1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40   : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // Conservatively require the attributes of the call to match those of
57   // the return. Ignore NoAlias and NonNull because they don't affect the
58   // call sequence.
59   AttributeList CallerAttrs = F.getAttributes();
60   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
61           .removeAttribute(Attribute::NoAlias)
62           .removeAttribute(Attribute::NonNull)
63           .hasAttributes())
64     return false;
65 
66   // It's not safe to eliminate the sign / zero extension of the return value.
67   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
68       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
69     return false;
70 
71   // Check if the only use is a function return node.
72   return isUsedByReturnOnly(Node, Chain);
73 }
74 
75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
76     const uint32_t *CallerPreservedMask,
77     const SmallVectorImpl<CCValAssign> &ArgLocs,
78     const SmallVectorImpl<SDValue> &OutVals) const {
79   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
80     const CCValAssign &ArgLoc = ArgLocs[I];
81     if (!ArgLoc.isRegLoc())
82       continue;
83     unsigned Reg = ArgLoc.getLocReg();
84     // Only look at callee saved registers.
85     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
86       continue;
87     // Check that we pass the value used for the caller.
88     // (We look for a CopyFromReg reading a virtual register that is used
89     //  for the function live-in value of register Reg)
90     SDValue Value = OutVals[I];
91     if (Value->getOpcode() != ISD::CopyFromReg)
92       return false;
93     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
94     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
95       return false;
96   }
97   return true;
98 }
99 
100 /// Set CallLoweringInfo attribute flags based on a call instruction
101 /// and called function attributes.
102 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
103                                                      unsigned ArgIdx) {
104   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
105   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
106   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
107   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
108   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
109   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
110   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
111   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
112   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
113   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
114   Alignment = Call->getParamAlignment(ArgIdx);
115   ByValType = nullptr;
116   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
117     ByValType = Call->getParamByValType(ArgIdx);
118 }
119 
120 /// Generate a libcall taking the given operands as arguments and returning a
121 /// result of type RetVT.
122 std::pair<SDValue, SDValue>
123 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
124                             ArrayRef<SDValue> Ops, bool isSigned,
125                             const SDLoc &dl, bool doesNotReturn,
126                             bool isReturnValueUsed,
127                             bool isPostTypeLegalization) const {
128   TargetLowering::ArgListTy Args;
129   Args.reserve(Ops.size());
130 
131   TargetLowering::ArgListEntry Entry;
132   for (SDValue Op : Ops) {
133     Entry.Node = Op;
134     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
135     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
136     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
137     Args.push_back(Entry);
138   }
139 
140   if (LC == RTLIB::UNKNOWN_LIBCALL)
141     report_fatal_error("Unsupported library call operation!");
142   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
143                                          getPointerTy(DAG.getDataLayout()));
144 
145   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
146   TargetLowering::CallLoweringInfo CLI(DAG);
147   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
148   CLI.setDebugLoc(dl)
149       .setChain(DAG.getEntryNode())
150       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
151       .setNoReturn(doesNotReturn)
152       .setDiscardResult(!isReturnValueUsed)
153       .setIsPostTypeLegalization(isPostTypeLegalization)
154       .setSExtResult(signExtend)
155       .setZExtResult(!signExtend);
156   return LowerCallTo(CLI);
157 }
158 
159 bool
160 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
161                                          unsigned Limit, uint64_t Size,
162                                          unsigned DstAlign, unsigned SrcAlign,
163                                          bool IsMemset,
164                                          bool ZeroMemset,
165                                          bool MemcpyStrSrc,
166                                          bool AllowOverlap,
167                                          unsigned DstAS, unsigned SrcAS,
168                                          const AttributeList &FuncAttributes) const {
169   // If 'SrcAlign' is zero, that means the memory operation does not need to
170   // load the value, i.e. memset or memcpy from constant string. Otherwise,
171   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
172   // is the specified alignment of the memory operation. If it is zero, that
173   // means it's possible to change the alignment of the destination.
174   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
175   // not need to be loaded.
176   if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
177     return false;
178 
179   EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
180                                IsMemset, ZeroMemset, MemcpyStrSrc,
181                                FuncAttributes);
182 
183   if (VT == MVT::Other) {
184     // Use the largest integer type whose alignment constraints are satisfied.
185     // We only need to check DstAlign here as SrcAlign is always greater or
186     // equal to DstAlign (or zero).
187     VT = MVT::i64;
188     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
189            !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
190       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
191     assert(VT.isInteger());
192 
193     // Find the largest legal integer type.
194     MVT LVT = MVT::i64;
195     while (!isTypeLegal(LVT))
196       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
197     assert(LVT.isInteger());
198 
199     // If the type we've chosen is larger than the largest legal integer type
200     // then use that instead.
201     if (VT.bitsGT(LVT))
202       VT = LVT;
203   }
204 
205   unsigned NumMemOps = 0;
206   while (Size != 0) {
207     unsigned VTSize = VT.getSizeInBits() / 8;
208     while (VTSize > Size) {
209       // For now, only use non-vector load / store's for the left-over pieces.
210       EVT NewVT = VT;
211       unsigned NewVTSize;
212 
213       bool Found = false;
214       if (VT.isVector() || VT.isFloatingPoint()) {
215         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
216         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
217             isSafeMemOpType(NewVT.getSimpleVT()))
218           Found = true;
219         else if (NewVT == MVT::i64 &&
220                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
221                  isSafeMemOpType(MVT::f64)) {
222           // i64 is usually not legal on 32-bit targets, but f64 may be.
223           NewVT = MVT::f64;
224           Found = true;
225         }
226       }
227 
228       if (!Found) {
229         do {
230           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
231           if (NewVT == MVT::i8)
232             break;
233         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
234       }
235       NewVTSize = NewVT.getSizeInBits() / 8;
236 
237       // If the new VT cannot cover all of the remaining bits, then consider
238       // issuing a (or a pair of) unaligned and overlapping load / store.
239       bool Fast;
240       if (NumMemOps && AllowOverlap && NewVTSize < Size &&
241           allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign,
242                                          MachineMemOperand::MONone, &Fast) &&
243           Fast)
244         VTSize = Size;
245       else {
246         VT = NewVT;
247         VTSize = NewVTSize;
248       }
249     }
250 
251     if (++NumMemOps > Limit)
252       return false;
253 
254     MemOps.push_back(VT);
255     Size -= VTSize;
256   }
257 
258   return true;
259 }
260 
261 /// Soften the operands of a comparison. This code is shared among BR_CC,
262 /// SELECT_CC, and SETCC handlers.
263 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
264                                          SDValue &NewLHS, SDValue &NewRHS,
265                                          ISD::CondCode &CCCode,
266                                          const SDLoc &dl) const {
267   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
268          && "Unsupported setcc type!");
269 
270   // Expand into one or more soft-fp libcall(s).
271   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
272   bool ShouldInvertCC = false;
273   switch (CCCode) {
274   case ISD::SETEQ:
275   case ISD::SETOEQ:
276     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
277           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
278           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
279     break;
280   case ISD::SETNE:
281   case ISD::SETUNE:
282     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
283           (VT == MVT::f64) ? RTLIB::UNE_F64 :
284           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
285     break;
286   case ISD::SETGE:
287   case ISD::SETOGE:
288     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
289           (VT == MVT::f64) ? RTLIB::OGE_F64 :
290           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
291     break;
292   case ISD::SETLT:
293   case ISD::SETOLT:
294     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
295           (VT == MVT::f64) ? RTLIB::OLT_F64 :
296           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
297     break;
298   case ISD::SETLE:
299   case ISD::SETOLE:
300     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
301           (VT == MVT::f64) ? RTLIB::OLE_F64 :
302           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
303     break;
304   case ISD::SETGT:
305   case ISD::SETOGT:
306     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
307           (VT == MVT::f64) ? RTLIB::OGT_F64 :
308           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
309     break;
310   case ISD::SETUO:
311     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
312           (VT == MVT::f64) ? RTLIB::UO_F64 :
313           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
314     break;
315   case ISD::SETO:
316     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
317           (VT == MVT::f64) ? RTLIB::O_F64 :
318           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
319     break;
320   case ISD::SETONE:
321     // SETONE = SETOLT | SETOGT
322     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
323           (VT == MVT::f64) ? RTLIB::OLT_F64 :
324           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
325     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
326           (VT == MVT::f64) ? RTLIB::OGT_F64 :
327           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
328     break;
329   case ISD::SETUEQ:
330     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
331           (VT == MVT::f64) ? RTLIB::UO_F64 :
332           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
333     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
334           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
335           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
336     break;
337   default:
338     // Invert CC for unordered comparisons
339     ShouldInvertCC = true;
340     switch (CCCode) {
341     case ISD::SETULT:
342       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
343             (VT == MVT::f64) ? RTLIB::OGE_F64 :
344             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
345       break;
346     case ISD::SETULE:
347       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
348             (VT == MVT::f64) ? RTLIB::OGT_F64 :
349             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
350       break;
351     case ISD::SETUGT:
352       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
353             (VT == MVT::f64) ? RTLIB::OLE_F64 :
354             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
355       break;
356     case ISD::SETUGE:
357       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
358             (VT == MVT::f64) ? RTLIB::OLT_F64 :
359             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
360       break;
361     default: llvm_unreachable("Do not know how to soften this setcc!");
362     }
363   }
364 
365   // Use the target specific return value for comparions lib calls.
366   EVT RetVT = getCmpLibcallReturnType();
367   SDValue Ops[2] = {NewLHS, NewRHS};
368   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
369                        dl).first;
370   NewRHS = DAG.getConstant(0, dl, RetVT);
371 
372   CCCode = getCmpLibcallCC(LC1);
373   if (ShouldInvertCC)
374     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
375 
376   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
377     SDValue Tmp = DAG.getNode(
378         ISD::SETCC, dl,
379         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
380         NewLHS, NewRHS, DAG.getCondCode(CCCode));
381     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
382                          dl).first;
383     NewLHS = DAG.getNode(
384         ISD::SETCC, dl,
385         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
386         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
387     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
388     NewRHS = SDValue();
389   }
390 }
391 
392 /// Return the entry encoding for a jump table in the current function. The
393 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
394 unsigned TargetLowering::getJumpTableEncoding() const {
395   // In non-pic modes, just use the address of a block.
396   if (!isPositionIndependent())
397     return MachineJumpTableInfo::EK_BlockAddress;
398 
399   // In PIC mode, if the target supports a GPRel32 directive, use it.
400   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
401     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
402 
403   // Otherwise, use a label difference.
404   return MachineJumpTableInfo::EK_LabelDifference32;
405 }
406 
407 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
408                                                  SelectionDAG &DAG) const {
409   // If our PIC model is GP relative, use the global offset table as the base.
410   unsigned JTEncoding = getJumpTableEncoding();
411 
412   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
413       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
414     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
415 
416   return Table;
417 }
418 
419 /// This returns the relocation base for the given PIC jumptable, the same as
420 /// getPICJumpTableRelocBase, but as an MCExpr.
421 const MCExpr *
422 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
423                                              unsigned JTI,MCContext &Ctx) const{
424   // The normal PIC reloc base is the label at the start of the jump table.
425   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
426 }
427 
428 bool
429 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
430   const TargetMachine &TM = getTargetMachine();
431   const GlobalValue *GV = GA->getGlobal();
432 
433   // If the address is not even local to this DSO we will have to load it from
434   // a got and then add the offset.
435   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
436     return false;
437 
438   // If the code is position independent we will have to add a base register.
439   if (isPositionIndependent())
440     return false;
441 
442   // Otherwise we can do it.
443   return true;
444 }
445 
446 //===----------------------------------------------------------------------===//
447 //  Optimization Methods
448 //===----------------------------------------------------------------------===//
449 
450 /// If the specified instruction has a constant integer operand and there are
451 /// bits set in that constant that are not demanded, then clear those bits and
452 /// return true.
453 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
454                                             TargetLoweringOpt &TLO) const {
455   SDLoc DL(Op);
456   unsigned Opcode = Op.getOpcode();
457 
458   // Do target-specific constant optimization.
459   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
460     return TLO.New.getNode();
461 
462   // FIXME: ISD::SELECT, ISD::SELECT_CC
463   switch (Opcode) {
464   default:
465     break;
466   case ISD::XOR:
467   case ISD::AND:
468   case ISD::OR: {
469     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
470     if (!Op1C)
471       return false;
472 
473     // If this is a 'not' op, don't touch it because that's a canonical form.
474     const APInt &C = Op1C->getAPIntValue();
475     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
476       return false;
477 
478     if (!C.isSubsetOf(Demanded)) {
479       EVT VT = Op.getValueType();
480       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
481       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
482       return TLO.CombineTo(Op, NewOp);
483     }
484 
485     break;
486   }
487   }
488 
489   return false;
490 }
491 
492 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
493 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
494 /// generalized for targets with other types of implicit widening casts.
495 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
496                                       const APInt &Demanded,
497                                       TargetLoweringOpt &TLO) const {
498   assert(Op.getNumOperands() == 2 &&
499          "ShrinkDemandedOp only supports binary operators!");
500   assert(Op.getNode()->getNumValues() == 1 &&
501          "ShrinkDemandedOp only supports nodes with one result!");
502 
503   SelectionDAG &DAG = TLO.DAG;
504   SDLoc dl(Op);
505 
506   // Early return, as this function cannot handle vector types.
507   if (Op.getValueType().isVector())
508     return false;
509 
510   // Don't do this if the node has another user, which may require the
511   // full value.
512   if (!Op.getNode()->hasOneUse())
513     return false;
514 
515   // Search for the smallest integer type with free casts to and from
516   // Op's type. For expedience, just check power-of-2 integer types.
517   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
518   unsigned DemandedSize = Demanded.getActiveBits();
519   unsigned SmallVTBits = DemandedSize;
520   if (!isPowerOf2_32(SmallVTBits))
521     SmallVTBits = NextPowerOf2(SmallVTBits);
522   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
523     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
524     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
525         TLI.isZExtFree(SmallVT, Op.getValueType())) {
526       // We found a type with free casts.
527       SDValue X = DAG.getNode(
528           Op.getOpcode(), dl, SmallVT,
529           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
530           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
531       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
532       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
533       return TLO.CombineTo(Op, Z);
534     }
535   }
536   return false;
537 }
538 
539 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
540                                           DAGCombinerInfo &DCI) const {
541   SelectionDAG &DAG = DCI.DAG;
542   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
543                         !DCI.isBeforeLegalizeOps());
544   KnownBits Known;
545 
546   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
547   if (Simplified) {
548     DCI.AddToWorklist(Op.getNode());
549     DCI.CommitTargetLoweringOpt(TLO);
550   }
551   return Simplified;
552 }
553 
554 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
555                                           KnownBits &Known,
556                                           TargetLoweringOpt &TLO,
557                                           unsigned Depth,
558                                           bool AssumeSingleUse) const {
559   EVT VT = Op.getValueType();
560   APInt DemandedElts = VT.isVector()
561                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
562                            : APInt(1, 1);
563   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
564                               AssumeSingleUse);
565 }
566 
567 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
568 // TODO: Under what circumstances can we create nodes? Constant folding?
569 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
570     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
571     SelectionDAG &DAG, unsigned Depth) const {
572   if (Depth >= 6) // Limit search depth.
573     return SDValue();
574 
575   unsigned NumElts = DemandedElts.getBitWidth();
576   KnownBits LHSKnown, RHSKnown;
577   switch (Op.getOpcode()) {
578   case ISD::BITCAST: {
579     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
580     EVT SrcVT = Src.getValueType();
581     EVT DstVT = Op.getValueType();
582     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
583     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
584 
585     if (NumSrcEltBits == NumDstEltBits)
586       if (SDValue V = SimplifyMultipleUseDemandedBits(
587               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
588         return DAG.getBitcast(DstVT, V);
589 
590     // TODO - bigendian once we have test coverage.
591     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
592         DAG.getDataLayout().isLittleEndian()) {
593       unsigned Scale = NumDstEltBits / NumSrcEltBits;
594       unsigned NumSrcElts = SrcVT.getVectorNumElements();
595       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
596       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
597       for (unsigned i = 0; i != Scale; ++i) {
598         unsigned Offset = i * NumSrcEltBits;
599         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
600         if (!Sub.isNullValue()) {
601           DemandedSrcBits |= Sub;
602           for (unsigned j = 0; j != NumElts; ++j)
603             if (DemandedElts[j])
604               DemandedSrcElts.setBit((j * Scale) + i);
605         }
606       }
607 
608       if (SDValue V = SimplifyMultipleUseDemandedBits(
609               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
610         return DAG.getBitcast(DstVT, V);
611     }
612 
613     // TODO - bigendian once we have test coverage.
614     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
615         DAG.getDataLayout().isLittleEndian()) {
616       unsigned Scale = NumSrcEltBits / NumDstEltBits;
617       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
618       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
619       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
620       for (unsigned i = 0; i != NumElts; ++i)
621         if (DemandedElts[i]) {
622           unsigned Offset = (i % Scale) * NumDstEltBits;
623           DemandedSrcBits.insertBits(DemandedBits, Offset);
624           DemandedSrcElts.setBit(i / Scale);
625         }
626 
627       if (SDValue V = SimplifyMultipleUseDemandedBits(
628               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
629         return DAG.getBitcast(DstVT, V);
630     }
631 
632     break;
633   }
634   case ISD::AND: {
635     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
636     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
637 
638     // If all of the demanded bits are known 1 on one side, return the other.
639     // These bits cannot contribute to the result of the 'and' in this
640     // context.
641     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
642       return Op.getOperand(0);
643     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
644       return Op.getOperand(1);
645     break;
646   }
647   case ISD::OR: {
648     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
649     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
650 
651     // If all of the demanded bits are known zero on one side, return the
652     // other.  These bits cannot contribute to the result of the 'or' in this
653     // context.
654     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
655       return Op.getOperand(0);
656     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
657       return Op.getOperand(1);
658     break;
659   }
660   case ISD::XOR: {
661     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
662     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
663 
664     // If all of the demanded bits are known zero on one side, return the
665     // other.
666     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
667       return Op.getOperand(0);
668     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
669       return Op.getOperand(1);
670     break;
671   }
672   case ISD::SIGN_EXTEND_INREG: {
673     // If none of the extended bits are demanded, eliminate the sextinreg.
674     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
675     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
676       return Op.getOperand(0);
677     break;
678   }
679   case ISD::INSERT_VECTOR_ELT: {
680     // If we don't demand the inserted element, return the base vector.
681     SDValue Vec = Op.getOperand(0);
682     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
683     MVT VecVT = Vec.getSimpleValueType();
684     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
685         !DemandedElts[CIdx->getZExtValue()])
686       return Vec;
687     break;
688   }
689   case ISD::VECTOR_SHUFFLE: {
690     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
691 
692     // If all the demanded elts are from one operand and are inline,
693     // then we can use the operand directly.
694     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
695     for (unsigned i = 0; i != NumElts; ++i) {
696       int M = ShuffleMask[i];
697       if (M < 0 || !DemandedElts[i])
698         continue;
699       AllUndef = false;
700       IdentityLHS &= (M == (int)i);
701       IdentityRHS &= ((M - NumElts) == i);
702     }
703 
704     if (AllUndef)
705       return DAG.getUNDEF(Op.getValueType());
706     if (IdentityLHS)
707       return Op.getOperand(0);
708     if (IdentityRHS)
709       return Op.getOperand(1);
710     break;
711   }
712   default:
713     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
714       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
715               Op, DemandedBits, DemandedElts, DAG, Depth))
716         return V;
717     break;
718   }
719   return SDValue();
720 }
721 
722 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
723 /// result of Op are ever used downstream. If we can use this information to
724 /// simplify Op, create a new simplified DAG node and return true, returning the
725 /// original and new nodes in Old and New. Otherwise, analyze the expression and
726 /// return a mask of Known bits for the expression (used to simplify the
727 /// caller).  The Known bits may only be accurate for those bits in the
728 /// OriginalDemandedBits and OriginalDemandedElts.
729 bool TargetLowering::SimplifyDemandedBits(
730     SDValue Op, const APInt &OriginalDemandedBits,
731     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
732     unsigned Depth, bool AssumeSingleUse) const {
733   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
734   assert(Op.getScalarValueSizeInBits() == BitWidth &&
735          "Mask size mismatches value type size!");
736 
737   unsigned NumElts = OriginalDemandedElts.getBitWidth();
738   assert((!Op.getValueType().isVector() ||
739           NumElts == Op.getValueType().getVectorNumElements()) &&
740          "Unexpected vector size");
741 
742   APInt DemandedBits = OriginalDemandedBits;
743   APInt DemandedElts = OriginalDemandedElts;
744   SDLoc dl(Op);
745   auto &DL = TLO.DAG.getDataLayout();
746 
747   // Don't know anything.
748   Known = KnownBits(BitWidth);
749 
750   // Undef operand.
751   if (Op.isUndef())
752     return false;
753 
754   if (Op.getOpcode() == ISD::Constant) {
755     // We know all of the bits for a constant!
756     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
757     Known.Zero = ~Known.One;
758     return false;
759   }
760 
761   // Other users may use these bits.
762   EVT VT = Op.getValueType();
763   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
764     if (Depth != 0) {
765       // If not at the root, Just compute the Known bits to
766       // simplify things downstream.
767       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
768       return false;
769     }
770     // If this is the root being simplified, allow it to have multiple uses,
771     // just set the DemandedBits/Elts to all bits.
772     DemandedBits = APInt::getAllOnesValue(BitWidth);
773     DemandedElts = APInt::getAllOnesValue(NumElts);
774   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
775     // Not demanding any bits/elts from Op.
776     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
777   } else if (Depth >= 6) { // Limit search depth.
778     return false;
779   }
780 
781   KnownBits Known2, KnownOut;
782   switch (Op.getOpcode()) {
783   case ISD::SCALAR_TO_VECTOR: {
784     if (!DemandedElts[0])
785       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
786 
787     KnownBits SrcKnown;
788     SDValue Src = Op.getOperand(0);
789     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
790     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
791     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
792       return true;
793     Known = SrcKnown.zextOrTrunc(BitWidth, false);
794     break;
795   }
796   case ISD::BUILD_VECTOR:
797     // Collect the known bits that are shared by every demanded element.
798     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
799     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
800     return false; // Don't fall through, will infinitely loop.
801   case ISD::LOAD: {
802     LoadSDNode *LD = cast<LoadSDNode>(Op);
803     if (getTargetConstantFromLoad(LD)) {
804       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
805       return false; // Don't fall through, will infinitely loop.
806     }
807     break;
808   }
809   case ISD::INSERT_VECTOR_ELT: {
810     SDValue Vec = Op.getOperand(0);
811     SDValue Scl = Op.getOperand(1);
812     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
813     EVT VecVT = Vec.getValueType();
814 
815     // If index isn't constant, assume we need all vector elements AND the
816     // inserted element.
817     APInt DemandedVecElts(DemandedElts);
818     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
819       unsigned Idx = CIdx->getZExtValue();
820       DemandedVecElts.clearBit(Idx);
821 
822       // Inserted element is not required.
823       if (!DemandedElts[Idx])
824         return TLO.CombineTo(Op, Vec);
825     }
826 
827     KnownBits KnownScl;
828     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
829     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
830     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
831       return true;
832 
833     Known = KnownScl.zextOrTrunc(BitWidth, false);
834 
835     KnownBits KnownVec;
836     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
837                              Depth + 1))
838       return true;
839 
840     if (!!DemandedVecElts) {
841       Known.One &= KnownVec.One;
842       Known.Zero &= KnownVec.Zero;
843     }
844 
845     return false;
846   }
847   case ISD::INSERT_SUBVECTOR: {
848     SDValue Base = Op.getOperand(0);
849     SDValue Sub = Op.getOperand(1);
850     EVT SubVT = Sub.getValueType();
851     unsigned NumSubElts = SubVT.getVectorNumElements();
852 
853     // If index isn't constant, assume we need the original demanded base
854     // elements and ALL the inserted subvector elements.
855     APInt BaseElts = DemandedElts;
856     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
857     if (isa<ConstantSDNode>(Op.getOperand(2))) {
858       const APInt &Idx = Op.getConstantOperandAPInt(2);
859       if (Idx.ule(NumElts - NumSubElts)) {
860         unsigned SubIdx = Idx.getZExtValue();
861         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
862         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
863       }
864     }
865 
866     KnownBits KnownSub, KnownBase;
867     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
868                              Depth + 1))
869       return true;
870     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
871                              Depth + 1))
872       return true;
873 
874     Known.Zero.setAllBits();
875     Known.One.setAllBits();
876     if (!!SubElts) {
877         Known.One &= KnownSub.One;
878         Known.Zero &= KnownSub.Zero;
879     }
880     if (!!BaseElts) {
881         Known.One &= KnownBase.One;
882         Known.Zero &= KnownBase.Zero;
883     }
884     break;
885   }
886   case ISD::CONCAT_VECTORS: {
887     Known.Zero.setAllBits();
888     Known.One.setAllBits();
889     EVT SubVT = Op.getOperand(0).getValueType();
890     unsigned NumSubVecs = Op.getNumOperands();
891     unsigned NumSubElts = SubVT.getVectorNumElements();
892     for (unsigned i = 0; i != NumSubVecs; ++i) {
893       APInt DemandedSubElts =
894           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
895       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
896                                Known2, TLO, Depth + 1))
897         return true;
898       // Known bits are shared by every demanded subvector element.
899       if (!!DemandedSubElts) {
900         Known.One &= Known2.One;
901         Known.Zero &= Known2.Zero;
902       }
903     }
904     break;
905   }
906   case ISD::VECTOR_SHUFFLE: {
907     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
908 
909     // Collect demanded elements from shuffle operands..
910     APInt DemandedLHS(NumElts, 0);
911     APInt DemandedRHS(NumElts, 0);
912     for (unsigned i = 0; i != NumElts; ++i) {
913       if (!DemandedElts[i])
914         continue;
915       int M = ShuffleMask[i];
916       if (M < 0) {
917         // For UNDEF elements, we don't know anything about the common state of
918         // the shuffle result.
919         DemandedLHS.clearAllBits();
920         DemandedRHS.clearAllBits();
921         break;
922       }
923       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
924       if (M < (int)NumElts)
925         DemandedLHS.setBit(M);
926       else
927         DemandedRHS.setBit(M - NumElts);
928     }
929 
930     if (!!DemandedLHS || !!DemandedRHS) {
931       Known.Zero.setAllBits();
932       Known.One.setAllBits();
933       if (!!DemandedLHS) {
934         if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS,
935                                  Known2, TLO, Depth + 1))
936           return true;
937         Known.One &= Known2.One;
938         Known.Zero &= Known2.Zero;
939       }
940       if (!!DemandedRHS) {
941         if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS,
942                                  Known2, TLO, Depth + 1))
943           return true;
944         Known.One &= Known2.One;
945         Known.Zero &= Known2.Zero;
946       }
947     }
948     break;
949   }
950   case ISD::AND: {
951     SDValue Op0 = Op.getOperand(0);
952     SDValue Op1 = Op.getOperand(1);
953 
954     // If the RHS is a constant, check to see if the LHS would be zero without
955     // using the bits from the RHS.  Below, we use knowledge about the RHS to
956     // simplify the LHS, here we're using information from the LHS to simplify
957     // the RHS.
958     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
959       // Do not increment Depth here; that can cause an infinite loop.
960       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
961       // If the LHS already has zeros where RHSC does, this 'and' is dead.
962       if ((LHSKnown.Zero & DemandedBits) ==
963           (~RHSC->getAPIntValue() & DemandedBits))
964         return TLO.CombineTo(Op, Op0);
965 
966       // If any of the set bits in the RHS are known zero on the LHS, shrink
967       // the constant.
968       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
969         return true;
970 
971       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
972       // constant, but if this 'and' is only clearing bits that were just set by
973       // the xor, then this 'and' can be eliminated by shrinking the mask of
974       // the xor. For example, for a 32-bit X:
975       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
976       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
977           LHSKnown.One == ~RHSC->getAPIntValue()) {
978         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
979         return TLO.CombineTo(Op, Xor);
980       }
981     }
982 
983     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
984                              Depth + 1))
985       return true;
986     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
987     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
988                              Known2, TLO, Depth + 1))
989       return true;
990     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
991 
992     // Attempt to avoid multi-use ops if we don't need anything from them.
993     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
994       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
995           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
996       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
997           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
998       if (DemandedOp0 || DemandedOp1) {
999         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1000         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1001         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1002         return TLO.CombineTo(Op, NewOp);
1003       }
1004     }
1005 
1006     // If all of the demanded bits are known one on one side, return the other.
1007     // These bits cannot contribute to the result of the 'and'.
1008     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1009       return TLO.CombineTo(Op, Op0);
1010     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1011       return TLO.CombineTo(Op, Op1);
1012     // If all of the demanded bits in the inputs are known zeros, return zero.
1013     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1014       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1015     // If the RHS is a constant, see if we can simplify it.
1016     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1017       return true;
1018     // If the operation can be done in a smaller type, do so.
1019     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1020       return true;
1021 
1022     // Output known-1 bits are only known if set in both the LHS & RHS.
1023     Known.One &= Known2.One;
1024     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1025     Known.Zero |= Known2.Zero;
1026     break;
1027   }
1028   case ISD::OR: {
1029     SDValue Op0 = Op.getOperand(0);
1030     SDValue Op1 = Op.getOperand(1);
1031 
1032     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1033                              Depth + 1))
1034       return true;
1035     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1036     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1037                              Known2, TLO, Depth + 1))
1038       return true;
1039     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1040 
1041     // Attempt to avoid multi-use ops if we don't need anything from them.
1042     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1043       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1044           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1045       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1046           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1047       if (DemandedOp0 || DemandedOp1) {
1048         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1049         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1050         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1051         return TLO.CombineTo(Op, NewOp);
1052       }
1053     }
1054 
1055     // If all of the demanded bits are known zero on one side, return the other.
1056     // These bits cannot contribute to the result of the 'or'.
1057     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1058       return TLO.CombineTo(Op, Op0);
1059     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1060       return TLO.CombineTo(Op, Op1);
1061     // If the RHS is a constant, see if we can simplify it.
1062     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1063       return true;
1064     // If the operation can be done in a smaller type, do so.
1065     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1066       return true;
1067 
1068     // Output known-0 bits are only known if clear in both the LHS & RHS.
1069     Known.Zero &= Known2.Zero;
1070     // Output known-1 are known to be set if set in either the LHS | RHS.
1071     Known.One |= Known2.One;
1072     break;
1073   }
1074   case ISD::XOR: {
1075     SDValue Op0 = Op.getOperand(0);
1076     SDValue Op1 = Op.getOperand(1);
1077 
1078     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1079                              Depth + 1))
1080       return true;
1081     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1082     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1083                              Depth + 1))
1084       return true;
1085     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1086 
1087     // Attempt to avoid multi-use ops if we don't need anything from them.
1088     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1089       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1090           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1091       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1092           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1093       if (DemandedOp0 || DemandedOp1) {
1094         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1095         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1096         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1097         return TLO.CombineTo(Op, NewOp);
1098       }
1099     }
1100 
1101     // If all of the demanded bits are known zero on one side, return the other.
1102     // These bits cannot contribute to the result of the 'xor'.
1103     if (DemandedBits.isSubsetOf(Known.Zero))
1104       return TLO.CombineTo(Op, Op0);
1105     if (DemandedBits.isSubsetOf(Known2.Zero))
1106       return TLO.CombineTo(Op, Op1);
1107     // If the operation can be done in a smaller type, do so.
1108     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1109       return true;
1110 
1111     // If all of the unknown bits are known to be zero on one side or the other
1112     // (but not both) turn this into an *inclusive* or.
1113     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1114     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1115       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1116 
1117     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1118     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1119     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1120     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1121 
1122     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1123       // If one side is a constant, and all of the known set bits on the other
1124       // side are also set in the constant, turn this into an AND, as we know
1125       // the bits will be cleared.
1126       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1127       // NB: it is okay if more bits are known than are requested
1128       if (C->getAPIntValue() == Known2.One) {
1129         SDValue ANDC =
1130             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1131         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1132       }
1133 
1134       // If the RHS is a constant, see if we can change it. Don't alter a -1
1135       // constant because that's a 'not' op, and that is better for combining
1136       // and codegen.
1137       if (!C->isAllOnesValue()) {
1138         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1139           // We're flipping all demanded bits. Flip the undemanded bits too.
1140           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1141           return TLO.CombineTo(Op, New);
1142         }
1143         // If we can't turn this into a 'not', try to shrink the constant.
1144         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1145           return true;
1146       }
1147     }
1148 
1149     Known = std::move(KnownOut);
1150     break;
1151   }
1152   case ISD::SELECT:
1153     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1154                              Depth + 1))
1155       return true;
1156     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1157                              Depth + 1))
1158       return true;
1159     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1160     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1161 
1162     // If the operands are constants, see if we can simplify them.
1163     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1164       return true;
1165 
1166     // Only known if known in both the LHS and RHS.
1167     Known.One &= Known2.One;
1168     Known.Zero &= Known2.Zero;
1169     break;
1170   case ISD::SELECT_CC:
1171     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1172                              Depth + 1))
1173       return true;
1174     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1175                              Depth + 1))
1176       return true;
1177     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1178     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1179 
1180     // If the operands are constants, see if we can simplify them.
1181     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1182       return true;
1183 
1184     // Only known if known in both the LHS and RHS.
1185     Known.One &= Known2.One;
1186     Known.Zero &= Known2.Zero;
1187     break;
1188   case ISD::SETCC: {
1189     SDValue Op0 = Op.getOperand(0);
1190     SDValue Op1 = Op.getOperand(1);
1191     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1192     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1193     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1194     // -1, we may be able to bypass the setcc.
1195     if (DemandedBits.isSignMask() &&
1196         Op0.getScalarValueSizeInBits() == BitWidth &&
1197         getBooleanContents(VT) ==
1198             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1199       // If we're testing X < 0, then this compare isn't needed - just use X!
1200       // FIXME: We're limiting to integer types here, but this should also work
1201       // if we don't care about FP signed-zero. The use of SETLT with FP means
1202       // that we don't care about NaNs.
1203       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1204           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1205         return TLO.CombineTo(Op, Op0);
1206 
1207       // TODO: Should we check for other forms of sign-bit comparisons?
1208       // Examples: X <= -1, X >= 0
1209     }
1210     if (getBooleanContents(Op0.getValueType()) ==
1211             TargetLowering::ZeroOrOneBooleanContent &&
1212         BitWidth > 1)
1213       Known.Zero.setBitsFrom(1);
1214     break;
1215   }
1216   case ISD::SHL: {
1217     SDValue Op0 = Op.getOperand(0);
1218     SDValue Op1 = Op.getOperand(1);
1219 
1220     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1221       // If the shift count is an invalid immediate, don't do anything.
1222       if (SA->getAPIntValue().uge(BitWidth))
1223         break;
1224 
1225       unsigned ShAmt = SA->getZExtValue();
1226       if (ShAmt == 0)
1227         return TLO.CombineTo(Op, Op0);
1228 
1229       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1230       // single shift.  We can do this if the bottom bits (which are shifted
1231       // out) are never demanded.
1232       // TODO - support non-uniform vector amounts.
1233       if (Op0.getOpcode() == ISD::SRL) {
1234         if ((DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1235           if (ConstantSDNode *SA2 =
1236                   isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1237             if (SA2->getAPIntValue().ult(BitWidth)) {
1238               unsigned C1 = SA2->getZExtValue();
1239               unsigned Opc = ISD::SHL;
1240               int Diff = ShAmt - C1;
1241               if (Diff < 0) {
1242                 Diff = -Diff;
1243                 Opc = ISD::SRL;
1244               }
1245 
1246               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1247               return TLO.CombineTo(
1248                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1249             }
1250           }
1251         }
1252       }
1253 
1254       if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts,
1255                                Known, TLO, Depth + 1))
1256         return true;
1257 
1258       // Try shrinking the operation as long as the shift amount will still be
1259       // in range.
1260       if ((ShAmt < DemandedBits.getActiveBits()) &&
1261           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1262         return true;
1263 
1264       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1265       // are not demanded. This will likely allow the anyext to be folded away.
1266       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1267         SDValue InnerOp = Op0.getOperand(0);
1268         EVT InnerVT = InnerOp.getValueType();
1269         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1270         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1271             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1272           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1273           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1274             ShTy = InnerVT;
1275           SDValue NarrowShl =
1276               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1277                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1278           return TLO.CombineTo(
1279               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1280         }
1281         // Repeat the SHL optimization above in cases where an extension
1282         // intervenes: (shl (anyext (shr x, c1)), c2) to
1283         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1284         // aren't demanded (as above) and that the shifted upper c1 bits of
1285         // x aren't demanded.
1286         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1287             InnerOp.hasOneUse()) {
1288           if (ConstantSDNode *SA2 =
1289                   isConstOrConstSplat(InnerOp.getOperand(1))) {
1290             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1291             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1292                 DemandedBits.getActiveBits() <=
1293                     (InnerBits - InnerShAmt + ShAmt) &&
1294                 DemandedBits.countTrailingZeros() >= ShAmt) {
1295               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
1296                                                   Op1.getValueType());
1297               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1298                                                InnerOp.getOperand(0));
1299               return TLO.CombineTo(
1300                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1301             }
1302           }
1303         }
1304       }
1305 
1306       Known.Zero <<= ShAmt;
1307       Known.One <<= ShAmt;
1308       // low bits known zero.
1309       Known.Zero.setLowBits(ShAmt);
1310     }
1311     break;
1312   }
1313   case ISD::SRL: {
1314     SDValue Op0 = Op.getOperand(0);
1315     SDValue Op1 = Op.getOperand(1);
1316 
1317     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1318       // If the shift count is an invalid immediate, don't do anything.
1319       if (SA->getAPIntValue().uge(BitWidth))
1320         break;
1321 
1322       unsigned ShAmt = SA->getZExtValue();
1323       if (ShAmt == 0)
1324         return TLO.CombineTo(Op, Op0);
1325 
1326       EVT ShiftVT = Op1.getValueType();
1327       APInt InDemandedMask = (DemandedBits << ShAmt);
1328 
1329       // If the shift is exact, then it does demand the low bits (and knows that
1330       // they are zero).
1331       if (Op->getFlags().hasExact())
1332         InDemandedMask.setLowBits(ShAmt);
1333 
1334       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1335       // single shift.  We can do this if the top bits (which are shifted out)
1336       // are never demanded.
1337       // TODO - support non-uniform vector amounts.
1338       if (Op0.getOpcode() == ISD::SHL) {
1339         if (ConstantSDNode *SA2 =
1340                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1341           if ((DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
1342             if (SA2->getAPIntValue().ult(BitWidth)) {
1343               unsigned C1 = SA2->getZExtValue();
1344               unsigned Opc = ISD::SRL;
1345               int Diff = ShAmt - C1;
1346               if (Diff < 0) {
1347                 Diff = -Diff;
1348                 Opc = ISD::SHL;
1349               }
1350 
1351               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1352               return TLO.CombineTo(
1353                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1354             }
1355           }
1356         }
1357       }
1358 
1359       // Compute the new bits that are at the top now.
1360       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1361                                Depth + 1))
1362         return true;
1363       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1364       Known.Zero.lshrInPlace(ShAmt);
1365       Known.One.lshrInPlace(ShAmt);
1366 
1367       Known.Zero.setHighBits(ShAmt); // High bits known zero.
1368     }
1369     break;
1370   }
1371   case ISD::SRA: {
1372     SDValue Op0 = Op.getOperand(0);
1373     SDValue Op1 = Op.getOperand(1);
1374 
1375     // If this is an arithmetic shift right and only the low-bit is set, we can
1376     // always convert this into a logical shr, even if the shift amount is
1377     // variable.  The low bit of the shift cannot be an input sign bit unless
1378     // the shift amount is >= the size of the datatype, which is undefined.
1379     if (DemandedBits.isOneValue())
1380       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1381 
1382     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1383       // If the shift count is an invalid immediate, don't do anything.
1384       if (SA->getAPIntValue().uge(BitWidth))
1385         break;
1386 
1387       unsigned ShAmt = SA->getZExtValue();
1388       if (ShAmt == 0)
1389         return TLO.CombineTo(Op, Op0);
1390 
1391       APInt InDemandedMask = (DemandedBits << ShAmt);
1392 
1393       // If the shift is exact, then it does demand the low bits (and knows that
1394       // they are zero).
1395       if (Op->getFlags().hasExact())
1396         InDemandedMask.setLowBits(ShAmt);
1397 
1398       // If any of the demanded bits are produced by the sign extension, we also
1399       // demand the input sign bit.
1400       if (DemandedBits.countLeadingZeros() < ShAmt)
1401         InDemandedMask.setSignBit();
1402 
1403       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1404                                Depth + 1))
1405         return true;
1406       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1407       Known.Zero.lshrInPlace(ShAmt);
1408       Known.One.lshrInPlace(ShAmt);
1409 
1410       // If the input sign bit is known to be zero, or if none of the top bits
1411       // are demanded, turn this into an unsigned shift right.
1412       if (Known.Zero[BitWidth - ShAmt - 1] ||
1413           DemandedBits.countLeadingZeros() >= ShAmt) {
1414         SDNodeFlags Flags;
1415         Flags.setExact(Op->getFlags().hasExact());
1416         return TLO.CombineTo(
1417             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1418       }
1419 
1420       int Log2 = DemandedBits.exactLogBase2();
1421       if (Log2 >= 0) {
1422         // The bit must come from the sign.
1423         SDValue NewSA =
1424             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1425         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1426       }
1427 
1428       if (Known.One[BitWidth - ShAmt - 1])
1429         // New bits are known one.
1430         Known.One.setHighBits(ShAmt);
1431     }
1432     break;
1433   }
1434   case ISD::FSHL:
1435   case ISD::FSHR: {
1436     SDValue Op0 = Op.getOperand(0);
1437     SDValue Op1 = Op.getOperand(1);
1438     SDValue Op2 = Op.getOperand(2);
1439     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1440 
1441     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1442       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1443 
1444       // For fshl, 0-shift returns the 1st arg.
1445       // For fshr, 0-shift returns the 2nd arg.
1446       if (Amt == 0) {
1447         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1448                                  Known, TLO, Depth + 1))
1449           return true;
1450         break;
1451       }
1452 
1453       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1454       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1455       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1456       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1457       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1458                                Depth + 1))
1459         return true;
1460       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1461                                Depth + 1))
1462         return true;
1463 
1464       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1465       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1466       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1467       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1468       Known.One |= Known2.One;
1469       Known.Zero |= Known2.Zero;
1470     }
1471     break;
1472   }
1473   case ISD::BITREVERSE: {
1474     SDValue Src = Op.getOperand(0);
1475     APInt DemandedSrcBits = DemandedBits.reverseBits();
1476     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1477                              Depth + 1))
1478       return true;
1479     Known.One = Known2.One.reverseBits();
1480     Known.Zero = Known2.Zero.reverseBits();
1481     break;
1482   }
1483   case ISD::SIGN_EXTEND_INREG: {
1484     SDValue Op0 = Op.getOperand(0);
1485     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1486     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1487 
1488     // If we only care about the highest bit, don't bother shifting right.
1489     if (DemandedBits.isSignMask()) {
1490       unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
1491       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1492       // However if the input is already sign extended we expect the sign
1493       // extension to be dropped altogether later and do not simplify.
1494       if (!AlreadySignExtended) {
1495         // Compute the correct shift amount type, which must be getShiftAmountTy
1496         // for scalar types after legalization.
1497         EVT ShiftAmtTy = VT;
1498         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1499           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1500 
1501         SDValue ShiftAmt =
1502             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1503         return TLO.CombineTo(Op,
1504                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1505       }
1506     }
1507 
1508     // If none of the extended bits are demanded, eliminate the sextinreg.
1509     if (DemandedBits.getActiveBits() <= ExVTBits)
1510       return TLO.CombineTo(Op, Op0);
1511 
1512     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1513 
1514     // Since the sign extended bits are demanded, we know that the sign
1515     // bit is demanded.
1516     InputDemandedBits.setBit(ExVTBits - 1);
1517 
1518     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1519       return true;
1520     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1521 
1522     // If the sign bit of the input is known set or clear, then we know the
1523     // top bits of the result.
1524 
1525     // If the input sign bit is known zero, convert this into a zero extension.
1526     if (Known.Zero[ExVTBits - 1])
1527       return TLO.CombineTo(
1528           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1529 
1530     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1531     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1532       Known.One.setBitsFrom(ExVTBits);
1533       Known.Zero &= Mask;
1534     } else { // Input sign bit unknown
1535       Known.Zero &= Mask;
1536       Known.One &= Mask;
1537     }
1538     break;
1539   }
1540   case ISD::BUILD_PAIR: {
1541     EVT HalfVT = Op.getOperand(0).getValueType();
1542     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1543 
1544     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1545     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1546 
1547     KnownBits KnownLo, KnownHi;
1548 
1549     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1550       return true;
1551 
1552     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1553       return true;
1554 
1555     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1556                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1557 
1558     Known.One = KnownLo.One.zext(BitWidth) |
1559                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1560     break;
1561   }
1562   case ISD::ZERO_EXTEND:
1563   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1564     SDValue Src = Op.getOperand(0);
1565     EVT SrcVT = Src.getValueType();
1566     unsigned InBits = SrcVT.getScalarSizeInBits();
1567     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1568     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1569 
1570     // If none of the top bits are demanded, convert this into an any_extend.
1571     if (DemandedBits.getActiveBits() <= InBits) {
1572       // If we only need the non-extended bits of the bottom element
1573       // then we can just bitcast to the result.
1574       if (IsVecInReg && DemandedElts == 1 &&
1575           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1576           TLO.DAG.getDataLayout().isLittleEndian())
1577         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1578 
1579       unsigned Opc =
1580           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1581       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1582         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1583     }
1584 
1585     APInt InDemandedBits = DemandedBits.trunc(InBits);
1586     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1587     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1588                              Depth + 1))
1589       return true;
1590     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1591     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1592     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1593     break;
1594   }
1595   case ISD::SIGN_EXTEND:
1596   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1597     SDValue Src = Op.getOperand(0);
1598     EVT SrcVT = Src.getValueType();
1599     unsigned InBits = SrcVT.getScalarSizeInBits();
1600     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1601     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1602 
1603     // If none of the top bits are demanded, convert this into an any_extend.
1604     if (DemandedBits.getActiveBits() <= InBits) {
1605       // If we only need the non-extended bits of the bottom element
1606       // then we can just bitcast to the result.
1607       if (IsVecInReg && DemandedElts == 1 &&
1608           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1609           TLO.DAG.getDataLayout().isLittleEndian())
1610         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1611 
1612       unsigned Opc =
1613           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1614       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1615         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1616     }
1617 
1618     APInt InDemandedBits = DemandedBits.trunc(InBits);
1619     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1620 
1621     // Since some of the sign extended bits are demanded, we know that the sign
1622     // bit is demanded.
1623     InDemandedBits.setBit(InBits - 1);
1624 
1625     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1626                              Depth + 1))
1627       return true;
1628     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1629     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1630 
1631     // If the sign bit is known one, the top bits match.
1632     Known = Known.sext(BitWidth);
1633 
1634     // If the sign bit is known zero, convert this to a zero extend.
1635     if (Known.isNonNegative()) {
1636       unsigned Opc =
1637           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1638       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1639         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1640     }
1641     break;
1642   }
1643   case ISD::ANY_EXTEND:
1644   case ISD::ANY_EXTEND_VECTOR_INREG: {
1645     SDValue Src = Op.getOperand(0);
1646     EVT SrcVT = Src.getValueType();
1647     unsigned InBits = SrcVT.getScalarSizeInBits();
1648     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1649     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1650 
1651     // If we only need the bottom element then we can just bitcast.
1652     // TODO: Handle ANY_EXTEND?
1653     if (IsVecInReg && DemandedElts == 1 &&
1654         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1655         TLO.DAG.getDataLayout().isLittleEndian())
1656       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1657 
1658     APInt InDemandedBits = DemandedBits.trunc(InBits);
1659     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1660     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1661                              Depth + 1))
1662       return true;
1663     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1664     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1665     Known = Known.zext(BitWidth, false /* => any extend */);
1666     break;
1667   }
1668   case ISD::TRUNCATE: {
1669     SDValue Src = Op.getOperand(0);
1670 
1671     // Simplify the input, using demanded bit information, and compute the known
1672     // zero/one bits live out.
1673     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1674     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1675     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1676       return true;
1677     Known = Known.trunc(BitWidth);
1678 
1679     // If the input is only used by this truncate, see if we can shrink it based
1680     // on the known demanded bits.
1681     if (Src.getNode()->hasOneUse()) {
1682       switch (Src.getOpcode()) {
1683       default:
1684         break;
1685       case ISD::SRL:
1686         // Shrink SRL by a constant if none of the high bits shifted in are
1687         // demanded.
1688         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1689           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1690           // undesirable.
1691           break;
1692 
1693         auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1694         if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth))
1695           break;
1696 
1697         SDValue Shift = Src.getOperand(1);
1698         uint64_t ShVal = ShAmt->getZExtValue();
1699 
1700         if (TLO.LegalTypes())
1701           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1702 
1703         APInt HighBits =
1704             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1705         HighBits.lshrInPlace(ShVal);
1706         HighBits = HighBits.trunc(BitWidth);
1707 
1708         if (!(HighBits & DemandedBits)) {
1709           // None of the shifted in bits are needed.  Add a truncate of the
1710           // shift input, then shift it.
1711           SDValue NewTrunc =
1712               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1713           return TLO.CombineTo(
1714               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1715         }
1716         break;
1717       }
1718     }
1719 
1720     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1721     break;
1722   }
1723   case ISD::AssertZext: {
1724     // AssertZext demands all of the high bits, plus any of the low bits
1725     // demanded by its users.
1726     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1727     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1728     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1729                              TLO, Depth + 1))
1730       return true;
1731     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1732 
1733     Known.Zero |= ~InMask;
1734     break;
1735   }
1736   case ISD::EXTRACT_VECTOR_ELT: {
1737     SDValue Src = Op.getOperand(0);
1738     SDValue Idx = Op.getOperand(1);
1739     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1740     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1741 
1742     // Demand the bits from every vector element without a constant index.
1743     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1744     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1745       if (CIdx->getAPIntValue().ult(NumSrcElts))
1746         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1747 
1748     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1749     // anything about the extended bits.
1750     APInt DemandedSrcBits = DemandedBits;
1751     if (BitWidth > EltBitWidth)
1752       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1753 
1754     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1755                              Depth + 1))
1756       return true;
1757 
1758     Known = Known2;
1759     if (BitWidth > EltBitWidth)
1760       Known = Known.zext(BitWidth, false /* => any extend */);
1761     break;
1762   }
1763   case ISD::BITCAST: {
1764     SDValue Src = Op.getOperand(0);
1765     EVT SrcVT = Src.getValueType();
1766     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1767 
1768     // If this is an FP->Int bitcast and if the sign bit is the only
1769     // thing demanded, turn this into a FGETSIGN.
1770     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1771         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1772         SrcVT.isFloatingPoint()) {
1773       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1774       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1775       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1776           SrcVT != MVT::f128) {
1777         // Cannot eliminate/lower SHL for f128 yet.
1778         EVT Ty = OpVTLegal ? VT : MVT::i32;
1779         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1780         // place.  We expect the SHL to be eliminated by other optimizations.
1781         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1782         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1783         if (!OpVTLegal && OpVTSizeInBits > 32)
1784           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1785         unsigned ShVal = Op.getValueSizeInBits() - 1;
1786         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1787         return TLO.CombineTo(Op,
1788                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1789       }
1790     }
1791 
1792     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1793     // Demand the elt/bit if any of the original elts/bits are demanded.
1794     // TODO - bigendian once we have test coverage.
1795     // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support.
1796     if (SrcVT.isVector() && NumSrcEltBits > 1 &&
1797         (BitWidth % NumSrcEltBits) == 0 &&
1798         TLO.DAG.getDataLayout().isLittleEndian()) {
1799       unsigned Scale = BitWidth / NumSrcEltBits;
1800       unsigned NumSrcElts = SrcVT.getVectorNumElements();
1801       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1802       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1803       for (unsigned i = 0; i != Scale; ++i) {
1804         unsigned Offset = i * NumSrcEltBits;
1805         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1806         if (!Sub.isNullValue()) {
1807           DemandedSrcBits |= Sub;
1808           for (unsigned j = 0; j != NumElts; ++j)
1809             if (DemandedElts[j])
1810               DemandedSrcElts.setBit((j * Scale) + i);
1811         }
1812       }
1813 
1814       APInt KnownSrcUndef, KnownSrcZero;
1815       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1816                                      KnownSrcZero, TLO, Depth + 1))
1817         return true;
1818 
1819       KnownBits KnownSrcBits;
1820       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1821                                KnownSrcBits, TLO, Depth + 1))
1822         return true;
1823     } else if ((NumSrcEltBits % BitWidth) == 0 &&
1824                TLO.DAG.getDataLayout().isLittleEndian()) {
1825       unsigned Scale = NumSrcEltBits / BitWidth;
1826       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1827       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1828       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1829       for (unsigned i = 0; i != NumElts; ++i)
1830         if (DemandedElts[i]) {
1831           unsigned Offset = (i % Scale) * BitWidth;
1832           DemandedSrcBits.insertBits(DemandedBits, Offset);
1833           DemandedSrcElts.setBit(i / Scale);
1834         }
1835 
1836       if (SrcVT.isVector()) {
1837         APInt KnownSrcUndef, KnownSrcZero;
1838         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1839                                        KnownSrcZero, TLO, Depth + 1))
1840           return true;
1841       }
1842 
1843       KnownBits KnownSrcBits;
1844       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1845                                KnownSrcBits, TLO, Depth + 1))
1846         return true;
1847     }
1848 
1849     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1850     // recursive call where Known may be useful to the caller.
1851     if (Depth > 0) {
1852       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1853       return false;
1854     }
1855     break;
1856   }
1857   case ISD::ADD:
1858   case ISD::MUL:
1859   case ISD::SUB: {
1860     // Add, Sub, and Mul don't demand any bits in positions beyond that
1861     // of the highest bit demanded of them.
1862     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1863     SDNodeFlags Flags = Op.getNode()->getFlags();
1864     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1865     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1866     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
1867                              Depth + 1) ||
1868         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
1869                              Depth + 1) ||
1870         // See if the operation should be performed at a smaller bit width.
1871         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1872       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1873         // Disable the nsw and nuw flags. We can no longer guarantee that we
1874         // won't wrap after simplification.
1875         Flags.setNoSignedWrap(false);
1876         Flags.setNoUnsignedWrap(false);
1877         SDValue NewOp =
1878             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1879         return TLO.CombineTo(Op, NewOp);
1880       }
1881       return true;
1882     }
1883 
1884     // Attempt to avoid multi-use ops if we don't need anything from them.
1885     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1886       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1887           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1888       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1889           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1890       if (DemandedOp0 || DemandedOp1) {
1891         Flags.setNoSignedWrap(false);
1892         Flags.setNoUnsignedWrap(false);
1893         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1894         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1895         SDValue NewOp =
1896             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1897         return TLO.CombineTo(Op, NewOp);
1898       }
1899     }
1900 
1901     // If we have a constant operand, we may be able to turn it into -1 if we
1902     // do not demand the high bits. This can make the constant smaller to
1903     // encode, allow more general folding, or match specialized instruction
1904     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1905     // is probably not useful (and could be detrimental).
1906     ConstantSDNode *C = isConstOrConstSplat(Op1);
1907     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1908     if (C && !C->isAllOnesValue() && !C->isOne() &&
1909         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1910       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1911       // We can't guarantee that the new math op doesn't wrap, so explicitly
1912       // clear those flags to prevent folding with a potential existing node
1913       // that has those flags set.
1914       SDNodeFlags Flags;
1915       Flags.setNoSignedWrap(false);
1916       Flags.setNoUnsignedWrap(false);
1917       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1918       return TLO.CombineTo(Op, NewOp);
1919     }
1920 
1921     LLVM_FALLTHROUGH;
1922   }
1923   default:
1924     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1925       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
1926                                             Known, TLO, Depth))
1927         return true;
1928       break;
1929     }
1930 
1931     // Just use computeKnownBits to compute output bits.
1932     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1933     break;
1934   }
1935 
1936   // If we know the value of all of the demanded bits, return this as a
1937   // constant.
1938   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1939     // Avoid folding to a constant if any OpaqueConstant is involved.
1940     const SDNode *N = Op.getNode();
1941     for (SDNodeIterator I = SDNodeIterator::begin(N),
1942                         E = SDNodeIterator::end(N);
1943          I != E; ++I) {
1944       SDNode *Op = *I;
1945       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1946         if (C->isOpaque())
1947           return false;
1948     }
1949     // TODO: Handle float bits as well.
1950     if (VT.isInteger())
1951       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
1952   }
1953 
1954   return false;
1955 }
1956 
1957 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
1958                                                 const APInt &DemandedElts,
1959                                                 APInt &KnownUndef,
1960                                                 APInt &KnownZero,
1961                                                 DAGCombinerInfo &DCI) const {
1962   SelectionDAG &DAG = DCI.DAG;
1963   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1964                         !DCI.isBeforeLegalizeOps());
1965 
1966   bool Simplified =
1967       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
1968   if (Simplified) {
1969     DCI.AddToWorklist(Op.getNode());
1970     DCI.CommitTargetLoweringOpt(TLO);
1971   }
1972 
1973   return Simplified;
1974 }
1975 
1976 /// Given a vector binary operation and known undefined elements for each input
1977 /// operand, compute whether each element of the output is undefined.
1978 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
1979                                          const APInt &UndefOp0,
1980                                          const APInt &UndefOp1) {
1981   EVT VT = BO.getValueType();
1982   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
1983          "Vector binop only");
1984 
1985   EVT EltVT = VT.getVectorElementType();
1986   unsigned NumElts = VT.getVectorNumElements();
1987   assert(UndefOp0.getBitWidth() == NumElts &&
1988          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
1989 
1990   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
1991                                    const APInt &UndefVals) {
1992     if (UndefVals[Index])
1993       return DAG.getUNDEF(EltVT);
1994 
1995     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1996       // Try hard to make sure that the getNode() call is not creating temporary
1997       // nodes. Ignore opaque integers because they do not constant fold.
1998       SDValue Elt = BV->getOperand(Index);
1999       auto *C = dyn_cast<ConstantSDNode>(Elt);
2000       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2001         return Elt;
2002     }
2003 
2004     return SDValue();
2005   };
2006 
2007   APInt KnownUndef = APInt::getNullValue(NumElts);
2008   for (unsigned i = 0; i != NumElts; ++i) {
2009     // If both inputs for this element are either constant or undef and match
2010     // the element type, compute the constant/undef result for this element of
2011     // the vector.
2012     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2013     // not handle FP constants. The code within getNode() should be refactored
2014     // to avoid the danger of creating a bogus temporary node here.
2015     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2016     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2017     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2018       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2019         KnownUndef.setBit(i);
2020   }
2021   return KnownUndef;
2022 }
2023 
2024 bool TargetLowering::SimplifyDemandedVectorElts(
2025     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2026     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2027     bool AssumeSingleUse) const {
2028   EVT VT = Op.getValueType();
2029   APInt DemandedElts = OriginalDemandedElts;
2030   unsigned NumElts = DemandedElts.getBitWidth();
2031   assert(VT.isVector() && "Expected vector op");
2032   assert(VT.getVectorNumElements() == NumElts &&
2033          "Mask size mismatches value type element count!");
2034 
2035   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2036 
2037   // Undef operand.
2038   if (Op.isUndef()) {
2039     KnownUndef.setAllBits();
2040     return false;
2041   }
2042 
2043   // If Op has other users, assume that all elements are needed.
2044   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2045     DemandedElts.setAllBits();
2046 
2047   // Not demanding any elements from Op.
2048   if (DemandedElts == 0) {
2049     KnownUndef.setAllBits();
2050     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2051   }
2052 
2053   // Limit search depth.
2054   if (Depth >= 6)
2055     return false;
2056 
2057   SDLoc DL(Op);
2058   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2059 
2060   switch (Op.getOpcode()) {
2061   case ISD::SCALAR_TO_VECTOR: {
2062     if (!DemandedElts[0]) {
2063       KnownUndef.setAllBits();
2064       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2065     }
2066     KnownUndef.setHighBits(NumElts - 1);
2067     break;
2068   }
2069   case ISD::BITCAST: {
2070     SDValue Src = Op.getOperand(0);
2071     EVT SrcVT = Src.getValueType();
2072 
2073     // We only handle vectors here.
2074     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2075     if (!SrcVT.isVector())
2076       break;
2077 
2078     // Fast handling of 'identity' bitcasts.
2079     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2080     if (NumSrcElts == NumElts)
2081       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2082                                         KnownZero, TLO, Depth + 1);
2083 
2084     APInt SrcZero, SrcUndef;
2085     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2086 
2087     // Bitcast from 'large element' src vector to 'small element' vector, we
2088     // must demand a source element if any DemandedElt maps to it.
2089     if ((NumElts % NumSrcElts) == 0) {
2090       unsigned Scale = NumElts / NumSrcElts;
2091       for (unsigned i = 0; i != NumElts; ++i)
2092         if (DemandedElts[i])
2093           SrcDemandedElts.setBit(i / Scale);
2094 
2095       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2096                                      TLO, Depth + 1))
2097         return true;
2098 
2099       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2100       // of the large element.
2101       // TODO - bigendian once we have test coverage.
2102       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2103         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2104         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2105         for (unsigned i = 0; i != NumElts; ++i)
2106           if (DemandedElts[i]) {
2107             unsigned Ofs = (i % Scale) * EltSizeInBits;
2108             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2109           }
2110 
2111         KnownBits Known;
2112         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
2113           return true;
2114       }
2115 
2116       // If the src element is zero/undef then all the output elements will be -
2117       // only demanded elements are guaranteed to be correct.
2118       for (unsigned i = 0; i != NumSrcElts; ++i) {
2119         if (SrcDemandedElts[i]) {
2120           if (SrcZero[i])
2121             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2122           if (SrcUndef[i])
2123             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2124         }
2125       }
2126     }
2127 
2128     // Bitcast from 'small element' src vector to 'large element' vector, we
2129     // demand all smaller source elements covered by the larger demanded element
2130     // of this vector.
2131     if ((NumSrcElts % NumElts) == 0) {
2132       unsigned Scale = NumSrcElts / NumElts;
2133       for (unsigned i = 0; i != NumElts; ++i)
2134         if (DemandedElts[i])
2135           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2136 
2137       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2138                                      TLO, Depth + 1))
2139         return true;
2140 
2141       // If all the src elements covering an output element are zero/undef, then
2142       // the output element will be as well, assuming it was demanded.
2143       for (unsigned i = 0; i != NumElts; ++i) {
2144         if (DemandedElts[i]) {
2145           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2146             KnownZero.setBit(i);
2147           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2148             KnownUndef.setBit(i);
2149         }
2150       }
2151     }
2152     break;
2153   }
2154   case ISD::BUILD_VECTOR: {
2155     // Check all elements and simplify any unused elements with UNDEF.
2156     if (!DemandedElts.isAllOnesValue()) {
2157       // Don't simplify BROADCASTS.
2158       if (llvm::any_of(Op->op_values(),
2159                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2160         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2161         bool Updated = false;
2162         for (unsigned i = 0; i != NumElts; ++i) {
2163           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2164             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2165             KnownUndef.setBit(i);
2166             Updated = true;
2167           }
2168         }
2169         if (Updated)
2170           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2171       }
2172     }
2173     for (unsigned i = 0; i != NumElts; ++i) {
2174       SDValue SrcOp = Op.getOperand(i);
2175       if (SrcOp.isUndef()) {
2176         KnownUndef.setBit(i);
2177       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2178                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2179         KnownZero.setBit(i);
2180       }
2181     }
2182     break;
2183   }
2184   case ISD::CONCAT_VECTORS: {
2185     EVT SubVT = Op.getOperand(0).getValueType();
2186     unsigned NumSubVecs = Op.getNumOperands();
2187     unsigned NumSubElts = SubVT.getVectorNumElements();
2188     for (unsigned i = 0; i != NumSubVecs; ++i) {
2189       SDValue SubOp = Op.getOperand(i);
2190       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2191       APInt SubUndef, SubZero;
2192       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2193                                      Depth + 1))
2194         return true;
2195       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2196       KnownZero.insertBits(SubZero, i * NumSubElts);
2197     }
2198     break;
2199   }
2200   case ISD::INSERT_SUBVECTOR: {
2201     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2202       break;
2203     SDValue Base = Op.getOperand(0);
2204     SDValue Sub = Op.getOperand(1);
2205     EVT SubVT = Sub.getValueType();
2206     unsigned NumSubElts = SubVT.getVectorNumElements();
2207     const APInt &Idx = Op.getConstantOperandAPInt(2);
2208     if (Idx.ugt(NumElts - NumSubElts))
2209       break;
2210     unsigned SubIdx = Idx.getZExtValue();
2211     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2212     APInt SubUndef, SubZero;
2213     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2214                                    Depth + 1))
2215       return true;
2216     APInt BaseElts = DemandedElts;
2217     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2218     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2219                                    Depth + 1))
2220       return true;
2221     KnownUndef.insertBits(SubUndef, SubIdx);
2222     KnownZero.insertBits(SubZero, SubIdx);
2223     break;
2224   }
2225   case ISD::EXTRACT_SUBVECTOR: {
2226     SDValue Src = Op.getOperand(0);
2227     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2228     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2229     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2230       // Offset the demanded elts by the subvector index.
2231       uint64_t Idx = SubIdx->getZExtValue();
2232       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2233       APInt SrcUndef, SrcZero;
2234       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2235                                      Depth + 1))
2236         return true;
2237       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2238       KnownZero = SrcZero.extractBits(NumElts, Idx);
2239     }
2240     break;
2241   }
2242   case ISD::INSERT_VECTOR_ELT: {
2243     SDValue Vec = Op.getOperand(0);
2244     SDValue Scl = Op.getOperand(1);
2245     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2246 
2247     // For a legal, constant insertion index, if we don't need this insertion
2248     // then strip it, else remove it from the demanded elts.
2249     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2250       unsigned Idx = CIdx->getZExtValue();
2251       if (!DemandedElts[Idx])
2252         return TLO.CombineTo(Op, Vec);
2253 
2254       APInt DemandedVecElts(DemandedElts);
2255       DemandedVecElts.clearBit(Idx);
2256       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2257                                      KnownZero, TLO, Depth + 1))
2258         return true;
2259 
2260       KnownUndef.clearBit(Idx);
2261       if (Scl.isUndef())
2262         KnownUndef.setBit(Idx);
2263 
2264       KnownZero.clearBit(Idx);
2265       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2266         KnownZero.setBit(Idx);
2267       break;
2268     }
2269 
2270     APInt VecUndef, VecZero;
2271     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2272                                    Depth + 1))
2273       return true;
2274     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2275     break;
2276   }
2277   case ISD::VSELECT: {
2278     // Try to transform the select condition based on the current demanded
2279     // elements.
2280     // TODO: If a condition element is undef, we can choose from one arm of the
2281     //       select (and if one arm is undef, then we can propagate that to the
2282     //       result).
2283     // TODO - add support for constant vselect masks (see IR version of this).
2284     APInt UnusedUndef, UnusedZero;
2285     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2286                                    UnusedZero, TLO, Depth + 1))
2287       return true;
2288 
2289     // See if we can simplify either vselect operand.
2290     APInt DemandedLHS(DemandedElts);
2291     APInt DemandedRHS(DemandedElts);
2292     APInt UndefLHS, ZeroLHS;
2293     APInt UndefRHS, ZeroRHS;
2294     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2295                                    ZeroLHS, TLO, Depth + 1))
2296       return true;
2297     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2298                                    ZeroRHS, TLO, Depth + 1))
2299       return true;
2300 
2301     KnownUndef = UndefLHS & UndefRHS;
2302     KnownZero = ZeroLHS & ZeroRHS;
2303     break;
2304   }
2305   case ISD::VECTOR_SHUFFLE: {
2306     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2307 
2308     // Collect demanded elements from shuffle operands..
2309     APInt DemandedLHS(NumElts, 0);
2310     APInt DemandedRHS(NumElts, 0);
2311     for (unsigned i = 0; i != NumElts; ++i) {
2312       int M = ShuffleMask[i];
2313       if (M < 0 || !DemandedElts[i])
2314         continue;
2315       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2316       if (M < (int)NumElts)
2317         DemandedLHS.setBit(M);
2318       else
2319         DemandedRHS.setBit(M - NumElts);
2320     }
2321 
2322     // See if we can simplify either shuffle operand.
2323     APInt UndefLHS, ZeroLHS;
2324     APInt UndefRHS, ZeroRHS;
2325     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2326                                    ZeroLHS, TLO, Depth + 1))
2327       return true;
2328     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2329                                    ZeroRHS, TLO, Depth + 1))
2330       return true;
2331 
2332     // Simplify mask using undef elements from LHS/RHS.
2333     bool Updated = false;
2334     bool IdentityLHS = true, IdentityRHS = true;
2335     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2336     for (unsigned i = 0; i != NumElts; ++i) {
2337       int &M = NewMask[i];
2338       if (M < 0)
2339         continue;
2340       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2341           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2342         Updated = true;
2343         M = -1;
2344       }
2345       IdentityLHS &= (M < 0) || (M == (int)i);
2346       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2347     }
2348 
2349     // Update legal shuffle masks based on demanded elements if it won't reduce
2350     // to Identity which can cause premature removal of the shuffle mask.
2351     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
2352         isShuffleMaskLegal(NewMask, VT))
2353       return TLO.CombineTo(Op,
2354                            TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
2355                                                     Op.getOperand(1), NewMask));
2356 
2357     // Propagate undef/zero elements from LHS/RHS.
2358     for (unsigned i = 0; i != NumElts; ++i) {
2359       int M = ShuffleMask[i];
2360       if (M < 0) {
2361         KnownUndef.setBit(i);
2362       } else if (M < (int)NumElts) {
2363         if (UndefLHS[M])
2364           KnownUndef.setBit(i);
2365         if (ZeroLHS[M])
2366           KnownZero.setBit(i);
2367       } else {
2368         if (UndefRHS[M - NumElts])
2369           KnownUndef.setBit(i);
2370         if (ZeroRHS[M - NumElts])
2371           KnownZero.setBit(i);
2372       }
2373     }
2374     break;
2375   }
2376   case ISD::ANY_EXTEND_VECTOR_INREG:
2377   case ISD::SIGN_EXTEND_VECTOR_INREG:
2378   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2379     APInt SrcUndef, SrcZero;
2380     SDValue Src = Op.getOperand(0);
2381     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2382     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2383     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2384                                    Depth + 1))
2385       return true;
2386     KnownZero = SrcZero.zextOrTrunc(NumElts);
2387     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2388 
2389     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2390         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2391         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2392       // aext - if we just need the bottom element then we can bitcast.
2393       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2394     }
2395 
2396     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2397       // zext(undef) upper bits are guaranteed to be zero.
2398       if (DemandedElts.isSubsetOf(KnownUndef))
2399         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2400       KnownUndef.clearAllBits();
2401     }
2402     break;
2403   }
2404 
2405   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2406   // MAX, saturated math, etc.
2407   case ISD::OR:
2408   case ISD::XOR:
2409   case ISD::ADD:
2410   case ISD::SUB:
2411   case ISD::FADD:
2412   case ISD::FSUB:
2413   case ISD::FMUL:
2414   case ISD::FDIV:
2415   case ISD::FREM: {
2416     APInt UndefRHS, ZeroRHS;
2417     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2418                                    ZeroRHS, TLO, Depth + 1))
2419       return true;
2420     APInt UndefLHS, ZeroLHS;
2421     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2422                                    ZeroLHS, TLO, Depth + 1))
2423       return true;
2424 
2425     KnownZero = ZeroLHS & ZeroRHS;
2426     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2427     break;
2428   }
2429   case ISD::SHL:
2430   case ISD::SRL:
2431   case ISD::SRA:
2432   case ISD::ROTL:
2433   case ISD::ROTR: {
2434     APInt UndefRHS, ZeroRHS;
2435     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2436                                    ZeroRHS, TLO, Depth + 1))
2437       return true;
2438     APInt UndefLHS, ZeroLHS;
2439     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2440                                    ZeroLHS, TLO, Depth + 1))
2441       return true;
2442 
2443     KnownZero = ZeroLHS;
2444     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2445     break;
2446   }
2447   case ISD::MUL:
2448   case ISD::AND: {
2449     APInt SrcUndef, SrcZero;
2450     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2451                                    SrcZero, TLO, Depth + 1))
2452       return true;
2453     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2454                                    KnownZero, TLO, Depth + 1))
2455       return true;
2456 
2457     // If either side has a zero element, then the result element is zero, even
2458     // if the other is an UNDEF.
2459     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2460     // and then handle 'and' nodes with the rest of the binop opcodes.
2461     KnownZero |= SrcZero;
2462     KnownUndef &= SrcUndef;
2463     KnownUndef &= ~KnownZero;
2464     break;
2465   }
2466   case ISD::TRUNCATE:
2467   case ISD::SIGN_EXTEND:
2468   case ISD::ZERO_EXTEND:
2469     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2470                                    KnownZero, TLO, Depth + 1))
2471       return true;
2472 
2473     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2474       // zext(undef) upper bits are guaranteed to be zero.
2475       if (DemandedElts.isSubsetOf(KnownUndef))
2476         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2477       KnownUndef.clearAllBits();
2478     }
2479     break;
2480   default: {
2481     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2482       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2483                                                   KnownZero, TLO, Depth))
2484         return true;
2485     } else {
2486       KnownBits Known;
2487       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2488       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2489                                TLO, Depth, AssumeSingleUse))
2490         return true;
2491     }
2492     break;
2493   }
2494   }
2495   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2496 
2497   // Constant fold all undef cases.
2498   // TODO: Handle zero cases as well.
2499   if (DemandedElts.isSubsetOf(KnownUndef))
2500     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2501 
2502   return false;
2503 }
2504 
2505 /// Determine which of the bits specified in Mask are known to be either zero or
2506 /// one and return them in the Known.
2507 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2508                                                    KnownBits &Known,
2509                                                    const APInt &DemandedElts,
2510                                                    const SelectionDAG &DAG,
2511                                                    unsigned Depth) const {
2512   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2513           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2514           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2515           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2516          "Should use MaskedValueIsZero if you don't know whether Op"
2517          " is a target node!");
2518   Known.resetAll();
2519 }
2520 
2521 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2522                                                    KnownBits &Known,
2523                                                    const APInt &DemandedElts,
2524                                                    const SelectionDAG &DAG,
2525                                                    unsigned Depth) const {
2526   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2527 
2528   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2529     // The low bits are known zero if the pointer is aligned.
2530     Known.Zero.setLowBits(Log2_32(Align));
2531   }
2532 }
2533 
2534 /// This method can be implemented by targets that want to expose additional
2535 /// information about sign bits to the DAG Combiner.
2536 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2537                                                          const APInt &,
2538                                                          const SelectionDAG &,
2539                                                          unsigned Depth) const {
2540   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2541           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2542           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2543           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2544          "Should use ComputeNumSignBits if you don't know whether Op"
2545          " is a target node!");
2546   return 1;
2547 }
2548 
2549 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2550     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2551     TargetLoweringOpt &TLO, unsigned Depth) const {
2552   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2553           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2554           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2555           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2556          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2557          " is a target node!");
2558   return false;
2559 }
2560 
2561 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2562     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2563     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2564   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2565           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2566           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2567           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2568          "Should use SimplifyDemandedBits if you don't know whether Op"
2569          " is a target node!");
2570   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2571   return false;
2572 }
2573 
2574 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2575     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2576     SelectionDAG &DAG, unsigned Depth) const {
2577   assert(
2578       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2579        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2580        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2581        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2582       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2583       " is a target node!");
2584   return SDValue();
2585 }
2586 
2587 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2588   return nullptr;
2589 }
2590 
2591 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2592                                                   const SelectionDAG &DAG,
2593                                                   bool SNaN,
2594                                                   unsigned Depth) const {
2595   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2596           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2597           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2598           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2599          "Should use isKnownNeverNaN if you don't know whether Op"
2600          " is a target node!");
2601   return false;
2602 }
2603 
2604 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2605 // work with truncating build vectors and vectors with elements of less than
2606 // 8 bits.
2607 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2608   if (!N)
2609     return false;
2610 
2611   APInt CVal;
2612   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2613     CVal = CN->getAPIntValue();
2614   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2615     auto *CN = BV->getConstantSplatNode();
2616     if (!CN)
2617       return false;
2618 
2619     // If this is a truncating build vector, truncate the splat value.
2620     // Otherwise, we may fail to match the expected values below.
2621     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2622     CVal = CN->getAPIntValue();
2623     if (BVEltWidth < CVal.getBitWidth())
2624       CVal = CVal.trunc(BVEltWidth);
2625   } else {
2626     return false;
2627   }
2628 
2629   switch (getBooleanContents(N->getValueType(0))) {
2630   case UndefinedBooleanContent:
2631     return CVal[0];
2632   case ZeroOrOneBooleanContent:
2633     return CVal.isOneValue();
2634   case ZeroOrNegativeOneBooleanContent:
2635     return CVal.isAllOnesValue();
2636   }
2637 
2638   llvm_unreachable("Invalid boolean contents");
2639 }
2640 
2641 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2642   if (!N)
2643     return false;
2644 
2645   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2646   if (!CN) {
2647     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2648     if (!BV)
2649       return false;
2650 
2651     // Only interested in constant splats, we don't care about undef
2652     // elements in identifying boolean constants and getConstantSplatNode
2653     // returns NULL if all ops are undef;
2654     CN = BV->getConstantSplatNode();
2655     if (!CN)
2656       return false;
2657   }
2658 
2659   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2660     return !CN->getAPIntValue()[0];
2661 
2662   return CN->isNullValue();
2663 }
2664 
2665 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2666                                        bool SExt) const {
2667   if (VT == MVT::i1)
2668     return N->isOne();
2669 
2670   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2671   switch (Cnt) {
2672   case TargetLowering::ZeroOrOneBooleanContent:
2673     // An extended value of 1 is always true, unless its original type is i1,
2674     // in which case it will be sign extended to -1.
2675     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2676   case TargetLowering::UndefinedBooleanContent:
2677   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2678     return N->isAllOnesValue() && SExt;
2679   }
2680   llvm_unreachable("Unexpected enumeration.");
2681 }
2682 
2683 /// This helper function of SimplifySetCC tries to optimize the comparison when
2684 /// either operand of the SetCC node is a bitwise-and instruction.
2685 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2686                                          ISD::CondCode Cond, const SDLoc &DL,
2687                                          DAGCombinerInfo &DCI) const {
2688   // Match these patterns in any of their permutations:
2689   // (X & Y) == Y
2690   // (X & Y) != Y
2691   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2692     std::swap(N0, N1);
2693 
2694   EVT OpVT = N0.getValueType();
2695   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2696       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2697     return SDValue();
2698 
2699   SDValue X, Y;
2700   if (N0.getOperand(0) == N1) {
2701     X = N0.getOperand(1);
2702     Y = N0.getOperand(0);
2703   } else if (N0.getOperand(1) == N1) {
2704     X = N0.getOperand(0);
2705     Y = N0.getOperand(1);
2706   } else {
2707     return SDValue();
2708   }
2709 
2710   SelectionDAG &DAG = DCI.DAG;
2711   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2712   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2713     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2714     // Note that where Y is variable and is known to have at most one bit set
2715     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2716     // equivalent when Y == 0.
2717     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2718     if (DCI.isBeforeLegalizeOps() ||
2719         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2720       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2721   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2722     // If the target supports an 'and-not' or 'and-complement' logic operation,
2723     // try to use that to make a comparison operation more efficient.
2724     // But don't do this transform if the mask is a single bit because there are
2725     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2726     // 'rlwinm' on PPC).
2727 
2728     // Bail out if the compare operand that we want to turn into a zero is
2729     // already a zero (otherwise, infinite loop).
2730     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2731     if (YConst && YConst->isNullValue())
2732       return SDValue();
2733 
2734     // Transform this into: ~X & Y == 0.
2735     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2736     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2737     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2738   }
2739 
2740   return SDValue();
2741 }
2742 
2743 /// There are multiple IR patterns that could be checking whether certain
2744 /// truncation of a signed number would be lossy or not. The pattern which is
2745 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2746 /// We are looking for the following pattern: (KeptBits is a constant)
2747 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2748 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2749 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2750 /// We will unfold it into the natural trunc+sext pattern:
2751 ///   ((%x << C) a>> C) dstcond %x
2752 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2753 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2754     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2755     const SDLoc &DL) const {
2756   // We must be comparing with a constant.
2757   ConstantSDNode *C1;
2758   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2759     return SDValue();
2760 
2761   // N0 should be:  add %x, (1 << (KeptBits-1))
2762   if (N0->getOpcode() != ISD::ADD)
2763     return SDValue();
2764 
2765   // And we must be 'add'ing a constant.
2766   ConstantSDNode *C01;
2767   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2768     return SDValue();
2769 
2770   SDValue X = N0->getOperand(0);
2771   EVT XVT = X.getValueType();
2772 
2773   // Validate constants ...
2774 
2775   APInt I1 = C1->getAPIntValue();
2776 
2777   ISD::CondCode NewCond;
2778   if (Cond == ISD::CondCode::SETULT) {
2779     NewCond = ISD::CondCode::SETEQ;
2780   } else if (Cond == ISD::CondCode::SETULE) {
2781     NewCond = ISD::CondCode::SETEQ;
2782     // But need to 'canonicalize' the constant.
2783     I1 += 1;
2784   } else if (Cond == ISD::CondCode::SETUGT) {
2785     NewCond = ISD::CondCode::SETNE;
2786     // But need to 'canonicalize' the constant.
2787     I1 += 1;
2788   } else if (Cond == ISD::CondCode::SETUGE) {
2789     NewCond = ISD::CondCode::SETNE;
2790   } else
2791     return SDValue();
2792 
2793   APInt I01 = C01->getAPIntValue();
2794 
2795   auto checkConstants = [&I1, &I01]() -> bool {
2796     // Both of them must be power-of-two, and the constant from setcc is bigger.
2797     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2798   };
2799 
2800   if (checkConstants()) {
2801     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2802   } else {
2803     // What if we invert constants? (and the target predicate)
2804     I1.negate();
2805     I01.negate();
2806     NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2807     if (!checkConstants())
2808       return SDValue();
2809     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2810   }
2811 
2812   // They are power-of-two, so which bit is set?
2813   const unsigned KeptBits = I1.logBase2();
2814   const unsigned KeptBitsMinusOne = I01.logBase2();
2815 
2816   // Magic!
2817   if (KeptBits != (KeptBitsMinusOne + 1))
2818     return SDValue();
2819   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2820 
2821   // We don't want to do this in every single case.
2822   SelectionDAG &DAG = DCI.DAG;
2823   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2824           XVT, KeptBits))
2825     return SDValue();
2826 
2827   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2828   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2829 
2830   // Unfold into:  ((%x << C) a>> C) cond %x
2831   // Where 'cond' will be either 'eq' or 'ne'.
2832   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2833   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2834   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2835   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2836 
2837   return T2;
2838 }
2839 
2840 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
2841 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
2842     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
2843     DAGCombinerInfo &DCI, const SDLoc &DL) const {
2844   assert(isConstOrConstSplat(N1C) &&
2845          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
2846          "Should be a comparison with 0.");
2847   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2848          "Valid only for [in]equality comparisons.");
2849 
2850   unsigned NewShiftOpcode;
2851   SDValue X, C, Y;
2852 
2853   SelectionDAG &DAG = DCI.DAG;
2854   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2855 
2856   // Look for '(C l>>/<< Y)'.
2857   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
2858     // The shift should be one-use.
2859     if (!V.hasOneUse())
2860       return false;
2861     unsigned OldShiftOpcode = V.getOpcode();
2862     switch (OldShiftOpcode) {
2863     case ISD::SHL:
2864       NewShiftOpcode = ISD::SRL;
2865       break;
2866     case ISD::SRL:
2867       NewShiftOpcode = ISD::SHL;
2868       break;
2869     default:
2870       return false; // must be a logical shift.
2871     }
2872     // We should be shifting a constant.
2873     // FIXME: best to use isConstantOrConstantVector().
2874     C = V.getOperand(0);
2875     ConstantSDNode *CC =
2876         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2877     if (!CC)
2878       return false;
2879     Y = V.getOperand(1);
2880 
2881     ConstantSDNode *XC =
2882         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2883     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
2884         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
2885   };
2886 
2887   // LHS of comparison should be an one-use 'and'.
2888   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
2889     return SDValue();
2890 
2891   X = N0.getOperand(0);
2892   SDValue Mask = N0.getOperand(1);
2893 
2894   // 'and' is commutative!
2895   if (!Match(Mask)) {
2896     std::swap(X, Mask);
2897     if (!Match(Mask))
2898       return SDValue();
2899   }
2900 
2901   EVT VT = X.getValueType();
2902 
2903   // Produce:
2904   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
2905   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
2906   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
2907   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
2908   return T2;
2909 }
2910 
2911 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
2912 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
2913 /// handle the commuted versions of these patterns.
2914 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
2915                                            ISD::CondCode Cond, const SDLoc &DL,
2916                                            DAGCombinerInfo &DCI) const {
2917   unsigned BOpcode = N0.getOpcode();
2918   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
2919          "Unexpected binop");
2920   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
2921 
2922   // (X + Y) == X --> Y == 0
2923   // (X - Y) == X --> Y == 0
2924   // (X ^ Y) == X --> Y == 0
2925   SelectionDAG &DAG = DCI.DAG;
2926   EVT OpVT = N0.getValueType();
2927   SDValue X = N0.getOperand(0);
2928   SDValue Y = N0.getOperand(1);
2929   if (X == N1)
2930     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
2931 
2932   if (Y != N1)
2933     return SDValue();
2934 
2935   // (X + Y) == Y --> X == 0
2936   // (X ^ Y) == Y --> X == 0
2937   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
2938     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
2939 
2940   // The shift would not be valid if the operands are boolean (i1).
2941   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
2942     return SDValue();
2943 
2944   // (X - Y) == Y --> X == Y << 1
2945   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
2946                                  !DCI.isBeforeLegalize());
2947   SDValue One = DAG.getConstant(1, DL, ShiftVT);
2948   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
2949   if (!DCI.isCalledByLegalizer())
2950     DCI.AddToWorklist(YShl1.getNode());
2951   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
2952 }
2953 
2954 /// Try to simplify a setcc built with the specified operands and cc. If it is
2955 /// unable to simplify it, return a null SDValue.
2956 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
2957                                       ISD::CondCode Cond, bool foldBooleans,
2958                                       DAGCombinerInfo &DCI,
2959                                       const SDLoc &dl) const {
2960   SelectionDAG &DAG = DCI.DAG;
2961   EVT OpVT = N0.getValueType();
2962 
2963   // Constant fold or commute setcc.
2964   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
2965     return Fold;
2966 
2967   // Ensure that the constant occurs on the RHS and fold constant comparisons.
2968   // TODO: Handle non-splat vector constants. All undef causes trouble.
2969   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
2970   if (isConstOrConstSplat(N0) &&
2971       (DCI.isBeforeLegalizeOps() ||
2972        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
2973     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
2974 
2975   // If we have a subtract with the same 2 non-constant operands as this setcc
2976   // -- but in reverse order -- then try to commute the operands of this setcc
2977   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
2978   // instruction on some targets.
2979   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
2980       (DCI.isBeforeLegalizeOps() ||
2981        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
2982       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
2983       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
2984     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
2985 
2986   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2987     const APInt &C1 = N1C->getAPIntValue();
2988 
2989     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
2990     // equality comparison, then we're just comparing whether X itself is
2991     // zero.
2992     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
2993         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
2994         N0.getOperand(1).getOpcode() == ISD::Constant) {
2995       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
2996       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2997           ShAmt == Log2_32(N0.getValueSizeInBits())) {
2998         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
2999           // (srl (ctlz x), 5) == 0  -> X != 0
3000           // (srl (ctlz x), 5) != 1  -> X != 0
3001           Cond = ISD::SETNE;
3002         } else {
3003           // (srl (ctlz x), 5) != 0  -> X == 0
3004           // (srl (ctlz x), 5) == 1  -> X == 0
3005           Cond = ISD::SETEQ;
3006         }
3007         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3008         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3009                             Zero, Cond);
3010       }
3011     }
3012 
3013     SDValue CTPOP = N0;
3014     // Look through truncs that don't change the value of a ctpop.
3015     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3016       CTPOP = N0.getOperand(0);
3017 
3018     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3019         (N0 == CTPOP ||
3020          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3021       EVT CTVT = CTPOP.getValueType();
3022       SDValue CTOp = CTPOP.getOperand(0);
3023 
3024       // (ctpop x) u< 2 -> (x & x-1) == 0
3025       // (ctpop x) u> 1 -> (x & x-1) != 0
3026       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3027         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3028         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3029         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3030         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3031         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3032       }
3033 
3034       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3035       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3036           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3037         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3038         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3039         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3040         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3041         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true);
3042         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3043         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3044         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3045         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3046         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3047         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3048       }
3049     }
3050 
3051     // (zext x) == C --> x == (trunc C)
3052     // (sext x) == C --> x == (trunc C)
3053     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3054         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3055       unsigned MinBits = N0.getValueSizeInBits();
3056       SDValue PreExt;
3057       bool Signed = false;
3058       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3059         // ZExt
3060         MinBits = N0->getOperand(0).getValueSizeInBits();
3061         PreExt = N0->getOperand(0);
3062       } else if (N0->getOpcode() == ISD::AND) {
3063         // DAGCombine turns costly ZExts into ANDs
3064         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3065           if ((C->getAPIntValue()+1).isPowerOf2()) {
3066             MinBits = C->getAPIntValue().countTrailingOnes();
3067             PreExt = N0->getOperand(0);
3068           }
3069       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3070         // SExt
3071         MinBits = N0->getOperand(0).getValueSizeInBits();
3072         PreExt = N0->getOperand(0);
3073         Signed = true;
3074       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3075         // ZEXTLOAD / SEXTLOAD
3076         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3077           MinBits = LN0->getMemoryVT().getSizeInBits();
3078           PreExt = N0;
3079         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3080           Signed = true;
3081           MinBits = LN0->getMemoryVT().getSizeInBits();
3082           PreExt = N0;
3083         }
3084       }
3085 
3086       // Figure out how many bits we need to preserve this constant.
3087       unsigned ReqdBits = Signed ?
3088         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3089         C1.getActiveBits();
3090 
3091       // Make sure we're not losing bits from the constant.
3092       if (MinBits > 0 &&
3093           MinBits < C1.getBitWidth() &&
3094           MinBits >= ReqdBits) {
3095         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3096         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3097           // Will get folded away.
3098           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3099           if (MinBits == 1 && C1 == 1)
3100             // Invert the condition.
3101             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3102                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3103           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3104           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3105         }
3106 
3107         // If truncating the setcc operands is not desirable, we can still
3108         // simplify the expression in some cases:
3109         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3110         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3111         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3112         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3113         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3114         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3115         SDValue TopSetCC = N0->getOperand(0);
3116         unsigned N0Opc = N0->getOpcode();
3117         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3118         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3119             TopSetCC.getOpcode() == ISD::SETCC &&
3120             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3121             (isConstFalseVal(N1C) ||
3122              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3123 
3124           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3125                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3126 
3127           if (!Inverse)
3128             return TopSetCC;
3129 
3130           ISD::CondCode InvCond = ISD::getSetCCInverse(
3131               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3132               TopSetCC.getOperand(0).getValueType().isInteger());
3133           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3134                                       TopSetCC.getOperand(1),
3135                                       InvCond);
3136         }
3137       }
3138     }
3139 
3140     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3141     // equality or unsigned, and all 1 bits of the const are in the same
3142     // partial word, see if we can shorten the load.
3143     if (DCI.isBeforeLegalize() &&
3144         !ISD::isSignedIntSetCC(Cond) &&
3145         N0.getOpcode() == ISD::AND && C1 == 0 &&
3146         N0.getNode()->hasOneUse() &&
3147         isa<LoadSDNode>(N0.getOperand(0)) &&
3148         N0.getOperand(0).getNode()->hasOneUse() &&
3149         isa<ConstantSDNode>(N0.getOperand(1))) {
3150       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3151       APInt bestMask;
3152       unsigned bestWidth = 0, bestOffset = 0;
3153       if (!Lod->isVolatile() && Lod->isUnindexed()) {
3154         unsigned origWidth = N0.getValueSizeInBits();
3155         unsigned maskWidth = origWidth;
3156         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3157         // 8 bits, but have to be careful...
3158         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3159           origWidth = Lod->getMemoryVT().getSizeInBits();
3160         const APInt &Mask = N0.getConstantOperandAPInt(1);
3161         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3162           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3163           for (unsigned offset=0; offset<origWidth/width; offset++) {
3164             if (Mask.isSubsetOf(newMask)) {
3165               if (DAG.getDataLayout().isLittleEndian())
3166                 bestOffset = (uint64_t)offset * (width/8);
3167               else
3168                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3169               bestMask = Mask.lshr(offset * (width/8) * 8);
3170               bestWidth = width;
3171               break;
3172             }
3173             newMask <<= width;
3174           }
3175         }
3176       }
3177       if (bestWidth) {
3178         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3179         if (newVT.isRound() &&
3180             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3181           EVT PtrType = Lod->getOperand(1).getValueType();
3182           SDValue Ptr = Lod->getBasePtr();
3183           if (bestOffset != 0)
3184             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
3185                               DAG.getConstant(bestOffset, dl, PtrType));
3186           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3187           SDValue NewLoad = DAG.getLoad(
3188               newVT, dl, Lod->getChain(), Ptr,
3189               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3190           return DAG.getSetCC(dl, VT,
3191                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3192                                       DAG.getConstant(bestMask.trunc(bestWidth),
3193                                                       dl, newVT)),
3194                               DAG.getConstant(0LL, dl, newVT), Cond);
3195         }
3196       }
3197     }
3198 
3199     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3200     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3201       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3202 
3203       // If the comparison constant has bits in the upper part, the
3204       // zero-extended value could never match.
3205       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3206                                               C1.getBitWidth() - InSize))) {
3207         switch (Cond) {
3208         case ISD::SETUGT:
3209         case ISD::SETUGE:
3210         case ISD::SETEQ:
3211           return DAG.getConstant(0, dl, VT);
3212         case ISD::SETULT:
3213         case ISD::SETULE:
3214         case ISD::SETNE:
3215           return DAG.getConstant(1, dl, VT);
3216         case ISD::SETGT:
3217         case ISD::SETGE:
3218           // True if the sign bit of C1 is set.
3219           return DAG.getConstant(C1.isNegative(), dl, VT);
3220         case ISD::SETLT:
3221         case ISD::SETLE:
3222           // True if the sign bit of C1 isn't set.
3223           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3224         default:
3225           break;
3226         }
3227       }
3228 
3229       // Otherwise, we can perform the comparison with the low bits.
3230       switch (Cond) {
3231       case ISD::SETEQ:
3232       case ISD::SETNE:
3233       case ISD::SETUGT:
3234       case ISD::SETUGE:
3235       case ISD::SETULT:
3236       case ISD::SETULE: {
3237         EVT newVT = N0.getOperand(0).getValueType();
3238         if (DCI.isBeforeLegalizeOps() ||
3239             (isOperationLegal(ISD::SETCC, newVT) &&
3240              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3241           EVT NewSetCCVT =
3242               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
3243           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3244 
3245           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3246                                           NewConst, Cond);
3247           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3248         }
3249         break;
3250       }
3251       default:
3252         break; // todo, be more careful with signed comparisons
3253       }
3254     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3255                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3256       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3257       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3258       EVT ExtDstTy = N0.getValueType();
3259       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3260 
3261       // If the constant doesn't fit into the number of bits for the source of
3262       // the sign extension, it is impossible for both sides to be equal.
3263       if (C1.getMinSignedBits() > ExtSrcTyBits)
3264         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3265 
3266       SDValue ZextOp;
3267       EVT Op0Ty = N0.getOperand(0).getValueType();
3268       if (Op0Ty == ExtSrcTy) {
3269         ZextOp = N0.getOperand(0);
3270       } else {
3271         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3272         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3273                              DAG.getConstant(Imm, dl, Op0Ty));
3274       }
3275       if (!DCI.isCalledByLegalizer())
3276         DCI.AddToWorklist(ZextOp.getNode());
3277       // Otherwise, make this a use of a zext.
3278       return DAG.getSetCC(dl, VT, ZextOp,
3279                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3280                                                               ExtDstTyBits,
3281                                                               ExtSrcTyBits),
3282                                           dl, ExtDstTy),
3283                           Cond);
3284     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3285                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3286       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3287       if (N0.getOpcode() == ISD::SETCC &&
3288           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
3289         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3290         if (TrueWhenTrue)
3291           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3292         // Invert the condition.
3293         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3294         CC = ISD::getSetCCInverse(CC,
3295                                   N0.getOperand(0).getValueType().isInteger());
3296         if (DCI.isBeforeLegalizeOps() ||
3297             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3298           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3299       }
3300 
3301       if ((N0.getOpcode() == ISD::XOR ||
3302            (N0.getOpcode() == ISD::AND &&
3303             N0.getOperand(0).getOpcode() == ISD::XOR &&
3304             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3305           isa<ConstantSDNode>(N0.getOperand(1)) &&
3306           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3307         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3308         // can only do this if the top bits are known zero.
3309         unsigned BitWidth = N0.getValueSizeInBits();
3310         if (DAG.MaskedValueIsZero(N0,
3311                                   APInt::getHighBitsSet(BitWidth,
3312                                                         BitWidth-1))) {
3313           // Okay, get the un-inverted input value.
3314           SDValue Val;
3315           if (N0.getOpcode() == ISD::XOR) {
3316             Val = N0.getOperand(0);
3317           } else {
3318             assert(N0.getOpcode() == ISD::AND &&
3319                     N0.getOperand(0).getOpcode() == ISD::XOR);
3320             // ((X^1)&1)^1 -> X & 1
3321             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3322                               N0.getOperand(0).getOperand(0),
3323                               N0.getOperand(1));
3324           }
3325 
3326           return DAG.getSetCC(dl, VT, Val, N1,
3327                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3328         }
3329       } else if (N1C->isOne() &&
3330                  (VT == MVT::i1 ||
3331                   getBooleanContents(N0->getValueType(0)) ==
3332                       ZeroOrOneBooleanContent)) {
3333         SDValue Op0 = N0;
3334         if (Op0.getOpcode() == ISD::TRUNCATE)
3335           Op0 = Op0.getOperand(0);
3336 
3337         if ((Op0.getOpcode() == ISD::XOR) &&
3338             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3339             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3340           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3341           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3342           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
3343                               Cond);
3344         }
3345         if (Op0.getOpcode() == ISD::AND &&
3346             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3347             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3348           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3349           if (Op0.getValueType().bitsGT(VT))
3350             Op0 = DAG.getNode(ISD::AND, dl, VT,
3351                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3352                           DAG.getConstant(1, dl, VT));
3353           else if (Op0.getValueType().bitsLT(VT))
3354             Op0 = DAG.getNode(ISD::AND, dl, VT,
3355                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3356                         DAG.getConstant(1, dl, VT));
3357 
3358           return DAG.getSetCC(dl, VT, Op0,
3359                               DAG.getConstant(0, dl, Op0.getValueType()),
3360                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3361         }
3362         if (Op0.getOpcode() == ISD::AssertZext &&
3363             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3364           return DAG.getSetCC(dl, VT, Op0,
3365                               DAG.getConstant(0, dl, Op0.getValueType()),
3366                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3367       }
3368     }
3369 
3370     // Given:
3371     //   icmp eq/ne (urem %x, %y), 0
3372     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3373     //   icmp eq/ne %x, 0
3374     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3375         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3376       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3377       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3378       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3379         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3380     }
3381 
3382     if (SDValue V =
3383             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3384       return V;
3385   }
3386 
3387   // These simplifications apply to splat vectors as well.
3388   // TODO: Handle more splat vector cases.
3389   if (auto *N1C = isConstOrConstSplat(N1)) {
3390     const APInt &C1 = N1C->getAPIntValue();
3391 
3392     APInt MinVal, MaxVal;
3393     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3394     if (ISD::isSignedIntSetCC(Cond)) {
3395       MinVal = APInt::getSignedMinValue(OperandBitSize);
3396       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3397     } else {
3398       MinVal = APInt::getMinValue(OperandBitSize);
3399       MaxVal = APInt::getMaxValue(OperandBitSize);
3400     }
3401 
3402     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3403     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3404       // X >= MIN --> true
3405       if (C1 == MinVal)
3406         return DAG.getBoolConstant(true, dl, VT, OpVT);
3407 
3408       if (!VT.isVector()) { // TODO: Support this for vectors.
3409         // X >= C0 --> X > (C0 - 1)
3410         APInt C = C1 - 1;
3411         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3412         if ((DCI.isBeforeLegalizeOps() ||
3413              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3414             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3415                                   isLegalICmpImmediate(C.getSExtValue())))) {
3416           return DAG.getSetCC(dl, VT, N0,
3417                               DAG.getConstant(C, dl, N1.getValueType()),
3418                               NewCC);
3419         }
3420       }
3421     }
3422 
3423     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3424       // X <= MAX --> true
3425       if (C1 == MaxVal)
3426         return DAG.getBoolConstant(true, dl, VT, OpVT);
3427 
3428       // X <= C0 --> X < (C0 + 1)
3429       if (!VT.isVector()) { // TODO: Support this for vectors.
3430         APInt C = C1 + 1;
3431         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3432         if ((DCI.isBeforeLegalizeOps() ||
3433              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3434             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3435                                   isLegalICmpImmediate(C.getSExtValue())))) {
3436           return DAG.getSetCC(dl, VT, N0,
3437                               DAG.getConstant(C, dl, N1.getValueType()),
3438                               NewCC);
3439         }
3440       }
3441     }
3442 
3443     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3444       if (C1 == MinVal)
3445         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3446 
3447       // TODO: Support this for vectors after legalize ops.
3448       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3449         // Canonicalize setlt X, Max --> setne X, Max
3450         if (C1 == MaxVal)
3451           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3452 
3453         // If we have setult X, 1, turn it into seteq X, 0
3454         if (C1 == MinVal+1)
3455           return DAG.getSetCC(dl, VT, N0,
3456                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3457                               ISD::SETEQ);
3458       }
3459     }
3460 
3461     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3462       if (C1 == MaxVal)
3463         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3464 
3465       // TODO: Support this for vectors after legalize ops.
3466       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3467         // Canonicalize setgt X, Min --> setne X, Min
3468         if (C1 == MinVal)
3469           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3470 
3471         // If we have setugt X, Max-1, turn it into seteq X, Max
3472         if (C1 == MaxVal-1)
3473           return DAG.getSetCC(dl, VT, N0,
3474                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3475                               ISD::SETEQ);
3476       }
3477     }
3478 
3479     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3480       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3481       if (C1.isNullValue())
3482         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3483                 VT, N0, N1, Cond, DCI, dl))
3484           return CC;
3485     }
3486 
3487     // If we have "setcc X, C0", check to see if we can shrink the immediate
3488     // by changing cc.
3489     // TODO: Support this for vectors after legalize ops.
3490     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3491       // SETUGT X, SINTMAX  -> SETLT X, 0
3492       if (Cond == ISD::SETUGT &&
3493           C1 == APInt::getSignedMaxValue(OperandBitSize))
3494         return DAG.getSetCC(dl, VT, N0,
3495                             DAG.getConstant(0, dl, N1.getValueType()),
3496                             ISD::SETLT);
3497 
3498       // SETULT X, SINTMIN  -> SETGT X, -1
3499       if (Cond == ISD::SETULT &&
3500           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3501         SDValue ConstMinusOne =
3502             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3503                             N1.getValueType());
3504         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3505       }
3506     }
3507   }
3508 
3509   // Back to non-vector simplifications.
3510   // TODO: Can we do these for vector splats?
3511   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3512     const APInt &C1 = N1C->getAPIntValue();
3513 
3514     // Fold bit comparisons when we can.
3515     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3516         (VT == N0.getValueType() ||
3517          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
3518         N0.getOpcode() == ISD::AND) {
3519       auto &DL = DAG.getDataLayout();
3520       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3521         EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3522                                        !DCI.isBeforeLegalize());
3523         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3524           // Perform the xform if the AND RHS is a single bit.
3525           if (AndRHS->getAPIntValue().isPowerOf2()) {
3526             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3527                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3528                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
3529                                    ShiftTy)));
3530           }
3531         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3532           // (X & 8) == 8  -->  (X & 8) >> 3
3533           // Perform the xform if C1 is a single bit.
3534           if (C1.isPowerOf2()) {
3535             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3536                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3537                                       DAG.getConstant(C1.logBase2(), dl,
3538                                                       ShiftTy)));
3539           }
3540         }
3541       }
3542     }
3543 
3544     if (C1.getMinSignedBits() <= 64 &&
3545         !isLegalICmpImmediate(C1.getSExtValue())) {
3546       // (X & -256) == 256 -> (X >> 8) == 1
3547       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3548           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3549         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3550           const APInt &AndRHSC = AndRHS->getAPIntValue();
3551           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3552             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3553             auto &DL = DAG.getDataLayout();
3554             EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3555                                            !DCI.isBeforeLegalize());
3556             EVT CmpTy = N0.getValueType();
3557             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
3558                                         DAG.getConstant(ShiftBits, dl,
3559                                                         ShiftTy));
3560             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
3561             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3562           }
3563         }
3564       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3565                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3566         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3567         // X <  0x100000000 -> (X >> 32) <  1
3568         // X >= 0x100000000 -> (X >> 32) >= 1
3569         // X <= 0x0ffffffff -> (X >> 32) <  1
3570         // X >  0x0ffffffff -> (X >> 32) >= 1
3571         unsigned ShiftBits;
3572         APInt NewC = C1;
3573         ISD::CondCode NewCond = Cond;
3574         if (AdjOne) {
3575           ShiftBits = C1.countTrailingOnes();
3576           NewC = NewC + 1;
3577           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3578         } else {
3579           ShiftBits = C1.countTrailingZeros();
3580         }
3581         NewC.lshrInPlace(ShiftBits);
3582         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3583           isLegalICmpImmediate(NewC.getSExtValue())) {
3584           auto &DL = DAG.getDataLayout();
3585           EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3586                                          !DCI.isBeforeLegalize());
3587           EVT CmpTy = N0.getValueType();
3588           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
3589                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3590           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
3591           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3592         }
3593       }
3594     }
3595   }
3596 
3597   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3598     auto *CFP = cast<ConstantFPSDNode>(N1);
3599     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3600 
3601     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3602     // constant if knowing that the operand is non-nan is enough.  We prefer to
3603     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3604     // materialize 0.0.
3605     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3606       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3607 
3608     // setcc (fneg x), C -> setcc swap(pred) x, -C
3609     if (N0.getOpcode() == ISD::FNEG) {
3610       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3611       if (DCI.isBeforeLegalizeOps() ||
3612           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3613         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3614         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3615       }
3616     }
3617 
3618     // If the condition is not legal, see if we can find an equivalent one
3619     // which is legal.
3620     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3621       // If the comparison was an awkward floating-point == or != and one of
3622       // the comparison operands is infinity or negative infinity, convert the
3623       // condition to a less-awkward <= or >=.
3624       if (CFP->getValueAPF().isInfinity()) {
3625         if (CFP->getValueAPF().isNegative()) {
3626           if (Cond == ISD::SETOEQ &&
3627               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3628             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3629           if (Cond == ISD::SETUEQ &&
3630               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3631             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3632           if (Cond == ISD::SETUNE &&
3633               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3634             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3635           if (Cond == ISD::SETONE &&
3636               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3637             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3638         } else {
3639           if (Cond == ISD::SETOEQ &&
3640               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3641             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3642           if (Cond == ISD::SETUEQ &&
3643               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3644             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3645           if (Cond == ISD::SETUNE &&
3646               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3647             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3648           if (Cond == ISD::SETONE &&
3649               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3650             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3651         }
3652       }
3653     }
3654   }
3655 
3656   if (N0 == N1) {
3657     // The sext(setcc()) => setcc() optimization relies on the appropriate
3658     // constant being emitted.
3659     assert(!N0.getValueType().isInteger() &&
3660            "Integer types should be handled by FoldSetCC");
3661 
3662     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3663     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3664     if (UOF == 2) // FP operators that are undefined on NaNs.
3665       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3666     if (UOF == unsigned(EqTrue))
3667       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3668     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3669     // if it is not already.
3670     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3671     if (NewCond != Cond &&
3672         (DCI.isBeforeLegalizeOps() ||
3673                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3674       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3675   }
3676 
3677   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3678       N0.getValueType().isInteger()) {
3679     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3680         N0.getOpcode() == ISD::XOR) {
3681       // Simplify (X+Y) == (X+Z) -->  Y == Z
3682       if (N0.getOpcode() == N1.getOpcode()) {
3683         if (N0.getOperand(0) == N1.getOperand(0))
3684           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3685         if (N0.getOperand(1) == N1.getOperand(1))
3686           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3687         if (isCommutativeBinOp(N0.getOpcode())) {
3688           // If X op Y == Y op X, try other combinations.
3689           if (N0.getOperand(0) == N1.getOperand(1))
3690             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3691                                 Cond);
3692           if (N0.getOperand(1) == N1.getOperand(0))
3693             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3694                                 Cond);
3695         }
3696       }
3697 
3698       // If RHS is a legal immediate value for a compare instruction, we need
3699       // to be careful about increasing register pressure needlessly.
3700       bool LegalRHSImm = false;
3701 
3702       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3703         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3704           // Turn (X+C1) == C2 --> X == C2-C1
3705           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3706             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3707                                 DAG.getConstant(RHSC->getAPIntValue()-
3708                                                 LHSR->getAPIntValue(),
3709                                 dl, N0.getValueType()), Cond);
3710           }
3711 
3712           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3713           if (N0.getOpcode() == ISD::XOR)
3714             // If we know that all of the inverted bits are zero, don't bother
3715             // performing the inversion.
3716             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3717               return
3718                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3719                              DAG.getConstant(LHSR->getAPIntValue() ^
3720                                                RHSC->getAPIntValue(),
3721                                              dl, N0.getValueType()),
3722                              Cond);
3723         }
3724 
3725         // Turn (C1-X) == C2 --> X == C1-C2
3726         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3727           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3728             return
3729               DAG.getSetCC(dl, VT, N0.getOperand(1),
3730                            DAG.getConstant(SUBC->getAPIntValue() -
3731                                              RHSC->getAPIntValue(),
3732                                            dl, N0.getValueType()),
3733                            Cond);
3734           }
3735         }
3736 
3737         // Could RHSC fold directly into a compare?
3738         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3739           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3740       }
3741 
3742       // (X+Y) == X --> Y == 0 and similar folds.
3743       // Don't do this if X is an immediate that can fold into a cmp
3744       // instruction and X+Y has other uses. It could be an induction variable
3745       // chain, and the transform would increase register pressure.
3746       if (!LegalRHSImm || N0.hasOneUse())
3747         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3748           return V;
3749     }
3750 
3751     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3752         N1.getOpcode() == ISD::XOR)
3753       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3754         return V;
3755 
3756     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3757       return V;
3758   }
3759 
3760   // Fold remainder of division by a constant.
3761   if (N0.getOpcode() == ISD::UREM && N0.hasOneUse() &&
3762       (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3763     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3764 
3765     // When division is cheap or optimizing for minimum size,
3766     // fall through to DIVREM creation by skipping this fold.
3767     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize))
3768       if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
3769         return Folded;
3770   }
3771 
3772   // Fold away ALL boolean setcc's.
3773   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3774     SDValue Temp;
3775     switch (Cond) {
3776     default: llvm_unreachable("Unknown integer setcc!");
3777     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
3778       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3779       N0 = DAG.getNOT(dl, Temp, OpVT);
3780       if (!DCI.isCalledByLegalizer())
3781         DCI.AddToWorklist(Temp.getNode());
3782       break;
3783     case ISD::SETNE:  // X != Y   -->  (X^Y)
3784       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3785       break;
3786     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
3787     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
3788       Temp = DAG.getNOT(dl, N0, OpVT);
3789       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3790       if (!DCI.isCalledByLegalizer())
3791         DCI.AddToWorklist(Temp.getNode());
3792       break;
3793     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
3794     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
3795       Temp = DAG.getNOT(dl, N1, OpVT);
3796       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3797       if (!DCI.isCalledByLegalizer())
3798         DCI.AddToWorklist(Temp.getNode());
3799       break;
3800     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
3801     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
3802       Temp = DAG.getNOT(dl, N0, OpVT);
3803       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3804       if (!DCI.isCalledByLegalizer())
3805         DCI.AddToWorklist(Temp.getNode());
3806       break;
3807     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
3808     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
3809       Temp = DAG.getNOT(dl, N1, OpVT);
3810       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3811       break;
3812     }
3813     if (VT.getScalarType() != MVT::i1) {
3814       if (!DCI.isCalledByLegalizer())
3815         DCI.AddToWorklist(N0.getNode());
3816       // FIXME: If running after legalize, we probably can't do this.
3817       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3818       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3819     }
3820     return N0;
3821   }
3822 
3823   // Could not fold it.
3824   return SDValue();
3825 }
3826 
3827 /// Returns true (and the GlobalValue and the offset) if the node is a
3828 /// GlobalAddress + offset.
3829 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3830                                     int64_t &Offset) const {
3831 
3832   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3833 
3834   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3835     GA = GASD->getGlobal();
3836     Offset += GASD->getOffset();
3837     return true;
3838   }
3839 
3840   if (N->getOpcode() == ISD::ADD) {
3841     SDValue N1 = N->getOperand(0);
3842     SDValue N2 = N->getOperand(1);
3843     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3844       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3845         Offset += V->getSExtValue();
3846         return true;
3847       }
3848     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3849       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3850         Offset += V->getSExtValue();
3851         return true;
3852       }
3853     }
3854   }
3855 
3856   return false;
3857 }
3858 
3859 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3860                                           DAGCombinerInfo &DCI) const {
3861   // Default implementation: no optimization.
3862   return SDValue();
3863 }
3864 
3865 //===----------------------------------------------------------------------===//
3866 //  Inline Assembler Implementation Methods
3867 //===----------------------------------------------------------------------===//
3868 
3869 TargetLowering::ConstraintType
3870 TargetLowering::getConstraintType(StringRef Constraint) const {
3871   unsigned S = Constraint.size();
3872 
3873   if (S == 1) {
3874     switch (Constraint[0]) {
3875     default: break;
3876     case 'r': return C_RegisterClass;
3877     case 'm': // memory
3878     case 'o': // offsetable
3879     case 'V': // not offsetable
3880       return C_Memory;
3881     case 'i': // Simple Integer or Relocatable Constant
3882     case 'n': // Simple Integer
3883     case 'E': // Floating Point Constant
3884     case 'F': // Floating Point Constant
3885     case 's': // Relocatable Constant
3886     case 'p': // Address.
3887     case 'X': // Allow ANY value.
3888     case 'I': // Target registers.
3889     case 'J':
3890     case 'K':
3891     case 'L':
3892     case 'M':
3893     case 'N':
3894     case 'O':
3895     case 'P':
3896     case '<':
3897     case '>':
3898       return C_Other;
3899     }
3900   }
3901 
3902   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
3903     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
3904       return C_Memory;
3905     return C_Register;
3906   }
3907   return C_Unknown;
3908 }
3909 
3910 /// Try to replace an X constraint, which matches anything, with another that
3911 /// has more specific requirements based on the type of the corresponding
3912 /// operand.
3913 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
3914   if (ConstraintVT.isInteger())
3915     return "r";
3916   if (ConstraintVT.isFloatingPoint())
3917     return "f"; // works for many targets
3918   return nullptr;
3919 }
3920 
3921 SDValue TargetLowering::LowerAsmOutputForConstraint(
3922     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
3923     SelectionDAG &DAG) const {
3924   return SDValue();
3925 }
3926 
3927 /// Lower the specified operand into the Ops vector.
3928 /// If it is invalid, don't add anything to Ops.
3929 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3930                                                   std::string &Constraint,
3931                                                   std::vector<SDValue> &Ops,
3932                                                   SelectionDAG &DAG) const {
3933 
3934   if (Constraint.length() > 1) return;
3935 
3936   char ConstraintLetter = Constraint[0];
3937   switch (ConstraintLetter) {
3938   default: break;
3939   case 'X':     // Allows any operand; labels (basic block) use this.
3940     if (Op.getOpcode() == ISD::BasicBlock ||
3941         Op.getOpcode() == ISD::TargetBlockAddress) {
3942       Ops.push_back(Op);
3943       return;
3944     }
3945     LLVM_FALLTHROUGH;
3946   case 'i':    // Simple Integer or Relocatable Constant
3947   case 'n':    // Simple Integer
3948   case 's': {  // Relocatable Constant
3949 
3950     GlobalAddressSDNode *GA;
3951     ConstantSDNode *C;
3952     BlockAddressSDNode *BA;
3953     uint64_t Offset = 0;
3954 
3955     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
3956     // etc., since getelementpointer is variadic. We can't use
3957     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
3958     // while in this case the GA may be furthest from the root node which is
3959     // likely an ISD::ADD.
3960     while (1) {
3961       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
3962         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
3963                                                  GA->getValueType(0),
3964                                                  Offset + GA->getOffset()));
3965         return;
3966       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
3967                  ConstraintLetter != 's') {
3968         // gcc prints these as sign extended.  Sign extend value to 64 bits
3969         // now; without this it would get ZExt'd later in
3970         // ScheduleDAGSDNodes::EmitNode, which is very generic.
3971         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
3972         BooleanContent BCont = getBooleanContents(MVT::i64);
3973         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
3974                                       : ISD::SIGN_EXTEND;
3975         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
3976                                                     : C->getSExtValue();
3977         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
3978                                             SDLoc(C), MVT::i64));
3979         return;
3980       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
3981                  ConstraintLetter != 'n') {
3982         Ops.push_back(DAG.getTargetBlockAddress(
3983             BA->getBlockAddress(), BA->getValueType(0),
3984             Offset + BA->getOffset(), BA->getTargetFlags()));
3985         return;
3986       } else {
3987         const unsigned OpCode = Op.getOpcode();
3988         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
3989           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
3990             Op = Op.getOperand(1);
3991           // Subtraction is not commutative.
3992           else if (OpCode == ISD::ADD &&
3993                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
3994             Op = Op.getOperand(0);
3995           else
3996             return;
3997           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
3998           continue;
3999         }
4000       }
4001       return;
4002     }
4003     break;
4004   }
4005   }
4006 }
4007 
4008 std::pair<unsigned, const TargetRegisterClass *>
4009 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4010                                              StringRef Constraint,
4011                                              MVT VT) const {
4012   if (Constraint.empty() || Constraint[0] != '{')
4013     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4014   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4015 
4016   // Remove the braces from around the name.
4017   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4018 
4019   std::pair<unsigned, const TargetRegisterClass *> R =
4020       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4021 
4022   // Figure out which register class contains this reg.
4023   for (const TargetRegisterClass *RC : RI->regclasses()) {
4024     // If none of the value types for this register class are valid, we
4025     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4026     if (!isLegalRC(*RI, *RC))
4027       continue;
4028 
4029     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4030          I != E; ++I) {
4031       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4032         std::pair<unsigned, const TargetRegisterClass *> S =
4033             std::make_pair(*I, RC);
4034 
4035         // If this register class has the requested value type, return it,
4036         // otherwise keep searching and return the first class found
4037         // if no other is found which explicitly has the requested type.
4038         if (RI->isTypeLegalForClass(*RC, VT))
4039           return S;
4040         if (!R.second)
4041           R = S;
4042       }
4043     }
4044   }
4045 
4046   return R;
4047 }
4048 
4049 //===----------------------------------------------------------------------===//
4050 // Constraint Selection.
4051 
4052 /// Return true of this is an input operand that is a matching constraint like
4053 /// "4".
4054 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4055   assert(!ConstraintCode.empty() && "No known constraint!");
4056   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4057 }
4058 
4059 /// If this is an input matching constraint, this method returns the output
4060 /// operand it matches.
4061 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4062   assert(!ConstraintCode.empty() && "No known constraint!");
4063   return atoi(ConstraintCode.c_str());
4064 }
4065 
4066 /// Split up the constraint string from the inline assembly value into the
4067 /// specific constraints and their prefixes, and also tie in the associated
4068 /// operand values.
4069 /// If this returns an empty vector, and if the constraint string itself
4070 /// isn't empty, there was an error parsing.
4071 TargetLowering::AsmOperandInfoVector
4072 TargetLowering::ParseConstraints(const DataLayout &DL,
4073                                  const TargetRegisterInfo *TRI,
4074                                  ImmutableCallSite CS) const {
4075   /// Information about all of the constraints.
4076   AsmOperandInfoVector ConstraintOperands;
4077   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4078   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4079 
4080   // Do a prepass over the constraints, canonicalizing them, and building up the
4081   // ConstraintOperands list.
4082   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4083   unsigned ResNo = 0; // ResNo - The result number of the next output.
4084 
4085   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4086     ConstraintOperands.emplace_back(std::move(CI));
4087     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4088 
4089     // Update multiple alternative constraint count.
4090     if (OpInfo.multipleAlternatives.size() > maCount)
4091       maCount = OpInfo.multipleAlternatives.size();
4092 
4093     OpInfo.ConstraintVT = MVT::Other;
4094 
4095     // Compute the value type for each operand.
4096     switch (OpInfo.Type) {
4097     case InlineAsm::isOutput:
4098       // Indirect outputs just consume an argument.
4099       if (OpInfo.isIndirect) {
4100         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4101         break;
4102       }
4103 
4104       // The return value of the call is this value.  As such, there is no
4105       // corresponding argument.
4106       assert(!CS.getType()->isVoidTy() &&
4107              "Bad inline asm!");
4108       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4109         OpInfo.ConstraintVT =
4110             getSimpleValueType(DL, STy->getElementType(ResNo));
4111       } else {
4112         assert(ResNo == 0 && "Asm only has one result!");
4113         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4114       }
4115       ++ResNo;
4116       break;
4117     case InlineAsm::isInput:
4118       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4119       break;
4120     case InlineAsm::isClobber:
4121       // Nothing to do.
4122       break;
4123     }
4124 
4125     if (OpInfo.CallOperandVal) {
4126       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4127       if (OpInfo.isIndirect) {
4128         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4129         if (!PtrTy)
4130           report_fatal_error("Indirect operand for inline asm not a pointer!");
4131         OpTy = PtrTy->getElementType();
4132       }
4133 
4134       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4135       if (StructType *STy = dyn_cast<StructType>(OpTy))
4136         if (STy->getNumElements() == 1)
4137           OpTy = STy->getElementType(0);
4138 
4139       // If OpTy is not a single value, it may be a struct/union that we
4140       // can tile with integers.
4141       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4142         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4143         switch (BitSize) {
4144         default: break;
4145         case 1:
4146         case 8:
4147         case 16:
4148         case 32:
4149         case 64:
4150         case 128:
4151           OpInfo.ConstraintVT =
4152               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4153           break;
4154         }
4155       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4156         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4157         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4158       } else {
4159         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4160       }
4161     }
4162   }
4163 
4164   // If we have multiple alternative constraints, select the best alternative.
4165   if (!ConstraintOperands.empty()) {
4166     if (maCount) {
4167       unsigned bestMAIndex = 0;
4168       int bestWeight = -1;
4169       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4170       int weight = -1;
4171       unsigned maIndex;
4172       // Compute the sums of the weights for each alternative, keeping track
4173       // of the best (highest weight) one so far.
4174       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4175         int weightSum = 0;
4176         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4177              cIndex != eIndex; ++cIndex) {
4178           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4179           if (OpInfo.Type == InlineAsm::isClobber)
4180             continue;
4181 
4182           // If this is an output operand with a matching input operand,
4183           // look up the matching input. If their types mismatch, e.g. one
4184           // is an integer, the other is floating point, or their sizes are
4185           // different, flag it as an maCantMatch.
4186           if (OpInfo.hasMatchingInput()) {
4187             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4188             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4189               if ((OpInfo.ConstraintVT.isInteger() !=
4190                    Input.ConstraintVT.isInteger()) ||
4191                   (OpInfo.ConstraintVT.getSizeInBits() !=
4192                    Input.ConstraintVT.getSizeInBits())) {
4193                 weightSum = -1; // Can't match.
4194                 break;
4195               }
4196             }
4197           }
4198           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4199           if (weight == -1) {
4200             weightSum = -1;
4201             break;
4202           }
4203           weightSum += weight;
4204         }
4205         // Update best.
4206         if (weightSum > bestWeight) {
4207           bestWeight = weightSum;
4208           bestMAIndex = maIndex;
4209         }
4210       }
4211 
4212       // Now select chosen alternative in each constraint.
4213       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4214            cIndex != eIndex; ++cIndex) {
4215         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4216         if (cInfo.Type == InlineAsm::isClobber)
4217           continue;
4218         cInfo.selectAlternative(bestMAIndex);
4219       }
4220     }
4221   }
4222 
4223   // Check and hook up tied operands, choose constraint code to use.
4224   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4225        cIndex != eIndex; ++cIndex) {
4226     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4227 
4228     // If this is an output operand with a matching input operand, look up the
4229     // matching input. If their types mismatch, e.g. one is an integer, the
4230     // other is floating point, or their sizes are different, flag it as an
4231     // error.
4232     if (OpInfo.hasMatchingInput()) {
4233       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4234 
4235       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4236         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4237             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4238                                          OpInfo.ConstraintVT);
4239         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4240             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4241                                          Input.ConstraintVT);
4242         if ((OpInfo.ConstraintVT.isInteger() !=
4243              Input.ConstraintVT.isInteger()) ||
4244             (MatchRC.second != InputRC.second)) {
4245           report_fatal_error("Unsupported asm: input constraint"
4246                              " with a matching output constraint of"
4247                              " incompatible type!");
4248         }
4249       }
4250     }
4251   }
4252 
4253   return ConstraintOperands;
4254 }
4255 
4256 /// Return an integer indicating how general CT is.
4257 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4258   switch (CT) {
4259   case TargetLowering::C_Other:
4260   case TargetLowering::C_Unknown:
4261     return 0;
4262   case TargetLowering::C_Register:
4263     return 1;
4264   case TargetLowering::C_RegisterClass:
4265     return 2;
4266   case TargetLowering::C_Memory:
4267     return 3;
4268   }
4269   llvm_unreachable("Invalid constraint type");
4270 }
4271 
4272 /// Examine constraint type and operand type and determine a weight value.
4273 /// This object must already have been set up with the operand type
4274 /// and the current alternative constraint selected.
4275 TargetLowering::ConstraintWeight
4276   TargetLowering::getMultipleConstraintMatchWeight(
4277     AsmOperandInfo &info, int maIndex) const {
4278   InlineAsm::ConstraintCodeVector *rCodes;
4279   if (maIndex >= (int)info.multipleAlternatives.size())
4280     rCodes = &info.Codes;
4281   else
4282     rCodes = &info.multipleAlternatives[maIndex].Codes;
4283   ConstraintWeight BestWeight = CW_Invalid;
4284 
4285   // Loop over the options, keeping track of the most general one.
4286   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4287     ConstraintWeight weight =
4288       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4289     if (weight > BestWeight)
4290       BestWeight = weight;
4291   }
4292 
4293   return BestWeight;
4294 }
4295 
4296 /// Examine constraint type and operand type and determine a weight value.
4297 /// This object must already have been set up with the operand type
4298 /// and the current alternative constraint selected.
4299 TargetLowering::ConstraintWeight
4300   TargetLowering::getSingleConstraintMatchWeight(
4301     AsmOperandInfo &info, const char *constraint) const {
4302   ConstraintWeight weight = CW_Invalid;
4303   Value *CallOperandVal = info.CallOperandVal;
4304     // If we don't have a value, we can't do a match,
4305     // but allow it at the lowest weight.
4306   if (!CallOperandVal)
4307     return CW_Default;
4308   // Look at the constraint type.
4309   switch (*constraint) {
4310     case 'i': // immediate integer.
4311     case 'n': // immediate integer with a known value.
4312       if (isa<ConstantInt>(CallOperandVal))
4313         weight = CW_Constant;
4314       break;
4315     case 's': // non-explicit intregal immediate.
4316       if (isa<GlobalValue>(CallOperandVal))
4317         weight = CW_Constant;
4318       break;
4319     case 'E': // immediate float if host format.
4320     case 'F': // immediate float.
4321       if (isa<ConstantFP>(CallOperandVal))
4322         weight = CW_Constant;
4323       break;
4324     case '<': // memory operand with autodecrement.
4325     case '>': // memory operand with autoincrement.
4326     case 'm': // memory operand.
4327     case 'o': // offsettable memory operand
4328     case 'V': // non-offsettable memory operand
4329       weight = CW_Memory;
4330       break;
4331     case 'r': // general register.
4332     case 'g': // general register, memory operand or immediate integer.
4333               // note: Clang converts "g" to "imr".
4334       if (CallOperandVal->getType()->isIntegerTy())
4335         weight = CW_Register;
4336       break;
4337     case 'X': // any operand.
4338   default:
4339     weight = CW_Default;
4340     break;
4341   }
4342   return weight;
4343 }
4344 
4345 /// If there are multiple different constraints that we could pick for this
4346 /// operand (e.g. "imr") try to pick the 'best' one.
4347 /// This is somewhat tricky: constraints fall into four classes:
4348 ///    Other         -> immediates and magic values
4349 ///    Register      -> one specific register
4350 ///    RegisterClass -> a group of regs
4351 ///    Memory        -> memory
4352 /// Ideally, we would pick the most specific constraint possible: if we have
4353 /// something that fits into a register, we would pick it.  The problem here
4354 /// is that if we have something that could either be in a register or in
4355 /// memory that use of the register could cause selection of *other*
4356 /// operands to fail: they might only succeed if we pick memory.  Because of
4357 /// this the heuristic we use is:
4358 ///
4359 ///  1) If there is an 'other' constraint, and if the operand is valid for
4360 ///     that constraint, use it.  This makes us take advantage of 'i'
4361 ///     constraints when available.
4362 ///  2) Otherwise, pick the most general constraint present.  This prefers
4363 ///     'm' over 'r', for example.
4364 ///
4365 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4366                              const TargetLowering &TLI,
4367                              SDValue Op, SelectionDAG *DAG) {
4368   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4369   unsigned BestIdx = 0;
4370   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4371   int BestGenerality = -1;
4372 
4373   // Loop over the options, keeping track of the most general one.
4374   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4375     TargetLowering::ConstraintType CType =
4376       TLI.getConstraintType(OpInfo.Codes[i]);
4377 
4378     // If this is an 'other' constraint, see if the operand is valid for it.
4379     // For example, on X86 we might have an 'rI' constraint.  If the operand
4380     // is an integer in the range [0..31] we want to use I (saving a load
4381     // of a register), otherwise we must use 'r'.
4382     if (CType == TargetLowering::C_Other && Op.getNode()) {
4383       assert(OpInfo.Codes[i].size() == 1 &&
4384              "Unhandled multi-letter 'other' constraint");
4385       std::vector<SDValue> ResultOps;
4386       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4387                                        ResultOps, *DAG);
4388       if (!ResultOps.empty()) {
4389         BestType = CType;
4390         BestIdx = i;
4391         break;
4392       }
4393     }
4394 
4395     // Things with matching constraints can only be registers, per gcc
4396     // documentation.  This mainly affects "g" constraints.
4397     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4398       continue;
4399 
4400     // This constraint letter is more general than the previous one, use it.
4401     int Generality = getConstraintGenerality(CType);
4402     if (Generality > BestGenerality) {
4403       BestType = CType;
4404       BestIdx = i;
4405       BestGenerality = Generality;
4406     }
4407   }
4408 
4409   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4410   OpInfo.ConstraintType = BestType;
4411 }
4412 
4413 /// Determines the constraint code and constraint type to use for the specific
4414 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4415 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4416                                             SDValue Op,
4417                                             SelectionDAG *DAG) const {
4418   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4419 
4420   // Single-letter constraints ('r') are very common.
4421   if (OpInfo.Codes.size() == 1) {
4422     OpInfo.ConstraintCode = OpInfo.Codes[0];
4423     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4424   } else {
4425     ChooseConstraint(OpInfo, *this, Op, DAG);
4426   }
4427 
4428   // 'X' matches anything.
4429   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4430     // Labels and constants are handled elsewhere ('X' is the only thing
4431     // that matches labels).  For Functions, the type here is the type of
4432     // the result, which is not what we want to look at; leave them alone.
4433     Value *v = OpInfo.CallOperandVal;
4434     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4435       OpInfo.CallOperandVal = v;
4436       return;
4437     }
4438 
4439     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4440       return;
4441 
4442     // Otherwise, try to resolve it to something we know about by looking at
4443     // the actual operand type.
4444     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4445       OpInfo.ConstraintCode = Repl;
4446       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4447     }
4448   }
4449 }
4450 
4451 /// Given an exact SDIV by a constant, create a multiplication
4452 /// with the multiplicative inverse of the constant.
4453 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4454                               const SDLoc &dl, SelectionDAG &DAG,
4455                               SmallVectorImpl<SDNode *> &Created) {
4456   SDValue Op0 = N->getOperand(0);
4457   SDValue Op1 = N->getOperand(1);
4458   EVT VT = N->getValueType(0);
4459   EVT SVT = VT.getScalarType();
4460   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4461   EVT ShSVT = ShVT.getScalarType();
4462 
4463   bool UseSRA = false;
4464   SmallVector<SDValue, 16> Shifts, Factors;
4465 
4466   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4467     if (C->isNullValue())
4468       return false;
4469     APInt Divisor = C->getAPIntValue();
4470     unsigned Shift = Divisor.countTrailingZeros();
4471     if (Shift) {
4472       Divisor.ashrInPlace(Shift);
4473       UseSRA = true;
4474     }
4475     // Calculate the multiplicative inverse, using Newton's method.
4476     APInt t;
4477     APInt Factor = Divisor;
4478     while ((t = Divisor * Factor) != 1)
4479       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4480     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4481     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4482     return true;
4483   };
4484 
4485   // Collect all magic values from the build vector.
4486   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4487     return SDValue();
4488 
4489   SDValue Shift, Factor;
4490   if (VT.isVector()) {
4491     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4492     Factor = DAG.getBuildVector(VT, dl, Factors);
4493   } else {
4494     Shift = Shifts[0];
4495     Factor = Factors[0];
4496   }
4497 
4498   SDValue Res = Op0;
4499 
4500   // Shift the value upfront if it is even, so the LSB is one.
4501   if (UseSRA) {
4502     // TODO: For UDIV use SRL instead of SRA.
4503     SDNodeFlags Flags;
4504     Flags.setExact(true);
4505     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4506     Created.push_back(Res.getNode());
4507   }
4508 
4509   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4510 }
4511 
4512 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4513                               SelectionDAG &DAG,
4514                               SmallVectorImpl<SDNode *> &Created) const {
4515   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4516   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4517   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4518     return SDValue(N, 0); // Lower SDIV as SDIV
4519   return SDValue();
4520 }
4521 
4522 /// Given an ISD::SDIV node expressing a divide by constant,
4523 /// return a DAG expression to select that will generate the same value by
4524 /// multiplying by a magic number.
4525 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4526 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4527                                   bool IsAfterLegalization,
4528                                   SmallVectorImpl<SDNode *> &Created) const {
4529   SDLoc dl(N);
4530   EVT VT = N->getValueType(0);
4531   EVT SVT = VT.getScalarType();
4532   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4533   EVT ShSVT = ShVT.getScalarType();
4534   unsigned EltBits = VT.getScalarSizeInBits();
4535 
4536   // Check to see if we can do this.
4537   // FIXME: We should be more aggressive here.
4538   if (!isTypeLegal(VT))
4539     return SDValue();
4540 
4541   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4542   if (N->getFlags().hasExact())
4543     return BuildExactSDIV(*this, N, dl, DAG, Created);
4544 
4545   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4546 
4547   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4548     if (C->isNullValue())
4549       return false;
4550 
4551     const APInt &Divisor = C->getAPIntValue();
4552     APInt::ms magics = Divisor.magic();
4553     int NumeratorFactor = 0;
4554     int ShiftMask = -1;
4555 
4556     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4557       // If d is +1/-1, we just multiply the numerator by +1/-1.
4558       NumeratorFactor = Divisor.getSExtValue();
4559       magics.m = 0;
4560       magics.s = 0;
4561       ShiftMask = 0;
4562     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4563       // If d > 0 and m < 0, add the numerator.
4564       NumeratorFactor = 1;
4565     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4566       // If d < 0 and m > 0, subtract the numerator.
4567       NumeratorFactor = -1;
4568     }
4569 
4570     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4571     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4572     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4573     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4574     return true;
4575   };
4576 
4577   SDValue N0 = N->getOperand(0);
4578   SDValue N1 = N->getOperand(1);
4579 
4580   // Collect the shifts / magic values from each element.
4581   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4582     return SDValue();
4583 
4584   SDValue MagicFactor, Factor, Shift, ShiftMask;
4585   if (VT.isVector()) {
4586     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4587     Factor = DAG.getBuildVector(VT, dl, Factors);
4588     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4589     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4590   } else {
4591     MagicFactor = MagicFactors[0];
4592     Factor = Factors[0];
4593     Shift = Shifts[0];
4594     ShiftMask = ShiftMasks[0];
4595   }
4596 
4597   // Multiply the numerator (operand 0) by the magic value.
4598   // FIXME: We should support doing a MUL in a wider type.
4599   SDValue Q;
4600   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4601                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4602     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4603   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4604                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4605     SDValue LoHi =
4606         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4607     Q = SDValue(LoHi.getNode(), 1);
4608   } else
4609     return SDValue(); // No mulhs or equivalent.
4610   Created.push_back(Q.getNode());
4611 
4612   // (Optionally) Add/subtract the numerator using Factor.
4613   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4614   Created.push_back(Factor.getNode());
4615   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4616   Created.push_back(Q.getNode());
4617 
4618   // Shift right algebraic by shift value.
4619   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4620   Created.push_back(Q.getNode());
4621 
4622   // Extract the sign bit, mask it and add it to the quotient.
4623   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4624   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4625   Created.push_back(T.getNode());
4626   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4627   Created.push_back(T.getNode());
4628   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4629 }
4630 
4631 /// Given an ISD::UDIV node expressing a divide by constant,
4632 /// return a DAG expression to select that will generate the same value by
4633 /// multiplying by a magic number.
4634 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4635 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4636                                   bool IsAfterLegalization,
4637                                   SmallVectorImpl<SDNode *> &Created) const {
4638   SDLoc dl(N);
4639   EVT VT = N->getValueType(0);
4640   EVT SVT = VT.getScalarType();
4641   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4642   EVT ShSVT = ShVT.getScalarType();
4643   unsigned EltBits = VT.getScalarSizeInBits();
4644 
4645   // Check to see if we can do this.
4646   // FIXME: We should be more aggressive here.
4647   if (!isTypeLegal(VT))
4648     return SDValue();
4649 
4650   bool UseNPQ = false;
4651   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4652 
4653   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4654     if (C->isNullValue())
4655       return false;
4656     // FIXME: We should use a narrower constant when the upper
4657     // bits are known to be zero.
4658     APInt Divisor = C->getAPIntValue();
4659     APInt::mu magics = Divisor.magicu();
4660     unsigned PreShift = 0, PostShift = 0;
4661 
4662     // If the divisor is even, we can avoid using the expensive fixup by
4663     // shifting the divided value upfront.
4664     if (magics.a != 0 && !Divisor[0]) {
4665       PreShift = Divisor.countTrailingZeros();
4666       // Get magic number for the shifted divisor.
4667       magics = Divisor.lshr(PreShift).magicu(PreShift);
4668       assert(magics.a == 0 && "Should use cheap fixup now");
4669     }
4670 
4671     APInt Magic = magics.m;
4672 
4673     unsigned SelNPQ;
4674     if (magics.a == 0 || Divisor.isOneValue()) {
4675       assert(magics.s < Divisor.getBitWidth() &&
4676              "We shouldn't generate an undefined shift!");
4677       PostShift = magics.s;
4678       SelNPQ = false;
4679     } else {
4680       PostShift = magics.s - 1;
4681       SelNPQ = true;
4682     }
4683 
4684     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4685     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4686     NPQFactors.push_back(
4687         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4688                                : APInt::getNullValue(EltBits),
4689                         dl, SVT));
4690     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4691     UseNPQ |= SelNPQ;
4692     return true;
4693   };
4694 
4695   SDValue N0 = N->getOperand(0);
4696   SDValue N1 = N->getOperand(1);
4697 
4698   // Collect the shifts/magic values from each element.
4699   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4700     return SDValue();
4701 
4702   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4703   if (VT.isVector()) {
4704     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4705     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4706     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4707     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4708   } else {
4709     PreShift = PreShifts[0];
4710     MagicFactor = MagicFactors[0];
4711     PostShift = PostShifts[0];
4712   }
4713 
4714   SDValue Q = N0;
4715   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4716   Created.push_back(Q.getNode());
4717 
4718   // FIXME: We should support doing a MUL in a wider type.
4719   auto GetMULHU = [&](SDValue X, SDValue Y) {
4720     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4721                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4722       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4723     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4724                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4725       SDValue LoHi =
4726           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4727       return SDValue(LoHi.getNode(), 1);
4728     }
4729     return SDValue(); // No mulhu or equivalent
4730   };
4731 
4732   // Multiply the numerator (operand 0) by the magic value.
4733   Q = GetMULHU(Q, MagicFactor);
4734   if (!Q)
4735     return SDValue();
4736 
4737   Created.push_back(Q.getNode());
4738 
4739   if (UseNPQ) {
4740     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4741     Created.push_back(NPQ.getNode());
4742 
4743     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4744     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4745     if (VT.isVector())
4746       NPQ = GetMULHU(NPQ, NPQFactor);
4747     else
4748       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4749 
4750     Created.push_back(NPQ.getNode());
4751 
4752     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4753     Created.push_back(Q.getNode());
4754   }
4755 
4756   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4757   Created.push_back(Q.getNode());
4758 
4759   SDValue One = DAG.getConstant(1, dl, VT);
4760   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4761   return DAG.getSelect(dl, VT, IsOne, N0, Q);
4762 }
4763 
4764 /// If all values in Values that *don't* match the predicate are same 'splat'
4765 /// value, then replace all values with that splat value.
4766 /// Else, if AlternativeReplacement was provided, then replace all values that
4767 /// do match predicate with AlternativeReplacement value.
4768 static void
4769 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
4770                           std::function<bool(SDValue)> Predicate,
4771                           SDValue AlternativeReplacement = SDValue()) {
4772   SDValue Replacement;
4773   // Is there a value for which the Predicate does *NOT* match? What is it?
4774   auto SplatValue = llvm::find_if_not(Values, Predicate);
4775   if (SplatValue != Values.end()) {
4776     // Does Values consist only of SplatValue's and values matching Predicate?
4777     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
4778           return Value == *SplatValue || Predicate(Value);
4779         })) // Then we shall replace values matching predicate with SplatValue.
4780       Replacement = *SplatValue;
4781   }
4782   if (!Replacement) {
4783     // Oops, we did not find the "baseline" splat value.
4784     if (!AlternativeReplacement)
4785       return; // Nothing to do.
4786     // Let's replace with provided value then.
4787     Replacement = AlternativeReplacement;
4788   }
4789   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
4790 }
4791 
4792 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
4793 /// where the divisor is constant and the comparison target is zero,
4794 /// return a DAG expression that will generate the same comparison result
4795 /// using only multiplications, additions and shifts/rotations.
4796 /// Ref: "Hacker's Delight" 10-17.
4797 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
4798                                         SDValue CompTargetNode,
4799                                         ISD::CondCode Cond,
4800                                         DAGCombinerInfo &DCI,
4801                                         const SDLoc &DL) const {
4802   SmallVector<SDNode *, 2> Built;
4803   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
4804                                          DCI, DL, Built)) {
4805     for (SDNode *N : Built)
4806       DCI.AddToWorklist(N);
4807     return Folded;
4808   }
4809 
4810   return SDValue();
4811 }
4812 
4813 SDValue
4814 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
4815                                   SDValue CompTargetNode, ISD::CondCode Cond,
4816                                   DAGCombinerInfo &DCI, const SDLoc &DL,
4817                                   SmallVectorImpl<SDNode *> &Created) const {
4818   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
4819   // - D must be constant, with D = D0 * 2^K where D0 is odd
4820   // - P is the multiplicative inverse of D0 modulo 2^W
4821   // - Q = floor((2^W - 1) / D0)
4822   // where W is the width of the common type of N and D.
4823   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4824          "Only applicable for (in)equality comparisons.");
4825 
4826   SelectionDAG &DAG = DCI.DAG;
4827 
4828   EVT VT = REMNode.getValueType();
4829   EVT SVT = VT.getScalarType();
4830   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4831   EVT ShSVT = ShVT.getScalarType();
4832 
4833   // If MUL is unavailable, we cannot proceed in any case.
4834   if (!isOperationLegalOrCustom(ISD::MUL, VT))
4835     return SDValue();
4836 
4837   // TODO: Could support comparing with non-zero too.
4838   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
4839   if (!CompTarget || !CompTarget->isNullValue())
4840     return SDValue();
4841 
4842   bool HadOneDivisor = false;
4843   bool AllDivisorsAreOnes = true;
4844   bool HadEvenDivisor = false;
4845   bool AllDivisorsArePowerOfTwo = true;
4846   SmallVector<SDValue, 16> PAmts, KAmts, QAmts;
4847 
4848   auto BuildUREMPattern = [&](ConstantSDNode *C) {
4849     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
4850     if (C->isNullValue())
4851       return false;
4852 
4853     const APInt &D = C->getAPIntValue();
4854     // If all divisors are ones, we will prefer to avoid the fold.
4855     HadOneDivisor |= D.isOneValue();
4856     AllDivisorsAreOnes &= D.isOneValue();
4857 
4858     // Decompose D into D0 * 2^K
4859     unsigned K = D.countTrailingZeros();
4860     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
4861     APInt D0 = D.lshr(K);
4862 
4863     // D is even if it has trailing zeros.
4864     HadEvenDivisor |= (K != 0);
4865     // D is a power-of-two if D0 is one.
4866     // If all divisors are power-of-two, we will prefer to avoid the fold.
4867     AllDivisorsArePowerOfTwo &= D0.isOneValue();
4868 
4869     // P = inv(D0, 2^W)
4870     // 2^W requires W + 1 bits, so we have to extend and then truncate.
4871     unsigned W = D.getBitWidth();
4872     APInt P = D0.zext(W + 1)
4873                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
4874                   .trunc(W);
4875     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
4876     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
4877 
4878     // Q = floor((2^W - 1) / D)
4879     APInt Q = APInt::getAllOnesValue(W).udiv(D);
4880 
4881     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
4882            "We are expecting that K is always less than all-ones for ShSVT");
4883 
4884     // If the divisor is 1 the result can be constant-folded.
4885     if (D.isOneValue()) {
4886       // Set P and K amount to a bogus values so we can try to splat them.
4887       P = 0;
4888       K = -1;
4889       assert(Q.isAllOnesValue() &&
4890              "Expecting all-ones comparison for one divisor");
4891     }
4892 
4893     PAmts.push_back(DAG.getConstant(P, DL, SVT));
4894     KAmts.push_back(
4895         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
4896     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
4897     return true;
4898   };
4899 
4900   SDValue N = REMNode.getOperand(0);
4901   SDValue D = REMNode.getOperand(1);
4902 
4903   // Collect the values from each element.
4904   if (!ISD::matchUnaryPredicate(D, BuildUREMPattern))
4905     return SDValue();
4906 
4907   // If this is a urem by a one, avoid the fold since it can be constant-folded.
4908   if (AllDivisorsAreOnes)
4909     return SDValue();
4910 
4911   // If this is a urem by a powers-of-two, avoid the fold since it can be
4912   // best implemented as a bit test.
4913   if (AllDivisorsArePowerOfTwo)
4914     return SDValue();
4915 
4916   SDValue PVal, KVal, QVal;
4917   if (VT.isVector()) {
4918     if (HadOneDivisor) {
4919       // Try to turn PAmts into a splat, since we don't care about the values
4920       // that are currently '0'. If we can't, just keep '0'`s.
4921       turnVectorIntoSplatVector(PAmts, isNullConstant);
4922       // Try to turn KAmts into a splat, since we don't care about the values
4923       // that are currently '-1'. If we can't, change them to '0'`s.
4924       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
4925                                 DAG.getConstant(0, DL, ShSVT));
4926     }
4927 
4928     PVal = DAG.getBuildVector(VT, DL, PAmts);
4929     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
4930     QVal = DAG.getBuildVector(VT, DL, QAmts);
4931   } else {
4932     PVal = PAmts[0];
4933     KVal = KAmts[0];
4934     QVal = QAmts[0];
4935   }
4936 
4937   // (mul N, P)
4938   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
4939   Created.push_back(Op0.getNode());
4940 
4941   // Rotate right only if any divisor was even. We avoid rotates for all-odd
4942   // divisors as a performance improvement, since rotating by 0 is a no-op.
4943   if (HadEvenDivisor) {
4944     // We need ROTR to do this.
4945     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
4946       return SDValue();
4947     SDNodeFlags Flags;
4948     Flags.setExact(true);
4949     // UREM: (rotr (mul N, P), K)
4950     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
4951     Created.push_back(Op0.getNode());
4952   }
4953 
4954   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
4955   return DAG.getSetCC(DL, SETCCVT, Op0, QVal,
4956                       ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
4957 }
4958 
4959 bool TargetLowering::
4960 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
4961   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
4962     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
4963                                 "be a constant integer");
4964     return true;
4965   }
4966 
4967   return false;
4968 }
4969 
4970 //===----------------------------------------------------------------------===//
4971 // Legalization Utilities
4972 //===----------------------------------------------------------------------===//
4973 
4974 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
4975                                     SDValue LHS, SDValue RHS,
4976                                     SmallVectorImpl<SDValue> &Result,
4977                                     EVT HiLoVT, SelectionDAG &DAG,
4978                                     MulExpansionKind Kind, SDValue LL,
4979                                     SDValue LH, SDValue RL, SDValue RH) const {
4980   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
4981          Opcode == ISD::SMUL_LOHI);
4982 
4983   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
4984                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
4985   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
4986                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
4987   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4988                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
4989   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4990                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
4991 
4992   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
4993     return false;
4994 
4995   unsigned OuterBitSize = VT.getScalarSizeInBits();
4996   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
4997   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
4998   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
4999 
5000   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5001   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5002          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5003 
5004   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5005   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5006                           bool Signed) -> bool {
5007     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5008       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5009       Hi = SDValue(Lo.getNode(), 1);
5010       return true;
5011     }
5012     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5013       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5014       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5015       return true;
5016     }
5017     return false;
5018   };
5019 
5020   SDValue Lo, Hi;
5021 
5022   if (!LL.getNode() && !RL.getNode() &&
5023       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5024     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5025     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5026   }
5027 
5028   if (!LL.getNode())
5029     return false;
5030 
5031   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5032   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5033       DAG.MaskedValueIsZero(RHS, HighMask)) {
5034     // The inputs are both zero-extended.
5035     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5036       Result.push_back(Lo);
5037       Result.push_back(Hi);
5038       if (Opcode != ISD::MUL) {
5039         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5040         Result.push_back(Zero);
5041         Result.push_back(Zero);
5042       }
5043       return true;
5044     }
5045   }
5046 
5047   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5048       RHSSB > InnerBitSize) {
5049     // The input values are both sign-extended.
5050     // TODO non-MUL case?
5051     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5052       Result.push_back(Lo);
5053       Result.push_back(Hi);
5054       return true;
5055     }
5056   }
5057 
5058   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5059   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5060   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5061     // FIXME getShiftAmountTy does not always return a sensible result when VT
5062     // is an illegal type, and so the type may be too small to fit the shift
5063     // amount. Override it with i32. The shift will have to be legalized.
5064     ShiftAmountTy = MVT::i32;
5065   }
5066   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5067 
5068   if (!LH.getNode() && !RH.getNode() &&
5069       isOperationLegalOrCustom(ISD::SRL, VT) &&
5070       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5071     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5072     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5073     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5074     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5075   }
5076 
5077   if (!LH.getNode())
5078     return false;
5079 
5080   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5081     return false;
5082 
5083   Result.push_back(Lo);
5084 
5085   if (Opcode == ISD::MUL) {
5086     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5087     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5088     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5089     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5090     Result.push_back(Hi);
5091     return true;
5092   }
5093 
5094   // Compute the full width result.
5095   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5096     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5097     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5098     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5099     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5100   };
5101 
5102   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5103   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5104     return false;
5105 
5106   // This is effectively the add part of a multiply-add of half-sized operands,
5107   // so it cannot overflow.
5108   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5109 
5110   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5111     return false;
5112 
5113   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5114   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5115 
5116   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5117                   isOperationLegalOrCustom(ISD::ADDE, VT));
5118   if (UseGlue)
5119     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5120                        Merge(Lo, Hi));
5121   else
5122     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5123                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5124 
5125   SDValue Carry = Next.getValue(1);
5126   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5127   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5128 
5129   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5130     return false;
5131 
5132   if (UseGlue)
5133     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5134                      Carry);
5135   else
5136     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5137                      Zero, Carry);
5138 
5139   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5140 
5141   if (Opcode == ISD::SMUL_LOHI) {
5142     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5143                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5144     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5145 
5146     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5147                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5148     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5149   }
5150 
5151   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5152   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5153   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5154   return true;
5155 }
5156 
5157 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5158                                SelectionDAG &DAG, MulExpansionKind Kind,
5159                                SDValue LL, SDValue LH, SDValue RL,
5160                                SDValue RH) const {
5161   SmallVector<SDValue, 2> Result;
5162   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5163                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5164                            DAG, Kind, LL, LH, RL, RH);
5165   if (Ok) {
5166     assert(Result.size() == 2);
5167     Lo = Result[0];
5168     Hi = Result[1];
5169   }
5170   return Ok;
5171 }
5172 
5173 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
5174                                        SelectionDAG &DAG) const {
5175   EVT VT = Node->getValueType(0);
5176 
5177   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5178                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5179                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5180                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5181     return false;
5182 
5183   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5184   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5185   SDValue X = Node->getOperand(0);
5186   SDValue Y = Node->getOperand(1);
5187   SDValue Z = Node->getOperand(2);
5188 
5189   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5190   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
5191   SDLoc DL(SDValue(Node, 0));
5192 
5193   EVT ShVT = Z.getValueType();
5194   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5195   SDValue Zero = DAG.getConstant(0, DL, ShVT);
5196 
5197   SDValue ShAmt;
5198   if (isPowerOf2_32(EltSizeInBits)) {
5199     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5200     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
5201   } else {
5202     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
5203   }
5204 
5205   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
5206   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
5207   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5208   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
5209 
5210   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5211   // and that is undefined. We must compare and select to avoid UB.
5212   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
5213 
5214   // For fshl, 0-shift returns the 1st arg (X).
5215   // For fshr, 0-shift returns the 2nd arg (Y).
5216   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
5217   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
5218   return true;
5219 }
5220 
5221 // TODO: Merge with expandFunnelShift.
5222 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
5223                                SelectionDAG &DAG) const {
5224   EVT VT = Node->getValueType(0);
5225   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5226   bool IsLeft = Node->getOpcode() == ISD::ROTL;
5227   SDValue Op0 = Node->getOperand(0);
5228   SDValue Op1 = Node->getOperand(1);
5229   SDLoc DL(SDValue(Node, 0));
5230 
5231   EVT ShVT = Op1.getValueType();
5232   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5233 
5234   // If a rotate in the other direction is legal, use it.
5235   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
5236   if (isOperationLegal(RevRot, VT)) {
5237     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5238     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
5239     return true;
5240   }
5241 
5242   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5243                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5244                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5245                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
5246                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
5247     return false;
5248 
5249   // Otherwise,
5250   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
5251   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
5252   //
5253   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
5254          "Expecting the type bitwidth to be a power of 2");
5255   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
5256   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
5257   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5258   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5259   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
5260   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
5261   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
5262                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
5263   return true;
5264 }
5265 
5266 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
5267                                       SelectionDAG &DAG) const {
5268   SDValue Src = Node->getOperand(0);
5269   EVT SrcVT = Src.getValueType();
5270   EVT DstVT = Node->getValueType(0);
5271   SDLoc dl(SDValue(Node, 0));
5272 
5273   // FIXME: Only f32 to i64 conversions are supported.
5274   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
5275     return false;
5276 
5277   // Expand f32 -> i64 conversion
5278   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5279   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5280   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
5281   EVT IntVT = SrcVT.changeTypeToInteger();
5282   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
5283 
5284   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
5285   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
5286   SDValue Bias = DAG.getConstant(127, dl, IntVT);
5287   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
5288   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
5289   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
5290 
5291   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
5292 
5293   SDValue ExponentBits = DAG.getNode(
5294       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
5295       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
5296   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
5297 
5298   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
5299                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
5300                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
5301   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
5302 
5303   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
5304                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
5305                           DAG.getConstant(0x00800000, dl, IntVT));
5306 
5307   R = DAG.getZExtOrTrunc(R, dl, DstVT);
5308 
5309   R = DAG.getSelectCC(
5310       dl, Exponent, ExponentLoBit,
5311       DAG.getNode(ISD::SHL, dl, DstVT, R,
5312                   DAG.getZExtOrTrunc(
5313                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
5314                       dl, IntShVT)),
5315       DAG.getNode(ISD::SRL, dl, DstVT, R,
5316                   DAG.getZExtOrTrunc(
5317                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
5318                       dl, IntShVT)),
5319       ISD::SETGT);
5320 
5321   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
5322                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
5323 
5324   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
5325                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
5326   return true;
5327 }
5328 
5329 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
5330                                       SelectionDAG &DAG) const {
5331   SDLoc dl(SDValue(Node, 0));
5332   SDValue Src = Node->getOperand(0);
5333 
5334   EVT SrcVT = Src.getValueType();
5335   EVT DstVT = Node->getValueType(0);
5336   EVT SetCCVT =
5337       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
5338 
5339   // Only expand vector types if we have the appropriate vector bit operations.
5340   if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) ||
5341                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
5342     return false;
5343 
5344   // If the maximum float value is smaller then the signed integer range,
5345   // the destination signmask can't be represented by the float, so we can
5346   // just use FP_TO_SINT directly.
5347   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
5348   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
5349   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
5350   if (APFloat::opOverflow &
5351       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
5352     Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
5353     return true;
5354   }
5355 
5356   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
5357   SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
5358 
5359   bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
5360   if (Strict) {
5361     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
5362     // signmask then offset (the result of which should be fully representable).
5363     // Sel = Src < 0x8000000000000000
5364     // Val = select Sel, Src, Src - 0x8000000000000000
5365     // Ofs = select Sel, 0, 0x8000000000000000
5366     // Result = fp_to_sint(Val) ^ Ofs
5367 
5368     // TODO: Should any fast-math-flags be set for the FSUB?
5369     SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src,
5370                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
5371     SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
5372                                 DAG.getConstant(SignMask, dl, DstVT));
5373     Result = DAG.getNode(ISD::XOR, dl, DstVT,
5374                          DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs);
5375   } else {
5376     // Expand based on maximum range of FP_TO_SINT:
5377     // True = fp_to_sint(Src)
5378     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
5379     // Result = select (Src < 0x8000000000000000), True, False
5380 
5381     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
5382     // TODO: Should any fast-math-flags be set for the FSUB?
5383     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
5384                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
5385     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
5386                         DAG.getConstant(SignMask, dl, DstVT));
5387     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
5388   }
5389   return true;
5390 }
5391 
5392 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
5393                                       SelectionDAG &DAG) const {
5394   SDValue Src = Node->getOperand(0);
5395   EVT SrcVT = Src.getValueType();
5396   EVT DstVT = Node->getValueType(0);
5397 
5398   if (SrcVT.getScalarType() != MVT::i64)
5399     return false;
5400 
5401   SDLoc dl(SDValue(Node, 0));
5402   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
5403 
5404   if (DstVT.getScalarType() == MVT::f32) {
5405     // Only expand vector types if we have the appropriate vector bit
5406     // operations.
5407     if (SrcVT.isVector() &&
5408         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
5409          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
5410          !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
5411          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
5412          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
5413       return false;
5414 
5415     // For unsigned conversions, convert them to signed conversions using the
5416     // algorithm from the x86_64 __floatundidf in compiler_rt.
5417     SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
5418 
5419     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
5420     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
5421     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
5422     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
5423     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
5424 
5425     SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
5426     SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
5427 
5428     // TODO: This really should be implemented using a branch rather than a
5429     // select.  We happen to get lucky and machinesink does the right
5430     // thing most of the time.  This would be a good candidate for a
5431     // pseudo-op, or, even better, for whole-function isel.
5432     EVT SetCCVT =
5433         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
5434 
5435     SDValue SignBitTest = DAG.getSetCC(
5436         dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
5437     Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
5438     return true;
5439   }
5440 
5441   if (DstVT.getScalarType() == MVT::f64) {
5442     // Only expand vector types if we have the appropriate vector bit
5443     // operations.
5444     if (SrcVT.isVector() &&
5445         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
5446          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
5447          !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
5448          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
5449          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
5450       return false;
5451 
5452     // Implementation of unsigned i64 to f64 following the algorithm in
5453     // __floatundidf in compiler_rt. This implementation has the advantage
5454     // of performing rounding correctly, both in the default rounding mode
5455     // and in all alternate rounding modes.
5456     SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
5457     SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
5458         BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
5459     SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
5460     SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
5461     SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
5462 
5463     SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
5464     SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
5465     SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
5466     SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
5467     SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
5468     SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
5469     SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
5470     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
5471     return true;
5472   }
5473 
5474   return false;
5475 }
5476 
5477 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
5478                                               SelectionDAG &DAG) const {
5479   SDLoc dl(Node);
5480   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
5481     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
5482   EVT VT = Node->getValueType(0);
5483   if (isOperationLegalOrCustom(NewOp, VT)) {
5484     SDValue Quiet0 = Node->getOperand(0);
5485     SDValue Quiet1 = Node->getOperand(1);
5486 
5487     if (!Node->getFlags().hasNoNaNs()) {
5488       // Insert canonicalizes if it's possible we need to quiet to get correct
5489       // sNaN behavior.
5490       if (!DAG.isKnownNeverSNaN(Quiet0)) {
5491         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
5492                              Node->getFlags());
5493       }
5494       if (!DAG.isKnownNeverSNaN(Quiet1)) {
5495         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
5496                              Node->getFlags());
5497       }
5498     }
5499 
5500     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
5501   }
5502 
5503   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
5504   // instead if there are no NaNs.
5505   if (Node->getFlags().hasNoNaNs()) {
5506     unsigned IEEE2018Op =
5507         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
5508     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
5509       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
5510                          Node->getOperand(1), Node->getFlags());
5511     }
5512   }
5513 
5514   return SDValue();
5515 }
5516 
5517 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
5518                                  SelectionDAG &DAG) const {
5519   SDLoc dl(Node);
5520   EVT VT = Node->getValueType(0);
5521   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5522   SDValue Op = Node->getOperand(0);
5523   unsigned Len = VT.getScalarSizeInBits();
5524   assert(VT.isInteger() && "CTPOP not implemented for this type.");
5525 
5526   // TODO: Add support for irregular type lengths.
5527   if (!(Len <= 128 && Len % 8 == 0))
5528     return false;
5529 
5530   // Only expand vector types if we have the appropriate vector bit operations.
5531   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
5532                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5533                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5534                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
5535                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
5536     return false;
5537 
5538   // This is the "best" algorithm from
5539   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
5540   SDValue Mask55 =
5541       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
5542   SDValue Mask33 =
5543       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
5544   SDValue Mask0F =
5545       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
5546   SDValue Mask01 =
5547       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
5548 
5549   // v = v - ((v >> 1) & 0x55555555...)
5550   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
5551                    DAG.getNode(ISD::AND, dl, VT,
5552                                DAG.getNode(ISD::SRL, dl, VT, Op,
5553                                            DAG.getConstant(1, dl, ShVT)),
5554                                Mask55));
5555   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
5556   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
5557                    DAG.getNode(ISD::AND, dl, VT,
5558                                DAG.getNode(ISD::SRL, dl, VT, Op,
5559                                            DAG.getConstant(2, dl, ShVT)),
5560                                Mask33));
5561   // v = (v + (v >> 4)) & 0x0F0F0F0F...
5562   Op = DAG.getNode(ISD::AND, dl, VT,
5563                    DAG.getNode(ISD::ADD, dl, VT, Op,
5564                                DAG.getNode(ISD::SRL, dl, VT, Op,
5565                                            DAG.getConstant(4, dl, ShVT))),
5566                    Mask0F);
5567   // v = (v * 0x01010101...) >> (Len - 8)
5568   if (Len > 8)
5569     Op =
5570         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
5571                     DAG.getConstant(Len - 8, dl, ShVT));
5572 
5573   Result = Op;
5574   return true;
5575 }
5576 
5577 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
5578                                 SelectionDAG &DAG) const {
5579   SDLoc dl(Node);
5580   EVT VT = Node->getValueType(0);
5581   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5582   SDValue Op = Node->getOperand(0);
5583   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
5584 
5585   // If the non-ZERO_UNDEF version is supported we can use that instead.
5586   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
5587       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
5588     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
5589     return true;
5590   }
5591 
5592   // If the ZERO_UNDEF version is supported use that and handle the zero case.
5593   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
5594     EVT SetCCVT =
5595         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5596     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
5597     SDValue Zero = DAG.getConstant(0, dl, VT);
5598     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
5599     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
5600                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
5601     return true;
5602   }
5603 
5604   // Only expand vector types if we have the appropriate vector bit operations.
5605   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
5606                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
5607                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5608                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5609     return false;
5610 
5611   // for now, we do this:
5612   // x = x | (x >> 1);
5613   // x = x | (x >> 2);
5614   // ...
5615   // x = x | (x >>16);
5616   // x = x | (x >>32); // for 64-bit input
5617   // return popcount(~x);
5618   //
5619   // Ref: "Hacker's Delight" by Henry Warren
5620   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
5621     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
5622     Op = DAG.getNode(ISD::OR, dl, VT, Op,
5623                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
5624   }
5625   Op = DAG.getNOT(dl, Op, VT);
5626   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
5627   return true;
5628 }
5629 
5630 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
5631                                 SelectionDAG &DAG) const {
5632   SDLoc dl(Node);
5633   EVT VT = Node->getValueType(0);
5634   SDValue Op = Node->getOperand(0);
5635   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
5636 
5637   // If the non-ZERO_UNDEF version is supported we can use that instead.
5638   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
5639       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
5640     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
5641     return true;
5642   }
5643 
5644   // If the ZERO_UNDEF version is supported use that and handle the zero case.
5645   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
5646     EVT SetCCVT =
5647         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5648     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
5649     SDValue Zero = DAG.getConstant(0, dl, VT);
5650     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
5651     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
5652                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
5653     return true;
5654   }
5655 
5656   // Only expand vector types if we have the appropriate vector bit operations.
5657   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
5658                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
5659                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
5660                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5661                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
5662                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
5663     return false;
5664 
5665   // for now, we use: { return popcount(~x & (x - 1)); }
5666   // unless the target has ctlz but not ctpop, in which case we use:
5667   // { return 32 - nlz(~x & (x-1)); }
5668   // Ref: "Hacker's Delight" by Henry Warren
5669   SDValue Tmp = DAG.getNode(
5670       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
5671       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
5672 
5673   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
5674   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
5675     Result =
5676         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
5677                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
5678     return true;
5679   }
5680 
5681   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
5682   return true;
5683 }
5684 
5685 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
5686                                SelectionDAG &DAG) const {
5687   SDLoc dl(N);
5688   EVT VT = N->getValueType(0);
5689   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5690   SDValue Op = N->getOperand(0);
5691 
5692   // Only expand vector types if we have the appropriate vector operations.
5693   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
5694                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
5695                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
5696     return false;
5697 
5698   SDValue Shift =
5699       DAG.getNode(ISD::SRA, dl, VT, Op,
5700                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
5701   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
5702   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
5703   return true;
5704 }
5705 
5706 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
5707                                             SelectionDAG &DAG) const {
5708   SDLoc SL(LD);
5709   SDValue Chain = LD->getChain();
5710   SDValue BasePTR = LD->getBasePtr();
5711   EVT SrcVT = LD->getMemoryVT();
5712   ISD::LoadExtType ExtType = LD->getExtensionType();
5713 
5714   unsigned NumElem = SrcVT.getVectorNumElements();
5715 
5716   EVT SrcEltVT = SrcVT.getScalarType();
5717   EVT DstEltVT = LD->getValueType(0).getScalarType();
5718 
5719   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
5720   assert(SrcEltVT.isByteSized());
5721 
5722   SmallVector<SDValue, 8> Vals;
5723   SmallVector<SDValue, 8> LoadChains;
5724 
5725   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
5726     SDValue ScalarLoad =
5727         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
5728                        LD->getPointerInfo().getWithOffset(Idx * Stride),
5729                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
5730                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
5731 
5732     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
5733 
5734     Vals.push_back(ScalarLoad.getValue(0));
5735     LoadChains.push_back(ScalarLoad.getValue(1));
5736   }
5737 
5738   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
5739   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
5740 
5741   return DAG.getMergeValues({Value, NewChain}, SL);
5742 }
5743 
5744 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
5745                                              SelectionDAG &DAG) const {
5746   SDLoc SL(ST);
5747 
5748   SDValue Chain = ST->getChain();
5749   SDValue BasePtr = ST->getBasePtr();
5750   SDValue Value = ST->getValue();
5751   EVT StVT = ST->getMemoryVT();
5752 
5753   // The type of the data we want to save
5754   EVT RegVT = Value.getValueType();
5755   EVT RegSclVT = RegVT.getScalarType();
5756 
5757   // The type of data as saved in memory.
5758   EVT MemSclVT = StVT.getScalarType();
5759 
5760   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
5761   unsigned NumElem = StVT.getVectorNumElements();
5762 
5763   // A vector must always be stored in memory as-is, i.e. without any padding
5764   // between the elements, since various code depend on it, e.g. in the
5765   // handling of a bitcast of a vector type to int, which may be done with a
5766   // vector store followed by an integer load. A vector that does not have
5767   // elements that are byte-sized must therefore be stored as an integer
5768   // built out of the extracted vector elements.
5769   if (!MemSclVT.isByteSized()) {
5770     unsigned NumBits = StVT.getSizeInBits();
5771     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
5772 
5773     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
5774 
5775     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
5776       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
5777                                 DAG.getConstant(Idx, SL, IdxVT));
5778       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
5779       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
5780       unsigned ShiftIntoIdx =
5781           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
5782       SDValue ShiftAmount =
5783           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
5784       SDValue ShiftedElt =
5785           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
5786       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
5787     }
5788 
5789     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
5790                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
5791                         ST->getAAInfo());
5792   }
5793 
5794   // Store Stride in bytes
5795   unsigned Stride = MemSclVT.getSizeInBits() / 8;
5796   assert(Stride && "Zero stride!");
5797   // Extract each of the elements from the original vector and save them into
5798   // memory individually.
5799   SmallVector<SDValue, 8> Stores;
5800   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
5801     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
5802                               DAG.getConstant(Idx, SL, IdxVT));
5803 
5804     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
5805 
5806     // This scalar TruncStore may be illegal, but we legalize it later.
5807     SDValue Store = DAG.getTruncStore(
5808         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
5809         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
5810         ST->getMemOperand()->getFlags(), ST->getAAInfo());
5811 
5812     Stores.push_back(Store);
5813   }
5814 
5815   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
5816 }
5817 
5818 std::pair<SDValue, SDValue>
5819 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
5820   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
5821          "unaligned indexed loads not implemented!");
5822   SDValue Chain = LD->getChain();
5823   SDValue Ptr = LD->getBasePtr();
5824   EVT VT = LD->getValueType(0);
5825   EVT LoadedVT = LD->getMemoryVT();
5826   SDLoc dl(LD);
5827   auto &MF = DAG.getMachineFunction();
5828 
5829   if (VT.isFloatingPoint() || VT.isVector()) {
5830     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
5831     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
5832       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
5833           LoadedVT.isVector()) {
5834         // Scalarize the load and let the individual components be handled.
5835         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
5836         if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
5837           return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
5838         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
5839       }
5840 
5841       // Expand to a (misaligned) integer load of the same size,
5842       // then bitconvert to floating point or vector.
5843       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
5844                                     LD->getMemOperand());
5845       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
5846       if (LoadedVT != VT)
5847         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
5848                              ISD::ANY_EXTEND, dl, VT, Result);
5849 
5850       return std::make_pair(Result, newLoad.getValue(1));
5851     }
5852 
5853     // Copy the value to a (aligned) stack slot using (unaligned) integer
5854     // loads and stores, then do a (aligned) load from the stack slot.
5855     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
5856     unsigned LoadedBytes = LoadedVT.getStoreSize();
5857     unsigned RegBytes = RegVT.getSizeInBits() / 8;
5858     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
5859 
5860     // Make sure the stack slot is also aligned for the register type.
5861     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
5862     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
5863     SmallVector<SDValue, 8> Stores;
5864     SDValue StackPtr = StackBase;
5865     unsigned Offset = 0;
5866 
5867     EVT PtrVT = Ptr.getValueType();
5868     EVT StackPtrVT = StackPtr.getValueType();
5869 
5870     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
5871     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
5872 
5873     // Do all but one copies using the full register width.
5874     for (unsigned i = 1; i < NumRegs; i++) {
5875       // Load one integer register's worth from the original location.
5876       SDValue Load = DAG.getLoad(
5877           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
5878           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
5879           LD->getAAInfo());
5880       // Follow the load with a store to the stack slot.  Remember the store.
5881       Stores.push_back(DAG.getStore(
5882           Load.getValue(1), dl, Load, StackPtr,
5883           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
5884       // Increment the pointers.
5885       Offset += RegBytes;
5886 
5887       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
5888       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
5889     }
5890 
5891     // The last copy may be partial.  Do an extending load.
5892     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
5893                                   8 * (LoadedBytes - Offset));
5894     SDValue Load =
5895         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
5896                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
5897                        MinAlign(LD->getAlignment(), Offset),
5898                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
5899     // Follow the load with a store to the stack slot.  Remember the store.
5900     // On big-endian machines this requires a truncating store to ensure
5901     // that the bits end up in the right place.
5902     Stores.push_back(DAG.getTruncStore(
5903         Load.getValue(1), dl, Load, StackPtr,
5904         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
5905 
5906     // The order of the stores doesn't matter - say it with a TokenFactor.
5907     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
5908 
5909     // Finally, perform the original load only redirected to the stack slot.
5910     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
5911                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
5912                           LoadedVT);
5913 
5914     // Callers expect a MERGE_VALUES node.
5915     return std::make_pair(Load, TF);
5916   }
5917 
5918   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
5919          "Unaligned load of unsupported type.");
5920 
5921   // Compute the new VT that is half the size of the old one.  This is an
5922   // integer MVT.
5923   unsigned NumBits = LoadedVT.getSizeInBits();
5924   EVT NewLoadedVT;
5925   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
5926   NumBits >>= 1;
5927 
5928   unsigned Alignment = LD->getAlignment();
5929   unsigned IncrementSize = NumBits / 8;
5930   ISD::LoadExtType HiExtType = LD->getExtensionType();
5931 
5932   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
5933   if (HiExtType == ISD::NON_EXTLOAD)
5934     HiExtType = ISD::ZEXTLOAD;
5935 
5936   // Load the value in two parts
5937   SDValue Lo, Hi;
5938   if (DAG.getDataLayout().isLittleEndian()) {
5939     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5940                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5941                         LD->getAAInfo());
5942 
5943     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5944     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
5945                         LD->getPointerInfo().getWithOffset(IncrementSize),
5946                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
5947                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
5948   } else {
5949     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5950                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5951                         LD->getAAInfo());
5952 
5953     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5954     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
5955                         LD->getPointerInfo().getWithOffset(IncrementSize),
5956                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
5957                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
5958   }
5959 
5960   // aggregate the two parts
5961   SDValue ShiftAmount =
5962       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
5963                                                     DAG.getDataLayout()));
5964   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
5965   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
5966 
5967   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
5968                              Hi.getValue(1));
5969 
5970   return std::make_pair(Result, TF);
5971 }
5972 
5973 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
5974                                              SelectionDAG &DAG) const {
5975   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
5976          "unaligned indexed stores not implemented!");
5977   SDValue Chain = ST->getChain();
5978   SDValue Ptr = ST->getBasePtr();
5979   SDValue Val = ST->getValue();
5980   EVT VT = Val.getValueType();
5981   int Alignment = ST->getAlignment();
5982   auto &MF = DAG.getMachineFunction();
5983   EVT StoreMemVT = ST->getMemoryVT();
5984 
5985   SDLoc dl(ST);
5986   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
5987     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
5988     if (isTypeLegal(intVT)) {
5989       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
5990           StoreMemVT.isVector()) {
5991         // Scalarize the store and let the individual components be handled.
5992         SDValue Result = scalarizeVectorStore(ST, DAG);
5993         return Result;
5994       }
5995       // Expand to a bitconvert of the value to the integer type of the
5996       // same size, then a (misaligned) int store.
5997       // FIXME: Does not handle truncating floating point stores!
5998       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
5999       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6000                             Alignment, ST->getMemOperand()->getFlags());
6001       return Result;
6002     }
6003     // Do a (aligned) store to a stack slot, then copy from the stack slot
6004     // to the final destination using (unaligned) integer loads and stores.
6005     MVT RegVT = getRegisterType(
6006         *DAG.getContext(),
6007         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6008     EVT PtrVT = Ptr.getValueType();
6009     unsigned StoredBytes = StoreMemVT.getStoreSize();
6010     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6011     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6012 
6013     // Make sure the stack slot is also aligned for the register type.
6014     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6015     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6016 
6017     // Perform the original store, only redirected to the stack slot.
6018     SDValue Store = DAG.getTruncStore(
6019         Chain, dl, Val, StackPtr,
6020         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6021 
6022     EVT StackPtrVT = StackPtr.getValueType();
6023 
6024     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6025     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6026     SmallVector<SDValue, 8> Stores;
6027     unsigned Offset = 0;
6028 
6029     // Do all but one copies using the full register width.
6030     for (unsigned i = 1; i < NumRegs; i++) {
6031       // Load one integer register's worth from the stack slot.
6032       SDValue Load = DAG.getLoad(
6033           RegVT, dl, Store, StackPtr,
6034           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6035       // Store it to the final location.  Remember the store.
6036       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6037                                     ST->getPointerInfo().getWithOffset(Offset),
6038                                     MinAlign(ST->getAlignment(), Offset),
6039                                     ST->getMemOperand()->getFlags()));
6040       // Increment the pointers.
6041       Offset += RegBytes;
6042       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6043       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6044     }
6045 
6046     // The last store may be partial.  Do a truncating store.  On big-endian
6047     // machines this requires an extending load from the stack slot to ensure
6048     // that the bits are in the right place.
6049     EVT LoadMemVT =
6050         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6051 
6052     // Load from the stack slot.
6053     SDValue Load = DAG.getExtLoad(
6054         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6055         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6056 
6057     Stores.push_back(
6058         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6059                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6060                           MinAlign(ST->getAlignment(), Offset),
6061                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6062     // The order of the stores doesn't matter - say it with a TokenFactor.
6063     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6064     return Result;
6065   }
6066 
6067   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6068          "Unaligned store of unknown type.");
6069   // Get the half-size VT
6070   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6071   int NumBits = NewStoredVT.getSizeInBits();
6072   int IncrementSize = NumBits / 8;
6073 
6074   // Divide the stored value in two parts.
6075   SDValue ShiftAmount = DAG.getConstant(
6076       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6077   SDValue Lo = Val;
6078   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6079 
6080   // Store the two parts
6081   SDValue Store1, Store2;
6082   Store1 = DAG.getTruncStore(Chain, dl,
6083                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6084                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6085                              ST->getMemOperand()->getFlags());
6086 
6087   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6088   Alignment = MinAlign(Alignment, IncrementSize);
6089   Store2 = DAG.getTruncStore(
6090       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6091       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6092       ST->getMemOperand()->getFlags(), ST->getAAInfo());
6093 
6094   SDValue Result =
6095       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6096   return Result;
6097 }
6098 
6099 SDValue
6100 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6101                                        const SDLoc &DL, EVT DataVT,
6102                                        SelectionDAG &DAG,
6103                                        bool IsCompressedMemory) const {
6104   SDValue Increment;
6105   EVT AddrVT = Addr.getValueType();
6106   EVT MaskVT = Mask.getValueType();
6107   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
6108          "Incompatible types of Data and Mask");
6109   if (IsCompressedMemory) {
6110     // Incrementing the pointer according to number of '1's in the mask.
6111     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
6112     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
6113     if (MaskIntVT.getSizeInBits() < 32) {
6114       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
6115       MaskIntVT = MVT::i32;
6116     }
6117 
6118     // Count '1's with POPCNT.
6119     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
6120     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
6121     // Scale is an element size in bytes.
6122     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
6123                                     AddrVT);
6124     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
6125   } else
6126     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
6127 
6128   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
6129 }
6130 
6131 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
6132                                        SDValue Idx,
6133                                        EVT VecVT,
6134                                        const SDLoc &dl) {
6135   if (isa<ConstantSDNode>(Idx))
6136     return Idx;
6137 
6138   EVT IdxVT = Idx.getValueType();
6139   unsigned NElts = VecVT.getVectorNumElements();
6140   if (isPowerOf2_32(NElts)) {
6141     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
6142                                      Log2_32(NElts));
6143     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
6144                        DAG.getConstant(Imm, dl, IdxVT));
6145   }
6146 
6147   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
6148                      DAG.getConstant(NElts - 1, dl, IdxVT));
6149 }
6150 
6151 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
6152                                                 SDValue VecPtr, EVT VecVT,
6153                                                 SDValue Index) const {
6154   SDLoc dl(Index);
6155   // Make sure the index type is big enough to compute in.
6156   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
6157 
6158   EVT EltVT = VecVT.getVectorElementType();
6159 
6160   // Calculate the element offset and add it to the pointer.
6161   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
6162   assert(EltSize * 8 == EltVT.getSizeInBits() &&
6163          "Converting bits to bytes lost precision");
6164 
6165   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
6166 
6167   EVT IdxVT = Index.getValueType();
6168 
6169   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
6170                       DAG.getConstant(EltSize, dl, IdxVT));
6171   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
6172 }
6173 
6174 //===----------------------------------------------------------------------===//
6175 // Implementation of Emulated TLS Model
6176 //===----------------------------------------------------------------------===//
6177 
6178 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
6179                                                 SelectionDAG &DAG) const {
6180   // Access to address of TLS varialbe xyz is lowered to a function call:
6181   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
6182   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6183   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
6184   SDLoc dl(GA);
6185 
6186   ArgListTy Args;
6187   ArgListEntry Entry;
6188   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
6189   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
6190   StringRef EmuTlsVarName(NameString);
6191   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
6192   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
6193   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
6194   Entry.Ty = VoidPtrType;
6195   Args.push_back(Entry);
6196 
6197   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
6198 
6199   TargetLowering::CallLoweringInfo CLI(DAG);
6200   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
6201   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
6202   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
6203 
6204   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6205   // At last for X86 targets, maybe good for other targets too?
6206   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6207   MFI.setAdjustsStack(true); // Is this only for X86 target?
6208   MFI.setHasCalls(true);
6209 
6210   assert((GA->getOffset() == 0) &&
6211          "Emulated TLS must have zero offset in GlobalAddressSDNode");
6212   return CallResult.first;
6213 }
6214 
6215 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
6216                                                 SelectionDAG &DAG) const {
6217   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
6218   if (!isCtlzFast())
6219     return SDValue();
6220   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6221   SDLoc dl(Op);
6222   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6223     if (C->isNullValue() && CC == ISD::SETEQ) {
6224       EVT VT = Op.getOperand(0).getValueType();
6225       SDValue Zext = Op.getOperand(0);
6226       if (VT.bitsLT(MVT::i32)) {
6227         VT = MVT::i32;
6228         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
6229       }
6230       unsigned Log2b = Log2_32(VT.getSizeInBits());
6231       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
6232       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
6233                                 DAG.getConstant(Log2b, dl, MVT::i32));
6234       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
6235     }
6236   }
6237   return SDValue();
6238 }
6239 
6240 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
6241   unsigned Opcode = Node->getOpcode();
6242   SDValue LHS = Node->getOperand(0);
6243   SDValue RHS = Node->getOperand(1);
6244   EVT VT = LHS.getValueType();
6245   SDLoc dl(Node);
6246 
6247   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
6248   assert(VT.isInteger() && "Expected operands to be integers");
6249 
6250   // usub.sat(a, b) -> umax(a, b) - b
6251   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
6252     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
6253     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
6254   }
6255 
6256   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
6257     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
6258     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
6259     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
6260   }
6261 
6262   unsigned OverflowOp;
6263   switch (Opcode) {
6264   case ISD::SADDSAT:
6265     OverflowOp = ISD::SADDO;
6266     break;
6267   case ISD::UADDSAT:
6268     OverflowOp = ISD::UADDO;
6269     break;
6270   case ISD::SSUBSAT:
6271     OverflowOp = ISD::SSUBO;
6272     break;
6273   case ISD::USUBSAT:
6274     OverflowOp = ISD::USUBO;
6275     break;
6276   default:
6277     llvm_unreachable("Expected method to receive signed or unsigned saturation "
6278                      "addition or subtraction node.");
6279   }
6280 
6281   unsigned BitWidth = LHS.getScalarValueSizeInBits();
6282   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6283   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
6284                                LHS, RHS);
6285   SDValue SumDiff = Result.getValue(0);
6286   SDValue Overflow = Result.getValue(1);
6287   SDValue Zero = DAG.getConstant(0, dl, VT);
6288   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
6289 
6290   if (Opcode == ISD::UADDSAT) {
6291     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6292       // (LHS + RHS) | OverflowMask
6293       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6294       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
6295     }
6296     // Overflow ? 0xffff.... : (LHS + RHS)
6297     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
6298   } else if (Opcode == ISD::USUBSAT) {
6299     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6300       // (LHS - RHS) & ~OverflowMask
6301       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6302       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
6303       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
6304     }
6305     // Overflow ? 0 : (LHS - RHS)
6306     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
6307   } else {
6308     // SatMax -> Overflow && SumDiff < 0
6309     // SatMin -> Overflow && SumDiff >= 0
6310     APInt MinVal = APInt::getSignedMinValue(BitWidth);
6311     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
6312     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6313     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6314     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
6315     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
6316     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
6317   }
6318 }
6319 
6320 SDValue
6321 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
6322   assert((Node->getOpcode() == ISD::SMULFIX ||
6323           Node->getOpcode() == ISD::UMULFIX ||
6324           Node->getOpcode() == ISD::SMULFIXSAT) &&
6325          "Expected a fixed point multiplication opcode");
6326 
6327   SDLoc dl(Node);
6328   SDValue LHS = Node->getOperand(0);
6329   SDValue RHS = Node->getOperand(1);
6330   EVT VT = LHS.getValueType();
6331   unsigned Scale = Node->getConstantOperandVal(2);
6332   bool Saturating = Node->getOpcode() == ISD::SMULFIXSAT;
6333   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6334   unsigned VTSize = VT.getScalarSizeInBits();
6335 
6336   if (!Scale) {
6337     // [us]mul.fix(a, b, 0) -> mul(a, b)
6338     if (!Saturating && isOperationLegalOrCustom(ISD::MUL, VT)) {
6339       return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6340     } else if (Saturating && isOperationLegalOrCustom(ISD::SMULO, VT)) {
6341       SDValue Result =
6342           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
6343       SDValue Product = Result.getValue(0);
6344       SDValue Overflow = Result.getValue(1);
6345       SDValue Zero = DAG.getConstant(0, dl, VT);
6346 
6347       APInt MinVal = APInt::getSignedMinValue(VTSize);
6348       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
6349       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6350       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6351       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
6352       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
6353       return DAG.getSelect(dl, VT, Overflow, Result, Product);
6354     }
6355   }
6356 
6357   bool Signed =
6358       Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::SMULFIXSAT;
6359   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
6360          "Expected scale to be less than the number of bits if signed or at "
6361          "most the number of bits if unsigned.");
6362   assert(LHS.getValueType() == RHS.getValueType() &&
6363          "Expected both operands to be the same type");
6364 
6365   // Get the upper and lower bits of the result.
6366   SDValue Lo, Hi;
6367   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
6368   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
6369   if (isOperationLegalOrCustom(LoHiOp, VT)) {
6370     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
6371     Lo = Result.getValue(0);
6372     Hi = Result.getValue(1);
6373   } else if (isOperationLegalOrCustom(HiOp, VT)) {
6374     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6375     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
6376   } else if (VT.isVector()) {
6377     return SDValue();
6378   } else {
6379     report_fatal_error("Unable to expand fixed point multiplication.");
6380   }
6381 
6382   if (Scale == VTSize)
6383     // Result is just the top half since we'd be shifting by the width of the
6384     // operand.
6385     return Hi;
6386 
6387   // The result will need to be shifted right by the scale since both operands
6388   // are scaled. The result is given to us in 2 halves, so we only want part of
6389   // both in the result.
6390   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
6391   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
6392                                DAG.getConstant(Scale, dl, ShiftTy));
6393   if (!Saturating)
6394     return Result;
6395 
6396   unsigned OverflowBits = VTSize - Scale + 1; // +1 for the sign
6397   SDValue HiMask =
6398       DAG.getConstant(APInt::getHighBitsSet(VTSize, OverflowBits), dl, VT);
6399   SDValue LoMask = DAG.getConstant(
6400       APInt::getLowBitsSet(VTSize, VTSize - OverflowBits), dl, VT);
6401   APInt MaxVal = APInt::getSignedMaxValue(VTSize);
6402   APInt MinVal = APInt::getSignedMinValue(VTSize);
6403 
6404   Result = DAG.getSelectCC(dl, Hi, LoMask,
6405                            DAG.getConstant(MaxVal, dl, VT), Result,
6406                            ISD::SETGT);
6407   return DAG.getSelectCC(dl, Hi, HiMask,
6408                          DAG.getConstant(MinVal, dl, VT), Result,
6409                          ISD::SETLT);
6410 }
6411 
6412 void TargetLowering::expandUADDSUBO(
6413     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
6414   SDLoc dl(Node);
6415   SDValue LHS = Node->getOperand(0);
6416   SDValue RHS = Node->getOperand(1);
6417   bool IsAdd = Node->getOpcode() == ISD::UADDO;
6418 
6419   // If ADD/SUBCARRY is legal, use that instead.
6420   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
6421   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
6422     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
6423     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
6424                                     { LHS, RHS, CarryIn });
6425     Result = SDValue(NodeCarry.getNode(), 0);
6426     Overflow = SDValue(NodeCarry.getNode(), 1);
6427     return;
6428   }
6429 
6430   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
6431                             LHS.getValueType(), LHS, RHS);
6432 
6433   EVT ResultType = Node->getValueType(1);
6434   EVT SetCCType = getSetCCResultType(
6435       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
6436   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
6437   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
6438   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
6439 }
6440 
6441 void TargetLowering::expandSADDSUBO(
6442     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
6443   SDLoc dl(Node);
6444   SDValue LHS = Node->getOperand(0);
6445   SDValue RHS = Node->getOperand(1);
6446   bool IsAdd = Node->getOpcode() == ISD::SADDO;
6447 
6448   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
6449                             LHS.getValueType(), LHS, RHS);
6450 
6451   EVT ResultType = Node->getValueType(1);
6452   EVT OType = getSetCCResultType(
6453       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
6454 
6455   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6456   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
6457   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
6458     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
6459     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
6460     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
6461     return;
6462   }
6463 
6464   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
6465 
6466   //   LHSSign -> LHS >= 0
6467   //   RHSSign -> RHS >= 0
6468   //   SumSign -> Result >= 0
6469   //
6470   //   Add:
6471   //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
6472   //   Sub:
6473   //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
6474   SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
6475   SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
6476   SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
6477                                     IsAdd ? ISD::SETEQ : ISD::SETNE);
6478 
6479   SDValue SumSign = DAG.getSetCC(dl, OType, Result, Zero, ISD::SETGE);
6480   SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
6481 
6482   SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
6483   Overflow = DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType);
6484 }
6485 
6486 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
6487                                 SDValue &Overflow, SelectionDAG &DAG) const {
6488   SDLoc dl(Node);
6489   EVT VT = Node->getValueType(0);
6490   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6491   SDValue LHS = Node->getOperand(0);
6492   SDValue RHS = Node->getOperand(1);
6493   bool isSigned = Node->getOpcode() == ISD::SMULO;
6494 
6495   // For power-of-two multiplications we can use a simpler shift expansion.
6496   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
6497     const APInt &C = RHSC->getAPIntValue();
6498     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
6499     if (C.isPowerOf2()) {
6500       // smulo(x, signed_min) is same as umulo(x, signed_min).
6501       bool UseArithShift = isSigned && !C.isMinSignedValue();
6502       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
6503       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
6504       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
6505       Overflow = DAG.getSetCC(dl, SetCCVT,
6506           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
6507                       dl, VT, Result, ShiftAmt),
6508           LHS, ISD::SETNE);
6509       return true;
6510     }
6511   }
6512 
6513   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
6514   if (VT.isVector())
6515     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6516                               VT.getVectorNumElements());
6517 
6518   SDValue BottomHalf;
6519   SDValue TopHalf;
6520   static const unsigned Ops[2][3] =
6521       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
6522         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
6523   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
6524     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6525     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
6526   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
6527     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
6528                              RHS);
6529     TopHalf = BottomHalf.getValue(1);
6530   } else if (isTypeLegal(WideVT)) {
6531     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
6532     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
6533     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
6534     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
6535     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
6536         getShiftAmountTy(WideVT, DAG.getDataLayout()));
6537     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
6538                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
6539   } else {
6540     if (VT.isVector())
6541       return false;
6542 
6543     // We can fall back to a libcall with an illegal type for the MUL if we
6544     // have a libcall big enough.
6545     // Also, we can fall back to a division in some cases, but that's a big
6546     // performance hit in the general case.
6547     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
6548     if (WideVT == MVT::i16)
6549       LC = RTLIB::MUL_I16;
6550     else if (WideVT == MVT::i32)
6551       LC = RTLIB::MUL_I32;
6552     else if (WideVT == MVT::i64)
6553       LC = RTLIB::MUL_I64;
6554     else if (WideVT == MVT::i128)
6555       LC = RTLIB::MUL_I128;
6556     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
6557 
6558     SDValue HiLHS;
6559     SDValue HiRHS;
6560     if (isSigned) {
6561       // The high part is obtained by SRA'ing all but one of the bits of low
6562       // part.
6563       unsigned LoSize = VT.getSizeInBits();
6564       HiLHS =
6565           DAG.getNode(ISD::SRA, dl, VT, LHS,
6566                       DAG.getConstant(LoSize - 1, dl,
6567                                       getPointerTy(DAG.getDataLayout())));
6568       HiRHS =
6569           DAG.getNode(ISD::SRA, dl, VT, RHS,
6570                       DAG.getConstant(LoSize - 1, dl,
6571                                       getPointerTy(DAG.getDataLayout())));
6572     } else {
6573         HiLHS = DAG.getConstant(0, dl, VT);
6574         HiRHS = DAG.getConstant(0, dl, VT);
6575     }
6576 
6577     // Here we're passing the 2 arguments explicitly as 4 arguments that are
6578     // pre-lowered to the correct types. This all depends upon WideVT not
6579     // being a legal type for the architecture and thus has to be split to
6580     // two arguments.
6581     SDValue Ret;
6582     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
6583       // Halves of WideVT are packed into registers in different order
6584       // depending on platform endianness. This is usually handled by
6585       // the C calling convention, but we can't defer to it in
6586       // the legalizer.
6587       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
6588       Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl,
6589           /* doesNotReturn */ false, /* isReturnValueUsed */ true,
6590           /* isPostTypeLegalization */ true).first;
6591     } else {
6592       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
6593       Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl,
6594           /* doesNotReturn */ false, /* isReturnValueUsed */ true,
6595           /* isPostTypeLegalization */ true).first;
6596     }
6597     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
6598            "Ret value is a collection of constituent nodes holding result.");
6599     if (DAG.getDataLayout().isLittleEndian()) {
6600       // Same as above.
6601       BottomHalf = Ret.getOperand(0);
6602       TopHalf = Ret.getOperand(1);
6603     } else {
6604       BottomHalf = Ret.getOperand(1);
6605       TopHalf = Ret.getOperand(0);
6606     }
6607   }
6608 
6609   Result = BottomHalf;
6610   if (isSigned) {
6611     SDValue ShiftAmt = DAG.getConstant(
6612         VT.getScalarSizeInBits() - 1, dl,
6613         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
6614     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
6615     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
6616   } else {
6617     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
6618                             DAG.getConstant(0, dl, VT), ISD::SETNE);
6619   }
6620 
6621   // Truncate the result if SetCC returns a larger type than needed.
6622   EVT RType = Node->getValueType(1);
6623   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
6624     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
6625 
6626   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
6627          "Unexpected result type for S/UMULO legalization");
6628   return true;
6629 }
6630 
6631 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
6632   SDLoc dl(Node);
6633   bool NoNaN = Node->getFlags().hasNoNaNs();
6634   unsigned BaseOpcode = 0;
6635   switch (Node->getOpcode()) {
6636   default: llvm_unreachable("Expected VECREDUCE opcode");
6637   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
6638   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
6639   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
6640   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
6641   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
6642   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
6643   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
6644   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
6645   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
6646   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
6647   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
6648   case ISD::VECREDUCE_FMAX:
6649     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
6650     break;
6651   case ISD::VECREDUCE_FMIN:
6652     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
6653     break;
6654   }
6655 
6656   SDValue Op = Node->getOperand(0);
6657   EVT VT = Op.getValueType();
6658 
6659   // Try to use a shuffle reduction for power of two vectors.
6660   if (VT.isPow2VectorType()) {
6661     while (VT.getVectorNumElements() > 1) {
6662       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
6663       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
6664         break;
6665 
6666       SDValue Lo, Hi;
6667       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
6668       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
6669       VT = HalfVT;
6670     }
6671   }
6672 
6673   EVT EltVT = VT.getVectorElementType();
6674   unsigned NumElts = VT.getVectorNumElements();
6675 
6676   SmallVector<SDValue, 8> Ops;
6677   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
6678 
6679   SDValue Res = Ops[0];
6680   for (unsigned i = 1; i < NumElts; i++)
6681     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
6682 
6683   // Result type may be wider than element type.
6684   if (EltVT != Node->getValueType(0))
6685     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
6686   return Res;
6687 }
6688