1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40     : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // First, check if tail calls have been disabled in this function.
57   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
58     return false;
59 
60   // Conservatively require the attributes of the call to match those of
61   // the return. Ignore following attributes because they don't affect the
62   // call sequence.
63   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
64   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
65                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
66                            Attribute::NonNull, Attribute::NoUndef})
67     CallerAttrs.removeAttribute(Attr);
68 
69   if (CallerAttrs.hasAttributes())
70     return false;
71 
72   // It's not safe to eliminate the sign / zero extension of the return value.
73   if (CallerAttrs.contains(Attribute::ZExt) ||
74       CallerAttrs.contains(Attribute::SExt))
75     return false;
76 
77   // Check if the only use is a function return node.
78   return isUsedByReturnOnly(Node, Chain);
79 }
80 
81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
82     const uint32_t *CallerPreservedMask,
83     const SmallVectorImpl<CCValAssign> &ArgLocs,
84     const SmallVectorImpl<SDValue> &OutVals) const {
85   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
86     const CCValAssign &ArgLoc = ArgLocs[I];
87     if (!ArgLoc.isRegLoc())
88       continue;
89     MCRegister Reg = ArgLoc.getLocReg();
90     // Only look at callee saved registers.
91     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
92       continue;
93     // Check that we pass the value used for the caller.
94     // (We look for a CopyFromReg reading a virtual register that is used
95     //  for the function live-in value of register Reg)
96     SDValue Value = OutVals[I];
97     if (Value->getOpcode() != ISD::CopyFromReg)
98       return false;
99     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
100     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
101       return false;
102   }
103   return true;
104 }
105 
106 /// Set CallLoweringInfo attribute flags based on a call instruction
107 /// and called function attributes.
108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
109                                                      unsigned ArgIdx) {
110   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
111   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
112   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
113   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
114   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
115   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
116   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
117   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
118   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
119   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
120   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
121   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
122   Alignment = Call->getParamStackAlign(ArgIdx);
123   IndirectType = nullptr;
124   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
125          "multiple ABI attributes?");
126   if (IsByVal) {
127     IndirectType = Call->getParamByValType(ArgIdx);
128     if (!Alignment)
129       Alignment = Call->getParamAlign(ArgIdx);
130   }
131   if (IsPreallocated)
132     IndirectType = Call->getParamPreallocatedType(ArgIdx);
133   if (IsInAlloca)
134     IndirectType = Call->getParamInAllocaType(ArgIdx);
135   if (IsSRet)
136     IndirectType = Call->getParamStructRetType(ArgIdx);
137 }
138 
139 /// Generate a libcall taking the given operands as arguments and returning a
140 /// result of type RetVT.
141 std::pair<SDValue, SDValue>
142 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
143                             ArrayRef<SDValue> Ops,
144                             MakeLibCallOptions CallOptions,
145                             const SDLoc &dl,
146                             SDValue InChain) const {
147   if (!InChain)
148     InChain = DAG.getEntryNode();
149 
150   TargetLowering::ArgListTy Args;
151   Args.reserve(Ops.size());
152 
153   TargetLowering::ArgListEntry Entry;
154   for (unsigned i = 0; i < Ops.size(); ++i) {
155     SDValue NewOp = Ops[i];
156     Entry.Node = NewOp;
157     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
158     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
159                                                  CallOptions.IsSExt);
160     Entry.IsZExt = !Entry.IsSExt;
161 
162     if (CallOptions.IsSoften &&
163         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
164       Entry.IsSExt = Entry.IsZExt = false;
165     }
166     Args.push_back(Entry);
167   }
168 
169   if (LC == RTLIB::UNKNOWN_LIBCALL)
170     report_fatal_error("Unsupported library call operation!");
171   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
172                                          getPointerTy(DAG.getDataLayout()));
173 
174   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
175   TargetLowering::CallLoweringInfo CLI(DAG);
176   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
177   bool zeroExtend = !signExtend;
178 
179   if (CallOptions.IsSoften &&
180       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
181     signExtend = zeroExtend = false;
182   }
183 
184   CLI.setDebugLoc(dl)
185       .setChain(InChain)
186       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
187       .setNoReturn(CallOptions.DoesNotReturn)
188       .setDiscardResult(!CallOptions.IsReturnValueUsed)
189       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
190       .setSExtResult(signExtend)
191       .setZExtResult(zeroExtend);
192   return LowerCallTo(CLI);
193 }
194 
195 bool TargetLowering::findOptimalMemOpLowering(
196     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
197     unsigned SrcAS, const AttributeList &FuncAttributes) const {
198   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
199     return false;
200 
201   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
202 
203   if (VT == MVT::Other) {
204     // Use the largest integer type whose alignment constraints are satisfied.
205     // We only need to check DstAlign here as SrcAlign is always greater or
206     // equal to DstAlign (or zero).
207     VT = MVT::i64;
208     if (Op.isFixedDstAlign())
209       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
210              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
211         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
212     assert(VT.isInteger());
213 
214     // Find the largest legal integer type.
215     MVT LVT = MVT::i64;
216     while (!isTypeLegal(LVT))
217       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
218     assert(LVT.isInteger());
219 
220     // If the type we've chosen is larger than the largest legal integer type
221     // then use that instead.
222     if (VT.bitsGT(LVT))
223       VT = LVT;
224   }
225 
226   unsigned NumMemOps = 0;
227   uint64_t Size = Op.size();
228   while (Size) {
229     unsigned VTSize = VT.getSizeInBits() / 8;
230     while (VTSize > Size) {
231       // For now, only use non-vector load / store's for the left-over pieces.
232       EVT NewVT = VT;
233       unsigned NewVTSize;
234 
235       bool Found = false;
236       if (VT.isVector() || VT.isFloatingPoint()) {
237         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
238         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
239             isSafeMemOpType(NewVT.getSimpleVT()))
240           Found = true;
241         else if (NewVT == MVT::i64 &&
242                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
243                  isSafeMemOpType(MVT::f64)) {
244           // i64 is usually not legal on 32-bit targets, but f64 may be.
245           NewVT = MVT::f64;
246           Found = true;
247         }
248       }
249 
250       if (!Found) {
251         do {
252           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
253           if (NewVT == MVT::i8)
254             break;
255         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
256       }
257       NewVTSize = NewVT.getSizeInBits() / 8;
258 
259       // If the new VT cannot cover all of the remaining bits, then consider
260       // issuing a (or a pair of) unaligned and overlapping load / store.
261       bool Fast;
262       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
263           allowsMisalignedMemoryAccesses(
264               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
265               MachineMemOperand::MONone, &Fast) &&
266           Fast)
267         VTSize = Size;
268       else {
269         VT = NewVT;
270         VTSize = NewVTSize;
271       }
272     }
273 
274     if (++NumMemOps > Limit)
275       return false;
276 
277     MemOps.push_back(VT);
278     Size -= VTSize;
279   }
280 
281   return true;
282 }
283 
284 /// Soften the operands of a comparison. This code is shared among BR_CC,
285 /// SELECT_CC, and SETCC handlers.
286 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
287                                          SDValue &NewLHS, SDValue &NewRHS,
288                                          ISD::CondCode &CCCode,
289                                          const SDLoc &dl, const SDValue OldLHS,
290                                          const SDValue OldRHS) const {
291   SDValue Chain;
292   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
293                              OldRHS, Chain);
294 }
295 
296 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
297                                          SDValue &NewLHS, SDValue &NewRHS,
298                                          ISD::CondCode &CCCode,
299                                          const SDLoc &dl, const SDValue OldLHS,
300                                          const SDValue OldRHS,
301                                          SDValue &Chain,
302                                          bool IsSignaling) const {
303   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
304   // not supporting it. We can update this code when libgcc provides such
305   // functions.
306 
307   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
308          && "Unsupported setcc type!");
309 
310   // Expand into one or more soft-fp libcall(s).
311   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
312   bool ShouldInvertCC = false;
313   switch (CCCode) {
314   case ISD::SETEQ:
315   case ISD::SETOEQ:
316     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
317           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
318           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
319     break;
320   case ISD::SETNE:
321   case ISD::SETUNE:
322     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
323           (VT == MVT::f64) ? RTLIB::UNE_F64 :
324           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
325     break;
326   case ISD::SETGE:
327   case ISD::SETOGE:
328     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
329           (VT == MVT::f64) ? RTLIB::OGE_F64 :
330           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
331     break;
332   case ISD::SETLT:
333   case ISD::SETOLT:
334     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
335           (VT == MVT::f64) ? RTLIB::OLT_F64 :
336           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
337     break;
338   case ISD::SETLE:
339   case ISD::SETOLE:
340     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
341           (VT == MVT::f64) ? RTLIB::OLE_F64 :
342           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
343     break;
344   case ISD::SETGT:
345   case ISD::SETOGT:
346     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
347           (VT == MVT::f64) ? RTLIB::OGT_F64 :
348           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
349     break;
350   case ISD::SETO:
351     ShouldInvertCC = true;
352     LLVM_FALLTHROUGH;
353   case ISD::SETUO:
354     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
355           (VT == MVT::f64) ? RTLIB::UO_F64 :
356           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
357     break;
358   case ISD::SETONE:
359     // SETONE = O && UNE
360     ShouldInvertCC = true;
361     LLVM_FALLTHROUGH;
362   case ISD::SETUEQ:
363     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
364           (VT == MVT::f64) ? RTLIB::UO_F64 :
365           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
366     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
367           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
368           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
369     break;
370   default:
371     // Invert CC for unordered comparisons
372     ShouldInvertCC = true;
373     switch (CCCode) {
374     case ISD::SETULT:
375       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
376             (VT == MVT::f64) ? RTLIB::OGE_F64 :
377             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
378       break;
379     case ISD::SETULE:
380       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
381             (VT == MVT::f64) ? RTLIB::OGT_F64 :
382             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
383       break;
384     case ISD::SETUGT:
385       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
386             (VT == MVT::f64) ? RTLIB::OLE_F64 :
387             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
388       break;
389     case ISD::SETUGE:
390       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
391             (VT == MVT::f64) ? RTLIB::OLT_F64 :
392             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
393       break;
394     default: llvm_unreachable("Do not know how to soften this setcc!");
395     }
396   }
397 
398   // Use the target specific return value for comparions lib calls.
399   EVT RetVT = getCmpLibcallReturnType();
400   SDValue Ops[2] = {NewLHS, NewRHS};
401   TargetLowering::MakeLibCallOptions CallOptions;
402   EVT OpsVT[2] = { OldLHS.getValueType(),
403                    OldRHS.getValueType() };
404   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
405   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
406   NewLHS = Call.first;
407   NewRHS = DAG.getConstant(0, dl, RetVT);
408 
409   CCCode = getCmpLibcallCC(LC1);
410   if (ShouldInvertCC) {
411     assert(RetVT.isInteger());
412     CCCode = getSetCCInverse(CCCode, RetVT);
413   }
414 
415   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
416     // Update Chain.
417     Chain = Call.second;
418   } else {
419     EVT SetCCVT =
420         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
421     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
422     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
423     CCCode = getCmpLibcallCC(LC2);
424     if (ShouldInvertCC)
425       CCCode = getSetCCInverse(CCCode, RetVT);
426     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
427     if (Chain)
428       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
429                           Call2.second);
430     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
431                          Tmp.getValueType(), Tmp, NewLHS);
432     NewRHS = SDValue();
433   }
434 }
435 
436 /// Return the entry encoding for a jump table in the current function. The
437 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
438 unsigned TargetLowering::getJumpTableEncoding() const {
439   // In non-pic modes, just use the address of a block.
440   if (!isPositionIndependent())
441     return MachineJumpTableInfo::EK_BlockAddress;
442 
443   // In PIC mode, if the target supports a GPRel32 directive, use it.
444   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
445     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
446 
447   // Otherwise, use a label difference.
448   return MachineJumpTableInfo::EK_LabelDifference32;
449 }
450 
451 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
452                                                  SelectionDAG &DAG) const {
453   // If our PIC model is GP relative, use the global offset table as the base.
454   unsigned JTEncoding = getJumpTableEncoding();
455 
456   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
457       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
458     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
459 
460   return Table;
461 }
462 
463 /// This returns the relocation base for the given PIC jumptable, the same as
464 /// getPICJumpTableRelocBase, but as an MCExpr.
465 const MCExpr *
466 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
467                                              unsigned JTI,MCContext &Ctx) const{
468   // The normal PIC reloc base is the label at the start of the jump table.
469   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
470 }
471 
472 bool
473 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
474   const TargetMachine &TM = getTargetMachine();
475   const GlobalValue *GV = GA->getGlobal();
476 
477   // If the address is not even local to this DSO we will have to load it from
478   // a got and then add the offset.
479   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
480     return false;
481 
482   // If the code is position independent we will have to add a base register.
483   if (isPositionIndependent())
484     return false;
485 
486   // Otherwise we can do it.
487   return true;
488 }
489 
490 //===----------------------------------------------------------------------===//
491 //  Optimization Methods
492 //===----------------------------------------------------------------------===//
493 
494 /// If the specified instruction has a constant integer operand and there are
495 /// bits set in that constant that are not demanded, then clear those bits and
496 /// return true.
497 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
498                                             const APInt &DemandedBits,
499                                             const APInt &DemandedElts,
500                                             TargetLoweringOpt &TLO) const {
501   SDLoc DL(Op);
502   unsigned Opcode = Op.getOpcode();
503 
504   // Do target-specific constant optimization.
505   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
506     return TLO.New.getNode();
507 
508   // FIXME: ISD::SELECT, ISD::SELECT_CC
509   switch (Opcode) {
510   default:
511     break;
512   case ISD::XOR:
513   case ISD::AND:
514   case ISD::OR: {
515     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
516     if (!Op1C || Op1C->isOpaque())
517       return false;
518 
519     // If this is a 'not' op, don't touch it because that's a canonical form.
520     const APInt &C = Op1C->getAPIntValue();
521     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
522       return false;
523 
524     if (!C.isSubsetOf(DemandedBits)) {
525       EVT VT = Op.getValueType();
526       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
527       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
528       return TLO.CombineTo(Op, NewOp);
529     }
530 
531     break;
532   }
533   }
534 
535   return false;
536 }
537 
538 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
539                                             const APInt &DemandedBits,
540                                             TargetLoweringOpt &TLO) const {
541   EVT VT = Op.getValueType();
542   APInt DemandedElts = VT.isVector()
543                            ? APInt::getAllOnes(VT.getVectorNumElements())
544                            : APInt(1, 1);
545   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
546 }
547 
548 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
549 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
550 /// generalized for targets with other types of implicit widening casts.
551 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
552                                       const APInt &Demanded,
553                                       TargetLoweringOpt &TLO) const {
554   assert(Op.getNumOperands() == 2 &&
555          "ShrinkDemandedOp only supports binary operators!");
556   assert(Op.getNode()->getNumValues() == 1 &&
557          "ShrinkDemandedOp only supports nodes with one result!");
558 
559   SelectionDAG &DAG = TLO.DAG;
560   SDLoc dl(Op);
561 
562   // Early return, as this function cannot handle vector types.
563   if (Op.getValueType().isVector())
564     return false;
565 
566   // Don't do this if the node has another user, which may require the
567   // full value.
568   if (!Op.getNode()->hasOneUse())
569     return false;
570 
571   // Search for the smallest integer type with free casts to and from
572   // Op's type. For expedience, just check power-of-2 integer types.
573   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
574   unsigned DemandedSize = Demanded.getActiveBits();
575   unsigned SmallVTBits = DemandedSize;
576   if (!isPowerOf2_32(SmallVTBits))
577     SmallVTBits = NextPowerOf2(SmallVTBits);
578   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
579     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
580     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
581         TLI.isZExtFree(SmallVT, Op.getValueType())) {
582       // We found a type with free casts.
583       SDValue X = DAG.getNode(
584           Op.getOpcode(), dl, SmallVT,
585           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
586           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
587       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
588       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
589       return TLO.CombineTo(Op, Z);
590     }
591   }
592   return false;
593 }
594 
595 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
596                                           DAGCombinerInfo &DCI) const {
597   SelectionDAG &DAG = DCI.DAG;
598   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
599                         !DCI.isBeforeLegalizeOps());
600   KnownBits Known;
601 
602   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
603   if (Simplified) {
604     DCI.AddToWorklist(Op.getNode());
605     DCI.CommitTargetLoweringOpt(TLO);
606   }
607   return Simplified;
608 }
609 
610 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
611                                           const APInt &DemandedElts,
612                                           DAGCombinerInfo &DCI) const {
613   SelectionDAG &DAG = DCI.DAG;
614   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
615                         !DCI.isBeforeLegalizeOps());
616   KnownBits Known;
617 
618   bool Simplified =
619       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
620   if (Simplified) {
621     DCI.AddToWorklist(Op.getNode());
622     DCI.CommitTargetLoweringOpt(TLO);
623   }
624   return Simplified;
625 }
626 
627 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
628                                           KnownBits &Known,
629                                           TargetLoweringOpt &TLO,
630                                           unsigned Depth,
631                                           bool AssumeSingleUse) const {
632   EVT VT = Op.getValueType();
633 
634   // TODO: We can probably do more work on calculating the known bits and
635   // simplifying the operations for scalable vectors, but for now we just
636   // bail out.
637   if (VT.isScalableVector()) {
638     // Pretend we don't know anything for now.
639     Known = KnownBits(DemandedBits.getBitWidth());
640     return false;
641   }
642 
643   APInt DemandedElts = VT.isVector()
644                            ? APInt::getAllOnes(VT.getVectorNumElements())
645                            : APInt(1, 1);
646   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
647                               AssumeSingleUse);
648 }
649 
650 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
651 // TODO: Under what circumstances can we create nodes? Constant folding?
652 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
653     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
654     SelectionDAG &DAG, unsigned Depth) const {
655   // Limit search depth.
656   if (Depth >= SelectionDAG::MaxRecursionDepth)
657     return SDValue();
658 
659   // Ignore UNDEFs.
660   if (Op.isUndef())
661     return SDValue();
662 
663   // Not demanding any bits/elts from Op.
664   if (DemandedBits == 0 || DemandedElts == 0)
665     return DAG.getUNDEF(Op.getValueType());
666 
667   bool IsLE = DAG.getDataLayout().isLittleEndian();
668   unsigned NumElts = DemandedElts.getBitWidth();
669   unsigned BitWidth = DemandedBits.getBitWidth();
670   KnownBits LHSKnown, RHSKnown;
671   switch (Op.getOpcode()) {
672   case ISD::BITCAST: {
673     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
674     EVT SrcVT = Src.getValueType();
675     EVT DstVT = Op.getValueType();
676     if (SrcVT == DstVT)
677       return Src;
678 
679     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
680     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
681     if (NumSrcEltBits == NumDstEltBits)
682       if (SDValue V = SimplifyMultipleUseDemandedBits(
683               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
684         return DAG.getBitcast(DstVT, V);
685 
686     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
687       unsigned Scale = NumDstEltBits / NumSrcEltBits;
688       unsigned NumSrcElts = SrcVT.getVectorNumElements();
689       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
690       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
691       for (unsigned i = 0; i != Scale; ++i) {
692         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
693         unsigned BitOffset = EltOffset * NumSrcEltBits;
694         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
695         if (!Sub.isZero()) {
696           DemandedSrcBits |= Sub;
697           for (unsigned j = 0; j != NumElts; ++j)
698             if (DemandedElts[j])
699               DemandedSrcElts.setBit((j * Scale) + i);
700         }
701       }
702 
703       if (SDValue V = SimplifyMultipleUseDemandedBits(
704               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
705         return DAG.getBitcast(DstVT, V);
706     }
707 
708     // TODO - bigendian once we have test coverage.
709     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
710       unsigned Scale = NumSrcEltBits / NumDstEltBits;
711       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
712       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
713       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
714       for (unsigned i = 0; i != NumElts; ++i)
715         if (DemandedElts[i]) {
716           unsigned Offset = (i % Scale) * NumDstEltBits;
717           DemandedSrcBits.insertBits(DemandedBits, Offset);
718           DemandedSrcElts.setBit(i / Scale);
719         }
720 
721       if (SDValue V = SimplifyMultipleUseDemandedBits(
722               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
723         return DAG.getBitcast(DstVT, V);
724     }
725 
726     break;
727   }
728   case ISD::AND: {
729     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
730     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
731 
732     // If all of the demanded bits are known 1 on one side, return the other.
733     // These bits cannot contribute to the result of the 'and' in this
734     // context.
735     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
736       return Op.getOperand(0);
737     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
738       return Op.getOperand(1);
739     break;
740   }
741   case ISD::OR: {
742     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
743     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
744 
745     // If all of the demanded bits are known zero on one side, return the
746     // other.  These bits cannot contribute to the result of the 'or' in this
747     // context.
748     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
749       return Op.getOperand(0);
750     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
751       return Op.getOperand(1);
752     break;
753   }
754   case ISD::XOR: {
755     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
756     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
757 
758     // If all of the demanded bits are known zero on one side, return the
759     // other.
760     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
761       return Op.getOperand(0);
762     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
763       return Op.getOperand(1);
764     break;
765   }
766   case ISD::SHL: {
767     // If we are only demanding sign bits then we can use the shift source
768     // directly.
769     if (const APInt *MaxSA =
770             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
771       SDValue Op0 = Op.getOperand(0);
772       unsigned ShAmt = MaxSA->getZExtValue();
773       unsigned NumSignBits =
774           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
775       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
776       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
777         return Op0;
778     }
779     break;
780   }
781   case ISD::SETCC: {
782     SDValue Op0 = Op.getOperand(0);
783     SDValue Op1 = Op.getOperand(1);
784     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
785     // If (1) we only need the sign-bit, (2) the setcc operands are the same
786     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
787     // -1, we may be able to bypass the setcc.
788     if (DemandedBits.isSignMask() &&
789         Op0.getScalarValueSizeInBits() == BitWidth &&
790         getBooleanContents(Op0.getValueType()) ==
791             BooleanContent::ZeroOrNegativeOneBooleanContent) {
792       // If we're testing X < 0, then this compare isn't needed - just use X!
793       // FIXME: We're limiting to integer types here, but this should also work
794       // if we don't care about FP signed-zero. The use of SETLT with FP means
795       // that we don't care about NaNs.
796       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
797           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
798         return Op0;
799     }
800     break;
801   }
802   case ISD::SIGN_EXTEND_INREG: {
803     // If none of the extended bits are demanded, eliminate the sextinreg.
804     SDValue Op0 = Op.getOperand(0);
805     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
806     unsigned ExBits = ExVT.getScalarSizeInBits();
807     if (DemandedBits.getActiveBits() <= ExBits)
808       return Op0;
809     // If the input is already sign extended, just drop the extension.
810     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
811     if (NumSignBits >= (BitWidth - ExBits + 1))
812       return Op0;
813     break;
814   }
815   case ISD::ANY_EXTEND_VECTOR_INREG:
816   case ISD::SIGN_EXTEND_VECTOR_INREG:
817   case ISD::ZERO_EXTEND_VECTOR_INREG: {
818     // If we only want the lowest element and none of extended bits, then we can
819     // return the bitcasted source vector.
820     SDValue Src = Op.getOperand(0);
821     EVT SrcVT = Src.getValueType();
822     EVT DstVT = Op.getValueType();
823     if (IsLE && DemandedElts == 1 &&
824         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
825         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
826       return DAG.getBitcast(DstVT, Src);
827     }
828     break;
829   }
830   case ISD::INSERT_VECTOR_ELT: {
831     // If we don't demand the inserted element, return the base vector.
832     SDValue Vec = Op.getOperand(0);
833     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
834     EVT VecVT = Vec.getValueType();
835     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
836         !DemandedElts[CIdx->getZExtValue()])
837       return Vec;
838     break;
839   }
840   case ISD::INSERT_SUBVECTOR: {
841     SDValue Vec = Op.getOperand(0);
842     SDValue Sub = Op.getOperand(1);
843     uint64_t Idx = Op.getConstantOperandVal(2);
844     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
845     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
846     // If we don't demand the inserted subvector, return the base vector.
847     if (DemandedSubElts == 0)
848       return Vec;
849     // If this simply widens the lowest subvector, see if we can do it earlier.
850     if (Idx == 0 && Vec.isUndef()) {
851       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
852               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
853         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
854                            Op.getOperand(0), NewSub, Op.getOperand(2));
855     }
856     break;
857   }
858   case ISD::VECTOR_SHUFFLE: {
859     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
860 
861     // If all the demanded elts are from one operand and are inline,
862     // then we can use the operand directly.
863     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
864     for (unsigned i = 0; i != NumElts; ++i) {
865       int M = ShuffleMask[i];
866       if (M < 0 || !DemandedElts[i])
867         continue;
868       AllUndef = false;
869       IdentityLHS &= (M == (int)i);
870       IdentityRHS &= ((M - NumElts) == i);
871     }
872 
873     if (AllUndef)
874       return DAG.getUNDEF(Op.getValueType());
875     if (IdentityLHS)
876       return Op.getOperand(0);
877     if (IdentityRHS)
878       return Op.getOperand(1);
879     break;
880   }
881   default:
882     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
883       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
884               Op, DemandedBits, DemandedElts, DAG, Depth))
885         return V;
886     break;
887   }
888   return SDValue();
889 }
890 
891 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
892     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
893     unsigned Depth) const {
894   EVT VT = Op.getValueType();
895   APInt DemandedElts = VT.isVector()
896                            ? APInt::getAllOnes(VT.getVectorNumElements())
897                            : APInt(1, 1);
898   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
899                                          Depth);
900 }
901 
902 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
903     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
904     unsigned Depth) const {
905   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
906   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
907                                          Depth);
908 }
909 
910 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
911 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
912 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
913                                  const TargetLowering &TLI,
914                                  const APInt &DemandedBits,
915                                  const APInt &DemandedElts,
916                                  unsigned Depth) {
917   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
918          "SRL or SRA node is required here!");
919   // Is the right shift using an immediate value of 1?
920   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
921   if (!N1C || !N1C->isOne())
922     return SDValue();
923 
924   // We are looking for an avgfloor
925   // add(ext, ext)
926   // or one of these as a avgceil
927   // add(add(ext, ext), 1)
928   // add(add(ext, 1), ext)
929   // add(ext, add(ext, 1))
930   SDValue Add = Op.getOperand(0);
931   if (Add.getOpcode() != ISD::ADD)
932     return SDValue();
933 
934   SDValue ExtOpA = Add.getOperand(0);
935   SDValue ExtOpB = Add.getOperand(1);
936   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
937     ConstantSDNode *ConstOp;
938     if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
939         ConstOp->isOne()) {
940       ExtOpA = Op2;
941       ExtOpB = Op3;
942       return true;
943     }
944     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
945         ConstOp->isOne()) {
946       ExtOpA = Op1;
947       ExtOpB = Op3;
948       return true;
949     }
950     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
951         ConstOp->isOne()) {
952       ExtOpA = Op1;
953       ExtOpB = Op2;
954       return true;
955     }
956     return false;
957   };
958   bool IsCeil =
959       (ExtOpA.getOpcode() == ISD::ADD &&
960        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
961       (ExtOpB.getOpcode() == ISD::ADD &&
962        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
963 
964   // If the shift is signed (sra):
965   //  - Needs >= 2 sign bit for both operands.
966   //  - Needs >= 2 zero bits.
967   // If the shift is unsigned (srl):
968   //  - Needs >= 1 zero bit for both operands.
969   //  - Needs 1 demanded bit zero and >= 2 sign bits.
970   unsigned ShiftOpc = Op.getOpcode();
971   bool IsSigned = false;
972   unsigned KnownBits;
973   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
974   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
975   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
976   unsigned NumZeroA =
977       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
978   unsigned NumZeroB =
979       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
980   unsigned NumZero = std::min(NumZeroA, NumZeroB);
981 
982   switch (ShiftOpc) {
983   default:
984     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
985   case ISD::SRA: {
986     if (NumZero >= 2 && NumSigned < NumZero) {
987       IsSigned = false;
988       KnownBits = NumZero;
989       break;
990     }
991     if (NumSigned >= 1) {
992       IsSigned = true;
993       KnownBits = NumSigned;
994       break;
995     }
996     return SDValue();
997   }
998   case ISD::SRL: {
999     if (NumZero >= 1 && NumSigned < NumZero) {
1000       IsSigned = false;
1001       KnownBits = NumZero;
1002       break;
1003     }
1004     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1005       IsSigned = true;
1006       KnownBits = NumSigned;
1007       break;
1008     }
1009     return SDValue();
1010   }
1011   }
1012 
1013   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1014                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1015 
1016   // Find the smallest power-2 type that is legal for this vector size and
1017   // operation, given the original type size and the number of known sign/zero
1018   // bits.
1019   EVT VT = Op.getValueType();
1020   unsigned MinWidth =
1021       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1022   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
1023   if (VT.isVector())
1024     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1025   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
1026     return SDValue();
1027 
1028   SDLoc DL(Op);
1029   SDValue ResultAVG =
1030       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1031                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1032   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1033                      ResultAVG);
1034 }
1035 
1036 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1037 /// result of Op are ever used downstream. If we can use this information to
1038 /// simplify Op, create a new simplified DAG node and return true, returning the
1039 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1040 /// return a mask of Known bits for the expression (used to simplify the
1041 /// caller).  The Known bits may only be accurate for those bits in the
1042 /// OriginalDemandedBits and OriginalDemandedElts.
1043 bool TargetLowering::SimplifyDemandedBits(
1044     SDValue Op, const APInt &OriginalDemandedBits,
1045     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1046     unsigned Depth, bool AssumeSingleUse) const {
1047   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1048   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1049          "Mask size mismatches value type size!");
1050 
1051   // Don't know anything.
1052   Known = KnownBits(BitWidth);
1053 
1054   // TODO: We can probably do more work on calculating the known bits and
1055   // simplifying the operations for scalable vectors, but for now we just
1056   // bail out.
1057   if (Op.getValueType().isScalableVector())
1058     return false;
1059 
1060   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1061   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1062   assert((!Op.getValueType().isVector() ||
1063           NumElts == Op.getValueType().getVectorNumElements()) &&
1064          "Unexpected vector size");
1065 
1066   APInt DemandedBits = OriginalDemandedBits;
1067   APInt DemandedElts = OriginalDemandedElts;
1068   SDLoc dl(Op);
1069   auto &DL = TLO.DAG.getDataLayout();
1070 
1071   // Undef operand.
1072   if (Op.isUndef())
1073     return false;
1074 
1075   if (Op.getOpcode() == ISD::Constant) {
1076     // We know all of the bits for a constant!
1077     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1078     return false;
1079   }
1080 
1081   if (Op.getOpcode() == ISD::ConstantFP) {
1082     // We know all of the bits for a floating point constant!
1083     Known = KnownBits::makeConstant(
1084         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1085     return false;
1086   }
1087 
1088   // Other users may use these bits.
1089   EVT VT = Op.getValueType();
1090   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
1091     if (Depth != 0) {
1092       // If not at the root, Just compute the Known bits to
1093       // simplify things downstream.
1094       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1095       return false;
1096     }
1097     // If this is the root being simplified, allow it to have multiple uses,
1098     // just set the DemandedBits/Elts to all bits.
1099     DemandedBits = APInt::getAllOnes(BitWidth);
1100     DemandedElts = APInt::getAllOnes(NumElts);
1101   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1102     // Not demanding any bits/elts from Op.
1103     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1104   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1105     // Limit search depth.
1106     return false;
1107   }
1108 
1109   KnownBits Known2;
1110   switch (Op.getOpcode()) {
1111   case ISD::TargetConstant:
1112     llvm_unreachable("Can't simplify this node");
1113   case ISD::SCALAR_TO_VECTOR: {
1114     if (!DemandedElts[0])
1115       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1116 
1117     KnownBits SrcKnown;
1118     SDValue Src = Op.getOperand(0);
1119     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1120     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
1121     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1122       return true;
1123 
1124     // Upper elements are undef, so only get the knownbits if we just demand
1125     // the bottom element.
1126     if (DemandedElts == 1)
1127       Known = SrcKnown.anyextOrTrunc(BitWidth);
1128     break;
1129   }
1130   case ISD::BUILD_VECTOR:
1131     // Collect the known bits that are shared by every demanded element.
1132     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1133     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1134     return false; // Don't fall through, will infinitely loop.
1135   case ISD::LOAD: {
1136     auto *LD = cast<LoadSDNode>(Op);
1137     if (getTargetConstantFromLoad(LD)) {
1138       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1139       return false; // Don't fall through, will infinitely loop.
1140     }
1141     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1142       // If this is a ZEXTLoad and we are looking at the loaded value.
1143       EVT MemVT = LD->getMemoryVT();
1144       unsigned MemBits = MemVT.getScalarSizeInBits();
1145       Known.Zero.setBitsFrom(MemBits);
1146       return false; // Don't fall through, will infinitely loop.
1147     }
1148     break;
1149   }
1150   case ISD::INSERT_VECTOR_ELT: {
1151     SDValue Vec = Op.getOperand(0);
1152     SDValue Scl = Op.getOperand(1);
1153     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1154     EVT VecVT = Vec.getValueType();
1155 
1156     // If index isn't constant, assume we need all vector elements AND the
1157     // inserted element.
1158     APInt DemandedVecElts(DemandedElts);
1159     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1160       unsigned Idx = CIdx->getZExtValue();
1161       DemandedVecElts.clearBit(Idx);
1162 
1163       // Inserted element is not required.
1164       if (!DemandedElts[Idx])
1165         return TLO.CombineTo(Op, Vec);
1166     }
1167 
1168     KnownBits KnownScl;
1169     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1170     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1171     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1172       return true;
1173 
1174     Known = KnownScl.anyextOrTrunc(BitWidth);
1175 
1176     KnownBits KnownVec;
1177     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1178                              Depth + 1))
1179       return true;
1180 
1181     if (!!DemandedVecElts)
1182       Known = KnownBits::commonBits(Known, KnownVec);
1183 
1184     return false;
1185   }
1186   case ISD::INSERT_SUBVECTOR: {
1187     // Demand any elements from the subvector and the remainder from the src its
1188     // inserted into.
1189     SDValue Src = Op.getOperand(0);
1190     SDValue Sub = Op.getOperand(1);
1191     uint64_t Idx = Op.getConstantOperandVal(2);
1192     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1193     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1194     APInt DemandedSrcElts = DemandedElts;
1195     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1196 
1197     KnownBits KnownSub, KnownSrc;
1198     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1199                              Depth + 1))
1200       return true;
1201     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1202                              Depth + 1))
1203       return true;
1204 
1205     Known.Zero.setAllBits();
1206     Known.One.setAllBits();
1207     if (!!DemandedSubElts)
1208       Known = KnownBits::commonBits(Known, KnownSub);
1209     if (!!DemandedSrcElts)
1210       Known = KnownBits::commonBits(Known, KnownSrc);
1211 
1212     // Attempt to avoid multi-use src if we don't need anything from it.
1213     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1214         !DemandedSrcElts.isAllOnes()) {
1215       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1216           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1217       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1218           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1219       if (NewSub || NewSrc) {
1220         NewSub = NewSub ? NewSub : Sub;
1221         NewSrc = NewSrc ? NewSrc : Src;
1222         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1223                                         Op.getOperand(2));
1224         return TLO.CombineTo(Op, NewOp);
1225       }
1226     }
1227     break;
1228   }
1229   case ISD::EXTRACT_SUBVECTOR: {
1230     // Offset the demanded elts by the subvector index.
1231     SDValue Src = Op.getOperand(0);
1232     if (Src.getValueType().isScalableVector())
1233       break;
1234     uint64_t Idx = Op.getConstantOperandVal(1);
1235     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1236     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1237 
1238     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1239                              Depth + 1))
1240       return true;
1241 
1242     // Attempt to avoid multi-use src if we don't need anything from it.
1243     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1244       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1245           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1246       if (DemandedSrc) {
1247         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1248                                         Op.getOperand(1));
1249         return TLO.CombineTo(Op, NewOp);
1250       }
1251     }
1252     break;
1253   }
1254   case ISD::CONCAT_VECTORS: {
1255     Known.Zero.setAllBits();
1256     Known.One.setAllBits();
1257     EVT SubVT = Op.getOperand(0).getValueType();
1258     unsigned NumSubVecs = Op.getNumOperands();
1259     unsigned NumSubElts = SubVT.getVectorNumElements();
1260     for (unsigned i = 0; i != NumSubVecs; ++i) {
1261       APInt DemandedSubElts =
1262           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1263       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1264                                Known2, TLO, Depth + 1))
1265         return true;
1266       // Known bits are shared by every demanded subvector element.
1267       if (!!DemandedSubElts)
1268         Known = KnownBits::commonBits(Known, Known2);
1269     }
1270     break;
1271   }
1272   case ISD::VECTOR_SHUFFLE: {
1273     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1274 
1275     // Collect demanded elements from shuffle operands..
1276     APInt DemandedLHS(NumElts, 0);
1277     APInt DemandedRHS(NumElts, 0);
1278     for (unsigned i = 0; i != NumElts; ++i) {
1279       if (!DemandedElts[i])
1280         continue;
1281       int M = ShuffleMask[i];
1282       if (M < 0) {
1283         // For UNDEF elements, we don't know anything about the common state of
1284         // the shuffle result.
1285         DemandedLHS.clearAllBits();
1286         DemandedRHS.clearAllBits();
1287         break;
1288       }
1289       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1290       if (M < (int)NumElts)
1291         DemandedLHS.setBit(M);
1292       else
1293         DemandedRHS.setBit(M - NumElts);
1294     }
1295 
1296     if (!!DemandedLHS || !!DemandedRHS) {
1297       SDValue Op0 = Op.getOperand(0);
1298       SDValue Op1 = Op.getOperand(1);
1299 
1300       Known.Zero.setAllBits();
1301       Known.One.setAllBits();
1302       if (!!DemandedLHS) {
1303         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1304                                  Depth + 1))
1305           return true;
1306         Known = KnownBits::commonBits(Known, Known2);
1307       }
1308       if (!!DemandedRHS) {
1309         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1310                                  Depth + 1))
1311           return true;
1312         Known = KnownBits::commonBits(Known, Known2);
1313       }
1314 
1315       // Attempt to avoid multi-use ops if we don't need anything from them.
1316       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1317           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1318       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1319           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1320       if (DemandedOp0 || DemandedOp1) {
1321         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1322         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1323         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1324         return TLO.CombineTo(Op, NewOp);
1325       }
1326     }
1327     break;
1328   }
1329   case ISD::AND: {
1330     SDValue Op0 = Op.getOperand(0);
1331     SDValue Op1 = Op.getOperand(1);
1332 
1333     // If the RHS is a constant, check to see if the LHS would be zero without
1334     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1335     // simplify the LHS, here we're using information from the LHS to simplify
1336     // the RHS.
1337     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1338       // Do not increment Depth here; that can cause an infinite loop.
1339       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1340       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1341       if ((LHSKnown.Zero & DemandedBits) ==
1342           (~RHSC->getAPIntValue() & DemandedBits))
1343         return TLO.CombineTo(Op, Op0);
1344 
1345       // If any of the set bits in the RHS are known zero on the LHS, shrink
1346       // the constant.
1347       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1348                                  DemandedElts, TLO))
1349         return true;
1350 
1351       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1352       // constant, but if this 'and' is only clearing bits that were just set by
1353       // the xor, then this 'and' can be eliminated by shrinking the mask of
1354       // the xor. For example, for a 32-bit X:
1355       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1356       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1357           LHSKnown.One == ~RHSC->getAPIntValue()) {
1358         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1359         return TLO.CombineTo(Op, Xor);
1360       }
1361     }
1362 
1363     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1364                              Depth + 1))
1365       return true;
1366     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1367     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1368                              Known2, TLO, Depth + 1))
1369       return true;
1370     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1371 
1372     // Attempt to avoid multi-use ops if we don't need anything from them.
1373     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1374       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1375           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1376       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1377           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1378       if (DemandedOp0 || DemandedOp1) {
1379         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1380         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1381         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1382         return TLO.CombineTo(Op, NewOp);
1383       }
1384     }
1385 
1386     // If all of the demanded bits are known one on one side, return the other.
1387     // These bits cannot contribute to the result of the 'and'.
1388     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1389       return TLO.CombineTo(Op, Op0);
1390     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1391       return TLO.CombineTo(Op, Op1);
1392     // If all of the demanded bits in the inputs are known zeros, return zero.
1393     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1394       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1395     // If the RHS is a constant, see if we can simplify it.
1396     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1397                                TLO))
1398       return true;
1399     // If the operation can be done in a smaller type, do so.
1400     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1401       return true;
1402 
1403     Known &= Known2;
1404     break;
1405   }
1406   case ISD::OR: {
1407     SDValue Op0 = Op.getOperand(0);
1408     SDValue Op1 = Op.getOperand(1);
1409 
1410     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1411                              Depth + 1))
1412       return true;
1413     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1414     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1415                              Known2, TLO, Depth + 1))
1416       return true;
1417     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1418 
1419     // Attempt to avoid multi-use ops if we don't need anything from them.
1420     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1421       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1422           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1423       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1424           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1425       if (DemandedOp0 || DemandedOp1) {
1426         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1427         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1428         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1429         return TLO.CombineTo(Op, NewOp);
1430       }
1431     }
1432 
1433     // If all of the demanded bits are known zero on one side, return the other.
1434     // These bits cannot contribute to the result of the 'or'.
1435     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1436       return TLO.CombineTo(Op, Op0);
1437     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1438       return TLO.CombineTo(Op, Op1);
1439     // If the RHS is a constant, see if we can simplify it.
1440     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1441       return true;
1442     // If the operation can be done in a smaller type, do so.
1443     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1444       return true;
1445 
1446     Known |= Known2;
1447     break;
1448   }
1449   case ISD::XOR: {
1450     SDValue Op0 = Op.getOperand(0);
1451     SDValue Op1 = Op.getOperand(1);
1452 
1453     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1454                              Depth + 1))
1455       return true;
1456     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1457     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1458                              Depth + 1))
1459       return true;
1460     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1461 
1462     // Attempt to avoid multi-use ops if we don't need anything from them.
1463     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1464       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1465           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1466       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1467           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1468       if (DemandedOp0 || DemandedOp1) {
1469         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1470         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1471         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1472         return TLO.CombineTo(Op, NewOp);
1473       }
1474     }
1475 
1476     // If all of the demanded bits are known zero on one side, return the other.
1477     // These bits cannot contribute to the result of the 'xor'.
1478     if (DemandedBits.isSubsetOf(Known.Zero))
1479       return TLO.CombineTo(Op, Op0);
1480     if (DemandedBits.isSubsetOf(Known2.Zero))
1481       return TLO.CombineTo(Op, Op1);
1482     // If the operation can be done in a smaller type, do so.
1483     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1484       return true;
1485 
1486     // If all of the unknown bits are known to be zero on one side or the other
1487     // turn this into an *inclusive* or.
1488     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1489     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1490       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1491 
1492     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1493     if (C) {
1494       // If one side is a constant, and all of the set bits in the constant are
1495       // also known set on the other side, turn this into an AND, as we know
1496       // the bits will be cleared.
1497       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1498       // NB: it is okay if more bits are known than are requested
1499       if (C->getAPIntValue() == Known2.One) {
1500         SDValue ANDC =
1501             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1502         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1503       }
1504 
1505       // If the RHS is a constant, see if we can change it. Don't alter a -1
1506       // constant because that's a 'not' op, and that is better for combining
1507       // and codegen.
1508       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1509         // We're flipping all demanded bits. Flip the undemanded bits too.
1510         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1511         return TLO.CombineTo(Op, New);
1512       }
1513     }
1514 
1515     // If we can't turn this into a 'not', try to shrink the constant.
1516     if (!C || !C->isAllOnes())
1517       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1518         return true;
1519 
1520     Known ^= Known2;
1521     break;
1522   }
1523   case ISD::SELECT:
1524     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1525                              Depth + 1))
1526       return true;
1527     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1528                              Depth + 1))
1529       return true;
1530     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1531     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1532 
1533     // If the operands are constants, see if we can simplify them.
1534     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1535       return true;
1536 
1537     // Only known if known in both the LHS and RHS.
1538     Known = KnownBits::commonBits(Known, Known2);
1539     break;
1540   case ISD::SELECT_CC:
1541     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1542                              Depth + 1))
1543       return true;
1544     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1545                              Depth + 1))
1546       return true;
1547     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1548     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1549 
1550     // If the operands are constants, see if we can simplify them.
1551     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1552       return true;
1553 
1554     // Only known if known in both the LHS and RHS.
1555     Known = KnownBits::commonBits(Known, Known2);
1556     break;
1557   case ISD::SETCC: {
1558     SDValue Op0 = Op.getOperand(0);
1559     SDValue Op1 = Op.getOperand(1);
1560     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1561     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1562     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1563     // -1, we may be able to bypass the setcc.
1564     if (DemandedBits.isSignMask() &&
1565         Op0.getScalarValueSizeInBits() == BitWidth &&
1566         getBooleanContents(Op0.getValueType()) ==
1567             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1568       // If we're testing X < 0, then this compare isn't needed - just use X!
1569       // FIXME: We're limiting to integer types here, but this should also work
1570       // if we don't care about FP signed-zero. The use of SETLT with FP means
1571       // that we don't care about NaNs.
1572       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1573           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1574         return TLO.CombineTo(Op, Op0);
1575 
1576       // TODO: Should we check for other forms of sign-bit comparisons?
1577       // Examples: X <= -1, X >= 0
1578     }
1579     if (getBooleanContents(Op0.getValueType()) ==
1580             TargetLowering::ZeroOrOneBooleanContent &&
1581         BitWidth > 1)
1582       Known.Zero.setBitsFrom(1);
1583     break;
1584   }
1585   case ISD::SHL: {
1586     SDValue Op0 = Op.getOperand(0);
1587     SDValue Op1 = Op.getOperand(1);
1588     EVT ShiftVT = Op1.getValueType();
1589 
1590     if (const APInt *SA =
1591             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1592       unsigned ShAmt = SA->getZExtValue();
1593       if (ShAmt == 0)
1594         return TLO.CombineTo(Op, Op0);
1595 
1596       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1597       // single shift.  We can do this if the bottom bits (which are shifted
1598       // out) are never demanded.
1599       // TODO - support non-uniform vector amounts.
1600       if (Op0.getOpcode() == ISD::SRL) {
1601         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1602           if (const APInt *SA2 =
1603                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1604             unsigned C1 = SA2->getZExtValue();
1605             unsigned Opc = ISD::SHL;
1606             int Diff = ShAmt - C1;
1607             if (Diff < 0) {
1608               Diff = -Diff;
1609               Opc = ISD::SRL;
1610             }
1611             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1612             return TLO.CombineTo(
1613                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1614           }
1615         }
1616       }
1617 
1618       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1619       // are not demanded. This will likely allow the anyext to be folded away.
1620       // TODO - support non-uniform vector amounts.
1621       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1622         SDValue InnerOp = Op0.getOperand(0);
1623         EVT InnerVT = InnerOp.getValueType();
1624         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1625         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1626             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1627           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1628           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1629             ShTy = InnerVT;
1630           SDValue NarrowShl =
1631               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1632                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1633           return TLO.CombineTo(
1634               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1635         }
1636 
1637         // Repeat the SHL optimization above in cases where an extension
1638         // intervenes: (shl (anyext (shr x, c1)), c2) to
1639         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1640         // aren't demanded (as above) and that the shifted upper c1 bits of
1641         // x aren't demanded.
1642         // TODO - support non-uniform vector amounts.
1643         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1644             InnerOp.hasOneUse()) {
1645           if (const APInt *SA2 =
1646                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1647             unsigned InnerShAmt = SA2->getZExtValue();
1648             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1649                 DemandedBits.getActiveBits() <=
1650                     (InnerBits - InnerShAmt + ShAmt) &&
1651                 DemandedBits.countTrailingZeros() >= ShAmt) {
1652               SDValue NewSA =
1653                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1654               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1655                                                InnerOp.getOperand(0));
1656               return TLO.CombineTo(
1657                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1658             }
1659           }
1660         }
1661       }
1662 
1663       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1664       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1665                                Depth + 1))
1666         return true;
1667       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1668       Known.Zero <<= ShAmt;
1669       Known.One <<= ShAmt;
1670       // low bits known zero.
1671       Known.Zero.setLowBits(ShAmt);
1672 
1673       // Try shrinking the operation as long as the shift amount will still be
1674       // in range.
1675       if ((ShAmt < DemandedBits.getActiveBits()) &&
1676           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1677         return true;
1678     }
1679 
1680     // If we are only demanding sign bits then we can use the shift source
1681     // directly.
1682     if (const APInt *MaxSA =
1683             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1684       unsigned ShAmt = MaxSA->getZExtValue();
1685       unsigned NumSignBits =
1686           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1687       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1688       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1689         return TLO.CombineTo(Op, Op0);
1690     }
1691     break;
1692   }
1693   case ISD::SRL: {
1694     SDValue Op0 = Op.getOperand(0);
1695     SDValue Op1 = Op.getOperand(1);
1696     EVT ShiftVT = Op1.getValueType();
1697 
1698     // Try to match AVG patterns.
1699     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1700                                         DemandedElts, Depth + 1))
1701       return TLO.CombineTo(Op, AVG);
1702 
1703     if (const APInt *SA =
1704             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1705       unsigned ShAmt = SA->getZExtValue();
1706       if (ShAmt == 0)
1707         return TLO.CombineTo(Op, Op0);
1708 
1709       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1710       // single shift.  We can do this if the top bits (which are shifted out)
1711       // are never demanded.
1712       // TODO - support non-uniform vector amounts.
1713       if (Op0.getOpcode() == ISD::SHL) {
1714         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1715           if (const APInt *SA2 =
1716                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1717             unsigned C1 = SA2->getZExtValue();
1718             unsigned Opc = ISD::SRL;
1719             int Diff = ShAmt - C1;
1720             if (Diff < 0) {
1721               Diff = -Diff;
1722               Opc = ISD::SHL;
1723             }
1724             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1725             return TLO.CombineTo(
1726                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1727           }
1728         }
1729       }
1730 
1731       APInt InDemandedMask = (DemandedBits << ShAmt);
1732 
1733       // If the shift is exact, then it does demand the low bits (and knows that
1734       // they are zero).
1735       if (Op->getFlags().hasExact())
1736         InDemandedMask.setLowBits(ShAmt);
1737 
1738       // Compute the new bits that are at the top now.
1739       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1740                                Depth + 1))
1741         return true;
1742       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1743       Known.Zero.lshrInPlace(ShAmt);
1744       Known.One.lshrInPlace(ShAmt);
1745       // High bits known zero.
1746       Known.Zero.setHighBits(ShAmt);
1747     }
1748     break;
1749   }
1750   case ISD::SRA: {
1751     SDValue Op0 = Op.getOperand(0);
1752     SDValue Op1 = Op.getOperand(1);
1753     EVT ShiftVT = Op1.getValueType();
1754 
1755     // If we only want bits that already match the signbit then we don't need
1756     // to shift.
1757     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1758     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1759         NumHiDemandedBits)
1760       return TLO.CombineTo(Op, Op0);
1761 
1762     // If this is an arithmetic shift right and only the low-bit is set, we can
1763     // always convert this into a logical shr, even if the shift amount is
1764     // variable.  The low bit of the shift cannot be an input sign bit unless
1765     // the shift amount is >= the size of the datatype, which is undefined.
1766     if (DemandedBits.isOne())
1767       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1768 
1769     // Try to match AVG patterns.
1770     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1771                                         DemandedElts, Depth + 1))
1772       return TLO.CombineTo(Op, AVG);
1773 
1774     if (const APInt *SA =
1775             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1776       unsigned ShAmt = SA->getZExtValue();
1777       if (ShAmt == 0)
1778         return TLO.CombineTo(Op, Op0);
1779 
1780       APInt InDemandedMask = (DemandedBits << ShAmt);
1781 
1782       // If the shift is exact, then it does demand the low bits (and knows that
1783       // they are zero).
1784       if (Op->getFlags().hasExact())
1785         InDemandedMask.setLowBits(ShAmt);
1786 
1787       // If any of the demanded bits are produced by the sign extension, we also
1788       // demand the input sign bit.
1789       if (DemandedBits.countLeadingZeros() < ShAmt)
1790         InDemandedMask.setSignBit();
1791 
1792       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1793                                Depth + 1))
1794         return true;
1795       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1796       Known.Zero.lshrInPlace(ShAmt);
1797       Known.One.lshrInPlace(ShAmt);
1798 
1799       // If the input sign bit is known to be zero, or if none of the top bits
1800       // are demanded, turn this into an unsigned shift right.
1801       if (Known.Zero[BitWidth - ShAmt - 1] ||
1802           DemandedBits.countLeadingZeros() >= ShAmt) {
1803         SDNodeFlags Flags;
1804         Flags.setExact(Op->getFlags().hasExact());
1805         return TLO.CombineTo(
1806             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1807       }
1808 
1809       int Log2 = DemandedBits.exactLogBase2();
1810       if (Log2 >= 0) {
1811         // The bit must come from the sign.
1812         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1813         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1814       }
1815 
1816       if (Known.One[BitWidth - ShAmt - 1])
1817         // New bits are known one.
1818         Known.One.setHighBits(ShAmt);
1819 
1820       // Attempt to avoid multi-use ops if we don't need anything from them.
1821       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1822         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1823             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1824         if (DemandedOp0) {
1825           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1826           return TLO.CombineTo(Op, NewOp);
1827         }
1828       }
1829     }
1830     break;
1831   }
1832   case ISD::FSHL:
1833   case ISD::FSHR: {
1834     SDValue Op0 = Op.getOperand(0);
1835     SDValue Op1 = Op.getOperand(1);
1836     SDValue Op2 = Op.getOperand(2);
1837     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1838 
1839     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1840       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1841 
1842       // For fshl, 0-shift returns the 1st arg.
1843       // For fshr, 0-shift returns the 2nd arg.
1844       if (Amt == 0) {
1845         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1846                                  Known, TLO, Depth + 1))
1847           return true;
1848         break;
1849       }
1850 
1851       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1852       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1853       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1854       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1855       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1856                                Depth + 1))
1857         return true;
1858       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1859                                Depth + 1))
1860         return true;
1861 
1862       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1863       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1864       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1865       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1866       Known.One |= Known2.One;
1867       Known.Zero |= Known2.Zero;
1868     }
1869 
1870     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1871     if (isPowerOf2_32(BitWidth)) {
1872       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1873       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1874                                Known2, TLO, Depth + 1))
1875         return true;
1876     }
1877     break;
1878   }
1879   case ISD::ROTL:
1880   case ISD::ROTR: {
1881     SDValue Op0 = Op.getOperand(0);
1882     SDValue Op1 = Op.getOperand(1);
1883     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1884 
1885     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1886     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1887       return TLO.CombineTo(Op, Op0);
1888 
1889     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1890       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1891       unsigned RevAmt = BitWidth - Amt;
1892 
1893       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1894       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1895       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1896       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1897                                Depth + 1))
1898         return true;
1899 
1900       // rot*(x, 0) --> x
1901       if (Amt == 0)
1902         return TLO.CombineTo(Op, Op0);
1903 
1904       // See if we don't demand either half of the rotated bits.
1905       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1906           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1907         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1908         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1909       }
1910       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1911           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1912         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1913         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1914       }
1915     }
1916 
1917     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1918     if (isPowerOf2_32(BitWidth)) {
1919       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1920       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1921                                Depth + 1))
1922         return true;
1923     }
1924     break;
1925   }
1926   case ISD::UMIN: {
1927     // Check if one arg is always less than (or equal) to the other arg.
1928     SDValue Op0 = Op.getOperand(0);
1929     SDValue Op1 = Op.getOperand(1);
1930     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1931     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1932     Known = KnownBits::umin(Known0, Known1);
1933     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1934       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1935     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1936       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1937     break;
1938   }
1939   case ISD::UMAX: {
1940     // Check if one arg is always greater than (or equal) to the other arg.
1941     SDValue Op0 = Op.getOperand(0);
1942     SDValue Op1 = Op.getOperand(1);
1943     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1944     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1945     Known = KnownBits::umax(Known0, Known1);
1946     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1947       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1948     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1949       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1950     break;
1951   }
1952   case ISD::BITREVERSE: {
1953     SDValue Src = Op.getOperand(0);
1954     APInt DemandedSrcBits = DemandedBits.reverseBits();
1955     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1956                              Depth + 1))
1957       return true;
1958     Known.One = Known2.One.reverseBits();
1959     Known.Zero = Known2.Zero.reverseBits();
1960     break;
1961   }
1962   case ISD::BSWAP: {
1963     SDValue Src = Op.getOperand(0);
1964 
1965     // If the only bits demanded come from one byte of the bswap result,
1966     // just shift the input byte into position to eliminate the bswap.
1967     unsigned NLZ = DemandedBits.countLeadingZeros();
1968     unsigned NTZ = DemandedBits.countTrailingZeros();
1969 
1970     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
1971     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
1972     // have 14 leading zeros, round to 8.
1973     NLZ = alignDown(NLZ, 8);
1974     NTZ = alignDown(NTZ, 8);
1975     // If we need exactly one byte, we can do this transformation.
1976     if (BitWidth - NLZ - NTZ == 8) {
1977       // Replace this with either a left or right shift to get the byte into
1978       // the right place.
1979       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
1980       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
1981         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
1982         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
1983         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
1984         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
1985         return TLO.CombineTo(Op, NewOp);
1986       }
1987     }
1988 
1989     APInt DemandedSrcBits = DemandedBits.byteSwap();
1990     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1991                              Depth + 1))
1992       return true;
1993     Known.One = Known2.One.byteSwap();
1994     Known.Zero = Known2.Zero.byteSwap();
1995     break;
1996   }
1997   case ISD::CTPOP: {
1998     // If only 1 bit is demanded, replace with PARITY as long as we're before
1999     // op legalization.
2000     // FIXME: Limit to scalars for now.
2001     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2002       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2003                                                Op.getOperand(0)));
2004 
2005     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2006     break;
2007   }
2008   case ISD::SIGN_EXTEND_INREG: {
2009     SDValue Op0 = Op.getOperand(0);
2010     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2011     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2012 
2013     // If we only care about the highest bit, don't bother shifting right.
2014     if (DemandedBits.isSignMask()) {
2015       unsigned MinSignedBits =
2016           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2017       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2018       // However if the input is already sign extended we expect the sign
2019       // extension to be dropped altogether later and do not simplify.
2020       if (!AlreadySignExtended) {
2021         // Compute the correct shift amount type, which must be getShiftAmountTy
2022         // for scalar types after legalization.
2023         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2024                                                getShiftAmountTy(VT, DL));
2025         return TLO.CombineTo(Op,
2026                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2027       }
2028     }
2029 
2030     // If none of the extended bits are demanded, eliminate the sextinreg.
2031     if (DemandedBits.getActiveBits() <= ExVTBits)
2032       return TLO.CombineTo(Op, Op0);
2033 
2034     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2035 
2036     // Since the sign extended bits are demanded, we know that the sign
2037     // bit is demanded.
2038     InputDemandedBits.setBit(ExVTBits - 1);
2039 
2040     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
2041       return true;
2042     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2043 
2044     // If the sign bit of the input is known set or clear, then we know the
2045     // top bits of the result.
2046 
2047     // If the input sign bit is known zero, convert this into a zero extension.
2048     if (Known.Zero[ExVTBits - 1])
2049       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2050 
2051     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2052     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2053       Known.One.setBitsFrom(ExVTBits);
2054       Known.Zero &= Mask;
2055     } else { // Input sign bit unknown
2056       Known.Zero &= Mask;
2057       Known.One &= Mask;
2058     }
2059     break;
2060   }
2061   case ISD::BUILD_PAIR: {
2062     EVT HalfVT = Op.getOperand(0).getValueType();
2063     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2064 
2065     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2066     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2067 
2068     KnownBits KnownLo, KnownHi;
2069 
2070     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2071       return true;
2072 
2073     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2074       return true;
2075 
2076     Known.Zero = KnownLo.Zero.zext(BitWidth) |
2077                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
2078 
2079     Known.One = KnownLo.One.zext(BitWidth) |
2080                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
2081     break;
2082   }
2083   case ISD::ZERO_EXTEND:
2084   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2085     SDValue Src = Op.getOperand(0);
2086     EVT SrcVT = Src.getValueType();
2087     unsigned InBits = SrcVT.getScalarSizeInBits();
2088     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2089     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2090 
2091     // If none of the top bits are demanded, convert this into an any_extend.
2092     if (DemandedBits.getActiveBits() <= InBits) {
2093       // If we only need the non-extended bits of the bottom element
2094       // then we can just bitcast to the result.
2095       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2096           VT.getSizeInBits() == SrcVT.getSizeInBits())
2097         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2098 
2099       unsigned Opc =
2100           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2101       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2102         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2103     }
2104 
2105     APInt InDemandedBits = DemandedBits.trunc(InBits);
2106     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2107     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2108                              Depth + 1))
2109       return true;
2110     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2111     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2112     Known = Known.zext(BitWidth);
2113 
2114     // Attempt to avoid multi-use ops if we don't need anything from them.
2115     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2116             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2117       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2118     break;
2119   }
2120   case ISD::SIGN_EXTEND:
2121   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2122     SDValue Src = Op.getOperand(0);
2123     EVT SrcVT = Src.getValueType();
2124     unsigned InBits = SrcVT.getScalarSizeInBits();
2125     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2126     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2127 
2128     // If none of the top bits are demanded, convert this into an any_extend.
2129     if (DemandedBits.getActiveBits() <= InBits) {
2130       // If we only need the non-extended bits of the bottom element
2131       // then we can just bitcast to the result.
2132       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2133           VT.getSizeInBits() == SrcVT.getSizeInBits())
2134         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2135 
2136       unsigned Opc =
2137           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2138       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2139         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2140     }
2141 
2142     APInt InDemandedBits = DemandedBits.trunc(InBits);
2143     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2144 
2145     // Since some of the sign extended bits are demanded, we know that the sign
2146     // bit is demanded.
2147     InDemandedBits.setBit(InBits - 1);
2148 
2149     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2150                              Depth + 1))
2151       return true;
2152     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2153     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2154 
2155     // If the sign bit is known one, the top bits match.
2156     Known = Known.sext(BitWidth);
2157 
2158     // If the sign bit is known zero, convert this to a zero extend.
2159     if (Known.isNonNegative()) {
2160       unsigned Opc =
2161           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2162       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2163         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2164     }
2165 
2166     // Attempt to avoid multi-use ops if we don't need anything from them.
2167     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2168             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2169       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2170     break;
2171   }
2172   case ISD::ANY_EXTEND:
2173   case ISD::ANY_EXTEND_VECTOR_INREG: {
2174     SDValue Src = Op.getOperand(0);
2175     EVT SrcVT = Src.getValueType();
2176     unsigned InBits = SrcVT.getScalarSizeInBits();
2177     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2178     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2179 
2180     // If we only need the bottom element then we can just bitcast.
2181     // TODO: Handle ANY_EXTEND?
2182     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2183         VT.getSizeInBits() == SrcVT.getSizeInBits())
2184       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2185 
2186     APInt InDemandedBits = DemandedBits.trunc(InBits);
2187     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2188     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2189                              Depth + 1))
2190       return true;
2191     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2192     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2193     Known = Known.anyext(BitWidth);
2194 
2195     // Attempt to avoid multi-use ops if we don't need anything from them.
2196     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2197             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2198       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2199     break;
2200   }
2201   case ISD::TRUNCATE: {
2202     SDValue Src = Op.getOperand(0);
2203 
2204     // Simplify the input, using demanded bit information, and compute the known
2205     // zero/one bits live out.
2206     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2207     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2208     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2209                              Depth + 1))
2210       return true;
2211     Known = Known.trunc(BitWidth);
2212 
2213     // Attempt to avoid multi-use ops if we don't need anything from them.
2214     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2215             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2216       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2217 
2218     // If the input is only used by this truncate, see if we can shrink it based
2219     // on the known demanded bits.
2220     if (Src.getNode()->hasOneUse()) {
2221       switch (Src.getOpcode()) {
2222       default:
2223         break;
2224       case ISD::SRL:
2225         // Shrink SRL by a constant if none of the high bits shifted in are
2226         // demanded.
2227         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2228           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2229           // undesirable.
2230           break;
2231 
2232         const APInt *ShAmtC =
2233             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2234         if (!ShAmtC || ShAmtC->uge(BitWidth))
2235           break;
2236         uint64_t ShVal = ShAmtC->getZExtValue();
2237 
2238         APInt HighBits =
2239             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2240         HighBits.lshrInPlace(ShVal);
2241         HighBits = HighBits.trunc(BitWidth);
2242 
2243         if (!(HighBits & DemandedBits)) {
2244           // None of the shifted in bits are needed.  Add a truncate of the
2245           // shift input, then shift it.
2246           SDValue NewShAmt = TLO.DAG.getConstant(
2247               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2248           SDValue NewTrunc =
2249               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2250           return TLO.CombineTo(
2251               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2252         }
2253         break;
2254       }
2255     }
2256 
2257     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2258     break;
2259   }
2260   case ISD::AssertZext: {
2261     // AssertZext demands all of the high bits, plus any of the low bits
2262     // demanded by its users.
2263     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2264     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2265     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2266                              TLO, Depth + 1))
2267       return true;
2268     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2269 
2270     Known.Zero |= ~InMask;
2271     break;
2272   }
2273   case ISD::EXTRACT_VECTOR_ELT: {
2274     SDValue Src = Op.getOperand(0);
2275     SDValue Idx = Op.getOperand(1);
2276     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2277     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2278 
2279     if (SrcEltCnt.isScalable())
2280       return false;
2281 
2282     // Demand the bits from every vector element without a constant index.
2283     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2284     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2285     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2286       if (CIdx->getAPIntValue().ult(NumSrcElts))
2287         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2288 
2289     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2290     // anything about the extended bits.
2291     APInt DemandedSrcBits = DemandedBits;
2292     if (BitWidth > EltBitWidth)
2293       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2294 
2295     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2296                              Depth + 1))
2297       return true;
2298 
2299     // Attempt to avoid multi-use ops if we don't need anything from them.
2300     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2301       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2302               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2303         SDValue NewOp =
2304             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2305         return TLO.CombineTo(Op, NewOp);
2306       }
2307     }
2308 
2309     Known = Known2;
2310     if (BitWidth > EltBitWidth)
2311       Known = Known.anyext(BitWidth);
2312     break;
2313   }
2314   case ISD::BITCAST: {
2315     SDValue Src = Op.getOperand(0);
2316     EVT SrcVT = Src.getValueType();
2317     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2318 
2319     // If this is an FP->Int bitcast and if the sign bit is the only
2320     // thing demanded, turn this into a FGETSIGN.
2321     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2322         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2323         SrcVT.isFloatingPoint()) {
2324       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2325       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2326       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2327           SrcVT != MVT::f128) {
2328         // Cannot eliminate/lower SHL for f128 yet.
2329         EVT Ty = OpVTLegal ? VT : MVT::i32;
2330         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2331         // place.  We expect the SHL to be eliminated by other optimizations.
2332         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2333         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2334         if (!OpVTLegal && OpVTSizeInBits > 32)
2335           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2336         unsigned ShVal = Op.getValueSizeInBits() - 1;
2337         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2338         return TLO.CombineTo(Op,
2339                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2340       }
2341     }
2342 
2343     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2344     // Demand the elt/bit if any of the original elts/bits are demanded.
2345     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2346       unsigned Scale = BitWidth / NumSrcEltBits;
2347       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2348       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2349       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2350       for (unsigned i = 0; i != Scale; ++i) {
2351         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2352         unsigned BitOffset = EltOffset * NumSrcEltBits;
2353         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2354         if (!Sub.isZero()) {
2355           DemandedSrcBits |= Sub;
2356           for (unsigned j = 0; j != NumElts; ++j)
2357             if (DemandedElts[j])
2358               DemandedSrcElts.setBit((j * Scale) + i);
2359         }
2360       }
2361 
2362       APInt KnownSrcUndef, KnownSrcZero;
2363       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2364                                      KnownSrcZero, TLO, Depth + 1))
2365         return true;
2366 
2367       KnownBits KnownSrcBits;
2368       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2369                                KnownSrcBits, TLO, Depth + 1))
2370         return true;
2371     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2372       // TODO - bigendian once we have test coverage.
2373       unsigned Scale = NumSrcEltBits / BitWidth;
2374       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2375       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2376       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2377       for (unsigned i = 0; i != NumElts; ++i)
2378         if (DemandedElts[i]) {
2379           unsigned Offset = (i % Scale) * BitWidth;
2380           DemandedSrcBits.insertBits(DemandedBits, Offset);
2381           DemandedSrcElts.setBit(i / Scale);
2382         }
2383 
2384       if (SrcVT.isVector()) {
2385         APInt KnownSrcUndef, KnownSrcZero;
2386         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2387                                        KnownSrcZero, TLO, Depth + 1))
2388           return true;
2389       }
2390 
2391       KnownBits KnownSrcBits;
2392       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2393                                KnownSrcBits, TLO, Depth + 1))
2394         return true;
2395     }
2396 
2397     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2398     // recursive call where Known may be useful to the caller.
2399     if (Depth > 0) {
2400       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2401       return false;
2402     }
2403     break;
2404   }
2405   case ISD::MUL:
2406     if (DemandedBits.isPowerOf2()) {
2407       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2408       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2409       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2410       unsigned CTZ = DemandedBits.countTrailingZeros();
2411       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2412       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2413         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2414         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2415         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2416         return TLO.CombineTo(Op, Shl);
2417       }
2418     }
2419     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2420     // X * X is odd iff X is odd.
2421     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2422     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2423       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2424       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2425       return TLO.CombineTo(Op, And1);
2426     }
2427     LLVM_FALLTHROUGH;
2428   case ISD::ADD:
2429   case ISD::SUB: {
2430     // Add, Sub, and Mul don't demand any bits in positions beyond that
2431     // of the highest bit demanded of them.
2432     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2433     SDNodeFlags Flags = Op.getNode()->getFlags();
2434     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2435     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2436     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2437                              Depth + 1) ||
2438         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2439                              Depth + 1) ||
2440         // See if the operation should be performed at a smaller bit width.
2441         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2442       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2443         // Disable the nsw and nuw flags. We can no longer guarantee that we
2444         // won't wrap after simplification.
2445         Flags.setNoSignedWrap(false);
2446         Flags.setNoUnsignedWrap(false);
2447         SDValue NewOp =
2448             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2449         return TLO.CombineTo(Op, NewOp);
2450       }
2451       return true;
2452     }
2453 
2454     // Attempt to avoid multi-use ops if we don't need anything from them.
2455     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2456       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2457           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2458       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2459           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2460       if (DemandedOp0 || DemandedOp1) {
2461         Flags.setNoSignedWrap(false);
2462         Flags.setNoUnsignedWrap(false);
2463         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2464         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2465         SDValue NewOp =
2466             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2467         return TLO.CombineTo(Op, NewOp);
2468       }
2469     }
2470 
2471     // If we have a constant operand, we may be able to turn it into -1 if we
2472     // do not demand the high bits. This can make the constant smaller to
2473     // encode, allow more general folding, or match specialized instruction
2474     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2475     // is probably not useful (and could be detrimental).
2476     ConstantSDNode *C = isConstOrConstSplat(Op1);
2477     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2478     if (C && !C->isAllOnes() && !C->isOne() &&
2479         (C->getAPIntValue() | HighMask).isAllOnes()) {
2480       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2481       // Disable the nsw and nuw flags. We can no longer guarantee that we
2482       // won't wrap after simplification.
2483       Flags.setNoSignedWrap(false);
2484       Flags.setNoUnsignedWrap(false);
2485       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2486       return TLO.CombineTo(Op, NewOp);
2487     }
2488 
2489     // Match a multiply with a disguised negated-power-of-2 and convert to a
2490     // an equivalent shift-left amount.
2491     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2492     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2493       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2494         return 0;
2495 
2496       // Don't touch opaque constants. Also, ignore zero and power-of-2
2497       // multiplies. Those will get folded later.
2498       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2499       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2500           !MulC->getAPIntValue().isPowerOf2()) {
2501         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2502         if (UnmaskedC.isNegatedPowerOf2())
2503           return (-UnmaskedC).logBase2();
2504       }
2505       return 0;
2506     };
2507 
2508     auto foldMul = [&](SDValue X, SDValue Y, unsigned ShlAmt) {
2509       EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2510       SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
2511       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2512       SDValue Sub = TLO.DAG.getNode(ISD::SUB, dl, VT, Y, Shl);
2513       return TLO.CombineTo(Op, Sub);
2514     };
2515 
2516     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2517       if (Op.getOpcode() == ISD::ADD) {
2518         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2519         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2520           return foldMul(Op0.getOperand(0), Op1, ShAmt);
2521         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2522         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2523           return foldMul(Op1.getOperand(0), Op0, ShAmt);
2524         // TODO:
2525         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2526       }
2527     }
2528 
2529     LLVM_FALLTHROUGH;
2530   }
2531   default:
2532     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2533       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2534                                             Known, TLO, Depth))
2535         return true;
2536       break;
2537     }
2538 
2539     // Just use computeKnownBits to compute output bits.
2540     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2541     break;
2542   }
2543 
2544   // If we know the value of all of the demanded bits, return this as a
2545   // constant.
2546   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2547     // Avoid folding to a constant if any OpaqueConstant is involved.
2548     const SDNode *N = Op.getNode();
2549     for (SDNode *Op :
2550          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2551       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2552         if (C->isOpaque())
2553           return false;
2554     }
2555     if (VT.isInteger())
2556       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2557     if (VT.isFloatingPoint())
2558       return TLO.CombineTo(
2559           Op,
2560           TLO.DAG.getConstantFP(
2561               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2562   }
2563 
2564   return false;
2565 }
2566 
2567 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2568                                                 const APInt &DemandedElts,
2569                                                 DAGCombinerInfo &DCI) const {
2570   SelectionDAG &DAG = DCI.DAG;
2571   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2572                         !DCI.isBeforeLegalizeOps());
2573 
2574   APInt KnownUndef, KnownZero;
2575   bool Simplified =
2576       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2577   if (Simplified) {
2578     DCI.AddToWorklist(Op.getNode());
2579     DCI.CommitTargetLoweringOpt(TLO);
2580   }
2581 
2582   return Simplified;
2583 }
2584 
2585 /// Given a vector binary operation and known undefined elements for each input
2586 /// operand, compute whether each element of the output is undefined.
2587 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2588                                          const APInt &UndefOp0,
2589                                          const APInt &UndefOp1) {
2590   EVT VT = BO.getValueType();
2591   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2592          "Vector binop only");
2593 
2594   EVT EltVT = VT.getVectorElementType();
2595   unsigned NumElts = VT.getVectorNumElements();
2596   assert(UndefOp0.getBitWidth() == NumElts &&
2597          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2598 
2599   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2600                                    const APInt &UndefVals) {
2601     if (UndefVals[Index])
2602       return DAG.getUNDEF(EltVT);
2603 
2604     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2605       // Try hard to make sure that the getNode() call is not creating temporary
2606       // nodes. Ignore opaque integers because they do not constant fold.
2607       SDValue Elt = BV->getOperand(Index);
2608       auto *C = dyn_cast<ConstantSDNode>(Elt);
2609       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2610         return Elt;
2611     }
2612 
2613     return SDValue();
2614   };
2615 
2616   APInt KnownUndef = APInt::getZero(NumElts);
2617   for (unsigned i = 0; i != NumElts; ++i) {
2618     // If both inputs for this element are either constant or undef and match
2619     // the element type, compute the constant/undef result for this element of
2620     // the vector.
2621     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2622     // not handle FP constants. The code within getNode() should be refactored
2623     // to avoid the danger of creating a bogus temporary node here.
2624     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2625     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2626     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2627       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2628         KnownUndef.setBit(i);
2629   }
2630   return KnownUndef;
2631 }
2632 
2633 bool TargetLowering::SimplifyDemandedVectorElts(
2634     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2635     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2636     bool AssumeSingleUse) const {
2637   EVT VT = Op.getValueType();
2638   unsigned Opcode = Op.getOpcode();
2639   APInt DemandedElts = OriginalDemandedElts;
2640   unsigned NumElts = DemandedElts.getBitWidth();
2641   assert(VT.isVector() && "Expected vector op");
2642 
2643   KnownUndef = KnownZero = APInt::getZero(NumElts);
2644 
2645   // TODO: For now we assume we know nothing about scalable vectors.
2646   if (VT.isScalableVector())
2647     return false;
2648 
2649   assert(VT.getVectorNumElements() == NumElts &&
2650          "Mask size mismatches value type element count!");
2651 
2652   // Undef operand.
2653   if (Op.isUndef()) {
2654     KnownUndef.setAllBits();
2655     return false;
2656   }
2657 
2658   // If Op has other users, assume that all elements are needed.
2659   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2660     DemandedElts.setAllBits();
2661 
2662   // Not demanding any elements from Op.
2663   if (DemandedElts == 0) {
2664     KnownUndef.setAllBits();
2665     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2666   }
2667 
2668   // Limit search depth.
2669   if (Depth >= SelectionDAG::MaxRecursionDepth)
2670     return false;
2671 
2672   SDLoc DL(Op);
2673   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2674   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2675 
2676   // Helper for demanding the specified elements and all the bits of both binary
2677   // operands.
2678   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2679     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2680                                                            TLO.DAG, Depth + 1);
2681     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2682                                                            TLO.DAG, Depth + 1);
2683     if (NewOp0 || NewOp1) {
2684       SDValue NewOp = TLO.DAG.getNode(
2685           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2686       return TLO.CombineTo(Op, NewOp);
2687     }
2688     return false;
2689   };
2690 
2691   switch (Opcode) {
2692   case ISD::SCALAR_TO_VECTOR: {
2693     if (!DemandedElts[0]) {
2694       KnownUndef.setAllBits();
2695       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2696     }
2697     SDValue ScalarSrc = Op.getOperand(0);
2698     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2699       SDValue Src = ScalarSrc.getOperand(0);
2700       SDValue Idx = ScalarSrc.getOperand(1);
2701       EVT SrcVT = Src.getValueType();
2702 
2703       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2704 
2705       if (SrcEltCnt.isScalable())
2706         return false;
2707 
2708       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2709       if (isNullConstant(Idx)) {
2710         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2711         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2712         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2713         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2714                                        TLO, Depth + 1))
2715           return true;
2716       }
2717     }
2718     KnownUndef.setHighBits(NumElts - 1);
2719     break;
2720   }
2721   case ISD::BITCAST: {
2722     SDValue Src = Op.getOperand(0);
2723     EVT SrcVT = Src.getValueType();
2724 
2725     // We only handle vectors here.
2726     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2727     if (!SrcVT.isVector())
2728       break;
2729 
2730     // Fast handling of 'identity' bitcasts.
2731     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2732     if (NumSrcElts == NumElts)
2733       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2734                                         KnownZero, TLO, Depth + 1);
2735 
2736     APInt SrcDemandedElts, SrcZero, SrcUndef;
2737 
2738     // Bitcast from 'large element' src vector to 'small element' vector, we
2739     // must demand a source element if any DemandedElt maps to it.
2740     if ((NumElts % NumSrcElts) == 0) {
2741       unsigned Scale = NumElts / NumSrcElts;
2742       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2743       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2744                                      TLO, Depth + 1))
2745         return true;
2746 
2747       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2748       // of the large element.
2749       // TODO - bigendian once we have test coverage.
2750       if (IsLE) {
2751         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2752         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2753         for (unsigned i = 0; i != NumElts; ++i)
2754           if (DemandedElts[i]) {
2755             unsigned Ofs = (i % Scale) * EltSizeInBits;
2756             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2757           }
2758 
2759         KnownBits Known;
2760         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2761                                  TLO, Depth + 1))
2762           return true;
2763       }
2764 
2765       // If the src element is zero/undef then all the output elements will be -
2766       // only demanded elements are guaranteed to be correct.
2767       for (unsigned i = 0; i != NumSrcElts; ++i) {
2768         if (SrcDemandedElts[i]) {
2769           if (SrcZero[i])
2770             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2771           if (SrcUndef[i])
2772             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2773         }
2774       }
2775     }
2776 
2777     // Bitcast from 'small element' src vector to 'large element' vector, we
2778     // demand all smaller source elements covered by the larger demanded element
2779     // of this vector.
2780     if ((NumSrcElts % NumElts) == 0) {
2781       unsigned Scale = NumSrcElts / NumElts;
2782       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2783       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2784                                      TLO, Depth + 1))
2785         return true;
2786 
2787       // If all the src elements covering an output element are zero/undef, then
2788       // the output element will be as well, assuming it was demanded.
2789       for (unsigned i = 0; i != NumElts; ++i) {
2790         if (DemandedElts[i]) {
2791           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2792             KnownZero.setBit(i);
2793           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2794             KnownUndef.setBit(i);
2795         }
2796       }
2797     }
2798     break;
2799   }
2800   case ISD::BUILD_VECTOR: {
2801     // Check all elements and simplify any unused elements with UNDEF.
2802     if (!DemandedElts.isAllOnes()) {
2803       // Don't simplify BROADCASTS.
2804       if (llvm::any_of(Op->op_values(),
2805                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2806         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2807         bool Updated = false;
2808         for (unsigned i = 0; i != NumElts; ++i) {
2809           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2810             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2811             KnownUndef.setBit(i);
2812             Updated = true;
2813           }
2814         }
2815         if (Updated)
2816           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2817       }
2818     }
2819     for (unsigned i = 0; i != NumElts; ++i) {
2820       SDValue SrcOp = Op.getOperand(i);
2821       if (SrcOp.isUndef()) {
2822         KnownUndef.setBit(i);
2823       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2824                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2825         KnownZero.setBit(i);
2826       }
2827     }
2828     break;
2829   }
2830   case ISD::CONCAT_VECTORS: {
2831     EVT SubVT = Op.getOperand(0).getValueType();
2832     unsigned NumSubVecs = Op.getNumOperands();
2833     unsigned NumSubElts = SubVT.getVectorNumElements();
2834     for (unsigned i = 0; i != NumSubVecs; ++i) {
2835       SDValue SubOp = Op.getOperand(i);
2836       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2837       APInt SubUndef, SubZero;
2838       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2839                                      Depth + 1))
2840         return true;
2841       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2842       KnownZero.insertBits(SubZero, i * NumSubElts);
2843     }
2844     break;
2845   }
2846   case ISD::INSERT_SUBVECTOR: {
2847     // Demand any elements from the subvector and the remainder from the src its
2848     // inserted into.
2849     SDValue Src = Op.getOperand(0);
2850     SDValue Sub = Op.getOperand(1);
2851     uint64_t Idx = Op.getConstantOperandVal(2);
2852     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2853     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2854     APInt DemandedSrcElts = DemandedElts;
2855     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2856 
2857     APInt SubUndef, SubZero;
2858     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2859                                    Depth + 1))
2860       return true;
2861 
2862     // If none of the src operand elements are demanded, replace it with undef.
2863     if (!DemandedSrcElts && !Src.isUndef())
2864       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2865                                                TLO.DAG.getUNDEF(VT), Sub,
2866                                                Op.getOperand(2)));
2867 
2868     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2869                                    TLO, Depth + 1))
2870       return true;
2871     KnownUndef.insertBits(SubUndef, Idx);
2872     KnownZero.insertBits(SubZero, Idx);
2873 
2874     // Attempt to avoid multi-use ops if we don't need anything from them.
2875     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2876       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2877           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2878       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2879           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2880       if (NewSrc || NewSub) {
2881         NewSrc = NewSrc ? NewSrc : Src;
2882         NewSub = NewSub ? NewSub : Sub;
2883         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2884                                         NewSub, Op.getOperand(2));
2885         return TLO.CombineTo(Op, NewOp);
2886       }
2887     }
2888     break;
2889   }
2890   case ISD::EXTRACT_SUBVECTOR: {
2891     // Offset the demanded elts by the subvector index.
2892     SDValue Src = Op.getOperand(0);
2893     if (Src.getValueType().isScalableVector())
2894       break;
2895     uint64_t Idx = Op.getConstantOperandVal(1);
2896     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2897     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2898 
2899     APInt SrcUndef, SrcZero;
2900     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2901                                    Depth + 1))
2902       return true;
2903     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2904     KnownZero = SrcZero.extractBits(NumElts, Idx);
2905 
2906     // Attempt to avoid multi-use ops if we don't need anything from them.
2907     if (!DemandedElts.isAllOnes()) {
2908       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2909           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2910       if (NewSrc) {
2911         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2912                                         Op.getOperand(1));
2913         return TLO.CombineTo(Op, NewOp);
2914       }
2915     }
2916     break;
2917   }
2918   case ISD::INSERT_VECTOR_ELT: {
2919     SDValue Vec = Op.getOperand(0);
2920     SDValue Scl = Op.getOperand(1);
2921     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2922 
2923     // For a legal, constant insertion index, if we don't need this insertion
2924     // then strip it, else remove it from the demanded elts.
2925     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2926       unsigned Idx = CIdx->getZExtValue();
2927       if (!DemandedElts[Idx])
2928         return TLO.CombineTo(Op, Vec);
2929 
2930       APInt DemandedVecElts(DemandedElts);
2931       DemandedVecElts.clearBit(Idx);
2932       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2933                                      KnownZero, TLO, Depth + 1))
2934         return true;
2935 
2936       KnownUndef.setBitVal(Idx, Scl.isUndef());
2937 
2938       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2939       break;
2940     }
2941 
2942     APInt VecUndef, VecZero;
2943     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2944                                    Depth + 1))
2945       return true;
2946     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2947     break;
2948   }
2949   case ISD::VSELECT: {
2950     // Try to transform the select condition based on the current demanded
2951     // elements.
2952     // TODO: If a condition element is undef, we can choose from one arm of the
2953     //       select (and if one arm is undef, then we can propagate that to the
2954     //       result).
2955     // TODO - add support for constant vselect masks (see IR version of this).
2956     APInt UnusedUndef, UnusedZero;
2957     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2958                                    UnusedZero, TLO, Depth + 1))
2959       return true;
2960 
2961     // See if we can simplify either vselect operand.
2962     APInt DemandedLHS(DemandedElts);
2963     APInt DemandedRHS(DemandedElts);
2964     APInt UndefLHS, ZeroLHS;
2965     APInt UndefRHS, ZeroRHS;
2966     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2967                                    ZeroLHS, TLO, Depth + 1))
2968       return true;
2969     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2970                                    ZeroRHS, TLO, Depth + 1))
2971       return true;
2972 
2973     KnownUndef = UndefLHS & UndefRHS;
2974     KnownZero = ZeroLHS & ZeroRHS;
2975     break;
2976   }
2977   case ISD::VECTOR_SHUFFLE: {
2978     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2979 
2980     // Collect demanded elements from shuffle operands..
2981     APInt DemandedLHS(NumElts, 0);
2982     APInt DemandedRHS(NumElts, 0);
2983     for (unsigned i = 0; i != NumElts; ++i) {
2984       int M = ShuffleMask[i];
2985       if (M < 0 || !DemandedElts[i])
2986         continue;
2987       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2988       if (M < (int)NumElts)
2989         DemandedLHS.setBit(M);
2990       else
2991         DemandedRHS.setBit(M - NumElts);
2992     }
2993 
2994     // See if we can simplify either shuffle operand.
2995     APInt UndefLHS, ZeroLHS;
2996     APInt UndefRHS, ZeroRHS;
2997     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2998                                    ZeroLHS, TLO, Depth + 1))
2999       return true;
3000     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
3001                                    ZeroRHS, TLO, Depth + 1))
3002       return true;
3003 
3004     // Simplify mask using undef elements from LHS/RHS.
3005     bool Updated = false;
3006     bool IdentityLHS = true, IdentityRHS = true;
3007     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
3008     for (unsigned i = 0; i != NumElts; ++i) {
3009       int &M = NewMask[i];
3010       if (M < 0)
3011         continue;
3012       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3013           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3014         Updated = true;
3015         M = -1;
3016       }
3017       IdentityLHS &= (M < 0) || (M == (int)i);
3018       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3019     }
3020 
3021     // Update legal shuffle masks based on demanded elements if it won't reduce
3022     // to Identity which can cause premature removal of the shuffle mask.
3023     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3024       SDValue LegalShuffle =
3025           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
3026                                   NewMask, TLO.DAG);
3027       if (LegalShuffle)
3028         return TLO.CombineTo(Op, LegalShuffle);
3029     }
3030 
3031     // Propagate undef/zero elements from LHS/RHS.
3032     for (unsigned i = 0; i != NumElts; ++i) {
3033       int M = ShuffleMask[i];
3034       if (M < 0) {
3035         KnownUndef.setBit(i);
3036       } else if (M < (int)NumElts) {
3037         if (UndefLHS[M])
3038           KnownUndef.setBit(i);
3039         if (ZeroLHS[M])
3040           KnownZero.setBit(i);
3041       } else {
3042         if (UndefRHS[M - NumElts])
3043           KnownUndef.setBit(i);
3044         if (ZeroRHS[M - NumElts])
3045           KnownZero.setBit(i);
3046       }
3047     }
3048     break;
3049   }
3050   case ISD::ANY_EXTEND_VECTOR_INREG:
3051   case ISD::SIGN_EXTEND_VECTOR_INREG:
3052   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3053     APInt SrcUndef, SrcZero;
3054     SDValue Src = Op.getOperand(0);
3055     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3056     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
3057     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3058                                    Depth + 1))
3059       return true;
3060     KnownZero = SrcZero.zextOrTrunc(NumElts);
3061     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3062 
3063     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3064         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3065         DemandedSrcElts == 1) {
3066       // aext - if we just need the bottom element then we can bitcast.
3067       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3068     }
3069 
3070     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3071       // zext(undef) upper bits are guaranteed to be zero.
3072       if (DemandedElts.isSubsetOf(KnownUndef))
3073         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3074       KnownUndef.clearAllBits();
3075 
3076       // zext - if we just need the bottom element then we can mask:
3077       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3078       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3079           Op->isOnlyUserOf(Src.getNode()) &&
3080           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3081         SDLoc DL(Op);
3082         EVT SrcVT = Src.getValueType();
3083         EVT SrcSVT = SrcVT.getScalarType();
3084         SmallVector<SDValue> MaskElts;
3085         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3086         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3087         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3088         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3089                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3090           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3091           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3092         }
3093       }
3094     }
3095     break;
3096   }
3097 
3098   // TODO: There are more binop opcodes that could be handled here - MIN,
3099   // MAX, saturated math, etc.
3100   case ISD::ADD: {
3101     SDValue Op0 = Op.getOperand(0);
3102     SDValue Op1 = Op.getOperand(1);
3103     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3104       APInt UndefLHS, ZeroLHS;
3105       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3106                                      Depth + 1, /*AssumeSingleUse*/ true))
3107         return true;
3108     }
3109     LLVM_FALLTHROUGH;
3110   }
3111   case ISD::OR:
3112   case ISD::XOR:
3113   case ISD::SUB:
3114   case ISD::FADD:
3115   case ISD::FSUB:
3116   case ISD::FMUL:
3117   case ISD::FDIV:
3118   case ISD::FREM: {
3119     SDValue Op0 = Op.getOperand(0);
3120     SDValue Op1 = Op.getOperand(1);
3121 
3122     APInt UndefRHS, ZeroRHS;
3123     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3124                                    Depth + 1))
3125       return true;
3126     APInt UndefLHS, ZeroLHS;
3127     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3128                                    Depth + 1))
3129       return true;
3130 
3131     KnownZero = ZeroLHS & ZeroRHS;
3132     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3133 
3134     // Attempt to avoid multi-use ops if we don't need anything from them.
3135     // TODO - use KnownUndef to relax the demandedelts?
3136     if (!DemandedElts.isAllOnes())
3137       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3138         return true;
3139     break;
3140   }
3141   case ISD::SHL:
3142   case ISD::SRL:
3143   case ISD::SRA:
3144   case ISD::ROTL:
3145   case ISD::ROTR: {
3146     SDValue Op0 = Op.getOperand(0);
3147     SDValue Op1 = Op.getOperand(1);
3148 
3149     APInt UndefRHS, ZeroRHS;
3150     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3151                                    Depth + 1))
3152       return true;
3153     APInt UndefLHS, ZeroLHS;
3154     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3155                                    Depth + 1))
3156       return true;
3157 
3158     KnownZero = ZeroLHS;
3159     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3160 
3161     // Attempt to avoid multi-use ops if we don't need anything from them.
3162     // TODO - use KnownUndef to relax the demandedelts?
3163     if (!DemandedElts.isAllOnes())
3164       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3165         return true;
3166     break;
3167   }
3168   case ISD::MUL:
3169   case ISD::AND: {
3170     SDValue Op0 = Op.getOperand(0);
3171     SDValue Op1 = Op.getOperand(1);
3172 
3173     APInt SrcUndef, SrcZero;
3174     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3175                                    Depth + 1))
3176       return true;
3177     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
3178                                    TLO, Depth + 1))
3179       return true;
3180 
3181     // If either side has a zero element, then the result element is zero, even
3182     // if the other is an UNDEF.
3183     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3184     // and then handle 'and' nodes with the rest of the binop opcodes.
3185     KnownZero |= SrcZero;
3186     KnownUndef &= SrcUndef;
3187     KnownUndef &= ~KnownZero;
3188 
3189     // Attempt to avoid multi-use ops if we don't need anything from them.
3190     // TODO - use KnownUndef to relax the demandedelts?
3191     if (!DemandedElts.isAllOnes())
3192       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3193         return true;
3194     break;
3195   }
3196   case ISD::TRUNCATE:
3197   case ISD::SIGN_EXTEND:
3198   case ISD::ZERO_EXTEND:
3199     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3200                                    KnownZero, TLO, Depth + 1))
3201       return true;
3202 
3203     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3204       // zext(undef) upper bits are guaranteed to be zero.
3205       if (DemandedElts.isSubsetOf(KnownUndef))
3206         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3207       KnownUndef.clearAllBits();
3208     }
3209     break;
3210   default: {
3211     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3212       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3213                                                   KnownZero, TLO, Depth))
3214         return true;
3215     } else {
3216       KnownBits Known;
3217       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3218       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3219                                TLO, Depth, AssumeSingleUse))
3220         return true;
3221     }
3222     break;
3223   }
3224   }
3225   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3226 
3227   // Constant fold all undef cases.
3228   // TODO: Handle zero cases as well.
3229   if (DemandedElts.isSubsetOf(KnownUndef))
3230     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3231 
3232   return false;
3233 }
3234 
3235 /// Determine which of the bits specified in Mask are known to be either zero or
3236 /// one and return them in the Known.
3237 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3238                                                    KnownBits &Known,
3239                                                    const APInt &DemandedElts,
3240                                                    const SelectionDAG &DAG,
3241                                                    unsigned Depth) const {
3242   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3243           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3244           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3245           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3246          "Should use MaskedValueIsZero if you don't know whether Op"
3247          " is a target node!");
3248   Known.resetAll();
3249 }
3250 
3251 void TargetLowering::computeKnownBitsForTargetInstr(
3252     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3253     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3254     unsigned Depth) const {
3255   Known.resetAll();
3256 }
3257 
3258 void TargetLowering::computeKnownBitsForFrameIndex(
3259   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3260   // The low bits are known zero if the pointer is aligned.
3261   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3262 }
3263 
3264 Align TargetLowering::computeKnownAlignForTargetInstr(
3265   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3266   unsigned Depth) const {
3267   return Align(1);
3268 }
3269 
3270 /// This method can be implemented by targets that want to expose additional
3271 /// information about sign bits to the DAG Combiner.
3272 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3273                                                          const APInt &,
3274                                                          const SelectionDAG &,
3275                                                          unsigned Depth) const {
3276   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3277           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3278           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3279           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3280          "Should use ComputeNumSignBits if you don't know whether Op"
3281          " is a target node!");
3282   return 1;
3283 }
3284 
3285 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3286   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3287   const MachineRegisterInfo &MRI, unsigned Depth) const {
3288   return 1;
3289 }
3290 
3291 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3292     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3293     TargetLoweringOpt &TLO, unsigned Depth) const {
3294   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3295           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3296           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3297           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3298          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3299          " is a target node!");
3300   return false;
3301 }
3302 
3303 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3304     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3305     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3306   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3307           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3308           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3309           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3310          "Should use SimplifyDemandedBits if you don't know whether Op"
3311          " is a target node!");
3312   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3313   return false;
3314 }
3315 
3316 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3317     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3318     SelectionDAG &DAG, unsigned Depth) const {
3319   assert(
3320       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3321        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3322        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3323        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3324       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3325       " is a target node!");
3326   return SDValue();
3327 }
3328 
3329 SDValue
3330 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3331                                         SDValue N1, MutableArrayRef<int> Mask,
3332                                         SelectionDAG &DAG) const {
3333   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3334   if (!LegalMask) {
3335     std::swap(N0, N1);
3336     ShuffleVectorSDNode::commuteMask(Mask);
3337     LegalMask = isShuffleMaskLegal(Mask, VT);
3338   }
3339 
3340   if (!LegalMask)
3341     return SDValue();
3342 
3343   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3344 }
3345 
3346 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3347   return nullptr;
3348 }
3349 
3350 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3351     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3352     bool PoisonOnly, unsigned Depth) const {
3353   assert(
3354       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3355        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3356        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3357        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3358       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3359       " is a target node!");
3360   return false;
3361 }
3362 
3363 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3364                                                   const SelectionDAG &DAG,
3365                                                   bool SNaN,
3366                                                   unsigned Depth) const {
3367   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3368           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3369           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3370           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3371          "Should use isKnownNeverNaN if you don't know whether Op"
3372          " is a target node!");
3373   return false;
3374 }
3375 
3376 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3377                                                const APInt &DemandedElts,
3378                                                APInt &UndefElts,
3379                                                unsigned Depth) const {
3380   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3381           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3382           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3383           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3384          "Should use isSplatValue if you don't know whether Op"
3385          " is a target node!");
3386   return false;
3387 }
3388 
3389 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3390 // work with truncating build vectors and vectors with elements of less than
3391 // 8 bits.
3392 bool TargetLowering::isConstTrueVal(SDValue N) const {
3393   if (!N)
3394     return false;
3395 
3396   unsigned EltWidth;
3397   APInt CVal;
3398   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3399                                                /*AllowTruncation=*/true)) {
3400     CVal = CN->getAPIntValue();
3401     EltWidth = N.getValueType().getScalarSizeInBits();
3402   } else
3403     return false;
3404 
3405   // If this is a truncating splat, truncate the splat value.
3406   // Otherwise, we may fail to match the expected values below.
3407   if (EltWidth < CVal.getBitWidth())
3408     CVal = CVal.trunc(EltWidth);
3409 
3410   switch (getBooleanContents(N.getValueType())) {
3411   case UndefinedBooleanContent:
3412     return CVal[0];
3413   case ZeroOrOneBooleanContent:
3414     return CVal.isOne();
3415   case ZeroOrNegativeOneBooleanContent:
3416     return CVal.isAllOnes();
3417   }
3418 
3419   llvm_unreachable("Invalid boolean contents");
3420 }
3421 
3422 bool TargetLowering::isConstFalseVal(SDValue N) const {
3423   if (!N)
3424     return false;
3425 
3426   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3427   if (!CN) {
3428     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3429     if (!BV)
3430       return false;
3431 
3432     // Only interested in constant splats, we don't care about undef
3433     // elements in identifying boolean constants and getConstantSplatNode
3434     // returns NULL if all ops are undef;
3435     CN = BV->getConstantSplatNode();
3436     if (!CN)
3437       return false;
3438   }
3439 
3440   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3441     return !CN->getAPIntValue()[0];
3442 
3443   return CN->isZero();
3444 }
3445 
3446 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3447                                        bool SExt) const {
3448   if (VT == MVT::i1)
3449     return N->isOne();
3450 
3451   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3452   switch (Cnt) {
3453   case TargetLowering::ZeroOrOneBooleanContent:
3454     // An extended value of 1 is always true, unless its original type is i1,
3455     // in which case it will be sign extended to -1.
3456     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3457   case TargetLowering::UndefinedBooleanContent:
3458   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3459     return N->isAllOnes() && SExt;
3460   }
3461   llvm_unreachable("Unexpected enumeration.");
3462 }
3463 
3464 /// This helper function of SimplifySetCC tries to optimize the comparison when
3465 /// either operand of the SetCC node is a bitwise-and instruction.
3466 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3467                                          ISD::CondCode Cond, const SDLoc &DL,
3468                                          DAGCombinerInfo &DCI) const {
3469   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3470     std::swap(N0, N1);
3471 
3472   SelectionDAG &DAG = DCI.DAG;
3473   EVT OpVT = N0.getValueType();
3474   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3475       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3476     return SDValue();
3477 
3478   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3479   // iff everything but LSB is known zero:
3480   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3481       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3482        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3483     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3484     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3485     if (DAG.MaskedValueIsZero(N0, UpperBits))
3486       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3487   }
3488 
3489   // Match these patterns in any of their permutations:
3490   // (X & Y) == Y
3491   // (X & Y) != Y
3492   SDValue X, Y;
3493   if (N0.getOperand(0) == N1) {
3494     X = N0.getOperand(1);
3495     Y = N0.getOperand(0);
3496   } else if (N0.getOperand(1) == N1) {
3497     X = N0.getOperand(0);
3498     Y = N0.getOperand(1);
3499   } else {
3500     return SDValue();
3501   }
3502 
3503   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3504   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3505     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3506     // Note that where Y is variable and is known to have at most one bit set
3507     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3508     // equivalent when Y == 0.
3509     assert(OpVT.isInteger());
3510     Cond = ISD::getSetCCInverse(Cond, OpVT);
3511     if (DCI.isBeforeLegalizeOps() ||
3512         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3513       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3514   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3515     // If the target supports an 'and-not' or 'and-complement' logic operation,
3516     // try to use that to make a comparison operation more efficient.
3517     // But don't do this transform if the mask is a single bit because there are
3518     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3519     // 'rlwinm' on PPC).
3520 
3521     // Bail out if the compare operand that we want to turn into a zero is
3522     // already a zero (otherwise, infinite loop).
3523     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3524     if (YConst && YConst->isZero())
3525       return SDValue();
3526 
3527     // Transform this into: ~X & Y == 0.
3528     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3529     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3530     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3531   }
3532 
3533   return SDValue();
3534 }
3535 
3536 /// There are multiple IR patterns that could be checking whether certain
3537 /// truncation of a signed number would be lossy or not. The pattern which is
3538 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3539 /// We are looking for the following pattern: (KeptBits is a constant)
3540 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3541 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3542 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3543 /// We will unfold it into the natural trunc+sext pattern:
3544 ///   ((%x << C) a>> C) dstcond %x
3545 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3546 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3547     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3548     const SDLoc &DL) const {
3549   // We must be comparing with a constant.
3550   ConstantSDNode *C1;
3551   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3552     return SDValue();
3553 
3554   // N0 should be:  add %x, (1 << (KeptBits-1))
3555   if (N0->getOpcode() != ISD::ADD)
3556     return SDValue();
3557 
3558   // And we must be 'add'ing a constant.
3559   ConstantSDNode *C01;
3560   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3561     return SDValue();
3562 
3563   SDValue X = N0->getOperand(0);
3564   EVT XVT = X.getValueType();
3565 
3566   // Validate constants ...
3567 
3568   APInt I1 = C1->getAPIntValue();
3569 
3570   ISD::CondCode NewCond;
3571   if (Cond == ISD::CondCode::SETULT) {
3572     NewCond = ISD::CondCode::SETEQ;
3573   } else if (Cond == ISD::CondCode::SETULE) {
3574     NewCond = ISD::CondCode::SETEQ;
3575     // But need to 'canonicalize' the constant.
3576     I1 += 1;
3577   } else if (Cond == ISD::CondCode::SETUGT) {
3578     NewCond = ISD::CondCode::SETNE;
3579     // But need to 'canonicalize' the constant.
3580     I1 += 1;
3581   } else if (Cond == ISD::CondCode::SETUGE) {
3582     NewCond = ISD::CondCode::SETNE;
3583   } else
3584     return SDValue();
3585 
3586   APInt I01 = C01->getAPIntValue();
3587 
3588   auto checkConstants = [&I1, &I01]() -> bool {
3589     // Both of them must be power-of-two, and the constant from setcc is bigger.
3590     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3591   };
3592 
3593   if (checkConstants()) {
3594     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3595   } else {
3596     // What if we invert constants? (and the target predicate)
3597     I1.negate();
3598     I01.negate();
3599     assert(XVT.isInteger());
3600     NewCond = getSetCCInverse(NewCond, XVT);
3601     if (!checkConstants())
3602       return SDValue();
3603     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3604   }
3605 
3606   // They are power-of-two, so which bit is set?
3607   const unsigned KeptBits = I1.logBase2();
3608   const unsigned KeptBitsMinusOne = I01.logBase2();
3609 
3610   // Magic!
3611   if (KeptBits != (KeptBitsMinusOne + 1))
3612     return SDValue();
3613   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3614 
3615   // We don't want to do this in every single case.
3616   SelectionDAG &DAG = DCI.DAG;
3617   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3618           XVT, KeptBits))
3619     return SDValue();
3620 
3621   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3622   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3623 
3624   // Unfold into:  ((%x << C) a>> C) cond %x
3625   // Where 'cond' will be either 'eq' or 'ne'.
3626   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3627   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3628   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3629   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3630 
3631   return T2;
3632 }
3633 
3634 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3635 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3636     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3637     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3638   assert(isConstOrConstSplat(N1C) &&
3639          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3640          "Should be a comparison with 0.");
3641   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3642          "Valid only for [in]equality comparisons.");
3643 
3644   unsigned NewShiftOpcode;
3645   SDValue X, C, Y;
3646 
3647   SelectionDAG &DAG = DCI.DAG;
3648   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3649 
3650   // Look for '(C l>>/<< Y)'.
3651   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3652     // The shift should be one-use.
3653     if (!V.hasOneUse())
3654       return false;
3655     unsigned OldShiftOpcode = V.getOpcode();
3656     switch (OldShiftOpcode) {
3657     case ISD::SHL:
3658       NewShiftOpcode = ISD::SRL;
3659       break;
3660     case ISD::SRL:
3661       NewShiftOpcode = ISD::SHL;
3662       break;
3663     default:
3664       return false; // must be a logical shift.
3665     }
3666     // We should be shifting a constant.
3667     // FIXME: best to use isConstantOrConstantVector().
3668     C = V.getOperand(0);
3669     ConstantSDNode *CC =
3670         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3671     if (!CC)
3672       return false;
3673     Y = V.getOperand(1);
3674 
3675     ConstantSDNode *XC =
3676         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3677     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3678         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3679   };
3680 
3681   // LHS of comparison should be an one-use 'and'.
3682   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3683     return SDValue();
3684 
3685   X = N0.getOperand(0);
3686   SDValue Mask = N0.getOperand(1);
3687 
3688   // 'and' is commutative!
3689   if (!Match(Mask)) {
3690     std::swap(X, Mask);
3691     if (!Match(Mask))
3692       return SDValue();
3693   }
3694 
3695   EVT VT = X.getValueType();
3696 
3697   // Produce:
3698   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3699   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3700   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3701   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3702   return T2;
3703 }
3704 
3705 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3706 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3707 /// handle the commuted versions of these patterns.
3708 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3709                                            ISD::CondCode Cond, const SDLoc &DL,
3710                                            DAGCombinerInfo &DCI) const {
3711   unsigned BOpcode = N0.getOpcode();
3712   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3713          "Unexpected binop");
3714   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3715 
3716   // (X + Y) == X --> Y == 0
3717   // (X - Y) == X --> Y == 0
3718   // (X ^ Y) == X --> Y == 0
3719   SelectionDAG &DAG = DCI.DAG;
3720   EVT OpVT = N0.getValueType();
3721   SDValue X = N0.getOperand(0);
3722   SDValue Y = N0.getOperand(1);
3723   if (X == N1)
3724     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3725 
3726   if (Y != N1)
3727     return SDValue();
3728 
3729   // (X + Y) == Y --> X == 0
3730   // (X ^ Y) == Y --> X == 0
3731   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3732     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3733 
3734   // The shift would not be valid if the operands are boolean (i1).
3735   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3736     return SDValue();
3737 
3738   // (X - Y) == Y --> X == Y << 1
3739   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3740                                  !DCI.isBeforeLegalize());
3741   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3742   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3743   if (!DCI.isCalledByLegalizer())
3744     DCI.AddToWorklist(YShl1.getNode());
3745   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3746 }
3747 
3748 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3749                                       SDValue N0, const APInt &C1,
3750                                       ISD::CondCode Cond, const SDLoc &dl,
3751                                       SelectionDAG &DAG) {
3752   // Look through truncs that don't change the value of a ctpop.
3753   // FIXME: Add vector support? Need to be careful with setcc result type below.
3754   SDValue CTPOP = N0;
3755   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3756       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3757     CTPOP = N0.getOperand(0);
3758 
3759   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3760     return SDValue();
3761 
3762   EVT CTVT = CTPOP.getValueType();
3763   SDValue CTOp = CTPOP.getOperand(0);
3764 
3765   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3766   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3767   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3768     return SDValue();
3769 
3770   // (ctpop x) u< 2 -> (x & x-1) == 0
3771   // (ctpop x) u> 1 -> (x & x-1) != 0
3772   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3773     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3774     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3775       return SDValue();
3776     if (C1 == 0 && (Cond == ISD::SETULT))
3777       return SDValue(); // This is handled elsewhere.
3778 
3779     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3780 
3781     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3782     SDValue Result = CTOp;
3783     for (unsigned i = 0; i < Passes; i++) {
3784       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3785       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3786     }
3787     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3788     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3789   }
3790 
3791   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3792   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3793     // For scalars, keep CTPOP if it is legal or custom.
3794     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3795       return SDValue();
3796     // This is based on X86's custom lowering for CTPOP which produces more
3797     // instructions than the expansion here.
3798 
3799     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3800     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3801     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3802     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3803     assert(CTVT.isInteger());
3804     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3805     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3806     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3807     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3808     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3809     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3810     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3811   }
3812 
3813   return SDValue();
3814 }
3815 
3816 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
3817                                    ISD::CondCode Cond, const SDLoc &dl,
3818                                    SelectionDAG &DAG) {
3819   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3820     return SDValue();
3821 
3822   if (N0.getOpcode() != ISD::ROTL && N0.getOpcode() != ISD::ROTR)
3823     return SDValue();
3824 
3825   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3826   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
3827     return SDValue();
3828 
3829   // Peek through a rotated value compared against 0 or -1:
3830   // (rot X, Y) == 0/-1 --> X == 0/-1
3831   // (rot X, Y) != 0/-1 --> X != 0/-1
3832   return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3833 }
3834 
3835 /// Try to simplify a setcc built with the specified operands and cc. If it is
3836 /// unable to simplify it, return a null SDValue.
3837 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3838                                       ISD::CondCode Cond, bool foldBooleans,
3839                                       DAGCombinerInfo &DCI,
3840                                       const SDLoc &dl) const {
3841   SelectionDAG &DAG = DCI.DAG;
3842   const DataLayout &Layout = DAG.getDataLayout();
3843   EVT OpVT = N0.getValueType();
3844 
3845   // Constant fold or commute setcc.
3846   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3847     return Fold;
3848 
3849   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3850   // TODO: Handle non-splat vector constants. All undef causes trouble.
3851   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3852   // infinite loop here when we encounter one.
3853   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3854   if (isConstOrConstSplat(N0) &&
3855       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3856       (DCI.isBeforeLegalizeOps() ||
3857        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3858     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3859 
3860   // If we have a subtract with the same 2 non-constant operands as this setcc
3861   // -- but in reverse order -- then try to commute the operands of this setcc
3862   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3863   // instruction on some targets.
3864   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3865       (DCI.isBeforeLegalizeOps() ||
3866        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3867       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3868       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3869     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3870 
3871   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
3872     return V;
3873 
3874   if (auto *N1C = isConstOrConstSplat(N1)) {
3875     const APInt &C1 = N1C->getAPIntValue();
3876 
3877     // Optimize some CTPOP cases.
3878     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3879       return V;
3880 
3881     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3882     // equality comparison, then we're just comparing whether X itself is
3883     // zero.
3884     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
3885         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3886         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3887       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3888         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3889             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3890           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3891             // (srl (ctlz x), 5) == 0  -> X != 0
3892             // (srl (ctlz x), 5) != 1  -> X != 0
3893             Cond = ISD::SETNE;
3894           } else {
3895             // (srl (ctlz x), 5) != 0  -> X == 0
3896             // (srl (ctlz x), 5) == 1  -> X == 0
3897             Cond = ISD::SETEQ;
3898           }
3899           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3900           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3901                               Cond);
3902         }
3903       }
3904     }
3905   }
3906 
3907   // FIXME: Support vectors.
3908   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3909     const APInt &C1 = N1C->getAPIntValue();
3910 
3911     // (zext x) == C --> x == (trunc C)
3912     // (sext x) == C --> x == (trunc C)
3913     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3914         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3915       unsigned MinBits = N0.getValueSizeInBits();
3916       SDValue PreExt;
3917       bool Signed = false;
3918       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3919         // ZExt
3920         MinBits = N0->getOperand(0).getValueSizeInBits();
3921         PreExt = N0->getOperand(0);
3922       } else if (N0->getOpcode() == ISD::AND) {
3923         // DAGCombine turns costly ZExts into ANDs
3924         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3925           if ((C->getAPIntValue()+1).isPowerOf2()) {
3926             MinBits = C->getAPIntValue().countTrailingOnes();
3927             PreExt = N0->getOperand(0);
3928           }
3929       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3930         // SExt
3931         MinBits = N0->getOperand(0).getValueSizeInBits();
3932         PreExt = N0->getOperand(0);
3933         Signed = true;
3934       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3935         // ZEXTLOAD / SEXTLOAD
3936         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3937           MinBits = LN0->getMemoryVT().getSizeInBits();
3938           PreExt = N0;
3939         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3940           Signed = true;
3941           MinBits = LN0->getMemoryVT().getSizeInBits();
3942           PreExt = N0;
3943         }
3944       }
3945 
3946       // Figure out how many bits we need to preserve this constant.
3947       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
3948 
3949       // Make sure we're not losing bits from the constant.
3950       if (MinBits > 0 &&
3951           MinBits < C1.getBitWidth() &&
3952           MinBits >= ReqdBits) {
3953         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3954         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3955           // Will get folded away.
3956           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3957           if (MinBits == 1 && C1 == 1)
3958             // Invert the condition.
3959             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3960                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3961           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3962           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3963         }
3964 
3965         // If truncating the setcc operands is not desirable, we can still
3966         // simplify the expression in some cases:
3967         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3968         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3969         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3970         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3971         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3972         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3973         SDValue TopSetCC = N0->getOperand(0);
3974         unsigned N0Opc = N0->getOpcode();
3975         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3976         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3977             TopSetCC.getOpcode() == ISD::SETCC &&
3978             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3979             (isConstFalseVal(N1) ||
3980              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3981 
3982           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
3983                          (!N1C->isZero() && Cond == ISD::SETNE);
3984 
3985           if (!Inverse)
3986             return TopSetCC;
3987 
3988           ISD::CondCode InvCond = ISD::getSetCCInverse(
3989               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3990               TopSetCC.getOperand(0).getValueType());
3991           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3992                                       TopSetCC.getOperand(1),
3993                                       InvCond);
3994         }
3995       }
3996     }
3997 
3998     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3999     // equality or unsigned, and all 1 bits of the const are in the same
4000     // partial word, see if we can shorten the load.
4001     if (DCI.isBeforeLegalize() &&
4002         !ISD::isSignedIntSetCC(Cond) &&
4003         N0.getOpcode() == ISD::AND && C1 == 0 &&
4004         N0.getNode()->hasOneUse() &&
4005         isa<LoadSDNode>(N0.getOperand(0)) &&
4006         N0.getOperand(0).getNode()->hasOneUse() &&
4007         isa<ConstantSDNode>(N0.getOperand(1))) {
4008       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
4009       APInt bestMask;
4010       unsigned bestWidth = 0, bestOffset = 0;
4011       if (Lod->isSimple() && Lod->isUnindexed()) {
4012         unsigned origWidth = N0.getValueSizeInBits();
4013         unsigned maskWidth = origWidth;
4014         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4015         // 8 bits, but have to be careful...
4016         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4017           origWidth = Lod->getMemoryVT().getSizeInBits();
4018         const APInt &Mask = N0.getConstantOperandAPInt(1);
4019         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
4020           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4021           for (unsigned offset=0; offset<origWidth/width; offset++) {
4022             if (Mask.isSubsetOf(newMask)) {
4023               if (Layout.isLittleEndian())
4024                 bestOffset = (uint64_t)offset * (width/8);
4025               else
4026                 bestOffset = (origWidth/width - offset - 1) * (width/8);
4027               bestMask = Mask.lshr(offset * (width/8) * 8);
4028               bestWidth = width;
4029               break;
4030             }
4031             newMask <<= width;
4032           }
4033         }
4034       }
4035       if (bestWidth) {
4036         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4037         if (newVT.isRound() &&
4038             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
4039           SDValue Ptr = Lod->getBasePtr();
4040           if (bestOffset != 0)
4041             Ptr =
4042                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
4043           SDValue NewLoad =
4044               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4045                           Lod->getPointerInfo().getWithOffset(bestOffset),
4046                           Lod->getOriginalAlign());
4047           return DAG.getSetCC(dl, VT,
4048                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4049                                       DAG.getConstant(bestMask.trunc(bestWidth),
4050                                                       dl, newVT)),
4051                               DAG.getConstant(0LL, dl, newVT), Cond);
4052         }
4053       }
4054     }
4055 
4056     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4057     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4058       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4059 
4060       // If the comparison constant has bits in the upper part, the
4061       // zero-extended value could never match.
4062       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4063                                               C1.getBitWidth() - InSize))) {
4064         switch (Cond) {
4065         case ISD::SETUGT:
4066         case ISD::SETUGE:
4067         case ISD::SETEQ:
4068           return DAG.getConstant(0, dl, VT);
4069         case ISD::SETULT:
4070         case ISD::SETULE:
4071         case ISD::SETNE:
4072           return DAG.getConstant(1, dl, VT);
4073         case ISD::SETGT:
4074         case ISD::SETGE:
4075           // True if the sign bit of C1 is set.
4076           return DAG.getConstant(C1.isNegative(), dl, VT);
4077         case ISD::SETLT:
4078         case ISD::SETLE:
4079           // True if the sign bit of C1 isn't set.
4080           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4081         default:
4082           break;
4083         }
4084       }
4085 
4086       // Otherwise, we can perform the comparison with the low bits.
4087       switch (Cond) {
4088       case ISD::SETEQ:
4089       case ISD::SETNE:
4090       case ISD::SETUGT:
4091       case ISD::SETUGE:
4092       case ISD::SETULT:
4093       case ISD::SETULE: {
4094         EVT newVT = N0.getOperand(0).getValueType();
4095         if (DCI.isBeforeLegalizeOps() ||
4096             (isOperationLegal(ISD::SETCC, newVT) &&
4097              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4098           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4099           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4100 
4101           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4102                                           NewConst, Cond);
4103           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4104         }
4105         break;
4106       }
4107       default:
4108         break; // todo, be more careful with signed comparisons
4109       }
4110     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4111                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4112                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4113                                       OpVT)) {
4114       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4115       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4116       EVT ExtDstTy = N0.getValueType();
4117       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4118 
4119       // If the constant doesn't fit into the number of bits for the source of
4120       // the sign extension, it is impossible for both sides to be equal.
4121       if (C1.getMinSignedBits() > ExtSrcTyBits)
4122         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4123 
4124       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4125              ExtDstTy != ExtSrcTy && "Unexpected types!");
4126       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4127       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4128                                    DAG.getConstant(Imm, dl, ExtDstTy));
4129       if (!DCI.isCalledByLegalizer())
4130         DCI.AddToWorklist(ZextOp.getNode());
4131       // Otherwise, make this a use of a zext.
4132       return DAG.getSetCC(dl, VT, ZextOp,
4133                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4134     } else if ((N1C->isZero() || N1C->isOne()) &&
4135                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4136       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
4137       if (N0.getOpcode() == ISD::SETCC &&
4138           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4139           (N0.getValueType() == MVT::i1 ||
4140            getBooleanContents(N0.getOperand(0).getValueType()) ==
4141                        ZeroOrOneBooleanContent)) {
4142         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4143         if (TrueWhenTrue)
4144           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4145         // Invert the condition.
4146         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4147         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4148         if (DCI.isBeforeLegalizeOps() ||
4149             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4150           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4151       }
4152 
4153       if ((N0.getOpcode() == ISD::XOR ||
4154            (N0.getOpcode() == ISD::AND &&
4155             N0.getOperand(0).getOpcode() == ISD::XOR &&
4156             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4157           isOneConstant(N0.getOperand(1))) {
4158         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4159         // can only do this if the top bits are known zero.
4160         unsigned BitWidth = N0.getValueSizeInBits();
4161         if (DAG.MaskedValueIsZero(N0,
4162                                   APInt::getHighBitsSet(BitWidth,
4163                                                         BitWidth-1))) {
4164           // Okay, get the un-inverted input value.
4165           SDValue Val;
4166           if (N0.getOpcode() == ISD::XOR) {
4167             Val = N0.getOperand(0);
4168           } else {
4169             assert(N0.getOpcode() == ISD::AND &&
4170                     N0.getOperand(0).getOpcode() == ISD::XOR);
4171             // ((X^1)&1)^1 -> X & 1
4172             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4173                               N0.getOperand(0).getOperand(0),
4174                               N0.getOperand(1));
4175           }
4176 
4177           return DAG.getSetCC(dl, VT, Val, N1,
4178                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4179         }
4180       } else if (N1C->isOne()) {
4181         SDValue Op0 = N0;
4182         if (Op0.getOpcode() == ISD::TRUNCATE)
4183           Op0 = Op0.getOperand(0);
4184 
4185         if ((Op0.getOpcode() == ISD::XOR) &&
4186             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4187             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4188           SDValue XorLHS = Op0.getOperand(0);
4189           SDValue XorRHS = Op0.getOperand(1);
4190           // Ensure that the input setccs return an i1 type or 0/1 value.
4191           if (Op0.getValueType() == MVT::i1 ||
4192               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4193                       ZeroOrOneBooleanContent &&
4194                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4195                         ZeroOrOneBooleanContent)) {
4196             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4197             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4198             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4199           }
4200         }
4201         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4202           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4203           if (Op0.getValueType().bitsGT(VT))
4204             Op0 = DAG.getNode(ISD::AND, dl, VT,
4205                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4206                           DAG.getConstant(1, dl, VT));
4207           else if (Op0.getValueType().bitsLT(VT))
4208             Op0 = DAG.getNode(ISD::AND, dl, VT,
4209                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4210                         DAG.getConstant(1, dl, VT));
4211 
4212           return DAG.getSetCC(dl, VT, Op0,
4213                               DAG.getConstant(0, dl, Op0.getValueType()),
4214                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4215         }
4216         if (Op0.getOpcode() == ISD::AssertZext &&
4217             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4218           return DAG.getSetCC(dl, VT, Op0,
4219                               DAG.getConstant(0, dl, Op0.getValueType()),
4220                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4221       }
4222     }
4223 
4224     // Given:
4225     //   icmp eq/ne (urem %x, %y), 0
4226     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4227     //   icmp eq/ne %x, 0
4228     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4229         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4230       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4231       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4232       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4233         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4234     }
4235 
4236     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4237     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4238     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4239         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4240         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4241         N1C && N1C->isAllOnes()) {
4242       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4243                           DAG.getConstant(0, dl, OpVT),
4244                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4245     }
4246 
4247     if (SDValue V =
4248             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4249       return V;
4250   }
4251 
4252   // These simplifications apply to splat vectors as well.
4253   // TODO: Handle more splat vector cases.
4254   if (auto *N1C = isConstOrConstSplat(N1)) {
4255     const APInt &C1 = N1C->getAPIntValue();
4256 
4257     APInt MinVal, MaxVal;
4258     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4259     if (ISD::isSignedIntSetCC(Cond)) {
4260       MinVal = APInt::getSignedMinValue(OperandBitSize);
4261       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4262     } else {
4263       MinVal = APInt::getMinValue(OperandBitSize);
4264       MaxVal = APInt::getMaxValue(OperandBitSize);
4265     }
4266 
4267     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4268     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4269       // X >= MIN --> true
4270       if (C1 == MinVal)
4271         return DAG.getBoolConstant(true, dl, VT, OpVT);
4272 
4273       if (!VT.isVector()) { // TODO: Support this for vectors.
4274         // X >= C0 --> X > (C0 - 1)
4275         APInt C = C1 - 1;
4276         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4277         if ((DCI.isBeforeLegalizeOps() ||
4278              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4279             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4280                                   isLegalICmpImmediate(C.getSExtValue())))) {
4281           return DAG.getSetCC(dl, VT, N0,
4282                               DAG.getConstant(C, dl, N1.getValueType()),
4283                               NewCC);
4284         }
4285       }
4286     }
4287 
4288     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4289       // X <= MAX --> true
4290       if (C1 == MaxVal)
4291         return DAG.getBoolConstant(true, dl, VT, OpVT);
4292 
4293       // X <= C0 --> X < (C0 + 1)
4294       if (!VT.isVector()) { // TODO: Support this for vectors.
4295         APInt C = C1 + 1;
4296         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4297         if ((DCI.isBeforeLegalizeOps() ||
4298              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4299             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4300                                   isLegalICmpImmediate(C.getSExtValue())))) {
4301           return DAG.getSetCC(dl, VT, N0,
4302                               DAG.getConstant(C, dl, N1.getValueType()),
4303                               NewCC);
4304         }
4305       }
4306     }
4307 
4308     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4309       if (C1 == MinVal)
4310         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4311 
4312       // TODO: Support this for vectors after legalize ops.
4313       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4314         // Canonicalize setlt X, Max --> setne X, Max
4315         if (C1 == MaxVal)
4316           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4317 
4318         // If we have setult X, 1, turn it into seteq X, 0
4319         if (C1 == MinVal+1)
4320           return DAG.getSetCC(dl, VT, N0,
4321                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4322                               ISD::SETEQ);
4323       }
4324     }
4325 
4326     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4327       if (C1 == MaxVal)
4328         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4329 
4330       // TODO: Support this for vectors after legalize ops.
4331       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4332         // Canonicalize setgt X, Min --> setne X, Min
4333         if (C1 == MinVal)
4334           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4335 
4336         // If we have setugt X, Max-1, turn it into seteq X, Max
4337         if (C1 == MaxVal-1)
4338           return DAG.getSetCC(dl, VT, N0,
4339                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4340                               ISD::SETEQ);
4341       }
4342     }
4343 
4344     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4345       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4346       if (C1.isZero())
4347         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4348                 VT, N0, N1, Cond, DCI, dl))
4349           return CC;
4350 
4351       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4352       // For example, when high 32-bits of i64 X are known clear:
4353       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4354       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4355       bool CmpZero = N1C->getAPIntValue().isZero();
4356       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4357       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4358         // Match or(lo,shl(hi,bw/2)) pattern.
4359         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4360           unsigned EltBits = V.getScalarValueSizeInBits();
4361           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4362             return false;
4363           SDValue LHS = V.getOperand(0);
4364           SDValue RHS = V.getOperand(1);
4365           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4366           // Unshifted element must have zero upperbits.
4367           if (RHS.getOpcode() == ISD::SHL &&
4368               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4369               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4370               DAG.MaskedValueIsZero(LHS, HiBits)) {
4371             Lo = LHS;
4372             Hi = RHS.getOperand(0);
4373             return true;
4374           }
4375           if (LHS.getOpcode() == ISD::SHL &&
4376               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4377               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4378               DAG.MaskedValueIsZero(RHS, HiBits)) {
4379             Lo = RHS;
4380             Hi = LHS.getOperand(0);
4381             return true;
4382           }
4383           return false;
4384         };
4385 
4386         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4387           unsigned EltBits = N0.getScalarValueSizeInBits();
4388           unsigned HalfBits = EltBits / 2;
4389           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4390           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4391           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4392           SDValue NewN0 =
4393               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4394           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4395           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4396         };
4397 
4398         SDValue Lo, Hi;
4399         if (IsConcat(N0, Lo, Hi))
4400           return MergeConcat(Lo, Hi);
4401 
4402         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4403           SDValue Lo0, Lo1, Hi0, Hi1;
4404           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4405               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4406             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4407                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4408           }
4409         }
4410       }
4411     }
4412 
4413     // If we have "setcc X, C0", check to see if we can shrink the immediate
4414     // by changing cc.
4415     // TODO: Support this for vectors after legalize ops.
4416     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4417       // SETUGT X, SINTMAX  -> SETLT X, 0
4418       // SETUGE X, SINTMIN -> SETLT X, 0
4419       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4420           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4421         return DAG.getSetCC(dl, VT, N0,
4422                             DAG.getConstant(0, dl, N1.getValueType()),
4423                             ISD::SETLT);
4424 
4425       // SETULT X, SINTMIN  -> SETGT X, -1
4426       // SETULE X, SINTMAX  -> SETGT X, -1
4427       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4428           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4429         return DAG.getSetCC(dl, VT, N0,
4430                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4431                             ISD::SETGT);
4432     }
4433   }
4434 
4435   // Back to non-vector simplifications.
4436   // TODO: Can we do these for vector splats?
4437   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4438     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4439     const APInt &C1 = N1C->getAPIntValue();
4440     EVT ShValTy = N0.getValueType();
4441 
4442     // Fold bit comparisons when we can. This will result in an
4443     // incorrect value when boolean false is negative one, unless
4444     // the bitsize is 1 in which case the false value is the same
4445     // in practice regardless of the representation.
4446     if ((VT.getSizeInBits() == 1 ||
4447          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4448         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4449         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4450         N0.getOpcode() == ISD::AND) {
4451       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4452         EVT ShiftTy =
4453             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4454         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4455           // Perform the xform if the AND RHS is a single bit.
4456           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4457           if (AndRHS->getAPIntValue().isPowerOf2() &&
4458               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4459             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4460                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4461                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4462           }
4463         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4464           // (X & 8) == 8  -->  (X & 8) >> 3
4465           // Perform the xform if C1 is a single bit.
4466           unsigned ShCt = C1.logBase2();
4467           if (C1.isPowerOf2() &&
4468               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4469             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4470                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4471                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4472           }
4473         }
4474       }
4475     }
4476 
4477     if (C1.getMinSignedBits() <= 64 &&
4478         !isLegalICmpImmediate(C1.getSExtValue())) {
4479       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4480       // (X & -256) == 256 -> (X >> 8) == 1
4481       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4482           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4483         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4484           const APInt &AndRHSC = AndRHS->getAPIntValue();
4485           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4486             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4487             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4488               SDValue Shift =
4489                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4490                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4491               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4492               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4493             }
4494           }
4495         }
4496       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4497                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4498         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4499         // X <  0x100000000 -> (X >> 32) <  1
4500         // X >= 0x100000000 -> (X >> 32) >= 1
4501         // X <= 0x0ffffffff -> (X >> 32) <  1
4502         // X >  0x0ffffffff -> (X >> 32) >= 1
4503         unsigned ShiftBits;
4504         APInt NewC = C1;
4505         ISD::CondCode NewCond = Cond;
4506         if (AdjOne) {
4507           ShiftBits = C1.countTrailingOnes();
4508           NewC = NewC + 1;
4509           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4510         } else {
4511           ShiftBits = C1.countTrailingZeros();
4512         }
4513         NewC.lshrInPlace(ShiftBits);
4514         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4515             isLegalICmpImmediate(NewC.getSExtValue()) &&
4516             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4517           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4518                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4519           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4520           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4521         }
4522       }
4523     }
4524   }
4525 
4526   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4527     auto *CFP = cast<ConstantFPSDNode>(N1);
4528     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4529 
4530     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4531     // constant if knowing that the operand is non-nan is enough.  We prefer to
4532     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4533     // materialize 0.0.
4534     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4535       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4536 
4537     // setcc (fneg x), C -> setcc swap(pred) x, -C
4538     if (N0.getOpcode() == ISD::FNEG) {
4539       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4540       if (DCI.isBeforeLegalizeOps() ||
4541           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4542         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4543         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4544       }
4545     }
4546 
4547     // If the condition is not legal, see if we can find an equivalent one
4548     // which is legal.
4549     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4550       // If the comparison was an awkward floating-point == or != and one of
4551       // the comparison operands is infinity or negative infinity, convert the
4552       // condition to a less-awkward <= or >=.
4553       if (CFP->getValueAPF().isInfinity()) {
4554         bool IsNegInf = CFP->getValueAPF().isNegative();
4555         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4556         switch (Cond) {
4557         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4558         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4559         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4560         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4561         default: break;
4562         }
4563         if (NewCond != ISD::SETCC_INVALID &&
4564             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4565           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4566       }
4567     }
4568   }
4569 
4570   if (N0 == N1) {
4571     // The sext(setcc()) => setcc() optimization relies on the appropriate
4572     // constant being emitted.
4573     assert(!N0.getValueType().isInteger() &&
4574            "Integer types should be handled by FoldSetCC");
4575 
4576     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4577     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4578     if (UOF == 2) // FP operators that are undefined on NaNs.
4579       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4580     if (UOF == unsigned(EqTrue))
4581       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4582     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4583     // if it is not already.
4584     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4585     if (NewCond != Cond &&
4586         (DCI.isBeforeLegalizeOps() ||
4587                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4588       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4589   }
4590 
4591   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4592       N0.getValueType().isInteger()) {
4593     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4594         N0.getOpcode() == ISD::XOR) {
4595       // Simplify (X+Y) == (X+Z) -->  Y == Z
4596       if (N0.getOpcode() == N1.getOpcode()) {
4597         if (N0.getOperand(0) == N1.getOperand(0))
4598           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4599         if (N0.getOperand(1) == N1.getOperand(1))
4600           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4601         if (isCommutativeBinOp(N0.getOpcode())) {
4602           // If X op Y == Y op X, try other combinations.
4603           if (N0.getOperand(0) == N1.getOperand(1))
4604             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4605                                 Cond);
4606           if (N0.getOperand(1) == N1.getOperand(0))
4607             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4608                                 Cond);
4609         }
4610       }
4611 
4612       // If RHS is a legal immediate value for a compare instruction, we need
4613       // to be careful about increasing register pressure needlessly.
4614       bool LegalRHSImm = false;
4615 
4616       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4617         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4618           // Turn (X+C1) == C2 --> X == C2-C1
4619           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4620             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4621                                 DAG.getConstant(RHSC->getAPIntValue()-
4622                                                 LHSR->getAPIntValue(),
4623                                 dl, N0.getValueType()), Cond);
4624           }
4625 
4626           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4627           if (N0.getOpcode() == ISD::XOR)
4628             // If we know that all of the inverted bits are zero, don't bother
4629             // performing the inversion.
4630             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4631               return
4632                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4633                              DAG.getConstant(LHSR->getAPIntValue() ^
4634                                                RHSC->getAPIntValue(),
4635                                              dl, N0.getValueType()),
4636                              Cond);
4637         }
4638 
4639         // Turn (C1-X) == C2 --> X == C1-C2
4640         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4641           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4642             return
4643               DAG.getSetCC(dl, VT, N0.getOperand(1),
4644                            DAG.getConstant(SUBC->getAPIntValue() -
4645                                              RHSC->getAPIntValue(),
4646                                            dl, N0.getValueType()),
4647                            Cond);
4648           }
4649         }
4650 
4651         // Could RHSC fold directly into a compare?
4652         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4653           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4654       }
4655 
4656       // (X+Y) == X --> Y == 0 and similar folds.
4657       // Don't do this if X is an immediate that can fold into a cmp
4658       // instruction and X+Y has other uses. It could be an induction variable
4659       // chain, and the transform would increase register pressure.
4660       if (!LegalRHSImm || N0.hasOneUse())
4661         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4662           return V;
4663     }
4664 
4665     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4666         N1.getOpcode() == ISD::XOR)
4667       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4668         return V;
4669 
4670     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4671       return V;
4672   }
4673 
4674   // Fold remainder of division by a constant.
4675   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4676       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4677     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4678 
4679     // When division is cheap or optimizing for minimum size,
4680     // fall through to DIVREM creation by skipping this fold.
4681     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4682       if (N0.getOpcode() == ISD::UREM) {
4683         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4684           return Folded;
4685       } else if (N0.getOpcode() == ISD::SREM) {
4686         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4687           return Folded;
4688       }
4689     }
4690   }
4691 
4692   // Fold away ALL boolean setcc's.
4693   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4694     SDValue Temp;
4695     switch (Cond) {
4696     default: llvm_unreachable("Unknown integer setcc!");
4697     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4698       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4699       N0 = DAG.getNOT(dl, Temp, OpVT);
4700       if (!DCI.isCalledByLegalizer())
4701         DCI.AddToWorklist(Temp.getNode());
4702       break;
4703     case ISD::SETNE:  // X != Y   -->  (X^Y)
4704       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4705       break;
4706     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4707     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4708       Temp = DAG.getNOT(dl, N0, OpVT);
4709       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4710       if (!DCI.isCalledByLegalizer())
4711         DCI.AddToWorklist(Temp.getNode());
4712       break;
4713     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4714     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4715       Temp = DAG.getNOT(dl, N1, OpVT);
4716       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4717       if (!DCI.isCalledByLegalizer())
4718         DCI.AddToWorklist(Temp.getNode());
4719       break;
4720     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4721     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4722       Temp = DAG.getNOT(dl, N0, OpVT);
4723       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4724       if (!DCI.isCalledByLegalizer())
4725         DCI.AddToWorklist(Temp.getNode());
4726       break;
4727     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4728     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4729       Temp = DAG.getNOT(dl, N1, OpVT);
4730       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4731       break;
4732     }
4733     if (VT.getScalarType() != MVT::i1) {
4734       if (!DCI.isCalledByLegalizer())
4735         DCI.AddToWorklist(N0.getNode());
4736       // FIXME: If running after legalize, we probably can't do this.
4737       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4738       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4739     }
4740     return N0;
4741   }
4742 
4743   // Could not fold it.
4744   return SDValue();
4745 }
4746 
4747 /// Returns true (and the GlobalValue and the offset) if the node is a
4748 /// GlobalAddress + offset.
4749 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4750                                     int64_t &Offset) const {
4751 
4752   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4753 
4754   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4755     GA = GASD->getGlobal();
4756     Offset += GASD->getOffset();
4757     return true;
4758   }
4759 
4760   if (N->getOpcode() == ISD::ADD) {
4761     SDValue N1 = N->getOperand(0);
4762     SDValue N2 = N->getOperand(1);
4763     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4764       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4765         Offset += V->getSExtValue();
4766         return true;
4767       }
4768     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4769       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4770         Offset += V->getSExtValue();
4771         return true;
4772       }
4773     }
4774   }
4775 
4776   return false;
4777 }
4778 
4779 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4780                                           DAGCombinerInfo &DCI) const {
4781   // Default implementation: no optimization.
4782   return SDValue();
4783 }
4784 
4785 //===----------------------------------------------------------------------===//
4786 //  Inline Assembler Implementation Methods
4787 //===----------------------------------------------------------------------===//
4788 
4789 TargetLowering::ConstraintType
4790 TargetLowering::getConstraintType(StringRef Constraint) const {
4791   unsigned S = Constraint.size();
4792 
4793   if (S == 1) {
4794     switch (Constraint[0]) {
4795     default: break;
4796     case 'r':
4797       return C_RegisterClass;
4798     case 'm': // memory
4799     case 'o': // offsetable
4800     case 'V': // not offsetable
4801       return C_Memory;
4802     case 'n': // Simple Integer
4803     case 'E': // Floating Point Constant
4804     case 'F': // Floating Point Constant
4805       return C_Immediate;
4806     case 'i': // Simple Integer or Relocatable Constant
4807     case 's': // Relocatable Constant
4808     case 'p': // Address.
4809     case 'X': // Allow ANY value.
4810     case 'I': // Target registers.
4811     case 'J':
4812     case 'K':
4813     case 'L':
4814     case 'M':
4815     case 'N':
4816     case 'O':
4817     case 'P':
4818     case '<':
4819     case '>':
4820       return C_Other;
4821     }
4822   }
4823 
4824   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4825     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4826       return C_Memory;
4827     return C_Register;
4828   }
4829   return C_Unknown;
4830 }
4831 
4832 /// Try to replace an X constraint, which matches anything, with another that
4833 /// has more specific requirements based on the type of the corresponding
4834 /// operand.
4835 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4836   if (ConstraintVT.isInteger())
4837     return "r";
4838   if (ConstraintVT.isFloatingPoint())
4839     return "f"; // works for many targets
4840   return nullptr;
4841 }
4842 
4843 SDValue TargetLowering::LowerAsmOutputForConstraint(
4844     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4845     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4846   return SDValue();
4847 }
4848 
4849 /// Lower the specified operand into the Ops vector.
4850 /// If it is invalid, don't add anything to Ops.
4851 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4852                                                   std::string &Constraint,
4853                                                   std::vector<SDValue> &Ops,
4854                                                   SelectionDAG &DAG) const {
4855 
4856   if (Constraint.length() > 1) return;
4857 
4858   char ConstraintLetter = Constraint[0];
4859   switch (ConstraintLetter) {
4860   default: break;
4861   case 'X':    // Allows any operand
4862   case 'i':    // Simple Integer or Relocatable Constant
4863   case 'n':    // Simple Integer
4864   case 's': {  // Relocatable Constant
4865 
4866     ConstantSDNode *C;
4867     uint64_t Offset = 0;
4868 
4869     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4870     // etc., since getelementpointer is variadic. We can't use
4871     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4872     // while in this case the GA may be furthest from the root node which is
4873     // likely an ISD::ADD.
4874     while (true) {
4875       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4876         // gcc prints these as sign extended.  Sign extend value to 64 bits
4877         // now; without this it would get ZExt'd later in
4878         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4879         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4880         BooleanContent BCont = getBooleanContents(MVT::i64);
4881         ISD::NodeType ExtOpc =
4882             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4883         int64_t ExtVal =
4884             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4885         Ops.push_back(
4886             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4887         return;
4888       }
4889       if (ConstraintLetter != 'n') {
4890         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4891           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4892                                                    GA->getValueType(0),
4893                                                    Offset + GA->getOffset()));
4894           return;
4895         }
4896         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
4897           Ops.push_back(DAG.getTargetBlockAddress(
4898               BA->getBlockAddress(), BA->getValueType(0),
4899               Offset + BA->getOffset(), BA->getTargetFlags()));
4900           return;
4901         }
4902         if (isa<BasicBlockSDNode>(Op)) {
4903           Ops.push_back(Op);
4904           return;
4905         }
4906       }
4907       const unsigned OpCode = Op.getOpcode();
4908       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4909         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4910           Op = Op.getOperand(1);
4911         // Subtraction is not commutative.
4912         else if (OpCode == ISD::ADD &&
4913                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4914           Op = Op.getOperand(0);
4915         else
4916           return;
4917         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4918         continue;
4919       }
4920       return;
4921     }
4922     break;
4923   }
4924   }
4925 }
4926 
4927 std::pair<unsigned, const TargetRegisterClass *>
4928 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4929                                              StringRef Constraint,
4930                                              MVT VT) const {
4931   if (Constraint.empty() || Constraint[0] != '{')
4932     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4933   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4934 
4935   // Remove the braces from around the name.
4936   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4937 
4938   std::pair<unsigned, const TargetRegisterClass *> R =
4939       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4940 
4941   // Figure out which register class contains this reg.
4942   for (const TargetRegisterClass *RC : RI->regclasses()) {
4943     // If none of the value types for this register class are valid, we
4944     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4945     if (!isLegalRC(*RI, *RC))
4946       continue;
4947 
4948     for (const MCPhysReg &PR : *RC) {
4949       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
4950         std::pair<unsigned, const TargetRegisterClass *> S =
4951             std::make_pair(PR, RC);
4952 
4953         // If this register class has the requested value type, return it,
4954         // otherwise keep searching and return the first class found
4955         // if no other is found which explicitly has the requested type.
4956         if (RI->isTypeLegalForClass(*RC, VT))
4957           return S;
4958         if (!R.second)
4959           R = S;
4960       }
4961     }
4962   }
4963 
4964   return R;
4965 }
4966 
4967 //===----------------------------------------------------------------------===//
4968 // Constraint Selection.
4969 
4970 /// Return true of this is an input operand that is a matching constraint like
4971 /// "4".
4972 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4973   assert(!ConstraintCode.empty() && "No known constraint!");
4974   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4975 }
4976 
4977 /// If this is an input matching constraint, this method returns the output
4978 /// operand it matches.
4979 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4980   assert(!ConstraintCode.empty() && "No known constraint!");
4981   return atoi(ConstraintCode.c_str());
4982 }
4983 
4984 /// Split up the constraint string from the inline assembly value into the
4985 /// specific constraints and their prefixes, and also tie in the associated
4986 /// operand values.
4987 /// If this returns an empty vector, and if the constraint string itself
4988 /// isn't empty, there was an error parsing.
4989 TargetLowering::AsmOperandInfoVector
4990 TargetLowering::ParseConstraints(const DataLayout &DL,
4991                                  const TargetRegisterInfo *TRI,
4992                                  const CallBase &Call) const {
4993   /// Information about all of the constraints.
4994   AsmOperandInfoVector ConstraintOperands;
4995   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4996   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4997 
4998   // Do a prepass over the constraints, canonicalizing them, and building up the
4999   // ConstraintOperands list.
5000   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5001   unsigned ResNo = 0; // ResNo - The result number of the next output.
5002 
5003   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5004     ConstraintOperands.emplace_back(std::move(CI));
5005     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5006 
5007     // Update multiple alternative constraint count.
5008     if (OpInfo.multipleAlternatives.size() > maCount)
5009       maCount = OpInfo.multipleAlternatives.size();
5010 
5011     OpInfo.ConstraintVT = MVT::Other;
5012 
5013     // Compute the value type for each operand.
5014     switch (OpInfo.Type) {
5015     case InlineAsm::isOutput:
5016       // Indirect outputs just consume an argument.
5017       if (OpInfo.isIndirect) {
5018         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5019         break;
5020       }
5021 
5022       // The return value of the call is this value.  As such, there is no
5023       // corresponding argument.
5024       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5025       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
5026         OpInfo.ConstraintVT =
5027             getSimpleValueType(DL, STy->getElementType(ResNo));
5028       } else {
5029         assert(ResNo == 0 && "Asm only has one result!");
5030         OpInfo.ConstraintVT =
5031             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5032       }
5033       ++ResNo;
5034       break;
5035     case InlineAsm::isInput:
5036       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5037       break;
5038     case InlineAsm::isClobber:
5039       // Nothing to do.
5040       break;
5041     }
5042 
5043     if (OpInfo.CallOperandVal) {
5044       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5045       if (OpInfo.isIndirect) {
5046         OpTy = Call.getParamElementType(ArgNo);
5047         assert(OpTy && "Indirect opernad must have elementtype attribute");
5048       }
5049 
5050       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5051       if (StructType *STy = dyn_cast<StructType>(OpTy))
5052         if (STy->getNumElements() == 1)
5053           OpTy = STy->getElementType(0);
5054 
5055       // If OpTy is not a single value, it may be a struct/union that we
5056       // can tile with integers.
5057       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5058         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5059         switch (BitSize) {
5060         default: break;
5061         case 1:
5062         case 8:
5063         case 16:
5064         case 32:
5065         case 64:
5066         case 128:
5067           OpInfo.ConstraintVT =
5068               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
5069           break;
5070         }
5071       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
5072         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
5073         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
5074       } else {
5075         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
5076       }
5077 
5078       ArgNo++;
5079     }
5080   }
5081 
5082   // If we have multiple alternative constraints, select the best alternative.
5083   if (!ConstraintOperands.empty()) {
5084     if (maCount) {
5085       unsigned bestMAIndex = 0;
5086       int bestWeight = -1;
5087       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5088       int weight = -1;
5089       unsigned maIndex;
5090       // Compute the sums of the weights for each alternative, keeping track
5091       // of the best (highest weight) one so far.
5092       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5093         int weightSum = 0;
5094         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5095              cIndex != eIndex; ++cIndex) {
5096           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5097           if (OpInfo.Type == InlineAsm::isClobber)
5098             continue;
5099 
5100           // If this is an output operand with a matching input operand,
5101           // look up the matching input. If their types mismatch, e.g. one
5102           // is an integer, the other is floating point, or their sizes are
5103           // different, flag it as an maCantMatch.
5104           if (OpInfo.hasMatchingInput()) {
5105             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5106             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5107               if ((OpInfo.ConstraintVT.isInteger() !=
5108                    Input.ConstraintVT.isInteger()) ||
5109                   (OpInfo.ConstraintVT.getSizeInBits() !=
5110                    Input.ConstraintVT.getSizeInBits())) {
5111                 weightSum = -1; // Can't match.
5112                 break;
5113               }
5114             }
5115           }
5116           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5117           if (weight == -1) {
5118             weightSum = -1;
5119             break;
5120           }
5121           weightSum += weight;
5122         }
5123         // Update best.
5124         if (weightSum > bestWeight) {
5125           bestWeight = weightSum;
5126           bestMAIndex = maIndex;
5127         }
5128       }
5129 
5130       // Now select chosen alternative in each constraint.
5131       for (AsmOperandInfo &cInfo : ConstraintOperands)
5132         if (cInfo.Type != InlineAsm::isClobber)
5133           cInfo.selectAlternative(bestMAIndex);
5134     }
5135   }
5136 
5137   // Check and hook up tied operands, choose constraint code to use.
5138   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5139        cIndex != eIndex; ++cIndex) {
5140     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5141 
5142     // If this is an output operand with a matching input operand, look up the
5143     // matching input. If their types mismatch, e.g. one is an integer, the
5144     // other is floating point, or their sizes are different, flag it as an
5145     // error.
5146     if (OpInfo.hasMatchingInput()) {
5147       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5148 
5149       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5150         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5151             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5152                                          OpInfo.ConstraintVT);
5153         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5154             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5155                                          Input.ConstraintVT);
5156         if ((OpInfo.ConstraintVT.isInteger() !=
5157              Input.ConstraintVT.isInteger()) ||
5158             (MatchRC.second != InputRC.second)) {
5159           report_fatal_error("Unsupported asm: input constraint"
5160                              " with a matching output constraint of"
5161                              " incompatible type!");
5162         }
5163       }
5164     }
5165   }
5166 
5167   return ConstraintOperands;
5168 }
5169 
5170 /// Return an integer indicating how general CT is.
5171 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5172   switch (CT) {
5173   case TargetLowering::C_Immediate:
5174   case TargetLowering::C_Other:
5175   case TargetLowering::C_Unknown:
5176     return 0;
5177   case TargetLowering::C_Register:
5178     return 1;
5179   case TargetLowering::C_RegisterClass:
5180     return 2;
5181   case TargetLowering::C_Memory:
5182     return 3;
5183   }
5184   llvm_unreachable("Invalid constraint type");
5185 }
5186 
5187 /// Examine constraint type and operand type and determine a weight value.
5188 /// This object must already have been set up with the operand type
5189 /// and the current alternative constraint selected.
5190 TargetLowering::ConstraintWeight
5191   TargetLowering::getMultipleConstraintMatchWeight(
5192     AsmOperandInfo &info, int maIndex) const {
5193   InlineAsm::ConstraintCodeVector *rCodes;
5194   if (maIndex >= (int)info.multipleAlternatives.size())
5195     rCodes = &info.Codes;
5196   else
5197     rCodes = &info.multipleAlternatives[maIndex].Codes;
5198   ConstraintWeight BestWeight = CW_Invalid;
5199 
5200   // Loop over the options, keeping track of the most general one.
5201   for (const std::string &rCode : *rCodes) {
5202     ConstraintWeight weight =
5203         getSingleConstraintMatchWeight(info, rCode.c_str());
5204     if (weight > BestWeight)
5205       BestWeight = weight;
5206   }
5207 
5208   return BestWeight;
5209 }
5210 
5211 /// Examine constraint type and operand type and determine a weight value.
5212 /// This object must already have been set up with the operand type
5213 /// and the current alternative constraint selected.
5214 TargetLowering::ConstraintWeight
5215   TargetLowering::getSingleConstraintMatchWeight(
5216     AsmOperandInfo &info, const char *constraint) const {
5217   ConstraintWeight weight = CW_Invalid;
5218   Value *CallOperandVal = info.CallOperandVal;
5219     // If we don't have a value, we can't do a match,
5220     // but allow it at the lowest weight.
5221   if (!CallOperandVal)
5222     return CW_Default;
5223   // Look at the constraint type.
5224   switch (*constraint) {
5225     case 'i': // immediate integer.
5226     case 'n': // immediate integer with a known value.
5227       if (isa<ConstantInt>(CallOperandVal))
5228         weight = CW_Constant;
5229       break;
5230     case 's': // non-explicit intregal immediate.
5231       if (isa<GlobalValue>(CallOperandVal))
5232         weight = CW_Constant;
5233       break;
5234     case 'E': // immediate float if host format.
5235     case 'F': // immediate float.
5236       if (isa<ConstantFP>(CallOperandVal))
5237         weight = CW_Constant;
5238       break;
5239     case '<': // memory operand with autodecrement.
5240     case '>': // memory operand with autoincrement.
5241     case 'm': // memory operand.
5242     case 'o': // offsettable memory operand
5243     case 'V': // non-offsettable memory operand
5244       weight = CW_Memory;
5245       break;
5246     case 'r': // general register.
5247     case 'g': // general register, memory operand or immediate integer.
5248               // note: Clang converts "g" to "imr".
5249       if (CallOperandVal->getType()->isIntegerTy())
5250         weight = CW_Register;
5251       break;
5252     case 'X': // any operand.
5253   default:
5254     weight = CW_Default;
5255     break;
5256   }
5257   return weight;
5258 }
5259 
5260 /// If there are multiple different constraints that we could pick for this
5261 /// operand (e.g. "imr") try to pick the 'best' one.
5262 /// This is somewhat tricky: constraints fall into four classes:
5263 ///    Other         -> immediates and magic values
5264 ///    Register      -> one specific register
5265 ///    RegisterClass -> a group of regs
5266 ///    Memory        -> memory
5267 /// Ideally, we would pick the most specific constraint possible: if we have
5268 /// something that fits into a register, we would pick it.  The problem here
5269 /// is that if we have something that could either be in a register or in
5270 /// memory that use of the register could cause selection of *other*
5271 /// operands to fail: they might only succeed if we pick memory.  Because of
5272 /// this the heuristic we use is:
5273 ///
5274 ///  1) If there is an 'other' constraint, and if the operand is valid for
5275 ///     that constraint, use it.  This makes us take advantage of 'i'
5276 ///     constraints when available.
5277 ///  2) Otherwise, pick the most general constraint present.  This prefers
5278 ///     'm' over 'r', for example.
5279 ///
5280 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5281                              const TargetLowering &TLI,
5282                              SDValue Op, SelectionDAG *DAG) {
5283   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5284   unsigned BestIdx = 0;
5285   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5286   int BestGenerality = -1;
5287 
5288   // Loop over the options, keeping track of the most general one.
5289   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5290     TargetLowering::ConstraintType CType =
5291       TLI.getConstraintType(OpInfo.Codes[i]);
5292 
5293     // Indirect 'other' or 'immediate' constraints are not allowed.
5294     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5295                                CType == TargetLowering::C_Register ||
5296                                CType == TargetLowering::C_RegisterClass))
5297       continue;
5298 
5299     // If this is an 'other' or 'immediate' constraint, see if the operand is
5300     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5301     // the operand is an integer in the range [0..31] we want to use I (saving a
5302     // load of a register), otherwise we must use 'r'.
5303     if ((CType == TargetLowering::C_Other ||
5304          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5305       assert(OpInfo.Codes[i].size() == 1 &&
5306              "Unhandled multi-letter 'other' constraint");
5307       std::vector<SDValue> ResultOps;
5308       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5309                                        ResultOps, *DAG);
5310       if (!ResultOps.empty()) {
5311         BestType = CType;
5312         BestIdx = i;
5313         break;
5314       }
5315     }
5316 
5317     // Things with matching constraints can only be registers, per gcc
5318     // documentation.  This mainly affects "g" constraints.
5319     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5320       continue;
5321 
5322     // This constraint letter is more general than the previous one, use it.
5323     int Generality = getConstraintGenerality(CType);
5324     if (Generality > BestGenerality) {
5325       BestType = CType;
5326       BestIdx = i;
5327       BestGenerality = Generality;
5328     }
5329   }
5330 
5331   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5332   OpInfo.ConstraintType = BestType;
5333 }
5334 
5335 /// Determines the constraint code and constraint type to use for the specific
5336 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5337 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5338                                             SDValue Op,
5339                                             SelectionDAG *DAG) const {
5340   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5341 
5342   // Single-letter constraints ('r') are very common.
5343   if (OpInfo.Codes.size() == 1) {
5344     OpInfo.ConstraintCode = OpInfo.Codes[0];
5345     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5346   } else {
5347     ChooseConstraint(OpInfo, *this, Op, DAG);
5348   }
5349 
5350   // 'X' matches anything.
5351   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5352     // Constants are handled elsewhere.  For Functions, the type here is the
5353     // type of the result, which is not what we want to look at; leave them
5354     // alone.
5355     Value *v = OpInfo.CallOperandVal;
5356     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5357       return;
5358     }
5359 
5360     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5361       OpInfo.ConstraintCode = "i";
5362       return;
5363     }
5364 
5365     // Otherwise, try to resolve it to something we know about by looking at
5366     // the actual operand type.
5367     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5368       OpInfo.ConstraintCode = Repl;
5369       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5370     }
5371   }
5372 }
5373 
5374 /// Given an exact SDIV by a constant, create a multiplication
5375 /// with the multiplicative inverse of the constant.
5376 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5377                               const SDLoc &dl, SelectionDAG &DAG,
5378                               SmallVectorImpl<SDNode *> &Created) {
5379   SDValue Op0 = N->getOperand(0);
5380   SDValue Op1 = N->getOperand(1);
5381   EVT VT = N->getValueType(0);
5382   EVT SVT = VT.getScalarType();
5383   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5384   EVT ShSVT = ShVT.getScalarType();
5385 
5386   bool UseSRA = false;
5387   SmallVector<SDValue, 16> Shifts, Factors;
5388 
5389   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5390     if (C->isZero())
5391       return false;
5392     APInt Divisor = C->getAPIntValue();
5393     unsigned Shift = Divisor.countTrailingZeros();
5394     if (Shift) {
5395       Divisor.ashrInPlace(Shift);
5396       UseSRA = true;
5397     }
5398     // Calculate the multiplicative inverse, using Newton's method.
5399     APInt t;
5400     APInt Factor = Divisor;
5401     while ((t = Divisor * Factor) != 1)
5402       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5403     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5404     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5405     return true;
5406   };
5407 
5408   // Collect all magic values from the build vector.
5409   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5410     return SDValue();
5411 
5412   SDValue Shift, Factor;
5413   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5414     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5415     Factor = DAG.getBuildVector(VT, dl, Factors);
5416   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5417     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5418            "Expected matchUnaryPredicate to return one element for scalable "
5419            "vectors");
5420     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5421     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5422   } else {
5423     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5424     Shift = Shifts[0];
5425     Factor = Factors[0];
5426   }
5427 
5428   SDValue Res = Op0;
5429 
5430   // Shift the value upfront if it is even, so the LSB is one.
5431   if (UseSRA) {
5432     // TODO: For UDIV use SRL instead of SRA.
5433     SDNodeFlags Flags;
5434     Flags.setExact(true);
5435     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5436     Created.push_back(Res.getNode());
5437   }
5438 
5439   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5440 }
5441 
5442 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5443                               SelectionDAG &DAG,
5444                               SmallVectorImpl<SDNode *> &Created) const {
5445   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5446   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5447   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5448     return SDValue(N, 0); // Lower SDIV as SDIV
5449   return SDValue();
5450 }
5451 
5452 /// Given an ISD::SDIV node expressing a divide by constant,
5453 /// return a DAG expression to select that will generate the same value by
5454 /// multiplying by a magic number.
5455 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5456 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5457                                   bool IsAfterLegalization,
5458                                   SmallVectorImpl<SDNode *> &Created) const {
5459   SDLoc dl(N);
5460   EVT VT = N->getValueType(0);
5461   EVT SVT = VT.getScalarType();
5462   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5463   EVT ShSVT = ShVT.getScalarType();
5464   unsigned EltBits = VT.getScalarSizeInBits();
5465   EVT MulVT;
5466 
5467   // Check to see if we can do this.
5468   // FIXME: We should be more aggressive here.
5469   if (!isTypeLegal(VT)) {
5470     // Limit this to simple scalars for now.
5471     if (VT.isVector() || !VT.isSimple())
5472       return SDValue();
5473 
5474     // If this type will be promoted to a large enough type with a legal
5475     // multiply operation, we can go ahead and do this transform.
5476     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5477       return SDValue();
5478 
5479     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5480     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5481         !isOperationLegal(ISD::MUL, MulVT))
5482       return SDValue();
5483   }
5484 
5485   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5486   if (N->getFlags().hasExact())
5487     return BuildExactSDIV(*this, N, dl, DAG, Created);
5488 
5489   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5490 
5491   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5492     if (C->isZero())
5493       return false;
5494 
5495     const APInt &Divisor = C->getAPIntValue();
5496     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5497     int NumeratorFactor = 0;
5498     int ShiftMask = -1;
5499 
5500     if (Divisor.isOne() || Divisor.isAllOnes()) {
5501       // If d is +1/-1, we just multiply the numerator by +1/-1.
5502       NumeratorFactor = Divisor.getSExtValue();
5503       magics.Magic = 0;
5504       magics.ShiftAmount = 0;
5505       ShiftMask = 0;
5506     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5507       // If d > 0 and m < 0, add the numerator.
5508       NumeratorFactor = 1;
5509     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5510       // If d < 0 and m > 0, subtract the numerator.
5511       NumeratorFactor = -1;
5512     }
5513 
5514     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5515     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5516     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5517     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5518     return true;
5519   };
5520 
5521   SDValue N0 = N->getOperand(0);
5522   SDValue N1 = N->getOperand(1);
5523 
5524   // Collect the shifts / magic values from each element.
5525   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5526     return SDValue();
5527 
5528   SDValue MagicFactor, Factor, Shift, ShiftMask;
5529   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5530     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5531     Factor = DAG.getBuildVector(VT, dl, Factors);
5532     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5533     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5534   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5535     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5536            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5537            "Expected matchUnaryPredicate to return one element for scalable "
5538            "vectors");
5539     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5540     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5541     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5542     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5543   } else {
5544     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5545     MagicFactor = MagicFactors[0];
5546     Factor = Factors[0];
5547     Shift = Shifts[0];
5548     ShiftMask = ShiftMasks[0];
5549   }
5550 
5551   // Multiply the numerator (operand 0) by the magic value.
5552   // FIXME: We should support doing a MUL in a wider type.
5553   auto GetMULHS = [&](SDValue X, SDValue Y) {
5554     // If the type isn't legal, use a wider mul of the the type calculated
5555     // earlier.
5556     if (!isTypeLegal(VT)) {
5557       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5558       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5559       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5560       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5561                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5562       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5563     }
5564 
5565     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5566       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5567     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5568       SDValue LoHi =
5569           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5570       return SDValue(LoHi.getNode(), 1);
5571     }
5572     return SDValue();
5573   };
5574 
5575   SDValue Q = GetMULHS(N0, MagicFactor);
5576   if (!Q)
5577     return SDValue();
5578 
5579   Created.push_back(Q.getNode());
5580 
5581   // (Optionally) Add/subtract the numerator using Factor.
5582   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5583   Created.push_back(Factor.getNode());
5584   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5585   Created.push_back(Q.getNode());
5586 
5587   // Shift right algebraic by shift value.
5588   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5589   Created.push_back(Q.getNode());
5590 
5591   // Extract the sign bit, mask it and add it to the quotient.
5592   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5593   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5594   Created.push_back(T.getNode());
5595   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5596   Created.push_back(T.getNode());
5597   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5598 }
5599 
5600 /// Given an ISD::UDIV node expressing a divide by constant,
5601 /// return a DAG expression to select that will generate the same value by
5602 /// multiplying by a magic number.
5603 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5604 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5605                                   bool IsAfterLegalization,
5606                                   SmallVectorImpl<SDNode *> &Created) const {
5607   SDLoc dl(N);
5608   EVT VT = N->getValueType(0);
5609   EVT SVT = VT.getScalarType();
5610   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5611   EVT ShSVT = ShVT.getScalarType();
5612   unsigned EltBits = VT.getScalarSizeInBits();
5613   EVT MulVT;
5614 
5615   // Check to see if we can do this.
5616   // FIXME: We should be more aggressive here.
5617   if (!isTypeLegal(VT)) {
5618     // Limit this to simple scalars for now.
5619     if (VT.isVector() || !VT.isSimple())
5620       return SDValue();
5621 
5622     // If this type will be promoted to a large enough type with a legal
5623     // multiply operation, we can go ahead and do this transform.
5624     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5625       return SDValue();
5626 
5627     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5628     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5629         !isOperationLegal(ISD::MUL, MulVT))
5630       return SDValue();
5631   }
5632 
5633   bool UseNPQ = false;
5634   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5635 
5636   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5637     if (C->isZero())
5638       return false;
5639     // FIXME: We should use a narrower constant when the upper
5640     // bits are known to be zero.
5641     const APInt& Divisor = C->getAPIntValue();
5642     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5643     unsigned PreShift = 0, PostShift = 0;
5644 
5645     // If the divisor is even, we can avoid using the expensive fixup by
5646     // shifting the divided value upfront.
5647     if (magics.IsAdd != 0 && !Divisor[0]) {
5648       PreShift = Divisor.countTrailingZeros();
5649       // Get magic number for the shifted divisor.
5650       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5651       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5652     }
5653 
5654     APInt Magic = magics.Magic;
5655 
5656     unsigned SelNPQ;
5657     if (magics.IsAdd == 0 || Divisor.isOne()) {
5658       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5659              "We shouldn't generate an undefined shift!");
5660       PostShift = magics.ShiftAmount;
5661       SelNPQ = false;
5662     } else {
5663       PostShift = magics.ShiftAmount - 1;
5664       SelNPQ = true;
5665     }
5666 
5667     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5668     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5669     NPQFactors.push_back(
5670         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5671                                : APInt::getZero(EltBits),
5672                         dl, SVT));
5673     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5674     UseNPQ |= SelNPQ;
5675     return true;
5676   };
5677 
5678   SDValue N0 = N->getOperand(0);
5679   SDValue N1 = N->getOperand(1);
5680 
5681   // Collect the shifts/magic values from each element.
5682   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5683     return SDValue();
5684 
5685   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5686   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5687     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5688     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5689     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5690     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5691   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5692     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5693            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5694            "Expected matchUnaryPredicate to return one for scalable vectors");
5695     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5696     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5697     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5698     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5699   } else {
5700     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5701     PreShift = PreShifts[0];
5702     MagicFactor = MagicFactors[0];
5703     PostShift = PostShifts[0];
5704   }
5705 
5706   SDValue Q = N0;
5707   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5708   Created.push_back(Q.getNode());
5709 
5710   // FIXME: We should support doing a MUL in a wider type.
5711   auto GetMULHU = [&](SDValue X, SDValue Y) {
5712     // If the type isn't legal, use a wider mul of the the type calculated
5713     // earlier.
5714     if (!isTypeLegal(VT)) {
5715       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5716       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5717       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5718       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5719                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5720       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5721     }
5722 
5723     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5724       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5725     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5726       SDValue LoHi =
5727           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5728       return SDValue(LoHi.getNode(), 1);
5729     }
5730     return SDValue(); // No mulhu or equivalent
5731   };
5732 
5733   // Multiply the numerator (operand 0) by the magic value.
5734   Q = GetMULHU(Q, MagicFactor);
5735   if (!Q)
5736     return SDValue();
5737 
5738   Created.push_back(Q.getNode());
5739 
5740   if (UseNPQ) {
5741     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5742     Created.push_back(NPQ.getNode());
5743 
5744     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5745     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5746     if (VT.isVector())
5747       NPQ = GetMULHU(NPQ, NPQFactor);
5748     else
5749       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5750 
5751     Created.push_back(NPQ.getNode());
5752 
5753     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5754     Created.push_back(Q.getNode());
5755   }
5756 
5757   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5758   Created.push_back(Q.getNode());
5759 
5760   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5761 
5762   SDValue One = DAG.getConstant(1, dl, VT);
5763   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5764   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5765 }
5766 
5767 /// If all values in Values that *don't* match the predicate are same 'splat'
5768 /// value, then replace all values with that splat value.
5769 /// Else, if AlternativeReplacement was provided, then replace all values that
5770 /// do match predicate with AlternativeReplacement value.
5771 static void
5772 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5773                           std::function<bool(SDValue)> Predicate,
5774                           SDValue AlternativeReplacement = SDValue()) {
5775   SDValue Replacement;
5776   // Is there a value for which the Predicate does *NOT* match? What is it?
5777   auto SplatValue = llvm::find_if_not(Values, Predicate);
5778   if (SplatValue != Values.end()) {
5779     // Does Values consist only of SplatValue's and values matching Predicate?
5780     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5781           return Value == *SplatValue || Predicate(Value);
5782         })) // Then we shall replace values matching predicate with SplatValue.
5783       Replacement = *SplatValue;
5784   }
5785   if (!Replacement) {
5786     // Oops, we did not find the "baseline" splat value.
5787     if (!AlternativeReplacement)
5788       return; // Nothing to do.
5789     // Let's replace with provided value then.
5790     Replacement = AlternativeReplacement;
5791   }
5792   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5793 }
5794 
5795 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5796 /// where the divisor is constant and the comparison target is zero,
5797 /// return a DAG expression that will generate the same comparison result
5798 /// using only multiplications, additions and shifts/rotations.
5799 /// Ref: "Hacker's Delight" 10-17.
5800 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5801                                         SDValue CompTargetNode,
5802                                         ISD::CondCode Cond,
5803                                         DAGCombinerInfo &DCI,
5804                                         const SDLoc &DL) const {
5805   SmallVector<SDNode *, 5> Built;
5806   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5807                                          DCI, DL, Built)) {
5808     for (SDNode *N : Built)
5809       DCI.AddToWorklist(N);
5810     return Folded;
5811   }
5812 
5813   return SDValue();
5814 }
5815 
5816 SDValue
5817 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5818                                   SDValue CompTargetNode, ISD::CondCode Cond,
5819                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5820                                   SmallVectorImpl<SDNode *> &Created) const {
5821   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5822   // - D must be constant, with D = D0 * 2^K where D0 is odd
5823   // - P is the multiplicative inverse of D0 modulo 2^W
5824   // - Q = floor(((2^W) - 1) / D)
5825   // where W is the width of the common type of N and D.
5826   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5827          "Only applicable for (in)equality comparisons.");
5828 
5829   SelectionDAG &DAG = DCI.DAG;
5830 
5831   EVT VT = REMNode.getValueType();
5832   EVT SVT = VT.getScalarType();
5833   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5834   EVT ShSVT = ShVT.getScalarType();
5835 
5836   // If MUL is unavailable, we cannot proceed in any case.
5837   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5838     return SDValue();
5839 
5840   bool ComparingWithAllZeros = true;
5841   bool AllComparisonsWithNonZerosAreTautological = true;
5842   bool HadTautologicalLanes = false;
5843   bool AllLanesAreTautological = true;
5844   bool HadEvenDivisor = false;
5845   bool AllDivisorsArePowerOfTwo = true;
5846   bool HadTautologicalInvertedLanes = false;
5847   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5848 
5849   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5850     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5851     if (CDiv->isZero())
5852       return false;
5853 
5854     const APInt &D = CDiv->getAPIntValue();
5855     const APInt &Cmp = CCmp->getAPIntValue();
5856 
5857     ComparingWithAllZeros &= Cmp.isZero();
5858 
5859     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5860     // if C2 is not less than C1, the comparison is always false.
5861     // But we will only be able to produce the comparison that will give the
5862     // opposive tautological answer. So this lane would need to be fixed up.
5863     bool TautologicalInvertedLane = D.ule(Cmp);
5864     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5865 
5866     // If all lanes are tautological (either all divisors are ones, or divisor
5867     // is not greater than the constant we are comparing with),
5868     // we will prefer to avoid the fold.
5869     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
5870     HadTautologicalLanes |= TautologicalLane;
5871     AllLanesAreTautological &= TautologicalLane;
5872 
5873     // If we are comparing with non-zero, we need'll need  to subtract said
5874     // comparison value from the LHS. But there is no point in doing that if
5875     // every lane where we are comparing with non-zero is tautological..
5876     if (!Cmp.isZero())
5877       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5878 
5879     // Decompose D into D0 * 2^K
5880     unsigned K = D.countTrailingZeros();
5881     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5882     APInt D0 = D.lshr(K);
5883 
5884     // D is even if it has trailing zeros.
5885     HadEvenDivisor |= (K != 0);
5886     // D is a power-of-two if D0 is one.
5887     // If all divisors are power-of-two, we will prefer to avoid the fold.
5888     AllDivisorsArePowerOfTwo &= D0.isOne();
5889 
5890     // P = inv(D0, 2^W)
5891     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5892     unsigned W = D.getBitWidth();
5893     APInt P = D0.zext(W + 1)
5894                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5895                   .trunc(W);
5896     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5897     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
5898 
5899     // Q = floor((2^W - 1) u/ D)
5900     // R = ((2^W - 1) u% D)
5901     APInt Q, R;
5902     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
5903 
5904     // If we are comparing with zero, then that comparison constant is okay,
5905     // else it may need to be one less than that.
5906     if (Cmp.ugt(R))
5907       Q -= 1;
5908 
5909     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5910            "We are expecting that K is always less than all-ones for ShSVT");
5911 
5912     // If the lane is tautological the result can be constant-folded.
5913     if (TautologicalLane) {
5914       // Set P and K amount to a bogus values so we can try to splat them.
5915       P = 0;
5916       K = -1;
5917       // And ensure that comparison constant is tautological,
5918       // it will always compare true/false.
5919       Q = -1;
5920     }
5921 
5922     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5923     KAmts.push_back(
5924         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5925     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5926     return true;
5927   };
5928 
5929   SDValue N = REMNode.getOperand(0);
5930   SDValue D = REMNode.getOperand(1);
5931 
5932   // Collect the values from each element.
5933   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5934     return SDValue();
5935 
5936   // If all lanes are tautological, the result can be constant-folded.
5937   if (AllLanesAreTautological)
5938     return SDValue();
5939 
5940   // If this is a urem by a powers-of-two, avoid the fold since it can be
5941   // best implemented as a bit test.
5942   if (AllDivisorsArePowerOfTwo)
5943     return SDValue();
5944 
5945   SDValue PVal, KVal, QVal;
5946   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5947     if (HadTautologicalLanes) {
5948       // Try to turn PAmts into a splat, since we don't care about the values
5949       // that are currently '0'. If we can't, just keep '0'`s.
5950       turnVectorIntoSplatVector(PAmts, isNullConstant);
5951       // Try to turn KAmts into a splat, since we don't care about the values
5952       // that are currently '-1'. If we can't, change them to '0'`s.
5953       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5954                                 DAG.getConstant(0, DL, ShSVT));
5955     }
5956 
5957     PVal = DAG.getBuildVector(VT, DL, PAmts);
5958     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5959     QVal = DAG.getBuildVector(VT, DL, QAmts);
5960   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5961     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
5962            "Expected matchBinaryPredicate to return one element for "
5963            "SPLAT_VECTORs");
5964     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5965     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5966     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5967   } else {
5968     PVal = PAmts[0];
5969     KVal = KAmts[0];
5970     QVal = QAmts[0];
5971   }
5972 
5973   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5974     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5975       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5976     assert(CompTargetNode.getValueType() == N.getValueType() &&
5977            "Expecting that the types on LHS and RHS of comparisons match.");
5978     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5979   }
5980 
5981   // (mul N, P)
5982   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5983   Created.push_back(Op0.getNode());
5984 
5985   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5986   // divisors as a performance improvement, since rotating by 0 is a no-op.
5987   if (HadEvenDivisor) {
5988     // We need ROTR to do this.
5989     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5990       return SDValue();
5991     // UREM: (rotr (mul N, P), K)
5992     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5993     Created.push_back(Op0.getNode());
5994   }
5995 
5996   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5997   SDValue NewCC =
5998       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5999                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6000   if (!HadTautologicalInvertedLanes)
6001     return NewCC;
6002 
6003   // If any lanes previously compared always-false, the NewCC will give
6004   // always-true result for them, so we need to fixup those lanes.
6005   // Or the other way around for inequality predicate.
6006   assert(VT.isVector() && "Can/should only get here for vectors.");
6007   Created.push_back(NewCC.getNode());
6008 
6009   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6010   // if C2 is not less than C1, the comparison is always false.
6011   // But we have produced the comparison that will give the
6012   // opposive tautological answer. So these lanes would need to be fixed up.
6013   SDValue TautologicalInvertedChannels =
6014       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6015   Created.push_back(TautologicalInvertedChannels.getNode());
6016 
6017   // NOTE: we avoid letting illegal types through even if we're before legalize
6018   // ops – legalization has a hard time producing good code for this.
6019   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6020     // If we have a vector select, let's replace the comparison results in the
6021     // affected lanes with the correct tautological result.
6022     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6023                                               DL, SETCCVT, SETCCVT);
6024     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6025                        Replacement, NewCC);
6026   }
6027 
6028   // Else, we can just invert the comparison result in the appropriate lanes.
6029   //
6030   // NOTE: see the note above VSELECT above.
6031   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6032     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6033                        TautologicalInvertedChannels);
6034 
6035   return SDValue(); // Don't know how to lower.
6036 }
6037 
6038 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6039 /// where the divisor is constant and the comparison target is zero,
6040 /// return a DAG expression that will generate the same comparison result
6041 /// using only multiplications, additions and shifts/rotations.
6042 /// Ref: "Hacker's Delight" 10-17.
6043 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6044                                         SDValue CompTargetNode,
6045                                         ISD::CondCode Cond,
6046                                         DAGCombinerInfo &DCI,
6047                                         const SDLoc &DL) const {
6048   SmallVector<SDNode *, 7> Built;
6049   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6050                                          DCI, DL, Built)) {
6051     assert(Built.size() <= 7 && "Max size prediction failed.");
6052     for (SDNode *N : Built)
6053       DCI.AddToWorklist(N);
6054     return Folded;
6055   }
6056 
6057   return SDValue();
6058 }
6059 
6060 SDValue
6061 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6062                                   SDValue CompTargetNode, ISD::CondCode Cond,
6063                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6064                                   SmallVectorImpl<SDNode *> &Created) const {
6065   // Fold:
6066   //   (seteq/ne (srem N, D), 0)
6067   // To:
6068   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6069   //
6070   // - D must be constant, with D = D0 * 2^K where D0 is odd
6071   // - P is the multiplicative inverse of D0 modulo 2^W
6072   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6073   // - Q = floor((2 * A) / (2^K))
6074   // where W is the width of the common type of N and D.
6075   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6076          "Only applicable for (in)equality comparisons.");
6077 
6078   SelectionDAG &DAG = DCI.DAG;
6079 
6080   EVT VT = REMNode.getValueType();
6081   EVT SVT = VT.getScalarType();
6082   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6083   EVT ShSVT = ShVT.getScalarType();
6084 
6085   // If we are after ops legalization, and MUL is unavailable, we can not
6086   // proceed.
6087   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6088     return SDValue();
6089 
6090   // TODO: Could support comparing with non-zero too.
6091   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6092   if (!CompTarget || !CompTarget->isZero())
6093     return SDValue();
6094 
6095   bool HadIntMinDivisor = false;
6096   bool HadOneDivisor = false;
6097   bool AllDivisorsAreOnes = true;
6098   bool HadEvenDivisor = false;
6099   bool NeedToApplyOffset = false;
6100   bool AllDivisorsArePowerOfTwo = true;
6101   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6102 
6103   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6104     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6105     if (C->isZero())
6106       return false;
6107 
6108     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6109 
6110     // WARNING: this fold is only valid for positive divisors!
6111     APInt D = C->getAPIntValue();
6112     if (D.isNegative())
6113       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6114 
6115     HadIntMinDivisor |= D.isMinSignedValue();
6116 
6117     // If all divisors are ones, we will prefer to avoid the fold.
6118     HadOneDivisor |= D.isOne();
6119     AllDivisorsAreOnes &= D.isOne();
6120 
6121     // Decompose D into D0 * 2^K
6122     unsigned K = D.countTrailingZeros();
6123     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6124     APInt D0 = D.lshr(K);
6125 
6126     if (!D.isMinSignedValue()) {
6127       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6128       // we don't care about this lane in this fold, we'll special-handle it.
6129       HadEvenDivisor |= (K != 0);
6130     }
6131 
6132     // D is a power-of-two if D0 is one. This includes INT_MIN.
6133     // If all divisors are power-of-two, we will prefer to avoid the fold.
6134     AllDivisorsArePowerOfTwo &= D0.isOne();
6135 
6136     // P = inv(D0, 2^W)
6137     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6138     unsigned W = D.getBitWidth();
6139     APInt P = D0.zext(W + 1)
6140                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6141                   .trunc(W);
6142     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6143     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6144 
6145     // A = floor((2^(W - 1) - 1) / D0) & -2^K
6146     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6147     A.clearLowBits(K);
6148 
6149     if (!D.isMinSignedValue()) {
6150       // If divisor INT_MIN, then we don't care about this lane in this fold,
6151       // we'll special-handle it.
6152       NeedToApplyOffset |= A != 0;
6153     }
6154 
6155     // Q = floor((2 * A) / (2^K))
6156     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6157 
6158     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6159            "We are expecting that A is always less than all-ones for SVT");
6160     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6161            "We are expecting that K is always less than all-ones for ShSVT");
6162 
6163     // If the divisor is 1 the result can be constant-folded. Likewise, we
6164     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6165     if (D.isOne()) {
6166       // Set P, A and K to a bogus values so we can try to splat them.
6167       P = 0;
6168       A = -1;
6169       K = -1;
6170 
6171       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
6172       Q = -1;
6173     }
6174 
6175     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6176     AAmts.push_back(DAG.getConstant(A, DL, SVT));
6177     KAmts.push_back(
6178         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6179     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6180     return true;
6181   };
6182 
6183   SDValue N = REMNode.getOperand(0);
6184   SDValue D = REMNode.getOperand(1);
6185 
6186   // Collect the values from each element.
6187   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6188     return SDValue();
6189 
6190   // If this is a srem by a one, avoid the fold since it can be constant-folded.
6191   if (AllDivisorsAreOnes)
6192     return SDValue();
6193 
6194   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6195   // since it can be best implemented as a bit test.
6196   if (AllDivisorsArePowerOfTwo)
6197     return SDValue();
6198 
6199   SDValue PVal, AVal, KVal, QVal;
6200   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6201     if (HadOneDivisor) {
6202       // Try to turn PAmts into a splat, since we don't care about the values
6203       // that are currently '0'. If we can't, just keep '0'`s.
6204       turnVectorIntoSplatVector(PAmts, isNullConstant);
6205       // Try to turn AAmts into a splat, since we don't care about the
6206       // values that are currently '-1'. If we can't, change them to '0'`s.
6207       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6208                                 DAG.getConstant(0, DL, SVT));
6209       // Try to turn KAmts into a splat, since we don't care about the values
6210       // that are currently '-1'. If we can't, change them to '0'`s.
6211       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6212                                 DAG.getConstant(0, DL, ShSVT));
6213     }
6214 
6215     PVal = DAG.getBuildVector(VT, DL, PAmts);
6216     AVal = DAG.getBuildVector(VT, DL, AAmts);
6217     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6218     QVal = DAG.getBuildVector(VT, DL, QAmts);
6219   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6220     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6221            QAmts.size() == 1 &&
6222            "Expected matchUnaryPredicate to return one element for scalable "
6223            "vectors");
6224     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6225     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6226     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6227     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6228   } else {
6229     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6230     PVal = PAmts[0];
6231     AVal = AAmts[0];
6232     KVal = KAmts[0];
6233     QVal = QAmts[0];
6234   }
6235 
6236   // (mul N, P)
6237   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6238   Created.push_back(Op0.getNode());
6239 
6240   if (NeedToApplyOffset) {
6241     // We need ADD to do this.
6242     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6243       return SDValue();
6244 
6245     // (add (mul N, P), A)
6246     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6247     Created.push_back(Op0.getNode());
6248   }
6249 
6250   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6251   // divisors as a performance improvement, since rotating by 0 is a no-op.
6252   if (HadEvenDivisor) {
6253     // We need ROTR to do this.
6254     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6255       return SDValue();
6256     // SREM: (rotr (add (mul N, P), A), K)
6257     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6258     Created.push_back(Op0.getNode());
6259   }
6260 
6261   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6262   SDValue Fold =
6263       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6264                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6265 
6266   // If we didn't have lanes with INT_MIN divisor, then we're done.
6267   if (!HadIntMinDivisor)
6268     return Fold;
6269 
6270   // That fold is only valid for positive divisors. Which effectively means,
6271   // it is invalid for INT_MIN divisors. So if we have such a lane,
6272   // we must fix-up results for said lanes.
6273   assert(VT.isVector() && "Can/should only get here for vectors.");
6274 
6275   // NOTE: we avoid letting illegal types through even if we're before legalize
6276   // ops – legalization has a hard time producing good code for the code that
6277   // follows.
6278   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6279       !isOperationLegalOrCustom(ISD::AND, VT) ||
6280       !isOperationLegalOrCustom(Cond, VT) ||
6281       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6282     return SDValue();
6283 
6284   Created.push_back(Fold.getNode());
6285 
6286   SDValue IntMin = DAG.getConstant(
6287       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6288   SDValue IntMax = DAG.getConstant(
6289       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6290   SDValue Zero =
6291       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6292 
6293   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6294   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6295   Created.push_back(DivisorIsIntMin.getNode());
6296 
6297   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6298   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6299   Created.push_back(Masked.getNode());
6300   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6301   Created.push_back(MaskedIsZero.getNode());
6302 
6303   // To produce final result we need to blend 2 vectors: 'SetCC' and
6304   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6305   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6306   // constant-folded, select can get lowered to a shuffle with constant mask.
6307   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6308                                 MaskedIsZero, Fold);
6309 
6310   return Blended;
6311 }
6312 
6313 bool TargetLowering::
6314 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6315   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6316     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6317                                 "be a constant integer");
6318     return true;
6319   }
6320 
6321   return false;
6322 }
6323 
6324 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6325                                          const DenormalMode &Mode) const {
6326   SDLoc DL(Op);
6327   EVT VT = Op.getValueType();
6328   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6329   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6330   // Testing it with denormal inputs to avoid wrong estimate.
6331   if (Mode.Input == DenormalMode::IEEE) {
6332     // This is specifically a check for the handling of denormal inputs,
6333     // not the result.
6334 
6335     // Test = fabs(X) < SmallestNormal
6336     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6337     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6338     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6339     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6340     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6341   }
6342   // Test = X == 0.0
6343   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6344 }
6345 
6346 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6347                                              bool LegalOps, bool OptForSize,
6348                                              NegatibleCost &Cost,
6349                                              unsigned Depth) const {
6350   // fneg is removable even if it has multiple uses.
6351   if (Op.getOpcode() == ISD::FNEG) {
6352     Cost = NegatibleCost::Cheaper;
6353     return Op.getOperand(0);
6354   }
6355 
6356   // Don't recurse exponentially.
6357   if (Depth > SelectionDAG::MaxRecursionDepth)
6358     return SDValue();
6359 
6360   // Pre-increment recursion depth for use in recursive calls.
6361   ++Depth;
6362   const SDNodeFlags Flags = Op->getFlags();
6363   const TargetOptions &Options = DAG.getTarget().Options;
6364   EVT VT = Op.getValueType();
6365   unsigned Opcode = Op.getOpcode();
6366 
6367   // Don't allow anything with multiple uses unless we know it is free.
6368   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6369     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6370                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6371     if (!IsFreeExtend)
6372       return SDValue();
6373   }
6374 
6375   auto RemoveDeadNode = [&](SDValue N) {
6376     if (N && N.getNode()->use_empty())
6377       DAG.RemoveDeadNode(N.getNode());
6378   };
6379 
6380   SDLoc DL(Op);
6381 
6382   // Because getNegatedExpression can delete nodes we need a handle to keep
6383   // temporary nodes alive in case the recursion manages to create an identical
6384   // node.
6385   std::list<HandleSDNode> Handles;
6386 
6387   switch (Opcode) {
6388   case ISD::ConstantFP: {
6389     // Don't invert constant FP values after legalization unless the target says
6390     // the negated constant is legal.
6391     bool IsOpLegal =
6392         isOperationLegal(ISD::ConstantFP, VT) ||
6393         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6394                      OptForSize);
6395 
6396     if (LegalOps && !IsOpLegal)
6397       break;
6398 
6399     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6400     V.changeSign();
6401     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6402 
6403     // If we already have the use of the negated floating constant, it is free
6404     // to negate it even it has multiple uses.
6405     if (!Op.hasOneUse() && CFP.use_empty())
6406       break;
6407     Cost = NegatibleCost::Neutral;
6408     return CFP;
6409   }
6410   case ISD::BUILD_VECTOR: {
6411     // Only permit BUILD_VECTOR of constants.
6412     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6413           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6414         }))
6415       break;
6416 
6417     bool IsOpLegal =
6418         (isOperationLegal(ISD::ConstantFP, VT) &&
6419          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6420         llvm::all_of(Op->op_values(), [&](SDValue N) {
6421           return N.isUndef() ||
6422                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6423                               OptForSize);
6424         });
6425 
6426     if (LegalOps && !IsOpLegal)
6427       break;
6428 
6429     SmallVector<SDValue, 4> Ops;
6430     for (SDValue C : Op->op_values()) {
6431       if (C.isUndef()) {
6432         Ops.push_back(C);
6433         continue;
6434       }
6435       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6436       V.changeSign();
6437       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6438     }
6439     Cost = NegatibleCost::Neutral;
6440     return DAG.getBuildVector(VT, DL, Ops);
6441   }
6442   case ISD::FADD: {
6443     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6444       break;
6445 
6446     // After operation legalization, it might not be legal to create new FSUBs.
6447     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6448       break;
6449     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6450 
6451     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6452     NegatibleCost CostX = NegatibleCost::Expensive;
6453     SDValue NegX =
6454         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6455     // Prevent this node from being deleted by the next call.
6456     if (NegX)
6457       Handles.emplace_back(NegX);
6458 
6459     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6460     NegatibleCost CostY = NegatibleCost::Expensive;
6461     SDValue NegY =
6462         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6463 
6464     // We're done with the handles.
6465     Handles.clear();
6466 
6467     // Negate the X if its cost is less or equal than Y.
6468     if (NegX && (CostX <= CostY)) {
6469       Cost = CostX;
6470       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6471       if (NegY != N)
6472         RemoveDeadNode(NegY);
6473       return N;
6474     }
6475 
6476     // Negate the Y if it is not expensive.
6477     if (NegY) {
6478       Cost = CostY;
6479       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6480       if (NegX != N)
6481         RemoveDeadNode(NegX);
6482       return N;
6483     }
6484     break;
6485   }
6486   case ISD::FSUB: {
6487     // We can't turn -(A-B) into B-A when we honor signed zeros.
6488     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6489       break;
6490 
6491     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6492     // fold (fneg (fsub 0, Y)) -> Y
6493     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6494       if (C->isZero()) {
6495         Cost = NegatibleCost::Cheaper;
6496         return Y;
6497       }
6498 
6499     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6500     Cost = NegatibleCost::Neutral;
6501     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6502   }
6503   case ISD::FMUL:
6504   case ISD::FDIV: {
6505     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6506 
6507     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6508     NegatibleCost CostX = NegatibleCost::Expensive;
6509     SDValue NegX =
6510         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6511     // Prevent this node from being deleted by the next call.
6512     if (NegX)
6513       Handles.emplace_back(NegX);
6514 
6515     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6516     NegatibleCost CostY = NegatibleCost::Expensive;
6517     SDValue NegY =
6518         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6519 
6520     // We're done with the handles.
6521     Handles.clear();
6522 
6523     // Negate the X if its cost is less or equal than Y.
6524     if (NegX && (CostX <= CostY)) {
6525       Cost = CostX;
6526       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6527       if (NegY != N)
6528         RemoveDeadNode(NegY);
6529       return N;
6530     }
6531 
6532     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6533     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6534       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6535         break;
6536 
6537     // Negate the Y if it is not expensive.
6538     if (NegY) {
6539       Cost = CostY;
6540       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6541       if (NegX != N)
6542         RemoveDeadNode(NegX);
6543       return N;
6544     }
6545     break;
6546   }
6547   case ISD::FMA:
6548   case ISD::FMAD: {
6549     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6550       break;
6551 
6552     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6553     NegatibleCost CostZ = NegatibleCost::Expensive;
6554     SDValue NegZ =
6555         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6556     // Give up if fail to negate the Z.
6557     if (!NegZ)
6558       break;
6559 
6560     // Prevent this node from being deleted by the next two calls.
6561     Handles.emplace_back(NegZ);
6562 
6563     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6564     NegatibleCost CostX = NegatibleCost::Expensive;
6565     SDValue NegX =
6566         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6567     // Prevent this node from being deleted by the next call.
6568     if (NegX)
6569       Handles.emplace_back(NegX);
6570 
6571     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6572     NegatibleCost CostY = NegatibleCost::Expensive;
6573     SDValue NegY =
6574         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6575 
6576     // We're done with the handles.
6577     Handles.clear();
6578 
6579     // Negate the X if its cost is less or equal than Y.
6580     if (NegX && (CostX <= CostY)) {
6581       Cost = std::min(CostX, CostZ);
6582       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6583       if (NegY != N)
6584         RemoveDeadNode(NegY);
6585       return N;
6586     }
6587 
6588     // Negate the Y if it is not expensive.
6589     if (NegY) {
6590       Cost = std::min(CostY, CostZ);
6591       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6592       if (NegX != N)
6593         RemoveDeadNode(NegX);
6594       return N;
6595     }
6596     break;
6597   }
6598 
6599   case ISD::FP_EXTEND:
6600   case ISD::FSIN:
6601     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6602                                             OptForSize, Cost, Depth))
6603       return DAG.getNode(Opcode, DL, VT, NegV);
6604     break;
6605   case ISD::FP_ROUND:
6606     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6607                                             OptForSize, Cost, Depth))
6608       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6609     break;
6610   }
6611 
6612   return SDValue();
6613 }
6614 
6615 //===----------------------------------------------------------------------===//
6616 // Legalization Utilities
6617 //===----------------------------------------------------------------------===//
6618 
6619 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6620                                     SDValue LHS, SDValue RHS,
6621                                     SmallVectorImpl<SDValue> &Result,
6622                                     EVT HiLoVT, SelectionDAG &DAG,
6623                                     MulExpansionKind Kind, SDValue LL,
6624                                     SDValue LH, SDValue RL, SDValue RH) const {
6625   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6626          Opcode == ISD::SMUL_LOHI);
6627 
6628   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6629                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6630   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6631                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6632   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6633                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6634   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6635                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6636 
6637   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6638     return false;
6639 
6640   unsigned OuterBitSize = VT.getScalarSizeInBits();
6641   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6642 
6643   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6644   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6645          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6646 
6647   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6648   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6649                           bool Signed) -> bool {
6650     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6651       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6652       Hi = SDValue(Lo.getNode(), 1);
6653       return true;
6654     }
6655     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6656       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6657       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6658       return true;
6659     }
6660     return false;
6661   };
6662 
6663   SDValue Lo, Hi;
6664 
6665   if (!LL.getNode() && !RL.getNode() &&
6666       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6667     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6668     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6669   }
6670 
6671   if (!LL.getNode())
6672     return false;
6673 
6674   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6675   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6676       DAG.MaskedValueIsZero(RHS, HighMask)) {
6677     // The inputs are both zero-extended.
6678     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6679       Result.push_back(Lo);
6680       Result.push_back(Hi);
6681       if (Opcode != ISD::MUL) {
6682         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6683         Result.push_back(Zero);
6684         Result.push_back(Zero);
6685       }
6686       return true;
6687     }
6688   }
6689 
6690   if (!VT.isVector() && Opcode == ISD::MUL &&
6691       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6692       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6693     // The input values are both sign-extended.
6694     // TODO non-MUL case?
6695     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6696       Result.push_back(Lo);
6697       Result.push_back(Hi);
6698       return true;
6699     }
6700   }
6701 
6702   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6703   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6704   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6705 
6706   if (!LH.getNode() && !RH.getNode() &&
6707       isOperationLegalOrCustom(ISD::SRL, VT) &&
6708       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6709     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6710     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6711     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6712     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6713   }
6714 
6715   if (!LH.getNode())
6716     return false;
6717 
6718   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6719     return false;
6720 
6721   Result.push_back(Lo);
6722 
6723   if (Opcode == ISD::MUL) {
6724     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6725     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6726     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6727     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6728     Result.push_back(Hi);
6729     return true;
6730   }
6731 
6732   // Compute the full width result.
6733   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6734     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6735     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6736     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6737     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6738   };
6739 
6740   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6741   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6742     return false;
6743 
6744   // This is effectively the add part of a multiply-add of half-sized operands,
6745   // so it cannot overflow.
6746   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6747 
6748   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6749     return false;
6750 
6751   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6752   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6753 
6754   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6755                   isOperationLegalOrCustom(ISD::ADDE, VT));
6756   if (UseGlue)
6757     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6758                        Merge(Lo, Hi));
6759   else
6760     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6761                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6762 
6763   SDValue Carry = Next.getValue(1);
6764   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6765   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6766 
6767   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6768     return false;
6769 
6770   if (UseGlue)
6771     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6772                      Carry);
6773   else
6774     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6775                      Zero, Carry);
6776 
6777   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6778 
6779   if (Opcode == ISD::SMUL_LOHI) {
6780     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6781                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6782     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6783 
6784     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6785                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6786     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6787   }
6788 
6789   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6790   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6791   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6792   return true;
6793 }
6794 
6795 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6796                                SelectionDAG &DAG, MulExpansionKind Kind,
6797                                SDValue LL, SDValue LH, SDValue RL,
6798                                SDValue RH) const {
6799   SmallVector<SDValue, 2> Result;
6800   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6801                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6802                            DAG, Kind, LL, LH, RL, RH);
6803   if (Ok) {
6804     assert(Result.size() == 2);
6805     Lo = Result[0];
6806     Hi = Result[1];
6807   }
6808   return Ok;
6809 }
6810 
6811 // Check that (every element of) Z is undef or not an exact multiple of BW.
6812 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6813   return ISD::matchUnaryPredicate(
6814       Z,
6815       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6816       true);
6817 }
6818 
6819 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
6820                                           SelectionDAG &DAG) const {
6821   EVT VT = Node->getValueType(0);
6822 
6823   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6824                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6825                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6826                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6827     return SDValue();
6828 
6829   SDValue X = Node->getOperand(0);
6830   SDValue Y = Node->getOperand(1);
6831   SDValue Z = Node->getOperand(2);
6832 
6833   unsigned BW = VT.getScalarSizeInBits();
6834   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6835   SDLoc DL(SDValue(Node, 0));
6836 
6837   EVT ShVT = Z.getValueType();
6838 
6839   // If a funnel shift in the other direction is more supported, use it.
6840   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6841   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6842       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6843     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6844       // fshl X, Y, Z -> fshr X, Y, -Z
6845       // fshr X, Y, Z -> fshl X, Y, -Z
6846       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6847       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6848     } else {
6849       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6850       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6851       SDValue One = DAG.getConstant(1, DL, ShVT);
6852       if (IsFSHL) {
6853         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6854         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6855       } else {
6856         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6857         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6858       }
6859       Z = DAG.getNOT(DL, Z, ShVT);
6860     }
6861     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6862   }
6863 
6864   SDValue ShX, ShY;
6865   SDValue ShAmt, InvShAmt;
6866   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6867     // fshl: X << C | Y >> (BW - C)
6868     // fshr: X << (BW - C) | Y >> C
6869     // where C = Z % BW is not zero
6870     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6871     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6872     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6873     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6874     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6875   } else {
6876     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6877     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6878     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6879     if (isPowerOf2_32(BW)) {
6880       // Z % BW -> Z & (BW - 1)
6881       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6882       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6883       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6884     } else {
6885       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6886       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6887       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6888     }
6889 
6890     SDValue One = DAG.getConstant(1, DL, ShVT);
6891     if (IsFSHL) {
6892       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6893       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6894       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6895     } else {
6896       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6897       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6898       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6899     }
6900   }
6901   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6902 }
6903 
6904 // TODO: Merge with expandFunnelShift.
6905 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6906                                   SelectionDAG &DAG) const {
6907   EVT VT = Node->getValueType(0);
6908   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6909   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6910   SDValue Op0 = Node->getOperand(0);
6911   SDValue Op1 = Node->getOperand(1);
6912   SDLoc DL(SDValue(Node, 0));
6913 
6914   EVT ShVT = Op1.getValueType();
6915   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6916 
6917   // If a rotate in the other direction is more supported, use it.
6918   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6919   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6920       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6921     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6922     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
6923   }
6924 
6925   if (!AllowVectorOps && VT.isVector() &&
6926       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6927        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6928        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6929        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6930        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6931     return SDValue();
6932 
6933   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6934   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6935   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6936   SDValue ShVal;
6937   SDValue HsVal;
6938   if (isPowerOf2_32(EltSizeInBits)) {
6939     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6940     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6941     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6942     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6943     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6944     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6945     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6946   } else {
6947     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6948     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6949     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6950     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6951     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6952     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6953     SDValue One = DAG.getConstant(1, DL, ShVT);
6954     HsVal =
6955         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6956   }
6957   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6958 }
6959 
6960 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
6961                                       SelectionDAG &DAG) const {
6962   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
6963   EVT VT = Node->getValueType(0);
6964   unsigned VTBits = VT.getScalarSizeInBits();
6965   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
6966 
6967   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
6968   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
6969   SDValue ShOpLo = Node->getOperand(0);
6970   SDValue ShOpHi = Node->getOperand(1);
6971   SDValue ShAmt = Node->getOperand(2);
6972   EVT ShAmtVT = ShAmt.getValueType();
6973   EVT ShAmtCCVT =
6974       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
6975   SDLoc dl(Node);
6976 
6977   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
6978   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
6979   // away during isel.
6980   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6981                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
6982   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6983                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
6984                        : DAG.getConstant(0, dl, VT);
6985 
6986   SDValue Tmp2, Tmp3;
6987   if (IsSHL) {
6988     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
6989     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
6990   } else {
6991     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
6992     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
6993   }
6994 
6995   // If the shift amount is larger or equal than the width of a part we don't
6996   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
6997   // values for large shift amounts.
6998   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6999                                 DAG.getConstant(VTBits, dl, ShAmtVT));
7000   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
7001                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
7002 
7003   if (IsSHL) {
7004     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7005     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7006   } else {
7007     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7008     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7009   }
7010 }
7011 
7012 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
7013                                       SelectionDAG &DAG) const {
7014   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7015   SDValue Src = Node->getOperand(OpNo);
7016   EVT SrcVT = Src.getValueType();
7017   EVT DstVT = Node->getValueType(0);
7018   SDLoc dl(SDValue(Node, 0));
7019 
7020   // FIXME: Only f32 to i64 conversions are supported.
7021   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
7022     return false;
7023 
7024   if (Node->isStrictFPOpcode())
7025     // When a NaN is converted to an integer a trap is allowed. We can't
7026     // use this expansion here because it would eliminate that trap. Other
7027     // traps are also allowed and cannot be eliminated. See
7028     // IEEE 754-2008 sec 5.8.
7029     return false;
7030 
7031   // Expand f32 -> i64 conversion
7032   // This algorithm comes from compiler-rt's implementation of fixsfdi:
7033   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7034   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
7035   EVT IntVT = SrcVT.changeTypeToInteger();
7036   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
7037 
7038   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
7039   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
7040   SDValue Bias = DAG.getConstant(127, dl, IntVT);
7041   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
7042   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
7043   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
7044 
7045   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
7046 
7047   SDValue ExponentBits = DAG.getNode(
7048       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
7049       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
7050   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
7051 
7052   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
7053                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
7054                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
7055   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
7056 
7057   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
7058                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
7059                           DAG.getConstant(0x00800000, dl, IntVT));
7060 
7061   R = DAG.getZExtOrTrunc(R, dl, DstVT);
7062 
7063   R = DAG.getSelectCC(
7064       dl, Exponent, ExponentLoBit,
7065       DAG.getNode(ISD::SHL, dl, DstVT, R,
7066                   DAG.getZExtOrTrunc(
7067                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7068                       dl, IntShVT)),
7069       DAG.getNode(ISD::SRL, dl, DstVT, R,
7070                   DAG.getZExtOrTrunc(
7071                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7072                       dl, IntShVT)),
7073       ISD::SETGT);
7074 
7075   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7076                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7077 
7078   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7079                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7080   return true;
7081 }
7082 
7083 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7084                                       SDValue &Chain,
7085                                       SelectionDAG &DAG) const {
7086   SDLoc dl(SDValue(Node, 0));
7087   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7088   SDValue Src = Node->getOperand(OpNo);
7089 
7090   EVT SrcVT = Src.getValueType();
7091   EVT DstVT = Node->getValueType(0);
7092   EVT SetCCVT =
7093       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7094   EVT DstSetCCVT =
7095       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7096 
7097   // Only expand vector types if we have the appropriate vector bit operations.
7098   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7099                                                    ISD::FP_TO_SINT;
7100   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7101                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7102     return false;
7103 
7104   // If the maximum float value is smaller then the signed integer range,
7105   // the destination signmask can't be represented by the float, so we can
7106   // just use FP_TO_SINT directly.
7107   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7108   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7109   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7110   if (APFloat::opOverflow &
7111       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7112     if (Node->isStrictFPOpcode()) {
7113       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7114                            { Node->getOperand(0), Src });
7115       Chain = Result.getValue(1);
7116     } else
7117       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7118     return true;
7119   }
7120 
7121   // Don't expand it if there isn't cheap fsub instruction.
7122   if (!isOperationLegalOrCustom(
7123           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7124     return false;
7125 
7126   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7127   SDValue Sel;
7128 
7129   if (Node->isStrictFPOpcode()) {
7130     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7131                        Node->getOperand(0), /*IsSignaling*/ true);
7132     Chain = Sel.getValue(1);
7133   } else {
7134     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7135   }
7136 
7137   bool Strict = Node->isStrictFPOpcode() ||
7138                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7139 
7140   if (Strict) {
7141     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7142     // signmask then offset (the result of which should be fully representable).
7143     // Sel = Src < 0x8000000000000000
7144     // FltOfs = select Sel, 0, 0x8000000000000000
7145     // IntOfs = select Sel, 0, 0x8000000000000000
7146     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7147 
7148     // TODO: Should any fast-math-flags be set for the FSUB?
7149     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7150                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7151     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7152     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7153                                    DAG.getConstant(0, dl, DstVT),
7154                                    DAG.getConstant(SignMask, dl, DstVT));
7155     SDValue SInt;
7156     if (Node->isStrictFPOpcode()) {
7157       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7158                                 { Chain, Src, FltOfs });
7159       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7160                          { Val.getValue(1), Val });
7161       Chain = SInt.getValue(1);
7162     } else {
7163       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7164       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7165     }
7166     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7167   } else {
7168     // Expand based on maximum range of FP_TO_SINT:
7169     // True = fp_to_sint(Src)
7170     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7171     // Result = select (Src < 0x8000000000000000), True, False
7172 
7173     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7174     // TODO: Should any fast-math-flags be set for the FSUB?
7175     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7176                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7177     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7178                         DAG.getConstant(SignMask, dl, DstVT));
7179     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7180     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7181   }
7182   return true;
7183 }
7184 
7185 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7186                                       SDValue &Chain,
7187                                       SelectionDAG &DAG) const {
7188   // This transform is not correct for converting 0 when rounding mode is set
7189   // to round toward negative infinity which will produce -0.0. So disable under
7190   // strictfp.
7191   if (Node->isStrictFPOpcode())
7192     return false;
7193 
7194   SDValue Src = Node->getOperand(0);
7195   EVT SrcVT = Src.getValueType();
7196   EVT DstVT = Node->getValueType(0);
7197 
7198   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7199     return false;
7200 
7201   // Only expand vector types if we have the appropriate vector bit operations.
7202   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7203                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7204                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7205                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7206                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7207     return false;
7208 
7209   SDLoc dl(SDValue(Node, 0));
7210   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7211 
7212   // Implementation of unsigned i64 to f64 following the algorithm in
7213   // __floatundidf in compiler_rt.  This implementation performs rounding
7214   // correctly in all rounding modes with the exception of converting 0
7215   // when rounding toward negative infinity. In that case the fsub will produce
7216   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7217   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7218   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7219       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7220   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7221   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7222   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7223 
7224   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7225   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7226   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7227   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7228   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7229   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7230   SDValue HiSub =
7231       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7232   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7233   return true;
7234 }
7235 
7236 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7237                                               SelectionDAG &DAG) const {
7238   SDLoc dl(Node);
7239   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7240     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7241   EVT VT = Node->getValueType(0);
7242 
7243   if (VT.isScalableVector())
7244     report_fatal_error(
7245         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7246 
7247   if (isOperationLegalOrCustom(NewOp, VT)) {
7248     SDValue Quiet0 = Node->getOperand(0);
7249     SDValue Quiet1 = Node->getOperand(1);
7250 
7251     if (!Node->getFlags().hasNoNaNs()) {
7252       // Insert canonicalizes if it's possible we need to quiet to get correct
7253       // sNaN behavior.
7254       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7255         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7256                              Node->getFlags());
7257       }
7258       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7259         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7260                              Node->getFlags());
7261       }
7262     }
7263 
7264     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7265   }
7266 
7267   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7268   // instead if there are no NaNs.
7269   if (Node->getFlags().hasNoNaNs()) {
7270     unsigned IEEE2018Op =
7271         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7272     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7273       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7274                          Node->getOperand(1), Node->getFlags());
7275     }
7276   }
7277 
7278   // If none of the above worked, but there are no NaNs, then expand to
7279   // a compare/select sequence.  This is required for correctness since
7280   // InstCombine might have canonicalized a fcmp+select sequence to a
7281   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
7282   // expansion to libcall, we might introduce a link-time dependency
7283   // on libm into a file that originally did not have one.
7284   if (Node->getFlags().hasNoNaNs()) {
7285     ISD::CondCode Pred =
7286         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7287     SDValue Op1 = Node->getOperand(0);
7288     SDValue Op2 = Node->getOperand(1);
7289     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
7290     // Copy FMF flags, but always set the no-signed-zeros flag
7291     // as this is implied by the FMINNUM/FMAXNUM semantics.
7292     SDNodeFlags Flags = Node->getFlags();
7293     Flags.setNoSignedZeros(true);
7294     SelCC->setFlags(Flags);
7295     return SelCC;
7296   }
7297 
7298   return SDValue();
7299 }
7300 
7301 // Only expand vector types if we have the appropriate vector bit operations.
7302 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7303   assert(VT.isVector() && "Expected vector type");
7304   unsigned Len = VT.getScalarSizeInBits();
7305   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7306          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7307          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7308          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7309          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7310 }
7311 
7312 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7313   SDLoc dl(Node);
7314   EVT VT = Node->getValueType(0);
7315   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7316   SDValue Op = Node->getOperand(0);
7317   unsigned Len = VT.getScalarSizeInBits();
7318   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7319 
7320   // TODO: Add support for irregular type lengths.
7321   if (!(Len <= 128 && Len % 8 == 0))
7322     return SDValue();
7323 
7324   // Only expand vector types if we have the appropriate vector bit operations.
7325   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7326     return SDValue();
7327 
7328   // This is the "best" algorithm from
7329   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7330   SDValue Mask55 =
7331       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7332   SDValue Mask33 =
7333       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7334   SDValue Mask0F =
7335       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7336   SDValue Mask01 =
7337       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7338 
7339   // v = v - ((v >> 1) & 0x55555555...)
7340   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7341                    DAG.getNode(ISD::AND, dl, VT,
7342                                DAG.getNode(ISD::SRL, dl, VT, Op,
7343                                            DAG.getConstant(1, dl, ShVT)),
7344                                Mask55));
7345   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7346   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7347                    DAG.getNode(ISD::AND, dl, VT,
7348                                DAG.getNode(ISD::SRL, dl, VT, Op,
7349                                            DAG.getConstant(2, dl, ShVT)),
7350                                Mask33));
7351   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7352   Op = DAG.getNode(ISD::AND, dl, VT,
7353                    DAG.getNode(ISD::ADD, dl, VT, Op,
7354                                DAG.getNode(ISD::SRL, dl, VT, Op,
7355                                            DAG.getConstant(4, dl, ShVT))),
7356                    Mask0F);
7357   // v = (v * 0x01010101...) >> (Len - 8)
7358   if (Len > 8)
7359     Op =
7360         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7361                     DAG.getConstant(Len - 8, dl, ShVT));
7362 
7363   return Op;
7364 }
7365 
7366 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7367   SDLoc dl(Node);
7368   EVT VT = Node->getValueType(0);
7369   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7370   SDValue Op = Node->getOperand(0);
7371   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7372 
7373   // If the non-ZERO_UNDEF version is supported we can use that instead.
7374   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7375       isOperationLegalOrCustom(ISD::CTLZ, VT))
7376     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7377 
7378   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7379   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7380     EVT SetCCVT =
7381         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7382     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7383     SDValue Zero = DAG.getConstant(0, dl, VT);
7384     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7385     return DAG.getSelect(dl, VT, SrcIsZero,
7386                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7387   }
7388 
7389   // Only expand vector types if we have the appropriate vector bit operations.
7390   // This includes the operations needed to expand CTPOP if it isn't supported.
7391   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7392                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7393                          !canExpandVectorCTPOP(*this, VT)) ||
7394                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7395                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7396     return SDValue();
7397 
7398   // for now, we do this:
7399   // x = x | (x >> 1);
7400   // x = x | (x >> 2);
7401   // ...
7402   // x = x | (x >>16);
7403   // x = x | (x >>32); // for 64-bit input
7404   // return popcount(~x);
7405   //
7406   // Ref: "Hacker's Delight" by Henry Warren
7407   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7408     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7409     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7410                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7411   }
7412   Op = DAG.getNOT(dl, Op, VT);
7413   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7414 }
7415 
7416 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7417   SDLoc dl(Node);
7418   EVT VT = Node->getValueType(0);
7419   SDValue Op = Node->getOperand(0);
7420   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7421 
7422   // If the non-ZERO_UNDEF version is supported we can use that instead.
7423   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7424       isOperationLegalOrCustom(ISD::CTTZ, VT))
7425     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7426 
7427   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7428   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7429     EVT SetCCVT =
7430         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7431     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7432     SDValue Zero = DAG.getConstant(0, dl, VT);
7433     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7434     return DAG.getSelect(dl, VT, SrcIsZero,
7435                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7436   }
7437 
7438   // Only expand vector types if we have the appropriate vector bit operations.
7439   // This includes the operations needed to expand CTPOP if it isn't supported.
7440   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7441                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7442                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7443                          !canExpandVectorCTPOP(*this, VT)) ||
7444                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7445                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7446                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7447     return SDValue();
7448 
7449   // for now, we use: { return popcount(~x & (x - 1)); }
7450   // unless the target has ctlz but not ctpop, in which case we use:
7451   // { return 32 - nlz(~x & (x-1)); }
7452   // Ref: "Hacker's Delight" by Henry Warren
7453   SDValue Tmp = DAG.getNode(
7454       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7455       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7456 
7457   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7458   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7459     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7460                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7461   }
7462 
7463   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7464 }
7465 
7466 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7467                                   bool IsNegative) const {
7468   SDLoc dl(N);
7469   EVT VT = N->getValueType(0);
7470   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7471   SDValue Op = N->getOperand(0);
7472 
7473   // abs(x) -> smax(x,sub(0,x))
7474   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7475       isOperationLegal(ISD::SMAX, VT)) {
7476     SDValue Zero = DAG.getConstant(0, dl, VT);
7477     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7478                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7479   }
7480 
7481   // abs(x) -> umin(x,sub(0,x))
7482   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7483       isOperationLegal(ISD::UMIN, VT)) {
7484     SDValue Zero = DAG.getConstant(0, dl, VT);
7485     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7486                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7487   }
7488 
7489   // 0 - abs(x) -> smin(x, sub(0,x))
7490   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7491       isOperationLegal(ISD::SMIN, VT)) {
7492     SDValue Zero = DAG.getConstant(0, dl, VT);
7493     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7494                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7495   }
7496 
7497   // Only expand vector types if we have the appropriate vector operations.
7498   if (VT.isVector() &&
7499       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7500        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7501        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7502        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7503     return SDValue();
7504 
7505   SDValue Shift =
7506       DAG.getNode(ISD::SRA, dl, VT, Op,
7507                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7508   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7509 
7510   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
7511   if (!IsNegative)
7512     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
7513 
7514   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7515   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7516 }
7517 
7518 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7519   SDLoc dl(N);
7520   EVT VT = N->getValueType(0);
7521   SDValue Op = N->getOperand(0);
7522 
7523   if (!VT.isSimple())
7524     return SDValue();
7525 
7526   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7527   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7528   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7529   default:
7530     return SDValue();
7531   case MVT::i16:
7532     // Use a rotate by 8. This can be further expanded if necessary.
7533     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7534   case MVT::i32:
7535     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7536     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7537     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7538     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7539     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7540                        DAG.getConstant(0xFF0000, dl, VT));
7541     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7542     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7543     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7544     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7545   case MVT::i64:
7546     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7547     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7548     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7549     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7550     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7551     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7552     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7553     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7554     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7555                        DAG.getConstant(255ULL<<48, dl, VT));
7556     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7557                        DAG.getConstant(255ULL<<40, dl, VT));
7558     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7559                        DAG.getConstant(255ULL<<32, dl, VT));
7560     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7561                        DAG.getConstant(255ULL<<24, dl, VT));
7562     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7563                        DAG.getConstant(255ULL<<16, dl, VT));
7564     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7565                        DAG.getConstant(255ULL<<8 , dl, VT));
7566     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7567     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7568     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7569     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7570     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7571     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7572     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7573   }
7574 }
7575 
7576 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7577   SDLoc dl(N);
7578   EVT VT = N->getValueType(0);
7579   SDValue Op = N->getOperand(0);
7580   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7581   unsigned Sz = VT.getScalarSizeInBits();
7582 
7583   SDValue Tmp, Tmp2, Tmp3;
7584 
7585   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7586   // and finally the i1 pairs.
7587   // TODO: We can easily support i4/i2 legal types if any target ever does.
7588   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7589     // Create the masks - repeating the pattern every byte.
7590     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7591     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7592     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7593 
7594     // BSWAP if the type is wider than a single byte.
7595     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7596 
7597     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7598     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7599     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7600     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7601     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7602     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7603 
7604     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
7605     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
7606     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
7607     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
7608     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7609     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7610 
7611     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
7612     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
7613     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
7614     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
7615     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7616     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7617     return Tmp;
7618   }
7619 
7620   Tmp = DAG.getConstant(0, dl, VT);
7621   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7622     if (I < J)
7623       Tmp2 =
7624           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7625     else
7626       Tmp2 =
7627           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7628 
7629     APInt Shift(Sz, 1);
7630     Shift <<= J;
7631     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7632     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7633   }
7634 
7635   return Tmp;
7636 }
7637 
7638 std::pair<SDValue, SDValue>
7639 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7640                                     SelectionDAG &DAG) const {
7641   SDLoc SL(LD);
7642   SDValue Chain = LD->getChain();
7643   SDValue BasePTR = LD->getBasePtr();
7644   EVT SrcVT = LD->getMemoryVT();
7645   EVT DstVT = LD->getValueType(0);
7646   ISD::LoadExtType ExtType = LD->getExtensionType();
7647 
7648   if (SrcVT.isScalableVector())
7649     report_fatal_error("Cannot scalarize scalable vector loads");
7650 
7651   unsigned NumElem = SrcVT.getVectorNumElements();
7652 
7653   EVT SrcEltVT = SrcVT.getScalarType();
7654   EVT DstEltVT = DstVT.getScalarType();
7655 
7656   // A vector must always be stored in memory as-is, i.e. without any padding
7657   // between the elements, since various code depend on it, e.g. in the
7658   // handling of a bitcast of a vector type to int, which may be done with a
7659   // vector store followed by an integer load. A vector that does not have
7660   // elements that are byte-sized must therefore be stored as an integer
7661   // built out of the extracted vector elements.
7662   if (!SrcEltVT.isByteSized()) {
7663     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7664     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7665 
7666     unsigned NumSrcBits = SrcVT.getSizeInBits();
7667     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7668 
7669     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7670     SDValue SrcEltBitMask = DAG.getConstant(
7671         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7672 
7673     // Load the whole vector and avoid masking off the top bits as it makes
7674     // the codegen worse.
7675     SDValue Load =
7676         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7677                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7678                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7679 
7680     SmallVector<SDValue, 8> Vals;
7681     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7682       unsigned ShiftIntoIdx =
7683           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7684       SDValue ShiftAmount =
7685           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7686                                      LoadVT, SL, /*LegalTypes=*/false);
7687       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7688       SDValue Elt =
7689           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7690       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7691 
7692       if (ExtType != ISD::NON_EXTLOAD) {
7693         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7694         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7695       }
7696 
7697       Vals.push_back(Scalar);
7698     }
7699 
7700     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7701     return std::make_pair(Value, Load.getValue(1));
7702   }
7703 
7704   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7705   assert(SrcEltVT.isByteSized());
7706 
7707   SmallVector<SDValue, 8> Vals;
7708   SmallVector<SDValue, 8> LoadChains;
7709 
7710   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7711     SDValue ScalarLoad =
7712         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7713                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7714                        SrcEltVT, LD->getOriginalAlign(),
7715                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7716 
7717     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7718 
7719     Vals.push_back(ScalarLoad.getValue(0));
7720     LoadChains.push_back(ScalarLoad.getValue(1));
7721   }
7722 
7723   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7724   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7725 
7726   return std::make_pair(Value, NewChain);
7727 }
7728 
7729 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7730                                              SelectionDAG &DAG) const {
7731   SDLoc SL(ST);
7732 
7733   SDValue Chain = ST->getChain();
7734   SDValue BasePtr = ST->getBasePtr();
7735   SDValue Value = ST->getValue();
7736   EVT StVT = ST->getMemoryVT();
7737 
7738   if (StVT.isScalableVector())
7739     report_fatal_error("Cannot scalarize scalable vector stores");
7740 
7741   // The type of the data we want to save
7742   EVT RegVT = Value.getValueType();
7743   EVT RegSclVT = RegVT.getScalarType();
7744 
7745   // The type of data as saved in memory.
7746   EVT MemSclVT = StVT.getScalarType();
7747 
7748   unsigned NumElem = StVT.getVectorNumElements();
7749 
7750   // A vector must always be stored in memory as-is, i.e. without any padding
7751   // between the elements, since various code depend on it, e.g. in the
7752   // handling of a bitcast of a vector type to int, which may be done with a
7753   // vector store followed by an integer load. A vector that does not have
7754   // elements that are byte-sized must therefore be stored as an integer
7755   // built out of the extracted vector elements.
7756   if (!MemSclVT.isByteSized()) {
7757     unsigned NumBits = StVT.getSizeInBits();
7758     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7759 
7760     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7761 
7762     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7763       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7764                                 DAG.getVectorIdxConstant(Idx, SL));
7765       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7766       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7767       unsigned ShiftIntoIdx =
7768           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7769       SDValue ShiftAmount =
7770           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7771       SDValue ShiftedElt =
7772           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7773       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7774     }
7775 
7776     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7777                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7778                         ST->getAAInfo());
7779   }
7780 
7781   // Store Stride in bytes
7782   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7783   assert(Stride && "Zero stride!");
7784   // Extract each of the elements from the original vector and save them into
7785   // memory individually.
7786   SmallVector<SDValue, 8> Stores;
7787   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7788     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7789                               DAG.getVectorIdxConstant(Idx, SL));
7790 
7791     SDValue Ptr =
7792         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7793 
7794     // This scalar TruncStore may be illegal, but we legalize it later.
7795     SDValue Store = DAG.getTruncStore(
7796         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7797         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7798         ST->getAAInfo());
7799 
7800     Stores.push_back(Store);
7801   }
7802 
7803   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7804 }
7805 
7806 std::pair<SDValue, SDValue>
7807 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7808   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7809          "unaligned indexed loads not implemented!");
7810   SDValue Chain = LD->getChain();
7811   SDValue Ptr = LD->getBasePtr();
7812   EVT VT = LD->getValueType(0);
7813   EVT LoadedVT = LD->getMemoryVT();
7814   SDLoc dl(LD);
7815   auto &MF = DAG.getMachineFunction();
7816 
7817   if (VT.isFloatingPoint() || VT.isVector()) {
7818     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7819     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7820       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7821           LoadedVT.isVector()) {
7822         // Scalarize the load and let the individual components be handled.
7823         return scalarizeVectorLoad(LD, DAG);
7824       }
7825 
7826       // Expand to a (misaligned) integer load of the same size,
7827       // then bitconvert to floating point or vector.
7828       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7829                                     LD->getMemOperand());
7830       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7831       if (LoadedVT != VT)
7832         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7833                              ISD::ANY_EXTEND, dl, VT, Result);
7834 
7835       return std::make_pair(Result, newLoad.getValue(1));
7836     }
7837 
7838     // Copy the value to a (aligned) stack slot using (unaligned) integer
7839     // loads and stores, then do a (aligned) load from the stack slot.
7840     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7841     unsigned LoadedBytes = LoadedVT.getStoreSize();
7842     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7843     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7844 
7845     // Make sure the stack slot is also aligned for the register type.
7846     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7847     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7848     SmallVector<SDValue, 8> Stores;
7849     SDValue StackPtr = StackBase;
7850     unsigned Offset = 0;
7851 
7852     EVT PtrVT = Ptr.getValueType();
7853     EVT StackPtrVT = StackPtr.getValueType();
7854 
7855     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7856     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7857 
7858     // Do all but one copies using the full register width.
7859     for (unsigned i = 1; i < NumRegs; i++) {
7860       // Load one integer register's worth from the original location.
7861       SDValue Load = DAG.getLoad(
7862           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7863           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7864           LD->getAAInfo());
7865       // Follow the load with a store to the stack slot.  Remember the store.
7866       Stores.push_back(DAG.getStore(
7867           Load.getValue(1), dl, Load, StackPtr,
7868           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7869       // Increment the pointers.
7870       Offset += RegBytes;
7871 
7872       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7873       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7874     }
7875 
7876     // The last copy may be partial.  Do an extending load.
7877     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7878                                   8 * (LoadedBytes - Offset));
7879     SDValue Load =
7880         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7881                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7882                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7883                        LD->getAAInfo());
7884     // Follow the load with a store to the stack slot.  Remember the store.
7885     // On big-endian machines this requires a truncating store to ensure
7886     // that the bits end up in the right place.
7887     Stores.push_back(DAG.getTruncStore(
7888         Load.getValue(1), dl, Load, StackPtr,
7889         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7890 
7891     // The order of the stores doesn't matter - say it with a TokenFactor.
7892     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7893 
7894     // Finally, perform the original load only redirected to the stack slot.
7895     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7896                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7897                           LoadedVT);
7898 
7899     // Callers expect a MERGE_VALUES node.
7900     return std::make_pair(Load, TF);
7901   }
7902 
7903   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7904          "Unaligned load of unsupported type.");
7905 
7906   // Compute the new VT that is half the size of the old one.  This is an
7907   // integer MVT.
7908   unsigned NumBits = LoadedVT.getSizeInBits();
7909   EVT NewLoadedVT;
7910   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7911   NumBits >>= 1;
7912 
7913   Align Alignment = LD->getOriginalAlign();
7914   unsigned IncrementSize = NumBits / 8;
7915   ISD::LoadExtType HiExtType = LD->getExtensionType();
7916 
7917   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7918   if (HiExtType == ISD::NON_EXTLOAD)
7919     HiExtType = ISD::ZEXTLOAD;
7920 
7921   // Load the value in two parts
7922   SDValue Lo, Hi;
7923   if (DAG.getDataLayout().isLittleEndian()) {
7924     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7925                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7926                         LD->getAAInfo());
7927 
7928     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7929     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7930                         LD->getPointerInfo().getWithOffset(IncrementSize),
7931                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7932                         LD->getAAInfo());
7933   } else {
7934     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7935                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7936                         LD->getAAInfo());
7937 
7938     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7939     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7940                         LD->getPointerInfo().getWithOffset(IncrementSize),
7941                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7942                         LD->getAAInfo());
7943   }
7944 
7945   // aggregate the two parts
7946   SDValue ShiftAmount =
7947       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7948                                                     DAG.getDataLayout()));
7949   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7950   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7951 
7952   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7953                              Hi.getValue(1));
7954 
7955   return std::make_pair(Result, TF);
7956 }
7957 
7958 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7959                                              SelectionDAG &DAG) const {
7960   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7961          "unaligned indexed stores not implemented!");
7962   SDValue Chain = ST->getChain();
7963   SDValue Ptr = ST->getBasePtr();
7964   SDValue Val = ST->getValue();
7965   EVT VT = Val.getValueType();
7966   Align Alignment = ST->getOriginalAlign();
7967   auto &MF = DAG.getMachineFunction();
7968   EVT StoreMemVT = ST->getMemoryVT();
7969 
7970   SDLoc dl(ST);
7971   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7972     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7973     if (isTypeLegal(intVT)) {
7974       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7975           StoreMemVT.isVector()) {
7976         // Scalarize the store and let the individual components be handled.
7977         SDValue Result = scalarizeVectorStore(ST, DAG);
7978         return Result;
7979       }
7980       // Expand to a bitconvert of the value to the integer type of the
7981       // same size, then a (misaligned) int store.
7982       // FIXME: Does not handle truncating floating point stores!
7983       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7984       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7985                             Alignment, ST->getMemOperand()->getFlags());
7986       return Result;
7987     }
7988     // Do a (aligned) store to a stack slot, then copy from the stack slot
7989     // to the final destination using (unaligned) integer loads and stores.
7990     MVT RegVT = getRegisterType(
7991         *DAG.getContext(),
7992         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7993     EVT PtrVT = Ptr.getValueType();
7994     unsigned StoredBytes = StoreMemVT.getStoreSize();
7995     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7996     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7997 
7998     // Make sure the stack slot is also aligned for the register type.
7999     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
8000     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8001 
8002     // Perform the original store, only redirected to the stack slot.
8003     SDValue Store = DAG.getTruncStore(
8004         Chain, dl, Val, StackPtr,
8005         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
8006 
8007     EVT StackPtrVT = StackPtr.getValueType();
8008 
8009     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8010     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8011     SmallVector<SDValue, 8> Stores;
8012     unsigned Offset = 0;
8013 
8014     // Do all but one copies using the full register width.
8015     for (unsigned i = 1; i < NumRegs; i++) {
8016       // Load one integer register's worth from the stack slot.
8017       SDValue Load = DAG.getLoad(
8018           RegVT, dl, Store, StackPtr,
8019           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
8020       // Store it to the final location.  Remember the store.
8021       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
8022                                     ST->getPointerInfo().getWithOffset(Offset),
8023                                     ST->getOriginalAlign(),
8024                                     ST->getMemOperand()->getFlags()));
8025       // Increment the pointers.
8026       Offset += RegBytes;
8027       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8028       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8029     }
8030 
8031     // The last store may be partial.  Do a truncating store.  On big-endian
8032     // machines this requires an extending load from the stack slot to ensure
8033     // that the bits are in the right place.
8034     EVT LoadMemVT =
8035         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
8036 
8037     // Load from the stack slot.
8038     SDValue Load = DAG.getExtLoad(
8039         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
8040         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
8041 
8042     Stores.push_back(
8043         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
8044                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
8045                           ST->getOriginalAlign(),
8046                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
8047     // The order of the stores doesn't matter - say it with a TokenFactor.
8048     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8049     return Result;
8050   }
8051 
8052   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
8053          "Unaligned store of unknown type.");
8054   // Get the half-size VT
8055   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
8056   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
8057   unsigned IncrementSize = NumBits / 8;
8058 
8059   // Divide the stored value in two parts.
8060   SDValue ShiftAmount = DAG.getConstant(
8061       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
8062   SDValue Lo = Val;
8063   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
8064 
8065   // Store the two parts
8066   SDValue Store1, Store2;
8067   Store1 = DAG.getTruncStore(Chain, dl,
8068                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
8069                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
8070                              ST->getMemOperand()->getFlags());
8071 
8072   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8073   Store2 = DAG.getTruncStore(
8074       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
8075       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
8076       ST->getMemOperand()->getFlags(), ST->getAAInfo());
8077 
8078   SDValue Result =
8079       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
8080   return Result;
8081 }
8082 
8083 SDValue
8084 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
8085                                        const SDLoc &DL, EVT DataVT,
8086                                        SelectionDAG &DAG,
8087                                        bool IsCompressedMemory) const {
8088   SDValue Increment;
8089   EVT AddrVT = Addr.getValueType();
8090   EVT MaskVT = Mask.getValueType();
8091   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
8092          "Incompatible types of Data and Mask");
8093   if (IsCompressedMemory) {
8094     if (DataVT.isScalableVector())
8095       report_fatal_error(
8096           "Cannot currently handle compressed memory with scalable vectors");
8097     // Incrementing the pointer according to number of '1's in the mask.
8098     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
8099     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
8100     if (MaskIntVT.getSizeInBits() < 32) {
8101       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
8102       MaskIntVT = MVT::i32;
8103     }
8104 
8105     // Count '1's with POPCNT.
8106     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
8107     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
8108     // Scale is an element size in bytes.
8109     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
8110                                     AddrVT);
8111     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
8112   } else if (DataVT.isScalableVector()) {
8113     Increment = DAG.getVScale(DL, AddrVT,
8114                               APInt(AddrVT.getFixedSizeInBits(),
8115                                     DataVT.getStoreSize().getKnownMinSize()));
8116   } else
8117     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
8118 
8119   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
8120 }
8121 
8122 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
8123                                        EVT VecVT, const SDLoc &dl,
8124                                        ElementCount SubEC) {
8125   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
8126          "Cannot index a scalable vector within a fixed-width vector");
8127 
8128   unsigned NElts = VecVT.getVectorMinNumElements();
8129   unsigned NumSubElts = SubEC.getKnownMinValue();
8130   EVT IdxVT = Idx.getValueType();
8131 
8132   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
8133     // If this is a constant index and we know the value plus the number of the
8134     // elements in the subvector minus one is less than the minimum number of
8135     // elements then it's safe to return Idx.
8136     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
8137       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
8138         return Idx;
8139     SDValue VS =
8140         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
8141     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
8142     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
8143                               DAG.getConstant(NumSubElts, dl, IdxVT));
8144     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
8145   }
8146   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
8147     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
8148     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
8149                        DAG.getConstant(Imm, dl, IdxVT));
8150   }
8151   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
8152   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
8153                      DAG.getConstant(MaxIndex, dl, IdxVT));
8154 }
8155 
8156 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
8157                                                 SDValue VecPtr, EVT VecVT,
8158                                                 SDValue Index) const {
8159   return getVectorSubVecPointer(
8160       DAG, VecPtr, VecVT,
8161       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
8162       Index);
8163 }
8164 
8165 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
8166                                                SDValue VecPtr, EVT VecVT,
8167                                                EVT SubVecVT,
8168                                                SDValue Index) const {
8169   SDLoc dl(Index);
8170   // Make sure the index type is big enough to compute in.
8171   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
8172 
8173   EVT EltVT = VecVT.getVectorElementType();
8174 
8175   // Calculate the element offset and add it to the pointer.
8176   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
8177   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
8178          "Converting bits to bytes lost precision");
8179   assert(SubVecVT.getVectorElementType() == EltVT &&
8180          "Sub-vector must be a vector with matching element type");
8181   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
8182                                   SubVecVT.getVectorElementCount());
8183 
8184   EVT IdxVT = Index.getValueType();
8185   if (SubVecVT.isScalableVector())
8186     Index =
8187         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8188                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
8189 
8190   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8191                       DAG.getConstant(EltSize, dl, IdxVT));
8192   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
8193 }
8194 
8195 //===----------------------------------------------------------------------===//
8196 // Implementation of Emulated TLS Model
8197 //===----------------------------------------------------------------------===//
8198 
8199 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8200                                                 SelectionDAG &DAG) const {
8201   // Access to address of TLS varialbe xyz is lowered to a function call:
8202   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8203   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8204   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8205   SDLoc dl(GA);
8206 
8207   ArgListTy Args;
8208   ArgListEntry Entry;
8209   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8210   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8211   StringRef EmuTlsVarName(NameString);
8212   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8213   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8214   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8215   Entry.Ty = VoidPtrType;
8216   Args.push_back(Entry);
8217 
8218   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8219 
8220   TargetLowering::CallLoweringInfo CLI(DAG);
8221   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8222   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8223   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8224 
8225   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8226   // At last for X86 targets, maybe good for other targets too?
8227   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8228   MFI.setAdjustsStack(true); // Is this only for X86 target?
8229   MFI.setHasCalls(true);
8230 
8231   assert((GA->getOffset() == 0) &&
8232          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8233   return CallResult.first;
8234 }
8235 
8236 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8237                                                 SelectionDAG &DAG) const {
8238   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8239   if (!isCtlzFast())
8240     return SDValue();
8241   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8242   SDLoc dl(Op);
8243   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8244     if (C->isZero() && CC == ISD::SETEQ) {
8245       EVT VT = Op.getOperand(0).getValueType();
8246       SDValue Zext = Op.getOperand(0);
8247       if (VT.bitsLT(MVT::i32)) {
8248         VT = MVT::i32;
8249         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8250       }
8251       unsigned Log2b = Log2_32(VT.getSizeInBits());
8252       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8253       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8254                                 DAG.getConstant(Log2b, dl, MVT::i32));
8255       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8256     }
8257   }
8258   return SDValue();
8259 }
8260 
8261 // Convert redundant addressing modes (e.g. scaling is redundant
8262 // when accessing bytes).
8263 ISD::MemIndexType
8264 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
8265                                       SDValue Offsets) const {
8266   bool IsScaledIndex =
8267       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
8268   bool IsSignedIndex =
8269       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
8270 
8271   // Scaling is unimportant for bytes, canonicalize to unscaled.
8272   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8)
8273     return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
8274 
8275   return IndexType;
8276 }
8277 
8278 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8279   SDValue Op0 = Node->getOperand(0);
8280   SDValue Op1 = Node->getOperand(1);
8281   EVT VT = Op0.getValueType();
8282   unsigned Opcode = Node->getOpcode();
8283   SDLoc DL(Node);
8284 
8285   // umin(x,y) -> sub(x,usubsat(x,y))
8286   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8287       isOperationLegal(ISD::USUBSAT, VT)) {
8288     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8289                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8290   }
8291 
8292   // umax(x,y) -> add(x,usubsat(y,x))
8293   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8294       isOperationLegal(ISD::USUBSAT, VT)) {
8295     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8296                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8297   }
8298 
8299   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8300   ISD::CondCode CC;
8301   switch (Opcode) {
8302   default: llvm_unreachable("How did we get here?");
8303   case ISD::SMAX: CC = ISD::SETGT; break;
8304   case ISD::SMIN: CC = ISD::SETLT; break;
8305   case ISD::UMAX: CC = ISD::SETUGT; break;
8306   case ISD::UMIN: CC = ISD::SETULT; break;
8307   }
8308 
8309   // FIXME: Should really try to split the vector in case it's legal on a
8310   // subvector.
8311   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8312     return DAG.UnrollVectorOp(Node);
8313 
8314   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8315   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8316   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8317 }
8318 
8319 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8320   unsigned Opcode = Node->getOpcode();
8321   SDValue LHS = Node->getOperand(0);
8322   SDValue RHS = Node->getOperand(1);
8323   EVT VT = LHS.getValueType();
8324   SDLoc dl(Node);
8325 
8326   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8327   assert(VT.isInteger() && "Expected operands to be integers");
8328 
8329   // usub.sat(a, b) -> umax(a, b) - b
8330   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8331     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8332     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8333   }
8334 
8335   // uadd.sat(a, b) -> umin(a, ~b) + b
8336   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8337     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8338     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8339     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8340   }
8341 
8342   unsigned OverflowOp;
8343   switch (Opcode) {
8344   case ISD::SADDSAT:
8345     OverflowOp = ISD::SADDO;
8346     break;
8347   case ISD::UADDSAT:
8348     OverflowOp = ISD::UADDO;
8349     break;
8350   case ISD::SSUBSAT:
8351     OverflowOp = ISD::SSUBO;
8352     break;
8353   case ISD::USUBSAT:
8354     OverflowOp = ISD::USUBO;
8355     break;
8356   default:
8357     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8358                      "addition or subtraction node.");
8359   }
8360 
8361   // FIXME: Should really try to split the vector in case it's legal on a
8362   // subvector.
8363   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8364     return DAG.UnrollVectorOp(Node);
8365 
8366   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8367   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8368   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8369   SDValue SumDiff = Result.getValue(0);
8370   SDValue Overflow = Result.getValue(1);
8371   SDValue Zero = DAG.getConstant(0, dl, VT);
8372   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8373 
8374   if (Opcode == ISD::UADDSAT) {
8375     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8376       // (LHS + RHS) | OverflowMask
8377       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8378       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8379     }
8380     // Overflow ? 0xffff.... : (LHS + RHS)
8381     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8382   }
8383 
8384   if (Opcode == ISD::USUBSAT) {
8385     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8386       // (LHS - RHS) & ~OverflowMask
8387       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8388       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8389       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8390     }
8391     // Overflow ? 0 : (LHS - RHS)
8392     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8393   }
8394 
8395   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8396   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8397   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8398   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8399                               DAG.getConstant(BitWidth - 1, dl, VT));
8400   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8401   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8402 }
8403 
8404 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8405   unsigned Opcode = Node->getOpcode();
8406   bool IsSigned = Opcode == ISD::SSHLSAT;
8407   SDValue LHS = Node->getOperand(0);
8408   SDValue RHS = Node->getOperand(1);
8409   EVT VT = LHS.getValueType();
8410   SDLoc dl(Node);
8411 
8412   assert((Node->getOpcode() == ISD::SSHLSAT ||
8413           Node->getOpcode() == ISD::USHLSAT) &&
8414           "Expected a SHLSAT opcode");
8415   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8416   assert(VT.isInteger() && "Expected operands to be integers");
8417 
8418   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8419 
8420   unsigned BW = VT.getScalarSizeInBits();
8421   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8422   SDValue Orig =
8423       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8424 
8425   SDValue SatVal;
8426   if (IsSigned) {
8427     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8428     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8429     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8430                              SatMin, SatMax, ISD::SETLT);
8431   } else {
8432     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8433   }
8434   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8435 
8436   return Result;
8437 }
8438 
8439 SDValue
8440 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8441   assert((Node->getOpcode() == ISD::SMULFIX ||
8442           Node->getOpcode() == ISD::UMULFIX ||
8443           Node->getOpcode() == ISD::SMULFIXSAT ||
8444           Node->getOpcode() == ISD::UMULFIXSAT) &&
8445          "Expected a fixed point multiplication opcode");
8446 
8447   SDLoc dl(Node);
8448   SDValue LHS = Node->getOperand(0);
8449   SDValue RHS = Node->getOperand(1);
8450   EVT VT = LHS.getValueType();
8451   unsigned Scale = Node->getConstantOperandVal(2);
8452   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8453                      Node->getOpcode() == ISD::UMULFIXSAT);
8454   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8455                  Node->getOpcode() == ISD::SMULFIXSAT);
8456   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8457   unsigned VTSize = VT.getScalarSizeInBits();
8458 
8459   if (!Scale) {
8460     // [us]mul.fix(a, b, 0) -> mul(a, b)
8461     if (!Saturating) {
8462       if (isOperationLegalOrCustom(ISD::MUL, VT))
8463         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8464     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8465       SDValue Result =
8466           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8467       SDValue Product = Result.getValue(0);
8468       SDValue Overflow = Result.getValue(1);
8469       SDValue Zero = DAG.getConstant(0, dl, VT);
8470 
8471       APInt MinVal = APInt::getSignedMinValue(VTSize);
8472       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8473       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8474       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8475       // Xor the inputs, if resulting sign bit is 0 the product will be
8476       // positive, else negative.
8477       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8478       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8479       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8480       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8481     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8482       SDValue Result =
8483           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8484       SDValue Product = Result.getValue(0);
8485       SDValue Overflow = Result.getValue(1);
8486 
8487       APInt MaxVal = APInt::getMaxValue(VTSize);
8488       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8489       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8490     }
8491   }
8492 
8493   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8494          "Expected scale to be less than the number of bits if signed or at "
8495          "most the number of bits if unsigned.");
8496   assert(LHS.getValueType() == RHS.getValueType() &&
8497          "Expected both operands to be the same type");
8498 
8499   // Get the upper and lower bits of the result.
8500   SDValue Lo, Hi;
8501   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8502   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8503   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8504     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8505     Lo = Result.getValue(0);
8506     Hi = Result.getValue(1);
8507   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8508     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8509     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8510   } else if (VT.isVector()) {
8511     return SDValue();
8512   } else {
8513     report_fatal_error("Unable to expand fixed point multiplication.");
8514   }
8515 
8516   if (Scale == VTSize)
8517     // Result is just the top half since we'd be shifting by the width of the
8518     // operand. Overflow impossible so this works for both UMULFIX and
8519     // UMULFIXSAT.
8520     return Hi;
8521 
8522   // The result will need to be shifted right by the scale since both operands
8523   // are scaled. The result is given to us in 2 halves, so we only want part of
8524   // both in the result.
8525   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8526   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8527                                DAG.getConstant(Scale, dl, ShiftTy));
8528   if (!Saturating)
8529     return Result;
8530 
8531   if (!Signed) {
8532     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8533     // widened multiplication) aren't all zeroes.
8534 
8535     // Saturate to max if ((Hi >> Scale) != 0),
8536     // which is the same as if (Hi > ((1 << Scale) - 1))
8537     APInt MaxVal = APInt::getMaxValue(VTSize);
8538     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8539                                       dl, VT);
8540     Result = DAG.getSelectCC(dl, Hi, LowMask,
8541                              DAG.getConstant(MaxVal, dl, VT), Result,
8542                              ISD::SETUGT);
8543 
8544     return Result;
8545   }
8546 
8547   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8548   // widened multiplication) aren't all ones or all zeroes.
8549 
8550   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8551   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8552 
8553   if (Scale == 0) {
8554     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8555                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8556     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8557     // Saturated to SatMin if wide product is negative, and SatMax if wide
8558     // product is positive ...
8559     SDValue Zero = DAG.getConstant(0, dl, VT);
8560     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8561                                                ISD::SETLT);
8562     // ... but only if we overflowed.
8563     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8564   }
8565 
8566   //  We handled Scale==0 above so all the bits to examine is in Hi.
8567 
8568   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8569   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8570   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8571                                     dl, VT);
8572   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8573   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8574   // which is the same as if (HI < (-1 << (Scale - 1))
8575   SDValue HighMask =
8576       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8577                       dl, VT);
8578   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8579   return Result;
8580 }
8581 
8582 SDValue
8583 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8584                                     SDValue LHS, SDValue RHS,
8585                                     unsigned Scale, SelectionDAG &DAG) const {
8586   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8587           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8588          "Expected a fixed point division opcode");
8589 
8590   EVT VT = LHS.getValueType();
8591   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8592   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8593   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8594 
8595   // If there is enough room in the type to upscale the LHS or downscale the
8596   // RHS before the division, we can perform it in this type without having to
8597   // resize. For signed operations, the LHS headroom is the number of
8598   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8599   // The headroom for the RHS is the number of trailing zeroes.
8600   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8601                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8602   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8603 
8604   // For signed saturating operations, we need to be able to detect true integer
8605   // division overflow; that is, when you have MIN / -EPS. However, this
8606   // is undefined behavior and if we emit divisions that could take such
8607   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8608   // example).
8609   // Avoid this by requiring an extra bit so that we never get this case.
8610   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8611   // signed saturating division, we need to emit a whopping 32-bit division.
8612   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8613     return SDValue();
8614 
8615   unsigned LHSShift = std::min(LHSLead, Scale);
8616   unsigned RHSShift = Scale - LHSShift;
8617 
8618   // At this point, we know that if we shift the LHS up by LHSShift and the
8619   // RHS down by RHSShift, we can emit a regular division with a final scaling
8620   // factor of Scale.
8621 
8622   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8623   if (LHSShift)
8624     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8625                       DAG.getConstant(LHSShift, dl, ShiftTy));
8626   if (RHSShift)
8627     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8628                       DAG.getConstant(RHSShift, dl, ShiftTy));
8629 
8630   SDValue Quot;
8631   if (Signed) {
8632     // For signed operations, if the resulting quotient is negative and the
8633     // remainder is nonzero, subtract 1 from the quotient to round towards
8634     // negative infinity.
8635     SDValue Rem;
8636     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8637     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8638     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8639     if (isTypeLegal(VT) &&
8640         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8641       Quot = DAG.getNode(ISD::SDIVREM, dl,
8642                          DAG.getVTList(VT, VT),
8643                          LHS, RHS);
8644       Rem = Quot.getValue(1);
8645       Quot = Quot.getValue(0);
8646     } else {
8647       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8648                          LHS, RHS);
8649       Rem = DAG.getNode(ISD::SREM, dl, VT,
8650                         LHS, RHS);
8651     }
8652     SDValue Zero = DAG.getConstant(0, dl, VT);
8653     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8654     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8655     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8656     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8657     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8658                                DAG.getConstant(1, dl, VT));
8659     Quot = DAG.getSelect(dl, VT,
8660                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8661                          Sub1, Quot);
8662   } else
8663     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8664                        LHS, RHS);
8665 
8666   return Quot;
8667 }
8668 
8669 void TargetLowering::expandUADDSUBO(
8670     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8671   SDLoc dl(Node);
8672   SDValue LHS = Node->getOperand(0);
8673   SDValue RHS = Node->getOperand(1);
8674   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8675 
8676   // If ADD/SUBCARRY is legal, use that instead.
8677   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8678   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8679     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8680     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8681                                     { LHS, RHS, CarryIn });
8682     Result = SDValue(NodeCarry.getNode(), 0);
8683     Overflow = SDValue(NodeCarry.getNode(), 1);
8684     return;
8685   }
8686 
8687   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8688                             LHS.getValueType(), LHS, RHS);
8689 
8690   EVT ResultType = Node->getValueType(1);
8691   EVT SetCCType = getSetCCResultType(
8692       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8693   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8694   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8695   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8696 }
8697 
8698 void TargetLowering::expandSADDSUBO(
8699     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8700   SDLoc dl(Node);
8701   SDValue LHS = Node->getOperand(0);
8702   SDValue RHS = Node->getOperand(1);
8703   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8704 
8705   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8706                             LHS.getValueType(), LHS, RHS);
8707 
8708   EVT ResultType = Node->getValueType(1);
8709   EVT OType = getSetCCResultType(
8710       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8711 
8712   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8713   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8714   if (isOperationLegal(OpcSat, LHS.getValueType())) {
8715     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8716     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8717     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8718     return;
8719   }
8720 
8721   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8722 
8723   // For an addition, the result should be less than one of the operands (LHS)
8724   // if and only if the other operand (RHS) is negative, otherwise there will
8725   // be overflow.
8726   // For a subtraction, the result should be less than one of the operands
8727   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8728   // otherwise there will be overflow.
8729   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8730   SDValue ConditionRHS =
8731       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8732 
8733   Overflow = DAG.getBoolExtOrTrunc(
8734       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8735       ResultType, ResultType);
8736 }
8737 
8738 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8739                                 SDValue &Overflow, SelectionDAG &DAG) const {
8740   SDLoc dl(Node);
8741   EVT VT = Node->getValueType(0);
8742   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8743   SDValue LHS = Node->getOperand(0);
8744   SDValue RHS = Node->getOperand(1);
8745   bool isSigned = Node->getOpcode() == ISD::SMULO;
8746 
8747   // For power-of-two multiplications we can use a simpler shift expansion.
8748   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8749     const APInt &C = RHSC->getAPIntValue();
8750     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8751     if (C.isPowerOf2()) {
8752       // smulo(x, signed_min) is same as umulo(x, signed_min).
8753       bool UseArithShift = isSigned && !C.isMinSignedValue();
8754       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8755       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8756       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8757       Overflow = DAG.getSetCC(dl, SetCCVT,
8758           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8759                       dl, VT, Result, ShiftAmt),
8760           LHS, ISD::SETNE);
8761       return true;
8762     }
8763   }
8764 
8765   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8766   if (VT.isVector())
8767     WideVT =
8768         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
8769 
8770   SDValue BottomHalf;
8771   SDValue TopHalf;
8772   static const unsigned Ops[2][3] =
8773       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8774         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8775   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8776     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8777     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8778   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8779     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8780                              RHS);
8781     TopHalf = BottomHalf.getValue(1);
8782   } else if (isTypeLegal(WideVT)) {
8783     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8784     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8785     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8786     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8787     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8788         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8789     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8790                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8791   } else {
8792     if (VT.isVector())
8793       return false;
8794 
8795     // We can fall back to a libcall with an illegal type for the MUL if we
8796     // have a libcall big enough.
8797     // Also, we can fall back to a division in some cases, but that's a big
8798     // performance hit in the general case.
8799     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8800     if (WideVT == MVT::i16)
8801       LC = RTLIB::MUL_I16;
8802     else if (WideVT == MVT::i32)
8803       LC = RTLIB::MUL_I32;
8804     else if (WideVT == MVT::i64)
8805       LC = RTLIB::MUL_I64;
8806     else if (WideVT == MVT::i128)
8807       LC = RTLIB::MUL_I128;
8808     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8809 
8810     SDValue HiLHS;
8811     SDValue HiRHS;
8812     if (isSigned) {
8813       // The high part is obtained by SRA'ing all but one of the bits of low
8814       // part.
8815       unsigned LoSize = VT.getFixedSizeInBits();
8816       HiLHS =
8817           DAG.getNode(ISD::SRA, dl, VT, LHS,
8818                       DAG.getConstant(LoSize - 1, dl,
8819                                       getPointerTy(DAG.getDataLayout())));
8820       HiRHS =
8821           DAG.getNode(ISD::SRA, dl, VT, RHS,
8822                       DAG.getConstant(LoSize - 1, dl,
8823                                       getPointerTy(DAG.getDataLayout())));
8824     } else {
8825         HiLHS = DAG.getConstant(0, dl, VT);
8826         HiRHS = DAG.getConstant(0, dl, VT);
8827     }
8828 
8829     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8830     // pre-lowered to the correct types. This all depends upon WideVT not
8831     // being a legal type for the architecture and thus has to be split to
8832     // two arguments.
8833     SDValue Ret;
8834     TargetLowering::MakeLibCallOptions CallOptions;
8835     CallOptions.setSExt(isSigned);
8836     CallOptions.setIsPostTypeLegalization(true);
8837     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8838       // Halves of WideVT are packed into registers in different order
8839       // depending on platform endianness. This is usually handled by
8840       // the C calling convention, but we can't defer to it in
8841       // the legalizer.
8842       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8843       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8844     } else {
8845       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8846       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8847     }
8848     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8849            "Ret value is a collection of constituent nodes holding result.");
8850     if (DAG.getDataLayout().isLittleEndian()) {
8851       // Same as above.
8852       BottomHalf = Ret.getOperand(0);
8853       TopHalf = Ret.getOperand(1);
8854     } else {
8855       BottomHalf = Ret.getOperand(1);
8856       TopHalf = Ret.getOperand(0);
8857     }
8858   }
8859 
8860   Result = BottomHalf;
8861   if (isSigned) {
8862     SDValue ShiftAmt = DAG.getConstant(
8863         VT.getScalarSizeInBits() - 1, dl,
8864         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8865     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8866     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8867   } else {
8868     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8869                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8870   }
8871 
8872   // Truncate the result if SetCC returns a larger type than needed.
8873   EVT RType = Node->getValueType(1);
8874   if (RType.bitsLT(Overflow.getValueType()))
8875     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8876 
8877   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8878          "Unexpected result type for S/UMULO legalization");
8879   return true;
8880 }
8881 
8882 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8883   SDLoc dl(Node);
8884   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8885   SDValue Op = Node->getOperand(0);
8886   EVT VT = Op.getValueType();
8887 
8888   if (VT.isScalableVector())
8889     report_fatal_error(
8890         "Expanding reductions for scalable vectors is undefined.");
8891 
8892   // Try to use a shuffle reduction for power of two vectors.
8893   if (VT.isPow2VectorType()) {
8894     while (VT.getVectorNumElements() > 1) {
8895       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8896       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8897         break;
8898 
8899       SDValue Lo, Hi;
8900       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8901       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8902       VT = HalfVT;
8903     }
8904   }
8905 
8906   EVT EltVT = VT.getVectorElementType();
8907   unsigned NumElts = VT.getVectorNumElements();
8908 
8909   SmallVector<SDValue, 8> Ops;
8910   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8911 
8912   SDValue Res = Ops[0];
8913   for (unsigned i = 1; i < NumElts; i++)
8914     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8915 
8916   // Result type may be wider than element type.
8917   if (EltVT != Node->getValueType(0))
8918     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8919   return Res;
8920 }
8921 
8922 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8923   SDLoc dl(Node);
8924   SDValue AccOp = Node->getOperand(0);
8925   SDValue VecOp = Node->getOperand(1);
8926   SDNodeFlags Flags = Node->getFlags();
8927 
8928   EVT VT = VecOp.getValueType();
8929   EVT EltVT = VT.getVectorElementType();
8930 
8931   if (VT.isScalableVector())
8932     report_fatal_error(
8933         "Expanding reductions for scalable vectors is undefined.");
8934 
8935   unsigned NumElts = VT.getVectorNumElements();
8936 
8937   SmallVector<SDValue, 8> Ops;
8938   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8939 
8940   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8941 
8942   SDValue Res = AccOp;
8943   for (unsigned i = 0; i < NumElts; i++)
8944     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8945 
8946   return Res;
8947 }
8948 
8949 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8950                                SelectionDAG &DAG) const {
8951   EVT VT = Node->getValueType(0);
8952   SDLoc dl(Node);
8953   bool isSigned = Node->getOpcode() == ISD::SREM;
8954   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8955   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8956   SDValue Dividend = Node->getOperand(0);
8957   SDValue Divisor = Node->getOperand(1);
8958   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8959     SDVTList VTs = DAG.getVTList(VT, VT);
8960     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8961     return true;
8962   }
8963   if (isOperationLegalOrCustom(DivOpc, VT)) {
8964     // X % Y -> X-X/Y*Y
8965     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8966     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8967     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8968     return true;
8969   }
8970   return false;
8971 }
8972 
8973 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8974                                             SelectionDAG &DAG) const {
8975   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8976   SDLoc dl(SDValue(Node, 0));
8977   SDValue Src = Node->getOperand(0);
8978 
8979   // DstVT is the result type, while SatVT is the size to which we saturate
8980   EVT SrcVT = Src.getValueType();
8981   EVT DstVT = Node->getValueType(0);
8982 
8983   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
8984   unsigned SatWidth = SatVT.getScalarSizeInBits();
8985   unsigned DstWidth = DstVT.getScalarSizeInBits();
8986   assert(SatWidth <= DstWidth &&
8987          "Expected saturation width smaller than result width");
8988 
8989   // Determine minimum and maximum integer values and their corresponding
8990   // floating-point values.
8991   APInt MinInt, MaxInt;
8992   if (IsSigned) {
8993     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8994     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8995   } else {
8996     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8997     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8998   }
8999 
9000   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
9001   // libcall emission cannot handle this. Large result types will fail.
9002   if (SrcVT == MVT::f16) {
9003     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
9004     SrcVT = Src.getValueType();
9005   }
9006 
9007   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9008   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9009 
9010   APFloat::opStatus MinStatus =
9011       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
9012   APFloat::opStatus MaxStatus =
9013       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
9014   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
9015                              !(MaxStatus & APFloat::opStatus::opInexact);
9016 
9017   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
9018   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
9019 
9020   // If the integer bounds are exactly representable as floats and min/max are
9021   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
9022   // of comparisons and selects.
9023   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
9024                      isOperationLegal(ISD::FMAXNUM, SrcVT);
9025   if (AreExactFloatBounds && MinMaxLegal) {
9026     SDValue Clamped = Src;
9027 
9028     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
9029     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
9030     // Clamp by MaxFloat from above. NaN cannot occur.
9031     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
9032     // Convert clamped value to integer.
9033     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
9034                                   dl, DstVT, Clamped);
9035 
9036     // In the unsigned case we're done, because we mapped NaN to MinFloat,
9037     // which will cast to zero.
9038     if (!IsSigned)
9039       return FpToInt;
9040 
9041     // Otherwise, select 0 if Src is NaN.
9042     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9043     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
9044                            ISD::CondCode::SETUO);
9045   }
9046 
9047   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
9048   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
9049 
9050   // Result of direct conversion. The assumption here is that the operation is
9051   // non-trapping and it's fine to apply it to an out-of-range value if we
9052   // select it away later.
9053   SDValue FpToInt =
9054       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
9055 
9056   SDValue Select = FpToInt;
9057 
9058   // If Src ULT MinFloat, select MinInt. In particular, this also selects
9059   // MinInt if Src is NaN.
9060   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
9061                            ISD::CondCode::SETULT);
9062   // If Src OGT MaxFloat, select MaxInt.
9063   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
9064                            ISD::CondCode::SETOGT);
9065 
9066   // In the unsigned case we are done, because we mapped NaN to MinInt, which
9067   // is already zero.
9068   if (!IsSigned)
9069     return Select;
9070 
9071   // Otherwise, select 0 if Src is NaN.
9072   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9073   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
9074 }
9075 
9076 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
9077                                            SelectionDAG &DAG) const {
9078   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
9079   assert(Node->getValueType(0).isScalableVector() &&
9080          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
9081 
9082   EVT VT = Node->getValueType(0);
9083   SDValue V1 = Node->getOperand(0);
9084   SDValue V2 = Node->getOperand(1);
9085   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
9086   SDLoc DL(Node);
9087 
9088   // Expand through memory thusly:
9089   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
9090   //  Store V1, Ptr
9091   //  Store V2, Ptr + sizeof(V1)
9092   //  If (Imm < 0)
9093   //    TrailingElts = -Imm
9094   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
9095   //  else
9096   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
9097   //  Res = Load Ptr
9098 
9099   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
9100 
9101   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9102                                VT.getVectorElementCount() * 2);
9103   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
9104   EVT PtrVT = StackPtr.getValueType();
9105   auto &MF = DAG.getMachineFunction();
9106   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9107   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
9108 
9109   // Store the lo part of CONCAT_VECTORS(V1, V2)
9110   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
9111   // Store the hi part of CONCAT_VECTORS(V1, V2)
9112   SDValue OffsetToV2 = DAG.getVScale(
9113       DL, PtrVT,
9114       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9115   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
9116   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
9117 
9118   if (Imm >= 0) {
9119     // Load back the required element. getVectorElementPointer takes care of
9120     // clamping the index if it's out-of-bounds.
9121     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
9122     // Load the spliced result
9123     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
9124                        MachinePointerInfo::getUnknownStack(MF));
9125   }
9126 
9127   uint64_t TrailingElts = -Imm;
9128 
9129   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
9130   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
9131   SDValue TrailingBytes =
9132       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
9133 
9134   if (TrailingElts > VT.getVectorMinNumElements()) {
9135     SDValue VLBytes = DAG.getVScale(
9136         DL, PtrVT,
9137         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9138     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
9139   }
9140 
9141   // Calculate the start address of the spliced result.
9142   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
9143 
9144   // Load the spliced result
9145   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
9146                      MachinePointerInfo::getUnknownStack(MF));
9147 }
9148 
9149 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
9150                                            SDValue &LHS, SDValue &RHS,
9151                                            SDValue &CC, bool &NeedInvert,
9152                                            const SDLoc &dl, SDValue &Chain,
9153                                            bool IsSignaling) const {
9154   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9155   MVT OpVT = LHS.getSimpleValueType();
9156   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
9157   NeedInvert = false;
9158   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
9159   default:
9160     llvm_unreachable("Unknown condition code action!");
9161   case TargetLowering::Legal:
9162     // Nothing to do.
9163     break;
9164   case TargetLowering::Expand: {
9165     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
9166     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9167       std::swap(LHS, RHS);
9168       CC = DAG.getCondCode(InvCC);
9169       return true;
9170     }
9171     // Swapping operands didn't work. Try inverting the condition.
9172     bool NeedSwap = false;
9173     InvCC = getSetCCInverse(CCCode, OpVT);
9174     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9175       // If inverting the condition is not enough, try swapping operands
9176       // on top of it.
9177       InvCC = ISD::getSetCCSwappedOperands(InvCC);
9178       NeedSwap = true;
9179     }
9180     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9181       CC = DAG.getCondCode(InvCC);
9182       NeedInvert = true;
9183       if (NeedSwap)
9184         std::swap(LHS, RHS);
9185       return true;
9186     }
9187 
9188     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
9189     unsigned Opc = 0;
9190     switch (CCCode) {
9191     default:
9192       llvm_unreachable("Don't know how to expand this condition!");
9193     case ISD::SETUO:
9194       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
9195         CC1 = ISD::SETUNE;
9196         CC2 = ISD::SETUNE;
9197         Opc = ISD::OR;
9198         break;
9199       }
9200       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9201              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9202       NeedInvert = true;
9203       LLVM_FALLTHROUGH;
9204     case ISD::SETO:
9205       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9206              "If SETO is expanded, SETOEQ must be legal!");
9207       CC1 = ISD::SETOEQ;
9208       CC2 = ISD::SETOEQ;
9209       Opc = ISD::AND;
9210       break;
9211     case ISD::SETONE:
9212     case ISD::SETUEQ:
9213       // If the SETUO or SETO CC isn't legal, we might be able to use
9214       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9215       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9216       // the operands.
9217       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9218       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9219           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9220            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9221         CC1 = ISD::SETOGT;
9222         CC2 = ISD::SETOLT;
9223         Opc = ISD::OR;
9224         NeedInvert = ((unsigned)CCCode & 0x8U);
9225         break;
9226       }
9227       LLVM_FALLTHROUGH;
9228     case ISD::SETOEQ:
9229     case ISD::SETOGT:
9230     case ISD::SETOGE:
9231     case ISD::SETOLT:
9232     case ISD::SETOLE:
9233     case ISD::SETUNE:
9234     case ISD::SETUGT:
9235     case ISD::SETUGE:
9236     case ISD::SETULT:
9237     case ISD::SETULE:
9238       // If we are floating point, assign and break, otherwise fall through.
9239       if (!OpVT.isInteger()) {
9240         // We can use the 4th bit to tell if we are the unordered
9241         // or ordered version of the opcode.
9242         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9243         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9244         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9245         break;
9246       }
9247       // Fallthrough if we are unsigned integer.
9248       LLVM_FALLTHROUGH;
9249     case ISD::SETLE:
9250     case ISD::SETGT:
9251     case ISD::SETGE:
9252     case ISD::SETLT:
9253     case ISD::SETNE:
9254     case ISD::SETEQ:
9255       // If all combinations of inverting the condition and swapping operands
9256       // didn't work then we have no means to expand the condition.
9257       llvm_unreachable("Don't know how to expand this condition!");
9258     }
9259 
9260     SDValue SetCC1, SetCC2;
9261     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9262       // If we aren't the ordered or unorder operation,
9263       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9264       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9265       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9266     } else {
9267       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9268       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9269       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9270     }
9271     if (Chain)
9272       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9273                           SetCC2.getValue(1));
9274     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9275     RHS = SDValue();
9276     CC = SDValue();
9277     return true;
9278   }
9279   }
9280   return false;
9281 }
9282