BitWidth-1))) { 3807 // Okay, get the un-inverted input value. 3808 SDValue Val; 3809 if (N0.getOpcode() == ISD::XOR) { 3810 Val = N0.getOperand(0); 3811 } else { 3812 assert(N0.getOpcode() == ISD::AND && 3813 N0.getOperand(0).getOpcode() == ISD::XOR); 3814 // ((X^1)&1)^1 -> X & 1 3815 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3816 N0.getOperand(0).getOperand(0), 3817 N0.getOperand(1)); 3818 } 3819 3820 return DAG.getSetCC(dl, VT, Val, N1, 3821 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3822 } 3823 } else if (N1C->isOne()) { 3824 SDValue Op0 = N0; 3825 if (Op0.getOpcode() == ISD::TRUNCATE) 3826 Op0 = Op0.getOperand(0); 3827 3828 if ((Op0.getOpcode() == ISD::XOR) && 3829 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3830 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3831 SDValue XorLHS = Op0.getOperand(0); 3832 SDValue XorRHS = Op0.getOperand(1); 3833 // Ensure that the input setccs return an i1 type or 0/1 value. 3834 if (Op0.getValueType() == MVT::i1 || 3835 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3836 ZeroOrOneBooleanContent && 3837 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3838 ZeroOrOneBooleanContent)) { 3839 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3840 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3841 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3842 } 3843 } 3844 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 3845 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3846 if (Op0.getValueType().bitsGT(VT)) 3847 Op0 = DAG.getNode(ISD::AND, dl, VT, 3848 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3849 DAG.getConstant(1, dl, VT)); 3850 else if (Op0.getValueType().bitsLT(VT)) 3851 Op0 = DAG.getNode(ISD::AND, dl, VT, 3852 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3853 DAG.getConstant(1, dl, VT)); 3854 3855 return DAG.getSetCC(dl, VT, Op0, 3856 DAG.getConstant(0, dl, Op0.getValueType()), 3857 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3858 } 3859 if (Op0.getOpcode() == ISD::AssertZext && 3860 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3861 return DAG.getSetCC(dl, VT, Op0, 3862 DAG.getConstant(0, dl, Op0.getValueType()), 3863 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3864 } 3865 } 3866 3867 // Given: 3868 // icmp eq/ne (urem %x, %y), 0 3869 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3870 // icmp eq/ne %x, 0 3871 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3872 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3873 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3874 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3875 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3876 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3877 } 3878 3879 if (SDValue V = 3880 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3881 return V; 3882 } 3883 3884 // These simplifications apply to splat vectors as well. 3885 // TODO: Handle more splat vector cases. 3886 if (auto *N1C = isConstOrConstSplat(N1)) { 3887 const APInt &C1 = N1C->getAPIntValue(); 3888 3889 APInt MinVal, MaxVal; 3890 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3891 if (ISD::isSignedIntSetCC(Cond)) { 3892 MinVal = APInt::getSignedMinValue(OperandBitSize); 3893 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3894 } else { 3895 MinVal = APInt::getMinValue(OperandBitSize); 3896 MaxVal = APInt::getMaxValue(OperandBitSize); 3897 } 3898 3899 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3900 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3901 // X >= MIN --> true 3902 if (C1 == MinVal) 3903 return DAG.getBoolConstant(true, dl, VT, OpVT); 3904 3905 if (!VT.isVector()) { // TODO: Support this for vectors. 3906 // X >= C0 --> X > (C0 - 1) 3907 APInt C = C1 - 1; 3908 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3909 if ((DCI.isBeforeLegalizeOps() || 3910 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3911 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3912 isLegalICmpImmediate(C.getSExtValue())))) { 3913 return DAG.getSetCC(dl, VT, N0, 3914 DAG.getConstant(C, dl, N1.getValueType()), 3915 NewCC); 3916 } 3917 } 3918 } 3919 3920 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3921 // X <= MAX --> true 3922 if (C1 == MaxVal) 3923 return DAG.getBoolConstant(true, dl, VT, OpVT); 3924 3925 // X <= C0 --> X < (C0 + 1) 3926 if (!VT.isVector()) { // TODO: Support this for vectors. 3927 APInt C = C1 + 1; 3928 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3929 if ((DCI.isBeforeLegalizeOps() || 3930 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3931 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3932 isLegalICmpImmediate(C.getSExtValue())))) { 3933 return DAG.getSetCC(dl, VT, N0, 3934 DAG.getConstant(C, dl, N1.getValueType()), 3935 NewCC); 3936 } 3937 } 3938 } 3939 3940 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3941 if (C1 == MinVal) 3942 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3943 3944 // TODO: Support this for vectors after legalize ops. 3945 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3946 // Canonicalize setlt X, Max --> setne X, Max 3947 if (C1 == MaxVal) 3948 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3949 3950 // If we have setult X, 1, turn it into seteq X, 0 3951 if (C1 == MinVal+1) 3952 return DAG.getSetCC(dl, VT, N0, 3953 DAG.getConstant(MinVal, dl, N0.getValueType()), 3954 ISD::SETEQ); 3955 } 3956 } 3957 3958 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3959 if (C1 == MaxVal) 3960 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3961 3962 // TODO: Support this for vectors after legalize ops. 3963 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3964 // Canonicalize setgt X, Min --> setne X, Min 3965 if (C1 == MinVal) 3966 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3967 3968 // If we have setugt X, Max-1, turn it into seteq X, Max 3969 if (C1 == MaxVal-1) 3970 return DAG.getSetCC(dl, VT, N0, 3971 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3972 ISD::SETEQ); 3973 } 3974 } 3975 3976 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3977 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3978 if (C1.isNullValue()) 3979 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3980 VT, N0, N1, Cond, DCI, dl)) 3981 return CC; 3982 3983 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 3984 // For example, when high 32-bits of i64 X are known clear: 3985 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 3986 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 3987 bool CmpZero = N1C->getAPIntValue().isNullValue(); 3988 bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue(); 3989 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 3990 // Match or(lo,shl(hi,bw/2)) pattern. 3991 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 3992 unsigned EltBits = V.getScalarValueSizeInBits(); 3993 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 3994 return false; 3995 SDValue LHS = V.getOperand(0); 3996 SDValue RHS = V.getOperand(1); 3997 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 3998 // Unshifted element must have zero upperbits. 3999 if (RHS.getOpcode() == ISD::SHL && 4000 isa<ConstantSDNode>(RHS.getOperand(1)) && 4001 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4002 DAG.MaskedValueIsZero(LHS, HiBits)) { 4003 Lo = LHS; 4004 Hi = RHS.getOperand(0); 4005 return true; 4006 } 4007 if (LHS.getOpcode() == ISD::SHL && 4008 isa<ConstantSDNode>(LHS.getOperand(1)) && 4009 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4010 DAG.MaskedValueIsZero(RHS, HiBits)) { 4011 Lo = RHS; 4012 Hi = LHS.getOperand(0); 4013 return true; 4014 } 4015 return false; 4016 }; 4017 4018 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4019 unsigned EltBits = N0.getScalarValueSizeInBits(); 4020 unsigned HalfBits = EltBits / 2; 4021 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4022 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4023 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4024 SDValue NewN0 = 4025 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4026 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4027 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4028 }; 4029 4030 SDValue Lo, Hi; 4031 if (IsConcat(N0, Lo, Hi)) 4032 return MergeConcat(Lo, Hi); 4033 4034 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4035 SDValue Lo0, Lo1, Hi0, Hi1; 4036 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4037 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4038 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4039 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4040 } 4041 } 4042 } 4043 } 4044 4045 // If we have "setcc X, C0", check to see if we can shrink the immediate 4046 // by changing cc. 4047 // TODO: Support this for vectors after legalize ops. 4048 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4049 // SETUGT X, SINTMAX -> SETLT X, 0 4050 // SETUGE X, SINTMIN -> SETLT X, 0 4051 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4052 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4053 return DAG.getSetCC(dl, VT, N0, 4054 DAG.getConstant(0, dl, N1.getValueType()), 4055 ISD::SETLT); 4056 4057 // SETULT X, SINTMIN -> SETGT X, -1 4058 // SETULE X, SINTMAX -> SETGT X, -1 4059 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4060 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4061 return DAG.getSetCC(dl, VT, N0, 4062 DAG.getAllOnesConstant(dl, N1.getValueType()), 4063 ISD::SETGT); 4064 } 4065 } 4066 4067 // Back to non-vector simplifications. 4068 // TODO: Can we do these for vector splats? 4069 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4070 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4071 const APInt &C1 = N1C->getAPIntValue(); 4072 EVT ShValTy = N0.getValueType(); 4073 4074 // Fold bit comparisons when we can. This will result in an 4075 // incorrect value when boolean false is negative one, unless 4076 // the bitsize is 1 in which case the false value is the same 4077 // in practice regardless of the representation. 4078 if ((VT.getSizeInBits() == 1 || 4079 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4080 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4081 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4082 N0.getOpcode() == ISD::AND) { 4083 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4084 EVT ShiftTy = 4085 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4086 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4087 // Perform the xform if the AND RHS is a single bit. 4088 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4089 if (AndRHS->getAPIntValue().isPowerOf2() && 4090 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4091 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4092 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4093 DAG.getConstant(ShCt, dl, ShiftTy))); 4094 } 4095 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4096 // (X & 8) == 8 --> (X & 8) >> 3 4097 // Perform the xform if C1 is a single bit. 4098 unsigned ShCt = C1.logBase2(); 4099 if (C1.isPowerOf2() && 4100 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4101 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4102 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4103 DAG.getConstant(ShCt, dl, ShiftTy))); 4104 } 4105 } 4106 } 4107 } 4108 4109 if (C1.getMinSignedBits() <= 64 && 4110 !isLegalICmpImmediate(C1.getSExtValue())) { 4111 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4112 // (X & -256) == 256 -> (X >> 8) == 1 4113 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4114 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4115 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4116 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4117 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 4118 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4119 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4120 SDValue Shift = 4121 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4122 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4123 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4124 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4125 } 4126 } 4127 } 4128 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4129 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4130 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4131 // X < 0x100000000 -> (X >> 32) < 1 4132 // X >= 0x100000000 -> (X >> 32) >= 1 4133 // X <= 0x0ffffffff -> (X >> 32) < 1 4134 // X > 0x0ffffffff -> (X >> 32) >= 1 4135 unsigned ShiftBits; 4136 APInt NewC = C1; 4137 ISD::CondCode NewCond = Cond; 4138 if (AdjOne) { 4139 ShiftBits = C1.countTrailingOnes(); 4140 NewC = NewC + 1; 4141 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4142 } else { 4143 ShiftBits = C1.countTrailingZeros(); 4144 } 4145 NewC.lshrInPlace(ShiftBits); 4146 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4147 isLegalICmpImmediate(NewC.getSExtValue()) && 4148 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4149 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4150 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4151 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4152 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4153 } 4154 } 4155 } 4156 } 4157 4158 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4159 auto *CFP = cast<ConstantFPSDNode>(N1); 4160 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4161 4162 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4163 // constant if knowing that the operand is non-nan is enough. We prefer to 4164 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4165 // materialize 0.0. 4166 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4167 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4168 4169 // setcc (fneg x), C -> setcc swap(pred) x, -C 4170 if (N0.getOpcode() == ISD::FNEG) { 4171 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4172 if (DCI.isBeforeLegalizeOps() || 4173 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4174 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4175 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4176 } 4177 } 4178 4179 // If the condition is not legal, see if we can find an equivalent one 4180 // which is legal. 4181 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4182 // If the comparison was an awkward floating-point == or != and one of 4183 // the comparison operands is infinity or negative infinity, convert the 4184 // condition to a less-awkward <= or >=. 4185 if (CFP->getValueAPF().isInfinity()) { 4186 bool IsNegInf = CFP->getValueAPF().isNegative(); 4187 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4188 switch (Cond) { 4189 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4190 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4191 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4192 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4193 default: break; 4194 } 4195 if (NewCond != ISD::SETCC_INVALID && 4196 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4197 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4198 } 4199 } 4200 } 4201 4202 if (N0 == N1) { 4203 // The sext(setcc()) => setcc() optimization relies on the appropriate 4204 // constant being emitted. 4205 assert(!N0.getValueType().isInteger() && 4206 "Integer types should be handled by FoldSetCC"); 4207 4208 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4209 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4210 if (UOF == 2) // FP operators that are undefined on NaNs. 4211 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4212 if (UOF == unsigned(EqTrue)) 4213 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4214 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4215 // if it is not already. 4216 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4217 if (NewCond != Cond && 4218 (DCI.isBeforeLegalizeOps() || 4219 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4220 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4221 } 4222 4223 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4224 N0.getValueType().isInteger()) { 4225 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4226 N0.getOpcode() == ISD::XOR) { 4227 // Simplify (X+Y) == (X+Z) --> Y == Z 4228 if (N0.getOpcode() == N1.getOpcode()) { 4229 if (N0.getOperand(0) == N1.getOperand(0)) 4230 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4231 if (N0.getOperand(1) == N1.getOperand(1)) 4232 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4233 if (isCommutativeBinOp(N0.getOpcode())) { 4234 // If X op Y == Y op X, try other combinations. 4235 if (N0.getOperand(0) == N1.getOperand(1)) 4236 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4237 Cond); 4238 if (N0.getOperand(1) == N1.getOperand(0)) 4239 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4240 Cond); 4241 } 4242 } 4243 4244 // If RHS is a legal immediate value for a compare instruction, we need 4245 // to be careful about increasing register pressure needlessly. 4246 bool LegalRHSImm = false; 4247 4248 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4249 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4250 // Turn (X+C1) == C2 --> X == C2-C1 4251 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4252 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4253 DAG.getConstant(RHSC->getAPIntValue()- 4254 LHSR->getAPIntValue(), 4255 dl, N0.getValueType()), Cond); 4256 } 4257 4258 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4259 if (N0.getOpcode() == ISD::XOR) 4260 // If we know that all of the inverted bits are zero, don't bother 4261 // performing the inversion. 4262 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4263 return 4264 DAG.getSetCC(dl, VT, N0.getOperand(0), 4265 DAG.getConstant(LHSR->getAPIntValue() ^ 4266 RHSC->getAPIntValue(), 4267 dl, N0.getValueType()), 4268 Cond); 4269 } 4270 4271 // Turn (C1-X) == C2 --> X == C1-C2 4272 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4273 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4274 return 4275 DAG.getSetCC(dl, VT, N0.getOperand(1), 4276 DAG.getConstant(SUBC->getAPIntValue() - 4277 RHSC->getAPIntValue(), 4278 dl, N0.getValueType()), 4279 Cond); 4280 } 4281 } 4282 4283 // Could RHSC fold directly into a compare? 4284 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4285 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4286 } 4287 4288 // (X+Y) == X --> Y == 0 and similar folds. 4289 // Don't do this if X is an immediate that can fold into a cmp 4290 // instruction and X+Y has other uses. It could be an induction variable 4291 // chain, and the transform would increase register pressure. 4292 if (!LegalRHSImm || N0.hasOneUse()) 4293 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4294 return V; 4295 } 4296 4297 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4298 N1.getOpcode() == ISD::XOR) 4299 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4300 return V; 4301 4302 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4303 return V; 4304 } 4305 4306 // Fold remainder of division by a constant. 4307 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4308 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4309 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4310 4311 // When division is cheap or optimizing for minimum size, 4312 // fall through to DIVREM creation by skipping this fold. 4313 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4314 if (N0.getOpcode() == ISD::UREM) { 4315 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4316 return Folded; 4317 } else if (N0.getOpcode() == ISD::SREM) { 4318 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4319 return Folded; 4320 } 4321 } 4322 } 4323 4324 // Fold away ALL boolean setcc's. 4325 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4326 SDValue Temp; 4327 switch (Cond) { 4328 default: llvm_unreachable("Unknown integer setcc!"); 4329 case ISD::SETEQ: // X == Y -> ~(X^Y) 4330 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4331 N0 = DAG.getNOT(dl, Temp, OpVT); 4332 if (!DCI.isCalledByLegalizer()) 4333 DCI.AddToWorklist(Temp.getNode()); 4334 break; 4335 case ISD::SETNE: // X != Y --> (X^Y) 4336 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4337 break; 4338 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4339 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4340 Temp = DAG.getNOT(dl, N0, OpVT); 4341 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4342 if (!DCI.isCalledByLegalizer()) 4343 DCI.AddToWorklist(Temp.getNode()); 4344 break; 4345 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4346 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4347 Temp = DAG.getNOT(dl, N1, OpVT); 4348 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4349 if (!DCI.isCalledByLegalizer()) 4350 DCI.AddToWorklist(Temp.getNode()); 4351 break; 4352 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4353 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4354 Temp = DAG.getNOT(dl, N0, OpVT); 4355 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4356 if (!DCI.isCalledByLegalizer()) 4357 DCI.AddToWorklist(Temp.getNode()); 4358 break; 4359 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4360 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4361 Temp = DAG.getNOT(dl, N1, OpVT); 4362 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4363 break; 4364 } 4365 if (VT.getScalarType() != MVT::i1) { 4366 if (!DCI.isCalledByLegalizer()) 4367 DCI.AddToWorklist(N0.getNode()); 4368 // FIXME: If running after legalize, we probably can't do this. 4369 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4370 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4371 } 4372 return N0; 4373 } 4374 4375 // Could not fold it. 4376 return SDValue(); 4377 } 4378 4379 /// Returns true (and the GlobalValue and the offset) if the node is a 4380 /// GlobalAddress + offset. 4381 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4382 int64_t &Offset) const { 4383 4384 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4385 4386 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4387 GA = GASD->getGlobal(); 4388 Offset += GASD->getOffset(); 4389 return true; 4390 } 4391 4392 if (N->getOpcode() == ISD::ADD) { 4393 SDValue N1 = N->getOperand(0); 4394 SDValue N2 = N->getOperand(1); 4395 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4396 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4397 Offset += V->getSExtValue(); 4398 return true; 4399 } 4400 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4401 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4402 Offset += V->getSExtValue(); 4403 return true; 4404 } 4405 } 4406 } 4407 4408 return false; 4409 } 4410 4411 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4412 DAGCombinerInfo &DCI) const { 4413 // Default implementation: no optimization. 4414 return SDValue(); 4415 } 4416 4417 //===----------------------------------------------------------------------===// 4418 // Inline Assembler Implementation Methods 4419 //===----------------------------------------------------------------------===// 4420 4421 TargetLowering::ConstraintType 4422 TargetLowering::getConstraintType(StringRef Constraint) const { 4423 unsigned S = Constraint.size(); 4424 4425 if (S == 1) { 4426 switch (Constraint[0]) { 4427 default: break; 4428 case 'r': 4429 return C_RegisterClass; 4430 case 'm': // memory 4431 case 'o': // offsetable 4432 case 'V': // not offsetable 4433 return C_Memory; 4434 case 'n': // Simple Integer 4435 case 'E': // Floating Point Constant 4436 case 'F': // Floating Point Constant 4437 return C_Immediate; 4438 case 'i': // Simple Integer or Relocatable Constant 4439 case 's': // Relocatable Constant 4440 case 'p': // Address. 4441 case 'X': // Allow ANY value. 4442 case 'I': // Target registers. 4443 case 'J': 4444 case 'K': 4445 case 'L': 4446 case 'M': 4447 case 'N': 4448 case 'O': 4449 case 'P': 4450 case '<': 4451 case '>': 4452 return C_Other; 4453 } 4454 } 4455 4456 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4457 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4458 return C_Memory; 4459 return C_Register; 4460 } 4461 return C_Unknown; 4462 } 4463 4464 /// Try to replace an X constraint, which matches anything, with another that 4465 /// has more specific requirements based on the type of the corresponding 4466 /// operand. 4467 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4468 if (ConstraintVT.isInteger()) 4469 return "r"; 4470 if (ConstraintVT.isFloatingPoint()) 4471 return "f"; // works for many targets 4472 return nullptr; 4473 } 4474 4475 SDValue TargetLowering::LowerAsmOutputForConstraint( 4476 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4477 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4478 return SDValue(); 4479 } 4480 4481 /// Lower the specified operand into the Ops vector. 4482 /// If it is invalid, don't add anything to Ops. 4483 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4484 std::string &Constraint, 4485 std::vector<SDValue> &Ops, 4486 SelectionDAG &DAG) const { 4487 4488 if (Constraint.length() > 1) return; 4489 4490 char ConstraintLetter = Constraint[0]; 4491 switch (ConstraintLetter) { 4492 default: break; 4493 case 'X': // Allows any operand; labels (basic block) use this. 4494 if (Op.getOpcode() == ISD::BasicBlock || 4495 Op.getOpcode() == ISD::TargetBlockAddress) { 4496 Ops.push_back(Op); 4497 return; 4498 } 4499 LLVM_FALLTHROUGH; 4500 case 'i': // Simple Integer or Relocatable Constant 4501 case 'n': // Simple Integer 4502 case 's': { // Relocatable Constant 4503 4504 GlobalAddressSDNode *GA; 4505 ConstantSDNode *C; 4506 BlockAddressSDNode *BA; 4507 uint64_t Offset = 0; 4508 4509 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4510 // etc., since getelementpointer is variadic. We can't use 4511 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4512 // while in this case the GA may be furthest from the root node which is 4513 // likely an ISD::ADD. 4514 while (1) { 4515 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4516 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4517 GA->getValueType(0), 4518 Offset + GA->getOffset())); 4519 return; 4520 } 4521 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4522 // gcc prints these as sign extended. Sign extend value to 64 bits 4523 // now; without this it would get ZExt'd later in 4524 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4525 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4526 BooleanContent BCont = getBooleanContents(MVT::i64); 4527 ISD::NodeType ExtOpc = 4528 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4529 int64_t ExtVal = 4530 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4531 Ops.push_back( 4532 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4533 return; 4534 } 4535 if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4536 Ops.push_back(DAG.getTargetBlockAddress( 4537 BA->getBlockAddress(), BA->getValueType(0), 4538 Offset + BA->getOffset(), BA->getTargetFlags())); 4539 return; 4540 } 4541 const unsigned OpCode = Op.getOpcode(); 4542 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4543 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4544 Op = Op.getOperand(1); 4545 // Subtraction is not commutative. 4546 else if (OpCode == ISD::ADD && 4547 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4548 Op = Op.getOperand(0); 4549 else 4550 return; 4551 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4552 continue; 4553 } 4554 return; 4555 } 4556 break; 4557 } 4558 } 4559 } 4560 4561 std::pair<unsigned, const TargetRegisterClass *> 4562 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4563 StringRef Constraint, 4564 MVT VT) const { 4565 if (Constraint.empty() || Constraint[0] != '{') 4566 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4567 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4568 4569 // Remove the braces from around the name. 4570 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4571 4572 std::pair<unsigned, const TargetRegisterClass *> R = 4573 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4574 4575 // Figure out which register class contains this reg. 4576 for (const TargetRegisterClass *RC : RI->regclasses()) { 4577 // If none of the value types for this register class are valid, we 4578 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4579 if (!isLegalRC(*RI, *RC)) 4580 continue; 4581 4582 for (const MCPhysReg &PR : *RC) { 4583 if (RegName.equals_lower(RI->getRegAsmName(PR))) { 4584 std::pair<unsigned, const TargetRegisterClass *> S = 4585 std::make_pair(PR, RC); 4586 4587 // If this register class has the requested value type, return it, 4588 // otherwise keep searching and return the first class found 4589 // if no other is found which explicitly has the requested type. 4590 if (RI->isTypeLegalForClass(*RC, VT)) 4591 return S; 4592 if (!R.second) 4593 R = S; 4594 } 4595 } 4596 } 4597 4598 return R; 4599 } 4600 4601 //===----------------------------------------------------------------------===// 4602 // Constraint Selection. 4603 4604 /// Return true of this is an input operand that is a matching constraint like 4605 /// "4". 4606 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4607 assert(!ConstraintCode.empty() && "No known constraint!"); 4608 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4609 } 4610 4611 /// If this is an input matching constraint, this method returns the output 4612 /// operand it matches. 4613 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4614 assert(!ConstraintCode.empty() && "No known constraint!"); 4615 return atoi(ConstraintCode.c_str()); 4616 } 4617 4618 /// Split up the constraint string from the inline assembly value into the 4619 /// specific constraints and their prefixes, and also tie in the associated 4620 /// operand values. 4621 /// If this returns an empty vector, and if the constraint string itself 4622 /// isn't empty, there was an error parsing. 4623 TargetLowering::AsmOperandInfoVector 4624 TargetLowering::ParseConstraints(const DataLayout &DL, 4625 const TargetRegisterInfo *TRI, 4626 const CallBase &Call) const { 4627 /// Information about all of the constraints. 4628 AsmOperandInfoVector ConstraintOperands; 4629 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4630 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4631 4632 // Do a prepass over the constraints, canonicalizing them, and building up the 4633 // ConstraintOperands list. 4634 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4635 unsigned ResNo = 0; // ResNo - The result number of the next output. 4636 4637 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4638 ConstraintOperands.emplace_back(std::move(CI)); 4639 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4640 4641 // Update multiple alternative constraint count. 4642 if (OpInfo.multipleAlternatives.size() > maCount) 4643 maCount = OpInfo.multipleAlternatives.size(); 4644 4645 OpInfo.ConstraintVT = MVT::Other; 4646 4647 // Compute the value type for each operand. 4648 switch (OpInfo.Type) { 4649 case InlineAsm::isOutput: 4650 // Indirect outputs just consume an argument. 4651 if (OpInfo.isIndirect) { 4652 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4653 break; 4654 } 4655 4656 // The return value of the call is this value. As such, there is no 4657 // corresponding argument. 4658 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4659 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4660 OpInfo.ConstraintVT = 4661 getSimpleValueType(DL, STy->getElementType(ResNo)); 4662 } else { 4663 assert(ResNo == 0 && "Asm only has one result!"); 4664 OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType()); 4665 } 4666 ++ResNo; 4667 break; 4668 case InlineAsm::isInput: 4669 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4670 break; 4671 case InlineAsm::isClobber: 4672 // Nothing to do. 4673 break; 4674 } 4675 4676 if (OpInfo.CallOperandVal) { 4677 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4678 if (OpInfo.isIndirect) { 4679 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4680 if (!PtrTy) 4681 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4682 OpTy = PtrTy->getElementType(); 4683 } 4684 4685 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4686 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4687 if (STy->getNumElements() == 1) 4688 OpTy = STy->getElementType(0); 4689 4690 // If OpTy is not a single value, it may be a struct/union that we 4691 // can tile with integers. 4692 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4693 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4694 switch (BitSize) { 4695 default: break; 4696 case 1: 4697 case 8: 4698 case 16: 4699 case 32: 4700 case 64: 4701 case 128: 4702 OpInfo.ConstraintVT = 4703 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4704 break; 4705 } 4706 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4707 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4708 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4709 } else { 4710 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4711 } 4712 } 4713 } 4714 4715 // If we have multiple alternative constraints, select the best alternative. 4716 if (!ConstraintOperands.empty()) { 4717 if (maCount) { 4718 unsigned bestMAIndex = 0; 4719 int bestWeight = -1; 4720 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4721 int weight = -1; 4722 unsigned maIndex; 4723 // Compute the sums of the weights for each alternative, keeping track 4724 // of the best (highest weight) one so far. 4725 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4726 int weightSum = 0; 4727 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4728 cIndex != eIndex; ++cIndex) { 4729 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4730 if (OpInfo.Type == InlineAsm::isClobber) 4731 continue; 4732 4733 // If this is an output operand with a matching input operand, 4734 // look up the matching input. If their types mismatch, e.g. one 4735 // is an integer, the other is floating point, or their sizes are 4736 // different, flag it as an maCantMatch. 4737 if (OpInfo.hasMatchingInput()) { 4738 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4739 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4740 if ((OpInfo.ConstraintVT.isInteger() != 4741 Input.ConstraintVT.isInteger()) || 4742 (OpInfo.ConstraintVT.getSizeInBits() != 4743 Input.ConstraintVT.getSizeInBits())) { 4744 weightSum = -1; // Can't match. 4745 break; 4746 } 4747 } 4748 } 4749 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4750 if (weight == -1) { 4751 weightSum = -1; 4752 break; 4753 } 4754 weightSum += weight; 4755 } 4756 // Update best. 4757 if (weightSum > bestWeight) { 4758 bestWeight = weightSum; 4759 bestMAIndex = maIndex; 4760 } 4761 } 4762 4763 // Now select chosen alternative in each constraint. 4764 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4765 cIndex != eIndex; ++cIndex) { 4766 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4767 if (cInfo.Type == InlineAsm::isClobber) 4768 continue; 4769 cInfo.selectAlternative(bestMAIndex); 4770 } 4771 } 4772 } 4773 4774 // Check and hook up tied operands, choose constraint code to use. 4775 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4776 cIndex != eIndex; ++cIndex) { 4777 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4778 4779 // If this is an output operand with a matching input operand, look up the 4780 // matching input. If their types mismatch, e.g. one is an integer, the 4781 // other is floating point, or their sizes are different, flag it as an 4782 // error. 4783 if (OpInfo.hasMatchingInput()) { 4784 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4785 4786 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4787 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4788 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4789 OpInfo.ConstraintVT); 4790 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4791 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4792 Input.ConstraintVT); 4793 if ((OpInfo.ConstraintVT.isInteger() != 4794 Input.ConstraintVT.isInteger()) || 4795 (MatchRC.second != InputRC.second)) { 4796 report_fatal_error("Unsupported asm: input constraint" 4797 " with a matching output constraint of" 4798 " incompatible type!"); 4799 } 4800 } 4801 } 4802 } 4803 4804 return ConstraintOperands; 4805 } 4806 4807 /// Return an integer indicating how general CT is. 4808 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4809 switch (CT) { 4810 case TargetLowering::C_Immediate: 4811 case TargetLowering::C_Other: 4812 case TargetLowering::C_Unknown: 4813 return 0; 4814 case TargetLowering::C_Register: 4815 return 1; 4816 case TargetLowering::C_RegisterClass: 4817 return 2; 4818 case TargetLowering::C_Memory: 4819 return 3; 4820 } 4821 llvm_unreachable("Invalid constraint type"); 4822 } 4823 4824 /// Examine constraint type and operand type and determine a weight value. 4825 /// This object must already have been set up with the operand type 4826 /// and the current alternative constraint selected. 4827 TargetLowering::ConstraintWeight 4828 TargetLowering::getMultipleConstraintMatchWeight( 4829 AsmOperandInfo &info, int maIndex) const { 4830 InlineAsm::ConstraintCodeVector *rCodes; 4831 if (maIndex >= (int)info.multipleAlternatives.size()) 4832 rCodes = &info.Codes; 4833 else 4834 rCodes = &info.multipleAlternatives[maIndex].Codes; 4835 ConstraintWeight BestWeight = CW_Invalid; 4836 4837 // Loop over the options, keeping track of the most general one. 4838 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4839 ConstraintWeight weight = 4840 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4841 if (weight > BestWeight) 4842 BestWeight = weight; 4843 } 4844 4845 return BestWeight; 4846 } 4847 4848 /// Examine constraint type and operand type and determine a weight value. 4849 /// This object must already have been set up with the operand type 4850 /// and the current alternative constraint selected. 4851 TargetLowering::ConstraintWeight 4852 TargetLowering::getSingleConstraintMatchWeight( 4853 AsmOperandInfo &info, const char *constraint) const { 4854 ConstraintWeight weight = CW_Invalid; 4855 Value *CallOperandVal = info.CallOperandVal; 4856 // If we don't have a value, we can't do a match, 4857 // but allow it at the lowest weight. 4858 if (!CallOperandVal) 4859 return CW_Default; 4860 // Look at the constraint type. 4861 switch (*constraint) { 4862 case 'i': // immediate integer. 4863 case 'n': // immediate integer with a known value. 4864 if (isa<ConstantInt>(CallOperandVal)) 4865 weight = CW_Constant; 4866 break; 4867 case 's': // non-explicit intregal immediate. 4868 if (isa<GlobalValue>(CallOperandVal)) 4869 weight = CW_Constant; 4870 break; 4871 case 'E': // immediate float if host format. 4872 case 'F': // immediate float. 4873 if (isa<ConstantFP>(CallOperandVal)) 4874 weight = CW_Constant; 4875 break; 4876 case '<': // memory operand with autodecrement. 4877 case '>': // memory operand with autoincrement. 4878 case 'm': // memory operand. 4879 case 'o': // offsettable memory operand 4880 case 'V': // non-offsettable memory operand 4881 weight = CW_Memory; 4882 break; 4883 case 'r': // general register. 4884 case 'g': // general register, memory operand or immediate integer. 4885 // note: Clang converts "g" to "imr". 4886 if (CallOperandVal->getType()->isIntegerTy()) 4887 weight = CW_Register; 4888 break; 4889 case 'X': // any operand. 4890 default: 4891 weight = CW_Default; 4892 break; 4893 } 4894 return weight; 4895 } 4896 4897 /// If there are multiple different constraints that we could pick for this 4898 /// operand (e.g. "imr") try to pick the 'best' one. 4899 /// This is somewhat tricky: constraints fall into four classes: 4900 /// Other -> immediates and magic values 4901 /// Register -> one specific register 4902 /// RegisterClass -> a group of regs 4903 /// Memory -> memory 4904 /// Ideally, we would pick the most specific constraint possible: if we have 4905 /// something that fits into a register, we would pick it. The problem here 4906 /// is that if we have something that could either be in a register or in 4907 /// memory that use of the register could cause selection of *other* 4908 /// operands to fail: they might only succeed if we pick memory. Because of 4909 /// this the heuristic we use is: 4910 /// 4911 /// 1) If there is an 'other' constraint, and if the operand is valid for 4912 /// that constraint, use it. This makes us take advantage of 'i' 4913 /// constraints when available. 4914 /// 2) Otherwise, pick the most general constraint present. This prefers 4915 /// 'm' over 'r', for example. 4916 /// 4917 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4918 const TargetLowering &TLI, 4919 SDValue Op, SelectionDAG *DAG) { 4920 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4921 unsigned BestIdx = 0; 4922 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4923 int BestGenerality = -1; 4924 4925 // Loop over the options, keeping track of the most general one. 4926 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4927 TargetLowering::ConstraintType CType = 4928 TLI.getConstraintType(OpInfo.Codes[i]); 4929 4930 // Indirect 'other' or 'immediate' constraints are not allowed. 4931 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4932 CType == TargetLowering::C_Register || 4933 CType == TargetLowering::C_RegisterClass)) 4934 continue; 4935 4936 // If this is an 'other' or 'immediate' constraint, see if the operand is 4937 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4938 // the operand is an integer in the range [0..31] we want to use I (saving a 4939 // load of a register), otherwise we must use 'r'. 4940 if ((CType == TargetLowering::C_Other || 4941 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4942 assert(OpInfo.Codes[i].size() == 1 && 4943 "Unhandled multi-letter 'other' constraint"); 4944 std::vector<SDValue> ResultOps; 4945 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4946 ResultOps, *DAG); 4947 if (!ResultOps.empty()) { 4948 BestType = CType; 4949 BestIdx = i; 4950 break; 4951 } 4952 } 4953 4954 // Things with matching constraints can only be registers, per gcc 4955 // documentation. This mainly affects "g" constraints. 4956 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4957 continue; 4958 4959 // This constraint letter is more general than the previous one, use it. 4960 int Generality = getConstraintGenerality(CType); 4961 if (Generality > BestGenerality) { 4962 BestType = CType; 4963 BestIdx = i; 4964 BestGenerality = Generality; 4965 } 4966 } 4967 4968 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4969 OpInfo.ConstraintType = BestType; 4970 } 4971 4972 /// Determines the constraint code and constraint type to use for the specific 4973 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4974 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4975 SDValue Op, 4976 SelectionDAG *DAG) const { 4977 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4978 4979 // Single-letter constraints ('r') are very common. 4980 if (OpInfo.Codes.size() == 1) { 4981 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4982 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4983 } else { 4984 ChooseConstraint(OpInfo, *this, Op, DAG); 4985 } 4986 4987 // 'X' matches anything. 4988 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4989 // Labels and constants are handled elsewhere ('X' is the only thing 4990 // that matches labels). For Functions, the type here is the type of 4991 // the result, which is not what we want to look at; leave them alone. 4992 Value *v = OpInfo.CallOperandVal; 4993 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4994 OpInfo.CallOperandVal = v; 4995 return; 4996 } 4997 4998 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4999 return; 5000 5001 // Otherwise, try to resolve it to something we know about by looking at 5002 // the actual operand type. 5003 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5004 OpInfo.ConstraintCode = Repl; 5005 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5006 } 5007 } 5008 } 5009 5010 /// Given an exact SDIV by a constant, create a multiplication 5011 /// with the multiplicative inverse of the constant. 5012 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5013 const SDLoc &dl, SelectionDAG &DAG, 5014 SmallVectorImpl<SDNode *> &Created) { 5015 SDValue Op0 = N->getOperand(0); 5016 SDValue Op1 = N->getOperand(1); 5017 EVT VT = N->getValueType(0); 5018 EVT SVT = VT.getScalarType(); 5019 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5020 EVT ShSVT = ShVT.getScalarType(); 5021 5022 bool UseSRA = false; 5023 SmallVector<SDValue, 16> Shifts, Factors; 5024 5025 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5026 if (C->isNullValue()) 5027 return false; 5028 APInt Divisor = C->getAPIntValue(); 5029 unsigned Shift = Divisor.countTrailingZeros(); 5030 if (Shift) { 5031 Divisor.ashrInPlace(Shift); 5032 UseSRA = true; 5033 } 5034 // Calculate the multiplicative inverse, using Newton's method. 5035 APInt t; 5036 APInt Factor = Divisor; 5037 while ((t = Divisor * Factor) != 1) 5038 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5039 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5040 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5041 return true; 5042 }; 5043 5044 // Collect all magic values from the build vector. 5045 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5046 return SDValue(); 5047 5048 SDValue Shift, Factor; 5049 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5050 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5051 Factor = DAG.getBuildVector(VT, dl, Factors); 5052 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5053 assert(Shifts.size() == 1 && Factors.size() == 1 && 5054 "Expected matchUnaryPredicate to return one element for scalable " 5055 "vectors"); 5056 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5057 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5058 } else { 5059 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5060 Shift = Shifts[0]; 5061 Factor = Factors[0]; 5062 } 5063 5064 SDValue Res = Op0; 5065 5066 // Shift the value upfront if it is even, so the LSB is one. 5067 if (UseSRA) { 5068 // TODO: For UDIV use SRL instead of SRA. 5069 SDNodeFlags Flags; 5070 Flags.setExact(true); 5071 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5072 Created.push_back(Res.getNode()); 5073 } 5074 5075 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5076 } 5077 5078 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5079 SelectionDAG &DAG, 5080 SmallVectorImpl<SDNode *> &Created) const { 5081 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5082 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5083 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5084 return SDValue(N, 0); // Lower SDIV as SDIV 5085 return SDValue(); 5086 } 5087 5088 /// Given an ISD::SDIV node expressing a divide by constant, 5089 /// return a DAG expression to select that will generate the same value by 5090 /// multiplying by a magic number. 5091 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5092 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5093 bool IsAfterLegalization, 5094 SmallVectorImpl<SDNode *> &Created) const { 5095 SDLoc dl(N); 5096 EVT VT = N->getValueType(0); 5097 EVT SVT = VT.getScalarType(); 5098 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5099 EVT ShSVT = ShVT.getScalarType(); 5100 unsigned EltBits = VT.getScalarSizeInBits(); 5101 EVT MulVT; 5102 5103 // Check to see if we can do this. 5104 // FIXME: We should be more aggressive here. 5105 if (!isTypeLegal(VT)) { 5106 // Limit this to simple scalars for now. 5107 if (VT.isVector() || !VT.isSimple()) 5108 return SDValue(); 5109 5110 // If this type will be promoted to a large enough type with a legal 5111 // multiply operation, we can go ahead and do this transform. 5112 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5113 return SDValue(); 5114 5115 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5116 if (MulVT.getSizeInBits() < (2 * EltBits) || 5117 !isOperationLegal(ISD::MUL, MulVT)) 5118 return SDValue(); 5119 } 5120 5121 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5122 if (N->getFlags().hasExact()) 5123 return BuildExactSDIV(*this, N, dl, DAG, Created); 5124 5125 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5126 5127 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5128 if (C->isNullValue()) 5129 return false; 5130 5131 const APInt &Divisor = C->getAPIntValue(); 5132 APInt::ms magics = Divisor.magic(); 5133 int NumeratorFactor = 0; 5134 int ShiftMask = -1; 5135 5136 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 5137 // If d is +1/-1, we just multiply the numerator by +1/-1. 5138 NumeratorFactor = Divisor.getSExtValue(); 5139 magics.m = 0; 5140 magics.s = 0; 5141 ShiftMask = 0; 5142 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 5143 // If d > 0 and m < 0, add the numerator. 5144 NumeratorFactor = 1; 5145 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 5146 // If d < 0 and m > 0, subtract the numerator. 5147 NumeratorFactor = -1; 5148 } 5149 5150 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 5151 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5152 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 5153 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5154 return true; 5155 }; 5156 5157 SDValue N0 = N->getOperand(0); 5158 SDValue N1 = N->getOperand(1); 5159 5160 // Collect the shifts / magic values from each element. 5161 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5162 return SDValue(); 5163 5164 SDValue MagicFactor, Factor, Shift, ShiftMask; 5165 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5166 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5167 Factor = DAG.getBuildVector(VT, dl, Factors); 5168 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5169 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5170 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5171 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5172 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5173 "Expected matchUnaryPredicate to return one element for scalable " 5174 "vectors"); 5175 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5176 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5177 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5178 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5179 } else { 5180 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5181 MagicFactor = MagicFactors[0]; 5182 Factor = Factors[0]; 5183 Shift = Shifts[0]; 5184 ShiftMask = ShiftMasks[0]; 5185 } 5186 5187 // Multiply the numerator (operand 0) by the magic value. 5188 // FIXME: We should support doing a MUL in a wider type. 5189 auto GetMULHS = [&](SDValue X, SDValue Y) { 5190 // If the type isn't legal, use a wider mul of the the type calculated 5191 // earlier. 5192 if (!isTypeLegal(VT)) { 5193 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5194 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5195 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5196 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5197 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5198 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5199 } 5200 5201 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5202 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5203 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5204 SDValue LoHi = 5205 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5206 return SDValue(LoHi.getNode(), 1); 5207 } 5208 return SDValue(); 5209 }; 5210 5211 SDValue Q = GetMULHS(N0, MagicFactor); 5212 if (!Q) 5213 return SDValue(); 5214 5215 Created.push_back(Q.getNode()); 5216 5217 // (Optionally) Add/subtract the numerator using Factor. 5218 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5219 Created.push_back(Factor.getNode()); 5220 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5221 Created.push_back(Q.getNode()); 5222 5223 // Shift right algebraic by shift value. 5224 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5225 Created.push_back(Q.getNode()); 5226 5227 // Extract the sign bit, mask it and add it to the quotient. 5228 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5229 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5230 Created.push_back(T.getNode()); 5231 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5232 Created.push_back(T.getNode()); 5233 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5234 } 5235 5236 /// Given an ISD::UDIV node expressing a divide by constant, 5237 /// return a DAG expression to select that will generate the same value by 5238 /// multiplying by a magic number. 5239 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5240 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5241 bool IsAfterLegalization, 5242 SmallVectorImpl<SDNode *> &Created) const { 5243 SDLoc dl(N); 5244 EVT VT = N->getValueType(0); 5245 EVT SVT = VT.getScalarType(); 5246 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5247 EVT ShSVT = ShVT.getScalarType(); 5248 unsigned EltBits = VT.getScalarSizeInBits(); 5249 EVT MulVT; 5250 5251 // Check to see if we can do this. 5252 // FIXME: We should be more aggressive here. 5253 if (!isTypeLegal(VT)) { 5254 // Limit this to simple scalars for now. 5255 if (VT.isVector() || !VT.isSimple()) 5256 return SDValue(); 5257 5258 // If this type will be promoted to a large enough type with a legal 5259 // multiply operation, we can go ahead and do this transform. 5260 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5261 return SDValue(); 5262 5263 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5264 if (MulVT.getSizeInBits() < (2 * EltBits) || 5265 !isOperationLegal(ISD::MUL, MulVT)) 5266 return SDValue(); 5267 } 5268 5269 bool UseNPQ = false; 5270 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5271 5272 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5273 if (C->isNullValue()) 5274 return false; 5275 // FIXME: We should use a narrower constant when the upper 5276 // bits are known to be zero. 5277 const APInt& Divisor = C->getAPIntValue(); 5278 APInt::mu magics = Divisor.magicu(); 5279 unsigned PreShift = 0, PostShift = 0; 5280 5281 // If the divisor is even, we can avoid using the expensive fixup by 5282 // shifting the divided value upfront. 5283 if (magics.a != 0 && !Divisor[0]) { 5284 PreShift = Divisor.countTrailingZeros(); 5285 // Get magic number for the shifted divisor. 5286 magics = Divisor.lshr(PreShift).magicu(PreShift); 5287 assert(magics.a == 0 && "Should use cheap fixup now"); 5288 } 5289 5290 APInt Magic = magics.m; 5291 5292 unsigned SelNPQ; 5293 if (magics.a == 0 || Divisor.isOneValue()) { 5294 assert(magics.s < Divisor.getBitWidth() && 5295 "We shouldn't generate an undefined shift!"); 5296 PostShift = magics.s; 5297 SelNPQ = false; 5298 } else { 5299 PostShift = magics.s - 1; 5300 SelNPQ = true; 5301 } 5302 5303 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5304 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5305 NPQFactors.push_back( 5306 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5307 : APInt::getNullValue(EltBits), 5308 dl, SVT)); 5309 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5310 UseNPQ |= SelNPQ; 5311 return true; 5312 }; 5313 5314 SDValue N0 = N->getOperand(0); 5315 SDValue N1 = N->getOperand(1); 5316 5317 // Collect the shifts/magic values from each element. 5318 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5319 return SDValue(); 5320 5321 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5322 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5323 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5324 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5325 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5326 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5327 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5328 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5329 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5330 "Expected matchUnaryPredicate to return one for scalable vectors"); 5331 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5332 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5333 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5334 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5335 } else { 5336 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5337 PreShift = PreShifts[0]; 5338 MagicFactor = MagicFactors[0]; 5339 PostShift = PostShifts[0]; 5340 } 5341 5342 SDValue Q = N0; 5343 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5344 Created.push_back(Q.getNode()); 5345 5346 // FIXME: We should support doing a MUL in a wider type. 5347 auto GetMULHU = [&](SDValue X, SDValue Y) { 5348 // If the type isn't legal, use a wider mul of the the type calculated 5349 // earlier. 5350 if (!isTypeLegal(VT)) { 5351 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5352 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5353 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5354 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5355 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5356 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5357 } 5358 5359 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5360 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5361 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5362 SDValue LoHi = 5363 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5364 return SDValue(LoHi.getNode(), 1); 5365 } 5366 return SDValue(); // No mulhu or equivalent 5367 }; 5368 5369 // Multiply the numerator (operand 0) by the magic value. 5370 Q = GetMULHU(Q, MagicFactor); 5371 if (!Q) 5372 return SDValue(); 5373 5374 Created.push_back(Q.getNode()); 5375 5376 if (UseNPQ) { 5377 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5378 Created.push_back(NPQ.getNode()); 5379 5380 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5381 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5382 if (VT.isVector()) 5383 NPQ = GetMULHU(NPQ, NPQFactor); 5384 else 5385 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5386 5387 Created.push_back(NPQ.getNode()); 5388 5389 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5390 Created.push_back(Q.getNode()); 5391 } 5392 5393 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5394 Created.push_back(Q.getNode()); 5395 5396 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5397 5398 SDValue One = DAG.getConstant(1, dl, VT); 5399 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5400 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5401 } 5402 5403 /// If all values in Values that *don't* match the predicate are same 'splat' 5404 /// value, then replace all values with that splat value. 5405 /// Else, if AlternativeReplacement was provided, then replace all values that 5406 /// do match predicate with AlternativeReplacement value. 5407 static void 5408 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5409 std::function<bool(SDValue)> Predicate, 5410 SDValue AlternativeReplacement = SDValue()) { 5411 SDValue Replacement; 5412 // Is there a value for which the Predicate does *NOT* match? What is it? 5413 auto SplatValue = llvm::find_if_not(Values, Predicate); 5414 if (SplatValue != Values.end()) { 5415 // Does Values consist only of SplatValue's and values matching Predicate? 5416 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5417 return Value == *SplatValue || Predicate(Value); 5418 })) // Then we shall replace values matching predicate with SplatValue. 5419 Replacement = *SplatValue; 5420 } 5421 if (!Replacement) { 5422 // Oops, we did not find the "baseline" splat value. 5423 if (!AlternativeReplacement) 5424 return; // Nothing to do. 5425 // Let's replace with provided value then. 5426 Replacement = AlternativeReplacement; 5427 } 5428 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5429 } 5430 5431 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5432 /// where the divisor is constant and the comparison target is zero, 5433 /// return a DAG expression that will generate the same comparison result 5434 /// using only multiplications, additions and shifts/rotations. 5435 /// Ref: "Hacker's Delight" 10-17. 5436 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5437 SDValue CompTargetNode, 5438 ISD::CondCode Cond, 5439 DAGCombinerInfo &DCI, 5440 const SDLoc &DL) const { 5441 SmallVector<SDNode *, 5> Built; 5442 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5443 DCI, DL, Built)) { 5444 for (SDNode *N : Built) 5445 DCI.AddToWorklist(N); 5446 return Folded; 5447 } 5448 5449 return SDValue(); 5450 } 5451 5452 SDValue 5453 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5454 SDValue CompTargetNode, ISD::CondCode Cond, 5455 DAGCombinerInfo &DCI, const SDLoc &DL, 5456 SmallVectorImpl<SDNode *> &Created) const { 5457 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5458 // - D must be constant, with D = D0 * 2^K where D0 is odd 5459 // - P is the multiplicative inverse of D0 modulo 2^W 5460 // - Q = floor(((2^W) - 1) / D) 5461 // where W is the width of the common type of N and D. 5462 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5463 "Only applicable for (in)equality comparisons."); 5464 5465 SelectionDAG &DAG = DCI.DAG; 5466 5467 EVT VT = REMNode.getValueType(); 5468 EVT SVT = VT.getScalarType(); 5469 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5470 EVT ShSVT = ShVT.getScalarType(); 5471 5472 // If MUL is unavailable, we cannot proceed in any case. 5473 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5474 return SDValue(); 5475 5476 bool ComparingWithAllZeros = true; 5477 bool AllComparisonsWithNonZerosAreTautological = true; 5478 bool HadTautologicalLanes = false; 5479 bool AllLanesAreTautological = true; 5480 bool HadEvenDivisor = false; 5481 bool AllDivisorsArePowerOfTwo = true; 5482 bool HadTautologicalInvertedLanes = false; 5483 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5484 5485 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5486 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5487 if (CDiv->isNullValue()) 5488 return false; 5489 5490 const APInt &D = CDiv->getAPIntValue(); 5491 const APInt &Cmp = CCmp->getAPIntValue(); 5492 5493 ComparingWithAllZeros &= Cmp.isNullValue(); 5494 5495 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5496 // if C2 is not less than C1, the comparison is always false. 5497 // But we will only be able to produce the comparison that will give the 5498 // opposive tautological answer. So this lane would need to be fixed up. 5499 bool TautologicalInvertedLane = D.ule(Cmp); 5500 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5501 5502 // If all lanes are tautological (either all divisors are ones, or divisor 5503 // is not greater than the constant we are comparing with), 5504 // we will prefer to avoid the fold. 5505 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5506 HadTautologicalLanes |= TautologicalLane; 5507 AllLanesAreTautological &= TautologicalLane; 5508 5509 // If we are comparing with non-zero, we need'll need to subtract said 5510 // comparison value from the LHS. But there is no point in doing that if 5511 // every lane where we are comparing with non-zero is tautological.. 5512 if (!Cmp.isNullValue()) 5513 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5514 5515 // Decompose D into D0 * 2^K 5516 unsigned K = D.countTrailingZeros(); 5517 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5518 APInt D0 = D.lshr(K); 5519 5520 // D is even if it has trailing zeros. 5521 HadEvenDivisor |= (K != 0); 5522 // D is a power-of-two if D0 is one. 5523 // If all divisors are power-of-two, we will prefer to avoid the fold. 5524 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5525 5526 // P = inv(D0, 2^W) 5527 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5528 unsigned W = D.getBitWidth(); 5529 APInt P = D0.zext(W + 1) 5530 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5531 .trunc(W); 5532 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5533 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5534 5535 // Q = floor((2^W - 1) u/ D) 5536 // R = ((2^W - 1) u% D) 5537 APInt Q, R; 5538 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5539 5540 // If we are comparing with zero, then that comparison constant is okay, 5541 // else it may need to be one less than that. 5542 if (Cmp.ugt(R)) 5543 Q -= 1; 5544 5545 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5546 "We are expecting that K is always less than all-ones for ShSVT"); 5547 5548 // If the lane is tautological the result can be constant-folded. 5549 if (TautologicalLane) { 5550 // Set P and K amount to a bogus values so we can try to splat them. 5551 P = 0; 5552 K = -1; 5553 // And ensure that comparison constant is tautological, 5554 // it will always compare true/false. 5555 Q = -1; 5556 } 5557 5558 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5559 KAmts.push_back( 5560 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5561 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5562 return true; 5563 }; 5564 5565 SDValue N = REMNode.getOperand(0); 5566 SDValue D = REMNode.getOperand(1); 5567 5568 // Collect the values from each element. 5569 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5570 return SDValue(); 5571 5572 // If all lanes are tautological, the result can be constant-folded. 5573 if (AllLanesAreTautological) 5574 return SDValue(); 5575 5576 // If this is a urem by a powers-of-two, avoid the fold since it can be 5577 // best implemented as a bit test. 5578 if (AllDivisorsArePowerOfTwo) 5579 return SDValue(); 5580 5581 SDValue PVal, KVal, QVal; 5582 if (VT.isVector()) { 5583 if (HadTautologicalLanes) { 5584 // Try to turn PAmts into a splat, since we don't care about the values 5585 // that are currently '0'. If we can't, just keep '0'`s. 5586 turnVectorIntoSplatVector(PAmts, isNullConstant); 5587 // Try to turn KAmts into a splat, since we don't care about the values 5588 // that are currently '-1'. If we can't, change them to '0'`s. 5589 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5590 DAG.getConstant(0, DL, ShSVT)); 5591 } 5592 5593 PVal = DAG.getBuildVector(VT, DL, PAmts); 5594 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5595 QVal = DAG.getBuildVector(VT, DL, QAmts); 5596 } else { 5597 PVal = PAmts[0]; 5598 KVal = KAmts[0]; 5599 QVal = QAmts[0]; 5600 } 5601 5602 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5603 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5604 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5605 assert(CompTargetNode.getValueType() == N.getValueType() && 5606 "Expecting that the types on LHS and RHS of comparisons match."); 5607 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5608 } 5609 5610 // (mul N, P) 5611 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5612 Created.push_back(Op0.getNode()); 5613 5614 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5615 // divisors as a performance improvement, since rotating by 0 is a no-op. 5616 if (HadEvenDivisor) { 5617 // We need ROTR to do this. 5618 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5619 return SDValue(); 5620 SDNodeFlags Flags; 5621 Flags.setExact(true); 5622 // UREM: (rotr (mul N, P), K) 5623 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5624 Created.push_back(Op0.getNode()); 5625 } 5626 5627 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5628 SDValue NewCC = 5629 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5630 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5631 if (!HadTautologicalInvertedLanes) 5632 return NewCC; 5633 5634 // If any lanes previously compared always-false, the NewCC will give 5635 // always-true result for them, so we need to fixup those lanes. 5636 // Or the other way around for inequality predicate. 5637 assert(VT.isVector() && "Can/should only get here for vectors."); 5638 Created.push_back(NewCC.getNode()); 5639 5640 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5641 // if C2 is not less than C1, the comparison is always false. 5642 // But we have produced the comparison that will give the 5643 // opposive tautological answer. So these lanes would need to be fixed up. 5644 SDValue TautologicalInvertedChannels = 5645 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5646 Created.push_back(TautologicalInvertedChannels.getNode()); 5647 5648 // NOTE: we avoid letting illegal types through even if we're before legalize 5649 // ops – legalization has a hard time producing good code for this. 5650 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5651 // If we have a vector select, let's replace the comparison results in the 5652 // affected lanes with the correct tautological result. 5653 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5654 DL, SETCCVT, SETCCVT); 5655 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5656 Replacement, NewCC); 5657 } 5658 5659 // Else, we can just invert the comparison result in the appropriate lanes. 5660 // 5661 // NOTE: see the note above VSELECT above. 5662 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5663 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5664 TautologicalInvertedChannels); 5665 5666 return SDValue(); // Don't know how to lower. 5667 } 5668 5669 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5670 /// where the divisor is constant and the comparison target is zero, 5671 /// return a DAG expression that will generate the same comparison result 5672 /// using only multiplications, additions and shifts/rotations. 5673 /// Ref: "Hacker's Delight" 10-17. 5674 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5675 SDValue CompTargetNode, 5676 ISD::CondCode Cond, 5677 DAGCombinerInfo &DCI, 5678 const SDLoc &DL) const { 5679 SmallVector<SDNode *, 7> Built; 5680 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5681 DCI, DL, Built)) { 5682 assert(Built.size() <= 7 && "Max size prediction failed."); 5683 for (SDNode *N : Built) 5684 DCI.AddToWorklist(N); 5685 return Folded; 5686 } 5687 5688 return SDValue(); 5689 } 5690 5691 SDValue 5692 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5693 SDValue CompTargetNode, ISD::CondCode Cond, 5694 DAGCombinerInfo &DCI, const SDLoc &DL, 5695 SmallVectorImpl<SDNode *> &Created) const { 5696 // Fold: 5697 // (seteq/ne (srem N, D), 0) 5698 // To: 5699 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5700 // 5701 // - D must be constant, with D = D0 * 2^K where D0 is odd 5702 // - P is the multiplicative inverse of D0 modulo 2^W 5703 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5704 // - Q = floor((2 * A) / (2^K)) 5705 // where W is the width of the common type of N and D. 5706 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5707 "Only applicable for (in)equality comparisons."); 5708 5709 SelectionDAG &DAG = DCI.DAG; 5710 5711 EVT VT = REMNode.getValueType(); 5712 EVT SVT = VT.getScalarType(); 5713 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5714 EVT ShSVT = ShVT.getScalarType(); 5715 5716 // If we are after ops legalization, and MUL is unavailable, we can not 5717 // proceed. 5718 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5719 return SDValue(); 5720 5721 // TODO: Could support comparing with non-zero too. 5722 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5723 if (!CompTarget || !CompTarget->isNullValue()) 5724 return SDValue(); 5725 5726 bool HadIntMinDivisor = false; 5727 bool HadOneDivisor = false; 5728 bool AllDivisorsAreOnes = true; 5729 bool HadEvenDivisor = false; 5730 bool NeedToApplyOffset = false; 5731 bool AllDivisorsArePowerOfTwo = true; 5732 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5733 5734 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5735 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5736 if (C->isNullValue()) 5737 return false; 5738 5739 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5740 5741 // WARNING: this fold is only valid for positive divisors! 5742 APInt D = C->getAPIntValue(); 5743 if (D.isNegative()) 5744 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5745 5746 HadIntMinDivisor |= D.isMinSignedValue(); 5747 5748 // If all divisors are ones, we will prefer to avoid the fold. 5749 HadOneDivisor |= D.isOneValue(); 5750 AllDivisorsAreOnes &= D.isOneValue(); 5751 5752 // Decompose D into D0 * 2^K 5753 unsigned K = D.countTrailingZeros(); 5754 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5755 APInt D0 = D.lshr(K); 5756 5757 if (!D.isMinSignedValue()) { 5758 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5759 // we don't care about this lane in this fold, we'll special-handle it. 5760 HadEvenDivisor |= (K != 0); 5761 } 5762 5763 // D is a power-of-two if D0 is one. This includes INT_MIN. 5764 // If all divisors are power-of-two, we will prefer to avoid the fold. 5765 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5766 5767 // P = inv(D0, 2^W) 5768 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5769 unsigned W = D.getBitWidth(); 5770 APInt P = D0.zext(W + 1) 5771 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5772 .trunc(W); 5773 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5774 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5775 5776 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5777 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5778 A.clearLowBits(K); 5779 5780 if (!D.isMinSignedValue()) { 5781 // If divisor INT_MIN, then we don't care about this lane in this fold, 5782 // we'll special-handle it. 5783 NeedToApplyOffset |= A != 0; 5784 } 5785 5786 // Q = floor((2 * A) / (2^K)) 5787 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5788 5789 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5790 "We are expecting that A is always less than all-ones for SVT"); 5791 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5792 "We are expecting that K is always less than all-ones for ShSVT"); 5793 5794 // If the divisor is 1 the result can be constant-folded. Likewise, we 5795 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5796 if (D.isOneValue()) { 5797 // Set P, A and K to a bogus values so we can try to splat them. 5798 P = 0; 5799 A = -1; 5800 K = -1; 5801 5802 // x ?% 1 == 0 <--> true <--> x u<= -1 5803 Q = -1; 5804 } 5805 5806 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5807 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5808 KAmts.push_back( 5809 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5810 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5811 return true; 5812 }; 5813 5814 SDValue N = REMNode.getOperand(0); 5815 SDValue D = REMNode.getOperand(1); 5816 5817 // Collect the values from each element. 5818 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5819 return SDValue(); 5820 5821 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5822 if (AllDivisorsAreOnes) 5823 return SDValue(); 5824 5825 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5826 // since it can be best implemented as a bit test. 5827 if (AllDivisorsArePowerOfTwo) 5828 return SDValue(); 5829 5830 SDValue PVal, AVal, KVal, QVal; 5831 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5832 if (HadOneDivisor) { 5833 // Try to turn PAmts into a splat, since we don't care about the values 5834 // that are currently '0'. If we can't, just keep '0'`s. 5835 turnVectorIntoSplatVector(PAmts, isNullConstant); 5836 // Try to turn AAmts into a splat, since we don't care about the 5837 // values that are currently '-1'. If we can't, change them to '0'`s. 5838 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5839 DAG.getConstant(0, DL, SVT)); 5840 // Try to turn KAmts into a splat, since we don't care about the values 5841 // that are currently '-1'. If we can't, change them to '0'`s. 5842 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5843 DAG.getConstant(0, DL, ShSVT)); 5844 } 5845 5846 PVal = DAG.getBuildVector(VT, DL, PAmts); 5847 AVal = DAG.getBuildVector(VT, DL, AAmts); 5848 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5849 QVal = DAG.getBuildVector(VT, DL, QAmts); 5850 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5851 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 5852 QAmts.size() == 1 && 5853 "Expected matchUnaryPredicate to return one element for scalable " 5854 "vectors"); 5855 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5856 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 5857 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5858 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5859 } else { 5860 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 5861 PVal = PAmts[0]; 5862 AVal = AAmts[0]; 5863 KVal = KAmts[0]; 5864 QVal = QAmts[0]; 5865 } 5866 5867 // (mul N, P) 5868 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5869 Created.push_back(Op0.getNode()); 5870 5871 if (NeedToApplyOffset) { 5872 // We need ADD to do this. 5873 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 5874 return SDValue(); 5875 5876 // (add (mul N, P), A) 5877 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5878 Created.push_back(Op0.getNode()); 5879 } 5880 5881 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5882 // divisors as a performance improvement, since rotating by 0 is a no-op. 5883 if (HadEvenDivisor) { 5884 // We need ROTR to do this. 5885 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5886 return SDValue(); 5887 SDNodeFlags Flags; 5888 Flags.setExact(true); 5889 // SREM: (rotr (add (mul N, P), A), K) 5890 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5891 Created.push_back(Op0.getNode()); 5892 } 5893 5894 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5895 SDValue Fold = 5896 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5897 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5898 5899 // If we didn't have lanes with INT_MIN divisor, then we're done. 5900 if (!HadIntMinDivisor) 5901 return Fold; 5902 5903 // That fold is only valid for positive divisors. Which effectively means, 5904 // it is invalid for INT_MIN divisors. So if we have such a lane, 5905 // we must fix-up results for said lanes. 5906 assert(VT.isVector() && "Can/should only get here for vectors."); 5907 5908 // NOTE: we avoid letting illegal types through even if we're before legalize 5909 // ops – legalization has a hard time producing good code for the code that 5910 // follows. 5911 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5912 !isOperationLegalOrCustom(ISD::AND, VT) || 5913 !isOperationLegalOrCustom(Cond, VT) || 5914 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5915 return SDValue(); 5916 5917 Created.push_back(Fold.getNode()); 5918 5919 SDValue IntMin = DAG.getConstant( 5920 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5921 SDValue IntMax = DAG.getConstant( 5922 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5923 SDValue Zero = 5924 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5925 5926 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5927 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5928 Created.push_back(DivisorIsIntMin.getNode()); 5929 5930 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5931 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5932 Created.push_back(Masked.getNode()); 5933 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5934 Created.push_back(MaskedIsZero.getNode()); 5935 5936 // To produce final result we need to blend 2 vectors: 'SetCC' and 5937 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5938 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5939 // constant-folded, select can get lowered to a shuffle with constant mask. 5940 SDValue Blended = 5941 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5942 5943 return Blended; 5944 } 5945 5946 bool TargetLowering:: 5947 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5948 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5949 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5950 "be a constant integer"); 5951 return true; 5952 } 5953 5954 return false; 5955 } 5956 5957 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 5958 const DenormalMode &Mode) const { 5959 SDLoc DL(Op); 5960 EVT VT = Op.getValueType(); 5961 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5962 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 5963 // Testing it with denormal inputs to avoid wrong estimate. 5964 if (Mode.Input == DenormalMode::IEEE) { 5965 // This is specifically a check for the handling of denormal inputs, 5966 // not the result. 5967 5968 // Test = fabs(X) < SmallestNormal 5969 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 5970 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 5971 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 5972 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 5973 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 5974 } 5975 // Test = X == 0.0 5976 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 5977 } 5978 5979 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5980 bool LegalOps, bool OptForSize, 5981 NegatibleCost &Cost, 5982 unsigned Depth) const { 5983 // fneg is removable even if it has multiple uses. 5984 if (Op.getOpcode() == ISD::FNEG) { 5985 Cost = NegatibleCost::Cheaper; 5986 return Op.getOperand(0); 5987 } 5988 5989 // Don't recurse exponentially. 5990 if (Depth > SelectionDAG::MaxRecursionDepth) 5991 return SDValue(); 5992 5993 // Pre-increment recursion depth for use in recursive calls. 5994 ++Depth; 5995 const SDNodeFlags Flags = Op->getFlags(); 5996 const TargetOptions &Options = DAG.getTarget().Options; 5997 EVT VT = Op.getValueType(); 5998 unsigned Opcode = Op.getOpcode(); 5999 6000 // Don't allow anything with multiple uses unless we know it is free. 6001 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6002 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6003 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6004 if (!IsFreeExtend) 6005 return SDValue(); 6006 } 6007 6008 auto RemoveDeadNode = [&](SDValue N) { 6009 if (N && N.getNode()->use_empty()) 6010 DAG.RemoveDeadNode(N.getNode()); 6011 }; 6012 6013 SDLoc DL(Op); 6014 6015 // Because getNegatedExpression can delete nodes we need a handle to keep 6016 // temporary nodes alive in case the recursion manages to create an identical 6017 // node. 6018 std::list<HandleSDNode> Handles; 6019 6020 switch (Opcode) { 6021 case ISD::ConstantFP: { 6022 // Don't invert constant FP values after legalization unless the target says 6023 // the negated constant is legal. 6024 bool IsOpLegal = 6025 isOperationLegal(ISD::ConstantFP, VT) || 6026 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6027 OptForSize); 6028 6029 if (LegalOps && !IsOpLegal) 6030 break; 6031 6032 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6033 V.changeSign(); 6034 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6035 6036 // If we already have the use of the negated floating constant, it is free 6037 // to negate it even it has multiple uses. 6038 if (!Op.hasOneUse() && CFP.use_empty()) 6039 break; 6040 Cost = NegatibleCost::Neutral; 6041 return CFP; 6042 } 6043 case ISD::BUILD_VECTOR: { 6044 // Only permit BUILD_VECTOR of constants. 6045 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6046 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6047 })) 6048 break; 6049 6050 bool IsOpLegal = 6051 (isOperationLegal(ISD::ConstantFP, VT) && 6052 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6053 llvm::all_of(Op->op_values(), [&](SDValue N) { 6054 return N.isUndef() || 6055 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6056 OptForSize); 6057 }); 6058 6059 if (LegalOps && !IsOpLegal) 6060 break; 6061 6062 SmallVector<SDValue, 4> Ops; 6063 for (SDValue C : Op->op_values()) { 6064 if (C.isUndef()) { 6065 Ops.push_back(C); 6066 continue; 6067 } 6068 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6069 V.changeSign(); 6070 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6071 } 6072 Cost = NegatibleCost::Neutral; 6073 return DAG.getBuildVector(VT, DL, Ops); 6074 } 6075 case ISD::FADD: { 6076 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6077 break; 6078 6079 // After operation legalization, it might not be legal to create new FSUBs. 6080 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6081 break; 6082 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6083 6084 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6085 NegatibleCost CostX = NegatibleCost::Expensive; 6086 SDValue NegX = 6087 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6088 // Prevent this node from being deleted by the next call. 6089 if (NegX) 6090 Handles.emplace_back(NegX); 6091 6092 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6093 NegatibleCost CostY = NegatibleCost::Expensive; 6094 SDValue NegY = 6095 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6096 6097 // We're done with the handles. 6098 Handles.clear(); 6099 6100 // Negate the X if its cost is less or equal than Y. 6101 if (NegX && (CostX <= CostY)) { 6102 Cost = CostX; 6103 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6104 if (NegY != N) 6105 RemoveDeadNode(NegY); 6106 return N; 6107 } 6108 6109 // Negate the Y if it is not expensive. 6110 if (NegY) { 6111 Cost = CostY; 6112 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6113 if (NegX != N) 6114 RemoveDeadNode(NegX); 6115 return N; 6116 } 6117 break; 6118 } 6119 case ISD::FSUB: { 6120 // We can't turn -(A-B) into B-A when we honor signed zeros. 6121 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6122 break; 6123 6124 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6125 // fold (fneg (fsub 0, Y)) -> Y 6126 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6127 if (C->isZero()) { 6128 Cost = NegatibleCost::Cheaper; 6129 return Y; 6130 } 6131 6132 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6133 Cost = NegatibleCost::Neutral; 6134 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6135 } 6136 case ISD::FMUL: 6137 case ISD::FDIV: { 6138 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6139 6140 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6141 NegatibleCost CostX = NegatibleCost::Expensive; 6142 SDValue NegX = 6143 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6144 // Prevent this node from being deleted by the next call. 6145 if (NegX) 6146 Handles.emplace_back(NegX); 6147 6148 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6149 NegatibleCost CostY = NegatibleCost::Expensive; 6150 SDValue NegY = 6151 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6152 6153 // We're done with the handles. 6154 Handles.clear(); 6155 6156 // Negate the X if its cost is less or equal than Y. 6157 if (NegX && (CostX <= CostY)) { 6158 Cost = CostX; 6159 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6160 if (NegY != N) 6161 RemoveDeadNode(NegY); 6162 return N; 6163 } 6164 6165 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6166 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6167 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6168 break; 6169 6170 // Negate the Y if it is not expensive. 6171 if (NegY) { 6172 Cost = CostY; 6173 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6174 if (NegX != N) 6175 RemoveDeadNode(NegX); 6176 return N; 6177 } 6178 break; 6179 } 6180 case ISD::FMA: 6181 case ISD::FMAD: { 6182 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6183 break; 6184 6185 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6186 NegatibleCost CostZ = NegatibleCost::Expensive; 6187 SDValue NegZ = 6188 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6189 // Give up if fail to negate the Z. 6190 if (!NegZ) 6191 break; 6192 6193 // Prevent this node from being deleted by the next two calls. 6194 Handles.emplace_back(NegZ); 6195 6196 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6197 NegatibleCost CostX = NegatibleCost::Expensive; 6198 SDValue NegX = 6199 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6200 // Prevent this node from being deleted by the next call. 6201 if (NegX) 6202 Handles.emplace_back(NegX); 6203 6204 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6205 NegatibleCost CostY = NegatibleCost::Expensive; 6206 SDValue NegY = 6207 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6208 6209 // We're done with the handles. 6210 Handles.clear(); 6211 6212 // Negate the X if its cost is less or equal than Y. 6213 if (NegX && (CostX <= CostY)) { 6214 Cost = std::min(CostX, CostZ); 6215 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6216 if (NegY != N) 6217 RemoveDeadNode(NegY); 6218 return N; 6219 } 6220 6221 // Negate the Y if it is not expensive. 6222 if (NegY) { 6223 Cost = std::min(CostY, CostZ); 6224 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6225 if (NegX != N) 6226 RemoveDeadNode(NegX); 6227 return N; 6228 } 6229 break; 6230 } 6231 6232 case ISD::FP_EXTEND: 6233 case ISD::FSIN: 6234 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6235 OptForSize, Cost, Depth)) 6236 return DAG.getNode(Opcode, DL, VT, NegV); 6237 break; 6238 case ISD::FP_ROUND: 6239 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6240 OptForSize, Cost, Depth)) 6241 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6242 break; 6243 } 6244 6245 return SDValue(); 6246 } 6247 6248 //===----------------------------------------------------------------------===// 6249 // Legalization Utilities 6250 //===----------------------------------------------------------------------===// 6251 6252 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6253 SDValue LHS, SDValue RHS, 6254 SmallVectorImpl<SDValue> &Result, 6255 EVT HiLoVT, SelectionDAG &DAG, 6256 MulExpansionKind Kind, SDValue LL, 6257 SDValue LH, SDValue RL, SDValue RH) const { 6258 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6259 Opcode == ISD::SMUL_LOHI); 6260 6261 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6262 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6263 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6264 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6265 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6266 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6267 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6268 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6269 6270 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6271 return false; 6272 6273 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6274 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6275 6276 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6277 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6278 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6279 6280 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6281 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6282 bool Signed) -> bool { 6283 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6284 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6285 Hi = SDValue(Lo.getNode(), 1); 6286 return true; 6287 } 6288 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6289 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6290 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6291 return true; 6292 } 6293 return false; 6294 }; 6295 6296 SDValue Lo, Hi; 6297 6298 if (!LL.getNode() && !RL.getNode() && 6299 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6300 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6301 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6302 } 6303 6304 if (!LL.getNode()) 6305 return false; 6306 6307 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6308 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6309 DAG.MaskedValueIsZero(RHS, HighMask)) { 6310 // The inputs are both zero-extended. 6311 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6312 Result.push_back(Lo); 6313 Result.push_back(Hi); 6314 if (Opcode != ISD::MUL) { 6315 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6316 Result.push_back(Zero); 6317 Result.push_back(Zero); 6318 } 6319 return true; 6320 } 6321 } 6322 6323 if (!VT.isVector() && Opcode == ISD::MUL && 6324 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6325 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6326 // The input values are both sign-extended. 6327 // TODO non-MUL case? 6328 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6329 Result.push_back(Lo); 6330 Result.push_back(Hi); 6331 return true; 6332 } 6333 } 6334 6335 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6336 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6337 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 6338 // FIXME getShiftAmountTy does not always return a sensible result when VT 6339 // is an illegal type, and so the type may be too small to fit the shift 6340 // amount. Override it with i32. The shift will have to be legalized. 6341 ShiftAmountTy = MVT::i32; 6342 } 6343 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6344 6345 if (!LH.getNode() && !RH.getNode() && 6346 isOperationLegalOrCustom(ISD::SRL, VT) && 6347 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6348 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6349 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6350 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6351 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6352 } 6353 6354 if (!LH.getNode()) 6355 return false; 6356 6357 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6358 return false; 6359 6360 Result.push_back(Lo); 6361 6362 if (Opcode == ISD::MUL) { 6363 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6364 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6365 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6366 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6367 Result.push_back(Hi); 6368 return true; 6369 } 6370 6371 // Compute the full width result. 6372 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6373 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6374 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6375 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6376 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6377 }; 6378 6379 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6380 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6381 return false; 6382 6383 // This is effectively the add part of a multiply-add of half-sized operands, 6384 // so it cannot overflow. 6385 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6386 6387 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6388 return false; 6389 6390 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6391 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6392 6393 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6394 isOperationLegalOrCustom(ISD::ADDE, VT)); 6395 if (UseGlue) 6396 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6397 Merge(Lo, Hi)); 6398 else 6399 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6400 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6401 6402 SDValue Carry = Next.getValue(1); 6403 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6404 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6405 6406 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6407 return false; 6408 6409 if (UseGlue) 6410 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6411 Carry); 6412 else 6413 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6414 Zero, Carry); 6415 6416 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6417 6418 if (Opcode == ISD::SMUL_LOHI) { 6419 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6420 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6421 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6422 6423 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6424 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6425 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6426 } 6427 6428 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6429 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6430 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6431 return true; 6432 } 6433 6434 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6435 SelectionDAG &DAG, MulExpansionKind Kind, 6436 SDValue LL, SDValue LH, SDValue RL, 6437 SDValue RH) const { 6438 SmallVector<SDValue, 2> Result; 6439 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6440 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6441 DAG, Kind, LL, LH, RL, RH); 6442 if (Ok) { 6443 assert(Result.size() == 2); 6444 Lo = Result[0]; 6445 Hi = Result[1]; 6446 } 6447 return Ok; 6448 } 6449 6450 // Check that (every element of) Z is undef or not an exact multiple of BW. 6451 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6452 return ISD::matchUnaryPredicate( 6453 Z, 6454 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6455 true); 6456 } 6457 6458 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6459 SelectionDAG &DAG) const { 6460 EVT VT = Node->getValueType(0); 6461 6462 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6463 !isOperationLegalOrCustom(ISD::SRL, VT) || 6464 !isOperationLegalOrCustom(ISD::SUB, VT) || 6465 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6466 return false; 6467 6468 SDValue X = Node->getOperand(0); 6469 SDValue Y = Node->getOperand(1); 6470 SDValue Z = Node->getOperand(2); 6471 6472 unsigned BW = VT.getScalarSizeInBits(); 6473 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6474 SDLoc DL(SDValue(Node, 0)); 6475 6476 EVT ShVT = Z.getValueType(); 6477 6478 // If a funnel shift in the other direction is more supported, use it. 6479 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6480 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6481 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6482 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6483 // fshl X, Y, Z -> fshr X, Y, -Z 6484 // fshr X, Y, Z -> fshl X, Y, -Z 6485 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6486 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6487 } else { 6488 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6489 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6490 SDValue One = DAG.getConstant(1, DL, ShVT); 6491 if (IsFSHL) { 6492 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6493 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6494 } else { 6495 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6496 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6497 } 6498 Z = DAG.getNOT(DL, Z, ShVT); 6499 } 6500 Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6501 return true; 6502 } 6503 6504 SDValue ShX, ShY; 6505 SDValue ShAmt, InvShAmt; 6506 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6507 // fshl: X << C | Y >> (BW - C) 6508 // fshr: X << (BW - C) | Y >> C 6509 // where C = Z % BW is not zero 6510 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6511 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6512 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6513 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6514 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6515 } else { 6516 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6517 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6518 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6519 if (isPowerOf2_32(BW)) { 6520 // Z % BW -> Z & (BW - 1) 6521 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6522 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6523 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6524 } else { 6525 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6526 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6527 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6528 } 6529 6530 SDValue One = DAG.getConstant(1, DL, ShVT); 6531 if (IsFSHL) { 6532 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6533 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6534 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6535 } else { 6536 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6537 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6538 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6539 } 6540 } 6541 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6542 return true; 6543 } 6544 6545 // TODO: Merge with expandFunnelShift. 6546 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6547 SDValue &Result, SelectionDAG &DAG) const { 6548 EVT VT = Node->getValueType(0); 6549 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6550 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6551 SDValue Op0 = Node->getOperand(0); 6552 SDValue Op1 = Node->getOperand(1); 6553 SDLoc DL(SDValue(Node, 0)); 6554 6555 EVT ShVT = Op1.getValueType(); 6556 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6557 6558 // If a rotate in the other direction is supported, use it. 6559 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6560 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6561 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6562 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6563 return true; 6564 } 6565 6566 if (!AllowVectorOps && VT.isVector() && 6567 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6568 !isOperationLegalOrCustom(ISD::SRL, VT) || 6569 !isOperationLegalOrCustom(ISD::SUB, VT) || 6570 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6571 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6572 return false; 6573 6574 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6575 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6576 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6577 SDValue ShVal; 6578 SDValue HsVal; 6579 if (isPowerOf2_32(EltSizeInBits)) { 6580 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6581 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6582 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6583 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6584 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6585 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6586 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6587 } else { 6588 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6589 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6590 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6591 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6592 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6593 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6594 SDValue One = DAG.getConstant(1, DL, ShVT); 6595 HsVal = 6596 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6597 } 6598 Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6599 return true; 6600 } 6601 6602 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6603 SelectionDAG &DAG) const { 6604 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6605 EVT VT = Node->getValueType(0); 6606 unsigned VTBits = VT.getScalarSizeInBits(); 6607 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6608 6609 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6610 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6611 SDValue ShOpLo = Node->getOperand(0); 6612 SDValue ShOpHi = Node->getOperand(1); 6613 SDValue ShAmt = Node->getOperand(2); 6614 EVT ShAmtVT = ShAmt.getValueType(); 6615 EVT ShAmtCCVT = 6616 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6617 SDLoc dl(Node); 6618 6619 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6620 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6621 // away during isel. 6622 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6623 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6624 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6625 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6626 : DAG.getConstant(0, dl, VT); 6627 6628 SDValue Tmp2, Tmp3; 6629 if (IsSHL) { 6630 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6631 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6632 } else { 6633 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6634 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6635 } 6636 6637 // If the shift amount is larger or equal than the width of a part we don't 6638 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 6639 // values for large shift amounts. 6640 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6641 DAG.getConstant(VTBits, dl, ShAmtVT)); 6642 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 6643 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 6644 6645 if (IsSHL) { 6646 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6647 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6648 } else { 6649 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6650 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6651 } 6652 } 6653 6654 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6655 SelectionDAG &DAG) const { 6656 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6657 SDValue Src = Node->getOperand(OpNo); 6658 EVT SrcVT = Src.getValueType(); 6659 EVT DstVT = Node->getValueType(0); 6660 SDLoc dl(SDValue(Node, 0)); 6661 6662 // FIXME: Only f32 to i64 conversions are supported. 6663 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6664 return false; 6665 6666 if (Node->isStrictFPOpcode()) 6667 // When a NaN is converted to an integer a trap is allowed. We can't 6668 // use this expansion here because it would eliminate that trap. Other 6669 // traps are also allowed and cannot be eliminated. See 6670 // IEEE 754-2008 sec 5.8. 6671 return false; 6672 6673 // Expand f32 -> i64 conversion 6674 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6675 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6676 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6677 EVT IntVT = SrcVT.changeTypeToInteger(); 6678 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6679 6680 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6681 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6682 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6683 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6684 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6685 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6686 6687 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6688 6689 SDValue ExponentBits = DAG.getNode( 6690 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6691 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6692 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6693 6694 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6695 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6696 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6697 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6698 6699 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6700 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6701 DAG.getConstant(0x00800000, dl, IntVT)); 6702 6703 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6704 6705 R = DAG.getSelectCC( 6706 dl, Exponent, ExponentLoBit, 6707 DAG.getNode(ISD::SHL, dl, DstVT, R, 6708 DAG.getZExtOrTrunc( 6709 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6710 dl, IntShVT)), 6711 DAG.getNode(ISD::SRL, dl, DstVT, R, 6712 DAG.getZExtOrTrunc( 6713 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6714 dl, IntShVT)), 6715 ISD::SETGT); 6716 6717 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6718 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6719 6720 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6721 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6722 return true; 6723 } 6724 6725 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6726 SDValue &Chain, 6727 SelectionDAG &DAG) const { 6728 SDLoc dl(SDValue(Node, 0)); 6729 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6730 SDValue Src = Node->getOperand(OpNo); 6731 6732 EVT SrcVT = Src.getValueType(); 6733 EVT DstVT = Node->getValueType(0); 6734 EVT SetCCVT = 6735 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6736 EVT DstSetCCVT = 6737 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6738 6739 // Only expand vector types if we have the appropriate vector bit operations. 6740 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6741 ISD::FP_TO_SINT; 6742 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6743 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6744 return false; 6745 6746 // If the maximum float value is smaller then the signed integer range, 6747 // the destination signmask can't be represented by the float, so we can 6748 // just use FP_TO_SINT directly. 6749 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6750 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6751 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6752 if (APFloat::opOverflow & 6753 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6754 if (Node->isStrictFPOpcode()) { 6755 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6756 { Node->getOperand(0), Src }); 6757 Chain = Result.getValue(1); 6758 } else 6759 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6760 return true; 6761 } 6762 6763 // Don't expand it if there isn't cheap fsub instruction. 6764 if (!isOperationLegalOrCustom( 6765 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6766 return false; 6767 6768 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6769 SDValue Sel; 6770 6771 if (Node->isStrictFPOpcode()) { 6772 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6773 Node->getOperand(0), /*IsSignaling*/ true); 6774 Chain = Sel.getValue(1); 6775 } else { 6776 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6777 } 6778 6779 bool Strict = Node->isStrictFPOpcode() || 6780 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6781 6782 if (Strict) { 6783 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6784 // signmask then offset (the result of which should be fully representable). 6785 // Sel = Src < 0x8000000000000000 6786 // FltOfs = select Sel, 0, 0x8000000000000000 6787 // IntOfs = select Sel, 0, 0x8000000000000000 6788 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6789 6790 // TODO: Should any fast-math-flags be set for the FSUB? 6791 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6792 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6793 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6794 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6795 DAG.getConstant(0, dl, DstVT), 6796 DAG.getConstant(SignMask, dl, DstVT)); 6797 SDValue SInt; 6798 if (Node->isStrictFPOpcode()) { 6799 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6800 { Chain, Src, FltOfs }); 6801 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6802 { Val.getValue(1), Val }); 6803 Chain = SInt.getValue(1); 6804 } else { 6805 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6806 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6807 } 6808 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6809 } else { 6810 // Expand based on maximum range of FP_TO_SINT: 6811 // True = fp_to_sint(Src) 6812 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6813 // Result = select (Src < 0x8000000000000000), True, False 6814 6815 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6816 // TODO: Should any fast-math-flags be set for the FSUB? 6817 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6818 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6819 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6820 DAG.getConstant(SignMask, dl, DstVT)); 6821 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6822 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6823 } 6824 return true; 6825 } 6826 6827 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6828 SDValue &Chain, 6829 SelectionDAG &DAG) const { 6830 // This transform is not correct for converting 0 when rounding mode is set 6831 // to round toward negative infinity which will produce -0.0. So disable under 6832 // strictfp. 6833 if (Node->isStrictFPOpcode()) 6834 return false; 6835 6836 SDValue Src = Node->getOperand(0); 6837 EVT SrcVT = Src.getValueType(); 6838 EVT DstVT = Node->getValueType(0); 6839 6840 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6841 return false; 6842 6843 // Only expand vector types if we have the appropriate vector bit operations. 6844 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6845 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6846 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6847 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6848 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6849 return false; 6850 6851 SDLoc dl(SDValue(Node, 0)); 6852 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6853 6854 // Implementation of unsigned i64 to f64 following the algorithm in 6855 // __floatundidf in compiler_rt. This implementation performs rounding 6856 // correctly in all rounding modes with the exception of converting 0 6857 // when rounding toward negative infinity. In that case the fsub will produce 6858 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 6859 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6860 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6861 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6862 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6863 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6864 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6865 6866 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6867 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6868 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6869 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6870 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6871 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6872 SDValue HiSub = 6873 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6874 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6875 return true; 6876 } 6877 6878 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6879 SelectionDAG &DAG) const { 6880 SDLoc dl(Node); 6881 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6882 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6883 EVT VT = Node->getValueType(0); 6884 6885 if (VT.isScalableVector()) 6886 report_fatal_error( 6887 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 6888 6889 if (isOperationLegalOrCustom(NewOp, VT)) { 6890 SDValue Quiet0 = Node->getOperand(0); 6891 SDValue Quiet1 = Node->getOperand(1); 6892 6893 if (!Node->getFlags().hasNoNaNs()) { 6894 // Insert canonicalizes if it's possible we need to quiet to get correct 6895 // sNaN behavior. 6896 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6897 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6898 Node->getFlags()); 6899 } 6900 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6901 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6902 Node->getFlags()); 6903 } 6904 } 6905 6906 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6907 } 6908 6909 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6910 // instead if there are no NaNs. 6911 if (Node->getFlags().hasNoNaNs()) { 6912 unsigned IEEE2018Op = 6913 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6914 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6915 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6916 Node->getOperand(1), Node->getFlags()); 6917 } 6918 } 6919 6920 // If none of the above worked, but there are no NaNs, then expand to 6921 // a compare/select sequence. This is required for correctness since 6922 // InstCombine might have canonicalized a fcmp+select sequence to a 6923 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6924 // expansion to libcall, we might introduce a link-time dependency 6925 // on libm into a file that originally did not have one. 6926 if (Node->getFlags().hasNoNaNs()) { 6927 ISD::CondCode Pred = 6928 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6929 SDValue Op1 = Node->getOperand(0); 6930 SDValue Op2 = Node->getOperand(1); 6931 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6932 // Copy FMF flags, but always set the no-signed-zeros flag 6933 // as this is implied by the FMINNUM/FMAXNUM semantics. 6934 SDNodeFlags Flags = Node->getFlags(); 6935 Flags.setNoSignedZeros(true); 6936 SelCC->setFlags(Flags); 6937 return SelCC; 6938 } 6939 6940 return SDValue(); 6941 } 6942 6943 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6944 SelectionDAG &DAG) const { 6945 SDLoc dl(Node); 6946 EVT VT = Node->getValueType(0); 6947 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6948 SDValue Op = Node->getOperand(0); 6949 unsigned Len = VT.getScalarSizeInBits(); 6950 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6951 6952 // TODO: Add support for irregular type lengths. 6953 if (!(Len <= 128 && Len % 8 == 0)) 6954 return false; 6955 6956 // Only expand vector types if we have the appropriate vector bit operations. 6957 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6958 !isOperationLegalOrCustom(ISD::SUB, VT) || 6959 !isOperationLegalOrCustom(ISD::SRL, VT) || 6960 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6961 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6962 return false; 6963 6964 // This is the "best" algorithm from 6965 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6966 SDValue Mask55 = 6967 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6968 SDValue Mask33 = 6969 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6970 SDValue Mask0F = 6971 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6972 SDValue Mask01 = 6973 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6974 6975 // v = v - ((v >> 1) & 0x55555555...) 6976 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6977 DAG.getNode(ISD::AND, dl, VT, 6978 DAG.getNode(ISD::SRL, dl, VT, Op, 6979 DAG.getConstant(1, dl, ShVT)), 6980 Mask55)); 6981 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6982 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6983 DAG.getNode(ISD::AND, dl, VT, 6984 DAG.getNode(ISD::SRL, dl, VT, Op, 6985 DAG.getConstant(2, dl, ShVT)), 6986 Mask33)); 6987 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6988 Op = DAG.getNode(ISD::AND, dl, VT, 6989 DAG.getNode(ISD::ADD, dl, VT, Op, 6990 DAG.getNode(ISD::SRL, dl, VT, Op, 6991 DAG.getConstant(4, dl, ShVT))), 6992 Mask0F); 6993 // v = (v * 0x01010101...) >> (Len - 8) 6994 if (Len > 8) 6995 Op = 6996 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6997 DAG.getConstant(Len - 8, dl, ShVT)); 6998 6999 Result = Op; 7000 return true; 7001 } 7002 7003 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 7004 SelectionDAG &DAG) const { 7005 SDLoc dl(Node); 7006 EVT VT = Node->getValueType(0); 7007 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7008 SDValue Op = Node->getOperand(0); 7009 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7010 7011 // If the non-ZERO_UNDEF version is supported we can use that instead. 7012 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7013 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 7014 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 7015 return true; 7016 } 7017 7018 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7019 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7020 EVT SetCCVT = 7021 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7022 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7023 SDValue Zero = DAG.getConstant(0, dl, VT); 7024 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7025 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7026 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7027 return true; 7028 } 7029 7030 // Only expand vector types if we have the appropriate vector bit operations. 7031 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7032 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 7033 !isOperationLegalOrCustom(ISD::SRL, VT) || 7034 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7035 return false; 7036 7037 // for now, we do this: 7038 // x = x | (x >> 1); 7039 // x = x | (x >> 2); 7040 // ... 7041 // x = x | (x >>16); 7042 // x = x | (x >>32); // for 64-bit input 7043 // return popcount(~x); 7044 // 7045 // Ref: "Hacker's Delight" by Henry Warren 7046 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7047 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7048 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7049 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7050 } 7051 Op = DAG.getNOT(dl, Op, VT); 7052 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 7053 return true; 7054 } 7055 7056 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 7057 SelectionDAG &DAG) const { 7058 SDLoc dl(Node); 7059 EVT VT = Node->getValueType(0); 7060 SDValue Op = Node->getOperand(0); 7061 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7062 7063 // If the non-ZERO_UNDEF version is supported we can use that instead. 7064 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7065 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 7066 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 7067 return true; 7068 } 7069 7070 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7071 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7072 EVT SetCCVT = 7073 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7074 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7075 SDValue Zero = DAG.getConstant(0, dl, VT); 7076 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7077 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7078 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7079 return true; 7080 } 7081 7082 // Only expand vector types if we have the appropriate vector bit operations. 7083 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7084 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7085 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 7086 !isOperationLegalOrCustom(ISD::SUB, VT) || 7087 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7088 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7089 return false; 7090 7091 // for now, we use: { return popcount(~x & (x - 1)); } 7092 // unless the target has ctlz but not ctpop, in which case we use: 7093 // { return 32 - nlz(~x & (x-1)); } 7094 // Ref: "Hacker's Delight" by Henry Warren 7095 SDValue Tmp = DAG.getNode( 7096 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7097 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7098 7099 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7100 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7101 Result = 7102 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7103 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7104 return true; 7105 } 7106 7107 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7108 return true; 7109 } 7110 7111 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 7112 SelectionDAG &DAG, bool IsNegative) const { 7113 SDLoc dl(N); 7114 EVT VT = N->getValueType(0); 7115 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7116 SDValue Op = N->getOperand(0); 7117 7118 // abs(x) -> smax(x,sub(0,x)) 7119 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7120 isOperationLegal(ISD::SMAX, VT)) { 7121 SDValue Zero = DAG.getConstant(0, dl, VT); 7122 Result = DAG.getNode(ISD::SMAX, dl, VT, Op, 7123 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7124 return true; 7125 } 7126 7127 // abs(x) -> umin(x,sub(0,x)) 7128 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7129 isOperationLegal(ISD::UMIN, VT)) { 7130 SDValue Zero = DAG.getConstant(0, dl, VT); 7131 Result = DAG.getNode(ISD::UMIN, dl, VT, Op, 7132 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7133 return true; 7134 } 7135 7136 // 0 - abs(x) -> smin(x, sub(0,x)) 7137 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7138 isOperationLegal(ISD::SMIN, VT)) { 7139 SDValue Zero = DAG.getConstant(0, dl, VT); 7140 Result = DAG.getNode(ISD::SMIN, dl, VT, Op, 7141 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7142 return true; 7143 } 7144 7145 // Only expand vector types if we have the appropriate vector operations. 7146 if (VT.isVector() && 7147 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7148 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7149 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7150 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7151 return false; 7152 7153 SDValue Shift = 7154 DAG.getNode(ISD::SRA, dl, VT, Op, 7155 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7156 if (!IsNegative) { 7157 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7158 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7159 } else { 7160 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7161 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7162 Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7163 } 7164 return true; 7165 } 7166 7167 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7168 SDLoc dl(N); 7169 EVT VT = N->getValueType(0); 7170 SDValue Op = N->getOperand(0); 7171 7172 if (!VT.isSimple()) 7173 return SDValue(); 7174 7175 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7176 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7177 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7178 default: 7179 return SDValue(); 7180 case MVT::i16: 7181 // Use a rotate by 8. This can be further expanded if necessary. 7182 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7183 case MVT::i32: 7184 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7185 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7186 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7187 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7188 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7189 DAG.getConstant(0xFF0000, dl, VT)); 7190 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7191 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7192 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7193 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7194 case MVT::i64: 7195 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7196 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7197 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7198 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7199 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7200 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7201 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7202 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7203 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7204 DAG.getConstant(255ULL<<48, dl, VT)); 7205 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7206 DAG.getConstant(255ULL<<40, dl, VT)); 7207 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7208 DAG.getConstant(255ULL<<32, dl, VT)); 7209 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7210 DAG.getConstant(255ULL<<24, dl, VT)); 7211 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7212 DAG.getConstant(255ULL<<16, dl, VT)); 7213 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7214 DAG.getConstant(255ULL<<8 , dl, VT)); 7215 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7216 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7217 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7218 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7219 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7220 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7221 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7222 } 7223 } 7224 7225 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7226 SDLoc dl(N); 7227 EVT VT = N->getValueType(0); 7228 SDValue Op = N->getOperand(0); 7229 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7230 unsigned Sz = VT.getScalarSizeInBits(); 7231 7232 SDValue Tmp, Tmp2, Tmp3; 7233 7234 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7235 // and finally the i1 pairs. 7236 // TODO: We can easily support i4/i2 legal types if any target ever does. 7237 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7238 // Create the masks - repeating the pattern every byte. 7239 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 7240 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 7241 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 7242 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7243 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7244 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7245 7246 // BSWAP if the type is wider than a single byte. 7247 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7248 7249 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 7250 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 7251 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 7252 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 7253 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7254 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7255 7256 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 7257 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 7258 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 7259 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 7260 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7261 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7262 7263 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 7264 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 7265 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 7266 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 7267 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7268 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7269 return Tmp; 7270 } 7271 7272 Tmp = DAG.getConstant(0, dl, VT); 7273 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7274 if (I < J) 7275 Tmp2 = 7276 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7277 else 7278 Tmp2 = 7279 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7280 7281 APInt Shift(Sz, 1); 7282 Shift <<= J; 7283 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7284 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7285 } 7286 7287 return Tmp; 7288 } 7289 7290 std::pair<SDValue, SDValue> 7291 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7292 SelectionDAG &DAG) const { 7293 SDLoc SL(LD); 7294 SDValue Chain = LD->getChain(); 7295 SDValue BasePTR = LD->getBasePtr(); 7296 EVT SrcVT = LD->getMemoryVT(); 7297 EVT DstVT = LD->getValueType(0); 7298 ISD::LoadExtType ExtType = LD->getExtensionType(); 7299 7300 if (SrcVT.isScalableVector()) 7301 report_fatal_error("Cannot scalarize scalable vector loads"); 7302 7303 unsigned NumElem = SrcVT.getVectorNumElements(); 7304 7305 EVT SrcEltVT = SrcVT.getScalarType(); 7306 EVT DstEltVT = DstVT.getScalarType(); 7307 7308 // A vector must always be stored in memory as-is, i.e. without any padding 7309 // between the elements, since various code depend on it, e.g. in the 7310 // handling of a bitcast of a vector type to int, which may be done with a 7311 // vector store followed by an integer load. A vector that does not have 7312 // elements that are byte-sized must therefore be stored as an integer 7313 // built out of the extracted vector elements. 7314 if (!SrcEltVT.isByteSized()) { 7315 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7316 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7317 7318 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7319 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7320 7321 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7322 SDValue SrcEltBitMask = DAG.getConstant( 7323 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7324 7325 // Load the whole vector and avoid masking off the top bits as it makes 7326 // the codegen worse. 7327 SDValue Load = 7328 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7329 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7330 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7331 7332 SmallVector<SDValue, 8> Vals; 7333 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7334 unsigned ShiftIntoIdx = 7335 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7336 SDValue ShiftAmount = 7337 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7338 LoadVT, SL, /*LegalTypes=*/false); 7339 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7340 SDValue Elt = 7341 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7342 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7343 7344 if (ExtType != ISD::NON_EXTLOAD) { 7345 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7346 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7347 } 7348 7349 Vals.push_back(Scalar); 7350 } 7351 7352 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7353 return std::make_pair(Value, Load.getValue(1)); 7354 } 7355 7356 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7357 assert(SrcEltVT.isByteSized()); 7358 7359 SmallVector<SDValue, 8> Vals; 7360 SmallVector<SDValue, 8> LoadChains; 7361 7362 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7363 SDValue ScalarLoad = 7364 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7365 LD->getPointerInfo().getWithOffset(Idx * Stride), 7366 SrcEltVT, LD->getOriginalAlign(), 7367 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7368 7369 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7370 7371 Vals.push_back(ScalarLoad.getValue(0)); 7372 LoadChains.push_back(ScalarLoad.getValue(1)); 7373 } 7374 7375 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7376 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7377 7378 return std::make_pair(Value, NewChain); 7379 } 7380 7381 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7382 SelectionDAG &DAG) const { 7383 SDLoc SL(ST); 7384 7385 SDValue Chain = ST->getChain(); 7386 SDValue BasePtr = ST->getBasePtr(); 7387 SDValue Value = ST->getValue(); 7388 EVT StVT = ST->getMemoryVT(); 7389 7390 if (StVT.isScalableVector()) 7391 report_fatal_error("Cannot scalarize scalable vector stores"); 7392 7393 // The type of the data we want to save 7394 EVT RegVT = Value.getValueType(); 7395 EVT RegSclVT = RegVT.getScalarType(); 7396 7397 // The type of data as saved in memory. 7398 EVT MemSclVT = StVT.getScalarType(); 7399 7400 unsigned NumElem = StVT.getVectorNumElements(); 7401 7402 // A vector must always be stored in memory as-is, i.e. without any padding 7403 // between the elements, since various code depend on it, e.g. in the 7404 // handling of a bitcast of a vector type to int, which may be done with a 7405 // vector store followed by an integer load. A vector that does not have 7406 // elements that are byte-sized must therefore be stored as an integer 7407 // built out of the extracted vector elements. 7408 if (!MemSclVT.isByteSized()) { 7409 unsigned NumBits = StVT.getSizeInBits(); 7410 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7411 7412 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7413 7414 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7415 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7416 DAG.getVectorIdxConstant(Idx, SL)); 7417 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7418 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7419 unsigned ShiftIntoIdx = 7420 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7421 SDValue ShiftAmount = 7422 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7423 SDValue ShiftedElt = 7424 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7425 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7426 } 7427 7428 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7429 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7430 ST->getAAInfo()); 7431 } 7432 7433 // Store Stride in bytes 7434 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7435 assert(Stride && "Zero stride!"); 7436 // Extract each of the elements from the original vector and save them into 7437 // memory individually. 7438 SmallVector<SDValue, 8> Stores; 7439 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7440 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7441 DAG.getVectorIdxConstant(Idx, SL)); 7442 7443 SDValue Ptr = 7444 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7445 7446 // This scalar TruncStore may be illegal, but we legalize it later. 7447 SDValue Store = DAG.getTruncStore( 7448 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7449 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7450 ST->getAAInfo()); 7451 7452 Stores.push_back(Store); 7453 } 7454 7455 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7456 } 7457 7458 std::pair<SDValue, SDValue> 7459 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7460 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7461 "unaligned indexed loads not implemented!"); 7462 SDValue Chain = LD->getChain(); 7463 SDValue Ptr = LD->getBasePtr(); 7464 EVT VT = LD->getValueType(0); 7465 EVT LoadedVT = LD->getMemoryVT(); 7466 SDLoc dl(LD); 7467 auto &MF = DAG.getMachineFunction(); 7468 7469 if (VT.isFloatingPoint() || VT.isVector()) { 7470 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7471 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7472 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7473 LoadedVT.isVector()) { 7474 // Scalarize the load and let the individual components be handled. 7475 return scalarizeVectorLoad(LD, DAG); 7476 } 7477 7478 // Expand to a (misaligned) integer load of the same size, 7479 // then bitconvert to floating point or vector. 7480 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7481 LD->getMemOperand()); 7482 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7483 if (LoadedVT != VT) 7484 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7485 ISD::ANY_EXTEND, dl, VT, Result); 7486 7487 return std::make_pair(Result, newLoad.getValue(1)); 7488 } 7489 7490 // Copy the value to a (aligned) stack slot using (unaligned) integer 7491 // loads and stores, then do a (aligned) load from the stack slot. 7492 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7493 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7494 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7495 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7496 7497 // Make sure the stack slot is also aligned for the register type. 7498 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7499 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7500 SmallVector<SDValue, 8> Stores; 7501 SDValue StackPtr = StackBase; 7502 unsigned Offset = 0; 7503 7504 EVT PtrVT = Ptr.getValueType(); 7505 EVT StackPtrVT = StackPtr.getValueType(); 7506 7507 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7508 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7509 7510 // Do all but one copies using the full register width. 7511 for (unsigned i = 1; i < NumRegs; i++) { 7512 // Load one integer register's worth from the original location. 7513 SDValue Load = DAG.getLoad( 7514 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7515 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7516 LD->getAAInfo()); 7517 // Follow the load with a store to the stack slot. Remember the store. 7518 Stores.push_back(DAG.getStore( 7519 Load.getValue(1), dl, Load, StackPtr, 7520 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7521 // Increment the pointers. 7522 Offset += RegBytes; 7523 7524 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7525 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7526 } 7527 7528 // The last copy may be partial. Do an extending load. 7529 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7530 8 * (LoadedBytes - Offset)); 7531 SDValue Load = 7532 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7533 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7534 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7535 LD->getAAInfo()); 7536 // Follow the load with a store to the stack slot. Remember the store. 7537 // On big-endian machines this requires a truncating store to ensure 7538 // that the bits end up in the right place. 7539 Stores.push_back(DAG.getTruncStore( 7540 Load.getValue(1), dl, Load, StackPtr, 7541 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7542 7543 // The order of the stores doesn't matter - say it with a TokenFactor. 7544 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7545 7546 // Finally, perform the original load only redirected to the stack slot. 7547 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7548 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7549 LoadedVT); 7550 7551 // Callers expect a MERGE_VALUES node. 7552 return std::make_pair(Load, TF); 7553 } 7554 7555 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7556 "Unaligned load of unsupported type."); 7557 7558 // Compute the new VT that is half the size of the old one. This is an 7559 // integer MVT. 7560 unsigned NumBits = LoadedVT.getSizeInBits(); 7561 EVT NewLoadedVT; 7562 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7563 NumBits >>= 1; 7564 7565 Align Alignment = LD->getOriginalAlign(); 7566 unsigned IncrementSize = NumBits / 8; 7567 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7568 7569 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7570 if (HiExtType == ISD::NON_EXTLOAD) 7571 HiExtType = ISD::ZEXTLOAD; 7572 7573 // Load the value in two parts 7574 SDValue Lo, Hi; 7575 if (DAG.getDataLayout().isLittleEndian()) { 7576 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7577 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7578 LD->getAAInfo()); 7579 7580 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7581 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7582 LD->getPointerInfo().getWithOffset(IncrementSize), 7583 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7584 LD->getAAInfo()); 7585 } else { 7586 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7587 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7588 LD->getAAInfo()); 7589 7590 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7591 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7592 LD->getPointerInfo().getWithOffset(IncrementSize), 7593 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7594 LD->getAAInfo()); 7595 } 7596 7597 // aggregate the two parts 7598 SDValue ShiftAmount = 7599 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7600 DAG.getDataLayout())); 7601 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7602 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7603 7604 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7605 Hi.getValue(1)); 7606 7607 return std::make_pair(Result, TF); 7608 } 7609 7610 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7611 SelectionDAG &DAG) const { 7612 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7613 "unaligned indexed stores not implemented!"); 7614 SDValue Chain = ST->getChain(); 7615 SDValue Ptr = ST->getBasePtr(); 7616 SDValue Val = ST->getValue(); 7617 EVT VT = Val.getValueType(); 7618 Align Alignment = ST->getOriginalAlign(); 7619 auto &MF = DAG.getMachineFunction(); 7620 EVT StoreMemVT = ST->getMemoryVT(); 7621 7622 SDLoc dl(ST); 7623 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7624 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7625 if (isTypeLegal(intVT)) { 7626 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7627 StoreMemVT.isVector()) { 7628 // Scalarize the store and let the individual components be handled. 7629 SDValue Result = scalarizeVectorStore(ST, DAG); 7630 return Result; 7631 } 7632 // Expand to a bitconvert of the value to the integer type of the 7633 // same size, then a (misaligned) int store. 7634 // FIXME: Does not handle truncating floating point stores! 7635 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7636 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7637 Alignment, ST->getMemOperand()->getFlags()); 7638 return Result; 7639 } 7640 // Do a (aligned) store to a stack slot, then copy from the stack slot 7641 // to the final destination using (unaligned) integer loads and stores. 7642 MVT RegVT = getRegisterType( 7643 *DAG.getContext(), 7644 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7645 EVT PtrVT = Ptr.getValueType(); 7646 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7647 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7648 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7649 7650 // Make sure the stack slot is also aligned for the register type. 7651 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7652 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7653 7654 // Perform the original store, only redirected to the stack slot. 7655 SDValue Store = DAG.getTruncStore( 7656 Chain, dl, Val, StackPtr, 7657 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7658 7659 EVT StackPtrVT = StackPtr.getValueType(); 7660 7661 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7662 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7663 SmallVector<SDValue, 8> Stores; 7664 unsigned Offset = 0; 7665 7666 // Do all but one copies using the full register width. 7667 for (unsigned i = 1; i < NumRegs; i++) { 7668 // Load one integer register's worth from the stack slot. 7669 SDValue Load = DAG.getLoad( 7670 RegVT, dl, Store, StackPtr, 7671 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7672 // Store it to the final location. Remember the store. 7673 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7674 ST->getPointerInfo().getWithOffset(Offset), 7675 ST->getOriginalAlign(), 7676 ST->getMemOperand()->getFlags())); 7677 // Increment the pointers. 7678 Offset += RegBytes; 7679 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7680 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7681 } 7682 7683 // The last store may be partial. Do a truncating store. On big-endian 7684 // machines this requires an extending load from the stack slot to ensure 7685 // that the bits are in the right place. 7686 EVT LoadMemVT = 7687 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7688 7689 // Load from the stack slot. 7690 SDValue Load = DAG.getExtLoad( 7691 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7692 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7693 7694 Stores.push_back( 7695 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7696 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7697 ST->getOriginalAlign(), 7698 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7699 // The order of the stores doesn't matter - say it with a TokenFactor. 7700 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7701 return Result; 7702 } 7703 7704 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7705 "Unaligned store of unknown type."); 7706 // Get the half-size VT 7707 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7708 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7709 unsigned IncrementSize = NumBits / 8; 7710 7711 // Divide the stored value in two parts. 7712 SDValue ShiftAmount = DAG.getConstant( 7713 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7714 SDValue Lo = Val; 7715 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7716 7717 // Store the two parts 7718 SDValue Store1, Store2; 7719 Store1 = DAG.getTruncStore(Chain, dl, 7720 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7721 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7722 ST->getMemOperand()->getFlags()); 7723 7724 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7725 Store2 = DAG.getTruncStore( 7726 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7727 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7728 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7729 7730 SDValue Result = 7731 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7732 return Result; 7733 } 7734 7735 SDValue 7736 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7737 const SDLoc &DL, EVT DataVT, 7738 SelectionDAG &DAG, 7739 bool IsCompressedMemory) const { 7740 SDValue Increment; 7741 EVT AddrVT = Addr.getValueType(); 7742 EVT MaskVT = Mask.getValueType(); 7743 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7744 "Incompatible types of Data and Mask"); 7745 if (IsCompressedMemory) { 7746 if (DataVT.isScalableVector()) 7747 report_fatal_error( 7748 "Cannot currently handle compressed memory with scalable vectors"); 7749 // Incrementing the pointer according to number of '1's in the mask. 7750 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7751 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7752 if (MaskIntVT.getSizeInBits() < 32) { 7753 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7754 MaskIntVT = MVT::i32; 7755 } 7756 7757 // Count '1's with POPCNT. 7758 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7759 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7760 // Scale is an element size in bytes. 7761 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7762 AddrVT); 7763 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7764 } else if (DataVT.isScalableVector()) { 7765 Increment = DAG.getVScale(DL, AddrVT, 7766 APInt(AddrVT.getFixedSizeInBits(), 7767 DataVT.getStoreSize().getKnownMinSize())); 7768 } else 7769 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7770 7771 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7772 } 7773 7774 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7775 SDValue Idx, 7776 EVT VecVT, 7777 const SDLoc &dl) { 7778 if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx)) 7779 return Idx; 7780 7781 EVT IdxVT = Idx.getValueType(); 7782 unsigned NElts = VecVT.getVectorMinNumElements(); 7783 if (VecVT.isScalableVector()) { 7784 // If this is a constant index and we know the value is less than the 7785 // minimum number of elements then it's safe to return Idx. 7786 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 7787 if (IdxCst->getZExtValue() < NElts) 7788 return Idx; 7789 SDValue VS = 7790 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 7791 SDValue Sub = 7792 DAG.getNode(ISD::SUB, dl, IdxVT, VS, DAG.getConstant(1, dl, IdxVT)); 7793 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7794 } 7795 if (isPowerOf2_32(NElts)) { 7796 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 7797 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7798 DAG.getConstant(Imm, dl, IdxVT)); 7799 } 7800 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7801 DAG.getConstant(NElts - 1, dl, IdxVT)); 7802 } 7803 7804 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7805 SDValue VecPtr, EVT VecVT, 7806 SDValue Index) const { 7807 SDLoc dl(Index); 7808 // Make sure the index type is big enough to compute in. 7809 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7810 7811 EVT EltVT = VecVT.getVectorElementType(); 7812 7813 // Calculate the element offset and add it to the pointer. 7814 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7815 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7816 "Converting bits to bytes lost precision"); 7817 7818 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7819 7820 EVT IdxVT = Index.getValueType(); 7821 7822 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7823 DAG.getConstant(EltSize, dl, IdxVT)); 7824 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7825 } 7826 7827 //===----------------------------------------------------------------------===// 7828 // Implementation of Emulated TLS Model 7829 //===----------------------------------------------------------------------===// 7830 7831 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7832 SelectionDAG &DAG) const { 7833 // Access to address of TLS varialbe xyz is lowered to a function call: 7834 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7835 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7836 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7837 SDLoc dl(GA); 7838 7839 ArgListTy Args; 7840 ArgListEntry Entry; 7841 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7842 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7843 StringRef EmuTlsVarName(NameString); 7844 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7845 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7846 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7847 Entry.Ty = VoidPtrType; 7848 Args.push_back(Entry); 7849 7850 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7851 7852 TargetLowering::CallLoweringInfo CLI(DAG); 7853 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7854 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7855 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7856 7857 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7858 // At last for X86 targets, maybe good for other targets too? 7859 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7860 MFI.setAdjustsStack(true); // Is this only for X86 target? 7861 MFI.setHasCalls(true); 7862 7863 assert((GA->getOffset() == 0) && 7864 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7865 return CallResult.first; 7866 } 7867 7868 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7869 SelectionDAG &DAG) const { 7870 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7871 if (!isCtlzFast()) 7872 return SDValue(); 7873 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7874 SDLoc dl(Op); 7875 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7876 if (C->isNullValue() && CC == ISD::SETEQ) { 7877 EVT VT = Op.getOperand(0).getValueType(); 7878 SDValue Zext = Op.getOperand(0); 7879 if (VT.bitsLT(MVT::i32)) { 7880 VT = MVT::i32; 7881 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7882 } 7883 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7884 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7885 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7886 DAG.getConstant(Log2b, dl, MVT::i32)); 7887 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7888 } 7889 } 7890 return SDValue(); 7891 } 7892 7893 // Convert redundant addressing modes (e.g. scaling is redundant 7894 // when accessing bytes). 7895 ISD::MemIndexType 7896 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 7897 SDValue Offsets) const { 7898 bool IsScaledIndex = 7899 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 7900 bool IsSignedIndex = 7901 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 7902 7903 // Scaling is unimportant for bytes, canonicalize to unscaled. 7904 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) { 7905 IsScaledIndex = false; 7906 IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 7907 } 7908 7909 return IndexType; 7910 } 7911 7912 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 7913 SDValue Op0 = Node->getOperand(0); 7914 SDValue Op1 = Node->getOperand(1); 7915 EVT VT = Op0.getValueType(); 7916 unsigned Opcode = Node->getOpcode(); 7917 SDLoc DL(Node); 7918 7919 // umin(x,y) -> sub(x,usubsat(x,y)) 7920 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 7921 isOperationLegal(ISD::USUBSAT, VT)) { 7922 return DAG.getNode(ISD::SUB, DL, VT, Op0, 7923 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 7924 } 7925 7926 // umax(x,y) -> add(x,usubsat(y,x)) 7927 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 7928 isOperationLegal(ISD::USUBSAT, VT)) { 7929 return DAG.getNode(ISD::ADD, DL, VT, Op0, 7930 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 7931 } 7932 7933 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 7934 ISD::CondCode CC; 7935 switch (Opcode) { 7936 default: llvm_unreachable("How did we get here?"); 7937 case ISD::SMAX: CC = ISD::SETGT; break; 7938 case ISD::SMIN: CC = ISD::SETLT; break; 7939 case ISD::UMAX: CC = ISD::SETUGT; break; 7940 case ISD::UMIN: CC = ISD::SETULT; break; 7941 } 7942 7943 // FIXME: Should really try to split the vector in case it's legal on a 7944 // subvector. 7945 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 7946 return DAG.UnrollVectorOp(Node); 7947 7948 SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC); 7949 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 7950 } 7951 7952 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7953 unsigned Opcode = Node->getOpcode(); 7954 SDValue LHS = Node->getOperand(0); 7955 SDValue RHS = Node->getOperand(1); 7956 EVT VT = LHS.getValueType(); 7957 SDLoc dl(Node); 7958 7959 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7960 assert(VT.isInteger() && "Expected operands to be integers"); 7961 7962 // usub.sat(a, b) -> umax(a, b) - b 7963 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 7964 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7965 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7966 } 7967 7968 // uadd.sat(a, b) -> umin(a, ~b) + b 7969 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 7970 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7971 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7972 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7973 } 7974 7975 unsigned OverflowOp; 7976 switch (Opcode) { 7977 case ISD::SADDSAT: 7978 OverflowOp = ISD::SADDO; 7979 break; 7980 case ISD::UADDSAT: 7981 OverflowOp = ISD::UADDO; 7982 break; 7983 case ISD::SSUBSAT: 7984 OverflowOp = ISD::SSUBO; 7985 break; 7986 case ISD::USUBSAT: 7987 OverflowOp = ISD::USUBO; 7988 break; 7989 default: 7990 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7991 "addition or subtraction node."); 7992 } 7993 7994 // FIXME: Should really try to split the vector in case it's legal on a 7995 // subvector. 7996 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 7997 return DAG.UnrollVectorOp(Node); 7998 7999 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8000 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8001 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8002 SDValue SumDiff = Result.getValue(0); 8003 SDValue Overflow = Result.getValue(1); 8004 SDValue Zero = DAG.getConstant(0, dl, VT); 8005 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8006 8007 if (Opcode == ISD::UADDSAT) { 8008 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8009 // (LHS + RHS) | OverflowMask 8010 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8011 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8012 } 8013 // Overflow ? 0xffff.... : (LHS + RHS) 8014 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8015 } 8016 8017 if (Opcode == ISD::USUBSAT) { 8018 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8019 // (LHS - RHS) & ~OverflowMask 8020 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8021 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8022 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8023 } 8024 // Overflow ? 0 : (LHS - RHS) 8025 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8026 } 8027 8028 // SatMax -> Overflow && SumDiff < 0 8029 // SatMin -> Overflow && SumDiff >= 0 8030 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8031 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 8032 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8033 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8034 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 8035 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 8036 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8037 } 8038 8039 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8040 unsigned Opcode = Node->getOpcode(); 8041 bool IsSigned = Opcode == ISD::SSHLSAT; 8042 SDValue LHS = Node->getOperand(0); 8043 SDValue RHS = Node->getOperand(1); 8044 EVT VT = LHS.getValueType(); 8045 SDLoc dl(Node); 8046 8047 assert((Node->getOpcode() == ISD::SSHLSAT || 8048 Node->getOpcode() == ISD::USHLSAT) && 8049 "Expected a SHLSAT opcode"); 8050 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8051 assert(VT.isInteger() && "Expected operands to be integers"); 8052 8053 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8054 8055 unsigned BW = VT.getScalarSizeInBits(); 8056 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8057 SDValue Orig = 8058 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8059 8060 SDValue SatVal; 8061 if (IsSigned) { 8062 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8063 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8064 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8065 SatMin, SatMax, ISD::SETLT); 8066 } else { 8067 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8068 } 8069 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8070 8071 return Result; 8072 } 8073 8074 SDValue 8075 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8076 assert((Node->getOpcode() == ISD::SMULFIX || 8077 Node->getOpcode() == ISD::UMULFIX || 8078 Node->getOpcode() == ISD::SMULFIXSAT || 8079 Node->getOpcode() == ISD::UMULFIXSAT) && 8080 "Expected a fixed point multiplication opcode"); 8081 8082 SDLoc dl(Node); 8083 SDValue LHS = Node->getOperand(0); 8084 SDValue RHS = Node->getOperand(1); 8085 EVT VT = LHS.getValueType(); 8086 unsigned Scale = Node->getConstantOperandVal(2); 8087 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8088 Node->getOpcode() == ISD::UMULFIXSAT); 8089 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8090 Node->getOpcode() == ISD::SMULFIXSAT); 8091 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8092 unsigned VTSize = VT.getScalarSizeInBits(); 8093 8094 if (!Scale) { 8095 // [us]mul.fix(a, b, 0) -> mul(a, b) 8096 if (!Saturating) { 8097 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8098 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8099 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8100 SDValue Result = 8101 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8102 SDValue Product = Result.getValue(0); 8103 SDValue Overflow = Result.getValue(1); 8104 SDValue Zero = DAG.getConstant(0, dl, VT); 8105 8106 APInt MinVal = APInt::getSignedMinValue(VTSize); 8107 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8108 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8109 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8110 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 8111 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 8112 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8113 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8114 SDValue Result = 8115 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8116 SDValue Product = Result.getValue(0); 8117 SDValue Overflow = Result.getValue(1); 8118 8119 APInt MaxVal = APInt::getMaxValue(VTSize); 8120 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8121 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8122 } 8123 } 8124 8125 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8126 "Expected scale to be less than the number of bits if signed or at " 8127 "most the number of bits if unsigned."); 8128 assert(LHS.getValueType() == RHS.getValueType() && 8129 "Expected both operands to be the same type"); 8130 8131 // Get the upper and lower bits of the result. 8132 SDValue Lo, Hi; 8133 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8134 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8135 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8136 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8137 Lo = Result.getValue(0); 8138 Hi = Result.getValue(1); 8139 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8140 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8141 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8142 } else if (VT.isVector()) { 8143 return SDValue(); 8144 } else { 8145 report_fatal_error("Unable to expand fixed point multiplication."); 8146 } 8147 8148 if (Scale == VTSize) 8149 // Result is just the top half since we'd be shifting by the width of the 8150 // operand. Overflow impossible so this works for both UMULFIX and 8151 // UMULFIXSAT. 8152 return Hi; 8153 8154 // The result will need to be shifted right by the scale since both operands 8155 // are scaled. The result is given to us in 2 halves, so we only want part of 8156 // both in the result. 8157 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8158 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8159 DAG.getConstant(Scale, dl, ShiftTy)); 8160 if (!Saturating) 8161 return Result; 8162 8163 if (!Signed) { 8164 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8165 // widened multiplication) aren't all zeroes. 8166 8167 // Saturate to max if ((Hi >> Scale) != 0), 8168 // which is the same as if (Hi > ((1 << Scale) - 1)) 8169 APInt MaxVal = APInt::getMaxValue(VTSize); 8170 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8171 dl, VT); 8172 Result = DAG.getSelectCC(dl, Hi, LowMask, 8173 DAG.getConstant(MaxVal, dl, VT), Result, 8174 ISD::SETUGT); 8175 8176 return Result; 8177 } 8178 8179 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8180 // widened multiplication) aren't all ones or all zeroes. 8181 8182 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8183 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8184 8185 if (Scale == 0) { 8186 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8187 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8188 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8189 // Saturated to SatMin if wide product is negative, and SatMax if wide 8190 // product is positive ... 8191 SDValue Zero = DAG.getConstant(0, dl, VT); 8192 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8193 ISD::SETLT); 8194 // ... but only if we overflowed. 8195 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8196 } 8197 8198 // We handled Scale==0 above so all the bits to examine is in Hi. 8199 8200 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8201 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8202 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8203 dl, VT); 8204 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8205 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8206 // which is the same as if (HI < (-1 << (Scale - 1)) 8207 SDValue HighMask = 8208 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8209 dl, VT); 8210 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8211 return Result; 8212 } 8213 8214 SDValue 8215 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8216 SDValue LHS, SDValue RHS, 8217 unsigned Scale, SelectionDAG &DAG) const { 8218 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8219 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8220 "Expected a fixed point division opcode"); 8221 8222 EVT VT = LHS.getValueType(); 8223 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8224 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8225 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8226 8227 // If there is enough room in the type to upscale the LHS or downscale the 8228 // RHS before the division, we can perform it in this type without having to 8229 // resize. For signed operations, the LHS headroom is the number of 8230 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8231 // The headroom for the RHS is the number of trailing zeroes. 8232 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8233 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8234 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8235 8236 // For signed saturating operations, we need to be able to detect true integer 8237 // division overflow; that is, when you have MIN / -EPS. However, this 8238 // is undefined behavior and if we emit divisions that could take such 8239 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8240 // example). 8241 // Avoid this by requiring an extra bit so that we never get this case. 8242 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8243 // signed saturating division, we need to emit a whopping 32-bit division. 8244 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8245 return SDValue(); 8246 8247 unsigned LHSShift = std::min(LHSLead, Scale); 8248 unsigned RHSShift = Scale - LHSShift; 8249 8250 // At this point, we know that if we shift the LHS up by LHSShift and the 8251 // RHS down by RHSShift, we can emit a regular division with a final scaling 8252 // factor of Scale. 8253 8254 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8255 if (LHSShift) 8256 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8257 DAG.getConstant(LHSShift, dl, ShiftTy)); 8258 if (RHSShift) 8259 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8260 DAG.getConstant(RHSShift, dl, ShiftTy)); 8261 8262 SDValue Quot; 8263 if (Signed) { 8264 // For signed operations, if the resulting quotient is negative and the 8265 // remainder is nonzero, subtract 1 from the quotient to round towards 8266 // negative infinity. 8267 SDValue Rem; 8268 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8269 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8270 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8271 if (isTypeLegal(VT) && 8272 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8273 Quot = DAG.getNode(ISD::SDIVREM, dl, 8274 DAG.getVTList(VT, VT), 8275 LHS, RHS); 8276 Rem = Quot.getValue(1); 8277 Quot = Quot.getValue(0); 8278 } else { 8279 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8280 LHS, RHS); 8281 Rem = DAG.getNode(ISD::SREM, dl, VT, 8282 LHS, RHS); 8283 } 8284 SDValue Zero = DAG.getConstant(0, dl, VT); 8285 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8286 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8287 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8288 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8289 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8290 DAG.getConstant(1, dl, VT)); 8291 Quot = DAG.getSelect(dl, VT, 8292 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8293 Sub1, Quot); 8294 } else 8295 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8296 LHS, RHS); 8297 8298 return Quot; 8299 } 8300 8301 void TargetLowering::expandUADDSUBO( 8302 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8303 SDLoc dl(Node); 8304 SDValue LHS = Node->getOperand(0); 8305 SDValue RHS = Node->getOperand(1); 8306 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8307 8308 // If ADD/SUBCARRY is legal, use that instead. 8309 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8310 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8311 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8312 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8313 { LHS, RHS, CarryIn }); 8314 Result = SDValue(NodeCarry.getNode(), 0); 8315 Overflow = SDValue(NodeCarry.getNode(), 1); 8316 return; 8317 } 8318 8319 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8320 LHS.getValueType(), LHS, RHS); 8321 8322 EVT ResultType = Node->getValueType(1); 8323 EVT SetCCType = getSetCCResultType( 8324 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8325 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8326 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8327 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8328 } 8329 8330 void TargetLowering::expandSADDSUBO( 8331 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8332 SDLoc dl(Node); 8333 SDValue LHS = Node->getOperand(0); 8334 SDValue RHS = Node->getOperand(1); 8335 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8336 8337 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8338 LHS.getValueType(), LHS, RHS); 8339 8340 EVT ResultType = Node->getValueType(1); 8341 EVT OType = getSetCCResultType( 8342 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8343 8344 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8345 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8346 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 8347 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8348 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8349 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8350 return; 8351 } 8352 8353 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8354 8355 // For an addition, the result should be less than one of the operands (LHS) 8356 // if and only if the other operand (RHS) is negative, otherwise there will 8357 // be overflow. 8358 // For a subtraction, the result should be less than one of the operands 8359 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8360 // otherwise there will be overflow. 8361 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8362 SDValue ConditionRHS = 8363 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8364 8365 Overflow = DAG.getBoolExtOrTrunc( 8366 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8367 ResultType, ResultType); 8368 } 8369 8370 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8371 SDValue &Overflow, SelectionDAG &DAG) const { 8372 SDLoc dl(Node); 8373 EVT VT = Node->getValueType(0); 8374 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8375 SDValue LHS = Node->getOperand(0); 8376 SDValue RHS = Node->getOperand(1); 8377 bool isSigned = Node->getOpcode() == ISD::SMULO; 8378 8379 // For power-of-two multiplications we can use a simpler shift expansion. 8380 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8381 const APInt &C = RHSC->getAPIntValue(); 8382 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8383 if (C.isPowerOf2()) { 8384 // smulo(x, signed_min) is same as umulo(x, signed_min). 8385 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8386 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8387 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8388 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8389 Overflow = DAG.getSetCC(dl, SetCCVT, 8390 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8391 dl, VT, Result, ShiftAmt), 8392 LHS, ISD::SETNE); 8393 return true; 8394 } 8395 } 8396 8397 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8398 if (VT.isVector()) 8399 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 8400 VT.getVectorNumElements()); 8401 8402 SDValue BottomHalf; 8403 SDValue TopHalf; 8404 static const unsigned Ops[2][3] = 8405 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8406 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8407 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8408 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8409 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8410 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8411 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8412 RHS); 8413 TopHalf = BottomHalf.getValue(1); 8414 } else if (isTypeLegal(WideVT)) { 8415 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8416 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8417 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8418 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8419 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8420 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8421 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8422 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8423 } else { 8424 if (VT.isVector()) 8425 return false; 8426 8427 // We can fall back to a libcall with an illegal type for the MUL if we 8428 // have a libcall big enough. 8429 // Also, we can fall back to a division in some cases, but that's a big 8430 // performance hit in the general case. 8431 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8432 if (WideVT == MVT::i16) 8433 LC = RTLIB::MUL_I16; 8434 else if (WideVT == MVT::i32) 8435 LC = RTLIB::MUL_I32; 8436 else if (WideVT == MVT::i64) 8437 LC = RTLIB::MUL_I64; 8438 else if (WideVT == MVT::i128) 8439 LC = RTLIB::MUL_I128; 8440 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8441 8442 SDValue HiLHS; 8443 SDValue HiRHS; 8444 if (isSigned) { 8445 // The high part is obtained by SRA'ing all but one of the bits of low 8446 // part. 8447 unsigned LoSize = VT.getFixedSizeInBits(); 8448 HiLHS = 8449 DAG.getNode(ISD::SRA, dl, VT, LHS, 8450 DAG.getConstant(LoSize - 1, dl, 8451 getPointerTy(DAG.getDataLayout()))); 8452 HiRHS = 8453 DAG.getNode(ISD::SRA, dl, VT, RHS, 8454 DAG.getConstant(LoSize - 1, dl, 8455 getPointerTy(DAG.getDataLayout()))); 8456 } else { 8457 HiLHS = DAG.getConstant(0, dl, VT); 8458 HiRHS = DAG.getConstant(0, dl, VT); 8459 } 8460 8461 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8462 // pre-lowered to the correct types. This all depends upon WideVT not 8463 // being a legal type for the architecture and thus has to be split to 8464 // two arguments. 8465 SDValue Ret; 8466 TargetLowering::MakeLibCallOptions CallOptions; 8467 CallOptions.setSExt(isSigned); 8468 CallOptions.setIsPostTypeLegalization(true); 8469 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8470 // Halves of WideVT are packed into registers in different order 8471 // depending on platform endianness. This is usually handled by 8472 // the C calling convention, but we can't defer to it in 8473 // the legalizer. 8474 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8475 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8476 } else { 8477 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8478 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8479 } 8480 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8481 "Ret value is a collection of constituent nodes holding result."); 8482 if (DAG.getDataLayout().isLittleEndian()) { 8483 // Same as above. 8484 BottomHalf = Ret.getOperand(0); 8485 TopHalf = Ret.getOperand(1); 8486 } else { 8487 BottomHalf = Ret.getOperand(1); 8488 TopHalf = Ret.getOperand(0); 8489 } 8490 } 8491 8492 Result = BottomHalf; 8493 if (isSigned) { 8494 SDValue ShiftAmt = DAG.getConstant( 8495 VT.getScalarSizeInBits() - 1, dl, 8496 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8497 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8498 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8499 } else { 8500 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8501 DAG.getConstant(0, dl, VT), ISD::SETNE); 8502 } 8503 8504 // Truncate the result if SetCC returns a larger type than needed. 8505 EVT RType = Node->getValueType(1); 8506 if (RType.bitsLT(Overflow.getValueType())) 8507 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8508 8509 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8510 "Unexpected result type for S/UMULO legalization"); 8511 return true; 8512 } 8513 8514 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8515 SDLoc dl(Node); 8516 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8517 SDValue Op = Node->getOperand(0); 8518 EVT VT = Op.getValueType(); 8519 8520 if (VT.isScalableVector()) 8521 report_fatal_error( 8522 "Expanding reductions for scalable vectors is undefined."); 8523 8524 // Try to use a shuffle reduction for power of two vectors. 8525 if (VT.isPow2VectorType()) { 8526 while (VT.getVectorNumElements() > 1) { 8527 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8528 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8529 break; 8530 8531 SDValue Lo, Hi; 8532 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8533 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8534 VT = HalfVT; 8535 } 8536 } 8537 8538 EVT EltVT = VT.getVectorElementType(); 8539 unsigned NumElts = VT.getVectorNumElements(); 8540 8541 SmallVector<SDValue, 8> Ops; 8542 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8543 8544 SDValue Res = Ops[0]; 8545 for (unsigned i = 1; i < NumElts; i++) 8546 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8547 8548 // Result type may be wider than element type. 8549 if (EltVT != Node->getValueType(0)) 8550 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8551 return Res; 8552 } 8553 8554 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8555 SDLoc dl(Node); 8556 SDValue AccOp = Node->getOperand(0); 8557 SDValue VecOp = Node->getOperand(1); 8558 SDNodeFlags Flags = Node->getFlags(); 8559 8560 EVT VT = VecOp.getValueType(); 8561 EVT EltVT = VT.getVectorElementType(); 8562 8563 if (VT.isScalableVector()) 8564 report_fatal_error( 8565 "Expanding reductions for scalable vectors is undefined."); 8566 8567 unsigned NumElts = VT.getVectorNumElements(); 8568 8569 SmallVector<SDValue, 8> Ops; 8570 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8571 8572 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8573 8574 SDValue Res = AccOp; 8575 for (unsigned i = 0; i < NumElts; i++) 8576 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8577 8578 return Res; 8579 } 8580 8581 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8582 SelectionDAG &DAG) const { 8583 EVT VT = Node->getValueType(0); 8584 SDLoc dl(Node); 8585 bool isSigned = Node->getOpcode() == ISD::SREM; 8586 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8587 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8588 SDValue Dividend = Node->getOperand(0); 8589 SDValue Divisor = Node->getOperand(1); 8590 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8591 SDVTList VTs = DAG.getVTList(VT, VT); 8592 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8593 return true; 8594 } 8595 if (isOperationLegalOrCustom(DivOpc, VT)) { 8596 // X % Y -> X-X/Y*Y 8597 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8598 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8599 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8600 return true; 8601 } 8602 return false; 8603 } 8604 8605 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8606 SelectionDAG &DAG) const { 8607 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8608 SDLoc dl(SDValue(Node, 0)); 8609 SDValue Src = Node->getOperand(0); 8610 8611 // DstVT is the result type, while SatVT is the size to which we saturate 8612 EVT SrcVT = Src.getValueType(); 8613 EVT DstVT = Node->getValueType(0); 8614 8615 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8616 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8617 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8618 assert(SatWidth <= DstWidth && 8619 "Expected saturation width smaller than result width"); 8620 8621 // Determine minimum and maximum integer values and their corresponding 8622 // floating-point values. 8623 APInt MinInt, MaxInt; 8624 if (IsSigned) { 8625 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8626 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8627 } else { 8628 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8629 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8630 } 8631 8632 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8633 // libcall emission cannot handle this. Large result types will fail. 8634 if (SrcVT == MVT::f16) { 8635 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8636 SrcVT = Src.getValueType(); 8637 } 8638 8639 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8640 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8641 8642 APFloat::opStatus MinStatus = 8643 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8644 APFloat::opStatus MaxStatus = 8645 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8646 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8647 !(MaxStatus & APFloat::opStatus::opInexact); 8648 8649 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8650 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8651 8652 // If the integer bounds are exactly representable as floats and min/max are 8653 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8654 // of comparisons and selects. 8655 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8656 isOperationLegal(ISD::FMAXNUM, SrcVT); 8657 if (AreExactFloatBounds && MinMaxLegal) { 8658 SDValue Clamped = Src; 8659 8660 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8661 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8662 // Clamp by MaxFloat from above. NaN cannot occur. 8663 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8664 // Convert clamped value to integer. 8665 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8666 dl, DstVT, Clamped); 8667 8668 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8669 // which will cast to zero. 8670 if (!IsSigned) 8671 return FpToInt; 8672 8673 // Otherwise, select 0 if Src is NaN. 8674 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8675 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8676 ISD::CondCode::SETUO); 8677 } 8678 8679 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8680 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8681 8682 // Result of direct conversion. The assumption here is that the operation is 8683 // non-trapping and it's fine to apply it to an out-of-range value if we 8684 // select it away later. 8685 SDValue FpToInt = 8686 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8687 8688 SDValue Select = FpToInt; 8689 8690 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8691 // MinInt if Src is NaN. 8692 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8693 ISD::CondCode::SETULT); 8694 // If Src OGT MaxFloat, select MaxInt. 8695 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8696 ISD::CondCode::SETOGT); 8697 8698 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8699 // is already zero. 8700 if (!IsSigned) 8701 return Select; 8702 8703 // Otherwise, select 0 if Src is NaN. 8704 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8705 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8706 } 8707 8708 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8709 SelectionDAG &DAG) const { 8710 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8711 assert(Node->getValueType(0).isScalableVector() && 8712 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8713 8714 EVT VT = Node->getValueType(0); 8715 SDValue V1 = Node->getOperand(0); 8716 SDValue V2 = Node->getOperand(1); 8717 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8718 SDLoc DL(Node); 8719 8720 // Expand through memory thusly: 8721 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8722 // Store V1, Ptr 8723 // Store V2, Ptr + sizeof(V1) 8724 // If (Imm < 0) 8725 // TrailingElts = -Imm 8726 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8727 // else 8728 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8729 // Res = Load Ptr 8730 8731 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8732 8733 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8734 VT.getVectorElementCount() * 2); 8735 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8736 EVT PtrVT = StackPtr.getValueType(); 8737 auto &MF = DAG.getMachineFunction(); 8738 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8739 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8740 8741 // Store the lo part of CONCAT_VECTORS(V1, V2) 8742 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8743 // Store the hi part of CONCAT_VECTORS(V1, V2) 8744 SDValue OffsetToV2 = DAG.getVScale( 8745 DL, PtrVT, 8746 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8747 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8748 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8749 8750 if (Imm >= 0) { 8751 // Load back the required element. getVectorElementPointer takes care of 8752 // clamping the index if it's out-of-bounds. 8753 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8754 // Load the spliced result 8755 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8756 MachinePointerInfo::getUnknownStack(MF)); 8757 } 8758 8759 uint64_t TrailingElts = -Imm; 8760 8761 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8762 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8763 SDValue TrailingBytes = 8764 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8765 8766 if (TrailingElts > VT.getVectorMinNumElements()) { 8767 SDValue VLBytes = DAG.getVScale( 8768 DL, PtrVT, 8769 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8770 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8771 } 8772 8773 // Calculate the start address of the spliced result. 8774 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8775 8776 // Load the spliced result 8777 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8778 MachinePointerInfo::getUnknownStack(MF)); 8779 } 8780 8781 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8782 SDValue &LHS, SDValue &RHS, 8783 SDValue &CC, bool &NeedInvert, 8784 const SDLoc &dl, SDValue &Chain, 8785 bool IsSignaling) const { 8786 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8787 MVT OpVT = LHS.getSimpleValueType(); 8788 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8789 NeedInvert = false; 8790 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8791 default: 8792 llvm_unreachable("Unknown condition code action!"); 8793 case TargetLowering::Legal: 8794 // Nothing to do. 8795 break; 8796 case TargetLowering::Expand: { 8797 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8798 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8799 std::swap(LHS, RHS); 8800 CC = DAG.getCondCode(InvCC); 8801 return true; 8802 } 8803 // Swapping operands didn't work. Try inverting the condition. 8804 bool NeedSwap = false; 8805 InvCC = getSetCCInverse(CCCode, OpVT); 8806 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8807 // If inverting the condition is not enough, try swapping operands 8808 // on top of it. 8809 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8810 NeedSwap = true; 8811 } 8812 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8813 CC = DAG.getCondCode(InvCC); 8814 NeedInvert = true; 8815 if (NeedSwap) 8816 std::swap(LHS, RHS); 8817 return true; 8818 } 8819 8820 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8821 unsigned Opc = 0; 8822 switch (CCCode) { 8823 default: 8824 llvm_unreachable("Don't know how to expand this condition!"); 8825 case ISD::SETUO: 8826 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8827 CC1 = ISD::SETUNE; 8828 CC2 = ISD::SETUNE; 8829 Opc = ISD::OR; 8830 break; 8831 } 8832 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8833 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 8834 NeedInvert = true; 8835 LLVM_FALLTHROUGH; 8836 case ISD::SETO: 8837 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8838 "If SETO is expanded, SETOEQ must be legal!"); 8839 CC1 = ISD::SETOEQ; 8840 CC2 = ISD::SETOEQ; 8841 Opc = ISD::AND; 8842 break; 8843 case ISD::SETONE: 8844 case ISD::SETUEQ: 8845 // If the SETUO or SETO CC isn't legal, we might be able to use 8846 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 8847 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 8848 // the operands. 8849 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8850 if (!TLI.isCondCodeLegal(CC2, OpVT) && 8851 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 8852 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 8853 CC1 = ISD::SETOGT; 8854 CC2 = ISD::SETOLT; 8855 Opc = ISD::OR; 8856 NeedInvert = ((unsigned)CCCode & 0x8U); 8857 break; 8858 } 8859 LLVM_FALLTHROUGH; 8860 case ISD::SETOEQ: 8861 case ISD::SETOGT: 8862 case ISD::SETOGE: 8863 case ISD::SETOLT: 8864 case ISD::SETOLE: 8865 case ISD::SETUNE: 8866 case ISD::SETUGT: 8867 case ISD::SETUGE: 8868 case ISD::SETULT: 8869 case ISD::SETULE: 8870 // If we are floating point, assign and break, otherwise fall through. 8871 if (!OpVT.isInteger()) { 8872 // We can use the 4th bit to tell if we are the unordered 8873 // or ordered version of the opcode. 8874 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8875 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 8876 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 8877 break; 8878 } 8879 // Fallthrough if we are unsigned integer. 8880 LLVM_FALLTHROUGH; 8881 case ISD::SETLE: 8882 case ISD::SETGT: 8883 case ISD::SETGE: 8884 case ISD::SETLT: 8885 case ISD::SETNE: 8886 case ISD::SETEQ: 8887 // If all combinations of inverting the condition and swapping operands 8888 // didn't work then we have no means to expand the condition. 8889 llvm_unreachable("Don't know how to expand this condition!"); 8890 } 8891 8892 SDValue SetCC1, SetCC2; 8893 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 8894 // If we aren't the ordered or unorder operation, 8895 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 8896 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 8897 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 8898 } else { 8899 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 8900 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 8901 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 8902 } 8903 if (Chain) 8904 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 8905 SetCC2.getValue(1)); 8906 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 8907 RHS = SDValue(); 8908 CC = SDValue(); 8909 return true; 8910 } 8911 } 8912 return false; 8913 } 8914