1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include "llvm/Target/TargetSubtargetInfo.h"
36 #include <cctype>
37 using namespace llvm;
38 
39 /// NOTE: The TargetMachine owns TLOF.
40 TargetLowering::TargetLowering(const TargetMachine &tm)
41   : TargetLoweringBase(tm) {}
42 
43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
44   return nullptr;
45 }
46 
47 bool TargetLowering::isPositionIndependent() const {
48   return getTargetMachine().isPositionIndependent();
49 }
50 
51 /// Check whether a given call node is in tail position within its function. If
52 /// so, it sets Chain to the input chain of the tail call.
53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
54                                           SDValue &Chain) const {
55   const Function *F = DAG.getMachineFunction().getFunction();
56 
57   // Conservatively require the attributes of the call to match those of
58   // the return. Ignore noalias because it doesn't affect the call sequence.
59   AttributeList CallerAttrs = F->getAttributes();
60   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
61           .removeAttribute(Attribute::NoAlias)
62           .hasAttributes())
63     return false;
64 
65   // It's not safe to eliminate the sign / zero extension of the return value.
66   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
67       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
68     return false;
69 
70   // Check if the only use is a function return node.
71   return isUsedByReturnOnly(Node, Chain);
72 }
73 
74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
75     const uint32_t *CallerPreservedMask,
76     const SmallVectorImpl<CCValAssign> &ArgLocs,
77     const SmallVectorImpl<SDValue> &OutVals) const {
78   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
79     const CCValAssign &ArgLoc = ArgLocs[I];
80     if (!ArgLoc.isRegLoc())
81       continue;
82     unsigned Reg = ArgLoc.getLocReg();
83     // Only look at callee saved registers.
84     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
85       continue;
86     // Check that we pass the value used for the caller.
87     // (We look for a CopyFromReg reading a virtual register that is used
88     //  for the function live-in value of register Reg)
89     SDValue Value = OutVals[I];
90     if (Value->getOpcode() != ISD::CopyFromReg)
91       return false;
92     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
93     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
94       return false;
95   }
96   return true;
97 }
98 
99 /// \brief Set CallLoweringInfo attribute flags based on a call instruction
100 /// and called function attributes.
101 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS,
102                                                      unsigned ArgIdx) {
103   IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt);
104   IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt);
105   IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg);
106   IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet);
107   IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest);
108   IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal);
109   IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca);
110   IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned);
111   IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
112   IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
113   Alignment  = CS->getParamAlignment(ArgIdx);
114 }
115 
116 /// Generate a libcall taking the given operands as arguments and returning a
117 /// result of type RetVT.
118 std::pair<SDValue, SDValue>
119 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
120                             ArrayRef<SDValue> Ops, bool isSigned,
121                             const SDLoc &dl, bool doesNotReturn,
122                             bool isReturnValueUsed) const {
123   TargetLowering::ArgListTy Args;
124   Args.reserve(Ops.size());
125 
126   TargetLowering::ArgListEntry Entry;
127   for (SDValue Op : Ops) {
128     Entry.Node = Op;
129     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
130     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
131     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
132     Args.push_back(Entry);
133   }
134 
135   if (LC == RTLIB::UNKNOWN_LIBCALL)
136     report_fatal_error("Unsupported library call operation!");
137   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
138                                          getPointerTy(DAG.getDataLayout()));
139 
140   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
141   TargetLowering::CallLoweringInfo CLI(DAG);
142   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
143   CLI.setDebugLoc(dl)
144       .setChain(DAG.getEntryNode())
145       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
146       .setNoReturn(doesNotReturn)
147       .setDiscardResult(!isReturnValueUsed)
148       .setSExtResult(signExtend)
149       .setZExtResult(!signExtend);
150   return LowerCallTo(CLI);
151 }
152 
153 /// Soften the operands of a comparison. This code is shared among BR_CC,
154 /// SELECT_CC, and SETCC handlers.
155 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
156                                          SDValue &NewLHS, SDValue &NewRHS,
157                                          ISD::CondCode &CCCode,
158                                          const SDLoc &dl) const {
159   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
160          && "Unsupported setcc type!");
161 
162   // Expand into one or more soft-fp libcall(s).
163   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
164   bool ShouldInvertCC = false;
165   switch (CCCode) {
166   case ISD::SETEQ:
167   case ISD::SETOEQ:
168     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
169           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
170           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
171     break;
172   case ISD::SETNE:
173   case ISD::SETUNE:
174     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
175           (VT == MVT::f64) ? RTLIB::UNE_F64 :
176           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
177     break;
178   case ISD::SETGE:
179   case ISD::SETOGE:
180     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
181           (VT == MVT::f64) ? RTLIB::OGE_F64 :
182           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
183     break;
184   case ISD::SETLT:
185   case ISD::SETOLT:
186     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
187           (VT == MVT::f64) ? RTLIB::OLT_F64 :
188           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
189     break;
190   case ISD::SETLE:
191   case ISD::SETOLE:
192     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
193           (VT == MVT::f64) ? RTLIB::OLE_F64 :
194           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
195     break;
196   case ISD::SETGT:
197   case ISD::SETOGT:
198     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
199           (VT == MVT::f64) ? RTLIB::OGT_F64 :
200           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
201     break;
202   case ISD::SETUO:
203     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
204           (VT == MVT::f64) ? RTLIB::UO_F64 :
205           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
206     break;
207   case ISD::SETO:
208     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
209           (VT == MVT::f64) ? RTLIB::O_F64 :
210           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
211     break;
212   case ISD::SETONE:
213     // SETONE = SETOLT | SETOGT
214     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
215           (VT == MVT::f64) ? RTLIB::OLT_F64 :
216           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
217     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
218           (VT == MVT::f64) ? RTLIB::OGT_F64 :
219           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
220     break;
221   case ISD::SETUEQ:
222     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
223           (VT == MVT::f64) ? RTLIB::UO_F64 :
224           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
225     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
226           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
227           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
228     break;
229   default:
230     // Invert CC for unordered comparisons
231     ShouldInvertCC = true;
232     switch (CCCode) {
233     case ISD::SETULT:
234       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
235             (VT == MVT::f64) ? RTLIB::OGE_F64 :
236             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
237       break;
238     case ISD::SETULE:
239       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
240             (VT == MVT::f64) ? RTLIB::OGT_F64 :
241             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
242       break;
243     case ISD::SETUGT:
244       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
245             (VT == MVT::f64) ? RTLIB::OLE_F64 :
246             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
247       break;
248     case ISD::SETUGE:
249       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
250             (VT == MVT::f64) ? RTLIB::OLT_F64 :
251             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
252       break;
253     default: llvm_unreachable("Do not know how to soften this setcc!");
254     }
255   }
256 
257   // Use the target specific return value for comparions lib calls.
258   EVT RetVT = getCmpLibcallReturnType();
259   SDValue Ops[2] = {NewLHS, NewRHS};
260   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
261                        dl).first;
262   NewRHS = DAG.getConstant(0, dl, RetVT);
263 
264   CCCode = getCmpLibcallCC(LC1);
265   if (ShouldInvertCC)
266     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
267 
268   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
269     SDValue Tmp = DAG.getNode(
270         ISD::SETCC, dl,
271         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
272         NewLHS, NewRHS, DAG.getCondCode(CCCode));
273     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
274                          dl).first;
275     NewLHS = DAG.getNode(
276         ISD::SETCC, dl,
277         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
278         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
279     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
280     NewRHS = SDValue();
281   }
282 }
283 
284 /// Return the entry encoding for a jump table in the current function. The
285 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
286 unsigned TargetLowering::getJumpTableEncoding() const {
287   // In non-pic modes, just use the address of a block.
288   if (!isPositionIndependent())
289     return MachineJumpTableInfo::EK_BlockAddress;
290 
291   // In PIC mode, if the target supports a GPRel32 directive, use it.
292   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
293     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
294 
295   // Otherwise, use a label difference.
296   return MachineJumpTableInfo::EK_LabelDifference32;
297 }
298 
299 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
300                                                  SelectionDAG &DAG) const {
301   // If our PIC model is GP relative, use the global offset table as the base.
302   unsigned JTEncoding = getJumpTableEncoding();
303 
304   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
305       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
306     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
307 
308   return Table;
309 }
310 
311 /// This returns the relocation base for the given PIC jumptable, the same as
312 /// getPICJumpTableRelocBase, but as an MCExpr.
313 const MCExpr *
314 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
315                                              unsigned JTI,MCContext &Ctx) const{
316   // The normal PIC reloc base is the label at the start of the jump table.
317   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
318 }
319 
320 bool
321 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
322   const TargetMachine &TM = getTargetMachine();
323   const GlobalValue *GV = GA->getGlobal();
324 
325   // If the address is not even local to this DSO we will have to load it from
326   // a got and then add the offset.
327   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
328     return false;
329 
330   // If the code is position independent we will have to add a base register.
331   if (isPositionIndependent())
332     return false;
333 
334   // Otherwise we can do it.
335   return true;
336 }
337 
338 //===----------------------------------------------------------------------===//
339 //  Optimization Methods
340 //===----------------------------------------------------------------------===//
341 
342 /// If the specified instruction has a constant integer operand and there are
343 /// bits set in that constant that are not demanded, then clear those bits and
344 /// return true.
345 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
346                                             TargetLoweringOpt &TLO) const {
347   SelectionDAG &DAG = TLO.DAG;
348   SDLoc DL(Op);
349   unsigned Opcode = Op.getOpcode();
350 
351   // Do target-specific constant optimization.
352   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
353     return TLO.New.getNode();
354 
355   // FIXME: ISD::SELECT, ISD::SELECT_CC
356   switch (Opcode) {
357   default:
358     break;
359   case ISD::XOR:
360   case ISD::AND:
361   case ISD::OR: {
362     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
363     if (!Op1C)
364       return false;
365 
366     // If this is a 'not' op, don't touch it because that's a canonical form.
367     const APInt &C = Op1C->getAPIntValue();
368     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
369       return false;
370 
371     if (!C.isSubsetOf(Demanded)) {
372       EVT VT = Op.getValueType();
373       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
374       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
375       return TLO.CombineTo(Op, NewOp);
376     }
377 
378     break;
379   }
380   }
381 
382   return false;
383 }
384 
385 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
386 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
387 /// generalized for targets with other types of implicit widening casts.
388 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
389                                       const APInt &Demanded,
390                                       TargetLoweringOpt &TLO) const {
391   assert(Op.getNumOperands() == 2 &&
392          "ShrinkDemandedOp only supports binary operators!");
393   assert(Op.getNode()->getNumValues() == 1 &&
394          "ShrinkDemandedOp only supports nodes with one result!");
395 
396   SelectionDAG &DAG = TLO.DAG;
397   SDLoc dl(Op);
398 
399   // Early return, as this function cannot handle vector types.
400   if (Op.getValueType().isVector())
401     return false;
402 
403   // Don't do this if the node has another user, which may require the
404   // full value.
405   if (!Op.getNode()->hasOneUse())
406     return false;
407 
408   // Search for the smallest integer type with free casts to and from
409   // Op's type. For expedience, just check power-of-2 integer types.
410   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
411   unsigned DemandedSize = Demanded.getActiveBits();
412   unsigned SmallVTBits = DemandedSize;
413   if (!isPowerOf2_32(SmallVTBits))
414     SmallVTBits = NextPowerOf2(SmallVTBits);
415   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
416     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
417     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
418         TLI.isZExtFree(SmallVT, Op.getValueType())) {
419       // We found a type with free casts.
420       SDValue X = DAG.getNode(
421           Op.getOpcode(), dl, SmallVT,
422           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
423           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
424       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
425       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
426       return TLO.CombineTo(Op, Z);
427     }
428   }
429   return false;
430 }
431 
432 bool
433 TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx,
434                                      const APInt &Demanded,
435                                      DAGCombinerInfo &DCI,
436                                      TargetLoweringOpt &TLO) const {
437   SDValue Op = User->getOperand(OpIdx);
438   KnownBits Known;
439 
440   if (!SimplifyDemandedBits(Op, Demanded, Known, TLO, 0, true))
441     return false;
442 
443 
444   // Old will not always be the same as Op.  For example:
445   //
446   // Demanded = 0xffffff
447   // Op = i64 truncate (i32 and x, 0xffffff)
448   // In this case simplify demand bits will want to replace the 'and' node
449   // with the value 'x', which will give us:
450   // Old = i32 and x, 0xffffff
451   // New = x
452   if (TLO.Old.hasOneUse()) {
453     // For the one use case, we just commit the change.
454     DCI.CommitTargetLoweringOpt(TLO);
455     return true;
456   }
457 
458   // If Old has more than one use then it must be Op, because the
459   // AssumeSingleUse flag is not propogated to recursive calls of
460   // SimplifyDemanded bits, so the only node with multiple use that
461   // it will attempt to combine will be Op.
462   assert(TLO.Old == Op);
463 
464   SmallVector <SDValue, 4> NewOps;
465   for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
466     if (i == OpIdx) {
467       NewOps.push_back(TLO.New);
468       continue;
469     }
470     NewOps.push_back(User->getOperand(i));
471   }
472   User = TLO.DAG.UpdateNodeOperands(User, NewOps);
473   // Op has less users now, so we may be able to perform additional combines
474   // with it.
475   DCI.AddToWorklist(Op.getNode());
476   // User's operands have been updated, so we may be able to do new combines
477   // with it.
478   DCI.AddToWorklist(User);
479   return true;
480 }
481 
482 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
483                                           DAGCombinerInfo &DCI) const {
484 
485   SelectionDAG &DAG = DCI.DAG;
486   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
487                         !DCI.isBeforeLegalizeOps());
488   KnownBits Known;
489 
490   bool Simplified = SimplifyDemandedBits(Op, DemandedMask, Known, TLO);
491   if (Simplified)
492     DCI.CommitTargetLoweringOpt(TLO);
493   return Simplified;
494 }
495 
496 /// Look at Op. At this point, we know that only the DemandedMask bits of the
497 /// result of Op are ever used downstream. If we can use this information to
498 /// simplify Op, create a new simplified DAG node and return true, returning the
499 /// original and new nodes in Old and New. Otherwise, analyze the expression and
500 /// return a mask of Known bits for the expression (used to simplify the
501 /// caller).  The Known bits may only be accurate for those bits in the
502 /// DemandedMask.
503 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
504                                           const APInt &DemandedMask,
505                                           KnownBits &Known,
506                                           TargetLoweringOpt &TLO,
507                                           unsigned Depth,
508                                           bool AssumeSingleUse) const {
509   unsigned BitWidth = DemandedMask.getBitWidth();
510   assert(Op.getScalarValueSizeInBits() == BitWidth &&
511          "Mask size mismatches value type size!");
512   APInt NewMask = DemandedMask;
513   SDLoc dl(Op);
514   auto &DL = TLO.DAG.getDataLayout();
515 
516   // Don't know anything.
517   Known = KnownBits(BitWidth);
518 
519   if (Op.getOpcode() == ISD::Constant) {
520     // We know all of the bits for a constant!
521     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
522     Known.Zero = ~Known.One;
523     return false;
524   }
525 
526   // Other users may use these bits.
527   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
528     if (Depth != 0) {
529       // If not at the root, Just compute the Known bits to
530       // simplify things downstream.
531       TLO.DAG.computeKnownBits(Op, Known, Depth);
532       return false;
533     }
534     // If this is the root being simplified, allow it to have multiple uses,
535     // just set the NewMask to all bits.
536     NewMask = APInt::getAllOnesValue(BitWidth);
537   } else if (DemandedMask == 0) {
538     // Not demanding any bits from Op.
539     if (!Op.isUndef())
540       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
541     return false;
542   } else if (Depth == 6) {        // Limit search depth.
543     return false;
544   }
545 
546   KnownBits Known2, KnownOut;
547   switch (Op.getOpcode()) {
548   case ISD::BUILD_VECTOR:
549     // Collect the known bits that are shared by every constant vector element.
550     Known.Zero.setAllBits(); Known.One.setAllBits();
551     for (SDValue SrcOp : Op->ops()) {
552       if (!isa<ConstantSDNode>(SrcOp)) {
553         // We can only handle all constant values - bail out with no known bits.
554         Known = KnownBits(BitWidth);
555         return false;
556       }
557       Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
558       Known2.Zero = ~Known2.One;
559 
560       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
561       if (Known2.One.getBitWidth() != BitWidth) {
562         assert(Known2.getBitWidth() > BitWidth &&
563                "Expected BUILD_VECTOR implicit truncation");
564         Known2 = Known2.trunc(BitWidth);
565       }
566 
567       // Known bits are the values that are shared by every element.
568       // TODO: support per-element known bits.
569       Known.One &= Known2.One;
570       Known.Zero &= Known2.Zero;
571     }
572     return false;   // Don't fall through, will infinitely loop.
573   case ISD::AND:
574     // If the RHS is a constant, check to see if the LHS would be zero without
575     // using the bits from the RHS.  Below, we use knowledge about the RHS to
576     // simplify the LHS, here we're using information from the LHS to simplify
577     // the RHS.
578     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op.getOperand(1))) {
579       SDValue Op0 = Op.getOperand(0);
580       KnownBits LHSKnown;
581       // Do not increment Depth here; that can cause an infinite loop.
582       TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth);
583       // If the LHS already has zeros where RHSC does, this and is dead.
584       if ((LHSKnown.Zero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
585         return TLO.CombineTo(Op, Op0);
586 
587       // If any of the set bits in the RHS are known zero on the LHS, shrink
588       // the constant.
589       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & NewMask, TLO))
590         return true;
591 
592       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
593       // constant, but if this 'and' is only clearing bits that were just set by
594       // the xor, then this 'and' can be eliminated by shrinking the mask of
595       // the xor. For example, for a 32-bit X:
596       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
597       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
598           LHSKnown.One == ~RHSC->getAPIntValue()) {
599         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, Op.getValueType(),
600                                       Op0.getOperand(0), Op.getOperand(1));
601         return TLO.CombineTo(Op, Xor);
602       }
603     }
604 
605     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
606       return true;
607     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
608     if (SimplifyDemandedBits(Op.getOperand(0), ~Known.Zero & NewMask,
609                              Known2, TLO, Depth+1))
610       return true;
611     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
612 
613     // If all of the demanded bits are known one on one side, return the other.
614     // These bits cannot contribute to the result of the 'and'.
615     if (NewMask.isSubsetOf(Known2.Zero | Known.One))
616       return TLO.CombineTo(Op, Op.getOperand(0));
617     if (NewMask.isSubsetOf(Known.Zero | Known2.One))
618       return TLO.CombineTo(Op, Op.getOperand(1));
619     // If all of the demanded bits in the inputs are known zeros, return zero.
620     if (NewMask.isSubsetOf(Known.Zero | Known2.Zero))
621       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType()));
622     // If the RHS is a constant, see if we can simplify it.
623     if (ShrinkDemandedConstant(Op, ~Known2.Zero & NewMask, TLO))
624       return true;
625     // If the operation can be done in a smaller type, do so.
626     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
627       return true;
628 
629     // Output known-1 bits are only known if set in both the LHS & RHS.
630     Known.One &= Known2.One;
631     // Output known-0 are known to be clear if zero in either the LHS | RHS.
632     Known.Zero |= Known2.Zero;
633     break;
634   case ISD::OR:
635     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
636       return true;
637     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
638     if (SimplifyDemandedBits(Op.getOperand(0), ~Known.One & NewMask,
639                              Known2, TLO, Depth+1))
640       return true;
641     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
642 
643     // If all of the demanded bits are known zero on one side, return the other.
644     // These bits cannot contribute to the result of the 'or'.
645     if (NewMask.isSubsetOf(Known2.One | Known.Zero))
646       return TLO.CombineTo(Op, Op.getOperand(0));
647     if (NewMask.isSubsetOf(Known.One | Known2.Zero))
648       return TLO.CombineTo(Op, Op.getOperand(1));
649     // If the RHS is a constant, see if we can simplify it.
650     if (ShrinkDemandedConstant(Op, NewMask, TLO))
651       return true;
652     // If the operation can be done in a smaller type, do so.
653     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
654       return true;
655 
656     // Output known-0 bits are only known if clear in both the LHS & RHS.
657     Known.Zero &= Known2.Zero;
658     // Output known-1 are known to be set if set in either the LHS | RHS.
659     Known.One |= Known2.One;
660     break;
661   case ISD::XOR: {
662     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
663       return true;
664     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
665     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, Known2, TLO, Depth+1))
666       return true;
667     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
668 
669     // If all of the demanded bits are known zero on one side, return the other.
670     // These bits cannot contribute to the result of the 'xor'.
671     if (NewMask.isSubsetOf(Known.Zero))
672       return TLO.CombineTo(Op, Op.getOperand(0));
673     if (NewMask.isSubsetOf(Known2.Zero))
674       return TLO.CombineTo(Op, Op.getOperand(1));
675     // If the operation can be done in a smaller type, do so.
676     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
677       return true;
678 
679     // If all of the unknown bits are known to be zero on one side or the other
680     // (but not both) turn this into an *inclusive* or.
681     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
682     if ((NewMask & ~Known.Zero & ~Known2.Zero) == 0)
683       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
684                                                Op.getOperand(0),
685                                                Op.getOperand(1)));
686 
687     // Output known-0 bits are known if clear or set in both the LHS & RHS.
688     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
689     // Output known-1 are known to be set if set in only one of the LHS, RHS.
690     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
691 
692     // If all of the demanded bits on one side are known, and all of the set
693     // bits on that side are also known to be set on the other side, turn this
694     // into an AND, as we know the bits will be cleared.
695     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
696     // NB: it is okay if more bits are known than are requested
697     if (NewMask.isSubsetOf(Known.Zero|Known.One)) { // all known on one side
698       if (Known.One == Known2.One) { // set bits are the same on both sides
699         EVT VT = Op.getValueType();
700         SDValue ANDC = TLO.DAG.getConstant(~Known.One & NewMask, dl, VT);
701         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
702                                                  Op.getOperand(0), ANDC));
703       }
704     }
705 
706     // If the RHS is a constant, see if we can change it. Don't alter a -1
707     // constant because that's a 'not' op, and that is better for combining and
708     // codegen.
709     ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1));
710     if (C && !C->isAllOnesValue()) {
711       if (NewMask.isSubsetOf(C->getAPIntValue())) {
712         // We're flipping all demanded bits. Flip the undemanded bits too.
713         SDValue New = TLO.DAG.getNOT(dl, Op.getOperand(0), Op.getValueType());
714         return TLO.CombineTo(Op, New);
715       }
716       // If we can't turn this into a 'not', try to shrink the constant.
717       if (ShrinkDemandedConstant(Op, NewMask, TLO))
718         return true;
719     }
720 
721     Known = std::move(KnownOut);
722     break;
723   }
724   case ISD::SELECT:
725     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known, TLO, Depth+1))
726       return true;
727     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known2, TLO, Depth+1))
728       return true;
729     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
730     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
731 
732     // If the operands are constants, see if we can simplify them.
733     if (ShrinkDemandedConstant(Op, NewMask, TLO))
734       return true;
735 
736     // Only known if known in both the LHS and RHS.
737     Known.One &= Known2.One;
738     Known.Zero &= Known2.Zero;
739     break;
740   case ISD::SELECT_CC:
741     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, Known, TLO, Depth+1))
742       return true;
743     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known2, TLO, Depth+1))
744       return true;
745     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
746     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
747 
748     // If the operands are constants, see if we can simplify them.
749     if (ShrinkDemandedConstant(Op, NewMask, TLO))
750       return true;
751 
752     // Only known if known in both the LHS and RHS.
753     Known.One &= Known2.One;
754     Known.Zero &= Known2.Zero;
755     break;
756   case ISD::SETCC: {
757     SDValue Op0 = Op.getOperand(0);
758     SDValue Op1 = Op.getOperand(1);
759     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
760     // If (1) we only need the sign-bit, (2) the setcc operands are the same
761     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
762     // -1, we may be able to bypass the setcc.
763     if (NewMask.isSignMask() && Op0.getScalarValueSizeInBits() == BitWidth &&
764         getBooleanContents(Op.getValueType()) ==
765             BooleanContent::ZeroOrNegativeOneBooleanContent) {
766       // If we're testing X < 0, then this compare isn't needed - just use X!
767       // FIXME: We're limiting to integer types here, but this should also work
768       // if we don't care about FP signed-zero. The use of SETLT with FP means
769       // that we don't care about NaNs.
770       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
771           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
772         return TLO.CombineTo(Op, Op0);
773 
774       // TODO: Should we check for other forms of sign-bit comparisons?
775       // Examples: X <= -1, X >= 0
776     }
777     if (getBooleanContents(Op0.getValueType()) ==
778             TargetLowering::ZeroOrOneBooleanContent &&
779         BitWidth > 1)
780       Known.Zero.setBitsFrom(1);
781     break;
782   }
783   case ISD::SHL:
784     if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) {
785       SDValue InOp = Op.getOperand(0);
786 
787       // If the shift count is an invalid immediate, don't do anything.
788       if (SA->getAPIntValue().uge(BitWidth))
789         break;
790 
791       unsigned ShAmt = SA->getZExtValue();
792 
793       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
794       // single shift.  We can do this if the bottom bits (which are shifted
795       // out) are never demanded.
796       if (InOp.getOpcode() == ISD::SRL) {
797         if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) {
798           if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
799             if (SA2->getAPIntValue().ult(BitWidth)) {
800               unsigned C1 = SA2->getZExtValue();
801               unsigned Opc = ISD::SHL;
802               int Diff = ShAmt-C1;
803               if (Diff < 0) {
804                 Diff = -Diff;
805                 Opc = ISD::SRL;
806               }
807 
808               SDValue NewSA =
809                 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
810               EVT VT = Op.getValueType();
811               return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
812                                                        InOp.getOperand(0),
813                                                        NewSA));
814             }
815           }
816         }
817       }
818 
819       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), Known, TLO, Depth+1))
820         return true;
821 
822       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
823       // are not demanded. This will likely allow the anyext to be folded away.
824       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
825         SDValue InnerOp = InOp.getOperand(0);
826         EVT InnerVT = InnerOp.getValueType();
827         unsigned InnerBits = InnerVT.getScalarSizeInBits();
828         if (ShAmt < InnerBits && NewMask.getActiveBits() <= InnerBits &&
829             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
830           EVT ShTy = getShiftAmountTy(InnerVT, DL);
831           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
832             ShTy = InnerVT;
833           SDValue NarrowShl =
834             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
835                             TLO.DAG.getConstant(ShAmt, dl, ShTy));
836           return
837             TLO.CombineTo(Op,
838                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
839                                           NarrowShl));
840         }
841         // Repeat the SHL optimization above in cases where an extension
842         // intervenes: (shl (anyext (shr x, c1)), c2) to
843         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
844         // aren't demanded (as above) and that the shifted upper c1 bits of
845         // x aren't demanded.
846         if (InOp.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
847             InnerOp.hasOneUse()) {
848           if (ConstantSDNode *SA2 = isConstOrConstSplat(InnerOp.getOperand(1))) {
849             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
850             if (InnerShAmt < ShAmt &&
851                 InnerShAmt < InnerBits &&
852                 NewMask.getActiveBits() <= (InnerBits - InnerShAmt + ShAmt) &&
853                 NewMask.countTrailingZeros() >= ShAmt) {
854               SDValue NewSA =
855                 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
856                                     Op.getOperand(1).getValueType());
857               EVT VT = Op.getValueType();
858               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
859                                                InnerOp.getOperand(0));
860               return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
861                                                        NewExt, NewSA));
862             }
863           }
864         }
865       }
866 
867       Known.Zero <<= ShAmt;
868       Known.One  <<= ShAmt;
869       // low bits known zero.
870       Known.Zero.setLowBits(ShAmt);
871     }
872     break;
873   case ISD::SRL:
874     if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) {
875       SDValue InOp = Op.getOperand(0);
876 
877       // If the shift count is an invalid immediate, don't do anything.
878       if (SA->getAPIntValue().uge(BitWidth))
879         break;
880 
881       unsigned ShAmt = SA->getZExtValue();
882       APInt InDemandedMask = (NewMask << ShAmt);
883 
884       // If the shift is exact, then it does demand the low bits (and knows that
885       // they are zero).
886       if (Op->getFlags().hasExact())
887         InDemandedMask.setLowBits(ShAmt);
888 
889       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
890       // single shift.  We can do this if the top bits (which are shifted out)
891       // are never demanded.
892       if (InOp.getOpcode() == ISD::SHL) {
893         if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) {
894           if (ShAmt &&
895               (NewMask & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
896             if (SA2->getAPIntValue().ult(BitWidth)) {
897               unsigned C1 = SA2->getZExtValue();
898               unsigned Opc = ISD::SRL;
899               int Diff = ShAmt-C1;
900               if (Diff < 0) {
901                 Diff = -Diff;
902                 Opc = ISD::SHL;
903               }
904 
905               SDValue NewSA =
906                 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
907               EVT VT = Op.getValueType();
908               return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
909                                                        InOp.getOperand(0),
910                                                        NewSA));
911             }
912           }
913         }
914       }
915 
916       // Compute the new bits that are at the top now.
917       if (SimplifyDemandedBits(InOp, InDemandedMask, Known, TLO, Depth+1))
918         return true;
919       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
920       Known.Zero.lshrInPlace(ShAmt);
921       Known.One.lshrInPlace(ShAmt);
922 
923       Known.Zero.setHighBits(ShAmt);  // High bits known zero.
924     }
925     break;
926   case ISD::SRA:
927     // If this is an arithmetic shift right and only the low-bit is set, we can
928     // always convert this into a logical shr, even if the shift amount is
929     // variable.  The low bit of the shift cannot be an input sign bit unless
930     // the shift amount is >= the size of the datatype, which is undefined.
931     if (NewMask.isOneValue())
932       return TLO.CombineTo(Op,
933                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
934                                            Op.getOperand(0), Op.getOperand(1)));
935 
936     if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) {
937       EVT VT = Op.getValueType();
938 
939       // If the shift count is an invalid immediate, don't do anything.
940       if (SA->getAPIntValue().uge(BitWidth))
941         break;
942 
943       unsigned ShAmt = SA->getZExtValue();
944       APInt InDemandedMask = (NewMask << ShAmt);
945 
946       // If the shift is exact, then it does demand the low bits (and knows that
947       // they are zero).
948       if (Op->getFlags().hasExact())
949         InDemandedMask.setLowBits(ShAmt);
950 
951       // If any of the demanded bits are produced by the sign extension, we also
952       // demand the input sign bit.
953       if (NewMask.countLeadingZeros() < ShAmt)
954         InDemandedMask.setSignBit();
955 
956       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, Known, TLO,
957                                Depth+1))
958         return true;
959       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
960       Known.Zero.lshrInPlace(ShAmt);
961       Known.One.lshrInPlace(ShAmt);
962 
963       // If the input sign bit is known to be zero, or if none of the top bits
964       // are demanded, turn this into an unsigned shift right.
965       if (Known.Zero[BitWidth - ShAmt - 1] ||
966           NewMask.countLeadingZeros() >= ShAmt) {
967         SDNodeFlags Flags;
968         Flags.setExact(Op->getFlags().hasExact());
969         return TLO.CombineTo(Op,
970                              TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
971                                              Op.getOperand(1), Flags));
972       }
973 
974       int Log2 = NewMask.exactLogBase2();
975       if (Log2 >= 0) {
976         // The bit must come from the sign.
977         SDValue NewSA =
978           TLO.DAG.getConstant(BitWidth - 1 - Log2, dl,
979                               Op.getOperand(1).getValueType());
980         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
981                                                  Op.getOperand(0), NewSA));
982       }
983 
984       if (Known.One[BitWidth - ShAmt - 1])
985         // New bits are known one.
986         Known.One.setHighBits(ShAmt);
987     }
988     break;
989   case ISD::SIGN_EXTEND_INREG: {
990     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
991     unsigned ExVTBits = ExVT.getScalarSizeInBits();
992 
993     // If we only care about the highest bit, don't bother shifting right.
994     if (NewMask.isSignMask()) {
995       SDValue InOp = Op.getOperand(0);
996       bool AlreadySignExtended =
997         TLO.DAG.ComputeNumSignBits(InOp) >= BitWidth-ExVTBits+1;
998       // However if the input is already sign extended we expect the sign
999       // extension to be dropped altogether later and do not simplify.
1000       if (!AlreadySignExtended) {
1001         // Compute the correct shift amount type, which must be getShiftAmountTy
1002         // for scalar types after legalization.
1003         EVT ShiftAmtTy = Op.getValueType();
1004         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1005           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1006 
1007         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
1008                                                ShiftAmtTy);
1009         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1010                                                  Op.getValueType(), InOp,
1011                                                  ShiftAmt));
1012       }
1013     }
1014 
1015     // If none of the extended bits are demanded, eliminate the sextinreg.
1016     if (NewMask.getActiveBits() <= ExVTBits)
1017       return TLO.CombineTo(Op, Op.getOperand(0));
1018 
1019     APInt InputDemandedBits = NewMask.getLoBits(ExVTBits);
1020 
1021     // Since the sign extended bits are demanded, we know that the sign
1022     // bit is demanded.
1023     InputDemandedBits.setBit(ExVTBits - 1);
1024 
1025     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1026                              Known, TLO, Depth+1))
1027       return true;
1028     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1029 
1030     // If the sign bit of the input is known set or clear, then we know the
1031     // top bits of the result.
1032 
1033     // If the input sign bit is known zero, convert this into a zero extension.
1034     if (Known.Zero[ExVTBits - 1])
1035       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(
1036                                    Op.getOperand(0), dl, ExVT.getScalarType()));
1037 
1038     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1039     if (Known.One[ExVTBits - 1]) {    // Input sign bit known set
1040       Known.One.setBitsFrom(ExVTBits);
1041       Known.Zero &= Mask;
1042     } else {                       // Input sign bit unknown
1043       Known.Zero &= Mask;
1044       Known.One &= Mask;
1045     }
1046     break;
1047   }
1048   case ISD::BUILD_PAIR: {
1049     EVT HalfVT = Op.getOperand(0).getValueType();
1050     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1051 
1052     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1053     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1054 
1055     KnownBits KnownLo, KnownHi;
1056 
1057     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1058       return true;
1059 
1060     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1061       return true;
1062 
1063     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1064                 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1065 
1066     Known.One = KnownLo.One.zext(BitWidth) |
1067                KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1068     break;
1069   }
1070   case ISD::ZERO_EXTEND: {
1071     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1072 
1073     // If none of the top bits are demanded, convert this into an any_extend.
1074     if (NewMask.getActiveBits() <= OperandBitWidth)
1075       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1076                                                Op.getValueType(),
1077                                                Op.getOperand(0)));
1078 
1079     APInt InMask = NewMask.trunc(OperandBitWidth);
1080     if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1))
1081       return true;
1082     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1083     Known = Known.zext(BitWidth);
1084     Known.Zero.setBitsFrom(OperandBitWidth);
1085     break;
1086   }
1087   case ISD::SIGN_EXTEND: {
1088     unsigned InBits = Op.getOperand(0).getValueType().getScalarSizeInBits();
1089 
1090     // If none of the top bits are demanded, convert this into an any_extend.
1091     if (NewMask.getActiveBits() <= InBits)
1092       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1093                                               Op.getValueType(),
1094                                               Op.getOperand(0)));
1095 
1096     // Since some of the sign extended bits are demanded, we know that the sign
1097     // bit is demanded.
1098     APInt InDemandedBits = NewMask.trunc(InBits);
1099     InDemandedBits.setBit(InBits - 1);
1100 
1101     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, Known, TLO,
1102                              Depth+1))
1103       return true;
1104     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1105     // If the sign bit is known one, the top bits match.
1106     Known = Known.sext(BitWidth);
1107 
1108     // If the sign bit is known zero, convert this to a zero extend.
1109     if (Known.isNonNegative())
1110       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1111                                                Op.getValueType(),
1112                                                Op.getOperand(0)));
1113     break;
1114   }
1115   case ISD::ANY_EXTEND: {
1116     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1117     APInt InMask = NewMask.trunc(OperandBitWidth);
1118     if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1))
1119       return true;
1120     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1121     Known = Known.zext(BitWidth);
1122     break;
1123   }
1124   case ISD::TRUNCATE: {
1125     // Simplify the input, using demanded bit information, and compute the known
1126     // zero/one bits live out.
1127     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1128     APInt TruncMask = NewMask.zext(OperandBitWidth);
1129     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, Known, TLO, Depth+1))
1130       return true;
1131     Known = Known.trunc(BitWidth);
1132 
1133     // If the input is only used by this truncate, see if we can shrink it based
1134     // on the known demanded bits.
1135     if (Op.getOperand(0).getNode()->hasOneUse()) {
1136       SDValue In = Op.getOperand(0);
1137       switch (In.getOpcode()) {
1138       default: break;
1139       case ISD::SRL:
1140         // Shrink SRL by a constant if none of the high bits shifted in are
1141         // demanded.
1142         if (TLO.LegalTypes() &&
1143             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1144           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1145           // undesirable.
1146           break;
1147         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1148         if (!ShAmt)
1149           break;
1150         SDValue Shift = In.getOperand(1);
1151         if (TLO.LegalTypes()) {
1152           uint64_t ShVal = ShAmt->getZExtValue();
1153           Shift = TLO.DAG.getConstant(ShVal, dl,
1154                                       getShiftAmountTy(Op.getValueType(), DL));
1155         }
1156 
1157         if (ShAmt->getZExtValue() < BitWidth) {
1158           APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1159                                                  OperandBitWidth - BitWidth);
1160           HighBits.lshrInPlace(ShAmt->getZExtValue());
1161           HighBits = HighBits.trunc(BitWidth);
1162 
1163           if (!(HighBits & NewMask)) {
1164             // None of the shifted in bits are needed.  Add a truncate of the
1165             // shift input, then shift it.
1166             SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1167                                                Op.getValueType(),
1168                                                In.getOperand(0));
1169             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1170                                                      Op.getValueType(),
1171                                                      NewTrunc,
1172                                                      Shift));
1173           }
1174         }
1175         break;
1176       }
1177     }
1178 
1179     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1180     break;
1181   }
1182   case ISD::AssertZext: {
1183     // AssertZext demands all of the high bits, plus any of the low bits
1184     // demanded by its users.
1185     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1186     APInt InMask = APInt::getLowBitsSet(BitWidth,
1187                                         VT.getSizeInBits());
1188     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1189                              Known, TLO, Depth+1))
1190       return true;
1191     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1192 
1193     Known.Zero |= ~InMask;
1194     break;
1195   }
1196   case ISD::BITCAST:
1197     // If this is an FP->Int bitcast and if the sign bit is the only
1198     // thing demanded, turn this into a FGETSIGN.
1199     if (!TLO.LegalOperations() &&
1200         !Op.getValueType().isVector() &&
1201         !Op.getOperand(0).getValueType().isVector() &&
1202         NewMask == APInt::getSignMask(Op.getValueSizeInBits()) &&
1203         Op.getOperand(0).getValueType().isFloatingPoint()) {
1204       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1205       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1206       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() &&
1207            Op.getOperand(0).getValueType() != MVT::f128) {
1208         // Cannot eliminate/lower SHL for f128 yet.
1209         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1210         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1211         // place.  We expect the SHL to be eliminated by other optimizations.
1212         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1213         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1214         if (!OpVTLegal && OpVTSizeInBits > 32)
1215           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1216         unsigned ShVal = Op.getValueSizeInBits() - 1;
1217         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType());
1218         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1219                                                  Op.getValueType(),
1220                                                  Sign, ShAmt));
1221       }
1222     }
1223     break;
1224   case ISD::ADD:
1225   case ISD::MUL:
1226   case ISD::SUB: {
1227     // Add, Sub, and Mul don't demand any bits in positions beyond that
1228     // of the highest bit demanded of them.
1229     APInt LoMask = APInt::getLowBitsSet(BitWidth,
1230                                         BitWidth - NewMask.countLeadingZeros());
1231     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, Known2, TLO, Depth+1) ||
1232         SimplifyDemandedBits(Op.getOperand(1), LoMask, Known2, TLO, Depth+1) ||
1233         // See if the operation should be performed at a smaller bit width.
1234         ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) {
1235       SDNodeFlags Flags = Op.getNode()->getFlags();
1236       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1237         // Disable the nsw and nuw flags. We can no longer guarantee that we
1238         // won't wrap after simplification.
1239         Flags.setNoSignedWrap(false);
1240         Flags.setNoUnsignedWrap(false);
1241         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, Op.getValueType(),
1242                                         Op.getOperand(0), Op.getOperand(1),
1243                                         Flags);
1244         return TLO.CombineTo(Op, NewOp);
1245       }
1246       return true;
1247     }
1248     LLVM_FALLTHROUGH;
1249   }
1250   default:
1251     // Just use computeKnownBits to compute output bits.
1252     TLO.DAG.computeKnownBits(Op, Known, Depth);
1253     break;
1254   }
1255 
1256   // If we know the value of all of the demanded bits, return this as a
1257   // constant.
1258   if (NewMask.isSubsetOf(Known.Zero|Known.One)) {
1259     // Avoid folding to a constant if any OpaqueConstant is involved.
1260     const SDNode *N = Op.getNode();
1261     for (SDNodeIterator I = SDNodeIterator::begin(N),
1262          E = SDNodeIterator::end(N); I != E; ++I) {
1263       SDNode *Op = *I;
1264       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1265         if (C->isOpaque())
1266           return false;
1267     }
1268     return TLO.CombineTo(Op,
1269                          TLO.DAG.getConstant(Known.One, dl, Op.getValueType()));
1270   }
1271 
1272   return false;
1273 }
1274 
1275 /// Determine which of the bits specified in Mask are known to be either zero or
1276 /// one and return them in the Known.
1277 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1278                                                    KnownBits &Known,
1279                                                    const APInt &DemandedElts,
1280                                                    const SelectionDAG &DAG,
1281                                                    unsigned Depth) const {
1282   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1283           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1284           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1285           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1286          "Should use MaskedValueIsZero if you don't know whether Op"
1287          " is a target node!");
1288   Known.resetAll();
1289 }
1290 
1291 /// This method can be implemented by targets that want to expose additional
1292 /// information about sign bits to the DAG Combiner.
1293 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1294                                                          const APInt &,
1295                                                          const SelectionDAG &,
1296                                                          unsigned Depth) const {
1297   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1298           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1299           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1300           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1301          "Should use ComputeNumSignBits if you don't know whether Op"
1302          " is a target node!");
1303   return 1;
1304 }
1305 
1306 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
1307 // work with truncating build vectors and vectors with elements of less than
1308 // 8 bits.
1309 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
1310   if (!N)
1311     return false;
1312 
1313   APInt CVal;
1314   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
1315     CVal = CN->getAPIntValue();
1316   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
1317     auto *CN = BV->getConstantSplatNode();
1318     if (!CN)
1319       return false;
1320 
1321     // If this is a truncating build vector, truncate the splat value.
1322     // Otherwise, we may fail to match the expected values below.
1323     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
1324     CVal = CN->getAPIntValue();
1325     if (BVEltWidth < CVal.getBitWidth())
1326       CVal = CVal.trunc(BVEltWidth);
1327   } else {
1328     return false;
1329   }
1330 
1331   switch (getBooleanContents(N->getValueType(0))) {
1332   case UndefinedBooleanContent:
1333     return CVal[0];
1334   case ZeroOrOneBooleanContent:
1335     return CVal.isOneValue();
1336   case ZeroOrNegativeOneBooleanContent:
1337     return CVal.isAllOnesValue();
1338   }
1339 
1340   llvm_unreachable("Invalid boolean contents");
1341 }
1342 
1343 SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT,
1344                                         const SDLoc &DL) const {
1345   unsigned ElementWidth = VT.getScalarSizeInBits();
1346   APInt TrueInt =
1347       getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent
1348           ? APInt(ElementWidth, 1)
1349           : APInt::getAllOnesValue(ElementWidth);
1350   return DAG.getConstant(TrueInt, DL, VT);
1351 }
1352 
1353 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
1354   if (!N)
1355     return false;
1356 
1357   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1358   if (!CN) {
1359     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1360     if (!BV)
1361       return false;
1362 
1363     // Only interested in constant splats, we don't care about undef
1364     // elements in identifying boolean constants and getConstantSplatNode
1365     // returns NULL if all ops are undef;
1366     CN = BV->getConstantSplatNode();
1367     if (!CN)
1368       return false;
1369   }
1370 
1371   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
1372     return !CN->getAPIntValue()[0];
1373 
1374   return CN->isNullValue();
1375 }
1376 
1377 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
1378                                        bool SExt) const {
1379   if (VT == MVT::i1)
1380     return N->isOne();
1381 
1382   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
1383   switch (Cnt) {
1384   case TargetLowering::ZeroOrOneBooleanContent:
1385     // An extended value of 1 is always true, unless its original type is i1,
1386     // in which case it will be sign extended to -1.
1387     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
1388   case TargetLowering::UndefinedBooleanContent:
1389   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1390     return N->isAllOnesValue() && SExt;
1391   }
1392   llvm_unreachable("Unexpected enumeration.");
1393 }
1394 
1395 /// This helper function of SimplifySetCC tries to optimize the comparison when
1396 /// either operand of the SetCC node is a bitwise-and instruction.
1397 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
1398                                              ISD::CondCode Cond,
1399                                              DAGCombinerInfo &DCI,
1400                                              const SDLoc &DL) const {
1401   // Match these patterns in any of their permutations:
1402   // (X & Y) == Y
1403   // (X & Y) != Y
1404   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
1405     std::swap(N0, N1);
1406 
1407   EVT OpVT = N0.getValueType();
1408   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
1409       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
1410     return SDValue();
1411 
1412   SDValue X, Y;
1413   if (N0.getOperand(0) == N1) {
1414     X = N0.getOperand(1);
1415     Y = N0.getOperand(0);
1416   } else if (N0.getOperand(1) == N1) {
1417     X = N0.getOperand(0);
1418     Y = N0.getOperand(1);
1419   } else {
1420     return SDValue();
1421   }
1422 
1423   SelectionDAG &DAG = DCI.DAG;
1424   SDValue Zero = DAG.getConstant(0, DL, OpVT);
1425   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
1426     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
1427     // Note that where Y is variable and is known to have at most one bit set
1428     // (for example, if it is Z & 1) we cannot do this; the expressions are not
1429     // equivalent when Y == 0.
1430     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1431     if (DCI.isBeforeLegalizeOps() ||
1432         isCondCodeLegal(Cond, N0.getSimpleValueType()))
1433       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
1434   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
1435     // If the target supports an 'and-not' or 'and-complement' logic operation,
1436     // try to use that to make a comparison operation more efficient.
1437     // But don't do this transform if the mask is a single bit because there are
1438     // more efficient ways to deal with that case (for example, 'bt' on x86 or
1439     // 'rlwinm' on PPC).
1440 
1441     // Bail out if the compare operand that we want to turn into a zero is
1442     // already a zero (otherwise, infinite loop).
1443     auto *YConst = dyn_cast<ConstantSDNode>(Y);
1444     if (YConst && YConst->isNullValue())
1445       return SDValue();
1446 
1447     // Transform this into: ~X & Y == 0.
1448     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
1449     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
1450     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
1451   }
1452 
1453   return SDValue();
1454 }
1455 
1456 /// Try to simplify a setcc built with the specified operands and cc. If it is
1457 /// unable to simplify it, return a null SDValue.
1458 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1459                                       ISD::CondCode Cond, bool foldBooleans,
1460                                       DAGCombinerInfo &DCI,
1461                                       const SDLoc &dl) const {
1462   SelectionDAG &DAG = DCI.DAG;
1463 
1464   // These setcc operations always fold.
1465   switch (Cond) {
1466   default: break;
1467   case ISD::SETFALSE:
1468   case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT);
1469   case ISD::SETTRUE:
1470   case ISD::SETTRUE2: {
1471     TargetLowering::BooleanContent Cnt =
1472         getBooleanContents(N0->getValueType(0));
1473     return DAG.getConstant(
1474         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1475         VT);
1476   }
1477   }
1478 
1479   // Ensure that the constant occurs on the RHS and fold constant comparisons.
1480   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
1481   if (isa<ConstantSDNode>(N0.getNode()) &&
1482       (DCI.isBeforeLegalizeOps() ||
1483        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
1484     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
1485 
1486   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1487     const APInt &C1 = N1C->getAPIntValue();
1488 
1489     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1490     // equality comparison, then we're just comparing whether X itself is
1491     // zero.
1492     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
1493         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1494         N0.getOperand(1).getOpcode() == ISD::Constant) {
1495       const APInt &ShAmt
1496         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1497       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1498           ShAmt == Log2_32(N0.getValueSizeInBits())) {
1499         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1500           // (srl (ctlz x), 5) == 0  -> X != 0
1501           // (srl (ctlz x), 5) != 1  -> X != 0
1502           Cond = ISD::SETNE;
1503         } else {
1504           // (srl (ctlz x), 5) != 0  -> X == 0
1505           // (srl (ctlz x), 5) == 1  -> X == 0
1506           Cond = ISD::SETEQ;
1507         }
1508         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
1509         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1510                             Zero, Cond);
1511       }
1512     }
1513 
1514     SDValue CTPOP = N0;
1515     // Look through truncs that don't change the value of a ctpop.
1516     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1517       CTPOP = N0.getOperand(0);
1518 
1519     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1520         (N0 == CTPOP ||
1521          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
1522       EVT CTVT = CTPOP.getValueType();
1523       SDValue CTOp = CTPOP.getOperand(0);
1524 
1525       // (ctpop x) u< 2 -> (x & x-1) == 0
1526       // (ctpop x) u> 1 -> (x & x-1) != 0
1527       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1528         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1529                                   DAG.getConstant(1, dl, CTVT));
1530         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1531         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1532         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
1533       }
1534 
1535       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1536     }
1537 
1538     // (zext x) == C --> x == (trunc C)
1539     // (sext x) == C --> x == (trunc C)
1540     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1541         DCI.isBeforeLegalize() && N0->hasOneUse()) {
1542       unsigned MinBits = N0.getValueSizeInBits();
1543       SDValue PreExt;
1544       bool Signed = false;
1545       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1546         // ZExt
1547         MinBits = N0->getOperand(0).getValueSizeInBits();
1548         PreExt = N0->getOperand(0);
1549       } else if (N0->getOpcode() == ISD::AND) {
1550         // DAGCombine turns costly ZExts into ANDs
1551         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1552           if ((C->getAPIntValue()+1).isPowerOf2()) {
1553             MinBits = C->getAPIntValue().countTrailingOnes();
1554             PreExt = N0->getOperand(0);
1555           }
1556       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
1557         // SExt
1558         MinBits = N0->getOperand(0).getValueSizeInBits();
1559         PreExt = N0->getOperand(0);
1560         Signed = true;
1561       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
1562         // ZEXTLOAD / SEXTLOAD
1563         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1564           MinBits = LN0->getMemoryVT().getSizeInBits();
1565           PreExt = N0;
1566         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
1567           Signed = true;
1568           MinBits = LN0->getMemoryVT().getSizeInBits();
1569           PreExt = N0;
1570         }
1571       }
1572 
1573       // Figure out how many bits we need to preserve this constant.
1574       unsigned ReqdBits = Signed ?
1575         C1.getBitWidth() - C1.getNumSignBits() + 1 :
1576         C1.getActiveBits();
1577 
1578       // Make sure we're not losing bits from the constant.
1579       if (MinBits > 0 &&
1580           MinBits < C1.getBitWidth() &&
1581           MinBits >= ReqdBits) {
1582         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1583         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1584           // Will get folded away.
1585           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
1586           if (MinBits == 1 && C1 == 1)
1587             // Invert the condition.
1588             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
1589                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1590           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
1591           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1592         }
1593 
1594         // If truncating the setcc operands is not desirable, we can still
1595         // simplify the expression in some cases:
1596         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
1597         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
1598         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
1599         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
1600         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
1601         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
1602         SDValue TopSetCC = N0->getOperand(0);
1603         unsigned N0Opc = N0->getOpcode();
1604         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
1605         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
1606             TopSetCC.getOpcode() == ISD::SETCC &&
1607             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
1608             (isConstFalseVal(N1C) ||
1609              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
1610 
1611           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
1612                          (!N1C->isNullValue() && Cond == ISD::SETNE);
1613 
1614           if (!Inverse)
1615             return TopSetCC;
1616 
1617           ISD::CondCode InvCond = ISD::getSetCCInverse(
1618               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
1619               TopSetCC.getOperand(0).getValueType().isInteger());
1620           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
1621                                       TopSetCC.getOperand(1),
1622                                       InvCond);
1623         }
1624       }
1625     }
1626 
1627     // If the LHS is '(and load, const)', the RHS is 0, the test is for
1628     // equality or unsigned, and all 1 bits of the const are in the same
1629     // partial word, see if we can shorten the load.
1630     if (DCI.isBeforeLegalize() &&
1631         !ISD::isSignedIntSetCC(Cond) &&
1632         N0.getOpcode() == ISD::AND && C1 == 0 &&
1633         N0.getNode()->hasOneUse() &&
1634         isa<LoadSDNode>(N0.getOperand(0)) &&
1635         N0.getOperand(0).getNode()->hasOneUse() &&
1636         isa<ConstantSDNode>(N0.getOperand(1))) {
1637       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1638       APInt bestMask;
1639       unsigned bestWidth = 0, bestOffset = 0;
1640       if (!Lod->isVolatile() && Lod->isUnindexed()) {
1641         unsigned origWidth = N0.getValueSizeInBits();
1642         unsigned maskWidth = origWidth;
1643         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1644         // 8 bits, but have to be careful...
1645         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1646           origWidth = Lod->getMemoryVT().getSizeInBits();
1647         const APInt &Mask =
1648           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1649         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1650           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1651           for (unsigned offset=0; offset<origWidth/width; offset++) {
1652             if (Mask.isSubsetOf(newMask)) {
1653               if (DAG.getDataLayout().isLittleEndian())
1654                 bestOffset = (uint64_t)offset * (width/8);
1655               else
1656                 bestOffset = (origWidth/width - offset - 1) * (width/8);
1657               bestMask = Mask.lshr(offset * (width/8) * 8);
1658               bestWidth = width;
1659               break;
1660             }
1661             newMask <<= width;
1662           }
1663         }
1664       }
1665       if (bestWidth) {
1666         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1667         if (newVT.isRound()) {
1668           EVT PtrType = Lod->getOperand(1).getValueType();
1669           SDValue Ptr = Lod->getBasePtr();
1670           if (bestOffset != 0)
1671             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1672                               DAG.getConstant(bestOffset, dl, PtrType));
1673           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1674           SDValue NewLoad = DAG.getLoad(
1675               newVT, dl, Lod->getChain(), Ptr,
1676               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
1677           return DAG.getSetCC(dl, VT,
1678                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1679                                       DAG.getConstant(bestMask.trunc(bestWidth),
1680                                                       dl, newVT)),
1681                               DAG.getConstant(0LL, dl, newVT), Cond);
1682         }
1683       }
1684     }
1685 
1686     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1687     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1688       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
1689 
1690       // If the comparison constant has bits in the upper part, the
1691       // zero-extended value could never match.
1692       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1693                                               C1.getBitWidth() - InSize))) {
1694         switch (Cond) {
1695         case ISD::SETUGT:
1696         case ISD::SETUGE:
1697         case ISD::SETEQ:
1698           return DAG.getConstant(0, dl, VT);
1699         case ISD::SETULT:
1700         case ISD::SETULE:
1701         case ISD::SETNE:
1702           return DAG.getConstant(1, dl, VT);
1703         case ISD::SETGT:
1704         case ISD::SETGE:
1705           // True if the sign bit of C1 is set.
1706           return DAG.getConstant(C1.isNegative(), dl, VT);
1707         case ISD::SETLT:
1708         case ISD::SETLE:
1709           // True if the sign bit of C1 isn't set.
1710           return DAG.getConstant(C1.isNonNegative(), dl, VT);
1711         default:
1712           break;
1713         }
1714       }
1715 
1716       // Otherwise, we can perform the comparison with the low bits.
1717       switch (Cond) {
1718       case ISD::SETEQ:
1719       case ISD::SETNE:
1720       case ISD::SETUGT:
1721       case ISD::SETUGE:
1722       case ISD::SETULT:
1723       case ISD::SETULE: {
1724         EVT newVT = N0.getOperand(0).getValueType();
1725         if (DCI.isBeforeLegalizeOps() ||
1726             (isOperationLegal(ISD::SETCC, newVT) &&
1727              getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
1728           EVT NewSetCCVT =
1729               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
1730           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
1731 
1732           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
1733                                           NewConst, Cond);
1734           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
1735         }
1736         break;
1737       }
1738       default:
1739         break;   // todo, be more careful with signed comparisons
1740       }
1741     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1742                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1743       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1744       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1745       EVT ExtDstTy = N0.getValueType();
1746       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1747 
1748       // If the constant doesn't fit into the number of bits for the source of
1749       // the sign extension, it is impossible for both sides to be equal.
1750       if (C1.getMinSignedBits() > ExtSrcTyBits)
1751         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
1752 
1753       SDValue ZextOp;
1754       EVT Op0Ty = N0.getOperand(0).getValueType();
1755       if (Op0Ty == ExtSrcTy) {
1756         ZextOp = N0.getOperand(0);
1757       } else {
1758         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1759         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1760                               DAG.getConstant(Imm, dl, Op0Ty));
1761       }
1762       if (!DCI.isCalledByLegalizer())
1763         DCI.AddToWorklist(ZextOp.getNode());
1764       // Otherwise, make this a use of a zext.
1765       return DAG.getSetCC(dl, VT, ZextOp,
1766                           DAG.getConstant(C1 & APInt::getLowBitsSet(
1767                                                               ExtDstTyBits,
1768                                                               ExtSrcTyBits),
1769                                           dl, ExtDstTy),
1770                           Cond);
1771     } else if ((N1C->isNullValue() || N1C->isOne()) &&
1772                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1773       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1774       if (N0.getOpcode() == ISD::SETCC &&
1775           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1776         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
1777         if (TrueWhenTrue)
1778           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1779         // Invert the condition.
1780         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1781         CC = ISD::getSetCCInverse(CC,
1782                                   N0.getOperand(0).getValueType().isInteger());
1783         if (DCI.isBeforeLegalizeOps() ||
1784             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
1785           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1786       }
1787 
1788       if ((N0.getOpcode() == ISD::XOR ||
1789            (N0.getOpcode() == ISD::AND &&
1790             N0.getOperand(0).getOpcode() == ISD::XOR &&
1791             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1792           isa<ConstantSDNode>(N0.getOperand(1)) &&
1793           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
1794         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1795         // can only do this if the top bits are known zero.
1796         unsigned BitWidth = N0.getValueSizeInBits();
1797         if (DAG.MaskedValueIsZero(N0,
1798                                   APInt::getHighBitsSet(BitWidth,
1799                                                         BitWidth-1))) {
1800           // Okay, get the un-inverted input value.
1801           SDValue Val;
1802           if (N0.getOpcode() == ISD::XOR) {
1803             Val = N0.getOperand(0);
1804           } else {
1805             assert(N0.getOpcode() == ISD::AND &&
1806                     N0.getOperand(0).getOpcode() == ISD::XOR);
1807             // ((X^1)&1)^1 -> X & 1
1808             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1809                               N0.getOperand(0).getOperand(0),
1810                               N0.getOperand(1));
1811           }
1812 
1813           return DAG.getSetCC(dl, VT, Val, N1,
1814                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1815         }
1816       } else if (N1C->isOne() &&
1817                  (VT == MVT::i1 ||
1818                   getBooleanContents(N0->getValueType(0)) ==
1819                       ZeroOrOneBooleanContent)) {
1820         SDValue Op0 = N0;
1821         if (Op0.getOpcode() == ISD::TRUNCATE)
1822           Op0 = Op0.getOperand(0);
1823 
1824         if ((Op0.getOpcode() == ISD::XOR) &&
1825             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1826             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1827           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1828           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1829           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1830                               Cond);
1831         }
1832         if (Op0.getOpcode() == ISD::AND &&
1833             isa<ConstantSDNode>(Op0.getOperand(1)) &&
1834             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
1835           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1836           if (Op0.getValueType().bitsGT(VT))
1837             Op0 = DAG.getNode(ISD::AND, dl, VT,
1838                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1839                           DAG.getConstant(1, dl, VT));
1840           else if (Op0.getValueType().bitsLT(VT))
1841             Op0 = DAG.getNode(ISD::AND, dl, VT,
1842                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1843                         DAG.getConstant(1, dl, VT));
1844 
1845           return DAG.getSetCC(dl, VT, Op0,
1846                               DAG.getConstant(0, dl, Op0.getValueType()),
1847                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1848         }
1849         if (Op0.getOpcode() == ISD::AssertZext &&
1850             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
1851           return DAG.getSetCC(dl, VT, Op0,
1852                               DAG.getConstant(0, dl, Op0.getValueType()),
1853                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1854       }
1855     }
1856 
1857     APInt MinVal, MaxVal;
1858     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1859     if (ISD::isSignedIntSetCC(Cond)) {
1860       MinVal = APInt::getSignedMinValue(OperandBitSize);
1861       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1862     } else {
1863       MinVal = APInt::getMinValue(OperandBitSize);
1864       MaxVal = APInt::getMaxValue(OperandBitSize);
1865     }
1866 
1867     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1868     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1869       // X >= MIN --> true
1870       if (C1 == MinVal)
1871         return DAG.getConstant(1, dl, VT);
1872 
1873       // X >= C0 --> X > (C0 - 1)
1874       APInt C = C1 - 1;
1875       ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
1876       if ((DCI.isBeforeLegalizeOps() ||
1877            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1878           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1879                                 isLegalICmpImmediate(C.getSExtValue())))) {
1880         return DAG.getSetCC(dl, VT, N0,
1881                             DAG.getConstant(C, dl, N1.getValueType()),
1882                             NewCC);
1883       }
1884     }
1885 
1886     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1887       // X <= MAX --> true
1888       if (C1 == MaxVal)
1889           return DAG.getConstant(1, dl, VT);
1890 
1891       // X <= C0 --> X < (C0 + 1)
1892       APInt C = C1 + 1;
1893       ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
1894       if ((DCI.isBeforeLegalizeOps() ||
1895            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1896           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1897                                 isLegalICmpImmediate(C.getSExtValue())))) {
1898         return DAG.getSetCC(dl, VT, N0,
1899                             DAG.getConstant(C, dl, N1.getValueType()),
1900                             NewCC);
1901       }
1902     }
1903 
1904     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1905       return DAG.getConstant(0, dl, VT);      // X < MIN --> false
1906     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1907       return DAG.getConstant(1, dl, VT);      // X >= MIN --> true
1908     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1909       return DAG.getConstant(0, dl, VT);      // X > MAX --> false
1910     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1911       return DAG.getConstant(1, dl, VT);      // X <= MAX --> true
1912 
1913     // Canonicalize setgt X, Min --> setne X, Min
1914     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1915       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1916     // Canonicalize setlt X, Max --> setne X, Max
1917     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1918       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1919 
1920     // If we have setult X, 1, turn it into seteq X, 0
1921     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1922       return DAG.getSetCC(dl, VT, N0,
1923                           DAG.getConstant(MinVal, dl, N0.getValueType()),
1924                           ISD::SETEQ);
1925     // If we have setugt X, Max-1, turn it into seteq X, Max
1926     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1927       return DAG.getSetCC(dl, VT, N0,
1928                           DAG.getConstant(MaxVal, dl, N0.getValueType()),
1929                           ISD::SETEQ);
1930 
1931     // If we have "setcc X, C0", check to see if we can shrink the immediate
1932     // by changing cc.
1933 
1934     // SETUGT X, SINTMAX  -> SETLT X, 0
1935     if (Cond == ISD::SETUGT &&
1936         C1 == APInt::getSignedMaxValue(OperandBitSize))
1937       return DAG.getSetCC(dl, VT, N0,
1938                           DAG.getConstant(0, dl, N1.getValueType()),
1939                           ISD::SETLT);
1940 
1941     // SETULT X, SINTMIN  -> SETGT X, -1
1942     if (Cond == ISD::SETULT &&
1943         C1 == APInt::getSignedMinValue(OperandBitSize)) {
1944       SDValue ConstMinusOne =
1945           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
1946                           N1.getValueType());
1947       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1948     }
1949 
1950     // Fold bit comparisons when we can.
1951     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1952         (VT == N0.getValueType() ||
1953          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1954         N0.getOpcode() == ISD::AND) {
1955       auto &DL = DAG.getDataLayout();
1956       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1957         EVT ShiftTy = DCI.isBeforeLegalize()
1958                           ? getPointerTy(DL)
1959                           : getShiftAmountTy(N0.getValueType(), DL);
1960         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1961           // Perform the xform if the AND RHS is a single bit.
1962           if (AndRHS->getAPIntValue().isPowerOf2()) {
1963             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1964                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1965                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
1966                                    ShiftTy)));
1967           }
1968         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1969           // (X & 8) == 8  -->  (X & 8) >> 3
1970           // Perform the xform if C1 is a single bit.
1971           if (C1.isPowerOf2()) {
1972             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1973                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1974                                       DAG.getConstant(C1.logBase2(), dl,
1975                                                       ShiftTy)));
1976           }
1977         }
1978       }
1979     }
1980 
1981     if (C1.getMinSignedBits() <= 64 &&
1982         !isLegalICmpImmediate(C1.getSExtValue())) {
1983       // (X & -256) == 256 -> (X >> 8) == 1
1984       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1985           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
1986         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1987           const APInt &AndRHSC = AndRHS->getAPIntValue();
1988           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
1989             unsigned ShiftBits = AndRHSC.countTrailingZeros();
1990             auto &DL = DAG.getDataLayout();
1991             EVT ShiftTy = DCI.isBeforeLegalize()
1992                               ? getPointerTy(DL)
1993                               : getShiftAmountTy(N0.getValueType(), DL);
1994             EVT CmpTy = N0.getValueType();
1995             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
1996                                         DAG.getConstant(ShiftBits, dl,
1997                                                         ShiftTy));
1998             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
1999             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
2000           }
2001         }
2002       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
2003                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
2004         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
2005         // X <  0x100000000 -> (X >> 32) <  1
2006         // X >= 0x100000000 -> (X >> 32) >= 1
2007         // X <= 0x0ffffffff -> (X >> 32) <  1
2008         // X >  0x0ffffffff -> (X >> 32) >= 1
2009         unsigned ShiftBits;
2010         APInt NewC = C1;
2011         ISD::CondCode NewCond = Cond;
2012         if (AdjOne) {
2013           ShiftBits = C1.countTrailingOnes();
2014           NewC = NewC + 1;
2015           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2016         } else {
2017           ShiftBits = C1.countTrailingZeros();
2018         }
2019         NewC.lshrInPlace(ShiftBits);
2020         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
2021           isLegalICmpImmediate(NewC.getSExtValue())) {
2022           auto &DL = DAG.getDataLayout();
2023           EVT ShiftTy = DCI.isBeforeLegalize()
2024                             ? getPointerTy(DL)
2025                             : getShiftAmountTy(N0.getValueType(), DL);
2026           EVT CmpTy = N0.getValueType();
2027           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
2028                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
2029           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
2030           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
2031         }
2032       }
2033     }
2034   }
2035 
2036   if (isa<ConstantFPSDNode>(N0.getNode())) {
2037     // Constant fold or commute setcc.
2038     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2039     if (O.getNode()) return O;
2040   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2041     // If the RHS of an FP comparison is a constant, simplify it away in
2042     // some cases.
2043     if (CFP->getValueAPF().isNaN()) {
2044       // If an operand is known to be a nan, we can fold it.
2045       switch (ISD::getUnorderedFlavor(Cond)) {
2046       default: llvm_unreachable("Unknown flavor!");
2047       case 0:  // Known false.
2048         return DAG.getConstant(0, dl, VT);
2049       case 1:  // Known true.
2050         return DAG.getConstant(1, dl, VT);
2051       case 2:  // Undefined.
2052         return DAG.getUNDEF(VT);
2053       }
2054     }
2055 
2056     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2057     // constant if knowing that the operand is non-nan is enough.  We prefer to
2058     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2059     // materialize 0.0.
2060     if (Cond == ISD::SETO || Cond == ISD::SETUO)
2061       return DAG.getSetCC(dl, VT, N0, N0, Cond);
2062 
2063     // setcc (fneg x), C -> setcc swap(pred) x, -C
2064     if (N0.getOpcode() == ISD::FNEG) {
2065       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
2066       if (DCI.isBeforeLegalizeOps() ||
2067           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
2068         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
2069         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
2070       }
2071     }
2072 
2073     // If the condition is not legal, see if we can find an equivalent one
2074     // which is legal.
2075     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
2076       // If the comparison was an awkward floating-point == or != and one of
2077       // the comparison operands is infinity or negative infinity, convert the
2078       // condition to a less-awkward <= or >=.
2079       if (CFP->getValueAPF().isInfinity()) {
2080         if (CFP->getValueAPF().isNegative()) {
2081           if (Cond == ISD::SETOEQ &&
2082               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2083             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2084           if (Cond == ISD::SETUEQ &&
2085               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2086             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2087           if (Cond == ISD::SETUNE &&
2088               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2089             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2090           if (Cond == ISD::SETONE &&
2091               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2092             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2093         } else {
2094           if (Cond == ISD::SETOEQ &&
2095               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2096             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2097           if (Cond == ISD::SETUEQ &&
2098               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2099             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2100           if (Cond == ISD::SETUNE &&
2101               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2102             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2103           if (Cond == ISD::SETONE &&
2104               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2105             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2106         }
2107       }
2108     }
2109   }
2110 
2111   if (N0 == N1) {
2112     // The sext(setcc()) => setcc() optimization relies on the appropriate
2113     // constant being emitted.
2114     uint64_t EqVal = 0;
2115     switch (getBooleanContents(N0.getValueType())) {
2116     case UndefinedBooleanContent:
2117     case ZeroOrOneBooleanContent:
2118       EqVal = ISD::isTrueWhenEqual(Cond);
2119       break;
2120     case ZeroOrNegativeOneBooleanContent:
2121       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
2122       break;
2123     }
2124 
2125     // We can always fold X == X for integer setcc's.
2126     if (N0.getValueType().isInteger()) {
2127       return DAG.getConstant(EqVal, dl, VT);
2128     }
2129     unsigned UOF = ISD::getUnorderedFlavor(Cond);
2130     if (UOF == 2)   // FP operators that are undefined on NaNs.
2131       return DAG.getConstant(EqVal, dl, VT);
2132     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2133       return DAG.getConstant(EqVal, dl, VT);
2134     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2135     // if it is not already.
2136     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2137     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
2138           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
2139       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2140   }
2141 
2142   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2143       N0.getValueType().isInteger()) {
2144     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2145         N0.getOpcode() == ISD::XOR) {
2146       // Simplify (X+Y) == (X+Z) -->  Y == Z
2147       if (N0.getOpcode() == N1.getOpcode()) {
2148         if (N0.getOperand(0) == N1.getOperand(0))
2149           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2150         if (N0.getOperand(1) == N1.getOperand(1))
2151           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2152         if (isCommutativeBinOp(N0.getOpcode())) {
2153           // If X op Y == Y op X, try other combinations.
2154           if (N0.getOperand(0) == N1.getOperand(1))
2155             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2156                                 Cond);
2157           if (N0.getOperand(1) == N1.getOperand(0))
2158             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2159                                 Cond);
2160         }
2161       }
2162 
2163       // If RHS is a legal immediate value for a compare instruction, we need
2164       // to be careful about increasing register pressure needlessly.
2165       bool LegalRHSImm = false;
2166 
2167       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2168         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2169           // Turn (X+C1) == C2 --> X == C2-C1
2170           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2171             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2172                                 DAG.getConstant(RHSC->getAPIntValue()-
2173                                                 LHSR->getAPIntValue(),
2174                                 dl, N0.getValueType()), Cond);
2175           }
2176 
2177           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2178           if (N0.getOpcode() == ISD::XOR)
2179             // If we know that all of the inverted bits are zero, don't bother
2180             // performing the inversion.
2181             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2182               return
2183                 DAG.getSetCC(dl, VT, N0.getOperand(0),
2184                              DAG.getConstant(LHSR->getAPIntValue() ^
2185                                                RHSC->getAPIntValue(),
2186                                              dl, N0.getValueType()),
2187                              Cond);
2188         }
2189 
2190         // Turn (C1-X) == C2 --> X == C1-C2
2191         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2192           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2193             return
2194               DAG.getSetCC(dl, VT, N0.getOperand(1),
2195                            DAG.getConstant(SUBC->getAPIntValue() -
2196                                              RHSC->getAPIntValue(),
2197                                            dl, N0.getValueType()),
2198                            Cond);
2199           }
2200         }
2201 
2202         // Could RHSC fold directly into a compare?
2203         if (RHSC->getValueType(0).getSizeInBits() <= 64)
2204           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2205       }
2206 
2207       // Simplify (X+Z) == X -->  Z == 0
2208       // Don't do this if X is an immediate that can fold into a cmp
2209       // instruction and X+Z has other uses. It could be an induction variable
2210       // chain, and the transform would increase register pressure.
2211       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2212         if (N0.getOperand(0) == N1)
2213           return DAG.getSetCC(dl, VT, N0.getOperand(1),
2214                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
2215         if (N0.getOperand(1) == N1) {
2216           if (isCommutativeBinOp(N0.getOpcode()))
2217             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2218                                 DAG.getConstant(0, dl, N0.getValueType()),
2219                                 Cond);
2220           if (N0.getNode()->hasOneUse()) {
2221             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2222             auto &DL = DAG.getDataLayout();
2223             // (Z-X) == X  --> Z == X<<1
2224             SDValue SH = DAG.getNode(
2225                 ISD::SHL, dl, N1.getValueType(), N1,
2226                 DAG.getConstant(1, dl,
2227                                 getShiftAmountTy(N1.getValueType(), DL)));
2228             if (!DCI.isCalledByLegalizer())
2229               DCI.AddToWorklist(SH.getNode());
2230             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2231           }
2232         }
2233       }
2234     }
2235 
2236     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2237         N1.getOpcode() == ISD::XOR) {
2238       // Simplify  X == (X+Z) -->  Z == 0
2239       if (N1.getOperand(0) == N0)
2240         return DAG.getSetCC(dl, VT, N1.getOperand(1),
2241                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
2242       if (N1.getOperand(1) == N0) {
2243         if (isCommutativeBinOp(N1.getOpcode()))
2244           return DAG.getSetCC(dl, VT, N1.getOperand(0),
2245                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
2246         if (N1.getNode()->hasOneUse()) {
2247           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2248           auto &DL = DAG.getDataLayout();
2249           // X == (Z-X)  --> X<<1 == Z
2250           SDValue SH = DAG.getNode(
2251               ISD::SHL, dl, N1.getValueType(), N0,
2252               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL)));
2253           if (!DCI.isCalledByLegalizer())
2254             DCI.AddToWorklist(SH.getNode());
2255           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2256         }
2257       }
2258     }
2259 
2260     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
2261       return V;
2262   }
2263 
2264   // Fold away ALL boolean setcc's.
2265   SDValue Temp;
2266   if (N0.getValueType() == MVT::i1 && foldBooleans) {
2267     switch (Cond) {
2268     default: llvm_unreachable("Unknown integer setcc!");
2269     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2270       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2271       N0 = DAG.getNOT(dl, Temp, MVT::i1);
2272       if (!DCI.isCalledByLegalizer())
2273         DCI.AddToWorklist(Temp.getNode());
2274       break;
2275     case ISD::SETNE:  // X != Y   -->  (X^Y)
2276       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2277       break;
2278     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2279     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2280       Temp = DAG.getNOT(dl, N0, MVT::i1);
2281       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2282       if (!DCI.isCalledByLegalizer())
2283         DCI.AddToWorklist(Temp.getNode());
2284       break;
2285     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2286     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2287       Temp = DAG.getNOT(dl, N1, MVT::i1);
2288       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2289       if (!DCI.isCalledByLegalizer())
2290         DCI.AddToWorklist(Temp.getNode());
2291       break;
2292     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2293     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2294       Temp = DAG.getNOT(dl, N0, MVT::i1);
2295       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2296       if (!DCI.isCalledByLegalizer())
2297         DCI.AddToWorklist(Temp.getNode());
2298       break;
2299     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2300     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2301       Temp = DAG.getNOT(dl, N1, MVT::i1);
2302       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2303       break;
2304     }
2305     if (VT != MVT::i1) {
2306       if (!DCI.isCalledByLegalizer())
2307         DCI.AddToWorklist(N0.getNode());
2308       // FIXME: If running after legalize, we probably can't do this.
2309       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2310     }
2311     return N0;
2312   }
2313 
2314   // Could not fold it.
2315   return SDValue();
2316 }
2317 
2318 /// Returns true (and the GlobalValue and the offset) if the node is a
2319 /// GlobalAddress + offset.
2320 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2321                                     int64_t &Offset) const {
2322   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
2323     GA = GASD->getGlobal();
2324     Offset += GASD->getOffset();
2325     return true;
2326   }
2327 
2328   if (N->getOpcode() == ISD::ADD) {
2329     SDValue N1 = N->getOperand(0);
2330     SDValue N2 = N->getOperand(1);
2331     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2332       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
2333         Offset += V->getSExtValue();
2334         return true;
2335       }
2336     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2337       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
2338         Offset += V->getSExtValue();
2339         return true;
2340       }
2341     }
2342   }
2343 
2344   return false;
2345 }
2346 
2347 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
2348                                           DAGCombinerInfo &DCI) const {
2349   // Default implementation: no optimization.
2350   return SDValue();
2351 }
2352 
2353 //===----------------------------------------------------------------------===//
2354 //  Inline Assembler Implementation Methods
2355 //===----------------------------------------------------------------------===//
2356 
2357 TargetLowering::ConstraintType
2358 TargetLowering::getConstraintType(StringRef Constraint) const {
2359   unsigned S = Constraint.size();
2360 
2361   if (S == 1) {
2362     switch (Constraint[0]) {
2363     default: break;
2364     case 'r': return C_RegisterClass;
2365     case 'm':    // memory
2366     case 'o':    // offsetable
2367     case 'V':    // not offsetable
2368       return C_Memory;
2369     case 'i':    // Simple Integer or Relocatable Constant
2370     case 'n':    // Simple Integer
2371     case 'E':    // Floating Point Constant
2372     case 'F':    // Floating Point Constant
2373     case 's':    // Relocatable Constant
2374     case 'p':    // Address.
2375     case 'X':    // Allow ANY value.
2376     case 'I':    // Target registers.
2377     case 'J':
2378     case 'K':
2379     case 'L':
2380     case 'M':
2381     case 'N':
2382     case 'O':
2383     case 'P':
2384     case '<':
2385     case '>':
2386       return C_Other;
2387     }
2388   }
2389 
2390   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
2391     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
2392       return C_Memory;
2393     return C_Register;
2394   }
2395   return C_Unknown;
2396 }
2397 
2398 /// Try to replace an X constraint, which matches anything, with another that
2399 /// has more specific requirements based on the type of the corresponding
2400 /// operand.
2401 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2402   if (ConstraintVT.isInteger())
2403     return "r";
2404   if (ConstraintVT.isFloatingPoint())
2405     return "f";      // works for many targets
2406   return nullptr;
2407 }
2408 
2409 /// Lower the specified operand into the Ops vector.
2410 /// If it is invalid, don't add anything to Ops.
2411 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2412                                                   std::string &Constraint,
2413                                                   std::vector<SDValue> &Ops,
2414                                                   SelectionDAG &DAG) const {
2415 
2416   if (Constraint.length() > 1) return;
2417 
2418   char ConstraintLetter = Constraint[0];
2419   switch (ConstraintLetter) {
2420   default: break;
2421   case 'X':     // Allows any operand; labels (basic block) use this.
2422     if (Op.getOpcode() == ISD::BasicBlock) {
2423       Ops.push_back(Op);
2424       return;
2425     }
2426     LLVM_FALLTHROUGH;
2427   case 'i':    // Simple Integer or Relocatable Constant
2428   case 'n':    // Simple Integer
2429   case 's': {  // Relocatable Constant
2430     // These operands are interested in values of the form (GV+C), where C may
2431     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2432     // is possible and fine if either GV or C are missing.
2433     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2434     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2435 
2436     // If we have "(add GV, C)", pull out GV/C
2437     if (Op.getOpcode() == ISD::ADD) {
2438       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2439       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2440       if (!C || !GA) {
2441         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2442         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2443       }
2444       if (!C || !GA) {
2445         C = nullptr;
2446         GA = nullptr;
2447       }
2448     }
2449 
2450     // If we find a valid operand, map to the TargetXXX version so that the
2451     // value itself doesn't get selected.
2452     if (GA) {   // Either &GV   or   &GV+C
2453       if (ConstraintLetter != 'n') {
2454         int64_t Offs = GA->getOffset();
2455         if (C) Offs += C->getZExtValue();
2456         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2457                                                  C ? SDLoc(C) : SDLoc(),
2458                                                  Op.getValueType(), Offs));
2459       }
2460       return;
2461     }
2462     if (C) {   // just C, no GV.
2463       // Simple constants are not allowed for 's'.
2464       if (ConstraintLetter != 's') {
2465         // gcc prints these as sign extended.  Sign extend value to 64 bits
2466         // now; without this it would get ZExt'd later in
2467         // ScheduleDAGSDNodes::EmitNode, which is very generic.
2468         Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
2469                                             SDLoc(C), MVT::i64));
2470       }
2471       return;
2472     }
2473     break;
2474   }
2475   }
2476 }
2477 
2478 std::pair<unsigned, const TargetRegisterClass *>
2479 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
2480                                              StringRef Constraint,
2481                                              MVT VT) const {
2482   if (Constraint.empty() || Constraint[0] != '{')
2483     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
2484   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2485 
2486   // Remove the braces from around the name.
2487   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2488 
2489   std::pair<unsigned, const TargetRegisterClass*> R =
2490     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
2491 
2492   // Figure out which register class contains this reg.
2493   for (const TargetRegisterClass *RC : RI->regclasses()) {
2494     // If none of the value types for this register class are valid, we
2495     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2496     if (!isLegalRC(*RI, *RC))
2497       continue;
2498 
2499     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2500          I != E; ++I) {
2501       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
2502         std::pair<unsigned, const TargetRegisterClass*> S =
2503           std::make_pair(*I, RC);
2504 
2505         // If this register class has the requested value type, return it,
2506         // otherwise keep searching and return the first class found
2507         // if no other is found which explicitly has the requested type.
2508         if (RI->isTypeLegalForClass(*RC, VT))
2509           return S;
2510         if (!R.second)
2511           R = S;
2512       }
2513     }
2514   }
2515 
2516   return R;
2517 }
2518 
2519 //===----------------------------------------------------------------------===//
2520 // Constraint Selection.
2521 
2522 /// Return true of this is an input operand that is a matching constraint like
2523 /// "4".
2524 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2525   assert(!ConstraintCode.empty() && "No known constraint!");
2526   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2527 }
2528 
2529 /// If this is an input matching constraint, this method returns the output
2530 /// operand it matches.
2531 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2532   assert(!ConstraintCode.empty() && "No known constraint!");
2533   return atoi(ConstraintCode.c_str());
2534 }
2535 
2536 /// Split up the constraint string from the inline assembly value into the
2537 /// specific constraints and their prefixes, and also tie in the associated
2538 /// operand values.
2539 /// If this returns an empty vector, and if the constraint string itself
2540 /// isn't empty, there was an error parsing.
2541 TargetLowering::AsmOperandInfoVector
2542 TargetLowering::ParseConstraints(const DataLayout &DL,
2543                                  const TargetRegisterInfo *TRI,
2544                                  ImmutableCallSite CS) const {
2545   /// Information about all of the constraints.
2546   AsmOperandInfoVector ConstraintOperands;
2547   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2548   unsigned maCount = 0; // Largest number of multiple alternative constraints.
2549 
2550   // Do a prepass over the constraints, canonicalizing them, and building up the
2551   // ConstraintOperands list.
2552   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2553   unsigned ResNo = 0;   // ResNo - The result number of the next output.
2554 
2555   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2556     ConstraintOperands.emplace_back(std::move(CI));
2557     AsmOperandInfo &OpInfo = ConstraintOperands.back();
2558 
2559     // Update multiple alternative constraint count.
2560     if (OpInfo.multipleAlternatives.size() > maCount)
2561       maCount = OpInfo.multipleAlternatives.size();
2562 
2563     OpInfo.ConstraintVT = MVT::Other;
2564 
2565     // Compute the value type for each operand.
2566     switch (OpInfo.Type) {
2567     case InlineAsm::isOutput:
2568       // Indirect outputs just consume an argument.
2569       if (OpInfo.isIndirect) {
2570         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2571         break;
2572       }
2573 
2574       // The return value of the call is this value.  As such, there is no
2575       // corresponding argument.
2576       assert(!CS.getType()->isVoidTy() &&
2577              "Bad inline asm!");
2578       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2579         OpInfo.ConstraintVT =
2580             getSimpleValueType(DL, STy->getElementType(ResNo));
2581       } else {
2582         assert(ResNo == 0 && "Asm only has one result!");
2583         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
2584       }
2585       ++ResNo;
2586       break;
2587     case InlineAsm::isInput:
2588       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2589       break;
2590     case InlineAsm::isClobber:
2591       // Nothing to do.
2592       break;
2593     }
2594 
2595     if (OpInfo.CallOperandVal) {
2596       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2597       if (OpInfo.isIndirect) {
2598         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2599         if (!PtrTy)
2600           report_fatal_error("Indirect operand for inline asm not a pointer!");
2601         OpTy = PtrTy->getElementType();
2602       }
2603 
2604       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2605       if (StructType *STy = dyn_cast<StructType>(OpTy))
2606         if (STy->getNumElements() == 1)
2607           OpTy = STy->getElementType(0);
2608 
2609       // If OpTy is not a single value, it may be a struct/union that we
2610       // can tile with integers.
2611       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2612         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
2613         switch (BitSize) {
2614         default: break;
2615         case 1:
2616         case 8:
2617         case 16:
2618         case 32:
2619         case 64:
2620         case 128:
2621           OpInfo.ConstraintVT =
2622             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2623           break;
2624         }
2625       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
2626         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
2627         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
2628       } else {
2629         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
2630       }
2631     }
2632   }
2633 
2634   // If we have multiple alternative constraints, select the best alternative.
2635   if (!ConstraintOperands.empty()) {
2636     if (maCount) {
2637       unsigned bestMAIndex = 0;
2638       int bestWeight = -1;
2639       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2640       int weight = -1;
2641       unsigned maIndex;
2642       // Compute the sums of the weights for each alternative, keeping track
2643       // of the best (highest weight) one so far.
2644       for (maIndex = 0; maIndex < maCount; ++maIndex) {
2645         int weightSum = 0;
2646         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2647             cIndex != eIndex; ++cIndex) {
2648           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2649           if (OpInfo.Type == InlineAsm::isClobber)
2650             continue;
2651 
2652           // If this is an output operand with a matching input operand,
2653           // look up the matching input. If their types mismatch, e.g. one
2654           // is an integer, the other is floating point, or their sizes are
2655           // different, flag it as an maCantMatch.
2656           if (OpInfo.hasMatchingInput()) {
2657             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2658             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2659               if ((OpInfo.ConstraintVT.isInteger() !=
2660                    Input.ConstraintVT.isInteger()) ||
2661                   (OpInfo.ConstraintVT.getSizeInBits() !=
2662                    Input.ConstraintVT.getSizeInBits())) {
2663                 weightSum = -1;  // Can't match.
2664                 break;
2665               }
2666             }
2667           }
2668           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2669           if (weight == -1) {
2670             weightSum = -1;
2671             break;
2672           }
2673           weightSum += weight;
2674         }
2675         // Update best.
2676         if (weightSum > bestWeight) {
2677           bestWeight = weightSum;
2678           bestMAIndex = maIndex;
2679         }
2680       }
2681 
2682       // Now select chosen alternative in each constraint.
2683       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2684           cIndex != eIndex; ++cIndex) {
2685         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2686         if (cInfo.Type == InlineAsm::isClobber)
2687           continue;
2688         cInfo.selectAlternative(bestMAIndex);
2689       }
2690     }
2691   }
2692 
2693   // Check and hook up tied operands, choose constraint code to use.
2694   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2695       cIndex != eIndex; ++cIndex) {
2696     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2697 
2698     // If this is an output operand with a matching input operand, look up the
2699     // matching input. If their types mismatch, e.g. one is an integer, the
2700     // other is floating point, or their sizes are different, flag it as an
2701     // error.
2702     if (OpInfo.hasMatchingInput()) {
2703       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2704 
2705       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2706         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
2707             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
2708                                          OpInfo.ConstraintVT);
2709         std::pair<unsigned, const TargetRegisterClass *> InputRC =
2710             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
2711                                          Input.ConstraintVT);
2712         if ((OpInfo.ConstraintVT.isInteger() !=
2713              Input.ConstraintVT.isInteger()) ||
2714             (MatchRC.second != InputRC.second)) {
2715           report_fatal_error("Unsupported asm: input constraint"
2716                              " with a matching output constraint of"
2717                              " incompatible type!");
2718         }
2719       }
2720     }
2721   }
2722 
2723   return ConstraintOperands;
2724 }
2725 
2726 /// Return an integer indicating how general CT is.
2727 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2728   switch (CT) {
2729   case TargetLowering::C_Other:
2730   case TargetLowering::C_Unknown:
2731     return 0;
2732   case TargetLowering::C_Register:
2733     return 1;
2734   case TargetLowering::C_RegisterClass:
2735     return 2;
2736   case TargetLowering::C_Memory:
2737     return 3;
2738   }
2739   llvm_unreachable("Invalid constraint type");
2740 }
2741 
2742 /// Examine constraint type and operand type and determine a weight value.
2743 /// This object must already have been set up with the operand type
2744 /// and the current alternative constraint selected.
2745 TargetLowering::ConstraintWeight
2746   TargetLowering::getMultipleConstraintMatchWeight(
2747     AsmOperandInfo &info, int maIndex) const {
2748   InlineAsm::ConstraintCodeVector *rCodes;
2749   if (maIndex >= (int)info.multipleAlternatives.size())
2750     rCodes = &info.Codes;
2751   else
2752     rCodes = &info.multipleAlternatives[maIndex].Codes;
2753   ConstraintWeight BestWeight = CW_Invalid;
2754 
2755   // Loop over the options, keeping track of the most general one.
2756   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2757     ConstraintWeight weight =
2758       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2759     if (weight > BestWeight)
2760       BestWeight = weight;
2761   }
2762 
2763   return BestWeight;
2764 }
2765 
2766 /// Examine constraint type and operand type and determine a weight value.
2767 /// This object must already have been set up with the operand type
2768 /// and the current alternative constraint selected.
2769 TargetLowering::ConstraintWeight
2770   TargetLowering::getSingleConstraintMatchWeight(
2771     AsmOperandInfo &info, const char *constraint) const {
2772   ConstraintWeight weight = CW_Invalid;
2773   Value *CallOperandVal = info.CallOperandVal;
2774     // If we don't have a value, we can't do a match,
2775     // but allow it at the lowest weight.
2776   if (!CallOperandVal)
2777     return CW_Default;
2778   // Look at the constraint type.
2779   switch (*constraint) {
2780     case 'i': // immediate integer.
2781     case 'n': // immediate integer with a known value.
2782       if (isa<ConstantInt>(CallOperandVal))
2783         weight = CW_Constant;
2784       break;
2785     case 's': // non-explicit intregal immediate.
2786       if (isa<GlobalValue>(CallOperandVal))
2787         weight = CW_Constant;
2788       break;
2789     case 'E': // immediate float if host format.
2790     case 'F': // immediate float.
2791       if (isa<ConstantFP>(CallOperandVal))
2792         weight = CW_Constant;
2793       break;
2794     case '<': // memory operand with autodecrement.
2795     case '>': // memory operand with autoincrement.
2796     case 'm': // memory operand.
2797     case 'o': // offsettable memory operand
2798     case 'V': // non-offsettable memory operand
2799       weight = CW_Memory;
2800       break;
2801     case 'r': // general register.
2802     case 'g': // general register, memory operand or immediate integer.
2803               // note: Clang converts "g" to "imr".
2804       if (CallOperandVal->getType()->isIntegerTy())
2805         weight = CW_Register;
2806       break;
2807     case 'X': // any operand.
2808     default:
2809       weight = CW_Default;
2810       break;
2811   }
2812   return weight;
2813 }
2814 
2815 /// If there are multiple different constraints that we could pick for this
2816 /// operand (e.g. "imr") try to pick the 'best' one.
2817 /// This is somewhat tricky: constraints fall into four classes:
2818 ///    Other         -> immediates and magic values
2819 ///    Register      -> one specific register
2820 ///    RegisterClass -> a group of regs
2821 ///    Memory        -> memory
2822 /// Ideally, we would pick the most specific constraint possible: if we have
2823 /// something that fits into a register, we would pick it.  The problem here
2824 /// is that if we have something that could either be in a register or in
2825 /// memory that use of the register could cause selection of *other*
2826 /// operands to fail: they might only succeed if we pick memory.  Because of
2827 /// this the heuristic we use is:
2828 ///
2829 ///  1) If there is an 'other' constraint, and if the operand is valid for
2830 ///     that constraint, use it.  This makes us take advantage of 'i'
2831 ///     constraints when available.
2832 ///  2) Otherwise, pick the most general constraint present.  This prefers
2833 ///     'm' over 'r', for example.
2834 ///
2835 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2836                              const TargetLowering &TLI,
2837                              SDValue Op, SelectionDAG *DAG) {
2838   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2839   unsigned BestIdx = 0;
2840   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2841   int BestGenerality = -1;
2842 
2843   // Loop over the options, keeping track of the most general one.
2844   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2845     TargetLowering::ConstraintType CType =
2846       TLI.getConstraintType(OpInfo.Codes[i]);
2847 
2848     // If this is an 'other' constraint, see if the operand is valid for it.
2849     // For example, on X86 we might have an 'rI' constraint.  If the operand
2850     // is an integer in the range [0..31] we want to use I (saving a load
2851     // of a register), otherwise we must use 'r'.
2852     if (CType == TargetLowering::C_Other && Op.getNode()) {
2853       assert(OpInfo.Codes[i].size() == 1 &&
2854              "Unhandled multi-letter 'other' constraint");
2855       std::vector<SDValue> ResultOps;
2856       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
2857                                        ResultOps, *DAG);
2858       if (!ResultOps.empty()) {
2859         BestType = CType;
2860         BestIdx = i;
2861         break;
2862       }
2863     }
2864 
2865     // Things with matching constraints can only be registers, per gcc
2866     // documentation.  This mainly affects "g" constraints.
2867     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2868       continue;
2869 
2870     // This constraint letter is more general than the previous one, use it.
2871     int Generality = getConstraintGenerality(CType);
2872     if (Generality > BestGenerality) {
2873       BestType = CType;
2874       BestIdx = i;
2875       BestGenerality = Generality;
2876     }
2877   }
2878 
2879   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2880   OpInfo.ConstraintType = BestType;
2881 }
2882 
2883 /// Determines the constraint code and constraint type to use for the specific
2884 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2885 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2886                                             SDValue Op,
2887                                             SelectionDAG *DAG) const {
2888   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2889 
2890   // Single-letter constraints ('r') are very common.
2891   if (OpInfo.Codes.size() == 1) {
2892     OpInfo.ConstraintCode = OpInfo.Codes[0];
2893     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2894   } else {
2895     ChooseConstraint(OpInfo, *this, Op, DAG);
2896   }
2897 
2898   // 'X' matches anything.
2899   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2900     // Labels and constants are handled elsewhere ('X' is the only thing
2901     // that matches labels).  For Functions, the type here is the type of
2902     // the result, which is not what we want to look at; leave them alone.
2903     Value *v = OpInfo.CallOperandVal;
2904     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2905       OpInfo.CallOperandVal = v;
2906       return;
2907     }
2908 
2909     // Otherwise, try to resolve it to something we know about by looking at
2910     // the actual operand type.
2911     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2912       OpInfo.ConstraintCode = Repl;
2913       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2914     }
2915   }
2916 }
2917 
2918 /// \brief Given an exact SDIV by a constant, create a multiplication
2919 /// with the multiplicative inverse of the constant.
2920 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d,
2921                               const SDLoc &dl, SelectionDAG &DAG,
2922                               std::vector<SDNode *> &Created) {
2923   assert(d != 0 && "Division by zero!");
2924 
2925   // Shift the value upfront if it is even, so the LSB is one.
2926   unsigned ShAmt = d.countTrailingZeros();
2927   if (ShAmt) {
2928     // TODO: For UDIV use SRL instead of SRA.
2929     SDValue Amt =
2930         DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(),
2931                                                         DAG.getDataLayout()));
2932     SDNodeFlags Flags;
2933     Flags.setExact(true);
2934     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, Flags);
2935     Created.push_back(Op1.getNode());
2936     d.ashrInPlace(ShAmt);
2937   }
2938 
2939   // Calculate the multiplicative inverse, using Newton's method.
2940   APInt t, xn = d;
2941   while ((t = d*xn) != 1)
2942     xn *= APInt(d.getBitWidth(), 2) - t;
2943 
2944   SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType());
2945   SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
2946   Created.push_back(Mul.getNode());
2947   return Mul;
2948 }
2949 
2950 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
2951                                       SelectionDAG &DAG,
2952                                       std::vector<SDNode *> *Created) const {
2953   AttributeList Attr = DAG.getMachineFunction().getFunction()->getAttributes();
2954   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2955   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
2956     return SDValue(N,0); // Lower SDIV as SDIV
2957   return SDValue();
2958 }
2959 
2960 /// \brief Given an ISD::SDIV node expressing a divide by constant,
2961 /// return a DAG expression to select that will generate the same value by
2962 /// multiplying by a magic number.
2963 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
2964 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
2965                                   SelectionDAG &DAG, bool IsAfterLegalization,
2966                                   std::vector<SDNode *> *Created) const {
2967   assert(Created && "No vector to hold sdiv ops.");
2968 
2969   EVT VT = N->getValueType(0);
2970   SDLoc dl(N);
2971 
2972   // Check to see if we can do this.
2973   // FIXME: We should be more aggressive here.
2974   if (!isTypeLegal(VT))
2975     return SDValue();
2976 
2977   // If the sdiv has an 'exact' bit we can use a simpler lowering.
2978   if (N->getFlags().hasExact())
2979     return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created);
2980 
2981   APInt::ms magics = Divisor.magic();
2982 
2983   // Multiply the numerator (operand 0) by the magic value
2984   // FIXME: We should support doing a MUL in a wider type
2985   SDValue Q;
2986   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
2987                             isOperationLegalOrCustom(ISD::MULHS, VT))
2988     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2989                     DAG.getConstant(magics.m, dl, VT));
2990   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
2991                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2992     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2993                               N->getOperand(0),
2994                               DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
2995   else
2996     return SDValue();       // No mulhs or equvialent
2997   // If d > 0 and m < 0, add the numerator
2998   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
2999     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3000     Created->push_back(Q.getNode());
3001   }
3002   // If d < 0 and m > 0, subtract the numerator.
3003   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
3004     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3005     Created->push_back(Q.getNode());
3006   }
3007   auto &DL = DAG.getDataLayout();
3008   // Shift right algebraic if shift value is nonzero
3009   if (magics.s > 0) {
3010     Q = DAG.getNode(
3011         ISD::SRA, dl, VT, Q,
3012         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
3013     Created->push_back(Q.getNode());
3014   }
3015   // Extract the sign bit and add it to the quotient
3016   SDValue T =
3017       DAG.getNode(ISD::SRL, dl, VT, Q,
3018                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl,
3019                                   getShiftAmountTy(Q.getValueType(), DL)));
3020   Created->push_back(T.getNode());
3021   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3022 }
3023 
3024 /// \brief Given an ISD::UDIV node expressing a divide by constant,
3025 /// return a DAG expression to select that will generate the same value by
3026 /// multiplying by a magic number.
3027 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3028 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
3029                                   SelectionDAG &DAG, bool IsAfterLegalization,
3030                                   std::vector<SDNode *> *Created) const {
3031   assert(Created && "No vector to hold udiv ops.");
3032 
3033   EVT VT = N->getValueType(0);
3034   SDLoc dl(N);
3035   auto &DL = DAG.getDataLayout();
3036 
3037   // Check to see if we can do this.
3038   // FIXME: We should be more aggressive here.
3039   if (!isTypeLegal(VT))
3040     return SDValue();
3041 
3042   // FIXME: We should use a narrower constant when the upper
3043   // bits are known to be zero.
3044   APInt::mu magics = Divisor.magicu();
3045 
3046   SDValue Q = N->getOperand(0);
3047 
3048   // If the divisor is even, we can avoid using the expensive fixup by shifting
3049   // the divided value upfront.
3050   if (magics.a != 0 && !Divisor[0]) {
3051     unsigned Shift = Divisor.countTrailingZeros();
3052     Q = DAG.getNode(
3053         ISD::SRL, dl, VT, Q,
3054         DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL)));
3055     Created->push_back(Q.getNode());
3056 
3057     // Get magic number for the shifted divisor.
3058     magics = Divisor.lshr(Shift).magicu(Shift);
3059     assert(magics.a == 0 && "Should use cheap fixup now");
3060   }
3061 
3062   // Multiply the numerator (operand 0) by the magic value
3063   // FIXME: We should support doing a MUL in a wider type
3064   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
3065                             isOperationLegalOrCustom(ISD::MULHU, VT))
3066     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT));
3067   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
3068                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3069     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3070                             DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
3071   else
3072     return SDValue();       // No mulhu or equivalent
3073 
3074   Created->push_back(Q.getNode());
3075 
3076   if (magics.a == 0) {
3077     assert(magics.s < Divisor.getBitWidth() &&
3078            "We shouldn't generate an undefined shift!");
3079     return DAG.getNode(
3080         ISD::SRL, dl, VT, Q,
3081         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
3082   } else {
3083     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3084     Created->push_back(NPQ.getNode());
3085     NPQ = DAG.getNode(
3086         ISD::SRL, dl, VT, NPQ,
3087         DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL)));
3088     Created->push_back(NPQ.getNode());
3089     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3090     Created->push_back(NPQ.getNode());
3091     return DAG.getNode(
3092         ISD::SRL, dl, VT, NPQ,
3093         DAG.getConstant(magics.s - 1, dl,
3094                         getShiftAmountTy(NPQ.getValueType(), DL)));
3095   }
3096 }
3097 
3098 bool TargetLowering::
3099 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
3100   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
3101     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
3102                                 "be a constant integer");
3103     return true;
3104   }
3105 
3106   return false;
3107 }
3108 
3109 //===----------------------------------------------------------------------===//
3110 // Legalization Utilities
3111 //===----------------------------------------------------------------------===//
3112 
3113 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
3114                                     SDValue LHS, SDValue RHS,
3115                                     SmallVectorImpl<SDValue> &Result,
3116                                     EVT HiLoVT, SelectionDAG &DAG,
3117                                     MulExpansionKind Kind, SDValue LL,
3118                                     SDValue LH, SDValue RL, SDValue RH) const {
3119   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
3120          Opcode == ISD::SMUL_LOHI);
3121 
3122   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
3123                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
3124   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
3125                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
3126   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3127                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
3128   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3129                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
3130 
3131   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
3132     return false;
3133 
3134   unsigned OuterBitSize = VT.getScalarSizeInBits();
3135   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
3136   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
3137   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
3138 
3139   // LL, LH, RL, and RH must be either all NULL or all set to a value.
3140   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
3141          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
3142 
3143   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
3144   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
3145                           bool Signed) -> bool {
3146     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
3147       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
3148       Hi = SDValue(Lo.getNode(), 1);
3149       return true;
3150     }
3151     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
3152       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
3153       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
3154       return true;
3155     }
3156     return false;
3157   };
3158 
3159   SDValue Lo, Hi;
3160 
3161   if (!LL.getNode() && !RL.getNode() &&
3162       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3163     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
3164     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
3165   }
3166 
3167   if (!LL.getNode())
3168     return false;
3169 
3170   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
3171   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
3172       DAG.MaskedValueIsZero(RHS, HighMask)) {
3173     // The inputs are both zero-extended.
3174     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
3175       Result.push_back(Lo);
3176       Result.push_back(Hi);
3177       if (Opcode != ISD::MUL) {
3178         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3179         Result.push_back(Zero);
3180         Result.push_back(Zero);
3181       }
3182       return true;
3183     }
3184   }
3185 
3186   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
3187       RHSSB > InnerBitSize) {
3188     // The input values are both sign-extended.
3189     // TODO non-MUL case?
3190     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
3191       Result.push_back(Lo);
3192       Result.push_back(Hi);
3193       return true;
3194     }
3195   }
3196 
3197   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
3198   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
3199   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
3200     // FIXME getShiftAmountTy does not always return a sensible result when VT
3201     // is an illegal type, and so the type may be too small to fit the shift
3202     // amount. Override it with i32. The shift will have to be legalized.
3203     ShiftAmountTy = MVT::i32;
3204   }
3205   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
3206 
3207   if (!LH.getNode() && !RH.getNode() &&
3208       isOperationLegalOrCustom(ISD::SRL, VT) &&
3209       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3210     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
3211     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
3212     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
3213     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
3214   }
3215 
3216   if (!LH.getNode())
3217     return false;
3218 
3219   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
3220     return false;
3221 
3222   Result.push_back(Lo);
3223 
3224   if (Opcode == ISD::MUL) {
3225     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
3226     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
3227     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
3228     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
3229     Result.push_back(Hi);
3230     return true;
3231   }
3232 
3233   // Compute the full width result.
3234   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
3235     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3236     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3237     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3238     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
3239   };
3240 
3241   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3242   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
3243     return false;
3244 
3245   // This is effectively the add part of a multiply-add of half-sized operands,
3246   // so it cannot overflow.
3247   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3248 
3249   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
3250     return false;
3251 
3252   Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
3253                      Merge(Lo, Hi));
3254 
3255   SDValue Carry = Next.getValue(1);
3256   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3257   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3258 
3259   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
3260     return false;
3261 
3262   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3263   Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
3264                    Carry);
3265   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3266 
3267   if (Opcode == ISD::SMUL_LOHI) {
3268     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3269                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
3270     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
3271 
3272     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3273                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
3274     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
3275   }
3276 
3277   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3278   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3279   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3280   return true;
3281 }
3282 
3283 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
3284                                SelectionDAG &DAG, MulExpansionKind Kind,
3285                                SDValue LL, SDValue LH, SDValue RL,
3286                                SDValue RH) const {
3287   SmallVector<SDValue, 2> Result;
3288   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
3289                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
3290                            DAG, Kind, LL, LH, RL, RH);
3291   if (Ok) {
3292     assert(Result.size() == 2);
3293     Lo = Result[0];
3294     Hi = Result[1];
3295   }
3296   return Ok;
3297 }
3298 
3299 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
3300                                SelectionDAG &DAG) const {
3301   EVT VT = Node->getOperand(0).getValueType();
3302   EVT NVT = Node->getValueType(0);
3303   SDLoc dl(SDValue(Node, 0));
3304 
3305   // FIXME: Only f32 to i64 conversions are supported.
3306   if (VT != MVT::f32 || NVT != MVT::i64)
3307     return false;
3308 
3309   // Expand f32 -> i64 conversion
3310   // This algorithm comes from compiler-rt's implementation of fixsfdi:
3311   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
3312   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
3313                                 VT.getSizeInBits());
3314   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
3315   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
3316   SDValue Bias = DAG.getConstant(127, dl, IntVT);
3317   SDValue SignMask = DAG.getConstant(APInt::getSignMask(VT.getSizeInBits()), dl,
3318                                      IntVT);
3319   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT);
3320   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
3321 
3322   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
3323 
3324   auto &DL = DAG.getDataLayout();
3325   SDValue ExponentBits = DAG.getNode(
3326       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
3327       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL)));
3328   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
3329 
3330   SDValue Sign = DAG.getNode(
3331       ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
3332       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL)));
3333   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
3334 
3335   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
3336       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
3337       DAG.getConstant(0x00800000, dl, IntVT));
3338 
3339   R = DAG.getZExtOrTrunc(R, dl, NVT);
3340 
3341   R = DAG.getSelectCC(
3342       dl, Exponent, ExponentLoBit,
3343       DAG.getNode(ISD::SHL, dl, NVT, R,
3344                   DAG.getZExtOrTrunc(
3345                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
3346                       dl, getShiftAmountTy(IntVT, DL))),
3347       DAG.getNode(ISD::SRL, dl, NVT, R,
3348                   DAG.getZExtOrTrunc(
3349                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
3350                       dl, getShiftAmountTy(IntVT, DL))),
3351       ISD::SETGT);
3352 
3353   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
3354       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
3355       Sign);
3356 
3357   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
3358       DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT);
3359   return true;
3360 }
3361 
3362 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
3363                                             SelectionDAG &DAG) const {
3364   SDLoc SL(LD);
3365   SDValue Chain = LD->getChain();
3366   SDValue BasePTR = LD->getBasePtr();
3367   EVT SrcVT = LD->getMemoryVT();
3368   ISD::LoadExtType ExtType = LD->getExtensionType();
3369 
3370   unsigned NumElem = SrcVT.getVectorNumElements();
3371 
3372   EVT SrcEltVT = SrcVT.getScalarType();
3373   EVT DstEltVT = LD->getValueType(0).getScalarType();
3374 
3375   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
3376   assert(SrcEltVT.isByteSized());
3377 
3378   EVT PtrVT = BasePTR.getValueType();
3379 
3380   SmallVector<SDValue, 8> Vals;
3381   SmallVector<SDValue, 8> LoadChains;
3382 
3383   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3384     SDValue ScalarLoad =
3385         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
3386                        LD->getPointerInfo().getWithOffset(Idx * Stride),
3387                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
3388                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3389 
3390     BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR,
3391                           DAG.getConstant(Stride, SL, PtrVT));
3392 
3393     Vals.push_back(ScalarLoad.getValue(0));
3394     LoadChains.push_back(ScalarLoad.getValue(1));
3395   }
3396 
3397   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
3398   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
3399 
3400   return DAG.getMergeValues({ Value, NewChain }, SL);
3401 }
3402 
3403 // FIXME: This relies on each element having a byte size, otherwise the stride
3404 // is 0 and just overwrites the same location. ExpandStore currently expects
3405 // this broken behavior.
3406 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
3407                                              SelectionDAG &DAG) const {
3408   SDLoc SL(ST);
3409 
3410   SDValue Chain = ST->getChain();
3411   SDValue BasePtr = ST->getBasePtr();
3412   SDValue Value = ST->getValue();
3413   EVT StVT = ST->getMemoryVT();
3414 
3415   // The type of the data we want to save
3416   EVT RegVT = Value.getValueType();
3417   EVT RegSclVT = RegVT.getScalarType();
3418 
3419   // The type of data as saved in memory.
3420   EVT MemSclVT = StVT.getScalarType();
3421 
3422   EVT PtrVT = BasePtr.getValueType();
3423 
3424   // Store Stride in bytes
3425   unsigned Stride = MemSclVT.getSizeInBits() / 8;
3426   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
3427   unsigned NumElem = StVT.getVectorNumElements();
3428 
3429   // Extract each of the elements from the original vector and save them into
3430   // memory individually.
3431   SmallVector<SDValue, 8> Stores;
3432   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3433     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
3434                               DAG.getConstant(Idx, SL, IdxVT));
3435 
3436     SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
3437                               DAG.getConstant(Idx * Stride, SL, PtrVT));
3438 
3439     // This scalar TruncStore may be illegal, but we legalize it later.
3440     SDValue Store = DAG.getTruncStore(
3441         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
3442         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
3443         ST->getMemOperand()->getFlags(), ST->getAAInfo());
3444 
3445     Stores.push_back(Store);
3446   }
3447 
3448   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
3449 }
3450 
3451 std::pair<SDValue, SDValue>
3452 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
3453   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
3454          "unaligned indexed loads not implemented!");
3455   SDValue Chain = LD->getChain();
3456   SDValue Ptr = LD->getBasePtr();
3457   EVT VT = LD->getValueType(0);
3458   EVT LoadedVT = LD->getMemoryVT();
3459   SDLoc dl(LD);
3460   auto &MF = DAG.getMachineFunction();
3461   if (VT.isFloatingPoint() || VT.isVector()) {
3462     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
3463     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
3464       if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) {
3465         // Scalarize the load and let the individual components be handled.
3466         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
3467         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
3468       }
3469 
3470       // Expand to a (misaligned) integer load of the same size,
3471       // then bitconvert to floating point or vector.
3472       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
3473                                     LD->getMemOperand());
3474       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
3475       if (LoadedVT != VT)
3476         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
3477                              ISD::ANY_EXTEND, dl, VT, Result);
3478 
3479       return std::make_pair(Result, newLoad.getValue(1));
3480     }
3481 
3482     // Copy the value to a (aligned) stack slot using (unaligned) integer
3483     // loads and stores, then do a (aligned) load from the stack slot.
3484     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
3485     unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
3486     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3487     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
3488 
3489     // Make sure the stack slot is also aligned for the register type.
3490     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
3491     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
3492     SmallVector<SDValue, 8> Stores;
3493     SDValue StackPtr = StackBase;
3494     unsigned Offset = 0;
3495 
3496     EVT PtrVT = Ptr.getValueType();
3497     EVT StackPtrVT = StackPtr.getValueType();
3498 
3499     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3500     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3501 
3502     // Do all but one copies using the full register width.
3503     for (unsigned i = 1; i < NumRegs; i++) {
3504       // Load one integer register's worth from the original location.
3505       SDValue Load = DAG.getLoad(
3506           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
3507           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
3508           LD->getAAInfo());
3509       // Follow the load with a store to the stack slot.  Remember the store.
3510       Stores.push_back(DAG.getStore(
3511           Load.getValue(1), dl, Load, StackPtr,
3512           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
3513       // Increment the pointers.
3514       Offset += RegBytes;
3515       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3516       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr,
3517                              StackPtrIncrement);
3518     }
3519 
3520     // The last copy may be partial.  Do an extending load.
3521     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3522                                   8 * (LoadedBytes - Offset));
3523     SDValue Load =
3524         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
3525                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
3526                        MinAlign(LD->getAlignment(), Offset),
3527                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3528     // Follow the load with a store to the stack slot.  Remember the store.
3529     // On big-endian machines this requires a truncating store to ensure
3530     // that the bits end up in the right place.
3531     Stores.push_back(DAG.getTruncStore(
3532         Load.getValue(1), dl, Load, StackPtr,
3533         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
3534 
3535     // The order of the stores doesn't matter - say it with a TokenFactor.
3536     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3537 
3538     // Finally, perform the original load only redirected to the stack slot.
3539     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
3540                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
3541                           LoadedVT);
3542 
3543     // Callers expect a MERGE_VALUES node.
3544     return std::make_pair(Load, TF);
3545   }
3546 
3547   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
3548          "Unaligned load of unsupported type.");
3549 
3550   // Compute the new VT that is half the size of the old one.  This is an
3551   // integer MVT.
3552   unsigned NumBits = LoadedVT.getSizeInBits();
3553   EVT NewLoadedVT;
3554   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
3555   NumBits >>= 1;
3556 
3557   unsigned Alignment = LD->getAlignment();
3558   unsigned IncrementSize = NumBits / 8;
3559   ISD::LoadExtType HiExtType = LD->getExtensionType();
3560 
3561   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
3562   if (HiExtType == ISD::NON_EXTLOAD)
3563     HiExtType = ISD::ZEXTLOAD;
3564 
3565   // Load the value in two parts
3566   SDValue Lo, Hi;
3567   if (DAG.getDataLayout().isLittleEndian()) {
3568     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3569                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
3570                         LD->getAAInfo());
3571     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3572                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3573     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
3574                         LD->getPointerInfo().getWithOffset(IncrementSize),
3575                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
3576                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
3577   } else {
3578     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3579                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
3580                         LD->getAAInfo());
3581     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3582                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3583     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
3584                         LD->getPointerInfo().getWithOffset(IncrementSize),
3585                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
3586                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
3587   }
3588 
3589   // aggregate the two parts
3590   SDValue ShiftAmount =
3591       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
3592                                                     DAG.getDataLayout()));
3593   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
3594   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
3595 
3596   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
3597                              Hi.getValue(1));
3598 
3599   return std::make_pair(Result, TF);
3600 }
3601 
3602 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
3603                                              SelectionDAG &DAG) const {
3604   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
3605          "unaligned indexed stores not implemented!");
3606   SDValue Chain = ST->getChain();
3607   SDValue Ptr = ST->getBasePtr();
3608   SDValue Val = ST->getValue();
3609   EVT VT = Val.getValueType();
3610   int Alignment = ST->getAlignment();
3611   auto &MF = DAG.getMachineFunction();
3612 
3613   SDLoc dl(ST);
3614   if (ST->getMemoryVT().isFloatingPoint() ||
3615       ST->getMemoryVT().isVector()) {
3616     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
3617     if (isTypeLegal(intVT)) {
3618       if (!isOperationLegalOrCustom(ISD::STORE, intVT)) {
3619         // Scalarize the store and let the individual components be handled.
3620         SDValue Result = scalarizeVectorStore(ST, DAG);
3621 
3622         return Result;
3623       }
3624       // Expand to a bitconvert of the value to the integer type of the
3625       // same size, then a (misaligned) int store.
3626       // FIXME: Does not handle truncating floating point stores!
3627       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
3628       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
3629                             Alignment, ST->getMemOperand()->getFlags());
3630       return Result;
3631     }
3632     // Do a (aligned) store to a stack slot, then copy from the stack slot
3633     // to the final destination using (unaligned) integer loads and stores.
3634     EVT StoredVT = ST->getMemoryVT();
3635     MVT RegVT =
3636       getRegisterType(*DAG.getContext(),
3637                       EVT::getIntegerVT(*DAG.getContext(),
3638                                         StoredVT.getSizeInBits()));
3639     EVT PtrVT = Ptr.getValueType();
3640     unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
3641     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3642     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
3643 
3644     // Make sure the stack slot is also aligned for the register type.
3645     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
3646     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
3647 
3648     // Perform the original store, only redirected to the stack slot.
3649     SDValue Store = DAG.getTruncStore(
3650         Chain, dl, Val, StackPtr,
3651         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT);
3652 
3653     EVT StackPtrVT = StackPtr.getValueType();
3654 
3655     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3656     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3657     SmallVector<SDValue, 8> Stores;
3658     unsigned Offset = 0;
3659 
3660     // Do all but one copies using the full register width.
3661     for (unsigned i = 1; i < NumRegs; i++) {
3662       // Load one integer register's worth from the stack slot.
3663       SDValue Load = DAG.getLoad(
3664           RegVT, dl, Store, StackPtr,
3665           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
3666       // Store it to the final location.  Remember the store.
3667       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
3668                                     ST->getPointerInfo().getWithOffset(Offset),
3669                                     MinAlign(ST->getAlignment(), Offset),
3670                                     ST->getMemOperand()->getFlags()));
3671       // Increment the pointers.
3672       Offset += RegBytes;
3673       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT,
3674                              StackPtr, StackPtrIncrement);
3675       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3676     }
3677 
3678     // The last store may be partial.  Do a truncating store.  On big-endian
3679     // machines this requires an extending load from the stack slot to ensure
3680     // that the bits are in the right place.
3681     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3682                                   8 * (StoredBytes - Offset));
3683 
3684     // Load from the stack slot.
3685     SDValue Load = DAG.getExtLoad(
3686         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
3687         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT);
3688 
3689     Stores.push_back(
3690         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
3691                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
3692                           MinAlign(ST->getAlignment(), Offset),
3693                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
3694     // The order of the stores doesn't matter - say it with a TokenFactor.
3695     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3696     return Result;
3697   }
3698 
3699   assert(ST->getMemoryVT().isInteger() &&
3700          !ST->getMemoryVT().isVector() &&
3701          "Unaligned store of unknown type.");
3702   // Get the half-size VT
3703   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
3704   int NumBits = NewStoredVT.getSizeInBits();
3705   int IncrementSize = NumBits / 8;
3706 
3707   // Divide the stored value in two parts.
3708   SDValue ShiftAmount =
3709       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
3710                                                     DAG.getDataLayout()));
3711   SDValue Lo = Val;
3712   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
3713 
3714   // Store the two parts
3715   SDValue Store1, Store2;
3716   Store1 = DAG.getTruncStore(Chain, dl,
3717                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
3718                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
3719                              ST->getMemOperand()->getFlags());
3720 
3721   EVT PtrVT = Ptr.getValueType();
3722   Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3723                     DAG.getConstant(IncrementSize, dl, PtrVT));
3724   Alignment = MinAlign(Alignment, IncrementSize);
3725   Store2 = DAG.getTruncStore(
3726       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
3727       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
3728       ST->getMemOperand()->getFlags(), ST->getAAInfo());
3729 
3730   SDValue Result =
3731     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
3732   return Result;
3733 }
3734 
3735 SDValue
3736 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
3737                                        const SDLoc &DL, EVT DataVT,
3738                                        SelectionDAG &DAG,
3739                                        bool IsCompressedMemory) const {
3740   SDValue Increment;
3741   EVT AddrVT = Addr.getValueType();
3742   EVT MaskVT = Mask.getValueType();
3743   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
3744          "Incompatible types of Data and Mask");
3745   if (IsCompressedMemory) {
3746     // Incrementing the pointer according to number of '1's in the mask.
3747     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
3748     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
3749     if (MaskIntVT.getSizeInBits() < 32) {
3750       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
3751       MaskIntVT = MVT::i32;
3752     }
3753 
3754     // Count '1's with POPCNT.
3755     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
3756     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
3757     // Scale is an element size in bytes.
3758     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
3759                                     AddrVT);
3760     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
3761   } else
3762     Increment = DAG.getConstant(DataVT.getSizeInBits() / 8, DL, AddrVT);
3763 
3764   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
3765 }
3766 
3767 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
3768                                        SDValue Idx,
3769                                        EVT VecVT,
3770                                        const SDLoc &dl) {
3771   if (isa<ConstantSDNode>(Idx))
3772     return Idx;
3773 
3774   EVT IdxVT = Idx.getValueType();
3775   unsigned NElts = VecVT.getVectorNumElements();
3776   if (isPowerOf2_32(NElts)) {
3777     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
3778                                      Log2_32(NElts));
3779     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
3780                        DAG.getConstant(Imm, dl, IdxVT));
3781   }
3782 
3783   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
3784                      DAG.getConstant(NElts - 1, dl, IdxVT));
3785 }
3786 
3787 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
3788                                                 SDValue VecPtr, EVT VecVT,
3789                                                 SDValue Index) const {
3790   SDLoc dl(Index);
3791   // Make sure the index type is big enough to compute in.
3792   Index = DAG.getZExtOrTrunc(Index, dl, getPointerTy(DAG.getDataLayout()));
3793 
3794   EVT EltVT = VecVT.getVectorElementType();
3795 
3796   // Calculate the element offset and add it to the pointer.
3797   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
3798   assert(EltSize * 8 == EltVT.getSizeInBits() &&
3799          "Converting bits to bytes lost precision");
3800 
3801   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
3802 
3803   EVT IdxVT = Index.getValueType();
3804 
3805   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
3806                       DAG.getConstant(EltSize, dl, IdxVT));
3807   return DAG.getNode(ISD::ADD, dl, IdxVT, Index, VecPtr);
3808 }
3809 
3810 //===----------------------------------------------------------------------===//
3811 // Implementation of Emulated TLS Model
3812 //===----------------------------------------------------------------------===//
3813 
3814 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
3815                                                 SelectionDAG &DAG) const {
3816   // Access to address of TLS varialbe xyz is lowered to a function call:
3817   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
3818   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3819   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
3820   SDLoc dl(GA);
3821 
3822   ArgListTy Args;
3823   ArgListEntry Entry;
3824   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
3825   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
3826   StringRef EmuTlsVarName(NameString);
3827   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
3828   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
3829   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
3830   Entry.Ty = VoidPtrType;
3831   Args.push_back(Entry);
3832 
3833   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
3834 
3835   TargetLowering::CallLoweringInfo CLI(DAG);
3836   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
3837   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
3838   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3839 
3840   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
3841   // At last for X86 targets, maybe good for other targets too?
3842   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
3843   MFI.setAdjustsStack(true);  // Is this only for X86 target?
3844   MFI.setHasCalls(true);
3845 
3846   assert((GA->getOffset() == 0) &&
3847          "Emulated TLS must have zero offset in GlobalAddressSDNode");
3848   return CallResult.first;
3849 }
3850 
3851 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
3852                                                 SelectionDAG &DAG) const {
3853   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
3854   if (!isCtlzFast())
3855     return SDValue();
3856   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3857   SDLoc dl(Op);
3858   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3859     if (C->isNullValue() && CC == ISD::SETEQ) {
3860       EVT VT = Op.getOperand(0).getValueType();
3861       SDValue Zext = Op.getOperand(0);
3862       if (VT.bitsLT(MVT::i32)) {
3863         VT = MVT::i32;
3864         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
3865       }
3866       unsigned Log2b = Log2_32(VT.getSizeInBits());
3867       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
3868       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
3869                                 DAG.getConstant(Log2b, dl, MVT::i32));
3870       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
3871     }
3872   }
3873   return SDValue();
3874 }
3875