1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 MCRegister Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 114 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 115 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 116 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 117 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 118 Alignment = Call->getParamAlign(ArgIdx); 119 ByValType = nullptr; 120 if (IsByVal) 121 ByValType = Call->getParamByValType(ArgIdx); 122 PreallocatedType = nullptr; 123 if (IsPreallocated) 124 PreallocatedType = Call->getParamPreallocatedType(ArgIdx); 125 } 126 127 /// Generate a libcall taking the given operands as arguments and returning a 128 /// result of type RetVT. 129 std::pair<SDValue, SDValue> 130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 131 ArrayRef<SDValue> Ops, 132 MakeLibCallOptions CallOptions, 133 const SDLoc &dl, 134 SDValue InChain) const { 135 if (!InChain) 136 InChain = DAG.getEntryNode(); 137 138 TargetLowering::ArgListTy Args; 139 Args.reserve(Ops.size()); 140 141 TargetLowering::ArgListEntry Entry; 142 for (unsigned i = 0; i < Ops.size(); ++i) { 143 SDValue NewOp = Ops[i]; 144 Entry.Node = NewOp; 145 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 146 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 147 CallOptions.IsSExt); 148 Entry.IsZExt = !Entry.IsSExt; 149 150 if (CallOptions.IsSoften && 151 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 152 Entry.IsSExt = Entry.IsZExt = false; 153 } 154 Args.push_back(Entry); 155 } 156 157 if (LC == RTLIB::UNKNOWN_LIBCALL) 158 report_fatal_error("Unsupported library call operation!"); 159 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 160 getPointerTy(DAG.getDataLayout())); 161 162 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 163 TargetLowering::CallLoweringInfo CLI(DAG); 164 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 165 bool zeroExtend = !signExtend; 166 167 if (CallOptions.IsSoften && 168 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 169 signExtend = zeroExtend = false; 170 } 171 172 CLI.setDebugLoc(dl) 173 .setChain(InChain) 174 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 175 .setNoReturn(CallOptions.DoesNotReturn) 176 .setDiscardResult(!CallOptions.IsReturnValueUsed) 177 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 178 .setSExtResult(signExtend) 179 .setZExtResult(zeroExtend); 180 return LowerCallTo(CLI); 181 } 182 183 bool TargetLowering::findOptimalMemOpLowering( 184 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 185 unsigned SrcAS, const AttributeList &FuncAttributes) const { 186 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 187 return false; 188 189 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 190 191 if (VT == MVT::Other) { 192 // Use the largest integer type whose alignment constraints are satisfied. 193 // We only need to check DstAlign here as SrcAlign is always greater or 194 // equal to DstAlign (or zero). 195 VT = MVT::i64; 196 if (Op.isFixedDstAlign()) 197 while ( 198 Op.getDstAlign() < (VT.getSizeInBits() / 8) && 199 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value())) 200 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 201 assert(VT.isInteger()); 202 203 // Find the largest legal integer type. 204 MVT LVT = MVT::i64; 205 while (!isTypeLegal(LVT)) 206 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 207 assert(LVT.isInteger()); 208 209 // If the type we've chosen is larger than the largest legal integer type 210 // then use that instead. 211 if (VT.bitsGT(LVT)) 212 VT = LVT; 213 } 214 215 unsigned NumMemOps = 0; 216 uint64_t Size = Op.size(); 217 while (Size) { 218 unsigned VTSize = VT.getSizeInBits() / 8; 219 while (VTSize > Size) { 220 // For now, only use non-vector load / store's for the left-over pieces. 221 EVT NewVT = VT; 222 unsigned NewVTSize; 223 224 bool Found = false; 225 if (VT.isVector() || VT.isFloatingPoint()) { 226 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 227 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 228 isSafeMemOpType(NewVT.getSimpleVT())) 229 Found = true; 230 else if (NewVT == MVT::i64 && 231 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 232 isSafeMemOpType(MVT::f64)) { 233 // i64 is usually not legal on 32-bit targets, but f64 may be. 234 NewVT = MVT::f64; 235 Found = true; 236 } 237 } 238 239 if (!Found) { 240 do { 241 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 242 if (NewVT == MVT::i8) 243 break; 244 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 245 } 246 NewVTSize = NewVT.getSizeInBits() / 8; 247 248 // If the new VT cannot cover all of the remaining bits, then consider 249 // issuing a (or a pair of) unaligned and overlapping load / store. 250 bool Fast; 251 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 252 allowsMisalignedMemoryAccesses( 253 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 1, 254 MachineMemOperand::MONone, &Fast) && 255 Fast) 256 VTSize = Size; 257 else { 258 VT = NewVT; 259 VTSize = NewVTSize; 260 } 261 } 262 263 if (++NumMemOps > Limit) 264 return false; 265 266 MemOps.push_back(VT); 267 Size -= VTSize; 268 } 269 270 return true; 271 } 272 273 /// Soften the operands of a comparison. This code is shared among BR_CC, 274 /// SELECT_CC, and SETCC handlers. 275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 276 SDValue &NewLHS, SDValue &NewRHS, 277 ISD::CondCode &CCCode, 278 const SDLoc &dl, const SDValue OldLHS, 279 const SDValue OldRHS) const { 280 SDValue Chain; 281 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 282 OldRHS, Chain); 283 } 284 285 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 286 SDValue &NewLHS, SDValue &NewRHS, 287 ISD::CondCode &CCCode, 288 const SDLoc &dl, const SDValue OldLHS, 289 const SDValue OldRHS, 290 SDValue &Chain, 291 bool IsSignaling) const { 292 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 293 // not supporting it. We can update this code when libgcc provides such 294 // functions. 295 296 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 297 && "Unsupported setcc type!"); 298 299 // Expand into one or more soft-fp libcall(s). 300 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 301 bool ShouldInvertCC = false; 302 switch (CCCode) { 303 case ISD::SETEQ: 304 case ISD::SETOEQ: 305 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 306 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 307 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 308 break; 309 case ISD::SETNE: 310 case ISD::SETUNE: 311 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 312 (VT == MVT::f64) ? RTLIB::UNE_F64 : 313 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 314 break; 315 case ISD::SETGE: 316 case ISD::SETOGE: 317 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 318 (VT == MVT::f64) ? RTLIB::OGE_F64 : 319 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 320 break; 321 case ISD::SETLT: 322 case ISD::SETOLT: 323 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 324 (VT == MVT::f64) ? RTLIB::OLT_F64 : 325 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 326 break; 327 case ISD::SETLE: 328 case ISD::SETOLE: 329 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 330 (VT == MVT::f64) ? RTLIB::OLE_F64 : 331 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 332 break; 333 case ISD::SETGT: 334 case ISD::SETOGT: 335 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 336 (VT == MVT::f64) ? RTLIB::OGT_F64 : 337 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 338 break; 339 case ISD::SETO: 340 ShouldInvertCC = true; 341 LLVM_FALLTHROUGH; 342 case ISD::SETUO: 343 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 344 (VT == MVT::f64) ? RTLIB::UO_F64 : 345 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 346 break; 347 case ISD::SETONE: 348 // SETONE = O && UNE 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUEQ: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 356 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 357 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 358 break; 359 default: 360 // Invert CC for unordered comparisons 361 ShouldInvertCC = true; 362 switch (CCCode) { 363 case ISD::SETULT: 364 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 365 (VT == MVT::f64) ? RTLIB::OGE_F64 : 366 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 367 break; 368 case ISD::SETULE: 369 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 370 (VT == MVT::f64) ? RTLIB::OGT_F64 : 371 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 372 break; 373 case ISD::SETUGT: 374 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 375 (VT == MVT::f64) ? RTLIB::OLE_F64 : 376 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 377 break; 378 case ISD::SETUGE: 379 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 380 (VT == MVT::f64) ? RTLIB::OLT_F64 : 381 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 382 break; 383 default: llvm_unreachable("Do not know how to soften this setcc!"); 384 } 385 } 386 387 // Use the target specific return value for comparions lib calls. 388 EVT RetVT = getCmpLibcallReturnType(); 389 SDValue Ops[2] = {NewLHS, NewRHS}; 390 TargetLowering::MakeLibCallOptions CallOptions; 391 EVT OpsVT[2] = { OldLHS.getValueType(), 392 OldRHS.getValueType() }; 393 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 394 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 395 NewLHS = Call.first; 396 NewRHS = DAG.getConstant(0, dl, RetVT); 397 398 CCCode = getCmpLibcallCC(LC1); 399 if (ShouldInvertCC) { 400 assert(RetVT.isInteger()); 401 CCCode = getSetCCInverse(CCCode, RetVT); 402 } 403 404 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 405 // Update Chain. 406 Chain = Call.second; 407 } else { 408 EVT SetCCVT = 409 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 410 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 411 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 412 CCCode = getCmpLibcallCC(LC2); 413 if (ShouldInvertCC) 414 CCCode = getSetCCInverse(CCCode, RetVT); 415 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 416 if (Chain) 417 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 418 Call2.second); 419 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 420 Tmp.getValueType(), Tmp, NewLHS); 421 NewRHS = SDValue(); 422 } 423 } 424 425 /// Return the entry encoding for a jump table in the current function. The 426 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 427 unsigned TargetLowering::getJumpTableEncoding() const { 428 // In non-pic modes, just use the address of a block. 429 if (!isPositionIndependent()) 430 return MachineJumpTableInfo::EK_BlockAddress; 431 432 // In PIC mode, if the target supports a GPRel32 directive, use it. 433 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 434 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 435 436 // Otherwise, use a label difference. 437 return MachineJumpTableInfo::EK_LabelDifference32; 438 } 439 440 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 441 SelectionDAG &DAG) const { 442 // If our PIC model is GP relative, use the global offset table as the base. 443 unsigned JTEncoding = getJumpTableEncoding(); 444 445 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 446 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 447 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 448 449 return Table; 450 } 451 452 /// This returns the relocation base for the given PIC jumptable, the same as 453 /// getPICJumpTableRelocBase, but as an MCExpr. 454 const MCExpr * 455 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 456 unsigned JTI,MCContext &Ctx) const{ 457 // The normal PIC reloc base is the label at the start of the jump table. 458 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 459 } 460 461 bool 462 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 463 const TargetMachine &TM = getTargetMachine(); 464 const GlobalValue *GV = GA->getGlobal(); 465 466 // If the address is not even local to this DSO we will have to load it from 467 // a got and then add the offset. 468 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 469 return false; 470 471 // If the code is position independent we will have to add a base register. 472 if (isPositionIndependent()) 473 return false; 474 475 // Otherwise we can do it. 476 return true; 477 } 478 479 //===----------------------------------------------------------------------===// 480 // Optimization Methods 481 //===----------------------------------------------------------------------===// 482 483 /// If the specified instruction has a constant integer operand and there are 484 /// bits set in that constant that are not demanded, then clear those bits and 485 /// return true. 486 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 487 const APInt &DemandedBits, 488 const APInt &DemandedElts, 489 TargetLoweringOpt &TLO) const { 490 SDLoc DL(Op); 491 unsigned Opcode = Op.getOpcode(); 492 493 // Do target-specific constant optimization. 494 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 495 return TLO.New.getNode(); 496 497 // FIXME: ISD::SELECT, ISD::SELECT_CC 498 switch (Opcode) { 499 default: 500 break; 501 case ISD::XOR: 502 case ISD::AND: 503 case ISD::OR: { 504 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 505 if (!Op1C) 506 return false; 507 508 // If this is a 'not' op, don't touch it because that's a canonical form. 509 const APInt &C = Op1C->getAPIntValue(); 510 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 511 return false; 512 513 if (!C.isSubsetOf(DemandedBits)) { 514 EVT VT = Op.getValueType(); 515 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 516 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 517 return TLO.CombineTo(Op, NewOp); 518 } 519 520 break; 521 } 522 } 523 524 return false; 525 } 526 527 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 528 const APInt &DemandedBits, 529 TargetLoweringOpt &TLO) const { 530 EVT VT = Op.getValueType(); 531 APInt DemandedElts = VT.isVector() 532 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 533 : APInt(1, 1); 534 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 535 } 536 537 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 538 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 539 /// generalized for targets with other types of implicit widening casts. 540 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 541 const APInt &Demanded, 542 TargetLoweringOpt &TLO) const { 543 assert(Op.getNumOperands() == 2 && 544 "ShrinkDemandedOp only supports binary operators!"); 545 assert(Op.getNode()->getNumValues() == 1 && 546 "ShrinkDemandedOp only supports nodes with one result!"); 547 548 SelectionDAG &DAG = TLO.DAG; 549 SDLoc dl(Op); 550 551 // Early return, as this function cannot handle vector types. 552 if (Op.getValueType().isVector()) 553 return false; 554 555 // Don't do this if the node has another user, which may require the 556 // full value. 557 if (!Op.getNode()->hasOneUse()) 558 return false; 559 560 // Search for the smallest integer type with free casts to and from 561 // Op's type. For expedience, just check power-of-2 integer types. 562 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 563 unsigned DemandedSize = Demanded.getActiveBits(); 564 unsigned SmallVTBits = DemandedSize; 565 if (!isPowerOf2_32(SmallVTBits)) 566 SmallVTBits = NextPowerOf2(SmallVTBits); 567 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 568 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 569 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 570 TLI.isZExtFree(SmallVT, Op.getValueType())) { 571 // We found a type with free casts. 572 SDValue X = DAG.getNode( 573 Op.getOpcode(), dl, SmallVT, 574 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 575 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 576 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 577 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 578 return TLO.CombineTo(Op, Z); 579 } 580 } 581 return false; 582 } 583 584 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 585 DAGCombinerInfo &DCI) const { 586 SelectionDAG &DAG = DCI.DAG; 587 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 588 !DCI.isBeforeLegalizeOps()); 589 KnownBits Known; 590 591 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 592 if (Simplified) { 593 DCI.AddToWorklist(Op.getNode()); 594 DCI.CommitTargetLoweringOpt(TLO); 595 } 596 return Simplified; 597 } 598 599 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 600 KnownBits &Known, 601 TargetLoweringOpt &TLO, 602 unsigned Depth, 603 bool AssumeSingleUse) const { 604 EVT VT = Op.getValueType(); 605 606 // TODO: We can probably do more work on calculating the known bits and 607 // simplifying the operations for scalable vectors, but for now we just 608 // bail out. 609 if (VT.isScalableVector()) { 610 // Pretend we don't know anything for now. 611 Known = KnownBits(DemandedBits.getBitWidth()); 612 return false; 613 } 614 615 APInt DemandedElts = VT.isVector() 616 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 617 : APInt(1, 1); 618 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 619 AssumeSingleUse); 620 } 621 622 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 623 // TODO: Under what circumstances can we create nodes? Constant folding? 624 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 625 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 626 SelectionDAG &DAG, unsigned Depth) const { 627 // Limit search depth. 628 if (Depth >= SelectionDAG::MaxRecursionDepth) 629 return SDValue(); 630 631 // Ignore UNDEFs. 632 if (Op.isUndef()) 633 return SDValue(); 634 635 // Not demanding any bits/elts from Op. 636 if (DemandedBits == 0 || DemandedElts == 0) 637 return DAG.getUNDEF(Op.getValueType()); 638 639 unsigned NumElts = DemandedElts.getBitWidth(); 640 unsigned BitWidth = DemandedBits.getBitWidth(); 641 KnownBits LHSKnown, RHSKnown; 642 switch (Op.getOpcode()) { 643 case ISD::BITCAST: { 644 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 645 EVT SrcVT = Src.getValueType(); 646 EVT DstVT = Op.getValueType(); 647 if (SrcVT == DstVT) 648 return Src; 649 650 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 651 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 652 if (NumSrcEltBits == NumDstEltBits) 653 if (SDValue V = SimplifyMultipleUseDemandedBits( 654 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 655 return DAG.getBitcast(DstVT, V); 656 657 // TODO - bigendian once we have test coverage. 658 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 659 DAG.getDataLayout().isLittleEndian()) { 660 unsigned Scale = NumDstEltBits / NumSrcEltBits; 661 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 662 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 663 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 664 for (unsigned i = 0; i != Scale; ++i) { 665 unsigned Offset = i * NumSrcEltBits; 666 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 667 if (!Sub.isNullValue()) { 668 DemandedSrcBits |= Sub; 669 for (unsigned j = 0; j != NumElts; ++j) 670 if (DemandedElts[j]) 671 DemandedSrcElts.setBit((j * Scale) + i); 672 } 673 } 674 675 if (SDValue V = SimplifyMultipleUseDemandedBits( 676 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 677 return DAG.getBitcast(DstVT, V); 678 } 679 680 // TODO - bigendian once we have test coverage. 681 if ((NumSrcEltBits % NumDstEltBits) == 0 && 682 DAG.getDataLayout().isLittleEndian()) { 683 unsigned Scale = NumSrcEltBits / NumDstEltBits; 684 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 685 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 686 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 687 for (unsigned i = 0; i != NumElts; ++i) 688 if (DemandedElts[i]) { 689 unsigned Offset = (i % Scale) * NumDstEltBits; 690 DemandedSrcBits.insertBits(DemandedBits, Offset); 691 DemandedSrcElts.setBit(i / Scale); 692 } 693 694 if (SDValue V = SimplifyMultipleUseDemandedBits( 695 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 696 return DAG.getBitcast(DstVT, V); 697 } 698 699 break; 700 } 701 case ISD::AND: { 702 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 703 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 704 705 // If all of the demanded bits are known 1 on one side, return the other. 706 // These bits cannot contribute to the result of the 'and' in this 707 // context. 708 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 709 return Op.getOperand(0); 710 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 711 return Op.getOperand(1); 712 break; 713 } 714 case ISD::OR: { 715 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 716 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 717 718 // If all of the demanded bits are known zero on one side, return the 719 // other. These bits cannot contribute to the result of the 'or' in this 720 // context. 721 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 722 return Op.getOperand(0); 723 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 724 return Op.getOperand(1); 725 break; 726 } 727 case ISD::XOR: { 728 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 729 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 730 731 // If all of the demanded bits are known zero on one side, return the 732 // other. 733 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 734 return Op.getOperand(0); 735 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 736 return Op.getOperand(1); 737 break; 738 } 739 case ISD::SHL: { 740 // If we are only demanding sign bits then we can use the shift source 741 // directly. 742 if (const APInt *MaxSA = 743 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 744 SDValue Op0 = Op.getOperand(0); 745 unsigned ShAmt = MaxSA->getZExtValue(); 746 unsigned NumSignBits = 747 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 748 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 749 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 750 return Op0; 751 } 752 break; 753 } 754 case ISD::SETCC: { 755 SDValue Op0 = Op.getOperand(0); 756 SDValue Op1 = Op.getOperand(1); 757 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 758 // If (1) we only need the sign-bit, (2) the setcc operands are the same 759 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 760 // -1, we may be able to bypass the setcc. 761 if (DemandedBits.isSignMask() && 762 Op0.getScalarValueSizeInBits() == BitWidth && 763 getBooleanContents(Op0.getValueType()) == 764 BooleanContent::ZeroOrNegativeOneBooleanContent) { 765 // If we're testing X < 0, then this compare isn't needed - just use X! 766 // FIXME: We're limiting to integer types here, but this should also work 767 // if we don't care about FP signed-zero. The use of SETLT with FP means 768 // that we don't care about NaNs. 769 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 770 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 771 return Op0; 772 } 773 break; 774 } 775 case ISD::SIGN_EXTEND_INREG: { 776 // If none of the extended bits are demanded, eliminate the sextinreg. 777 SDValue Op0 = Op.getOperand(0); 778 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 779 unsigned ExBits = ExVT.getScalarSizeInBits(); 780 if (DemandedBits.getActiveBits() <= ExBits) 781 return Op0; 782 // If the input is already sign extended, just drop the extension. 783 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 784 if (NumSignBits >= (BitWidth - ExBits + 1)) 785 return Op0; 786 break; 787 } 788 case ISD::ANY_EXTEND_VECTOR_INREG: 789 case ISD::SIGN_EXTEND_VECTOR_INREG: 790 case ISD::ZERO_EXTEND_VECTOR_INREG: { 791 // If we only want the lowest element and none of extended bits, then we can 792 // return the bitcasted source vector. 793 SDValue Src = Op.getOperand(0); 794 EVT SrcVT = Src.getValueType(); 795 EVT DstVT = Op.getValueType(); 796 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 797 DAG.getDataLayout().isLittleEndian() && 798 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 799 return DAG.getBitcast(DstVT, Src); 800 } 801 break; 802 } 803 case ISD::INSERT_VECTOR_ELT: { 804 // If we don't demand the inserted element, return the base vector. 805 SDValue Vec = Op.getOperand(0); 806 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 807 EVT VecVT = Vec.getValueType(); 808 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 809 !DemandedElts[CIdx->getZExtValue()]) 810 return Vec; 811 break; 812 } 813 case ISD::INSERT_SUBVECTOR: { 814 // If we don't demand the inserted subvector, return the base vector. 815 SDValue Vec = Op.getOperand(0); 816 SDValue Sub = Op.getOperand(1); 817 uint64_t Idx = Op.getConstantOperandVal(2); 818 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 819 if (DemandedElts.extractBits(NumSubElts, Idx) == 0) 820 return Vec; 821 break; 822 } 823 case ISD::VECTOR_SHUFFLE: { 824 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 825 826 // If all the demanded elts are from one operand and are inline, 827 // then we can use the operand directly. 828 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 829 for (unsigned i = 0; i != NumElts; ++i) { 830 int M = ShuffleMask[i]; 831 if (M < 0 || !DemandedElts[i]) 832 continue; 833 AllUndef = false; 834 IdentityLHS &= (M == (int)i); 835 IdentityRHS &= ((M - NumElts) == i); 836 } 837 838 if (AllUndef) 839 return DAG.getUNDEF(Op.getValueType()); 840 if (IdentityLHS) 841 return Op.getOperand(0); 842 if (IdentityRHS) 843 return Op.getOperand(1); 844 break; 845 } 846 default: 847 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 848 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 849 Op, DemandedBits, DemandedElts, DAG, Depth)) 850 return V; 851 break; 852 } 853 return SDValue(); 854 } 855 856 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 857 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 858 unsigned Depth) const { 859 EVT VT = Op.getValueType(); 860 APInt DemandedElts = VT.isVector() 861 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 862 : APInt(1, 1); 863 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 864 Depth); 865 } 866 867 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 868 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 869 unsigned Depth) const { 870 APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits()); 871 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 872 Depth); 873 } 874 875 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 876 /// result of Op are ever used downstream. If we can use this information to 877 /// simplify Op, create a new simplified DAG node and return true, returning the 878 /// original and new nodes in Old and New. Otherwise, analyze the expression and 879 /// return a mask of Known bits for the expression (used to simplify the 880 /// caller). The Known bits may only be accurate for those bits in the 881 /// OriginalDemandedBits and OriginalDemandedElts. 882 bool TargetLowering::SimplifyDemandedBits( 883 SDValue Op, const APInt &OriginalDemandedBits, 884 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 885 unsigned Depth, bool AssumeSingleUse) const { 886 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 887 assert(Op.getScalarValueSizeInBits() == BitWidth && 888 "Mask size mismatches value type size!"); 889 890 // Don't know anything. 891 Known = KnownBits(BitWidth); 892 893 // TODO: We can probably do more work on calculating the known bits and 894 // simplifying the operations for scalable vectors, but for now we just 895 // bail out. 896 if (Op.getValueType().isScalableVector()) 897 return false; 898 899 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 900 assert((!Op.getValueType().isVector() || 901 NumElts == Op.getValueType().getVectorNumElements()) && 902 "Unexpected vector size"); 903 904 APInt DemandedBits = OriginalDemandedBits; 905 APInt DemandedElts = OriginalDemandedElts; 906 SDLoc dl(Op); 907 auto &DL = TLO.DAG.getDataLayout(); 908 909 // Undef operand. 910 if (Op.isUndef()) 911 return false; 912 913 if (Op.getOpcode() == ISD::Constant) { 914 // We know all of the bits for a constant! 915 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 916 Known.Zero = ~Known.One; 917 return false; 918 } 919 920 // Other users may use these bits. 921 EVT VT = Op.getValueType(); 922 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 923 if (Depth != 0) { 924 // If not at the root, Just compute the Known bits to 925 // simplify things downstream. 926 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 927 return false; 928 } 929 // If this is the root being simplified, allow it to have multiple uses, 930 // just set the DemandedBits/Elts to all bits. 931 DemandedBits = APInt::getAllOnesValue(BitWidth); 932 DemandedElts = APInt::getAllOnesValue(NumElts); 933 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 934 // Not demanding any bits/elts from Op. 935 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 936 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 937 // Limit search depth. 938 return false; 939 } 940 941 KnownBits Known2; 942 switch (Op.getOpcode()) { 943 case ISD::TargetConstant: 944 llvm_unreachable("Can't simplify this node"); 945 case ISD::SCALAR_TO_VECTOR: { 946 if (!DemandedElts[0]) 947 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 948 949 KnownBits SrcKnown; 950 SDValue Src = Op.getOperand(0); 951 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 952 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 953 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 954 return true; 955 956 // Upper elements are undef, so only get the knownbits if we just demand 957 // the bottom element. 958 if (DemandedElts == 1) 959 Known = SrcKnown.anyextOrTrunc(BitWidth); 960 break; 961 } 962 case ISD::BUILD_VECTOR: 963 // Collect the known bits that are shared by every demanded element. 964 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 965 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 966 return false; // Don't fall through, will infinitely loop. 967 case ISD::LOAD: { 968 LoadSDNode *LD = cast<LoadSDNode>(Op); 969 if (getTargetConstantFromLoad(LD)) { 970 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 971 return false; // Don't fall through, will infinitely loop. 972 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 973 // If this is a ZEXTLoad and we are looking at the loaded value. 974 EVT MemVT = LD->getMemoryVT(); 975 unsigned MemBits = MemVT.getScalarSizeInBits(); 976 Known.Zero.setBitsFrom(MemBits); 977 return false; // Don't fall through, will infinitely loop. 978 } 979 break; 980 } 981 case ISD::INSERT_VECTOR_ELT: { 982 SDValue Vec = Op.getOperand(0); 983 SDValue Scl = Op.getOperand(1); 984 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 985 EVT VecVT = Vec.getValueType(); 986 987 // If index isn't constant, assume we need all vector elements AND the 988 // inserted element. 989 APInt DemandedVecElts(DemandedElts); 990 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 991 unsigned Idx = CIdx->getZExtValue(); 992 DemandedVecElts.clearBit(Idx); 993 994 // Inserted element is not required. 995 if (!DemandedElts[Idx]) 996 return TLO.CombineTo(Op, Vec); 997 } 998 999 KnownBits KnownScl; 1000 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1001 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1002 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1003 return true; 1004 1005 Known = KnownScl.anyextOrTrunc(BitWidth); 1006 1007 KnownBits KnownVec; 1008 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1009 Depth + 1)) 1010 return true; 1011 1012 if (!!DemandedVecElts) { 1013 Known.One &= KnownVec.One; 1014 Known.Zero &= KnownVec.Zero; 1015 } 1016 1017 return false; 1018 } 1019 case ISD::INSERT_SUBVECTOR: { 1020 // Demand any elements from the subvector and the remainder from the src its 1021 // inserted into. 1022 SDValue Src = Op.getOperand(0); 1023 SDValue Sub = Op.getOperand(1); 1024 uint64_t Idx = Op.getConstantOperandVal(2); 1025 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1026 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1027 APInt DemandedSrcElts = DemandedElts; 1028 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 1029 1030 KnownBits KnownSub, KnownSrc; 1031 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1032 Depth + 1)) 1033 return true; 1034 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1035 Depth + 1)) 1036 return true; 1037 1038 Known.Zero.setAllBits(); 1039 Known.One.setAllBits(); 1040 if (!!DemandedSubElts) { 1041 Known.One &= KnownSub.One; 1042 Known.Zero &= KnownSub.Zero; 1043 } 1044 if (!!DemandedSrcElts) { 1045 Known.One &= KnownSrc.One; 1046 Known.Zero &= KnownSrc.Zero; 1047 } 1048 1049 // Attempt to avoid multi-use src if we don't need anything from it. 1050 if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() || 1051 !DemandedSrcElts.isAllOnesValue()) { 1052 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1053 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1054 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1055 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1056 if (NewSub || NewSrc) { 1057 NewSub = NewSub ? NewSub : Sub; 1058 NewSrc = NewSrc ? NewSrc : Src; 1059 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1060 Op.getOperand(2)); 1061 return TLO.CombineTo(Op, NewOp); 1062 } 1063 } 1064 break; 1065 } 1066 case ISD::EXTRACT_SUBVECTOR: { 1067 // Offset the demanded elts by the subvector index. 1068 SDValue Src = Op.getOperand(0); 1069 if (Src.getValueType().isScalableVector()) 1070 break; 1071 uint64_t Idx = Op.getConstantOperandVal(1); 1072 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1073 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1074 1075 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1076 Depth + 1)) 1077 return true; 1078 1079 // Attempt to avoid multi-use src if we don't need anything from it. 1080 if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) { 1081 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1082 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1083 if (DemandedSrc) { 1084 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1085 Op.getOperand(1)); 1086 return TLO.CombineTo(Op, NewOp); 1087 } 1088 } 1089 break; 1090 } 1091 case ISD::CONCAT_VECTORS: { 1092 Known.Zero.setAllBits(); 1093 Known.One.setAllBits(); 1094 EVT SubVT = Op.getOperand(0).getValueType(); 1095 unsigned NumSubVecs = Op.getNumOperands(); 1096 unsigned NumSubElts = SubVT.getVectorNumElements(); 1097 for (unsigned i = 0; i != NumSubVecs; ++i) { 1098 APInt DemandedSubElts = 1099 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1100 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1101 Known2, TLO, Depth + 1)) 1102 return true; 1103 // Known bits are shared by every demanded subvector element. 1104 if (!!DemandedSubElts) { 1105 Known.One &= Known2.One; 1106 Known.Zero &= Known2.Zero; 1107 } 1108 } 1109 break; 1110 } 1111 case ISD::VECTOR_SHUFFLE: { 1112 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1113 1114 // Collect demanded elements from shuffle operands.. 1115 APInt DemandedLHS(NumElts, 0); 1116 APInt DemandedRHS(NumElts, 0); 1117 for (unsigned i = 0; i != NumElts; ++i) { 1118 if (!DemandedElts[i]) 1119 continue; 1120 int M = ShuffleMask[i]; 1121 if (M < 0) { 1122 // For UNDEF elements, we don't know anything about the common state of 1123 // the shuffle result. 1124 DemandedLHS.clearAllBits(); 1125 DemandedRHS.clearAllBits(); 1126 break; 1127 } 1128 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1129 if (M < (int)NumElts) 1130 DemandedLHS.setBit(M); 1131 else 1132 DemandedRHS.setBit(M - NumElts); 1133 } 1134 1135 if (!!DemandedLHS || !!DemandedRHS) { 1136 SDValue Op0 = Op.getOperand(0); 1137 SDValue Op1 = Op.getOperand(1); 1138 1139 Known.Zero.setAllBits(); 1140 Known.One.setAllBits(); 1141 if (!!DemandedLHS) { 1142 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1143 Depth + 1)) 1144 return true; 1145 Known.One &= Known2.One; 1146 Known.Zero &= Known2.Zero; 1147 } 1148 if (!!DemandedRHS) { 1149 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1150 Depth + 1)) 1151 return true; 1152 Known.One &= Known2.One; 1153 Known.Zero &= Known2.Zero; 1154 } 1155 1156 // Attempt to avoid multi-use ops if we don't need anything from them. 1157 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1158 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1159 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1160 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1161 if (DemandedOp0 || DemandedOp1) { 1162 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1163 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1164 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1165 return TLO.CombineTo(Op, NewOp); 1166 } 1167 } 1168 break; 1169 } 1170 case ISD::AND: { 1171 SDValue Op0 = Op.getOperand(0); 1172 SDValue Op1 = Op.getOperand(1); 1173 1174 // If the RHS is a constant, check to see if the LHS would be zero without 1175 // using the bits from the RHS. Below, we use knowledge about the RHS to 1176 // simplify the LHS, here we're using information from the LHS to simplify 1177 // the RHS. 1178 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1179 // Do not increment Depth here; that can cause an infinite loop. 1180 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1181 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1182 if ((LHSKnown.Zero & DemandedBits) == 1183 (~RHSC->getAPIntValue() & DemandedBits)) 1184 return TLO.CombineTo(Op, Op0); 1185 1186 // If any of the set bits in the RHS are known zero on the LHS, shrink 1187 // the constant. 1188 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1189 DemandedElts, TLO)) 1190 return true; 1191 1192 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1193 // constant, but if this 'and' is only clearing bits that were just set by 1194 // the xor, then this 'and' can be eliminated by shrinking the mask of 1195 // the xor. For example, for a 32-bit X: 1196 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1197 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1198 LHSKnown.One == ~RHSC->getAPIntValue()) { 1199 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1200 return TLO.CombineTo(Op, Xor); 1201 } 1202 } 1203 1204 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1205 Depth + 1)) 1206 return true; 1207 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1208 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1209 Known2, TLO, Depth + 1)) 1210 return true; 1211 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1212 1213 // Attempt to avoid multi-use ops if we don't need anything from them. 1214 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1215 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1216 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1217 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1218 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1219 if (DemandedOp0 || DemandedOp1) { 1220 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1221 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1222 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1223 return TLO.CombineTo(Op, NewOp); 1224 } 1225 } 1226 1227 // If all of the demanded bits are known one on one side, return the other. 1228 // These bits cannot contribute to the result of the 'and'. 1229 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1230 return TLO.CombineTo(Op, Op0); 1231 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1232 return TLO.CombineTo(Op, Op1); 1233 // If all of the demanded bits in the inputs are known zeros, return zero. 1234 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1235 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1236 // If the RHS is a constant, see if we can simplify it. 1237 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1238 TLO)) 1239 return true; 1240 // If the operation can be done in a smaller type, do so. 1241 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1242 return true; 1243 1244 Known &= Known2; 1245 break; 1246 } 1247 case ISD::OR: { 1248 SDValue Op0 = Op.getOperand(0); 1249 SDValue Op1 = Op.getOperand(1); 1250 1251 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1252 Depth + 1)) 1253 return true; 1254 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1255 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1256 Known2, TLO, Depth + 1)) 1257 return true; 1258 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1259 1260 // Attempt to avoid multi-use ops if we don't need anything from them. 1261 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1262 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1263 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1264 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1265 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1266 if (DemandedOp0 || DemandedOp1) { 1267 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1268 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1269 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1270 return TLO.CombineTo(Op, NewOp); 1271 } 1272 } 1273 1274 // If all of the demanded bits are known zero on one side, return the other. 1275 // These bits cannot contribute to the result of the 'or'. 1276 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1277 return TLO.CombineTo(Op, Op0); 1278 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1279 return TLO.CombineTo(Op, Op1); 1280 // If the RHS is a constant, see if we can simplify it. 1281 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1282 return true; 1283 // If the operation can be done in a smaller type, do so. 1284 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1285 return true; 1286 1287 Known |= Known2; 1288 break; 1289 } 1290 case ISD::XOR: { 1291 SDValue Op0 = Op.getOperand(0); 1292 SDValue Op1 = Op.getOperand(1); 1293 1294 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1295 Depth + 1)) 1296 return true; 1297 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1298 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1299 Depth + 1)) 1300 return true; 1301 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1302 1303 // Attempt to avoid multi-use ops if we don't need anything from them. 1304 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1305 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1306 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1307 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1308 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1309 if (DemandedOp0 || DemandedOp1) { 1310 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1311 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1312 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1313 return TLO.CombineTo(Op, NewOp); 1314 } 1315 } 1316 1317 // If all of the demanded bits are known zero on one side, return the other. 1318 // These bits cannot contribute to the result of the 'xor'. 1319 if (DemandedBits.isSubsetOf(Known.Zero)) 1320 return TLO.CombineTo(Op, Op0); 1321 if (DemandedBits.isSubsetOf(Known2.Zero)) 1322 return TLO.CombineTo(Op, Op1); 1323 // If the operation can be done in a smaller type, do so. 1324 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1325 return true; 1326 1327 // If all of the unknown bits are known to be zero on one side or the other 1328 // (but not both) turn this into an *inclusive* or. 1329 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1330 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1331 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1332 1333 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1334 if (C) { 1335 // If one side is a constant, and all of the known set bits on the other 1336 // side are also set in the constant, turn this into an AND, as we know 1337 // the bits will be cleared. 1338 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1339 // NB: it is okay if more bits are known than are requested 1340 if (C->getAPIntValue() == Known2.One) { 1341 SDValue ANDC = 1342 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1343 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1344 } 1345 1346 // If the RHS is a constant, see if we can change it. Don't alter a -1 1347 // constant because that's a 'not' op, and that is better for combining 1348 // and codegen. 1349 if (!C->isAllOnesValue() && 1350 DemandedBits.isSubsetOf(C->getAPIntValue())) { 1351 // We're flipping all demanded bits. Flip the undemanded bits too. 1352 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1353 return TLO.CombineTo(Op, New); 1354 } 1355 } 1356 1357 // If we can't turn this into a 'not', try to shrink the constant. 1358 if (!C || !C->isAllOnesValue()) 1359 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1360 return true; 1361 1362 Known ^= Known2; 1363 break; 1364 } 1365 case ISD::SELECT: 1366 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1367 Depth + 1)) 1368 return true; 1369 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1370 Depth + 1)) 1371 return true; 1372 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1373 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1374 1375 // If the operands are constants, see if we can simplify them. 1376 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1377 return true; 1378 1379 // Only known if known in both the LHS and RHS. 1380 Known.One &= Known2.One; 1381 Known.Zero &= Known2.Zero; 1382 break; 1383 case ISD::SELECT_CC: 1384 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1385 Depth + 1)) 1386 return true; 1387 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1388 Depth + 1)) 1389 return true; 1390 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1391 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1392 1393 // If the operands are constants, see if we can simplify them. 1394 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1395 return true; 1396 1397 // Only known if known in both the LHS and RHS. 1398 Known.One &= Known2.One; 1399 Known.Zero &= Known2.Zero; 1400 break; 1401 case ISD::SETCC: { 1402 SDValue Op0 = Op.getOperand(0); 1403 SDValue Op1 = Op.getOperand(1); 1404 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1405 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1406 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1407 // -1, we may be able to bypass the setcc. 1408 if (DemandedBits.isSignMask() && 1409 Op0.getScalarValueSizeInBits() == BitWidth && 1410 getBooleanContents(Op0.getValueType()) == 1411 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1412 // If we're testing X < 0, then this compare isn't needed - just use X! 1413 // FIXME: We're limiting to integer types here, but this should also work 1414 // if we don't care about FP signed-zero. The use of SETLT with FP means 1415 // that we don't care about NaNs. 1416 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1417 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1418 return TLO.CombineTo(Op, Op0); 1419 1420 // TODO: Should we check for other forms of sign-bit comparisons? 1421 // Examples: X <= -1, X >= 0 1422 } 1423 if (getBooleanContents(Op0.getValueType()) == 1424 TargetLowering::ZeroOrOneBooleanContent && 1425 BitWidth > 1) 1426 Known.Zero.setBitsFrom(1); 1427 break; 1428 } 1429 case ISD::SHL: { 1430 SDValue Op0 = Op.getOperand(0); 1431 SDValue Op1 = Op.getOperand(1); 1432 EVT ShiftVT = Op1.getValueType(); 1433 1434 if (const APInt *SA = 1435 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1436 unsigned ShAmt = SA->getZExtValue(); 1437 if (ShAmt == 0) 1438 return TLO.CombineTo(Op, Op0); 1439 1440 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1441 // single shift. We can do this if the bottom bits (which are shifted 1442 // out) are never demanded. 1443 // TODO - support non-uniform vector amounts. 1444 if (Op0.getOpcode() == ISD::SRL) { 1445 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1446 if (const APInt *SA2 = 1447 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1448 unsigned C1 = SA2->getZExtValue(); 1449 unsigned Opc = ISD::SHL; 1450 int Diff = ShAmt - C1; 1451 if (Diff < 0) { 1452 Diff = -Diff; 1453 Opc = ISD::SRL; 1454 } 1455 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1456 return TLO.CombineTo( 1457 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1458 } 1459 } 1460 } 1461 1462 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1463 // are not demanded. This will likely allow the anyext to be folded away. 1464 // TODO - support non-uniform vector amounts. 1465 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1466 SDValue InnerOp = Op0.getOperand(0); 1467 EVT InnerVT = InnerOp.getValueType(); 1468 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1469 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1470 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1471 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1472 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1473 ShTy = InnerVT; 1474 SDValue NarrowShl = 1475 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1476 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1477 return TLO.CombineTo( 1478 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1479 } 1480 1481 // Repeat the SHL optimization above in cases where an extension 1482 // intervenes: (shl (anyext (shr x, c1)), c2) to 1483 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1484 // aren't demanded (as above) and that the shifted upper c1 bits of 1485 // x aren't demanded. 1486 // TODO - support non-uniform vector amounts. 1487 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1488 InnerOp.hasOneUse()) { 1489 if (const APInt *SA2 = 1490 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1491 unsigned InnerShAmt = SA2->getZExtValue(); 1492 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1493 DemandedBits.getActiveBits() <= 1494 (InnerBits - InnerShAmt + ShAmt) && 1495 DemandedBits.countTrailingZeros() >= ShAmt) { 1496 SDValue NewSA = 1497 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1498 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1499 InnerOp.getOperand(0)); 1500 return TLO.CombineTo( 1501 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1502 } 1503 } 1504 } 1505 } 1506 1507 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1508 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1509 Depth + 1)) 1510 return true; 1511 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1512 Known.Zero <<= ShAmt; 1513 Known.One <<= ShAmt; 1514 // low bits known zero. 1515 Known.Zero.setLowBits(ShAmt); 1516 1517 // Try shrinking the operation as long as the shift amount will still be 1518 // in range. 1519 if ((ShAmt < DemandedBits.getActiveBits()) && 1520 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1521 return true; 1522 } 1523 1524 // If we are only demanding sign bits then we can use the shift source 1525 // directly. 1526 if (const APInt *MaxSA = 1527 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1528 unsigned ShAmt = MaxSA->getZExtValue(); 1529 unsigned NumSignBits = 1530 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1531 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1532 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1533 return TLO.CombineTo(Op, Op0); 1534 } 1535 break; 1536 } 1537 case ISD::SRL: { 1538 SDValue Op0 = Op.getOperand(0); 1539 SDValue Op1 = Op.getOperand(1); 1540 EVT ShiftVT = Op1.getValueType(); 1541 1542 if (const APInt *SA = 1543 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1544 unsigned ShAmt = SA->getZExtValue(); 1545 if (ShAmt == 0) 1546 return TLO.CombineTo(Op, Op0); 1547 1548 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1549 // single shift. We can do this if the top bits (which are shifted out) 1550 // are never demanded. 1551 // TODO - support non-uniform vector amounts. 1552 if (Op0.getOpcode() == ISD::SHL) { 1553 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1554 if (const APInt *SA2 = 1555 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1556 unsigned C1 = SA2->getZExtValue(); 1557 unsigned Opc = ISD::SRL; 1558 int Diff = ShAmt - C1; 1559 if (Diff < 0) { 1560 Diff = -Diff; 1561 Opc = ISD::SHL; 1562 } 1563 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1564 return TLO.CombineTo( 1565 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1566 } 1567 } 1568 } 1569 1570 APInt InDemandedMask = (DemandedBits << ShAmt); 1571 1572 // If the shift is exact, then it does demand the low bits (and knows that 1573 // they are zero). 1574 if (Op->getFlags().hasExact()) 1575 InDemandedMask.setLowBits(ShAmt); 1576 1577 // Compute the new bits that are at the top now. 1578 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1579 Depth + 1)) 1580 return true; 1581 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1582 Known.Zero.lshrInPlace(ShAmt); 1583 Known.One.lshrInPlace(ShAmt); 1584 // High bits known zero. 1585 Known.Zero.setHighBits(ShAmt); 1586 } 1587 break; 1588 } 1589 case ISD::SRA: { 1590 SDValue Op0 = Op.getOperand(0); 1591 SDValue Op1 = Op.getOperand(1); 1592 EVT ShiftVT = Op1.getValueType(); 1593 1594 // If we only want bits that already match the signbit then we don't need 1595 // to shift. 1596 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1597 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1598 NumHiDemandedBits) 1599 return TLO.CombineTo(Op, Op0); 1600 1601 // If this is an arithmetic shift right and only the low-bit is set, we can 1602 // always convert this into a logical shr, even if the shift amount is 1603 // variable. The low bit of the shift cannot be an input sign bit unless 1604 // the shift amount is >= the size of the datatype, which is undefined. 1605 if (DemandedBits.isOneValue()) 1606 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1607 1608 if (const APInt *SA = 1609 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1610 unsigned ShAmt = SA->getZExtValue(); 1611 if (ShAmt == 0) 1612 return TLO.CombineTo(Op, Op0); 1613 1614 APInt InDemandedMask = (DemandedBits << ShAmt); 1615 1616 // If the shift is exact, then it does demand the low bits (and knows that 1617 // they are zero). 1618 if (Op->getFlags().hasExact()) 1619 InDemandedMask.setLowBits(ShAmt); 1620 1621 // If any of the demanded bits are produced by the sign extension, we also 1622 // demand the input sign bit. 1623 if (DemandedBits.countLeadingZeros() < ShAmt) 1624 InDemandedMask.setSignBit(); 1625 1626 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1627 Depth + 1)) 1628 return true; 1629 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1630 Known.Zero.lshrInPlace(ShAmt); 1631 Known.One.lshrInPlace(ShAmt); 1632 1633 // If the input sign bit is known to be zero, or if none of the top bits 1634 // are demanded, turn this into an unsigned shift right. 1635 if (Known.Zero[BitWidth - ShAmt - 1] || 1636 DemandedBits.countLeadingZeros() >= ShAmt) { 1637 SDNodeFlags Flags; 1638 Flags.setExact(Op->getFlags().hasExact()); 1639 return TLO.CombineTo( 1640 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1641 } 1642 1643 int Log2 = DemandedBits.exactLogBase2(); 1644 if (Log2 >= 0) { 1645 // The bit must come from the sign. 1646 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1647 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1648 } 1649 1650 if (Known.One[BitWidth - ShAmt - 1]) 1651 // New bits are known one. 1652 Known.One.setHighBits(ShAmt); 1653 1654 // Attempt to avoid multi-use ops if we don't need anything from them. 1655 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1656 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1657 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1658 if (DemandedOp0) { 1659 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1660 return TLO.CombineTo(Op, NewOp); 1661 } 1662 } 1663 } 1664 break; 1665 } 1666 case ISD::FSHL: 1667 case ISD::FSHR: { 1668 SDValue Op0 = Op.getOperand(0); 1669 SDValue Op1 = Op.getOperand(1); 1670 SDValue Op2 = Op.getOperand(2); 1671 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1672 1673 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1674 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1675 1676 // For fshl, 0-shift returns the 1st arg. 1677 // For fshr, 0-shift returns the 2nd arg. 1678 if (Amt == 0) { 1679 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1680 Known, TLO, Depth + 1)) 1681 return true; 1682 break; 1683 } 1684 1685 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1686 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1687 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1688 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1689 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1690 Depth + 1)) 1691 return true; 1692 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1693 Depth + 1)) 1694 return true; 1695 1696 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1697 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1698 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1699 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1700 Known.One |= Known2.One; 1701 Known.Zero |= Known2.Zero; 1702 } 1703 1704 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1705 if (isPowerOf2_32(BitWidth)) { 1706 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1707 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1708 Known2, TLO, Depth + 1)) 1709 return true; 1710 } 1711 break; 1712 } 1713 case ISD::ROTL: 1714 case ISD::ROTR: { 1715 SDValue Op0 = Op.getOperand(0); 1716 SDValue Op1 = Op.getOperand(1); 1717 1718 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1719 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1720 return TLO.CombineTo(Op, Op0); 1721 1722 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1723 if (isPowerOf2_32(BitWidth)) { 1724 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1725 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1726 Depth + 1)) 1727 return true; 1728 } 1729 break; 1730 } 1731 case ISD::BITREVERSE: { 1732 SDValue Src = Op.getOperand(0); 1733 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1734 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1735 Depth + 1)) 1736 return true; 1737 Known.One = Known2.One.reverseBits(); 1738 Known.Zero = Known2.Zero.reverseBits(); 1739 break; 1740 } 1741 case ISD::BSWAP: { 1742 SDValue Src = Op.getOperand(0); 1743 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1744 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1745 Depth + 1)) 1746 return true; 1747 Known.One = Known2.One.byteSwap(); 1748 Known.Zero = Known2.Zero.byteSwap(); 1749 break; 1750 } 1751 case ISD::SIGN_EXTEND_INREG: { 1752 SDValue Op0 = Op.getOperand(0); 1753 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1754 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1755 1756 // If we only care about the highest bit, don't bother shifting right. 1757 if (DemandedBits.isSignMask()) { 1758 unsigned NumSignBits = 1759 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1760 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1761 // However if the input is already sign extended we expect the sign 1762 // extension to be dropped altogether later and do not simplify. 1763 if (!AlreadySignExtended) { 1764 // Compute the correct shift amount type, which must be getShiftAmountTy 1765 // for scalar types after legalization. 1766 EVT ShiftAmtTy = VT; 1767 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1768 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1769 1770 SDValue ShiftAmt = 1771 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1772 return TLO.CombineTo(Op, 1773 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1774 } 1775 } 1776 1777 // If none of the extended bits are demanded, eliminate the sextinreg. 1778 if (DemandedBits.getActiveBits() <= ExVTBits) 1779 return TLO.CombineTo(Op, Op0); 1780 1781 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1782 1783 // Since the sign extended bits are demanded, we know that the sign 1784 // bit is demanded. 1785 InputDemandedBits.setBit(ExVTBits - 1); 1786 1787 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1788 return true; 1789 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1790 1791 // If the sign bit of the input is known set or clear, then we know the 1792 // top bits of the result. 1793 1794 // If the input sign bit is known zero, convert this into a zero extension. 1795 if (Known.Zero[ExVTBits - 1]) 1796 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1797 1798 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1799 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1800 Known.One.setBitsFrom(ExVTBits); 1801 Known.Zero &= Mask; 1802 } else { // Input sign bit unknown 1803 Known.Zero &= Mask; 1804 Known.One &= Mask; 1805 } 1806 break; 1807 } 1808 case ISD::BUILD_PAIR: { 1809 EVT HalfVT = Op.getOperand(0).getValueType(); 1810 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1811 1812 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1813 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1814 1815 KnownBits KnownLo, KnownHi; 1816 1817 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1818 return true; 1819 1820 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1821 return true; 1822 1823 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1824 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1825 1826 Known.One = KnownLo.One.zext(BitWidth) | 1827 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1828 break; 1829 } 1830 case ISD::ZERO_EXTEND: 1831 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1832 SDValue Src = Op.getOperand(0); 1833 EVT SrcVT = Src.getValueType(); 1834 unsigned InBits = SrcVT.getScalarSizeInBits(); 1835 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1836 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1837 1838 // If none of the top bits are demanded, convert this into an any_extend. 1839 if (DemandedBits.getActiveBits() <= InBits) { 1840 // If we only need the non-extended bits of the bottom element 1841 // then we can just bitcast to the result. 1842 if (IsVecInReg && DemandedElts == 1 && 1843 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1844 TLO.DAG.getDataLayout().isLittleEndian()) 1845 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1846 1847 unsigned Opc = 1848 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1849 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1850 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1851 } 1852 1853 APInt InDemandedBits = DemandedBits.trunc(InBits); 1854 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1855 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1856 Depth + 1)) 1857 return true; 1858 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1859 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1860 Known = Known.zext(BitWidth); 1861 1862 // Attempt to avoid multi-use ops if we don't need anything from them. 1863 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1864 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1865 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1866 break; 1867 } 1868 case ISD::SIGN_EXTEND: 1869 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1870 SDValue Src = Op.getOperand(0); 1871 EVT SrcVT = Src.getValueType(); 1872 unsigned InBits = SrcVT.getScalarSizeInBits(); 1873 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1874 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1875 1876 // If none of the top bits are demanded, convert this into an any_extend. 1877 if (DemandedBits.getActiveBits() <= InBits) { 1878 // If we only need the non-extended bits of the bottom element 1879 // then we can just bitcast to the result. 1880 if (IsVecInReg && DemandedElts == 1 && 1881 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1882 TLO.DAG.getDataLayout().isLittleEndian()) 1883 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1884 1885 unsigned Opc = 1886 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1887 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1888 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1889 } 1890 1891 APInt InDemandedBits = DemandedBits.trunc(InBits); 1892 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1893 1894 // Since some of the sign extended bits are demanded, we know that the sign 1895 // bit is demanded. 1896 InDemandedBits.setBit(InBits - 1); 1897 1898 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1899 Depth + 1)) 1900 return true; 1901 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1902 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1903 1904 // If the sign bit is known one, the top bits match. 1905 Known = Known.sext(BitWidth); 1906 1907 // If the sign bit is known zero, convert this to a zero extend. 1908 if (Known.isNonNegative()) { 1909 unsigned Opc = 1910 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1911 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1912 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1913 } 1914 1915 // Attempt to avoid multi-use ops if we don't need anything from them. 1916 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1917 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1918 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1919 break; 1920 } 1921 case ISD::ANY_EXTEND: 1922 case ISD::ANY_EXTEND_VECTOR_INREG: { 1923 SDValue Src = Op.getOperand(0); 1924 EVT SrcVT = Src.getValueType(); 1925 unsigned InBits = SrcVT.getScalarSizeInBits(); 1926 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1927 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1928 1929 // If we only need the bottom element then we can just bitcast. 1930 // TODO: Handle ANY_EXTEND? 1931 if (IsVecInReg && DemandedElts == 1 && 1932 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1933 TLO.DAG.getDataLayout().isLittleEndian()) 1934 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1935 1936 APInt InDemandedBits = DemandedBits.trunc(InBits); 1937 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1938 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1939 Depth + 1)) 1940 return true; 1941 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1942 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1943 Known = Known.anyext(BitWidth); 1944 1945 // Attempt to avoid multi-use ops if we don't need anything from them. 1946 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1947 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1948 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1949 break; 1950 } 1951 case ISD::TRUNCATE: { 1952 SDValue Src = Op.getOperand(0); 1953 1954 // Simplify the input, using demanded bit information, and compute the known 1955 // zero/one bits live out. 1956 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1957 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1958 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1959 return true; 1960 Known = Known.trunc(BitWidth); 1961 1962 // Attempt to avoid multi-use ops if we don't need anything from them. 1963 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1964 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1965 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1966 1967 // If the input is only used by this truncate, see if we can shrink it based 1968 // on the known demanded bits. 1969 if (Src.getNode()->hasOneUse()) { 1970 switch (Src.getOpcode()) { 1971 default: 1972 break; 1973 case ISD::SRL: 1974 // Shrink SRL by a constant if none of the high bits shifted in are 1975 // demanded. 1976 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1977 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1978 // undesirable. 1979 break; 1980 1981 SDValue ShAmt = Src.getOperand(1); 1982 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1983 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1984 break; 1985 uint64_t ShVal = ShAmtC->getZExtValue(); 1986 1987 APInt HighBits = 1988 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1989 HighBits.lshrInPlace(ShVal); 1990 HighBits = HighBits.trunc(BitWidth); 1991 1992 if (!(HighBits & DemandedBits)) { 1993 // None of the shifted in bits are needed. Add a truncate of the 1994 // shift input, then shift it. 1995 if (TLO.LegalTypes()) 1996 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1997 SDValue NewTrunc = 1998 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1999 return TLO.CombineTo( 2000 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 2001 } 2002 break; 2003 } 2004 } 2005 2006 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2007 break; 2008 } 2009 case ISD::AssertZext: { 2010 // AssertZext demands all of the high bits, plus any of the low bits 2011 // demanded by its users. 2012 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2013 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2014 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2015 TLO, Depth + 1)) 2016 return true; 2017 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2018 2019 Known.Zero |= ~InMask; 2020 break; 2021 } 2022 case ISD::EXTRACT_VECTOR_ELT: { 2023 SDValue Src = Op.getOperand(0); 2024 SDValue Idx = Op.getOperand(1); 2025 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2026 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2027 2028 // Demand the bits from every vector element without a constant index. 2029 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 2030 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2031 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2032 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2033 2034 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2035 // anything about the extended bits. 2036 APInt DemandedSrcBits = DemandedBits; 2037 if (BitWidth > EltBitWidth) 2038 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2039 2040 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2041 Depth + 1)) 2042 return true; 2043 2044 // Attempt to avoid multi-use ops if we don't need anything from them. 2045 if (!DemandedSrcBits.isAllOnesValue() || 2046 !DemandedSrcElts.isAllOnesValue()) { 2047 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2048 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2049 SDValue NewOp = 2050 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2051 return TLO.CombineTo(Op, NewOp); 2052 } 2053 } 2054 2055 Known = Known2; 2056 if (BitWidth > EltBitWidth) 2057 Known = Known.anyext(BitWidth); 2058 break; 2059 } 2060 case ISD::BITCAST: { 2061 SDValue Src = Op.getOperand(0); 2062 EVT SrcVT = Src.getValueType(); 2063 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2064 2065 // If this is an FP->Int bitcast and if the sign bit is the only 2066 // thing demanded, turn this into a FGETSIGN. 2067 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2068 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2069 SrcVT.isFloatingPoint()) { 2070 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2071 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2072 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2073 SrcVT != MVT::f128) { 2074 // Cannot eliminate/lower SHL for f128 yet. 2075 EVT Ty = OpVTLegal ? VT : MVT::i32; 2076 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2077 // place. We expect the SHL to be eliminated by other optimizations. 2078 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2079 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2080 if (!OpVTLegal && OpVTSizeInBits > 32) 2081 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2082 unsigned ShVal = Op.getValueSizeInBits() - 1; 2083 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2084 return TLO.CombineTo(Op, 2085 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2086 } 2087 } 2088 2089 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2090 // Demand the elt/bit if any of the original elts/bits are demanded. 2091 // TODO - bigendian once we have test coverage. 2092 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2093 TLO.DAG.getDataLayout().isLittleEndian()) { 2094 unsigned Scale = BitWidth / NumSrcEltBits; 2095 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2096 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2097 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2098 for (unsigned i = 0; i != Scale; ++i) { 2099 unsigned Offset = i * NumSrcEltBits; 2100 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2101 if (!Sub.isNullValue()) { 2102 DemandedSrcBits |= Sub; 2103 for (unsigned j = 0; j != NumElts; ++j) 2104 if (DemandedElts[j]) 2105 DemandedSrcElts.setBit((j * Scale) + i); 2106 } 2107 } 2108 2109 APInt KnownSrcUndef, KnownSrcZero; 2110 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2111 KnownSrcZero, TLO, Depth + 1)) 2112 return true; 2113 2114 KnownBits KnownSrcBits; 2115 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2116 KnownSrcBits, TLO, Depth + 1)) 2117 return true; 2118 } else if ((NumSrcEltBits % BitWidth) == 0 && 2119 TLO.DAG.getDataLayout().isLittleEndian()) { 2120 unsigned Scale = NumSrcEltBits / BitWidth; 2121 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2122 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2123 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2124 for (unsigned i = 0; i != NumElts; ++i) 2125 if (DemandedElts[i]) { 2126 unsigned Offset = (i % Scale) * BitWidth; 2127 DemandedSrcBits.insertBits(DemandedBits, Offset); 2128 DemandedSrcElts.setBit(i / Scale); 2129 } 2130 2131 if (SrcVT.isVector()) { 2132 APInt KnownSrcUndef, KnownSrcZero; 2133 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2134 KnownSrcZero, TLO, Depth + 1)) 2135 return true; 2136 } 2137 2138 KnownBits KnownSrcBits; 2139 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2140 KnownSrcBits, TLO, Depth + 1)) 2141 return true; 2142 } 2143 2144 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2145 // recursive call where Known may be useful to the caller. 2146 if (Depth > 0) { 2147 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2148 return false; 2149 } 2150 break; 2151 } 2152 case ISD::ADD: 2153 case ISD::MUL: 2154 case ISD::SUB: { 2155 // Add, Sub, and Mul don't demand any bits in positions beyond that 2156 // of the highest bit demanded of them. 2157 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2158 SDNodeFlags Flags = Op.getNode()->getFlags(); 2159 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2160 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2161 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2162 Depth + 1) || 2163 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2164 Depth + 1) || 2165 // See if the operation should be performed at a smaller bit width. 2166 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2167 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2168 // Disable the nsw and nuw flags. We can no longer guarantee that we 2169 // won't wrap after simplification. 2170 Flags.setNoSignedWrap(false); 2171 Flags.setNoUnsignedWrap(false); 2172 SDValue NewOp = 2173 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2174 return TLO.CombineTo(Op, NewOp); 2175 } 2176 return true; 2177 } 2178 2179 // Attempt to avoid multi-use ops if we don't need anything from them. 2180 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2181 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2182 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2183 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2184 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2185 if (DemandedOp0 || DemandedOp1) { 2186 Flags.setNoSignedWrap(false); 2187 Flags.setNoUnsignedWrap(false); 2188 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2189 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2190 SDValue NewOp = 2191 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2192 return TLO.CombineTo(Op, NewOp); 2193 } 2194 } 2195 2196 // If we have a constant operand, we may be able to turn it into -1 if we 2197 // do not demand the high bits. This can make the constant smaller to 2198 // encode, allow more general folding, or match specialized instruction 2199 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2200 // is probably not useful (and could be detrimental). 2201 ConstantSDNode *C = isConstOrConstSplat(Op1); 2202 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2203 if (C && !C->isAllOnesValue() && !C->isOne() && 2204 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2205 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2206 // Disable the nsw and nuw flags. We can no longer guarantee that we 2207 // won't wrap after simplification. 2208 Flags.setNoSignedWrap(false); 2209 Flags.setNoUnsignedWrap(false); 2210 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2211 return TLO.CombineTo(Op, NewOp); 2212 } 2213 2214 LLVM_FALLTHROUGH; 2215 } 2216 default: 2217 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2218 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2219 Known, TLO, Depth)) 2220 return true; 2221 break; 2222 } 2223 2224 // Just use computeKnownBits to compute output bits. 2225 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2226 break; 2227 } 2228 2229 // If we know the value of all of the demanded bits, return this as a 2230 // constant. 2231 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2232 // Avoid folding to a constant if any OpaqueConstant is involved. 2233 const SDNode *N = Op.getNode(); 2234 for (SDNodeIterator I = SDNodeIterator::begin(N), 2235 E = SDNodeIterator::end(N); 2236 I != E; ++I) { 2237 SDNode *Op = *I; 2238 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2239 if (C->isOpaque()) 2240 return false; 2241 } 2242 // TODO: Handle float bits as well. 2243 if (VT.isInteger()) 2244 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2245 } 2246 2247 return false; 2248 } 2249 2250 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2251 const APInt &DemandedElts, 2252 APInt &KnownUndef, 2253 APInt &KnownZero, 2254 DAGCombinerInfo &DCI) const { 2255 SelectionDAG &DAG = DCI.DAG; 2256 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2257 !DCI.isBeforeLegalizeOps()); 2258 2259 bool Simplified = 2260 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2261 if (Simplified) { 2262 DCI.AddToWorklist(Op.getNode()); 2263 DCI.CommitTargetLoweringOpt(TLO); 2264 } 2265 2266 return Simplified; 2267 } 2268 2269 /// Given a vector binary operation and known undefined elements for each input 2270 /// operand, compute whether each element of the output is undefined. 2271 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2272 const APInt &UndefOp0, 2273 const APInt &UndefOp1) { 2274 EVT VT = BO.getValueType(); 2275 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2276 "Vector binop only"); 2277 2278 EVT EltVT = VT.getVectorElementType(); 2279 unsigned NumElts = VT.getVectorNumElements(); 2280 assert(UndefOp0.getBitWidth() == NumElts && 2281 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2282 2283 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2284 const APInt &UndefVals) { 2285 if (UndefVals[Index]) 2286 return DAG.getUNDEF(EltVT); 2287 2288 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2289 // Try hard to make sure that the getNode() call is not creating temporary 2290 // nodes. Ignore opaque integers because they do not constant fold. 2291 SDValue Elt = BV->getOperand(Index); 2292 auto *C = dyn_cast<ConstantSDNode>(Elt); 2293 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2294 return Elt; 2295 } 2296 2297 return SDValue(); 2298 }; 2299 2300 APInt KnownUndef = APInt::getNullValue(NumElts); 2301 for (unsigned i = 0; i != NumElts; ++i) { 2302 // If both inputs for this element are either constant or undef and match 2303 // the element type, compute the constant/undef result for this element of 2304 // the vector. 2305 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2306 // not handle FP constants. The code within getNode() should be refactored 2307 // to avoid the danger of creating a bogus temporary node here. 2308 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2309 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2310 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2311 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2312 KnownUndef.setBit(i); 2313 } 2314 return KnownUndef; 2315 } 2316 2317 bool TargetLowering::SimplifyDemandedVectorElts( 2318 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2319 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2320 bool AssumeSingleUse) const { 2321 EVT VT = Op.getValueType(); 2322 unsigned Opcode = Op.getOpcode(); 2323 APInt DemandedElts = OriginalDemandedElts; 2324 unsigned NumElts = DemandedElts.getBitWidth(); 2325 assert(VT.isVector() && "Expected vector op"); 2326 2327 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2328 2329 // TODO: For now we assume we know nothing about scalable vectors. 2330 if (VT.isScalableVector()) 2331 return false; 2332 2333 assert(VT.getVectorNumElements() == NumElts && 2334 "Mask size mismatches value type element count!"); 2335 2336 // Undef operand. 2337 if (Op.isUndef()) { 2338 KnownUndef.setAllBits(); 2339 return false; 2340 } 2341 2342 // If Op has other users, assume that all elements are needed. 2343 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2344 DemandedElts.setAllBits(); 2345 2346 // Not demanding any elements from Op. 2347 if (DemandedElts == 0) { 2348 KnownUndef.setAllBits(); 2349 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2350 } 2351 2352 // Limit search depth. 2353 if (Depth >= SelectionDAG::MaxRecursionDepth) 2354 return false; 2355 2356 SDLoc DL(Op); 2357 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2358 2359 // Helper for demanding the specified elements and all the bits of both binary 2360 // operands. 2361 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2362 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2363 TLO.DAG, Depth + 1); 2364 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2365 TLO.DAG, Depth + 1); 2366 if (NewOp0 || NewOp1) { 2367 SDValue NewOp = TLO.DAG.getNode( 2368 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2369 return TLO.CombineTo(Op, NewOp); 2370 } 2371 return false; 2372 }; 2373 2374 switch (Opcode) { 2375 case ISD::SCALAR_TO_VECTOR: { 2376 if (!DemandedElts[0]) { 2377 KnownUndef.setAllBits(); 2378 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2379 } 2380 KnownUndef.setHighBits(NumElts - 1); 2381 break; 2382 } 2383 case ISD::BITCAST: { 2384 SDValue Src = Op.getOperand(0); 2385 EVT SrcVT = Src.getValueType(); 2386 2387 // We only handle vectors here. 2388 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2389 if (!SrcVT.isVector()) 2390 break; 2391 2392 // Fast handling of 'identity' bitcasts. 2393 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2394 if (NumSrcElts == NumElts) 2395 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2396 KnownZero, TLO, Depth + 1); 2397 2398 APInt SrcZero, SrcUndef; 2399 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2400 2401 // Bitcast from 'large element' src vector to 'small element' vector, we 2402 // must demand a source element if any DemandedElt maps to it. 2403 if ((NumElts % NumSrcElts) == 0) { 2404 unsigned Scale = NumElts / NumSrcElts; 2405 for (unsigned i = 0; i != NumElts; ++i) 2406 if (DemandedElts[i]) 2407 SrcDemandedElts.setBit(i / Scale); 2408 2409 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2410 TLO, Depth + 1)) 2411 return true; 2412 2413 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2414 // of the large element. 2415 // TODO - bigendian once we have test coverage. 2416 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2417 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2418 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2419 for (unsigned i = 0; i != NumElts; ++i) 2420 if (DemandedElts[i]) { 2421 unsigned Ofs = (i % Scale) * EltSizeInBits; 2422 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2423 } 2424 2425 KnownBits Known; 2426 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2427 TLO, Depth + 1)) 2428 return true; 2429 } 2430 2431 // If the src element is zero/undef then all the output elements will be - 2432 // only demanded elements are guaranteed to be correct. 2433 for (unsigned i = 0; i != NumSrcElts; ++i) { 2434 if (SrcDemandedElts[i]) { 2435 if (SrcZero[i]) 2436 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2437 if (SrcUndef[i]) 2438 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2439 } 2440 } 2441 } 2442 2443 // Bitcast from 'small element' src vector to 'large element' vector, we 2444 // demand all smaller source elements covered by the larger demanded element 2445 // of this vector. 2446 if ((NumSrcElts % NumElts) == 0) { 2447 unsigned Scale = NumSrcElts / NumElts; 2448 for (unsigned i = 0; i != NumElts; ++i) 2449 if (DemandedElts[i]) 2450 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2451 2452 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2453 TLO, Depth + 1)) 2454 return true; 2455 2456 // If all the src elements covering an output element are zero/undef, then 2457 // the output element will be as well, assuming it was demanded. 2458 for (unsigned i = 0; i != NumElts; ++i) { 2459 if (DemandedElts[i]) { 2460 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2461 KnownZero.setBit(i); 2462 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2463 KnownUndef.setBit(i); 2464 } 2465 } 2466 } 2467 break; 2468 } 2469 case ISD::BUILD_VECTOR: { 2470 // Check all elements and simplify any unused elements with UNDEF. 2471 if (!DemandedElts.isAllOnesValue()) { 2472 // Don't simplify BROADCASTS. 2473 if (llvm::any_of(Op->op_values(), 2474 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2475 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2476 bool Updated = false; 2477 for (unsigned i = 0; i != NumElts; ++i) { 2478 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2479 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2480 KnownUndef.setBit(i); 2481 Updated = true; 2482 } 2483 } 2484 if (Updated) 2485 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2486 } 2487 } 2488 for (unsigned i = 0; i != NumElts; ++i) { 2489 SDValue SrcOp = Op.getOperand(i); 2490 if (SrcOp.isUndef()) { 2491 KnownUndef.setBit(i); 2492 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2493 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2494 KnownZero.setBit(i); 2495 } 2496 } 2497 break; 2498 } 2499 case ISD::CONCAT_VECTORS: { 2500 EVT SubVT = Op.getOperand(0).getValueType(); 2501 unsigned NumSubVecs = Op.getNumOperands(); 2502 unsigned NumSubElts = SubVT.getVectorNumElements(); 2503 for (unsigned i = 0; i != NumSubVecs; ++i) { 2504 SDValue SubOp = Op.getOperand(i); 2505 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2506 APInt SubUndef, SubZero; 2507 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2508 Depth + 1)) 2509 return true; 2510 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2511 KnownZero.insertBits(SubZero, i * NumSubElts); 2512 } 2513 break; 2514 } 2515 case ISD::INSERT_SUBVECTOR: { 2516 // Demand any elements from the subvector and the remainder from the src its 2517 // inserted into. 2518 SDValue Src = Op.getOperand(0); 2519 SDValue Sub = Op.getOperand(1); 2520 uint64_t Idx = Op.getConstantOperandVal(2); 2521 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2522 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2523 APInt DemandedSrcElts = DemandedElts; 2524 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2525 2526 APInt SubUndef, SubZero; 2527 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2528 Depth + 1)) 2529 return true; 2530 2531 // If none of the src operand elements are demanded, replace it with undef. 2532 if (!DemandedSrcElts && !Src.isUndef()) 2533 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2534 TLO.DAG.getUNDEF(VT), Sub, 2535 Op.getOperand(2))); 2536 2537 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2538 TLO, Depth + 1)) 2539 return true; 2540 KnownUndef.insertBits(SubUndef, Idx); 2541 KnownZero.insertBits(SubZero, Idx); 2542 2543 // Attempt to avoid multi-use ops if we don't need anything from them. 2544 if (!DemandedSrcElts.isAllOnesValue() || 2545 !DemandedSubElts.isAllOnesValue()) { 2546 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2547 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2548 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2549 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2550 if (NewSrc || NewSub) { 2551 NewSrc = NewSrc ? NewSrc : Src; 2552 NewSub = NewSub ? NewSub : Sub; 2553 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2554 NewSub, Op.getOperand(2)); 2555 return TLO.CombineTo(Op, NewOp); 2556 } 2557 } 2558 break; 2559 } 2560 case ISD::EXTRACT_SUBVECTOR: { 2561 // Offset the demanded elts by the subvector index. 2562 SDValue Src = Op.getOperand(0); 2563 if (Src.getValueType().isScalableVector()) 2564 break; 2565 uint64_t Idx = Op.getConstantOperandVal(1); 2566 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2567 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2568 2569 APInt SrcUndef, SrcZero; 2570 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2571 Depth + 1)) 2572 return true; 2573 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2574 KnownZero = SrcZero.extractBits(NumElts, Idx); 2575 2576 // Attempt to avoid multi-use ops if we don't need anything from them. 2577 if (!DemandedElts.isAllOnesValue()) { 2578 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2579 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2580 if (NewSrc) { 2581 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2582 Op.getOperand(1)); 2583 return TLO.CombineTo(Op, NewOp); 2584 } 2585 } 2586 break; 2587 } 2588 case ISD::INSERT_VECTOR_ELT: { 2589 SDValue Vec = Op.getOperand(0); 2590 SDValue Scl = Op.getOperand(1); 2591 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2592 2593 // For a legal, constant insertion index, if we don't need this insertion 2594 // then strip it, else remove it from the demanded elts. 2595 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2596 unsigned Idx = CIdx->getZExtValue(); 2597 if (!DemandedElts[Idx]) 2598 return TLO.CombineTo(Op, Vec); 2599 2600 APInt DemandedVecElts(DemandedElts); 2601 DemandedVecElts.clearBit(Idx); 2602 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2603 KnownZero, TLO, Depth + 1)) 2604 return true; 2605 2606 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2607 2608 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2609 break; 2610 } 2611 2612 APInt VecUndef, VecZero; 2613 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2614 Depth + 1)) 2615 return true; 2616 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2617 break; 2618 } 2619 case ISD::VSELECT: { 2620 // Try to transform the select condition based on the current demanded 2621 // elements. 2622 // TODO: If a condition element is undef, we can choose from one arm of the 2623 // select (and if one arm is undef, then we can propagate that to the 2624 // result). 2625 // TODO - add support for constant vselect masks (see IR version of this). 2626 APInt UnusedUndef, UnusedZero; 2627 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2628 UnusedZero, TLO, Depth + 1)) 2629 return true; 2630 2631 // See if we can simplify either vselect operand. 2632 APInt DemandedLHS(DemandedElts); 2633 APInt DemandedRHS(DemandedElts); 2634 APInt UndefLHS, ZeroLHS; 2635 APInt UndefRHS, ZeroRHS; 2636 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2637 ZeroLHS, TLO, Depth + 1)) 2638 return true; 2639 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2640 ZeroRHS, TLO, Depth + 1)) 2641 return true; 2642 2643 KnownUndef = UndefLHS & UndefRHS; 2644 KnownZero = ZeroLHS & ZeroRHS; 2645 break; 2646 } 2647 case ISD::VECTOR_SHUFFLE: { 2648 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2649 2650 // Collect demanded elements from shuffle operands.. 2651 APInt DemandedLHS(NumElts, 0); 2652 APInt DemandedRHS(NumElts, 0); 2653 for (unsigned i = 0; i != NumElts; ++i) { 2654 int M = ShuffleMask[i]; 2655 if (M < 0 || !DemandedElts[i]) 2656 continue; 2657 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2658 if (M < (int)NumElts) 2659 DemandedLHS.setBit(M); 2660 else 2661 DemandedRHS.setBit(M - NumElts); 2662 } 2663 2664 // See if we can simplify either shuffle operand. 2665 APInt UndefLHS, ZeroLHS; 2666 APInt UndefRHS, ZeroRHS; 2667 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2668 ZeroLHS, TLO, Depth + 1)) 2669 return true; 2670 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2671 ZeroRHS, TLO, Depth + 1)) 2672 return true; 2673 2674 // Simplify mask using undef elements from LHS/RHS. 2675 bool Updated = false; 2676 bool IdentityLHS = true, IdentityRHS = true; 2677 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2678 for (unsigned i = 0; i != NumElts; ++i) { 2679 int &M = NewMask[i]; 2680 if (M < 0) 2681 continue; 2682 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2683 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2684 Updated = true; 2685 M = -1; 2686 } 2687 IdentityLHS &= (M < 0) || (M == (int)i); 2688 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2689 } 2690 2691 // Update legal shuffle masks based on demanded elements if it won't reduce 2692 // to Identity which can cause premature removal of the shuffle mask. 2693 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2694 SDValue LegalShuffle = 2695 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2696 NewMask, TLO.DAG); 2697 if (LegalShuffle) 2698 return TLO.CombineTo(Op, LegalShuffle); 2699 } 2700 2701 // Propagate undef/zero elements from LHS/RHS. 2702 for (unsigned i = 0; i != NumElts; ++i) { 2703 int M = ShuffleMask[i]; 2704 if (M < 0) { 2705 KnownUndef.setBit(i); 2706 } else if (M < (int)NumElts) { 2707 if (UndefLHS[M]) 2708 KnownUndef.setBit(i); 2709 if (ZeroLHS[M]) 2710 KnownZero.setBit(i); 2711 } else { 2712 if (UndefRHS[M - NumElts]) 2713 KnownUndef.setBit(i); 2714 if (ZeroRHS[M - NumElts]) 2715 KnownZero.setBit(i); 2716 } 2717 } 2718 break; 2719 } 2720 case ISD::ANY_EXTEND_VECTOR_INREG: 2721 case ISD::SIGN_EXTEND_VECTOR_INREG: 2722 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2723 APInt SrcUndef, SrcZero; 2724 SDValue Src = Op.getOperand(0); 2725 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2726 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2727 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2728 Depth + 1)) 2729 return true; 2730 KnownZero = SrcZero.zextOrTrunc(NumElts); 2731 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2732 2733 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2734 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2735 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2736 // aext - if we just need the bottom element then we can bitcast. 2737 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2738 } 2739 2740 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2741 // zext(undef) upper bits are guaranteed to be zero. 2742 if (DemandedElts.isSubsetOf(KnownUndef)) 2743 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2744 KnownUndef.clearAllBits(); 2745 } 2746 break; 2747 } 2748 2749 // TODO: There are more binop opcodes that could be handled here - MIN, 2750 // MAX, saturated math, etc. 2751 case ISD::OR: 2752 case ISD::XOR: 2753 case ISD::ADD: 2754 case ISD::SUB: 2755 case ISD::FADD: 2756 case ISD::FSUB: 2757 case ISD::FMUL: 2758 case ISD::FDIV: 2759 case ISD::FREM: { 2760 SDValue Op0 = Op.getOperand(0); 2761 SDValue Op1 = Op.getOperand(1); 2762 2763 APInt UndefRHS, ZeroRHS; 2764 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2765 Depth + 1)) 2766 return true; 2767 APInt UndefLHS, ZeroLHS; 2768 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2769 Depth + 1)) 2770 return true; 2771 2772 KnownZero = ZeroLHS & ZeroRHS; 2773 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2774 2775 // Attempt to avoid multi-use ops if we don't need anything from them. 2776 // TODO - use KnownUndef to relax the demandedelts? 2777 if (!DemandedElts.isAllOnesValue()) 2778 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2779 return true; 2780 break; 2781 } 2782 case ISD::SHL: 2783 case ISD::SRL: 2784 case ISD::SRA: 2785 case ISD::ROTL: 2786 case ISD::ROTR: { 2787 SDValue Op0 = Op.getOperand(0); 2788 SDValue Op1 = Op.getOperand(1); 2789 2790 APInt UndefRHS, ZeroRHS; 2791 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2792 Depth + 1)) 2793 return true; 2794 APInt UndefLHS, ZeroLHS; 2795 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2796 Depth + 1)) 2797 return true; 2798 2799 KnownZero = ZeroLHS; 2800 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2801 2802 // Attempt to avoid multi-use ops if we don't need anything from them. 2803 // TODO - use KnownUndef to relax the demandedelts? 2804 if (!DemandedElts.isAllOnesValue()) 2805 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2806 return true; 2807 break; 2808 } 2809 case ISD::MUL: 2810 case ISD::AND: { 2811 SDValue Op0 = Op.getOperand(0); 2812 SDValue Op1 = Op.getOperand(1); 2813 2814 APInt SrcUndef, SrcZero; 2815 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2816 Depth + 1)) 2817 return true; 2818 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2819 TLO, Depth + 1)) 2820 return true; 2821 2822 // If either side has a zero element, then the result element is zero, even 2823 // if the other is an UNDEF. 2824 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2825 // and then handle 'and' nodes with the rest of the binop opcodes. 2826 KnownZero |= SrcZero; 2827 KnownUndef &= SrcUndef; 2828 KnownUndef &= ~KnownZero; 2829 2830 // Attempt to avoid multi-use ops if we don't need anything from them. 2831 // TODO - use KnownUndef to relax the demandedelts? 2832 if (!DemandedElts.isAllOnesValue()) 2833 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2834 return true; 2835 break; 2836 } 2837 case ISD::TRUNCATE: 2838 case ISD::SIGN_EXTEND: 2839 case ISD::ZERO_EXTEND: 2840 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2841 KnownZero, TLO, Depth + 1)) 2842 return true; 2843 2844 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2845 // zext(undef) upper bits are guaranteed to be zero. 2846 if (DemandedElts.isSubsetOf(KnownUndef)) 2847 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2848 KnownUndef.clearAllBits(); 2849 } 2850 break; 2851 default: { 2852 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2853 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2854 KnownZero, TLO, Depth)) 2855 return true; 2856 } else { 2857 KnownBits Known; 2858 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2859 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2860 TLO, Depth, AssumeSingleUse)) 2861 return true; 2862 } 2863 break; 2864 } 2865 } 2866 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2867 2868 // Constant fold all undef cases. 2869 // TODO: Handle zero cases as well. 2870 if (DemandedElts.isSubsetOf(KnownUndef)) 2871 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2872 2873 return false; 2874 } 2875 2876 /// Determine which of the bits specified in Mask are known to be either zero or 2877 /// one and return them in the Known. 2878 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2879 KnownBits &Known, 2880 const APInt &DemandedElts, 2881 const SelectionDAG &DAG, 2882 unsigned Depth) const { 2883 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2884 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2885 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2886 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2887 "Should use MaskedValueIsZero if you don't know whether Op" 2888 " is a target node!"); 2889 Known.resetAll(); 2890 } 2891 2892 void TargetLowering::computeKnownBitsForTargetInstr( 2893 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2894 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2895 unsigned Depth) const { 2896 Known.resetAll(); 2897 } 2898 2899 void TargetLowering::computeKnownBitsForFrameIndex( 2900 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2901 // The low bits are known zero if the pointer is aligned. 2902 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2903 } 2904 2905 Align TargetLowering::computeKnownAlignForTargetInstr( 2906 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 2907 unsigned Depth) const { 2908 return Align(1); 2909 } 2910 2911 /// This method can be implemented by targets that want to expose additional 2912 /// information about sign bits to the DAG Combiner. 2913 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2914 const APInt &, 2915 const SelectionDAG &, 2916 unsigned Depth) const { 2917 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2918 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2919 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2920 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2921 "Should use ComputeNumSignBits if you don't know whether Op" 2922 " is a target node!"); 2923 return 1; 2924 } 2925 2926 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2927 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2928 const MachineRegisterInfo &MRI, unsigned Depth) const { 2929 return 1; 2930 } 2931 2932 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2933 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2934 TargetLoweringOpt &TLO, unsigned Depth) const { 2935 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2936 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2937 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2938 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2939 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2940 " is a target node!"); 2941 return false; 2942 } 2943 2944 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2945 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2946 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2947 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2948 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2949 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2950 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2951 "Should use SimplifyDemandedBits if you don't know whether Op" 2952 " is a target node!"); 2953 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2954 return false; 2955 } 2956 2957 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2958 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2959 SelectionDAG &DAG, unsigned Depth) const { 2960 assert( 2961 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2962 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2963 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2964 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2965 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2966 " is a target node!"); 2967 return SDValue(); 2968 } 2969 2970 SDValue 2971 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2972 SDValue N1, MutableArrayRef<int> Mask, 2973 SelectionDAG &DAG) const { 2974 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2975 if (!LegalMask) { 2976 std::swap(N0, N1); 2977 ShuffleVectorSDNode::commuteMask(Mask); 2978 LegalMask = isShuffleMaskLegal(Mask, VT); 2979 } 2980 2981 if (!LegalMask) 2982 return SDValue(); 2983 2984 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2985 } 2986 2987 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2988 return nullptr; 2989 } 2990 2991 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2992 const SelectionDAG &DAG, 2993 bool SNaN, 2994 unsigned Depth) const { 2995 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2996 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2997 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2998 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2999 "Should use isKnownNeverNaN if you don't know whether Op" 3000 " is a target node!"); 3001 return false; 3002 } 3003 3004 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3005 // work with truncating build vectors and vectors with elements of less than 3006 // 8 bits. 3007 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3008 if (!N) 3009 return false; 3010 3011 APInt CVal; 3012 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3013 CVal = CN->getAPIntValue(); 3014 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3015 auto *CN = BV->getConstantSplatNode(); 3016 if (!CN) 3017 return false; 3018 3019 // If this is a truncating build vector, truncate the splat value. 3020 // Otherwise, we may fail to match the expected values below. 3021 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3022 CVal = CN->getAPIntValue(); 3023 if (BVEltWidth < CVal.getBitWidth()) 3024 CVal = CVal.trunc(BVEltWidth); 3025 } else { 3026 return false; 3027 } 3028 3029 switch (getBooleanContents(N->getValueType(0))) { 3030 case UndefinedBooleanContent: 3031 return CVal[0]; 3032 case ZeroOrOneBooleanContent: 3033 return CVal.isOneValue(); 3034 case ZeroOrNegativeOneBooleanContent: 3035 return CVal.isAllOnesValue(); 3036 } 3037 3038 llvm_unreachable("Invalid boolean contents"); 3039 } 3040 3041 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3042 if (!N) 3043 return false; 3044 3045 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3046 if (!CN) { 3047 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3048 if (!BV) 3049 return false; 3050 3051 // Only interested in constant splats, we don't care about undef 3052 // elements in identifying boolean constants and getConstantSplatNode 3053 // returns NULL if all ops are undef; 3054 CN = BV->getConstantSplatNode(); 3055 if (!CN) 3056 return false; 3057 } 3058 3059 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3060 return !CN->getAPIntValue()[0]; 3061 3062 return CN->isNullValue(); 3063 } 3064 3065 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3066 bool SExt) const { 3067 if (VT == MVT::i1) 3068 return N->isOne(); 3069 3070 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3071 switch (Cnt) { 3072 case TargetLowering::ZeroOrOneBooleanContent: 3073 // An extended value of 1 is always true, unless its original type is i1, 3074 // in which case it will be sign extended to -1. 3075 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3076 case TargetLowering::UndefinedBooleanContent: 3077 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3078 return N->isAllOnesValue() && SExt; 3079 } 3080 llvm_unreachable("Unexpected enumeration."); 3081 } 3082 3083 /// This helper function of SimplifySetCC tries to optimize the comparison when 3084 /// either operand of the SetCC node is a bitwise-and instruction. 3085 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3086 ISD::CondCode Cond, const SDLoc &DL, 3087 DAGCombinerInfo &DCI) const { 3088 // Match these patterns in any of their permutations: 3089 // (X & Y) == Y 3090 // (X & Y) != Y 3091 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3092 std::swap(N0, N1); 3093 3094 EVT OpVT = N0.getValueType(); 3095 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3096 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3097 return SDValue(); 3098 3099 SDValue X, Y; 3100 if (N0.getOperand(0) == N1) { 3101 X = N0.getOperand(1); 3102 Y = N0.getOperand(0); 3103 } else if (N0.getOperand(1) == N1) { 3104 X = N0.getOperand(0); 3105 Y = N0.getOperand(1); 3106 } else { 3107 return SDValue(); 3108 } 3109 3110 SelectionDAG &DAG = DCI.DAG; 3111 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3112 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3113 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3114 // Note that where Y is variable and is known to have at most one bit set 3115 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3116 // equivalent when Y == 0. 3117 assert(OpVT.isInteger()); 3118 Cond = ISD::getSetCCInverse(Cond, OpVT); 3119 if (DCI.isBeforeLegalizeOps() || 3120 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3121 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3122 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3123 // If the target supports an 'and-not' or 'and-complement' logic operation, 3124 // try to use that to make a comparison operation more efficient. 3125 // But don't do this transform if the mask is a single bit because there are 3126 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3127 // 'rlwinm' on PPC). 3128 3129 // Bail out if the compare operand that we want to turn into a zero is 3130 // already a zero (otherwise, infinite loop). 3131 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3132 if (YConst && YConst->isNullValue()) 3133 return SDValue(); 3134 3135 // Transform this into: ~X & Y == 0. 3136 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3137 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3138 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3139 } 3140 3141 return SDValue(); 3142 } 3143 3144 /// There are multiple IR patterns that could be checking whether certain 3145 /// truncation of a signed number would be lossy or not. The pattern which is 3146 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3147 /// We are looking for the following pattern: (KeptBits is a constant) 3148 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3149 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3150 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3151 /// We will unfold it into the natural trunc+sext pattern: 3152 /// ((%x << C) a>> C) dstcond %x 3153 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3154 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3155 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3156 const SDLoc &DL) const { 3157 // We must be comparing with a constant. 3158 ConstantSDNode *C1; 3159 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3160 return SDValue(); 3161 3162 // N0 should be: add %x, (1 << (KeptBits-1)) 3163 if (N0->getOpcode() != ISD::ADD) 3164 return SDValue(); 3165 3166 // And we must be 'add'ing a constant. 3167 ConstantSDNode *C01; 3168 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3169 return SDValue(); 3170 3171 SDValue X = N0->getOperand(0); 3172 EVT XVT = X.getValueType(); 3173 3174 // Validate constants ... 3175 3176 APInt I1 = C1->getAPIntValue(); 3177 3178 ISD::CondCode NewCond; 3179 if (Cond == ISD::CondCode::SETULT) { 3180 NewCond = ISD::CondCode::SETEQ; 3181 } else if (Cond == ISD::CondCode::SETULE) { 3182 NewCond = ISD::CondCode::SETEQ; 3183 // But need to 'canonicalize' the constant. 3184 I1 += 1; 3185 } else if (Cond == ISD::CondCode::SETUGT) { 3186 NewCond = ISD::CondCode::SETNE; 3187 // But need to 'canonicalize' the constant. 3188 I1 += 1; 3189 } else if (Cond == ISD::CondCode::SETUGE) { 3190 NewCond = ISD::CondCode::SETNE; 3191 } else 3192 return SDValue(); 3193 3194 APInt I01 = C01->getAPIntValue(); 3195 3196 auto checkConstants = [&I1, &I01]() -> bool { 3197 // Both of them must be power-of-two, and the constant from setcc is bigger. 3198 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3199 }; 3200 3201 if (checkConstants()) { 3202 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3203 } else { 3204 // What if we invert constants? (and the target predicate) 3205 I1.negate(); 3206 I01.negate(); 3207 assert(XVT.isInteger()); 3208 NewCond = getSetCCInverse(NewCond, XVT); 3209 if (!checkConstants()) 3210 return SDValue(); 3211 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3212 } 3213 3214 // They are power-of-two, so which bit is set? 3215 const unsigned KeptBits = I1.logBase2(); 3216 const unsigned KeptBitsMinusOne = I01.logBase2(); 3217 3218 // Magic! 3219 if (KeptBits != (KeptBitsMinusOne + 1)) 3220 return SDValue(); 3221 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3222 3223 // We don't want to do this in every single case. 3224 SelectionDAG &DAG = DCI.DAG; 3225 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3226 XVT, KeptBits)) 3227 return SDValue(); 3228 3229 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3230 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3231 3232 // Unfold into: ((%x << C) a>> C) cond %x 3233 // Where 'cond' will be either 'eq' or 'ne'. 3234 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3235 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3236 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3237 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3238 3239 return T2; 3240 } 3241 3242 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3243 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3244 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3245 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3246 assert(isConstOrConstSplat(N1C) && 3247 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3248 "Should be a comparison with 0."); 3249 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3250 "Valid only for [in]equality comparisons."); 3251 3252 unsigned NewShiftOpcode; 3253 SDValue X, C, Y; 3254 3255 SelectionDAG &DAG = DCI.DAG; 3256 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3257 3258 // Look for '(C l>>/<< Y)'. 3259 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3260 // The shift should be one-use. 3261 if (!V.hasOneUse()) 3262 return false; 3263 unsigned OldShiftOpcode = V.getOpcode(); 3264 switch (OldShiftOpcode) { 3265 case ISD::SHL: 3266 NewShiftOpcode = ISD::SRL; 3267 break; 3268 case ISD::SRL: 3269 NewShiftOpcode = ISD::SHL; 3270 break; 3271 default: 3272 return false; // must be a logical shift. 3273 } 3274 // We should be shifting a constant. 3275 // FIXME: best to use isConstantOrConstantVector(). 3276 C = V.getOperand(0); 3277 ConstantSDNode *CC = 3278 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3279 if (!CC) 3280 return false; 3281 Y = V.getOperand(1); 3282 3283 ConstantSDNode *XC = 3284 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3285 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3286 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3287 }; 3288 3289 // LHS of comparison should be an one-use 'and'. 3290 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3291 return SDValue(); 3292 3293 X = N0.getOperand(0); 3294 SDValue Mask = N0.getOperand(1); 3295 3296 // 'and' is commutative! 3297 if (!Match(Mask)) { 3298 std::swap(X, Mask); 3299 if (!Match(Mask)) 3300 return SDValue(); 3301 } 3302 3303 EVT VT = X.getValueType(); 3304 3305 // Produce: 3306 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3307 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3308 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3309 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3310 return T2; 3311 } 3312 3313 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3314 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3315 /// handle the commuted versions of these patterns. 3316 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3317 ISD::CondCode Cond, const SDLoc &DL, 3318 DAGCombinerInfo &DCI) const { 3319 unsigned BOpcode = N0.getOpcode(); 3320 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3321 "Unexpected binop"); 3322 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3323 3324 // (X + Y) == X --> Y == 0 3325 // (X - Y) == X --> Y == 0 3326 // (X ^ Y) == X --> Y == 0 3327 SelectionDAG &DAG = DCI.DAG; 3328 EVT OpVT = N0.getValueType(); 3329 SDValue X = N0.getOperand(0); 3330 SDValue Y = N0.getOperand(1); 3331 if (X == N1) 3332 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3333 3334 if (Y != N1) 3335 return SDValue(); 3336 3337 // (X + Y) == Y --> X == 0 3338 // (X ^ Y) == Y --> X == 0 3339 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3340 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3341 3342 // The shift would not be valid if the operands are boolean (i1). 3343 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3344 return SDValue(); 3345 3346 // (X - Y) == Y --> X == Y << 1 3347 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3348 !DCI.isBeforeLegalize()); 3349 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3350 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3351 if (!DCI.isCalledByLegalizer()) 3352 DCI.AddToWorklist(YShl1.getNode()); 3353 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3354 } 3355 3356 /// Try to simplify a setcc built with the specified operands and cc. If it is 3357 /// unable to simplify it, return a null SDValue. 3358 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3359 ISD::CondCode Cond, bool foldBooleans, 3360 DAGCombinerInfo &DCI, 3361 const SDLoc &dl) const { 3362 SelectionDAG &DAG = DCI.DAG; 3363 const DataLayout &Layout = DAG.getDataLayout(); 3364 EVT OpVT = N0.getValueType(); 3365 3366 // Constant fold or commute setcc. 3367 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3368 return Fold; 3369 3370 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3371 // TODO: Handle non-splat vector constants. All undef causes trouble. 3372 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3373 if (isConstOrConstSplat(N0) && 3374 (DCI.isBeforeLegalizeOps() || 3375 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3376 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3377 3378 // If we have a subtract with the same 2 non-constant operands as this setcc 3379 // -- but in reverse order -- then try to commute the operands of this setcc 3380 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3381 // instruction on some targets. 3382 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3383 (DCI.isBeforeLegalizeOps() || 3384 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3385 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3386 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3387 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3388 3389 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3390 const APInt &C1 = N1C->getAPIntValue(); 3391 3392 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3393 // equality comparison, then we're just comparing whether X itself is 3394 // zero. 3395 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3396 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3397 N0.getOperand(1).getOpcode() == ISD::Constant) { 3398 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3399 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3400 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3401 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3402 // (srl (ctlz x), 5) == 0 -> X != 0 3403 // (srl (ctlz x), 5) != 1 -> X != 0 3404 Cond = ISD::SETNE; 3405 } else { 3406 // (srl (ctlz x), 5) != 0 -> X == 0 3407 // (srl (ctlz x), 5) == 1 -> X == 0 3408 Cond = ISD::SETEQ; 3409 } 3410 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3411 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3412 Zero, Cond); 3413 } 3414 } 3415 3416 SDValue CTPOP = N0; 3417 // Look through truncs that don't change the value of a ctpop. 3418 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3419 CTPOP = N0.getOperand(0); 3420 3421 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3422 (N0 == CTPOP || 3423 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3424 EVT CTVT = CTPOP.getValueType(); 3425 SDValue CTOp = CTPOP.getOperand(0); 3426 3427 // (ctpop x) u< 2 -> (x & x-1) == 0 3428 // (ctpop x) u> 1 -> (x & x-1) != 0 3429 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3430 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3431 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3432 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3433 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3434 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3435 } 3436 3437 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3438 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3439 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3440 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3441 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3442 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3443 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3444 assert(CTVT.isInteger()); 3445 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3446 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3447 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3448 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3449 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3450 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3451 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3452 } 3453 } 3454 3455 // (zext x) == C --> x == (trunc C) 3456 // (sext x) == C --> x == (trunc C) 3457 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3458 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3459 unsigned MinBits = N0.getValueSizeInBits(); 3460 SDValue PreExt; 3461 bool Signed = false; 3462 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3463 // ZExt 3464 MinBits = N0->getOperand(0).getValueSizeInBits(); 3465 PreExt = N0->getOperand(0); 3466 } else if (N0->getOpcode() == ISD::AND) { 3467 // DAGCombine turns costly ZExts into ANDs 3468 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3469 if ((C->getAPIntValue()+1).isPowerOf2()) { 3470 MinBits = C->getAPIntValue().countTrailingOnes(); 3471 PreExt = N0->getOperand(0); 3472 } 3473 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3474 // SExt 3475 MinBits = N0->getOperand(0).getValueSizeInBits(); 3476 PreExt = N0->getOperand(0); 3477 Signed = true; 3478 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3479 // ZEXTLOAD / SEXTLOAD 3480 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3481 MinBits = LN0->getMemoryVT().getSizeInBits(); 3482 PreExt = N0; 3483 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3484 Signed = true; 3485 MinBits = LN0->getMemoryVT().getSizeInBits(); 3486 PreExt = N0; 3487 } 3488 } 3489 3490 // Figure out how many bits we need to preserve this constant. 3491 unsigned ReqdBits = Signed ? 3492 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3493 C1.getActiveBits(); 3494 3495 // Make sure we're not losing bits from the constant. 3496 if (MinBits > 0 && 3497 MinBits < C1.getBitWidth() && 3498 MinBits >= ReqdBits) { 3499 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3500 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3501 // Will get folded away. 3502 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3503 if (MinBits == 1 && C1 == 1) 3504 // Invert the condition. 3505 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3506 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3507 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3508 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3509 } 3510 3511 // If truncating the setcc operands is not desirable, we can still 3512 // simplify the expression in some cases: 3513 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3514 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3515 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3516 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3517 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3518 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3519 SDValue TopSetCC = N0->getOperand(0); 3520 unsigned N0Opc = N0->getOpcode(); 3521 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3522 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3523 TopSetCC.getOpcode() == ISD::SETCC && 3524 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3525 (isConstFalseVal(N1C) || 3526 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3527 3528 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3529 (!N1C->isNullValue() && Cond == ISD::SETNE); 3530 3531 if (!Inverse) 3532 return TopSetCC; 3533 3534 ISD::CondCode InvCond = ISD::getSetCCInverse( 3535 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3536 TopSetCC.getOperand(0).getValueType()); 3537 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3538 TopSetCC.getOperand(1), 3539 InvCond); 3540 } 3541 } 3542 } 3543 3544 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3545 // equality or unsigned, and all 1 bits of the const are in the same 3546 // partial word, see if we can shorten the load. 3547 if (DCI.isBeforeLegalize() && 3548 !ISD::isSignedIntSetCC(Cond) && 3549 N0.getOpcode() == ISD::AND && C1 == 0 && 3550 N0.getNode()->hasOneUse() && 3551 isa<LoadSDNode>(N0.getOperand(0)) && 3552 N0.getOperand(0).getNode()->hasOneUse() && 3553 isa<ConstantSDNode>(N0.getOperand(1))) { 3554 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3555 APInt bestMask; 3556 unsigned bestWidth = 0, bestOffset = 0; 3557 if (Lod->isSimple() && Lod->isUnindexed()) { 3558 unsigned origWidth = N0.getValueSizeInBits(); 3559 unsigned maskWidth = origWidth; 3560 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3561 // 8 bits, but have to be careful... 3562 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3563 origWidth = Lod->getMemoryVT().getSizeInBits(); 3564 const APInt &Mask = N0.getConstantOperandAPInt(1); 3565 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3566 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3567 for (unsigned offset=0; offset<origWidth/width; offset++) { 3568 if (Mask.isSubsetOf(newMask)) { 3569 if (Layout.isLittleEndian()) 3570 bestOffset = (uint64_t)offset * (width/8); 3571 else 3572 bestOffset = (origWidth/width - offset - 1) * (width/8); 3573 bestMask = Mask.lshr(offset * (width/8) * 8); 3574 bestWidth = width; 3575 break; 3576 } 3577 newMask <<= width; 3578 } 3579 } 3580 } 3581 if (bestWidth) { 3582 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3583 if (newVT.isRound() && 3584 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3585 SDValue Ptr = Lod->getBasePtr(); 3586 if (bestOffset != 0) 3587 Ptr = 3588 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3589 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3590 SDValue NewLoad = DAG.getLoad( 3591 newVT, dl, Lod->getChain(), Ptr, 3592 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3593 return DAG.getSetCC(dl, VT, 3594 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3595 DAG.getConstant(bestMask.trunc(bestWidth), 3596 dl, newVT)), 3597 DAG.getConstant(0LL, dl, newVT), Cond); 3598 } 3599 } 3600 } 3601 3602 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3603 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3604 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3605 3606 // If the comparison constant has bits in the upper part, the 3607 // zero-extended value could never match. 3608 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3609 C1.getBitWidth() - InSize))) { 3610 switch (Cond) { 3611 case ISD::SETUGT: 3612 case ISD::SETUGE: 3613 case ISD::SETEQ: 3614 return DAG.getConstant(0, dl, VT); 3615 case ISD::SETULT: 3616 case ISD::SETULE: 3617 case ISD::SETNE: 3618 return DAG.getConstant(1, dl, VT); 3619 case ISD::SETGT: 3620 case ISD::SETGE: 3621 // True if the sign bit of C1 is set. 3622 return DAG.getConstant(C1.isNegative(), dl, VT); 3623 case ISD::SETLT: 3624 case ISD::SETLE: 3625 // True if the sign bit of C1 isn't set. 3626 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3627 default: 3628 break; 3629 } 3630 } 3631 3632 // Otherwise, we can perform the comparison with the low bits. 3633 switch (Cond) { 3634 case ISD::SETEQ: 3635 case ISD::SETNE: 3636 case ISD::SETUGT: 3637 case ISD::SETUGE: 3638 case ISD::SETULT: 3639 case ISD::SETULE: { 3640 EVT newVT = N0.getOperand(0).getValueType(); 3641 if (DCI.isBeforeLegalizeOps() || 3642 (isOperationLegal(ISD::SETCC, newVT) && 3643 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3644 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3645 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3646 3647 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3648 NewConst, Cond); 3649 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3650 } 3651 break; 3652 } 3653 default: 3654 break; // todo, be more careful with signed comparisons 3655 } 3656 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3657 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3658 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3659 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3660 EVT ExtDstTy = N0.getValueType(); 3661 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3662 3663 // If the constant doesn't fit into the number of bits for the source of 3664 // the sign extension, it is impossible for both sides to be equal. 3665 if (C1.getMinSignedBits() > ExtSrcTyBits) 3666 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3667 3668 SDValue ZextOp; 3669 EVT Op0Ty = N0.getOperand(0).getValueType(); 3670 if (Op0Ty == ExtSrcTy) { 3671 ZextOp = N0.getOperand(0); 3672 } else { 3673 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3674 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3675 DAG.getConstant(Imm, dl, Op0Ty)); 3676 } 3677 if (!DCI.isCalledByLegalizer()) 3678 DCI.AddToWorklist(ZextOp.getNode()); 3679 // Otherwise, make this a use of a zext. 3680 return DAG.getSetCC(dl, VT, ZextOp, 3681 DAG.getConstant(C1 & APInt::getLowBitsSet( 3682 ExtDstTyBits, 3683 ExtSrcTyBits), 3684 dl, ExtDstTy), 3685 Cond); 3686 } else if ((N1C->isNullValue() || N1C->isOne()) && 3687 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3688 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3689 if (N0.getOpcode() == ISD::SETCC && 3690 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3691 (N0.getValueType() == MVT::i1 || 3692 getBooleanContents(N0.getOperand(0).getValueType()) == 3693 ZeroOrOneBooleanContent)) { 3694 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3695 if (TrueWhenTrue) 3696 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3697 // Invert the condition. 3698 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3699 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3700 if (DCI.isBeforeLegalizeOps() || 3701 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3702 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3703 } 3704 3705 if ((N0.getOpcode() == ISD::XOR || 3706 (N0.getOpcode() == ISD::AND && 3707 N0.getOperand(0).getOpcode() == ISD::XOR && 3708 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3709 isa<ConstantSDNode>(N0.getOperand(1)) && 3710 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3711 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3712 // can only do this if the top bits are known zero. 3713 unsigned BitWidth = N0.getValueSizeInBits(); 3714 if (DAG.MaskedValueIsZero(N0, 3715 APInt::getHighBitsSet(BitWidth, 3716 BitWidth-1))) { 3717 // Okay, get the un-inverted input value. 3718 SDValue Val; 3719 if (N0.getOpcode() == ISD::XOR) { 3720 Val = N0.getOperand(0); 3721 } else { 3722 assert(N0.getOpcode() == ISD::AND && 3723 N0.getOperand(0).getOpcode() == ISD::XOR); 3724 // ((X^1)&1)^1 -> X & 1 3725 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3726 N0.getOperand(0).getOperand(0), 3727 N0.getOperand(1)); 3728 } 3729 3730 return DAG.getSetCC(dl, VT, Val, N1, 3731 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3732 } 3733 } else if (N1C->isOne()) { 3734 SDValue Op0 = N0; 3735 if (Op0.getOpcode() == ISD::TRUNCATE) 3736 Op0 = Op0.getOperand(0); 3737 3738 if ((Op0.getOpcode() == ISD::XOR) && 3739 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3740 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3741 SDValue XorLHS = Op0.getOperand(0); 3742 SDValue XorRHS = Op0.getOperand(1); 3743 // Ensure that the input setccs return an i1 type or 0/1 value. 3744 if (Op0.getValueType() == MVT::i1 || 3745 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3746 ZeroOrOneBooleanContent && 3747 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3748 ZeroOrOneBooleanContent)) { 3749 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3750 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3751 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3752 } 3753 } 3754 if (Op0.getOpcode() == ISD::AND && 3755 isa<ConstantSDNode>(Op0.getOperand(1)) && 3756 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3757 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3758 if (Op0.getValueType().bitsGT(VT)) 3759 Op0 = DAG.getNode(ISD::AND, dl, VT, 3760 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3761 DAG.getConstant(1, dl, VT)); 3762 else if (Op0.getValueType().bitsLT(VT)) 3763 Op0 = DAG.getNode(ISD::AND, dl, VT, 3764 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3765 DAG.getConstant(1, dl, VT)); 3766 3767 return DAG.getSetCC(dl, VT, Op0, 3768 DAG.getConstant(0, dl, Op0.getValueType()), 3769 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3770 } 3771 if (Op0.getOpcode() == ISD::AssertZext && 3772 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3773 return DAG.getSetCC(dl, VT, Op0, 3774 DAG.getConstant(0, dl, Op0.getValueType()), 3775 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3776 } 3777 } 3778 3779 // Given: 3780 // icmp eq/ne (urem %x, %y), 0 3781 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3782 // icmp eq/ne %x, 0 3783 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3784 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3785 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3786 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3787 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3788 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3789 } 3790 3791 if (SDValue V = 3792 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3793 return V; 3794 } 3795 3796 // These simplifications apply to splat vectors as well. 3797 // TODO: Handle more splat vector cases. 3798 if (auto *N1C = isConstOrConstSplat(N1)) { 3799 const APInt &C1 = N1C->getAPIntValue(); 3800 3801 APInt MinVal, MaxVal; 3802 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3803 if (ISD::isSignedIntSetCC(Cond)) { 3804 MinVal = APInt::getSignedMinValue(OperandBitSize); 3805 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3806 } else { 3807 MinVal = APInt::getMinValue(OperandBitSize); 3808 MaxVal = APInt::getMaxValue(OperandBitSize); 3809 } 3810 3811 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3812 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3813 // X >= MIN --> true 3814 if (C1 == MinVal) 3815 return DAG.getBoolConstant(true, dl, VT, OpVT); 3816 3817 if (!VT.isVector()) { // TODO: Support this for vectors. 3818 // X >= C0 --> X > (C0 - 1) 3819 APInt C = C1 - 1; 3820 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3821 if ((DCI.isBeforeLegalizeOps() || 3822 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3823 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3824 isLegalICmpImmediate(C.getSExtValue())))) { 3825 return DAG.getSetCC(dl, VT, N0, 3826 DAG.getConstant(C, dl, N1.getValueType()), 3827 NewCC); 3828 } 3829 } 3830 } 3831 3832 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3833 // X <= MAX --> true 3834 if (C1 == MaxVal) 3835 return DAG.getBoolConstant(true, dl, VT, OpVT); 3836 3837 // X <= C0 --> X < (C0 + 1) 3838 if (!VT.isVector()) { // TODO: Support this for vectors. 3839 APInt C = C1 + 1; 3840 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3841 if ((DCI.isBeforeLegalizeOps() || 3842 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3843 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3844 isLegalICmpImmediate(C.getSExtValue())))) { 3845 return DAG.getSetCC(dl, VT, N0, 3846 DAG.getConstant(C, dl, N1.getValueType()), 3847 NewCC); 3848 } 3849 } 3850 } 3851 3852 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3853 if (C1 == MinVal) 3854 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3855 3856 // TODO: Support this for vectors after legalize ops. 3857 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3858 // Canonicalize setlt X, Max --> setne X, Max 3859 if (C1 == MaxVal) 3860 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3861 3862 // If we have setult X, 1, turn it into seteq X, 0 3863 if (C1 == MinVal+1) 3864 return DAG.getSetCC(dl, VT, N0, 3865 DAG.getConstant(MinVal, dl, N0.getValueType()), 3866 ISD::SETEQ); 3867 } 3868 } 3869 3870 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3871 if (C1 == MaxVal) 3872 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3873 3874 // TODO: Support this for vectors after legalize ops. 3875 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3876 // Canonicalize setgt X, Min --> setne X, Min 3877 if (C1 == MinVal) 3878 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3879 3880 // If we have setugt X, Max-1, turn it into seteq X, Max 3881 if (C1 == MaxVal-1) 3882 return DAG.getSetCC(dl, VT, N0, 3883 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3884 ISD::SETEQ); 3885 } 3886 } 3887 3888 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3889 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3890 if (C1.isNullValue()) 3891 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3892 VT, N0, N1, Cond, DCI, dl)) 3893 return CC; 3894 } 3895 3896 // If we have "setcc X, C0", check to see if we can shrink the immediate 3897 // by changing cc. 3898 // TODO: Support this for vectors after legalize ops. 3899 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3900 // SETUGT X, SINTMAX -> SETLT X, 0 3901 // SETUGE X, SINTMIN -> SETLT X, 0 3902 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 3903 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 3904 return DAG.getSetCC(dl, VT, N0, 3905 DAG.getConstant(0, dl, N1.getValueType()), 3906 ISD::SETLT); 3907 3908 // SETULT X, SINTMIN -> SETGT X, -1 3909 // SETULE X, SINTMAX -> SETGT X, -1 3910 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 3911 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 3912 return DAG.getSetCC(dl, VT, N0, 3913 DAG.getAllOnesConstant(dl, N1.getValueType()), 3914 ISD::SETGT); 3915 } 3916 } 3917 3918 // Back to non-vector simplifications. 3919 // TODO: Can we do these for vector splats? 3920 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3921 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3922 const APInt &C1 = N1C->getAPIntValue(); 3923 EVT ShValTy = N0.getValueType(); 3924 3925 // Fold bit comparisons when we can. 3926 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3927 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3928 N0.getOpcode() == ISD::AND) { 3929 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3930 EVT ShiftTy = 3931 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3932 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3933 // Perform the xform if the AND RHS is a single bit. 3934 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3935 if (AndRHS->getAPIntValue().isPowerOf2() && 3936 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3937 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3938 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3939 DAG.getConstant(ShCt, dl, ShiftTy))); 3940 } 3941 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3942 // (X & 8) == 8 --> (X & 8) >> 3 3943 // Perform the xform if C1 is a single bit. 3944 unsigned ShCt = C1.logBase2(); 3945 if (C1.isPowerOf2() && 3946 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3947 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3948 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3949 DAG.getConstant(ShCt, dl, ShiftTy))); 3950 } 3951 } 3952 } 3953 } 3954 3955 if (C1.getMinSignedBits() <= 64 && 3956 !isLegalICmpImmediate(C1.getSExtValue())) { 3957 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3958 // (X & -256) == 256 -> (X >> 8) == 1 3959 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3960 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3961 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3962 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3963 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3964 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3965 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3966 SDValue Shift = 3967 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3968 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3969 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3970 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3971 } 3972 } 3973 } 3974 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3975 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3976 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3977 // X < 0x100000000 -> (X >> 32) < 1 3978 // X >= 0x100000000 -> (X >> 32) >= 1 3979 // X <= 0x0ffffffff -> (X >> 32) < 1 3980 // X > 0x0ffffffff -> (X >> 32) >= 1 3981 unsigned ShiftBits; 3982 APInt NewC = C1; 3983 ISD::CondCode NewCond = Cond; 3984 if (AdjOne) { 3985 ShiftBits = C1.countTrailingOnes(); 3986 NewC = NewC + 1; 3987 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3988 } else { 3989 ShiftBits = C1.countTrailingZeros(); 3990 } 3991 NewC.lshrInPlace(ShiftBits); 3992 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3993 isLegalICmpImmediate(NewC.getSExtValue()) && 3994 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3995 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3996 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3997 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3998 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3999 } 4000 } 4001 } 4002 } 4003 4004 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4005 auto *CFP = cast<ConstantFPSDNode>(N1); 4006 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4007 4008 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4009 // constant if knowing that the operand is non-nan is enough. We prefer to 4010 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4011 // materialize 0.0. 4012 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4013 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4014 4015 // setcc (fneg x), C -> setcc swap(pred) x, -C 4016 if (N0.getOpcode() == ISD::FNEG) { 4017 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4018 if (DCI.isBeforeLegalizeOps() || 4019 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4020 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4021 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4022 } 4023 } 4024 4025 // If the condition is not legal, see if we can find an equivalent one 4026 // which is legal. 4027 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4028 // If the comparison was an awkward floating-point == or != and one of 4029 // the comparison operands is infinity or negative infinity, convert the 4030 // condition to a less-awkward <= or >=. 4031 if (CFP->getValueAPF().isInfinity()) { 4032 bool IsNegInf = CFP->getValueAPF().isNegative(); 4033 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4034 switch (Cond) { 4035 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4036 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4037 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4038 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4039 default: break; 4040 } 4041 if (NewCond != ISD::SETCC_INVALID && 4042 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4043 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4044 } 4045 } 4046 } 4047 4048 if (N0 == N1) { 4049 // The sext(setcc()) => setcc() optimization relies on the appropriate 4050 // constant being emitted. 4051 assert(!N0.getValueType().isInteger() && 4052 "Integer types should be handled by FoldSetCC"); 4053 4054 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4055 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4056 if (UOF == 2) // FP operators that are undefined on NaNs. 4057 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4058 if (UOF == unsigned(EqTrue)) 4059 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4060 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4061 // if it is not already. 4062 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4063 if (NewCond != Cond && 4064 (DCI.isBeforeLegalizeOps() || 4065 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4066 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4067 } 4068 4069 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4070 N0.getValueType().isInteger()) { 4071 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4072 N0.getOpcode() == ISD::XOR) { 4073 // Simplify (X+Y) == (X+Z) --> Y == Z 4074 if (N0.getOpcode() == N1.getOpcode()) { 4075 if (N0.getOperand(0) == N1.getOperand(0)) 4076 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4077 if (N0.getOperand(1) == N1.getOperand(1)) 4078 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4079 if (isCommutativeBinOp(N0.getOpcode())) { 4080 // If X op Y == Y op X, try other combinations. 4081 if (N0.getOperand(0) == N1.getOperand(1)) 4082 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4083 Cond); 4084 if (N0.getOperand(1) == N1.getOperand(0)) 4085 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4086 Cond); 4087 } 4088 } 4089 4090 // If RHS is a legal immediate value for a compare instruction, we need 4091 // to be careful about increasing register pressure needlessly. 4092 bool LegalRHSImm = false; 4093 4094 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4095 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4096 // Turn (X+C1) == C2 --> X == C2-C1 4097 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4098 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4099 DAG.getConstant(RHSC->getAPIntValue()- 4100 LHSR->getAPIntValue(), 4101 dl, N0.getValueType()), Cond); 4102 } 4103 4104 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4105 if (N0.getOpcode() == ISD::XOR) 4106 // If we know that all of the inverted bits are zero, don't bother 4107 // performing the inversion. 4108 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4109 return 4110 DAG.getSetCC(dl, VT, N0.getOperand(0), 4111 DAG.getConstant(LHSR->getAPIntValue() ^ 4112 RHSC->getAPIntValue(), 4113 dl, N0.getValueType()), 4114 Cond); 4115 } 4116 4117 // Turn (C1-X) == C2 --> X == C1-C2 4118 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4119 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4120 return 4121 DAG.getSetCC(dl, VT, N0.getOperand(1), 4122 DAG.getConstant(SUBC->getAPIntValue() - 4123 RHSC->getAPIntValue(), 4124 dl, N0.getValueType()), 4125 Cond); 4126 } 4127 } 4128 4129 // Could RHSC fold directly into a compare? 4130 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4131 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4132 } 4133 4134 // (X+Y) == X --> Y == 0 and similar folds. 4135 // Don't do this if X is an immediate that can fold into a cmp 4136 // instruction and X+Y has other uses. It could be an induction variable 4137 // chain, and the transform would increase register pressure. 4138 if (!LegalRHSImm || N0.hasOneUse()) 4139 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4140 return V; 4141 } 4142 4143 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4144 N1.getOpcode() == ISD::XOR) 4145 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4146 return V; 4147 4148 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4149 return V; 4150 } 4151 4152 // Fold remainder of division by a constant. 4153 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4154 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4155 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4156 4157 // When division is cheap or optimizing for minimum size, 4158 // fall through to DIVREM creation by skipping this fold. 4159 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4160 if (N0.getOpcode() == ISD::UREM) { 4161 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4162 return Folded; 4163 } else if (N0.getOpcode() == ISD::SREM) { 4164 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4165 return Folded; 4166 } 4167 } 4168 } 4169 4170 // Fold away ALL boolean setcc's. 4171 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4172 SDValue Temp; 4173 switch (Cond) { 4174 default: llvm_unreachable("Unknown integer setcc!"); 4175 case ISD::SETEQ: // X == Y -> ~(X^Y) 4176 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4177 N0 = DAG.getNOT(dl, Temp, OpVT); 4178 if (!DCI.isCalledByLegalizer()) 4179 DCI.AddToWorklist(Temp.getNode()); 4180 break; 4181 case ISD::SETNE: // X != Y --> (X^Y) 4182 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4183 break; 4184 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4185 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4186 Temp = DAG.getNOT(dl, N0, OpVT); 4187 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4188 if (!DCI.isCalledByLegalizer()) 4189 DCI.AddToWorklist(Temp.getNode()); 4190 break; 4191 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4192 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4193 Temp = DAG.getNOT(dl, N1, OpVT); 4194 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4195 if (!DCI.isCalledByLegalizer()) 4196 DCI.AddToWorklist(Temp.getNode()); 4197 break; 4198 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4199 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4200 Temp = DAG.getNOT(dl, N0, OpVT); 4201 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4202 if (!DCI.isCalledByLegalizer()) 4203 DCI.AddToWorklist(Temp.getNode()); 4204 break; 4205 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4206 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4207 Temp = DAG.getNOT(dl, N1, OpVT); 4208 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4209 break; 4210 } 4211 if (VT.getScalarType() != MVT::i1) { 4212 if (!DCI.isCalledByLegalizer()) 4213 DCI.AddToWorklist(N0.getNode()); 4214 // FIXME: If running after legalize, we probably can't do this. 4215 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4216 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4217 } 4218 return N0; 4219 } 4220 4221 // Could not fold it. 4222 return SDValue(); 4223 } 4224 4225 /// Returns true (and the GlobalValue and the offset) if the node is a 4226 /// GlobalAddress + offset. 4227 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4228 int64_t &Offset) const { 4229 4230 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4231 4232 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4233 GA = GASD->getGlobal(); 4234 Offset += GASD->getOffset(); 4235 return true; 4236 } 4237 4238 if (N->getOpcode() == ISD::ADD) { 4239 SDValue N1 = N->getOperand(0); 4240 SDValue N2 = N->getOperand(1); 4241 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4242 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4243 Offset += V->getSExtValue(); 4244 return true; 4245 } 4246 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4247 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4248 Offset += V->getSExtValue(); 4249 return true; 4250 } 4251 } 4252 } 4253 4254 return false; 4255 } 4256 4257 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4258 DAGCombinerInfo &DCI) const { 4259 // Default implementation: no optimization. 4260 return SDValue(); 4261 } 4262 4263 //===----------------------------------------------------------------------===// 4264 // Inline Assembler Implementation Methods 4265 //===----------------------------------------------------------------------===// 4266 4267 TargetLowering::ConstraintType 4268 TargetLowering::getConstraintType(StringRef Constraint) const { 4269 unsigned S = Constraint.size(); 4270 4271 if (S == 1) { 4272 switch (Constraint[0]) { 4273 default: break; 4274 case 'r': 4275 return C_RegisterClass; 4276 case 'm': // memory 4277 case 'o': // offsetable 4278 case 'V': // not offsetable 4279 return C_Memory; 4280 case 'n': // Simple Integer 4281 case 'E': // Floating Point Constant 4282 case 'F': // Floating Point Constant 4283 return C_Immediate; 4284 case 'i': // Simple Integer or Relocatable Constant 4285 case 's': // Relocatable Constant 4286 case 'p': // Address. 4287 case 'X': // Allow ANY value. 4288 case 'I': // Target registers. 4289 case 'J': 4290 case 'K': 4291 case 'L': 4292 case 'M': 4293 case 'N': 4294 case 'O': 4295 case 'P': 4296 case '<': 4297 case '>': 4298 return C_Other; 4299 } 4300 } 4301 4302 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4303 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4304 return C_Memory; 4305 return C_Register; 4306 } 4307 return C_Unknown; 4308 } 4309 4310 /// Try to replace an X constraint, which matches anything, with another that 4311 /// has more specific requirements based on the type of the corresponding 4312 /// operand. 4313 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4314 if (ConstraintVT.isInteger()) 4315 return "r"; 4316 if (ConstraintVT.isFloatingPoint()) 4317 return "f"; // works for many targets 4318 return nullptr; 4319 } 4320 4321 SDValue TargetLowering::LowerAsmOutputForConstraint( 4322 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4323 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4324 return SDValue(); 4325 } 4326 4327 /// Lower the specified operand into the Ops vector. 4328 /// If it is invalid, don't add anything to Ops. 4329 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4330 std::string &Constraint, 4331 std::vector<SDValue> &Ops, 4332 SelectionDAG &DAG) const { 4333 4334 if (Constraint.length() > 1) return; 4335 4336 char ConstraintLetter = Constraint[0]; 4337 switch (ConstraintLetter) { 4338 default: break; 4339 case 'X': // Allows any operand; labels (basic block) use this. 4340 if (Op.getOpcode() == ISD::BasicBlock || 4341 Op.getOpcode() == ISD::TargetBlockAddress) { 4342 Ops.push_back(Op); 4343 return; 4344 } 4345 LLVM_FALLTHROUGH; 4346 case 'i': // Simple Integer or Relocatable Constant 4347 case 'n': // Simple Integer 4348 case 's': { // Relocatable Constant 4349 4350 GlobalAddressSDNode *GA; 4351 ConstantSDNode *C; 4352 BlockAddressSDNode *BA; 4353 uint64_t Offset = 0; 4354 4355 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4356 // etc., since getelementpointer is variadic. We can't use 4357 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4358 // while in this case the GA may be furthest from the root node which is 4359 // likely an ISD::ADD. 4360 while (1) { 4361 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4362 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4363 GA->getValueType(0), 4364 Offset + GA->getOffset())); 4365 return; 4366 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4367 ConstraintLetter != 's') { 4368 // gcc prints these as sign extended. Sign extend value to 64 bits 4369 // now; without this it would get ZExt'd later in 4370 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4371 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4372 BooleanContent BCont = getBooleanContents(MVT::i64); 4373 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4374 : ISD::SIGN_EXTEND; 4375 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4376 : C->getSExtValue(); 4377 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4378 SDLoc(C), MVT::i64)); 4379 return; 4380 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4381 ConstraintLetter != 'n') { 4382 Ops.push_back(DAG.getTargetBlockAddress( 4383 BA->getBlockAddress(), BA->getValueType(0), 4384 Offset + BA->getOffset(), BA->getTargetFlags())); 4385 return; 4386 } else { 4387 const unsigned OpCode = Op.getOpcode(); 4388 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4389 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4390 Op = Op.getOperand(1); 4391 // Subtraction is not commutative. 4392 else if (OpCode == ISD::ADD && 4393 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4394 Op = Op.getOperand(0); 4395 else 4396 return; 4397 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4398 continue; 4399 } 4400 } 4401 return; 4402 } 4403 break; 4404 } 4405 } 4406 } 4407 4408 std::pair<unsigned, const TargetRegisterClass *> 4409 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4410 StringRef Constraint, 4411 MVT VT) const { 4412 if (Constraint.empty() || Constraint[0] != '{') 4413 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4414 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4415 4416 // Remove the braces from around the name. 4417 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4418 4419 std::pair<unsigned, const TargetRegisterClass *> R = 4420 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4421 4422 // Figure out which register class contains this reg. 4423 for (const TargetRegisterClass *RC : RI->regclasses()) { 4424 // If none of the value types for this register class are valid, we 4425 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4426 if (!isLegalRC(*RI, *RC)) 4427 continue; 4428 4429 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4430 I != E; ++I) { 4431 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4432 std::pair<unsigned, const TargetRegisterClass *> S = 4433 std::make_pair(*I, RC); 4434 4435 // If this register class has the requested value type, return it, 4436 // otherwise keep searching and return the first class found 4437 // if no other is found which explicitly has the requested type. 4438 if (RI->isTypeLegalForClass(*RC, VT)) 4439 return S; 4440 if (!R.second) 4441 R = S; 4442 } 4443 } 4444 } 4445 4446 return R; 4447 } 4448 4449 //===----------------------------------------------------------------------===// 4450 // Constraint Selection. 4451 4452 /// Return true of this is an input operand that is a matching constraint like 4453 /// "4". 4454 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4455 assert(!ConstraintCode.empty() && "No known constraint!"); 4456 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4457 } 4458 4459 /// If this is an input matching constraint, this method returns the output 4460 /// operand it matches. 4461 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4462 assert(!ConstraintCode.empty() && "No known constraint!"); 4463 return atoi(ConstraintCode.c_str()); 4464 } 4465 4466 /// Split up the constraint string from the inline assembly value into the 4467 /// specific constraints and their prefixes, and also tie in the associated 4468 /// operand values. 4469 /// If this returns an empty vector, and if the constraint string itself 4470 /// isn't empty, there was an error parsing. 4471 TargetLowering::AsmOperandInfoVector 4472 TargetLowering::ParseConstraints(const DataLayout &DL, 4473 const TargetRegisterInfo *TRI, 4474 const CallBase &Call) const { 4475 /// Information about all of the constraints. 4476 AsmOperandInfoVector ConstraintOperands; 4477 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4478 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4479 4480 // Do a prepass over the constraints, canonicalizing them, and building up the 4481 // ConstraintOperands list. 4482 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4483 unsigned ResNo = 0; // ResNo - The result number of the next output. 4484 4485 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4486 ConstraintOperands.emplace_back(std::move(CI)); 4487 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4488 4489 // Update multiple alternative constraint count. 4490 if (OpInfo.multipleAlternatives.size() > maCount) 4491 maCount = OpInfo.multipleAlternatives.size(); 4492 4493 OpInfo.ConstraintVT = MVT::Other; 4494 4495 // Compute the value type for each operand. 4496 switch (OpInfo.Type) { 4497 case InlineAsm::isOutput: 4498 // Indirect outputs just consume an argument. 4499 if (OpInfo.isIndirect) { 4500 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4501 break; 4502 } 4503 4504 // The return value of the call is this value. As such, there is no 4505 // corresponding argument. 4506 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4507 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4508 OpInfo.ConstraintVT = 4509 getSimpleValueType(DL, STy->getElementType(ResNo)); 4510 } else { 4511 assert(ResNo == 0 && "Asm only has one result!"); 4512 OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType()); 4513 } 4514 ++ResNo; 4515 break; 4516 case InlineAsm::isInput: 4517 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4518 break; 4519 case InlineAsm::isClobber: 4520 // Nothing to do. 4521 break; 4522 } 4523 4524 if (OpInfo.CallOperandVal) { 4525 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4526 if (OpInfo.isIndirect) { 4527 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4528 if (!PtrTy) 4529 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4530 OpTy = PtrTy->getElementType(); 4531 } 4532 4533 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4534 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4535 if (STy->getNumElements() == 1) 4536 OpTy = STy->getElementType(0); 4537 4538 // If OpTy is not a single value, it may be a struct/union that we 4539 // can tile with integers. 4540 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4541 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4542 switch (BitSize) { 4543 default: break; 4544 case 1: 4545 case 8: 4546 case 16: 4547 case 32: 4548 case 64: 4549 case 128: 4550 OpInfo.ConstraintVT = 4551 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4552 break; 4553 } 4554 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4555 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4556 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4557 } else { 4558 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4559 } 4560 } 4561 } 4562 4563 // If we have multiple alternative constraints, select the best alternative. 4564 if (!ConstraintOperands.empty()) { 4565 if (maCount) { 4566 unsigned bestMAIndex = 0; 4567 int bestWeight = -1; 4568 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4569 int weight = -1; 4570 unsigned maIndex; 4571 // Compute the sums of the weights for each alternative, keeping track 4572 // of the best (highest weight) one so far. 4573 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4574 int weightSum = 0; 4575 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4576 cIndex != eIndex; ++cIndex) { 4577 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4578 if (OpInfo.Type == InlineAsm::isClobber) 4579 continue; 4580 4581 // If this is an output operand with a matching input operand, 4582 // look up the matching input. If their types mismatch, e.g. one 4583 // is an integer, the other is floating point, or their sizes are 4584 // different, flag it as an maCantMatch. 4585 if (OpInfo.hasMatchingInput()) { 4586 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4587 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4588 if ((OpInfo.ConstraintVT.isInteger() != 4589 Input.ConstraintVT.isInteger()) || 4590 (OpInfo.ConstraintVT.getSizeInBits() != 4591 Input.ConstraintVT.getSizeInBits())) { 4592 weightSum = -1; // Can't match. 4593 break; 4594 } 4595 } 4596 } 4597 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4598 if (weight == -1) { 4599 weightSum = -1; 4600 break; 4601 } 4602 weightSum += weight; 4603 } 4604 // Update best. 4605 if (weightSum > bestWeight) { 4606 bestWeight = weightSum; 4607 bestMAIndex = maIndex; 4608 } 4609 } 4610 4611 // Now select chosen alternative in each constraint. 4612 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4613 cIndex != eIndex; ++cIndex) { 4614 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4615 if (cInfo.Type == InlineAsm::isClobber) 4616 continue; 4617 cInfo.selectAlternative(bestMAIndex); 4618 } 4619 } 4620 } 4621 4622 // Check and hook up tied operands, choose constraint code to use. 4623 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4624 cIndex != eIndex; ++cIndex) { 4625 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4626 4627 // If this is an output operand with a matching input operand, look up the 4628 // matching input. If their types mismatch, e.g. one is an integer, the 4629 // other is floating point, or their sizes are different, flag it as an 4630 // error. 4631 if (OpInfo.hasMatchingInput()) { 4632 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4633 4634 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4635 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4636 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4637 OpInfo.ConstraintVT); 4638 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4639 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4640 Input.ConstraintVT); 4641 if ((OpInfo.ConstraintVT.isInteger() != 4642 Input.ConstraintVT.isInteger()) || 4643 (MatchRC.second != InputRC.second)) { 4644 report_fatal_error("Unsupported asm: input constraint" 4645 " with a matching output constraint of" 4646 " incompatible type!"); 4647 } 4648 } 4649 } 4650 } 4651 4652 return ConstraintOperands; 4653 } 4654 4655 /// Return an integer indicating how general CT is. 4656 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4657 switch (CT) { 4658 case TargetLowering::C_Immediate: 4659 case TargetLowering::C_Other: 4660 case TargetLowering::C_Unknown: 4661 return 0; 4662 case TargetLowering::C_Register: 4663 return 1; 4664 case TargetLowering::C_RegisterClass: 4665 return 2; 4666 case TargetLowering::C_Memory: 4667 return 3; 4668 } 4669 llvm_unreachable("Invalid constraint type"); 4670 } 4671 4672 /// Examine constraint type and operand type and determine a weight value. 4673 /// This object must already have been set up with the operand type 4674 /// and the current alternative constraint selected. 4675 TargetLowering::ConstraintWeight 4676 TargetLowering::getMultipleConstraintMatchWeight( 4677 AsmOperandInfo &info, int maIndex) const { 4678 InlineAsm::ConstraintCodeVector *rCodes; 4679 if (maIndex >= (int)info.multipleAlternatives.size()) 4680 rCodes = &info.Codes; 4681 else 4682 rCodes = &info.multipleAlternatives[maIndex].Codes; 4683 ConstraintWeight BestWeight = CW_Invalid; 4684 4685 // Loop over the options, keeping track of the most general one. 4686 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4687 ConstraintWeight weight = 4688 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4689 if (weight > BestWeight) 4690 BestWeight = weight; 4691 } 4692 4693 return BestWeight; 4694 } 4695 4696 /// Examine constraint type and operand type and determine a weight value. 4697 /// This object must already have been set up with the operand type 4698 /// and the current alternative constraint selected. 4699 TargetLowering::ConstraintWeight 4700 TargetLowering::getSingleConstraintMatchWeight( 4701 AsmOperandInfo &info, const char *constraint) const { 4702 ConstraintWeight weight = CW_Invalid; 4703 Value *CallOperandVal = info.CallOperandVal; 4704 // If we don't have a value, we can't do a match, 4705 // but allow it at the lowest weight. 4706 if (!CallOperandVal) 4707 return CW_Default; 4708 // Look at the constraint type. 4709 switch (*constraint) { 4710 case 'i': // immediate integer. 4711 case 'n': // immediate integer with a known value. 4712 if (isa<ConstantInt>(CallOperandVal)) 4713 weight = CW_Constant; 4714 break; 4715 case 's': // non-explicit intregal immediate. 4716 if (isa<GlobalValue>(CallOperandVal)) 4717 weight = CW_Constant; 4718 break; 4719 case 'E': // immediate float if host format. 4720 case 'F': // immediate float. 4721 if (isa<ConstantFP>(CallOperandVal)) 4722 weight = CW_Constant; 4723 break; 4724 case '<': // memory operand with autodecrement. 4725 case '>': // memory operand with autoincrement. 4726 case 'm': // memory operand. 4727 case 'o': // offsettable memory operand 4728 case 'V': // non-offsettable memory operand 4729 weight = CW_Memory; 4730 break; 4731 case 'r': // general register. 4732 case 'g': // general register, memory operand or immediate integer. 4733 // note: Clang converts "g" to "imr". 4734 if (CallOperandVal->getType()->isIntegerTy()) 4735 weight = CW_Register; 4736 break; 4737 case 'X': // any operand. 4738 default: 4739 weight = CW_Default; 4740 break; 4741 } 4742 return weight; 4743 } 4744 4745 /// If there are multiple different constraints that we could pick for this 4746 /// operand (e.g. "imr") try to pick the 'best' one. 4747 /// This is somewhat tricky: constraints fall into four classes: 4748 /// Other -> immediates and magic values 4749 /// Register -> one specific register 4750 /// RegisterClass -> a group of regs 4751 /// Memory -> memory 4752 /// Ideally, we would pick the most specific constraint possible: if we have 4753 /// something that fits into a register, we would pick it. The problem here 4754 /// is that if we have something that could either be in a register or in 4755 /// memory that use of the register could cause selection of *other* 4756 /// operands to fail: they might only succeed if we pick memory. Because of 4757 /// this the heuristic we use is: 4758 /// 4759 /// 1) If there is an 'other' constraint, and if the operand is valid for 4760 /// that constraint, use it. This makes us take advantage of 'i' 4761 /// constraints when available. 4762 /// 2) Otherwise, pick the most general constraint present. This prefers 4763 /// 'm' over 'r', for example. 4764 /// 4765 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4766 const TargetLowering &TLI, 4767 SDValue Op, SelectionDAG *DAG) { 4768 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4769 unsigned BestIdx = 0; 4770 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4771 int BestGenerality = -1; 4772 4773 // Loop over the options, keeping track of the most general one. 4774 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4775 TargetLowering::ConstraintType CType = 4776 TLI.getConstraintType(OpInfo.Codes[i]); 4777 4778 // Indirect 'other' or 'immediate' constraints are not allowed. 4779 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4780 CType == TargetLowering::C_Register || 4781 CType == TargetLowering::C_RegisterClass)) 4782 continue; 4783 4784 // If this is an 'other' or 'immediate' constraint, see if the operand is 4785 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4786 // the operand is an integer in the range [0..31] we want to use I (saving a 4787 // load of a register), otherwise we must use 'r'. 4788 if ((CType == TargetLowering::C_Other || 4789 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4790 assert(OpInfo.Codes[i].size() == 1 && 4791 "Unhandled multi-letter 'other' constraint"); 4792 std::vector<SDValue> ResultOps; 4793 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4794 ResultOps, *DAG); 4795 if (!ResultOps.empty()) { 4796 BestType = CType; 4797 BestIdx = i; 4798 break; 4799 } 4800 } 4801 4802 // Things with matching constraints can only be registers, per gcc 4803 // documentation. This mainly affects "g" constraints. 4804 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4805 continue; 4806 4807 // This constraint letter is more general than the previous one, use it. 4808 int Generality = getConstraintGenerality(CType); 4809 if (Generality > BestGenerality) { 4810 BestType = CType; 4811 BestIdx = i; 4812 BestGenerality = Generality; 4813 } 4814 } 4815 4816 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4817 OpInfo.ConstraintType = BestType; 4818 } 4819 4820 /// Determines the constraint code and constraint type to use for the specific 4821 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4822 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4823 SDValue Op, 4824 SelectionDAG *DAG) const { 4825 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4826 4827 // Single-letter constraints ('r') are very common. 4828 if (OpInfo.Codes.size() == 1) { 4829 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4830 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4831 } else { 4832 ChooseConstraint(OpInfo, *this, Op, DAG); 4833 } 4834 4835 // 'X' matches anything. 4836 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4837 // Labels and constants are handled elsewhere ('X' is the only thing 4838 // that matches labels). For Functions, the type here is the type of 4839 // the result, which is not what we want to look at; leave them alone. 4840 Value *v = OpInfo.CallOperandVal; 4841 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4842 OpInfo.CallOperandVal = v; 4843 return; 4844 } 4845 4846 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4847 return; 4848 4849 // Otherwise, try to resolve it to something we know about by looking at 4850 // the actual operand type. 4851 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4852 OpInfo.ConstraintCode = Repl; 4853 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4854 } 4855 } 4856 } 4857 4858 /// Given an exact SDIV by a constant, create a multiplication 4859 /// with the multiplicative inverse of the constant. 4860 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4861 const SDLoc &dl, SelectionDAG &DAG, 4862 SmallVectorImpl<SDNode *> &Created) { 4863 SDValue Op0 = N->getOperand(0); 4864 SDValue Op1 = N->getOperand(1); 4865 EVT VT = N->getValueType(0); 4866 EVT SVT = VT.getScalarType(); 4867 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4868 EVT ShSVT = ShVT.getScalarType(); 4869 4870 bool UseSRA = false; 4871 SmallVector<SDValue, 16> Shifts, Factors; 4872 4873 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4874 if (C->isNullValue()) 4875 return false; 4876 APInt Divisor = C->getAPIntValue(); 4877 unsigned Shift = Divisor.countTrailingZeros(); 4878 if (Shift) { 4879 Divisor.ashrInPlace(Shift); 4880 UseSRA = true; 4881 } 4882 // Calculate the multiplicative inverse, using Newton's method. 4883 APInt t; 4884 APInt Factor = Divisor; 4885 while ((t = Divisor * Factor) != 1) 4886 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4887 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4888 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4889 return true; 4890 }; 4891 4892 // Collect all magic values from the build vector. 4893 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4894 return SDValue(); 4895 4896 SDValue Shift, Factor; 4897 if (VT.isVector()) { 4898 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4899 Factor = DAG.getBuildVector(VT, dl, Factors); 4900 } else { 4901 Shift = Shifts[0]; 4902 Factor = Factors[0]; 4903 } 4904 4905 SDValue Res = Op0; 4906 4907 // Shift the value upfront if it is even, so the LSB is one. 4908 if (UseSRA) { 4909 // TODO: For UDIV use SRL instead of SRA. 4910 SDNodeFlags Flags; 4911 Flags.setExact(true); 4912 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4913 Created.push_back(Res.getNode()); 4914 } 4915 4916 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4917 } 4918 4919 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4920 SelectionDAG &DAG, 4921 SmallVectorImpl<SDNode *> &Created) const { 4922 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4923 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4924 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4925 return SDValue(N, 0); // Lower SDIV as SDIV 4926 return SDValue(); 4927 } 4928 4929 /// Given an ISD::SDIV node expressing a divide by constant, 4930 /// return a DAG expression to select that will generate the same value by 4931 /// multiplying by a magic number. 4932 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4933 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4934 bool IsAfterLegalization, 4935 SmallVectorImpl<SDNode *> &Created) const { 4936 SDLoc dl(N); 4937 EVT VT = N->getValueType(0); 4938 EVT SVT = VT.getScalarType(); 4939 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4940 EVT ShSVT = ShVT.getScalarType(); 4941 unsigned EltBits = VT.getScalarSizeInBits(); 4942 4943 // Check to see if we can do this. 4944 // FIXME: We should be more aggressive here. 4945 if (!isTypeLegal(VT)) 4946 return SDValue(); 4947 4948 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4949 if (N->getFlags().hasExact()) 4950 return BuildExactSDIV(*this, N, dl, DAG, Created); 4951 4952 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4953 4954 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4955 if (C->isNullValue()) 4956 return false; 4957 4958 const APInt &Divisor = C->getAPIntValue(); 4959 APInt::ms magics = Divisor.magic(); 4960 int NumeratorFactor = 0; 4961 int ShiftMask = -1; 4962 4963 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4964 // If d is +1/-1, we just multiply the numerator by +1/-1. 4965 NumeratorFactor = Divisor.getSExtValue(); 4966 magics.m = 0; 4967 magics.s = 0; 4968 ShiftMask = 0; 4969 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4970 // If d > 0 and m < 0, add the numerator. 4971 NumeratorFactor = 1; 4972 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4973 // If d < 0 and m > 0, subtract the numerator. 4974 NumeratorFactor = -1; 4975 } 4976 4977 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4978 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4979 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4980 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4981 return true; 4982 }; 4983 4984 SDValue N0 = N->getOperand(0); 4985 SDValue N1 = N->getOperand(1); 4986 4987 // Collect the shifts / magic values from each element. 4988 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4989 return SDValue(); 4990 4991 SDValue MagicFactor, Factor, Shift, ShiftMask; 4992 if (VT.isVector()) { 4993 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4994 Factor = DAG.getBuildVector(VT, dl, Factors); 4995 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4996 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4997 } else { 4998 MagicFactor = MagicFactors[0]; 4999 Factor = Factors[0]; 5000 Shift = Shifts[0]; 5001 ShiftMask = ShiftMasks[0]; 5002 } 5003 5004 // Multiply the numerator (operand 0) by the magic value. 5005 // FIXME: We should support doing a MUL in a wider type. 5006 SDValue Q; 5007 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 5008 : isOperationLegalOrCustom(ISD::MULHS, VT)) 5009 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 5010 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 5011 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 5012 SDValue LoHi = 5013 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 5014 Q = SDValue(LoHi.getNode(), 1); 5015 } else 5016 return SDValue(); // No mulhs or equivalent. 5017 Created.push_back(Q.getNode()); 5018 5019 // (Optionally) Add/subtract the numerator using Factor. 5020 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5021 Created.push_back(Factor.getNode()); 5022 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5023 Created.push_back(Q.getNode()); 5024 5025 // Shift right algebraic by shift value. 5026 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5027 Created.push_back(Q.getNode()); 5028 5029 // Extract the sign bit, mask it and add it to the quotient. 5030 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5031 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5032 Created.push_back(T.getNode()); 5033 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5034 Created.push_back(T.getNode()); 5035 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5036 } 5037 5038 /// Given an ISD::UDIV node expressing a divide by constant, 5039 /// return a DAG expression to select that will generate the same value by 5040 /// multiplying by a magic number. 5041 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5042 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5043 bool IsAfterLegalization, 5044 SmallVectorImpl<SDNode *> &Created) const { 5045 SDLoc dl(N); 5046 EVT VT = N->getValueType(0); 5047 EVT SVT = VT.getScalarType(); 5048 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5049 EVT ShSVT = ShVT.getScalarType(); 5050 unsigned EltBits = VT.getScalarSizeInBits(); 5051 5052 // Check to see if we can do this. 5053 // FIXME: We should be more aggressive here. 5054 if (!isTypeLegal(VT)) 5055 return SDValue(); 5056 5057 bool UseNPQ = false; 5058 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5059 5060 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5061 if (C->isNullValue()) 5062 return false; 5063 // FIXME: We should use a narrower constant when the upper 5064 // bits are known to be zero. 5065 APInt Divisor = C->getAPIntValue(); 5066 APInt::mu magics = Divisor.magicu(); 5067 unsigned PreShift = 0, PostShift = 0; 5068 5069 // If the divisor is even, we can avoid using the expensive fixup by 5070 // shifting the divided value upfront. 5071 if (magics.a != 0 && !Divisor[0]) { 5072 PreShift = Divisor.countTrailingZeros(); 5073 // Get magic number for the shifted divisor. 5074 magics = Divisor.lshr(PreShift).magicu(PreShift); 5075 assert(magics.a == 0 && "Should use cheap fixup now"); 5076 } 5077 5078 APInt Magic = magics.m; 5079 5080 unsigned SelNPQ; 5081 if (magics.a == 0 || Divisor.isOneValue()) { 5082 assert(magics.s < Divisor.getBitWidth() && 5083 "We shouldn't generate an undefined shift!"); 5084 PostShift = magics.s; 5085 SelNPQ = false; 5086 } else { 5087 PostShift = magics.s - 1; 5088 SelNPQ = true; 5089 } 5090 5091 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5092 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5093 NPQFactors.push_back( 5094 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5095 : APInt::getNullValue(EltBits), 5096 dl, SVT)); 5097 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5098 UseNPQ |= SelNPQ; 5099 return true; 5100 }; 5101 5102 SDValue N0 = N->getOperand(0); 5103 SDValue N1 = N->getOperand(1); 5104 5105 // Collect the shifts/magic values from each element. 5106 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5107 return SDValue(); 5108 5109 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5110 if (VT.isVector()) { 5111 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5112 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5113 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5114 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5115 } else { 5116 PreShift = PreShifts[0]; 5117 MagicFactor = MagicFactors[0]; 5118 PostShift = PostShifts[0]; 5119 } 5120 5121 SDValue Q = N0; 5122 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5123 Created.push_back(Q.getNode()); 5124 5125 // FIXME: We should support doing a MUL in a wider type. 5126 auto GetMULHU = [&](SDValue X, SDValue Y) { 5127 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 5128 : isOperationLegalOrCustom(ISD::MULHU, VT)) 5129 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5130 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 5131 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 5132 SDValue LoHi = 5133 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5134 return SDValue(LoHi.getNode(), 1); 5135 } 5136 return SDValue(); // No mulhu or equivalent 5137 }; 5138 5139 // Multiply the numerator (operand 0) by the magic value. 5140 Q = GetMULHU(Q, MagicFactor); 5141 if (!Q) 5142 return SDValue(); 5143 5144 Created.push_back(Q.getNode()); 5145 5146 if (UseNPQ) { 5147 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5148 Created.push_back(NPQ.getNode()); 5149 5150 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5151 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5152 if (VT.isVector()) 5153 NPQ = GetMULHU(NPQ, NPQFactor); 5154 else 5155 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5156 5157 Created.push_back(NPQ.getNode()); 5158 5159 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5160 Created.push_back(Q.getNode()); 5161 } 5162 5163 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5164 Created.push_back(Q.getNode()); 5165 5166 SDValue One = DAG.getConstant(1, dl, VT); 5167 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 5168 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5169 } 5170 5171 /// If all values in Values that *don't* match the predicate are same 'splat' 5172 /// value, then replace all values with that splat value. 5173 /// Else, if AlternativeReplacement was provided, then replace all values that 5174 /// do match predicate with AlternativeReplacement value. 5175 static void 5176 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5177 std::function<bool(SDValue)> Predicate, 5178 SDValue AlternativeReplacement = SDValue()) { 5179 SDValue Replacement; 5180 // Is there a value for which the Predicate does *NOT* match? What is it? 5181 auto SplatValue = llvm::find_if_not(Values, Predicate); 5182 if (SplatValue != Values.end()) { 5183 // Does Values consist only of SplatValue's and values matching Predicate? 5184 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5185 return Value == *SplatValue || Predicate(Value); 5186 })) // Then we shall replace values matching predicate with SplatValue. 5187 Replacement = *SplatValue; 5188 } 5189 if (!Replacement) { 5190 // Oops, we did not find the "baseline" splat value. 5191 if (!AlternativeReplacement) 5192 return; // Nothing to do. 5193 // Let's replace with provided value then. 5194 Replacement = AlternativeReplacement; 5195 } 5196 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5197 } 5198 5199 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5200 /// where the divisor is constant and the comparison target is zero, 5201 /// return a DAG expression that will generate the same comparison result 5202 /// using only multiplications, additions and shifts/rotations. 5203 /// Ref: "Hacker's Delight" 10-17. 5204 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5205 SDValue CompTargetNode, 5206 ISD::CondCode Cond, 5207 DAGCombinerInfo &DCI, 5208 const SDLoc &DL) const { 5209 SmallVector<SDNode *, 5> Built; 5210 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5211 DCI, DL, Built)) { 5212 for (SDNode *N : Built) 5213 DCI.AddToWorklist(N); 5214 return Folded; 5215 } 5216 5217 return SDValue(); 5218 } 5219 5220 SDValue 5221 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5222 SDValue CompTargetNode, ISD::CondCode Cond, 5223 DAGCombinerInfo &DCI, const SDLoc &DL, 5224 SmallVectorImpl<SDNode *> &Created) const { 5225 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5226 // - D must be constant, with D = D0 * 2^K where D0 is odd 5227 // - P is the multiplicative inverse of D0 modulo 2^W 5228 // - Q = floor(((2^W) - 1) / D) 5229 // where W is the width of the common type of N and D. 5230 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5231 "Only applicable for (in)equality comparisons."); 5232 5233 SelectionDAG &DAG = DCI.DAG; 5234 5235 EVT VT = REMNode.getValueType(); 5236 EVT SVT = VT.getScalarType(); 5237 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5238 EVT ShSVT = ShVT.getScalarType(); 5239 5240 // If MUL is unavailable, we cannot proceed in any case. 5241 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5242 return SDValue(); 5243 5244 bool ComparingWithAllZeros = true; 5245 bool AllComparisonsWithNonZerosAreTautological = true; 5246 bool HadTautologicalLanes = false; 5247 bool AllLanesAreTautological = true; 5248 bool HadEvenDivisor = false; 5249 bool AllDivisorsArePowerOfTwo = true; 5250 bool HadTautologicalInvertedLanes = false; 5251 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5252 5253 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5254 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5255 if (CDiv->isNullValue()) 5256 return false; 5257 5258 const APInt &D = CDiv->getAPIntValue(); 5259 const APInt &Cmp = CCmp->getAPIntValue(); 5260 5261 ComparingWithAllZeros &= Cmp.isNullValue(); 5262 5263 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5264 // if C2 is not less than C1, the comparison is always false. 5265 // But we will only be able to produce the comparison that will give the 5266 // opposive tautological answer. So this lane would need to be fixed up. 5267 bool TautologicalInvertedLane = D.ule(Cmp); 5268 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5269 5270 // If all lanes are tautological (either all divisors are ones, or divisor 5271 // is not greater than the constant we are comparing with), 5272 // we will prefer to avoid the fold. 5273 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5274 HadTautologicalLanes |= TautologicalLane; 5275 AllLanesAreTautological &= TautologicalLane; 5276 5277 // If we are comparing with non-zero, we need'll need to subtract said 5278 // comparison value from the LHS. But there is no point in doing that if 5279 // every lane where we are comparing with non-zero is tautological.. 5280 if (!Cmp.isNullValue()) 5281 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5282 5283 // Decompose D into D0 * 2^K 5284 unsigned K = D.countTrailingZeros(); 5285 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5286 APInt D0 = D.lshr(K); 5287 5288 // D is even if it has trailing zeros. 5289 HadEvenDivisor |= (K != 0); 5290 // D is a power-of-two if D0 is one. 5291 // If all divisors are power-of-two, we will prefer to avoid the fold. 5292 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5293 5294 // P = inv(D0, 2^W) 5295 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5296 unsigned W = D.getBitWidth(); 5297 APInt P = D0.zext(W + 1) 5298 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5299 .trunc(W); 5300 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5301 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5302 5303 // Q = floor((2^W - 1) u/ D) 5304 // R = ((2^W - 1) u% D) 5305 APInt Q, R; 5306 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5307 5308 // If we are comparing with zero, then that comparison constant is okay, 5309 // else it may need to be one less than that. 5310 if (Cmp.ugt(R)) 5311 Q -= 1; 5312 5313 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5314 "We are expecting that K is always less than all-ones for ShSVT"); 5315 5316 // If the lane is tautological the result can be constant-folded. 5317 if (TautologicalLane) { 5318 // Set P and K amount to a bogus values so we can try to splat them. 5319 P = 0; 5320 K = -1; 5321 // And ensure that comparison constant is tautological, 5322 // it will always compare true/false. 5323 Q = -1; 5324 } 5325 5326 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5327 KAmts.push_back( 5328 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5329 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5330 return true; 5331 }; 5332 5333 SDValue N = REMNode.getOperand(0); 5334 SDValue D = REMNode.getOperand(1); 5335 5336 // Collect the values from each element. 5337 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5338 return SDValue(); 5339 5340 // If all lanes are tautological, the result can be constant-folded. 5341 if (AllLanesAreTautological) 5342 return SDValue(); 5343 5344 // If this is a urem by a powers-of-two, avoid the fold since it can be 5345 // best implemented as a bit test. 5346 if (AllDivisorsArePowerOfTwo) 5347 return SDValue(); 5348 5349 SDValue PVal, KVal, QVal; 5350 if (VT.isVector()) { 5351 if (HadTautologicalLanes) { 5352 // Try to turn PAmts into a splat, since we don't care about the values 5353 // that are currently '0'. If we can't, just keep '0'`s. 5354 turnVectorIntoSplatVector(PAmts, isNullConstant); 5355 // Try to turn KAmts into a splat, since we don't care about the values 5356 // that are currently '-1'. If we can't, change them to '0'`s. 5357 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5358 DAG.getConstant(0, DL, ShSVT)); 5359 } 5360 5361 PVal = DAG.getBuildVector(VT, DL, PAmts); 5362 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5363 QVal = DAG.getBuildVector(VT, DL, QAmts); 5364 } else { 5365 PVal = PAmts[0]; 5366 KVal = KAmts[0]; 5367 QVal = QAmts[0]; 5368 } 5369 5370 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5371 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5372 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5373 assert(CompTargetNode.getValueType() == N.getValueType() && 5374 "Expecting that the types on LHS and RHS of comparisons match."); 5375 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5376 } 5377 5378 // (mul N, P) 5379 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5380 Created.push_back(Op0.getNode()); 5381 5382 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5383 // divisors as a performance improvement, since rotating by 0 is a no-op. 5384 if (HadEvenDivisor) { 5385 // We need ROTR to do this. 5386 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5387 return SDValue(); 5388 SDNodeFlags Flags; 5389 Flags.setExact(true); 5390 // UREM: (rotr (mul N, P), K) 5391 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5392 Created.push_back(Op0.getNode()); 5393 } 5394 5395 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5396 SDValue NewCC = 5397 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5398 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5399 if (!HadTautologicalInvertedLanes) 5400 return NewCC; 5401 5402 // If any lanes previously compared always-false, the NewCC will give 5403 // always-true result for them, so we need to fixup those lanes. 5404 // Or the other way around for inequality predicate. 5405 assert(VT.isVector() && "Can/should only get here for vectors."); 5406 Created.push_back(NewCC.getNode()); 5407 5408 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5409 // if C2 is not less than C1, the comparison is always false. 5410 // But we have produced the comparison that will give the 5411 // opposive tautological answer. So these lanes would need to be fixed up. 5412 SDValue TautologicalInvertedChannels = 5413 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5414 Created.push_back(TautologicalInvertedChannels.getNode()); 5415 5416 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5417 // If we have a vector select, let's replace the comparison results in the 5418 // affected lanes with the correct tautological result. 5419 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5420 DL, SETCCVT, SETCCVT); 5421 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5422 Replacement, NewCC); 5423 } 5424 5425 // Else, we can just invert the comparison result in the appropriate lanes. 5426 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5427 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5428 TautologicalInvertedChannels); 5429 5430 return SDValue(); // Don't know how to lower. 5431 } 5432 5433 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5434 /// where the divisor is constant and the comparison target is zero, 5435 /// return a DAG expression that will generate the same comparison result 5436 /// using only multiplications, additions and shifts/rotations. 5437 /// Ref: "Hacker's Delight" 10-17. 5438 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5439 SDValue CompTargetNode, 5440 ISD::CondCode Cond, 5441 DAGCombinerInfo &DCI, 5442 const SDLoc &DL) const { 5443 SmallVector<SDNode *, 7> Built; 5444 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5445 DCI, DL, Built)) { 5446 assert(Built.size() <= 7 && "Max size prediction failed."); 5447 for (SDNode *N : Built) 5448 DCI.AddToWorklist(N); 5449 return Folded; 5450 } 5451 5452 return SDValue(); 5453 } 5454 5455 SDValue 5456 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5457 SDValue CompTargetNode, ISD::CondCode Cond, 5458 DAGCombinerInfo &DCI, const SDLoc &DL, 5459 SmallVectorImpl<SDNode *> &Created) const { 5460 // Fold: 5461 // (seteq/ne (srem N, D), 0) 5462 // To: 5463 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5464 // 5465 // - D must be constant, with D = D0 * 2^K where D0 is odd 5466 // - P is the multiplicative inverse of D0 modulo 2^W 5467 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5468 // - Q = floor((2 * A) / (2^K)) 5469 // where W is the width of the common type of N and D. 5470 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5471 "Only applicable for (in)equality comparisons."); 5472 5473 SelectionDAG &DAG = DCI.DAG; 5474 5475 EVT VT = REMNode.getValueType(); 5476 EVT SVT = VT.getScalarType(); 5477 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5478 EVT ShSVT = ShVT.getScalarType(); 5479 5480 // If MUL is unavailable, we cannot proceed in any case. 5481 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5482 return SDValue(); 5483 5484 // TODO: Could support comparing with non-zero too. 5485 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5486 if (!CompTarget || !CompTarget->isNullValue()) 5487 return SDValue(); 5488 5489 bool HadIntMinDivisor = false; 5490 bool HadOneDivisor = false; 5491 bool AllDivisorsAreOnes = true; 5492 bool HadEvenDivisor = false; 5493 bool NeedToApplyOffset = false; 5494 bool AllDivisorsArePowerOfTwo = true; 5495 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5496 5497 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5498 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5499 if (C->isNullValue()) 5500 return false; 5501 5502 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5503 5504 // WARNING: this fold is only valid for positive divisors! 5505 APInt D = C->getAPIntValue(); 5506 if (D.isNegative()) 5507 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5508 5509 HadIntMinDivisor |= D.isMinSignedValue(); 5510 5511 // If all divisors are ones, we will prefer to avoid the fold. 5512 HadOneDivisor |= D.isOneValue(); 5513 AllDivisorsAreOnes &= D.isOneValue(); 5514 5515 // Decompose D into D0 * 2^K 5516 unsigned K = D.countTrailingZeros(); 5517 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5518 APInt D0 = D.lshr(K); 5519 5520 if (!D.isMinSignedValue()) { 5521 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5522 // we don't care about this lane in this fold, we'll special-handle it. 5523 HadEvenDivisor |= (K != 0); 5524 } 5525 5526 // D is a power-of-two if D0 is one. This includes INT_MIN. 5527 // If all divisors are power-of-two, we will prefer to avoid the fold. 5528 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5529 5530 // P = inv(D0, 2^W) 5531 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5532 unsigned W = D.getBitWidth(); 5533 APInt P = D0.zext(W + 1) 5534 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5535 .trunc(W); 5536 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5537 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5538 5539 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5540 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5541 A.clearLowBits(K); 5542 5543 if (!D.isMinSignedValue()) { 5544 // If divisor INT_MIN, then we don't care about this lane in this fold, 5545 // we'll special-handle it. 5546 NeedToApplyOffset |= A != 0; 5547 } 5548 5549 // Q = floor((2 * A) / (2^K)) 5550 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5551 5552 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5553 "We are expecting that A is always less than all-ones for SVT"); 5554 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5555 "We are expecting that K is always less than all-ones for ShSVT"); 5556 5557 // If the divisor is 1 the result can be constant-folded. Likewise, we 5558 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5559 if (D.isOneValue()) { 5560 // Set P, A and K to a bogus values so we can try to splat them. 5561 P = 0; 5562 A = -1; 5563 K = -1; 5564 5565 // x ?% 1 == 0 <--> true <--> x u<= -1 5566 Q = -1; 5567 } 5568 5569 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5570 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5571 KAmts.push_back( 5572 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5573 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5574 return true; 5575 }; 5576 5577 SDValue N = REMNode.getOperand(0); 5578 SDValue D = REMNode.getOperand(1); 5579 5580 // Collect the values from each element. 5581 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5582 return SDValue(); 5583 5584 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5585 if (AllDivisorsAreOnes) 5586 return SDValue(); 5587 5588 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5589 // since it can be best implemented as a bit test. 5590 if (AllDivisorsArePowerOfTwo) 5591 return SDValue(); 5592 5593 SDValue PVal, AVal, KVal, QVal; 5594 if (VT.isVector()) { 5595 if (HadOneDivisor) { 5596 // Try to turn PAmts into a splat, since we don't care about the values 5597 // that are currently '0'. If we can't, just keep '0'`s. 5598 turnVectorIntoSplatVector(PAmts, isNullConstant); 5599 // Try to turn AAmts into a splat, since we don't care about the 5600 // values that are currently '-1'. If we can't, change them to '0'`s. 5601 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5602 DAG.getConstant(0, DL, SVT)); 5603 // Try to turn KAmts into a splat, since we don't care about the values 5604 // that are currently '-1'. If we can't, change them to '0'`s. 5605 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5606 DAG.getConstant(0, DL, ShSVT)); 5607 } 5608 5609 PVal = DAG.getBuildVector(VT, DL, PAmts); 5610 AVal = DAG.getBuildVector(VT, DL, AAmts); 5611 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5612 QVal = DAG.getBuildVector(VT, DL, QAmts); 5613 } else { 5614 PVal = PAmts[0]; 5615 AVal = AAmts[0]; 5616 KVal = KAmts[0]; 5617 QVal = QAmts[0]; 5618 } 5619 5620 // (mul N, P) 5621 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5622 Created.push_back(Op0.getNode()); 5623 5624 if (NeedToApplyOffset) { 5625 // We need ADD to do this. 5626 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5627 return SDValue(); 5628 5629 // (add (mul N, P), A) 5630 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5631 Created.push_back(Op0.getNode()); 5632 } 5633 5634 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5635 // divisors as a performance improvement, since rotating by 0 is a no-op. 5636 if (HadEvenDivisor) { 5637 // We need ROTR to do this. 5638 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5639 return SDValue(); 5640 SDNodeFlags Flags; 5641 Flags.setExact(true); 5642 // SREM: (rotr (add (mul N, P), A), K) 5643 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5644 Created.push_back(Op0.getNode()); 5645 } 5646 5647 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5648 SDValue Fold = 5649 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5650 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5651 5652 // If we didn't have lanes with INT_MIN divisor, then we're done. 5653 if (!HadIntMinDivisor) 5654 return Fold; 5655 5656 // That fold is only valid for positive divisors. Which effectively means, 5657 // it is invalid for INT_MIN divisors. So if we have such a lane, 5658 // we must fix-up results for said lanes. 5659 assert(VT.isVector() && "Can/should only get here for vectors."); 5660 5661 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5662 !isOperationLegalOrCustom(ISD::AND, VT) || 5663 !isOperationLegalOrCustom(Cond, VT) || 5664 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5665 return SDValue(); 5666 5667 Created.push_back(Fold.getNode()); 5668 5669 SDValue IntMin = DAG.getConstant( 5670 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5671 SDValue IntMax = DAG.getConstant( 5672 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5673 SDValue Zero = 5674 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5675 5676 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5677 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5678 Created.push_back(DivisorIsIntMin.getNode()); 5679 5680 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5681 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5682 Created.push_back(Masked.getNode()); 5683 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5684 Created.push_back(MaskedIsZero.getNode()); 5685 5686 // To produce final result we need to blend 2 vectors: 'SetCC' and 5687 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5688 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5689 // constant-folded, select can get lowered to a shuffle with constant mask. 5690 SDValue Blended = 5691 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5692 5693 return Blended; 5694 } 5695 5696 bool TargetLowering:: 5697 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5698 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5699 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5700 "be a constant integer"); 5701 return true; 5702 } 5703 5704 return false; 5705 } 5706 5707 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5708 bool LegalOps, bool OptForSize, 5709 NegatibleCost &Cost, 5710 unsigned Depth) const { 5711 // fneg is removable even if it has multiple uses. 5712 if (Op.getOpcode() == ISD::FNEG) { 5713 Cost = NegatibleCost::Cheaper; 5714 return Op.getOperand(0); 5715 } 5716 5717 // Don't recurse exponentially. 5718 if (Depth > SelectionDAG::MaxRecursionDepth) 5719 return SDValue(); 5720 5721 // Pre-increment recursion depth for use in recursive calls. 5722 ++Depth; 5723 const SDNodeFlags Flags = Op->getFlags(); 5724 const TargetOptions &Options = DAG.getTarget().Options; 5725 EVT VT = Op.getValueType(); 5726 unsigned Opcode = Op.getOpcode(); 5727 5728 // Don't allow anything with multiple uses unless we know it is free. 5729 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 5730 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 5731 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5732 if (!IsFreeExtend) 5733 return SDValue(); 5734 } 5735 5736 auto RemoveDeadNode = [&](SDValue N) { 5737 if (N && N.getNode()->use_empty()) 5738 DAG.RemoveDeadNode(N.getNode()); 5739 }; 5740 5741 SDLoc DL(Op); 5742 5743 switch (Opcode) { 5744 case ISD::ConstantFP: { 5745 // Don't invert constant FP values after legalization unless the target says 5746 // the negated constant is legal. 5747 bool IsOpLegal = 5748 isOperationLegal(ISD::ConstantFP, VT) || 5749 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5750 OptForSize); 5751 5752 if (LegalOps && !IsOpLegal) 5753 break; 5754 5755 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5756 V.changeSign(); 5757 SDValue CFP = DAG.getConstantFP(V, DL, VT); 5758 5759 // If we already have the use of the negated floating constant, it is free 5760 // to negate it even it has multiple uses. 5761 if (!Op.hasOneUse() && CFP.use_empty()) 5762 break; 5763 Cost = NegatibleCost::Neutral; 5764 return CFP; 5765 } 5766 case ISD::BUILD_VECTOR: { 5767 // Only permit BUILD_VECTOR of constants. 5768 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5769 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5770 })) 5771 break; 5772 5773 bool IsOpLegal = 5774 (isOperationLegal(ISD::ConstantFP, VT) && 5775 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 5776 llvm::all_of(Op->op_values(), [&](SDValue N) { 5777 return N.isUndef() || 5778 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5779 OptForSize); 5780 }); 5781 5782 if (LegalOps && !IsOpLegal) 5783 break; 5784 5785 SmallVector<SDValue, 4> Ops; 5786 for (SDValue C : Op->op_values()) { 5787 if (C.isUndef()) { 5788 Ops.push_back(C); 5789 continue; 5790 } 5791 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5792 V.changeSign(); 5793 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 5794 } 5795 Cost = NegatibleCost::Neutral; 5796 return DAG.getBuildVector(VT, DL, Ops); 5797 } 5798 case ISD::FADD: { 5799 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5800 break; 5801 5802 // After operation legalization, it might not be legal to create new FSUBs. 5803 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5804 break; 5805 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5806 5807 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 5808 NegatibleCost CostX = NegatibleCost::Expensive; 5809 SDValue NegX = 5810 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5811 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 5812 NegatibleCost CostY = NegatibleCost::Expensive; 5813 SDValue NegY = 5814 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5815 5816 // Negate the X if its cost is less or equal than Y. 5817 if (NegX && (CostX <= CostY)) { 5818 Cost = CostX; 5819 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 5820 RemoveDeadNode(NegY); 5821 return N; 5822 } 5823 5824 // Negate the Y if it is not expensive. 5825 if (NegY) { 5826 Cost = CostY; 5827 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 5828 RemoveDeadNode(NegX); 5829 return N; 5830 } 5831 break; 5832 } 5833 case ISD::FSUB: { 5834 // We can't turn -(A-B) into B-A when we honor signed zeros. 5835 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5836 break; 5837 5838 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5839 // fold (fneg (fsub 0, Y)) -> Y 5840 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 5841 if (C->isZero()) { 5842 Cost = NegatibleCost::Cheaper; 5843 return Y; 5844 } 5845 5846 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 5847 Cost = NegatibleCost::Neutral; 5848 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 5849 } 5850 case ISD::FMUL: 5851 case ISD::FDIV: { 5852 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5853 5854 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5855 NegatibleCost CostX = NegatibleCost::Expensive; 5856 SDValue NegX = 5857 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5858 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5859 NegatibleCost CostY = NegatibleCost::Expensive; 5860 SDValue NegY = 5861 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5862 5863 // Negate the X if its cost is less or equal than Y. 5864 if (NegX && (CostX <= CostY)) { 5865 Cost = CostX; 5866 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 5867 RemoveDeadNode(NegY); 5868 return N; 5869 } 5870 5871 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5872 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5873 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5874 break; 5875 5876 // Negate the Y if it is not expensive. 5877 if (NegY) { 5878 Cost = CostY; 5879 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 5880 RemoveDeadNode(NegX); 5881 return N; 5882 } 5883 break; 5884 } 5885 case ISD::FMA: 5886 case ISD::FMAD: { 5887 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5888 break; 5889 5890 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 5891 NegatibleCost CostZ = NegatibleCost::Expensive; 5892 SDValue NegZ = 5893 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 5894 // Give up if fail to negate the Z. 5895 if (!NegZ) 5896 break; 5897 5898 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5899 NegatibleCost CostX = NegatibleCost::Expensive; 5900 SDValue NegX = 5901 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5902 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5903 NegatibleCost CostY = NegatibleCost::Expensive; 5904 SDValue NegY = 5905 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5906 5907 // Negate the X if its cost is less or equal than Y. 5908 if (NegX && (CostX <= CostY)) { 5909 Cost = std::min(CostX, CostZ); 5910 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 5911 RemoveDeadNode(NegY); 5912 return N; 5913 } 5914 5915 // Negate the Y if it is not expensive. 5916 if (NegY) { 5917 Cost = std::min(CostY, CostZ); 5918 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 5919 RemoveDeadNode(NegX); 5920 return N; 5921 } 5922 break; 5923 } 5924 5925 case ISD::FP_EXTEND: 5926 case ISD::FSIN: 5927 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 5928 OptForSize, Cost, Depth)) 5929 return DAG.getNode(Opcode, DL, VT, NegV); 5930 break; 5931 case ISD::FP_ROUND: 5932 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 5933 OptForSize, Cost, Depth)) 5934 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 5935 break; 5936 } 5937 5938 return SDValue(); 5939 } 5940 5941 //===----------------------------------------------------------------------===// 5942 // Legalization Utilities 5943 //===----------------------------------------------------------------------===// 5944 5945 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 5946 SDValue LHS, SDValue RHS, 5947 SmallVectorImpl<SDValue> &Result, 5948 EVT HiLoVT, SelectionDAG &DAG, 5949 MulExpansionKind Kind, SDValue LL, 5950 SDValue LH, SDValue RL, SDValue RH) const { 5951 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5952 Opcode == ISD::SMUL_LOHI); 5953 5954 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5955 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5956 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5957 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5958 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5959 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5960 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5961 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5962 5963 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5964 return false; 5965 5966 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5967 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5968 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5969 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5970 5971 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5972 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5973 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5974 5975 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5976 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5977 bool Signed) -> bool { 5978 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5979 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5980 Hi = SDValue(Lo.getNode(), 1); 5981 return true; 5982 } 5983 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5984 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5985 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5986 return true; 5987 } 5988 return false; 5989 }; 5990 5991 SDValue Lo, Hi; 5992 5993 if (!LL.getNode() && !RL.getNode() && 5994 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5995 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5996 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5997 } 5998 5999 if (!LL.getNode()) 6000 return false; 6001 6002 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6003 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6004 DAG.MaskedValueIsZero(RHS, HighMask)) { 6005 // The inputs are both zero-extended. 6006 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6007 Result.push_back(Lo); 6008 Result.push_back(Hi); 6009 if (Opcode != ISD::MUL) { 6010 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6011 Result.push_back(Zero); 6012 Result.push_back(Zero); 6013 } 6014 return true; 6015 } 6016 } 6017 6018 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 6019 RHSSB > InnerBitSize) { 6020 // The input values are both sign-extended. 6021 // TODO non-MUL case? 6022 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6023 Result.push_back(Lo); 6024 Result.push_back(Hi); 6025 return true; 6026 } 6027 } 6028 6029 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6030 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6031 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 6032 // FIXME getShiftAmountTy does not always return a sensible result when VT 6033 // is an illegal type, and so the type may be too small to fit the shift 6034 // amount. Override it with i32. The shift will have to be legalized. 6035 ShiftAmountTy = MVT::i32; 6036 } 6037 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6038 6039 if (!LH.getNode() && !RH.getNode() && 6040 isOperationLegalOrCustom(ISD::SRL, VT) && 6041 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6042 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6043 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6044 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6045 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6046 } 6047 6048 if (!LH.getNode()) 6049 return false; 6050 6051 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6052 return false; 6053 6054 Result.push_back(Lo); 6055 6056 if (Opcode == ISD::MUL) { 6057 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6058 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6059 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6060 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6061 Result.push_back(Hi); 6062 return true; 6063 } 6064 6065 // Compute the full width result. 6066 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6067 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6068 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6069 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6070 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6071 }; 6072 6073 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6074 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6075 return false; 6076 6077 // This is effectively the add part of a multiply-add of half-sized operands, 6078 // so it cannot overflow. 6079 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6080 6081 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6082 return false; 6083 6084 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6085 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6086 6087 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6088 isOperationLegalOrCustom(ISD::ADDE, VT)); 6089 if (UseGlue) 6090 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6091 Merge(Lo, Hi)); 6092 else 6093 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6094 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6095 6096 SDValue Carry = Next.getValue(1); 6097 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6098 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6099 6100 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6101 return false; 6102 6103 if (UseGlue) 6104 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6105 Carry); 6106 else 6107 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6108 Zero, Carry); 6109 6110 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6111 6112 if (Opcode == ISD::SMUL_LOHI) { 6113 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6114 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6115 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6116 6117 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6118 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6119 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6120 } 6121 6122 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6123 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6124 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6125 return true; 6126 } 6127 6128 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6129 SelectionDAG &DAG, MulExpansionKind Kind, 6130 SDValue LL, SDValue LH, SDValue RL, 6131 SDValue RH) const { 6132 SmallVector<SDValue, 2> Result; 6133 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6134 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6135 DAG, Kind, LL, LH, RL, RH); 6136 if (Ok) { 6137 assert(Result.size() == 2); 6138 Lo = Result[0]; 6139 Hi = Result[1]; 6140 } 6141 return Ok; 6142 } 6143 6144 // Check that (every element of) Z is undef or not an exact multiple of BW. 6145 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6146 return ISD::matchUnaryPredicate( 6147 Z, 6148 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6149 true); 6150 } 6151 6152 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6153 SelectionDAG &DAG) const { 6154 EVT VT = Node->getValueType(0); 6155 6156 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6157 !isOperationLegalOrCustom(ISD::SRL, VT) || 6158 !isOperationLegalOrCustom(ISD::SUB, VT) || 6159 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6160 return false; 6161 6162 SDValue X = Node->getOperand(0); 6163 SDValue Y = Node->getOperand(1); 6164 SDValue Z = Node->getOperand(2); 6165 6166 unsigned BW = VT.getScalarSizeInBits(); 6167 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6168 SDLoc DL(SDValue(Node, 0)); 6169 6170 EVT ShVT = Z.getValueType(); 6171 6172 // If a funnel shift in the other direction is more supported, use it. 6173 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6174 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6175 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6176 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6177 // fshl X, Y, Z -> fshr X, Y, -Z 6178 // fshr X, Y, Z -> fshl X, Y, -Z 6179 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6180 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6181 } else { 6182 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6183 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6184 SDValue One = DAG.getConstant(1, DL, ShVT); 6185 if (IsFSHL) { 6186 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6187 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6188 } else { 6189 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6190 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6191 } 6192 Z = DAG.getNOT(DL, Z, ShVT); 6193 } 6194 Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6195 return true; 6196 } 6197 6198 SDValue ShX, ShY; 6199 SDValue ShAmt, InvShAmt; 6200 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6201 // fshl: X << C | Y >> (BW - C) 6202 // fshr: X << (BW - C) | Y >> C 6203 // where C = Z % BW is not zero 6204 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6205 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6206 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6207 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6208 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6209 } else { 6210 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6211 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6212 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6213 if (isPowerOf2_32(BW)) { 6214 // Z % BW -> Z & (BW - 1) 6215 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6216 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6217 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6218 } else { 6219 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6220 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6221 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6222 } 6223 6224 SDValue One = DAG.getConstant(1, DL, ShVT); 6225 if (IsFSHL) { 6226 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6227 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6228 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6229 } else { 6230 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6231 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6232 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6233 } 6234 } 6235 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6236 return true; 6237 } 6238 6239 // TODO: Merge with expandFunnelShift. 6240 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 6241 SelectionDAG &DAG) const { 6242 EVT VT = Node->getValueType(0); 6243 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6244 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6245 SDValue Op0 = Node->getOperand(0); 6246 SDValue Op1 = Node->getOperand(1); 6247 SDLoc DL(SDValue(Node, 0)); 6248 6249 EVT ShVT = Op1.getValueType(); 6250 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6251 6252 // If a rotate in the other direction is supported, use it. 6253 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6254 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6255 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6256 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6257 return true; 6258 } 6259 6260 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6261 !isOperationLegalOrCustom(ISD::SRL, VT) || 6262 !isOperationLegalOrCustom(ISD::SUB, VT) || 6263 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6264 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6265 return false; 6266 6267 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6268 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6269 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6270 SDValue ShVal; 6271 SDValue HsVal; 6272 if (isPowerOf2_32(EltSizeInBits)) { 6273 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6274 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6275 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6276 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6277 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6278 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6279 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6280 } else { 6281 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6282 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6283 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6284 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6285 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6286 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6287 SDValue One = DAG.getConstant(1, DL, ShVT); 6288 HsVal = 6289 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6290 } 6291 Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6292 return true; 6293 } 6294 6295 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6296 SelectionDAG &DAG) const { 6297 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6298 SDValue Src = Node->getOperand(OpNo); 6299 EVT SrcVT = Src.getValueType(); 6300 EVT DstVT = Node->getValueType(0); 6301 SDLoc dl(SDValue(Node, 0)); 6302 6303 // FIXME: Only f32 to i64 conversions are supported. 6304 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6305 return false; 6306 6307 if (Node->isStrictFPOpcode()) 6308 // When a NaN is converted to an integer a trap is allowed. We can't 6309 // use this expansion here because it would eliminate that trap. Other 6310 // traps are also allowed and cannot be eliminated. See 6311 // IEEE 754-2008 sec 5.8. 6312 return false; 6313 6314 // Expand f32 -> i64 conversion 6315 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6316 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6317 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6318 EVT IntVT = SrcVT.changeTypeToInteger(); 6319 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6320 6321 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6322 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6323 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6324 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6325 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6326 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6327 6328 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6329 6330 SDValue ExponentBits = DAG.getNode( 6331 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6332 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6333 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6334 6335 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6336 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6337 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6338 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6339 6340 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6341 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6342 DAG.getConstant(0x00800000, dl, IntVT)); 6343 6344 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6345 6346 R = DAG.getSelectCC( 6347 dl, Exponent, ExponentLoBit, 6348 DAG.getNode(ISD::SHL, dl, DstVT, R, 6349 DAG.getZExtOrTrunc( 6350 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6351 dl, IntShVT)), 6352 DAG.getNode(ISD::SRL, dl, DstVT, R, 6353 DAG.getZExtOrTrunc( 6354 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6355 dl, IntShVT)), 6356 ISD::SETGT); 6357 6358 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6359 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6360 6361 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6362 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6363 return true; 6364 } 6365 6366 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6367 SDValue &Chain, 6368 SelectionDAG &DAG) const { 6369 SDLoc dl(SDValue(Node, 0)); 6370 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6371 SDValue Src = Node->getOperand(OpNo); 6372 6373 EVT SrcVT = Src.getValueType(); 6374 EVT DstVT = Node->getValueType(0); 6375 EVT SetCCVT = 6376 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6377 EVT DstSetCCVT = 6378 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6379 6380 // Only expand vector types if we have the appropriate vector bit operations. 6381 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6382 ISD::FP_TO_SINT; 6383 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6384 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6385 return false; 6386 6387 // If the maximum float value is smaller then the signed integer range, 6388 // the destination signmask can't be represented by the float, so we can 6389 // just use FP_TO_SINT directly. 6390 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6391 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6392 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6393 if (APFloat::opOverflow & 6394 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6395 if (Node->isStrictFPOpcode()) { 6396 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6397 { Node->getOperand(0), Src }); 6398 Chain = Result.getValue(1); 6399 } else 6400 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6401 return true; 6402 } 6403 6404 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6405 SDValue Sel; 6406 6407 if (Node->isStrictFPOpcode()) { 6408 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6409 Node->getOperand(0), /*IsSignaling*/ true); 6410 Chain = Sel.getValue(1); 6411 } else { 6412 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6413 } 6414 6415 bool Strict = Node->isStrictFPOpcode() || 6416 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6417 6418 if (Strict) { 6419 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6420 // signmask then offset (the result of which should be fully representable). 6421 // Sel = Src < 0x8000000000000000 6422 // FltOfs = select Sel, 0, 0x8000000000000000 6423 // IntOfs = select Sel, 0, 0x8000000000000000 6424 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6425 6426 // TODO: Should any fast-math-flags be set for the FSUB? 6427 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6428 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6429 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6430 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6431 DAG.getConstant(0, dl, DstVT), 6432 DAG.getConstant(SignMask, dl, DstVT)); 6433 SDValue SInt; 6434 if (Node->isStrictFPOpcode()) { 6435 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6436 { Chain, Src, FltOfs }); 6437 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6438 { Val.getValue(1), Val }); 6439 Chain = SInt.getValue(1); 6440 } else { 6441 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6442 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6443 } 6444 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6445 } else { 6446 // Expand based on maximum range of FP_TO_SINT: 6447 // True = fp_to_sint(Src) 6448 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6449 // Result = select (Src < 0x8000000000000000), True, False 6450 6451 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6452 // TODO: Should any fast-math-flags be set for the FSUB? 6453 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6454 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6455 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6456 DAG.getConstant(SignMask, dl, DstVT)); 6457 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6458 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6459 } 6460 return true; 6461 } 6462 6463 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6464 SDValue &Chain, 6465 SelectionDAG &DAG) const { 6466 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6467 SDValue Src = Node->getOperand(OpNo); 6468 EVT SrcVT = Src.getValueType(); 6469 EVT DstVT = Node->getValueType(0); 6470 6471 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6472 return false; 6473 6474 // Only expand vector types if we have the appropriate vector bit operations. 6475 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6476 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6477 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6478 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6479 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6480 return false; 6481 6482 SDLoc dl(SDValue(Node, 0)); 6483 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6484 6485 // Implementation of unsigned i64 to f64 following the algorithm in 6486 // __floatundidf in compiler_rt. This implementation has the advantage 6487 // of performing rounding correctly, both in the default rounding mode 6488 // and in all alternate rounding modes. 6489 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6490 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6491 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6492 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6493 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6494 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6495 6496 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6497 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6498 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6499 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6500 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6501 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6502 if (Node->isStrictFPOpcode()) { 6503 SDValue HiSub = 6504 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6505 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6506 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6507 {HiSub.getValue(1), LoFlt, HiSub}); 6508 Chain = Result.getValue(1); 6509 } else { 6510 SDValue HiSub = 6511 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6512 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6513 } 6514 return true; 6515 } 6516 6517 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6518 SelectionDAG &DAG) const { 6519 SDLoc dl(Node); 6520 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6521 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6522 EVT VT = Node->getValueType(0); 6523 if (isOperationLegalOrCustom(NewOp, VT)) { 6524 SDValue Quiet0 = Node->getOperand(0); 6525 SDValue Quiet1 = Node->getOperand(1); 6526 6527 if (!Node->getFlags().hasNoNaNs()) { 6528 // Insert canonicalizes if it's possible we need to quiet to get correct 6529 // sNaN behavior. 6530 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6531 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6532 Node->getFlags()); 6533 } 6534 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6535 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6536 Node->getFlags()); 6537 } 6538 } 6539 6540 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6541 } 6542 6543 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6544 // instead if there are no NaNs. 6545 if (Node->getFlags().hasNoNaNs()) { 6546 unsigned IEEE2018Op = 6547 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6548 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6549 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6550 Node->getOperand(1), Node->getFlags()); 6551 } 6552 } 6553 6554 // If none of the above worked, but there are no NaNs, then expand to 6555 // a compare/select sequence. This is required for correctness since 6556 // InstCombine might have canonicalized a fcmp+select sequence to a 6557 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6558 // expansion to libcall, we might introduce a link-time dependency 6559 // on libm into a file that originally did not have one. 6560 if (Node->getFlags().hasNoNaNs()) { 6561 ISD::CondCode Pred = 6562 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6563 SDValue Op1 = Node->getOperand(0); 6564 SDValue Op2 = Node->getOperand(1); 6565 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6566 // Copy FMF flags, but always set the no-signed-zeros flag 6567 // as this is implied by the FMINNUM/FMAXNUM semantics. 6568 SDNodeFlags Flags = Node->getFlags(); 6569 Flags.setNoSignedZeros(true); 6570 SelCC->setFlags(Flags); 6571 return SelCC; 6572 } 6573 6574 return SDValue(); 6575 } 6576 6577 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6578 SelectionDAG &DAG) const { 6579 SDLoc dl(Node); 6580 EVT VT = Node->getValueType(0); 6581 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6582 SDValue Op = Node->getOperand(0); 6583 unsigned Len = VT.getScalarSizeInBits(); 6584 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6585 6586 // TODO: Add support for irregular type lengths. 6587 if (!(Len <= 128 && Len % 8 == 0)) 6588 return false; 6589 6590 // Only expand vector types if we have the appropriate vector bit operations. 6591 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6592 !isOperationLegalOrCustom(ISD::SUB, VT) || 6593 !isOperationLegalOrCustom(ISD::SRL, VT) || 6594 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6595 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6596 return false; 6597 6598 // This is the "best" algorithm from 6599 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6600 SDValue Mask55 = 6601 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6602 SDValue Mask33 = 6603 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6604 SDValue Mask0F = 6605 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6606 SDValue Mask01 = 6607 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6608 6609 // v = v - ((v >> 1) & 0x55555555...) 6610 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6611 DAG.getNode(ISD::AND, dl, VT, 6612 DAG.getNode(ISD::SRL, dl, VT, Op, 6613 DAG.getConstant(1, dl, ShVT)), 6614 Mask55)); 6615 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6616 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6617 DAG.getNode(ISD::AND, dl, VT, 6618 DAG.getNode(ISD::SRL, dl, VT, Op, 6619 DAG.getConstant(2, dl, ShVT)), 6620 Mask33)); 6621 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6622 Op = DAG.getNode(ISD::AND, dl, VT, 6623 DAG.getNode(ISD::ADD, dl, VT, Op, 6624 DAG.getNode(ISD::SRL, dl, VT, Op, 6625 DAG.getConstant(4, dl, ShVT))), 6626 Mask0F); 6627 // v = (v * 0x01010101...) >> (Len - 8) 6628 if (Len > 8) 6629 Op = 6630 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6631 DAG.getConstant(Len - 8, dl, ShVT)); 6632 6633 Result = Op; 6634 return true; 6635 } 6636 6637 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6638 SelectionDAG &DAG) const { 6639 SDLoc dl(Node); 6640 EVT VT = Node->getValueType(0); 6641 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6642 SDValue Op = Node->getOperand(0); 6643 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6644 6645 // If the non-ZERO_UNDEF version is supported we can use that instead. 6646 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6647 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6648 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6649 return true; 6650 } 6651 6652 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6653 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6654 EVT SetCCVT = 6655 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6656 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6657 SDValue Zero = DAG.getConstant(0, dl, VT); 6658 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6659 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6660 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6661 return true; 6662 } 6663 6664 // Only expand vector types if we have the appropriate vector bit operations. 6665 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6666 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6667 !isOperationLegalOrCustom(ISD::SRL, VT) || 6668 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6669 return false; 6670 6671 // for now, we do this: 6672 // x = x | (x >> 1); 6673 // x = x | (x >> 2); 6674 // ... 6675 // x = x | (x >>16); 6676 // x = x | (x >>32); // for 64-bit input 6677 // return popcount(~x); 6678 // 6679 // Ref: "Hacker's Delight" by Henry Warren 6680 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6681 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6682 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6683 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6684 } 6685 Op = DAG.getNOT(dl, Op, VT); 6686 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6687 return true; 6688 } 6689 6690 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6691 SelectionDAG &DAG) const { 6692 SDLoc dl(Node); 6693 EVT VT = Node->getValueType(0); 6694 SDValue Op = Node->getOperand(0); 6695 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6696 6697 // If the non-ZERO_UNDEF version is supported we can use that instead. 6698 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6699 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6700 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6701 return true; 6702 } 6703 6704 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6705 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6706 EVT SetCCVT = 6707 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6708 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6709 SDValue Zero = DAG.getConstant(0, dl, VT); 6710 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6711 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6712 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6713 return true; 6714 } 6715 6716 // Only expand vector types if we have the appropriate vector bit operations. 6717 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6718 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6719 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6720 !isOperationLegalOrCustom(ISD::SUB, VT) || 6721 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6722 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6723 return false; 6724 6725 // for now, we use: { return popcount(~x & (x - 1)); } 6726 // unless the target has ctlz but not ctpop, in which case we use: 6727 // { return 32 - nlz(~x & (x-1)); } 6728 // Ref: "Hacker's Delight" by Henry Warren 6729 SDValue Tmp = DAG.getNode( 6730 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6731 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6732 6733 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6734 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6735 Result = 6736 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6737 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6738 return true; 6739 } 6740 6741 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6742 return true; 6743 } 6744 6745 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6746 SelectionDAG &DAG) const { 6747 SDLoc dl(N); 6748 EVT VT = N->getValueType(0); 6749 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6750 SDValue Op = N->getOperand(0); 6751 6752 // Only expand vector types if we have the appropriate vector operations. 6753 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6754 !isOperationLegalOrCustom(ISD::ADD, VT) || 6755 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6756 return false; 6757 6758 SDValue Shift = 6759 DAG.getNode(ISD::SRA, dl, VT, Op, 6760 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6761 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6762 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6763 return true; 6764 } 6765 6766 std::pair<SDValue, SDValue> 6767 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6768 SelectionDAG &DAG) const { 6769 SDLoc SL(LD); 6770 SDValue Chain = LD->getChain(); 6771 SDValue BasePTR = LD->getBasePtr(); 6772 EVT SrcVT = LD->getMemoryVT(); 6773 EVT DstVT = LD->getValueType(0); 6774 ISD::LoadExtType ExtType = LD->getExtensionType(); 6775 6776 if (SrcVT.isScalableVector()) 6777 report_fatal_error("Cannot scalarize scalable vector loads"); 6778 6779 unsigned NumElem = SrcVT.getVectorNumElements(); 6780 6781 EVT SrcEltVT = SrcVT.getScalarType(); 6782 EVT DstEltVT = DstVT.getScalarType(); 6783 6784 // A vector must always be stored in memory as-is, i.e. without any padding 6785 // between the elements, since various code depend on it, e.g. in the 6786 // handling of a bitcast of a vector type to int, which may be done with a 6787 // vector store followed by an integer load. A vector that does not have 6788 // elements that are byte-sized must therefore be stored as an integer 6789 // built out of the extracted vector elements. 6790 if (!SrcEltVT.isByteSized()) { 6791 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 6792 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 6793 6794 unsigned NumSrcBits = SrcVT.getSizeInBits(); 6795 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 6796 6797 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 6798 SDValue SrcEltBitMask = DAG.getConstant( 6799 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 6800 6801 // Load the whole vector and avoid masking off the top bits as it makes 6802 // the codegen worse. 6803 SDValue Load = 6804 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 6805 LD->getPointerInfo(), SrcIntVT, LD->getAlignment(), 6806 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6807 6808 SmallVector<SDValue, 8> Vals; 6809 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6810 unsigned ShiftIntoIdx = 6811 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6812 SDValue ShiftAmount = 6813 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 6814 LoadVT, SL, /*LegalTypes=*/false); 6815 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 6816 SDValue Elt = 6817 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 6818 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 6819 6820 if (ExtType != ISD::NON_EXTLOAD) { 6821 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 6822 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 6823 } 6824 6825 Vals.push_back(Scalar); 6826 } 6827 6828 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6829 return std::make_pair(Value, Load.getValue(1)); 6830 } 6831 6832 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6833 assert(SrcEltVT.isByteSized()); 6834 6835 SmallVector<SDValue, 8> Vals; 6836 SmallVector<SDValue, 8> LoadChains; 6837 6838 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6839 SDValue ScalarLoad = 6840 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6841 LD->getPointerInfo().getWithOffset(Idx * Stride), 6842 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6843 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6844 6845 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 6846 6847 Vals.push_back(ScalarLoad.getValue(0)); 6848 LoadChains.push_back(ScalarLoad.getValue(1)); 6849 } 6850 6851 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6852 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6853 6854 return std::make_pair(Value, NewChain); 6855 } 6856 6857 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6858 SelectionDAG &DAG) const { 6859 SDLoc SL(ST); 6860 6861 SDValue Chain = ST->getChain(); 6862 SDValue BasePtr = ST->getBasePtr(); 6863 SDValue Value = ST->getValue(); 6864 EVT StVT = ST->getMemoryVT(); 6865 6866 if (StVT.isScalableVector()) 6867 report_fatal_error("Cannot scalarize scalable vector stores"); 6868 6869 // The type of the data we want to save 6870 EVT RegVT = Value.getValueType(); 6871 EVT RegSclVT = RegVT.getScalarType(); 6872 6873 // The type of data as saved in memory. 6874 EVT MemSclVT = StVT.getScalarType(); 6875 6876 unsigned NumElem = StVT.getVectorNumElements(); 6877 6878 // A vector must always be stored in memory as-is, i.e. without any padding 6879 // between the elements, since various code depend on it, e.g. in the 6880 // handling of a bitcast of a vector type to int, which may be done with a 6881 // vector store followed by an integer load. A vector that does not have 6882 // elements that are byte-sized must therefore be stored as an integer 6883 // built out of the extracted vector elements. 6884 if (!MemSclVT.isByteSized()) { 6885 unsigned NumBits = StVT.getSizeInBits(); 6886 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6887 6888 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6889 6890 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6891 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6892 DAG.getVectorIdxConstant(Idx, SL)); 6893 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6894 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6895 unsigned ShiftIntoIdx = 6896 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6897 SDValue ShiftAmount = 6898 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6899 SDValue ShiftedElt = 6900 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6901 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6902 } 6903 6904 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6905 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6906 ST->getAAInfo()); 6907 } 6908 6909 // Store Stride in bytes 6910 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6911 assert(Stride && "Zero stride!"); 6912 // Extract each of the elements from the original vector and save them into 6913 // memory individually. 6914 SmallVector<SDValue, 8> Stores; 6915 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6916 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6917 DAG.getVectorIdxConstant(Idx, SL)); 6918 6919 SDValue Ptr = 6920 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 6921 6922 // This scalar TruncStore may be illegal, but we legalize it later. 6923 SDValue Store = DAG.getTruncStore( 6924 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6925 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6926 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6927 6928 Stores.push_back(Store); 6929 } 6930 6931 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6932 } 6933 6934 std::pair<SDValue, SDValue> 6935 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6936 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6937 "unaligned indexed loads not implemented!"); 6938 SDValue Chain = LD->getChain(); 6939 SDValue Ptr = LD->getBasePtr(); 6940 EVT VT = LD->getValueType(0); 6941 EVT LoadedVT = LD->getMemoryVT(); 6942 SDLoc dl(LD); 6943 auto &MF = DAG.getMachineFunction(); 6944 6945 if (VT.isFloatingPoint() || VT.isVector()) { 6946 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6947 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6948 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6949 LoadedVT.isVector()) { 6950 // Scalarize the load and let the individual components be handled. 6951 return scalarizeVectorLoad(LD, DAG); 6952 } 6953 6954 // Expand to a (misaligned) integer load of the same size, 6955 // then bitconvert to floating point or vector. 6956 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6957 LD->getMemOperand()); 6958 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6959 if (LoadedVT != VT) 6960 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6961 ISD::ANY_EXTEND, dl, VT, Result); 6962 6963 return std::make_pair(Result, newLoad.getValue(1)); 6964 } 6965 6966 // Copy the value to a (aligned) stack slot using (unaligned) integer 6967 // loads and stores, then do a (aligned) load from the stack slot. 6968 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6969 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6970 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6971 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6972 6973 // Make sure the stack slot is also aligned for the register type. 6974 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6975 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6976 SmallVector<SDValue, 8> Stores; 6977 SDValue StackPtr = StackBase; 6978 unsigned Offset = 0; 6979 6980 EVT PtrVT = Ptr.getValueType(); 6981 EVT StackPtrVT = StackPtr.getValueType(); 6982 6983 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6984 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6985 6986 // Do all but one copies using the full register width. 6987 for (unsigned i = 1; i < NumRegs; i++) { 6988 // Load one integer register's worth from the original location. 6989 SDValue Load = DAG.getLoad( 6990 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6991 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6992 LD->getAAInfo()); 6993 // Follow the load with a store to the stack slot. Remember the store. 6994 Stores.push_back(DAG.getStore( 6995 Load.getValue(1), dl, Load, StackPtr, 6996 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6997 // Increment the pointers. 6998 Offset += RegBytes; 6999 7000 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7001 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7002 } 7003 7004 // The last copy may be partial. Do an extending load. 7005 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7006 8 * (LoadedBytes - Offset)); 7007 SDValue Load = 7008 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7009 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7010 MinAlign(LD->getAlignment(), Offset), 7011 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7012 // Follow the load with a store to the stack slot. Remember the store. 7013 // On big-endian machines this requires a truncating store to ensure 7014 // that the bits end up in the right place. 7015 Stores.push_back(DAG.getTruncStore( 7016 Load.getValue(1), dl, Load, StackPtr, 7017 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7018 7019 // The order of the stores doesn't matter - say it with a TokenFactor. 7020 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7021 7022 // Finally, perform the original load only redirected to the stack slot. 7023 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7024 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7025 LoadedVT); 7026 7027 // Callers expect a MERGE_VALUES node. 7028 return std::make_pair(Load, TF); 7029 } 7030 7031 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7032 "Unaligned load of unsupported type."); 7033 7034 // Compute the new VT that is half the size of the old one. This is an 7035 // integer MVT. 7036 unsigned NumBits = LoadedVT.getSizeInBits(); 7037 EVT NewLoadedVT; 7038 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7039 NumBits >>= 1; 7040 7041 unsigned Alignment = LD->getAlignment(); 7042 unsigned IncrementSize = NumBits / 8; 7043 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7044 7045 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7046 if (HiExtType == ISD::NON_EXTLOAD) 7047 HiExtType = ISD::ZEXTLOAD; 7048 7049 // Load the value in two parts 7050 SDValue Lo, Hi; 7051 if (DAG.getDataLayout().isLittleEndian()) { 7052 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7053 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7054 LD->getAAInfo()); 7055 7056 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7057 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7058 LD->getPointerInfo().getWithOffset(IncrementSize), 7059 NewLoadedVT, MinAlign(Alignment, IncrementSize), 7060 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7061 } else { 7062 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7063 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7064 LD->getAAInfo()); 7065 7066 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7067 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7068 LD->getPointerInfo().getWithOffset(IncrementSize), 7069 NewLoadedVT, MinAlign(Alignment, IncrementSize), 7070 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7071 } 7072 7073 // aggregate the two parts 7074 SDValue ShiftAmount = 7075 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7076 DAG.getDataLayout())); 7077 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7078 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7079 7080 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7081 Hi.getValue(1)); 7082 7083 return std::make_pair(Result, TF); 7084 } 7085 7086 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7087 SelectionDAG &DAG) const { 7088 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7089 "unaligned indexed stores not implemented!"); 7090 SDValue Chain = ST->getChain(); 7091 SDValue Ptr = ST->getBasePtr(); 7092 SDValue Val = ST->getValue(); 7093 EVT VT = Val.getValueType(); 7094 int Alignment = ST->getAlignment(); 7095 auto &MF = DAG.getMachineFunction(); 7096 EVT StoreMemVT = ST->getMemoryVT(); 7097 7098 SDLoc dl(ST); 7099 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7100 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7101 if (isTypeLegal(intVT)) { 7102 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7103 StoreMemVT.isVector()) { 7104 // Scalarize the store and let the individual components be handled. 7105 SDValue Result = scalarizeVectorStore(ST, DAG); 7106 return Result; 7107 } 7108 // Expand to a bitconvert of the value to the integer type of the 7109 // same size, then a (misaligned) int store. 7110 // FIXME: Does not handle truncating floating point stores! 7111 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7112 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7113 Alignment, ST->getMemOperand()->getFlags()); 7114 return Result; 7115 } 7116 // Do a (aligned) store to a stack slot, then copy from the stack slot 7117 // to the final destination using (unaligned) integer loads and stores. 7118 MVT RegVT = getRegisterType( 7119 *DAG.getContext(), 7120 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7121 EVT PtrVT = Ptr.getValueType(); 7122 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7123 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7124 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7125 7126 // Make sure the stack slot is also aligned for the register type. 7127 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7128 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7129 7130 // Perform the original store, only redirected to the stack slot. 7131 SDValue Store = DAG.getTruncStore( 7132 Chain, dl, Val, StackPtr, 7133 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7134 7135 EVT StackPtrVT = StackPtr.getValueType(); 7136 7137 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7138 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7139 SmallVector<SDValue, 8> Stores; 7140 unsigned Offset = 0; 7141 7142 // Do all but one copies using the full register width. 7143 for (unsigned i = 1; i < NumRegs; i++) { 7144 // Load one integer register's worth from the stack slot. 7145 SDValue Load = DAG.getLoad( 7146 RegVT, dl, Store, StackPtr, 7147 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7148 // Store it to the final location. Remember the store. 7149 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7150 ST->getPointerInfo().getWithOffset(Offset), 7151 MinAlign(ST->getAlignment(), Offset), 7152 ST->getMemOperand()->getFlags())); 7153 // Increment the pointers. 7154 Offset += RegBytes; 7155 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7156 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7157 } 7158 7159 // The last store may be partial. Do a truncating store. On big-endian 7160 // machines this requires an extending load from the stack slot to ensure 7161 // that the bits are in the right place. 7162 EVT LoadMemVT = 7163 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7164 7165 // Load from the stack slot. 7166 SDValue Load = DAG.getExtLoad( 7167 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7168 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7169 7170 Stores.push_back( 7171 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7172 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7173 MinAlign(ST->getAlignment(), Offset), 7174 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7175 // The order of the stores doesn't matter - say it with a TokenFactor. 7176 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7177 return Result; 7178 } 7179 7180 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7181 "Unaligned store of unknown type."); 7182 // Get the half-size VT 7183 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7184 unsigned NumBits = NewStoredVT.getSizeInBits().getFixedSize(); 7185 unsigned IncrementSize = NumBits / 8; 7186 7187 // Divide the stored value in two parts. 7188 SDValue ShiftAmount = DAG.getConstant( 7189 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7190 SDValue Lo = Val; 7191 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7192 7193 // Store the two parts 7194 SDValue Store1, Store2; 7195 Store1 = DAG.getTruncStore(Chain, dl, 7196 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7197 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7198 ST->getMemOperand()->getFlags()); 7199 7200 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7201 Alignment = MinAlign(Alignment, IncrementSize); 7202 Store2 = DAG.getTruncStore( 7203 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7204 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7205 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7206 7207 SDValue Result = 7208 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7209 return Result; 7210 } 7211 7212 SDValue 7213 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7214 const SDLoc &DL, EVT DataVT, 7215 SelectionDAG &DAG, 7216 bool IsCompressedMemory) const { 7217 SDValue Increment; 7218 EVT AddrVT = Addr.getValueType(); 7219 EVT MaskVT = Mask.getValueType(); 7220 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7221 "Incompatible types of Data and Mask"); 7222 if (IsCompressedMemory) { 7223 if (DataVT.isScalableVector()) 7224 report_fatal_error( 7225 "Cannot currently handle compressed memory with scalable vectors"); 7226 // Incrementing the pointer according to number of '1's in the mask. 7227 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7228 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7229 if (MaskIntVT.getSizeInBits() < 32) { 7230 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7231 MaskIntVT = MVT::i32; 7232 } 7233 7234 // Count '1's with POPCNT. 7235 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7236 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7237 // Scale is an element size in bytes. 7238 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7239 AddrVT); 7240 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7241 } else if (DataVT.isScalableVector()) { 7242 Increment = DAG.getVScale(DL, AddrVT, 7243 APInt(AddrVT.getSizeInBits().getFixedSize(), 7244 DataVT.getStoreSize().getKnownMinSize())); 7245 } else 7246 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7247 7248 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7249 } 7250 7251 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7252 SDValue Idx, 7253 EVT VecVT, 7254 const SDLoc &dl) { 7255 if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx)) 7256 return Idx; 7257 7258 EVT IdxVT = Idx.getValueType(); 7259 unsigned NElts = VecVT.getVectorMinNumElements(); 7260 if (VecVT.isScalableVector()) { 7261 SDValue VS = DAG.getVScale(dl, IdxVT, 7262 APInt(IdxVT.getSizeInBits().getFixedSize(), 7263 NElts)); 7264 SDValue Sub = DAG.getNode(ISD::SUB, dl, IdxVT, VS, 7265 DAG.getConstant(1, dl, IdxVT)); 7266 7267 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7268 } else { 7269 if (isPowerOf2_32(NElts)) { 7270 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7271 Log2_32(NElts)); 7272 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7273 DAG.getConstant(Imm, dl, IdxVT)); 7274 } 7275 } 7276 7277 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7278 DAG.getConstant(NElts - 1, dl, IdxVT)); 7279 } 7280 7281 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7282 SDValue VecPtr, EVT VecVT, 7283 SDValue Index) const { 7284 SDLoc dl(Index); 7285 // Make sure the index type is big enough to compute in. 7286 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7287 7288 EVT EltVT = VecVT.getVectorElementType(); 7289 7290 // Calculate the element offset and add it to the pointer. 7291 unsigned EltSize = EltVT.getSizeInBits().getFixedSize() / 8; // FIXME: should be ABI size. 7292 assert(EltSize * 8 == EltVT.getSizeInBits().getFixedSize() && 7293 "Converting bits to bytes lost precision"); 7294 7295 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7296 7297 EVT IdxVT = Index.getValueType(); 7298 7299 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7300 DAG.getConstant(EltSize, dl, IdxVT)); 7301 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7302 } 7303 7304 //===----------------------------------------------------------------------===// 7305 // Implementation of Emulated TLS Model 7306 //===----------------------------------------------------------------------===// 7307 7308 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7309 SelectionDAG &DAG) const { 7310 // Access to address of TLS varialbe xyz is lowered to a function call: 7311 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7312 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7313 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7314 SDLoc dl(GA); 7315 7316 ArgListTy Args; 7317 ArgListEntry Entry; 7318 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7319 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7320 StringRef EmuTlsVarName(NameString); 7321 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7322 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7323 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7324 Entry.Ty = VoidPtrType; 7325 Args.push_back(Entry); 7326 7327 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7328 7329 TargetLowering::CallLoweringInfo CLI(DAG); 7330 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7331 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7332 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7333 7334 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7335 // At last for X86 targets, maybe good for other targets too? 7336 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7337 MFI.setAdjustsStack(true); // Is this only for X86 target? 7338 MFI.setHasCalls(true); 7339 7340 assert((GA->getOffset() == 0) && 7341 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7342 return CallResult.first; 7343 } 7344 7345 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7346 SelectionDAG &DAG) const { 7347 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7348 if (!isCtlzFast()) 7349 return SDValue(); 7350 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7351 SDLoc dl(Op); 7352 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7353 if (C->isNullValue() && CC == ISD::SETEQ) { 7354 EVT VT = Op.getOperand(0).getValueType(); 7355 SDValue Zext = Op.getOperand(0); 7356 if (VT.bitsLT(MVT::i32)) { 7357 VT = MVT::i32; 7358 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7359 } 7360 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7361 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7362 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7363 DAG.getConstant(Log2b, dl, MVT::i32)); 7364 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7365 } 7366 } 7367 return SDValue(); 7368 } 7369 7370 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7371 unsigned Opcode = Node->getOpcode(); 7372 SDValue LHS = Node->getOperand(0); 7373 SDValue RHS = Node->getOperand(1); 7374 EVT VT = LHS.getValueType(); 7375 SDLoc dl(Node); 7376 7377 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7378 assert(VT.isInteger() && "Expected operands to be integers"); 7379 7380 // usub.sat(a, b) -> umax(a, b) - b 7381 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7382 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7383 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7384 } 7385 7386 // uadd.sat(a, b) -> umin(a, ~b) + b 7387 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7388 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7389 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7390 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7391 } 7392 7393 unsigned OverflowOp; 7394 switch (Opcode) { 7395 case ISD::SADDSAT: 7396 OverflowOp = ISD::SADDO; 7397 break; 7398 case ISD::UADDSAT: 7399 OverflowOp = ISD::UADDO; 7400 break; 7401 case ISD::SSUBSAT: 7402 OverflowOp = ISD::SSUBO; 7403 break; 7404 case ISD::USUBSAT: 7405 OverflowOp = ISD::USUBO; 7406 break; 7407 default: 7408 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7409 "addition or subtraction node."); 7410 } 7411 7412 // FIXME: Should really try to split the vector in case it's legal on a 7413 // subvector. 7414 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 7415 return DAG.UnrollVectorOp(Node); 7416 7417 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7418 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7419 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7420 LHS, RHS); 7421 SDValue SumDiff = Result.getValue(0); 7422 SDValue Overflow = Result.getValue(1); 7423 SDValue Zero = DAG.getConstant(0, dl, VT); 7424 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7425 7426 if (Opcode == ISD::UADDSAT) { 7427 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7428 // (LHS + RHS) | OverflowMask 7429 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7430 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7431 } 7432 // Overflow ? 0xffff.... : (LHS + RHS) 7433 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7434 } else if (Opcode == ISD::USUBSAT) { 7435 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7436 // (LHS - RHS) & ~OverflowMask 7437 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7438 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7439 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7440 } 7441 // Overflow ? 0 : (LHS - RHS) 7442 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7443 } else { 7444 // SatMax -> Overflow && SumDiff < 0 7445 // SatMin -> Overflow && SumDiff >= 0 7446 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7447 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7448 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7449 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7450 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7451 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7452 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7453 } 7454 } 7455 7456 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 7457 unsigned Opcode = Node->getOpcode(); 7458 bool IsSigned = Opcode == ISD::SSHLSAT; 7459 SDValue LHS = Node->getOperand(0); 7460 SDValue RHS = Node->getOperand(1); 7461 EVT VT = LHS.getValueType(); 7462 SDLoc dl(Node); 7463 7464 assert((Node->getOpcode() == ISD::SSHLSAT || 7465 Node->getOpcode() == ISD::USHLSAT) && 7466 "Expected a SHLSAT opcode"); 7467 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7468 assert(VT.isInteger() && "Expected operands to be integers"); 7469 7470 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 7471 7472 unsigned BW = VT.getScalarSizeInBits(); 7473 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 7474 SDValue Orig = 7475 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 7476 7477 SDValue SatVal; 7478 if (IsSigned) { 7479 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 7480 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 7481 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 7482 SatMin, SatMax, ISD::SETLT); 7483 } else { 7484 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 7485 } 7486 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 7487 7488 return Result; 7489 } 7490 7491 SDValue 7492 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7493 assert((Node->getOpcode() == ISD::SMULFIX || 7494 Node->getOpcode() == ISD::UMULFIX || 7495 Node->getOpcode() == ISD::SMULFIXSAT || 7496 Node->getOpcode() == ISD::UMULFIXSAT) && 7497 "Expected a fixed point multiplication opcode"); 7498 7499 SDLoc dl(Node); 7500 SDValue LHS = Node->getOperand(0); 7501 SDValue RHS = Node->getOperand(1); 7502 EVT VT = LHS.getValueType(); 7503 unsigned Scale = Node->getConstantOperandVal(2); 7504 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7505 Node->getOpcode() == ISD::UMULFIXSAT); 7506 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7507 Node->getOpcode() == ISD::SMULFIXSAT); 7508 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7509 unsigned VTSize = VT.getScalarSizeInBits(); 7510 7511 if (!Scale) { 7512 // [us]mul.fix(a, b, 0) -> mul(a, b) 7513 if (!Saturating) { 7514 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7515 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7516 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7517 SDValue Result = 7518 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7519 SDValue Product = Result.getValue(0); 7520 SDValue Overflow = Result.getValue(1); 7521 SDValue Zero = DAG.getConstant(0, dl, VT); 7522 7523 APInt MinVal = APInt::getSignedMinValue(VTSize); 7524 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7525 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7526 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7527 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7528 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7529 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7530 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7531 SDValue Result = 7532 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7533 SDValue Product = Result.getValue(0); 7534 SDValue Overflow = Result.getValue(1); 7535 7536 APInt MaxVal = APInt::getMaxValue(VTSize); 7537 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7538 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7539 } 7540 } 7541 7542 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7543 "Expected scale to be less than the number of bits if signed or at " 7544 "most the number of bits if unsigned."); 7545 assert(LHS.getValueType() == RHS.getValueType() && 7546 "Expected both operands to be the same type"); 7547 7548 // Get the upper and lower bits of the result. 7549 SDValue Lo, Hi; 7550 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7551 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7552 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7553 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7554 Lo = Result.getValue(0); 7555 Hi = Result.getValue(1); 7556 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7557 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7558 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7559 } else if (VT.isVector()) { 7560 return SDValue(); 7561 } else { 7562 report_fatal_error("Unable to expand fixed point multiplication."); 7563 } 7564 7565 if (Scale == VTSize) 7566 // Result is just the top half since we'd be shifting by the width of the 7567 // operand. Overflow impossible so this works for both UMULFIX and 7568 // UMULFIXSAT. 7569 return Hi; 7570 7571 // The result will need to be shifted right by the scale since both operands 7572 // are scaled. The result is given to us in 2 halves, so we only want part of 7573 // both in the result. 7574 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7575 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7576 DAG.getConstant(Scale, dl, ShiftTy)); 7577 if (!Saturating) 7578 return Result; 7579 7580 if (!Signed) { 7581 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7582 // widened multiplication) aren't all zeroes. 7583 7584 // Saturate to max if ((Hi >> Scale) != 0), 7585 // which is the same as if (Hi > ((1 << Scale) - 1)) 7586 APInt MaxVal = APInt::getMaxValue(VTSize); 7587 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7588 dl, VT); 7589 Result = DAG.getSelectCC(dl, Hi, LowMask, 7590 DAG.getConstant(MaxVal, dl, VT), Result, 7591 ISD::SETUGT); 7592 7593 return Result; 7594 } 7595 7596 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7597 // widened multiplication) aren't all ones or all zeroes. 7598 7599 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7600 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7601 7602 if (Scale == 0) { 7603 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7604 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7605 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7606 // Saturated to SatMin if wide product is negative, and SatMax if wide 7607 // product is positive ... 7608 SDValue Zero = DAG.getConstant(0, dl, VT); 7609 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7610 ISD::SETLT); 7611 // ... but only if we overflowed. 7612 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7613 } 7614 7615 // We handled Scale==0 above so all the bits to examine is in Hi. 7616 7617 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7618 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7619 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7620 dl, VT); 7621 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7622 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7623 // which is the same as if (HI < (-1 << (Scale - 1)) 7624 SDValue HighMask = 7625 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7626 dl, VT); 7627 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7628 return Result; 7629 } 7630 7631 SDValue 7632 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7633 SDValue LHS, SDValue RHS, 7634 unsigned Scale, SelectionDAG &DAG) const { 7635 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 7636 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 7637 "Expected a fixed point division opcode"); 7638 7639 EVT VT = LHS.getValueType(); 7640 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 7641 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 7642 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7643 7644 // If there is enough room in the type to upscale the LHS or downscale the 7645 // RHS before the division, we can perform it in this type without having to 7646 // resize. For signed operations, the LHS headroom is the number of 7647 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7648 // The headroom for the RHS is the number of trailing zeroes. 7649 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7650 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7651 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7652 7653 // For signed saturating operations, we need to be able to detect true integer 7654 // division overflow; that is, when you have MIN / -EPS. However, this 7655 // is undefined behavior and if we emit divisions that could take such 7656 // values it may cause undesired behavior (arithmetic exceptions on x86, for 7657 // example). 7658 // Avoid this by requiring an extra bit so that we never get this case. 7659 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 7660 // signed saturating division, we need to emit a whopping 32-bit division. 7661 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 7662 return SDValue(); 7663 7664 unsigned LHSShift = std::min(LHSLead, Scale); 7665 unsigned RHSShift = Scale - LHSShift; 7666 7667 // At this point, we know that if we shift the LHS up by LHSShift and the 7668 // RHS down by RHSShift, we can emit a regular division with a final scaling 7669 // factor of Scale. 7670 7671 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7672 if (LHSShift) 7673 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7674 DAG.getConstant(LHSShift, dl, ShiftTy)); 7675 if (RHSShift) 7676 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7677 DAG.getConstant(RHSShift, dl, ShiftTy)); 7678 7679 SDValue Quot; 7680 if (Signed) { 7681 // For signed operations, if the resulting quotient is negative and the 7682 // remainder is nonzero, subtract 1 from the quotient to round towards 7683 // negative infinity. 7684 SDValue Rem; 7685 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7686 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7687 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7688 if (isTypeLegal(VT) && 7689 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7690 Quot = DAG.getNode(ISD::SDIVREM, dl, 7691 DAG.getVTList(VT, VT), 7692 LHS, RHS); 7693 Rem = Quot.getValue(1); 7694 Quot = Quot.getValue(0); 7695 } else { 7696 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7697 LHS, RHS); 7698 Rem = DAG.getNode(ISD::SREM, dl, VT, 7699 LHS, RHS); 7700 } 7701 SDValue Zero = DAG.getConstant(0, dl, VT); 7702 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7703 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7704 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7705 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7706 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7707 DAG.getConstant(1, dl, VT)); 7708 Quot = DAG.getSelect(dl, VT, 7709 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7710 Sub1, Quot); 7711 } else 7712 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7713 LHS, RHS); 7714 7715 return Quot; 7716 } 7717 7718 void TargetLowering::expandUADDSUBO( 7719 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7720 SDLoc dl(Node); 7721 SDValue LHS = Node->getOperand(0); 7722 SDValue RHS = Node->getOperand(1); 7723 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7724 7725 // If ADD/SUBCARRY is legal, use that instead. 7726 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7727 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7728 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7729 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7730 { LHS, RHS, CarryIn }); 7731 Result = SDValue(NodeCarry.getNode(), 0); 7732 Overflow = SDValue(NodeCarry.getNode(), 1); 7733 return; 7734 } 7735 7736 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7737 LHS.getValueType(), LHS, RHS); 7738 7739 EVT ResultType = Node->getValueType(1); 7740 EVT SetCCType = getSetCCResultType( 7741 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7742 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7743 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7744 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7745 } 7746 7747 void TargetLowering::expandSADDSUBO( 7748 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7749 SDLoc dl(Node); 7750 SDValue LHS = Node->getOperand(0); 7751 SDValue RHS = Node->getOperand(1); 7752 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7753 7754 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7755 LHS.getValueType(), LHS, RHS); 7756 7757 EVT ResultType = Node->getValueType(1); 7758 EVT OType = getSetCCResultType( 7759 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7760 7761 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7762 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7763 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7764 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7765 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7766 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7767 return; 7768 } 7769 7770 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7771 7772 // For an addition, the result should be less than one of the operands (LHS) 7773 // if and only if the other operand (RHS) is negative, otherwise there will 7774 // be overflow. 7775 // For a subtraction, the result should be less than one of the operands 7776 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7777 // otherwise there will be overflow. 7778 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7779 SDValue ConditionRHS = 7780 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7781 7782 Overflow = DAG.getBoolExtOrTrunc( 7783 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7784 ResultType, ResultType); 7785 } 7786 7787 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7788 SDValue &Overflow, SelectionDAG &DAG) const { 7789 SDLoc dl(Node); 7790 EVT VT = Node->getValueType(0); 7791 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7792 SDValue LHS = Node->getOperand(0); 7793 SDValue RHS = Node->getOperand(1); 7794 bool isSigned = Node->getOpcode() == ISD::SMULO; 7795 7796 // For power-of-two multiplications we can use a simpler shift expansion. 7797 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7798 const APInt &C = RHSC->getAPIntValue(); 7799 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7800 if (C.isPowerOf2()) { 7801 // smulo(x, signed_min) is same as umulo(x, signed_min). 7802 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7803 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7804 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7805 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7806 Overflow = DAG.getSetCC(dl, SetCCVT, 7807 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7808 dl, VT, Result, ShiftAmt), 7809 LHS, ISD::SETNE); 7810 return true; 7811 } 7812 } 7813 7814 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7815 if (VT.isVector()) 7816 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7817 VT.getVectorNumElements()); 7818 7819 SDValue BottomHalf; 7820 SDValue TopHalf; 7821 static const unsigned Ops[2][3] = 7822 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7823 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7824 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7825 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7826 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7827 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7828 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7829 RHS); 7830 TopHalf = BottomHalf.getValue(1); 7831 } else if (isTypeLegal(WideVT)) { 7832 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7833 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7834 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7835 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7836 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7837 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7838 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7839 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7840 } else { 7841 if (VT.isVector()) 7842 return false; 7843 7844 // We can fall back to a libcall with an illegal type for the MUL if we 7845 // have a libcall big enough. 7846 // Also, we can fall back to a division in some cases, but that's a big 7847 // performance hit in the general case. 7848 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7849 if (WideVT == MVT::i16) 7850 LC = RTLIB::MUL_I16; 7851 else if (WideVT == MVT::i32) 7852 LC = RTLIB::MUL_I32; 7853 else if (WideVT == MVT::i64) 7854 LC = RTLIB::MUL_I64; 7855 else if (WideVT == MVT::i128) 7856 LC = RTLIB::MUL_I128; 7857 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7858 7859 SDValue HiLHS; 7860 SDValue HiRHS; 7861 if (isSigned) { 7862 // The high part is obtained by SRA'ing all but one of the bits of low 7863 // part. 7864 unsigned LoSize = VT.getSizeInBits(); 7865 HiLHS = 7866 DAG.getNode(ISD::SRA, dl, VT, LHS, 7867 DAG.getConstant(LoSize - 1, dl, 7868 getPointerTy(DAG.getDataLayout()))); 7869 HiRHS = 7870 DAG.getNode(ISD::SRA, dl, VT, RHS, 7871 DAG.getConstant(LoSize - 1, dl, 7872 getPointerTy(DAG.getDataLayout()))); 7873 } else { 7874 HiLHS = DAG.getConstant(0, dl, VT); 7875 HiRHS = DAG.getConstant(0, dl, VT); 7876 } 7877 7878 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7879 // pre-lowered to the correct types. This all depends upon WideVT not 7880 // being a legal type for the architecture and thus has to be split to 7881 // two arguments. 7882 SDValue Ret; 7883 TargetLowering::MakeLibCallOptions CallOptions; 7884 CallOptions.setSExt(isSigned); 7885 CallOptions.setIsPostTypeLegalization(true); 7886 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7887 // Halves of WideVT are packed into registers in different order 7888 // depending on platform endianness. This is usually handled by 7889 // the C calling convention, but we can't defer to it in 7890 // the legalizer. 7891 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7892 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7893 } else { 7894 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7895 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7896 } 7897 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7898 "Ret value is a collection of constituent nodes holding result."); 7899 if (DAG.getDataLayout().isLittleEndian()) { 7900 // Same as above. 7901 BottomHalf = Ret.getOperand(0); 7902 TopHalf = Ret.getOperand(1); 7903 } else { 7904 BottomHalf = Ret.getOperand(1); 7905 TopHalf = Ret.getOperand(0); 7906 } 7907 } 7908 7909 Result = BottomHalf; 7910 if (isSigned) { 7911 SDValue ShiftAmt = DAG.getConstant( 7912 VT.getScalarSizeInBits() - 1, dl, 7913 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7914 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7915 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7916 } else { 7917 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7918 DAG.getConstant(0, dl, VT), ISD::SETNE); 7919 } 7920 7921 // Truncate the result if SetCC returns a larger type than needed. 7922 EVT RType = Node->getValueType(1); 7923 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7924 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7925 7926 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7927 "Unexpected result type for S/UMULO legalization"); 7928 return true; 7929 } 7930 7931 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7932 SDLoc dl(Node); 7933 bool NoNaN = Node->getFlags().hasNoNaNs(); 7934 unsigned BaseOpcode = 0; 7935 switch (Node->getOpcode()) { 7936 default: llvm_unreachable("Expected VECREDUCE opcode"); 7937 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7938 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7939 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7940 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7941 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7942 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7943 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7944 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7945 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7946 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7947 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7948 case ISD::VECREDUCE_FMAX: 7949 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7950 break; 7951 case ISD::VECREDUCE_FMIN: 7952 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7953 break; 7954 } 7955 7956 SDValue Op = Node->getOperand(0); 7957 EVT VT = Op.getValueType(); 7958 7959 // Try to use a shuffle reduction for power of two vectors. 7960 if (VT.isPow2VectorType()) { 7961 while (VT.getVectorNumElements() > 1) { 7962 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7963 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7964 break; 7965 7966 SDValue Lo, Hi; 7967 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7968 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7969 VT = HalfVT; 7970 } 7971 } 7972 7973 EVT EltVT = VT.getVectorElementType(); 7974 unsigned NumElts = VT.getVectorNumElements(); 7975 7976 SmallVector<SDValue, 8> Ops; 7977 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7978 7979 SDValue Res = Ops[0]; 7980 for (unsigned i = 1; i < NumElts; i++) 7981 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7982 7983 // Result type may be wider than element type. 7984 if (EltVT != Node->getValueType(0)) 7985 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7986 return Res; 7987 } 7988 7989 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 7990 SelectionDAG &DAG) const { 7991 EVT VT = Node->getValueType(0); 7992 SDLoc dl(Node); 7993 bool isSigned = Node->getOpcode() == ISD::SREM; 7994 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 7995 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 7996 SDValue Dividend = Node->getOperand(0); 7997 SDValue Divisor = Node->getOperand(1); 7998 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 7999 SDVTList VTs = DAG.getVTList(VT, VT); 8000 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8001 return true; 8002 } else if (isOperationLegalOrCustom(DivOpc, VT)) { 8003 // X % Y -> X-X/Y*Y 8004 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8005 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8006 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8007 return true; 8008 } 8009 return false; 8010 } 8011