1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore following attributes because they don't affect the 61 // call sequence. 62 AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex); 63 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 64 Attribute::DereferenceableOrNull, Attribute::NoAlias, 65 Attribute::NonNull}) 66 CallerAttrs.removeAttribute(Attr); 67 68 if (CallerAttrs.hasAttributes()) 69 return false; 70 71 // It's not safe to eliminate the sign / zero extension of the return value. 72 if (CallerAttrs.contains(Attribute::ZExt) || 73 CallerAttrs.contains(Attribute::SExt)) 74 return false; 75 76 // Check if the only use is a function return node. 77 return isUsedByReturnOnly(Node, Chain); 78 } 79 80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 81 const uint32_t *CallerPreservedMask, 82 const SmallVectorImpl<CCValAssign> &ArgLocs, 83 const SmallVectorImpl<SDValue> &OutVals) const { 84 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 85 const CCValAssign &ArgLoc = ArgLocs[I]; 86 if (!ArgLoc.isRegLoc()) 87 continue; 88 MCRegister Reg = ArgLoc.getLocReg(); 89 // Only look at callee saved registers. 90 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 91 continue; 92 // Check that we pass the value used for the caller. 93 // (We look for a CopyFromReg reading a virtual register that is used 94 // for the function live-in value of register Reg) 95 SDValue Value = OutVals[I]; 96 if (Value->getOpcode() != ISD::CopyFromReg) 97 return false; 98 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 99 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 100 return false; 101 } 102 return true; 103 } 104 105 /// Set CallLoweringInfo attribute flags based on a call instruction 106 /// and called function attributes. 107 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 108 unsigned ArgIdx) { 109 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 110 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 111 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 112 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 113 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 114 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 115 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 116 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 117 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 118 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 119 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 120 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 121 Alignment = Call->getParamStackAlign(ArgIdx); 122 ByValType = nullptr; 123 if (IsByVal) { 124 ByValType = Call->getParamByValType(ArgIdx); 125 if (!Alignment) 126 Alignment = Call->getParamAlign(ArgIdx); 127 } 128 PreallocatedType = nullptr; 129 if (IsPreallocated) 130 PreallocatedType = Call->getParamPreallocatedType(ArgIdx); 131 } 132 133 /// Generate a libcall taking the given operands as arguments and returning a 134 /// result of type RetVT. 135 std::pair<SDValue, SDValue> 136 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 137 ArrayRef<SDValue> Ops, 138 MakeLibCallOptions CallOptions, 139 const SDLoc &dl, 140 SDValue InChain) const { 141 if (!InChain) 142 InChain = DAG.getEntryNode(); 143 144 TargetLowering::ArgListTy Args; 145 Args.reserve(Ops.size()); 146 147 TargetLowering::ArgListEntry Entry; 148 for (unsigned i = 0; i < Ops.size(); ++i) { 149 SDValue NewOp = Ops[i]; 150 Entry.Node = NewOp; 151 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 152 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 153 CallOptions.IsSExt); 154 Entry.IsZExt = !Entry.IsSExt; 155 156 if (CallOptions.IsSoften && 157 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 158 Entry.IsSExt = Entry.IsZExt = false; 159 } 160 Args.push_back(Entry); 161 } 162 163 if (LC == RTLIB::UNKNOWN_LIBCALL) 164 report_fatal_error("Unsupported library call operation!"); 165 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 166 getPointerTy(DAG.getDataLayout())); 167 168 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 169 TargetLowering::CallLoweringInfo CLI(DAG); 170 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 171 bool zeroExtend = !signExtend; 172 173 if (CallOptions.IsSoften && 174 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 175 signExtend = zeroExtend = false; 176 } 177 178 CLI.setDebugLoc(dl) 179 .setChain(InChain) 180 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 181 .setNoReturn(CallOptions.DoesNotReturn) 182 .setDiscardResult(!CallOptions.IsReturnValueUsed) 183 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 184 .setSExtResult(signExtend) 185 .setZExtResult(zeroExtend); 186 return LowerCallTo(CLI); 187 } 188 189 bool TargetLowering::findOptimalMemOpLowering( 190 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 191 unsigned SrcAS, const AttributeList &FuncAttributes) const { 192 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 193 return false; 194 195 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 196 197 if (VT == MVT::Other) { 198 // Use the largest integer type whose alignment constraints are satisfied. 199 // We only need to check DstAlign here as SrcAlign is always greater or 200 // equal to DstAlign (or zero). 201 VT = MVT::i64; 202 if (Op.isFixedDstAlign()) 203 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 204 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 205 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 206 assert(VT.isInteger()); 207 208 // Find the largest legal integer type. 209 MVT LVT = MVT::i64; 210 while (!isTypeLegal(LVT)) 211 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 212 assert(LVT.isInteger()); 213 214 // If the type we've chosen is larger than the largest legal integer type 215 // then use that instead. 216 if (VT.bitsGT(LVT)) 217 VT = LVT; 218 } 219 220 unsigned NumMemOps = 0; 221 uint64_t Size = Op.size(); 222 while (Size) { 223 unsigned VTSize = VT.getSizeInBits() / 8; 224 while (VTSize > Size) { 225 // For now, only use non-vector load / store's for the left-over pieces. 226 EVT NewVT = VT; 227 unsigned NewVTSize; 228 229 bool Found = false; 230 if (VT.isVector() || VT.isFloatingPoint()) { 231 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 232 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 233 isSafeMemOpType(NewVT.getSimpleVT())) 234 Found = true; 235 else if (NewVT == MVT::i64 && 236 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 237 isSafeMemOpType(MVT::f64)) { 238 // i64 is usually not legal on 32-bit targets, but f64 may be. 239 NewVT = MVT::f64; 240 Found = true; 241 } 242 } 243 244 if (!Found) { 245 do { 246 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 247 if (NewVT == MVT::i8) 248 break; 249 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 250 } 251 NewVTSize = NewVT.getSizeInBits() / 8; 252 253 // If the new VT cannot cover all of the remaining bits, then consider 254 // issuing a (or a pair of) unaligned and overlapping load / store. 255 bool Fast; 256 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 257 allowsMisalignedMemoryAccesses( 258 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 259 MachineMemOperand::MONone, &Fast) && 260 Fast) 261 VTSize = Size; 262 else { 263 VT = NewVT; 264 VTSize = NewVTSize; 265 } 266 } 267 268 if (++NumMemOps > Limit) 269 return false; 270 271 MemOps.push_back(VT); 272 Size -= VTSize; 273 } 274 275 return true; 276 } 277 278 /// Soften the operands of a comparison. This code is shared among BR_CC, 279 /// SELECT_CC, and SETCC handlers. 280 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 281 SDValue &NewLHS, SDValue &NewRHS, 282 ISD::CondCode &CCCode, 283 const SDLoc &dl, const SDValue OldLHS, 284 const SDValue OldRHS) const { 285 SDValue Chain; 286 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 287 OldRHS, Chain); 288 } 289 290 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 291 SDValue &NewLHS, SDValue &NewRHS, 292 ISD::CondCode &CCCode, 293 const SDLoc &dl, const SDValue OldLHS, 294 const SDValue OldRHS, 295 SDValue &Chain, 296 bool IsSignaling) const { 297 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 298 // not supporting it. We can update this code when libgcc provides such 299 // functions. 300 301 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 302 && "Unsupported setcc type!"); 303 304 // Expand into one or more soft-fp libcall(s). 305 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 306 bool ShouldInvertCC = false; 307 switch (CCCode) { 308 case ISD::SETEQ: 309 case ISD::SETOEQ: 310 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 311 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 312 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 313 break; 314 case ISD::SETNE: 315 case ISD::SETUNE: 316 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 317 (VT == MVT::f64) ? RTLIB::UNE_F64 : 318 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 319 break; 320 case ISD::SETGE: 321 case ISD::SETOGE: 322 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 323 (VT == MVT::f64) ? RTLIB::OGE_F64 : 324 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 325 break; 326 case ISD::SETLT: 327 case ISD::SETOLT: 328 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 329 (VT == MVT::f64) ? RTLIB::OLT_F64 : 330 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 331 break; 332 case ISD::SETLE: 333 case ISD::SETOLE: 334 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 335 (VT == MVT::f64) ? RTLIB::OLE_F64 : 336 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 337 break; 338 case ISD::SETGT: 339 case ISD::SETOGT: 340 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 341 (VT == MVT::f64) ? RTLIB::OGT_F64 : 342 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 343 break; 344 case ISD::SETO: 345 ShouldInvertCC = true; 346 LLVM_FALLTHROUGH; 347 case ISD::SETUO: 348 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 349 (VT == MVT::f64) ? RTLIB::UO_F64 : 350 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 351 break; 352 case ISD::SETONE: 353 // SETONE = O && UNE 354 ShouldInvertCC = true; 355 LLVM_FALLTHROUGH; 356 case ISD::SETUEQ: 357 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 358 (VT == MVT::f64) ? RTLIB::UO_F64 : 359 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 360 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 361 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 362 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 363 break; 364 default: 365 // Invert CC for unordered comparisons 366 ShouldInvertCC = true; 367 switch (CCCode) { 368 case ISD::SETULT: 369 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 370 (VT == MVT::f64) ? RTLIB::OGE_F64 : 371 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 372 break; 373 case ISD::SETULE: 374 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 375 (VT == MVT::f64) ? RTLIB::OGT_F64 : 376 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 377 break; 378 case ISD::SETUGT: 379 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 380 (VT == MVT::f64) ? RTLIB::OLE_F64 : 381 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 382 break; 383 case ISD::SETUGE: 384 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 385 (VT == MVT::f64) ? RTLIB::OLT_F64 : 386 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 387 break; 388 default: llvm_unreachable("Do not know how to soften this setcc!"); 389 } 390 } 391 392 // Use the target specific return value for comparions lib calls. 393 EVT RetVT = getCmpLibcallReturnType(); 394 SDValue Ops[2] = {NewLHS, NewRHS}; 395 TargetLowering::MakeLibCallOptions CallOptions; 396 EVT OpsVT[2] = { OldLHS.getValueType(), 397 OldRHS.getValueType() }; 398 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 399 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 400 NewLHS = Call.first; 401 NewRHS = DAG.getConstant(0, dl, RetVT); 402 403 CCCode = getCmpLibcallCC(LC1); 404 if (ShouldInvertCC) { 405 assert(RetVT.isInteger()); 406 CCCode = getSetCCInverse(CCCode, RetVT); 407 } 408 409 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 410 // Update Chain. 411 Chain = Call.second; 412 } else { 413 EVT SetCCVT = 414 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 415 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 416 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 417 CCCode = getCmpLibcallCC(LC2); 418 if (ShouldInvertCC) 419 CCCode = getSetCCInverse(CCCode, RetVT); 420 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 421 if (Chain) 422 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 423 Call2.second); 424 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 425 Tmp.getValueType(), Tmp, NewLHS); 426 NewRHS = SDValue(); 427 } 428 } 429 430 /// Return the entry encoding for a jump table in the current function. The 431 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 432 unsigned TargetLowering::getJumpTableEncoding() const { 433 // In non-pic modes, just use the address of a block. 434 if (!isPositionIndependent()) 435 return MachineJumpTableInfo::EK_BlockAddress; 436 437 // In PIC mode, if the target supports a GPRel32 directive, use it. 438 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 439 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 440 441 // Otherwise, use a label difference. 442 return MachineJumpTableInfo::EK_LabelDifference32; 443 } 444 445 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 446 SelectionDAG &DAG) const { 447 // If our PIC model is GP relative, use the global offset table as the base. 448 unsigned JTEncoding = getJumpTableEncoding(); 449 450 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 451 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 452 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 453 454 return Table; 455 } 456 457 /// This returns the relocation base for the given PIC jumptable, the same as 458 /// getPICJumpTableRelocBase, but as an MCExpr. 459 const MCExpr * 460 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 461 unsigned JTI,MCContext &Ctx) const{ 462 // The normal PIC reloc base is the label at the start of the jump table. 463 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 464 } 465 466 bool 467 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 468 const TargetMachine &TM = getTargetMachine(); 469 const GlobalValue *GV = GA->getGlobal(); 470 471 // If the address is not even local to this DSO we will have to load it from 472 // a got and then add the offset. 473 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 474 return false; 475 476 // If the code is position independent we will have to add a base register. 477 if (isPositionIndependent()) 478 return false; 479 480 // Otherwise we can do it. 481 return true; 482 } 483 484 //===----------------------------------------------------------------------===// 485 // Optimization Methods 486 //===----------------------------------------------------------------------===// 487 488 /// If the specified instruction has a constant integer operand and there are 489 /// bits set in that constant that are not demanded, then clear those bits and 490 /// return true. 491 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 492 const APInt &DemandedBits, 493 const APInt &DemandedElts, 494 TargetLoweringOpt &TLO) const { 495 SDLoc DL(Op); 496 unsigned Opcode = Op.getOpcode(); 497 498 // Do target-specific constant optimization. 499 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 500 return TLO.New.getNode(); 501 502 // FIXME: ISD::SELECT, ISD::SELECT_CC 503 switch (Opcode) { 504 default: 505 break; 506 case ISD::XOR: 507 case ISD::AND: 508 case ISD::OR: { 509 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 510 if (!Op1C || Op1C->isOpaque()) 511 return false; 512 513 // If this is a 'not' op, don't touch it because that's a canonical form. 514 const APInt &C = Op1C->getAPIntValue(); 515 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 516 return false; 517 518 if (!C.isSubsetOf(DemandedBits)) { 519 EVT VT = Op.getValueType(); 520 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 521 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 522 return TLO.CombineTo(Op, NewOp); 523 } 524 525 break; 526 } 527 } 528 529 return false; 530 } 531 532 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 533 const APInt &DemandedBits, 534 TargetLoweringOpt &TLO) const { 535 EVT VT = Op.getValueType(); 536 APInt DemandedElts = VT.isVector() 537 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 538 : APInt(1, 1); 539 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 540 } 541 542 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 543 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 544 /// generalized for targets with other types of implicit widening casts. 545 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 546 const APInt &Demanded, 547 TargetLoweringOpt &TLO) const { 548 assert(Op.getNumOperands() == 2 && 549 "ShrinkDemandedOp only supports binary operators!"); 550 assert(Op.getNode()->getNumValues() == 1 && 551 "ShrinkDemandedOp only supports nodes with one result!"); 552 553 SelectionDAG &DAG = TLO.DAG; 554 SDLoc dl(Op); 555 556 // Early return, as this function cannot handle vector types. 557 if (Op.getValueType().isVector()) 558 return false; 559 560 // Don't do this if the node has another user, which may require the 561 // full value. 562 if (!Op.getNode()->hasOneUse()) 563 return false; 564 565 // Search for the smallest integer type with free casts to and from 566 // Op's type. For expedience, just check power-of-2 integer types. 567 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 568 unsigned DemandedSize = Demanded.getActiveBits(); 569 unsigned SmallVTBits = DemandedSize; 570 if (!isPowerOf2_32(SmallVTBits)) 571 SmallVTBits = NextPowerOf2(SmallVTBits); 572 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 573 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 574 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 575 TLI.isZExtFree(SmallVT, Op.getValueType())) { 576 // We found a type with free casts. 577 SDValue X = DAG.getNode( 578 Op.getOpcode(), dl, SmallVT, 579 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 580 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 581 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 582 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 583 return TLO.CombineTo(Op, Z); 584 } 585 } 586 return false; 587 } 588 589 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 590 DAGCombinerInfo &DCI) const { 591 SelectionDAG &DAG = DCI.DAG; 592 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 593 !DCI.isBeforeLegalizeOps()); 594 KnownBits Known; 595 596 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 597 if (Simplified) { 598 DCI.AddToWorklist(Op.getNode()); 599 DCI.CommitTargetLoweringOpt(TLO); 600 } 601 return Simplified; 602 } 603 604 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 605 KnownBits &Known, 606 TargetLoweringOpt &TLO, 607 unsigned Depth, 608 bool AssumeSingleUse) const { 609 EVT VT = Op.getValueType(); 610 611 // TODO: We can probably do more work on calculating the known bits and 612 // simplifying the operations for scalable vectors, but for now we just 613 // bail out. 614 if (VT.isScalableVector()) { 615 // Pretend we don't know anything for now. 616 Known = KnownBits(DemandedBits.getBitWidth()); 617 return false; 618 } 619 620 APInt DemandedElts = VT.isVector() 621 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 622 : APInt(1, 1); 623 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 624 AssumeSingleUse); 625 } 626 627 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 628 // TODO: Under what circumstances can we create nodes? Constant folding? 629 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 630 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 631 SelectionDAG &DAG, unsigned Depth) const { 632 // Limit search depth. 633 if (Depth >= SelectionDAG::MaxRecursionDepth) 634 return SDValue(); 635 636 // Ignore UNDEFs. 637 if (Op.isUndef()) 638 return SDValue(); 639 640 // Not demanding any bits/elts from Op. 641 if (DemandedBits == 0 || DemandedElts == 0) 642 return DAG.getUNDEF(Op.getValueType()); 643 644 unsigned NumElts = DemandedElts.getBitWidth(); 645 unsigned BitWidth = DemandedBits.getBitWidth(); 646 KnownBits LHSKnown, RHSKnown; 647 switch (Op.getOpcode()) { 648 case ISD::BITCAST: { 649 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 650 EVT SrcVT = Src.getValueType(); 651 EVT DstVT = Op.getValueType(); 652 if (SrcVT == DstVT) 653 return Src; 654 655 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 656 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 657 if (NumSrcEltBits == NumDstEltBits) 658 if (SDValue V = SimplifyMultipleUseDemandedBits( 659 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 660 return DAG.getBitcast(DstVT, V); 661 662 // TODO - bigendian once we have test coverage. 663 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 664 DAG.getDataLayout().isLittleEndian()) { 665 unsigned Scale = NumDstEltBits / NumSrcEltBits; 666 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 667 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 668 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 669 for (unsigned i = 0; i != Scale; ++i) { 670 unsigned Offset = i * NumSrcEltBits; 671 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 672 if (!Sub.isNullValue()) { 673 DemandedSrcBits |= Sub; 674 for (unsigned j = 0; j != NumElts; ++j) 675 if (DemandedElts[j]) 676 DemandedSrcElts.setBit((j * Scale) + i); 677 } 678 } 679 680 if (SDValue V = SimplifyMultipleUseDemandedBits( 681 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 682 return DAG.getBitcast(DstVT, V); 683 } 684 685 // TODO - bigendian once we have test coverage. 686 if ((NumSrcEltBits % NumDstEltBits) == 0 && 687 DAG.getDataLayout().isLittleEndian()) { 688 unsigned Scale = NumSrcEltBits / NumDstEltBits; 689 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 690 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 691 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 692 for (unsigned i = 0; i != NumElts; ++i) 693 if (DemandedElts[i]) { 694 unsigned Offset = (i % Scale) * NumDstEltBits; 695 DemandedSrcBits.insertBits(DemandedBits, Offset); 696 DemandedSrcElts.setBit(i / Scale); 697 } 698 699 if (SDValue V = SimplifyMultipleUseDemandedBits( 700 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 701 return DAG.getBitcast(DstVT, V); 702 } 703 704 break; 705 } 706 case ISD::AND: { 707 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 708 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 709 710 // If all of the demanded bits are known 1 on one side, return the other. 711 // These bits cannot contribute to the result of the 'and' in this 712 // context. 713 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 714 return Op.getOperand(0); 715 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 716 return Op.getOperand(1); 717 break; 718 } 719 case ISD::OR: { 720 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 721 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 722 723 // If all of the demanded bits are known zero on one side, return the 724 // other. These bits cannot contribute to the result of the 'or' in this 725 // context. 726 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 727 return Op.getOperand(0); 728 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 729 return Op.getOperand(1); 730 break; 731 } 732 case ISD::XOR: { 733 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 734 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 735 736 // If all of the demanded bits are known zero on one side, return the 737 // other. 738 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 739 return Op.getOperand(0); 740 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 741 return Op.getOperand(1); 742 break; 743 } 744 case ISD::SHL: { 745 // If we are only demanding sign bits then we can use the shift source 746 // directly. 747 if (const APInt *MaxSA = 748 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 749 SDValue Op0 = Op.getOperand(0); 750 unsigned ShAmt = MaxSA->getZExtValue(); 751 unsigned NumSignBits = 752 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 753 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 754 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 755 return Op0; 756 } 757 break; 758 } 759 case ISD::SETCC: { 760 SDValue Op0 = Op.getOperand(0); 761 SDValue Op1 = Op.getOperand(1); 762 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 763 // If (1) we only need the sign-bit, (2) the setcc operands are the same 764 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 765 // -1, we may be able to bypass the setcc. 766 if (DemandedBits.isSignMask() && 767 Op0.getScalarValueSizeInBits() == BitWidth && 768 getBooleanContents(Op0.getValueType()) == 769 BooleanContent::ZeroOrNegativeOneBooleanContent) { 770 // If we're testing X < 0, then this compare isn't needed - just use X! 771 // FIXME: We're limiting to integer types here, but this should also work 772 // if we don't care about FP signed-zero. The use of SETLT with FP means 773 // that we don't care about NaNs. 774 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 775 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 776 return Op0; 777 } 778 break; 779 } 780 case ISD::SIGN_EXTEND_INREG: { 781 // If none of the extended bits are demanded, eliminate the sextinreg. 782 SDValue Op0 = Op.getOperand(0); 783 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 784 unsigned ExBits = ExVT.getScalarSizeInBits(); 785 if (DemandedBits.getActiveBits() <= ExBits) 786 return Op0; 787 // If the input is already sign extended, just drop the extension. 788 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 789 if (NumSignBits >= (BitWidth - ExBits + 1)) 790 return Op0; 791 break; 792 } 793 case ISD::ANY_EXTEND_VECTOR_INREG: 794 case ISD::SIGN_EXTEND_VECTOR_INREG: 795 case ISD::ZERO_EXTEND_VECTOR_INREG: { 796 // If we only want the lowest element and none of extended bits, then we can 797 // return the bitcasted source vector. 798 SDValue Src = Op.getOperand(0); 799 EVT SrcVT = Src.getValueType(); 800 EVT DstVT = Op.getValueType(); 801 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 802 DAG.getDataLayout().isLittleEndian() && 803 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 804 return DAG.getBitcast(DstVT, Src); 805 } 806 break; 807 } 808 case ISD::INSERT_VECTOR_ELT: { 809 // If we don't demand the inserted element, return the base vector. 810 SDValue Vec = Op.getOperand(0); 811 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 812 EVT VecVT = Vec.getValueType(); 813 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 814 !DemandedElts[CIdx->getZExtValue()]) 815 return Vec; 816 break; 817 } 818 case ISD::INSERT_SUBVECTOR: { 819 // If we don't demand the inserted subvector, return the base vector. 820 SDValue Vec = Op.getOperand(0); 821 SDValue Sub = Op.getOperand(1); 822 uint64_t Idx = Op.getConstantOperandVal(2); 823 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 824 if (DemandedElts.extractBits(NumSubElts, Idx) == 0) 825 return Vec; 826 break; 827 } 828 case ISD::VECTOR_SHUFFLE: { 829 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 830 831 // If all the demanded elts are from one operand and are inline, 832 // then we can use the operand directly. 833 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 834 for (unsigned i = 0; i != NumElts; ++i) { 835 int M = ShuffleMask[i]; 836 if (M < 0 || !DemandedElts[i]) 837 continue; 838 AllUndef = false; 839 IdentityLHS &= (M == (int)i); 840 IdentityRHS &= ((M - NumElts) == i); 841 } 842 843 if (AllUndef) 844 return DAG.getUNDEF(Op.getValueType()); 845 if (IdentityLHS) 846 return Op.getOperand(0); 847 if (IdentityRHS) 848 return Op.getOperand(1); 849 break; 850 } 851 default: 852 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 853 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 854 Op, DemandedBits, DemandedElts, DAG, Depth)) 855 return V; 856 break; 857 } 858 return SDValue(); 859 } 860 861 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 862 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 863 unsigned Depth) const { 864 EVT VT = Op.getValueType(); 865 APInt DemandedElts = VT.isVector() 866 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 867 : APInt(1, 1); 868 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 869 Depth); 870 } 871 872 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 873 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 874 unsigned Depth) const { 875 APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits()); 876 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 877 Depth); 878 } 879 880 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 881 /// result of Op are ever used downstream. If we can use this information to 882 /// simplify Op, create a new simplified DAG node and return true, returning the 883 /// original and new nodes in Old and New. Otherwise, analyze the expression and 884 /// return a mask of Known bits for the expression (used to simplify the 885 /// caller). The Known bits may only be accurate for those bits in the 886 /// OriginalDemandedBits and OriginalDemandedElts. 887 bool TargetLowering::SimplifyDemandedBits( 888 SDValue Op, const APInt &OriginalDemandedBits, 889 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 890 unsigned Depth, bool AssumeSingleUse) const { 891 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 892 assert(Op.getScalarValueSizeInBits() == BitWidth && 893 "Mask size mismatches value type size!"); 894 895 // Don't know anything. 896 Known = KnownBits(BitWidth); 897 898 // TODO: We can probably do more work on calculating the known bits and 899 // simplifying the operations for scalable vectors, but for now we just 900 // bail out. 901 if (Op.getValueType().isScalableVector()) 902 return false; 903 904 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 905 assert((!Op.getValueType().isVector() || 906 NumElts == Op.getValueType().getVectorNumElements()) && 907 "Unexpected vector size"); 908 909 APInt DemandedBits = OriginalDemandedBits; 910 APInt DemandedElts = OriginalDemandedElts; 911 SDLoc dl(Op); 912 auto &DL = TLO.DAG.getDataLayout(); 913 914 // Undef operand. 915 if (Op.isUndef()) 916 return false; 917 918 if (Op.getOpcode() == ISD::Constant) { 919 // We know all of the bits for a constant! 920 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 921 return false; 922 } 923 924 if (Op.getOpcode() == ISD::ConstantFP) { 925 // We know all of the bits for a floating point constant! 926 Known = KnownBits::makeConstant( 927 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 928 return false; 929 } 930 931 // Other users may use these bits. 932 EVT VT = Op.getValueType(); 933 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 934 if (Depth != 0) { 935 // If not at the root, Just compute the Known bits to 936 // simplify things downstream. 937 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 938 return false; 939 } 940 // If this is the root being simplified, allow it to have multiple uses, 941 // just set the DemandedBits/Elts to all bits. 942 DemandedBits = APInt::getAllOnesValue(BitWidth); 943 DemandedElts = APInt::getAllOnesValue(NumElts); 944 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 945 // Not demanding any bits/elts from Op. 946 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 947 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 948 // Limit search depth. 949 return false; 950 } 951 952 KnownBits Known2; 953 switch (Op.getOpcode()) { 954 case ISD::TargetConstant: 955 llvm_unreachable("Can't simplify this node"); 956 case ISD::SCALAR_TO_VECTOR: { 957 if (!DemandedElts[0]) 958 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 959 960 KnownBits SrcKnown; 961 SDValue Src = Op.getOperand(0); 962 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 963 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 964 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 965 return true; 966 967 // Upper elements are undef, so only get the knownbits if we just demand 968 // the bottom element. 969 if (DemandedElts == 1) 970 Known = SrcKnown.anyextOrTrunc(BitWidth); 971 break; 972 } 973 case ISD::BUILD_VECTOR: 974 // Collect the known bits that are shared by every demanded element. 975 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 976 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 977 return false; // Don't fall through, will infinitely loop. 978 case ISD::LOAD: { 979 auto *LD = cast<LoadSDNode>(Op); 980 if (getTargetConstantFromLoad(LD)) { 981 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 982 return false; // Don't fall through, will infinitely loop. 983 } 984 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 985 // If this is a ZEXTLoad and we are looking at the loaded value. 986 EVT MemVT = LD->getMemoryVT(); 987 unsigned MemBits = MemVT.getScalarSizeInBits(); 988 Known.Zero.setBitsFrom(MemBits); 989 return false; // Don't fall through, will infinitely loop. 990 } 991 break; 992 } 993 case ISD::INSERT_VECTOR_ELT: { 994 SDValue Vec = Op.getOperand(0); 995 SDValue Scl = Op.getOperand(1); 996 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 997 EVT VecVT = Vec.getValueType(); 998 999 // If index isn't constant, assume we need all vector elements AND the 1000 // inserted element. 1001 APInt DemandedVecElts(DemandedElts); 1002 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1003 unsigned Idx = CIdx->getZExtValue(); 1004 DemandedVecElts.clearBit(Idx); 1005 1006 // Inserted element is not required. 1007 if (!DemandedElts[Idx]) 1008 return TLO.CombineTo(Op, Vec); 1009 } 1010 1011 KnownBits KnownScl; 1012 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1013 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1014 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1015 return true; 1016 1017 Known = KnownScl.anyextOrTrunc(BitWidth); 1018 1019 KnownBits KnownVec; 1020 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1021 Depth + 1)) 1022 return true; 1023 1024 if (!!DemandedVecElts) 1025 Known = KnownBits::commonBits(Known, KnownVec); 1026 1027 return false; 1028 } 1029 case ISD::INSERT_SUBVECTOR: { 1030 // Demand any elements from the subvector and the remainder from the src its 1031 // inserted into. 1032 SDValue Src = Op.getOperand(0); 1033 SDValue Sub = Op.getOperand(1); 1034 uint64_t Idx = Op.getConstantOperandVal(2); 1035 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1036 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1037 APInt DemandedSrcElts = DemandedElts; 1038 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 1039 1040 KnownBits KnownSub, KnownSrc; 1041 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1042 Depth + 1)) 1043 return true; 1044 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1045 Depth + 1)) 1046 return true; 1047 1048 Known.Zero.setAllBits(); 1049 Known.One.setAllBits(); 1050 if (!!DemandedSubElts) 1051 Known = KnownBits::commonBits(Known, KnownSub); 1052 if (!!DemandedSrcElts) 1053 Known = KnownBits::commonBits(Known, KnownSrc); 1054 1055 // Attempt to avoid multi-use src if we don't need anything from it. 1056 if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() || 1057 !DemandedSrcElts.isAllOnesValue()) { 1058 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1059 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1060 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1061 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1062 if (NewSub || NewSrc) { 1063 NewSub = NewSub ? NewSub : Sub; 1064 NewSrc = NewSrc ? NewSrc : Src; 1065 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1066 Op.getOperand(2)); 1067 return TLO.CombineTo(Op, NewOp); 1068 } 1069 } 1070 break; 1071 } 1072 case ISD::EXTRACT_SUBVECTOR: { 1073 // Offset the demanded elts by the subvector index. 1074 SDValue Src = Op.getOperand(0); 1075 if (Src.getValueType().isScalableVector()) 1076 break; 1077 uint64_t Idx = Op.getConstantOperandVal(1); 1078 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1079 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1080 1081 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1082 Depth + 1)) 1083 return true; 1084 1085 // Attempt to avoid multi-use src if we don't need anything from it. 1086 if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) { 1087 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1088 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1089 if (DemandedSrc) { 1090 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1091 Op.getOperand(1)); 1092 return TLO.CombineTo(Op, NewOp); 1093 } 1094 } 1095 break; 1096 } 1097 case ISD::CONCAT_VECTORS: { 1098 Known.Zero.setAllBits(); 1099 Known.One.setAllBits(); 1100 EVT SubVT = Op.getOperand(0).getValueType(); 1101 unsigned NumSubVecs = Op.getNumOperands(); 1102 unsigned NumSubElts = SubVT.getVectorNumElements(); 1103 for (unsigned i = 0; i != NumSubVecs; ++i) { 1104 APInt DemandedSubElts = 1105 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1106 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1107 Known2, TLO, Depth + 1)) 1108 return true; 1109 // Known bits are shared by every demanded subvector element. 1110 if (!!DemandedSubElts) 1111 Known = KnownBits::commonBits(Known, Known2); 1112 } 1113 break; 1114 } 1115 case ISD::VECTOR_SHUFFLE: { 1116 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1117 1118 // Collect demanded elements from shuffle operands.. 1119 APInt DemandedLHS(NumElts, 0); 1120 APInt DemandedRHS(NumElts, 0); 1121 for (unsigned i = 0; i != NumElts; ++i) { 1122 if (!DemandedElts[i]) 1123 continue; 1124 int M = ShuffleMask[i]; 1125 if (M < 0) { 1126 // For UNDEF elements, we don't know anything about the common state of 1127 // the shuffle result. 1128 DemandedLHS.clearAllBits(); 1129 DemandedRHS.clearAllBits(); 1130 break; 1131 } 1132 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1133 if (M < (int)NumElts) 1134 DemandedLHS.setBit(M); 1135 else 1136 DemandedRHS.setBit(M - NumElts); 1137 } 1138 1139 if (!!DemandedLHS || !!DemandedRHS) { 1140 SDValue Op0 = Op.getOperand(0); 1141 SDValue Op1 = Op.getOperand(1); 1142 1143 Known.Zero.setAllBits(); 1144 Known.One.setAllBits(); 1145 if (!!DemandedLHS) { 1146 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1147 Depth + 1)) 1148 return true; 1149 Known = KnownBits::commonBits(Known, Known2); 1150 } 1151 if (!!DemandedRHS) { 1152 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1153 Depth + 1)) 1154 return true; 1155 Known = KnownBits::commonBits(Known, Known2); 1156 } 1157 1158 // Attempt to avoid multi-use ops if we don't need anything from them. 1159 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1160 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1161 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1162 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1163 if (DemandedOp0 || DemandedOp1) { 1164 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1165 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1166 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1167 return TLO.CombineTo(Op, NewOp); 1168 } 1169 } 1170 break; 1171 } 1172 case ISD::AND: { 1173 SDValue Op0 = Op.getOperand(0); 1174 SDValue Op1 = Op.getOperand(1); 1175 1176 // If the RHS is a constant, check to see if the LHS would be zero without 1177 // using the bits from the RHS. Below, we use knowledge about the RHS to 1178 // simplify the LHS, here we're using information from the LHS to simplify 1179 // the RHS. 1180 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1181 // Do not increment Depth here; that can cause an infinite loop. 1182 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1183 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1184 if ((LHSKnown.Zero & DemandedBits) == 1185 (~RHSC->getAPIntValue() & DemandedBits)) 1186 return TLO.CombineTo(Op, Op0); 1187 1188 // If any of the set bits in the RHS are known zero on the LHS, shrink 1189 // the constant. 1190 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1191 DemandedElts, TLO)) 1192 return true; 1193 1194 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1195 // constant, but if this 'and' is only clearing bits that were just set by 1196 // the xor, then this 'and' can be eliminated by shrinking the mask of 1197 // the xor. For example, for a 32-bit X: 1198 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1199 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1200 LHSKnown.One == ~RHSC->getAPIntValue()) { 1201 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1202 return TLO.CombineTo(Op, Xor); 1203 } 1204 } 1205 1206 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1207 Depth + 1)) 1208 return true; 1209 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1210 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1211 Known2, TLO, Depth + 1)) 1212 return true; 1213 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1214 1215 // Attempt to avoid multi-use ops if we don't need anything from them. 1216 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1217 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1218 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1219 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1220 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1221 if (DemandedOp0 || DemandedOp1) { 1222 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1223 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1224 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1225 return TLO.CombineTo(Op, NewOp); 1226 } 1227 } 1228 1229 // If all of the demanded bits are known one on one side, return the other. 1230 // These bits cannot contribute to the result of the 'and'. 1231 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1232 return TLO.CombineTo(Op, Op0); 1233 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1234 return TLO.CombineTo(Op, Op1); 1235 // If all of the demanded bits in the inputs are known zeros, return zero. 1236 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1237 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1238 // If the RHS is a constant, see if we can simplify it. 1239 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1240 TLO)) 1241 return true; 1242 // If the operation can be done in a smaller type, do so. 1243 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1244 return true; 1245 1246 Known &= Known2; 1247 break; 1248 } 1249 case ISD::OR: { 1250 SDValue Op0 = Op.getOperand(0); 1251 SDValue Op1 = Op.getOperand(1); 1252 1253 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1254 Depth + 1)) 1255 return true; 1256 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1257 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1258 Known2, TLO, Depth + 1)) 1259 return true; 1260 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1261 1262 // Attempt to avoid multi-use ops if we don't need anything from them. 1263 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1264 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1265 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1266 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1267 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1268 if (DemandedOp0 || DemandedOp1) { 1269 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1270 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1271 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1272 return TLO.CombineTo(Op, NewOp); 1273 } 1274 } 1275 1276 // If all of the demanded bits are known zero on one side, return the other. 1277 // These bits cannot contribute to the result of the 'or'. 1278 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1279 return TLO.CombineTo(Op, Op0); 1280 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1281 return TLO.CombineTo(Op, Op1); 1282 // If the RHS is a constant, see if we can simplify it. 1283 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1284 return true; 1285 // If the operation can be done in a smaller type, do so. 1286 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1287 return true; 1288 1289 Known |= Known2; 1290 break; 1291 } 1292 case ISD::XOR: { 1293 SDValue Op0 = Op.getOperand(0); 1294 SDValue Op1 = Op.getOperand(1); 1295 1296 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1297 Depth + 1)) 1298 return true; 1299 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1300 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1301 Depth + 1)) 1302 return true; 1303 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1304 1305 // Attempt to avoid multi-use ops if we don't need anything from them. 1306 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1307 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1308 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1309 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1310 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1311 if (DemandedOp0 || DemandedOp1) { 1312 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1313 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1314 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1315 return TLO.CombineTo(Op, NewOp); 1316 } 1317 } 1318 1319 // If all of the demanded bits are known zero on one side, return the other. 1320 // These bits cannot contribute to the result of the 'xor'. 1321 if (DemandedBits.isSubsetOf(Known.Zero)) 1322 return TLO.CombineTo(Op, Op0); 1323 if (DemandedBits.isSubsetOf(Known2.Zero)) 1324 return TLO.CombineTo(Op, Op1); 1325 // If the operation can be done in a smaller type, do so. 1326 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1327 return true; 1328 1329 // If all of the unknown bits are known to be zero on one side or the other 1330 // turn this into an *inclusive* or. 1331 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1332 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1333 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1334 1335 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1336 if (C) { 1337 // If one side is a constant, and all of the set bits in the constant are 1338 // also known set on the other side, turn this into an AND, as we know 1339 // the bits will be cleared. 1340 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1341 // NB: it is okay if more bits are known than are requested 1342 if (C->getAPIntValue() == Known2.One) { 1343 SDValue ANDC = 1344 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1345 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1346 } 1347 1348 // If the RHS is a constant, see if we can change it. Don't alter a -1 1349 // constant because that's a 'not' op, and that is better for combining 1350 // and codegen. 1351 if (!C->isAllOnesValue() && 1352 DemandedBits.isSubsetOf(C->getAPIntValue())) { 1353 // We're flipping all demanded bits. Flip the undemanded bits too. 1354 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1355 return TLO.CombineTo(Op, New); 1356 } 1357 } 1358 1359 // If we can't turn this into a 'not', try to shrink the constant. 1360 if (!C || !C->isAllOnesValue()) 1361 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1362 return true; 1363 1364 Known ^= Known2; 1365 break; 1366 } 1367 case ISD::SELECT: 1368 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1369 Depth + 1)) 1370 return true; 1371 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1372 Depth + 1)) 1373 return true; 1374 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1375 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1376 1377 // If the operands are constants, see if we can simplify them. 1378 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1379 return true; 1380 1381 // Only known if known in both the LHS and RHS. 1382 Known = KnownBits::commonBits(Known, Known2); 1383 break; 1384 case ISD::SELECT_CC: 1385 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1386 Depth + 1)) 1387 return true; 1388 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1389 Depth + 1)) 1390 return true; 1391 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1392 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1393 1394 // If the operands are constants, see if we can simplify them. 1395 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1396 return true; 1397 1398 // Only known if known in both the LHS and RHS. 1399 Known = KnownBits::commonBits(Known, Known2); 1400 break; 1401 case ISD::SETCC: { 1402 SDValue Op0 = Op.getOperand(0); 1403 SDValue Op1 = Op.getOperand(1); 1404 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1405 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1406 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1407 // -1, we may be able to bypass the setcc. 1408 if (DemandedBits.isSignMask() && 1409 Op0.getScalarValueSizeInBits() == BitWidth && 1410 getBooleanContents(Op0.getValueType()) == 1411 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1412 // If we're testing X < 0, then this compare isn't needed - just use X! 1413 // FIXME: We're limiting to integer types here, but this should also work 1414 // if we don't care about FP signed-zero. The use of SETLT with FP means 1415 // that we don't care about NaNs. 1416 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1417 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1418 return TLO.CombineTo(Op, Op0); 1419 1420 // TODO: Should we check for other forms of sign-bit comparisons? 1421 // Examples: X <= -1, X >= 0 1422 } 1423 if (getBooleanContents(Op0.getValueType()) == 1424 TargetLowering::ZeroOrOneBooleanContent && 1425 BitWidth > 1) 1426 Known.Zero.setBitsFrom(1); 1427 break; 1428 } 1429 case ISD::SHL: { 1430 SDValue Op0 = Op.getOperand(0); 1431 SDValue Op1 = Op.getOperand(1); 1432 EVT ShiftVT = Op1.getValueType(); 1433 1434 if (const APInt *SA = 1435 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1436 unsigned ShAmt = SA->getZExtValue(); 1437 if (ShAmt == 0) 1438 return TLO.CombineTo(Op, Op0); 1439 1440 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1441 // single shift. We can do this if the bottom bits (which are shifted 1442 // out) are never demanded. 1443 // TODO - support non-uniform vector amounts. 1444 if (Op0.getOpcode() == ISD::SRL) { 1445 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1446 if (const APInt *SA2 = 1447 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1448 unsigned C1 = SA2->getZExtValue(); 1449 unsigned Opc = ISD::SHL; 1450 int Diff = ShAmt - C1; 1451 if (Diff < 0) { 1452 Diff = -Diff; 1453 Opc = ISD::SRL; 1454 } 1455 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1456 return TLO.CombineTo( 1457 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1458 } 1459 } 1460 } 1461 1462 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1463 // are not demanded. This will likely allow the anyext to be folded away. 1464 // TODO - support non-uniform vector amounts. 1465 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1466 SDValue InnerOp = Op0.getOperand(0); 1467 EVT InnerVT = InnerOp.getValueType(); 1468 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1469 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1470 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1471 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1472 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1473 ShTy = InnerVT; 1474 SDValue NarrowShl = 1475 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1476 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1477 return TLO.CombineTo( 1478 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1479 } 1480 1481 // Repeat the SHL optimization above in cases where an extension 1482 // intervenes: (shl (anyext (shr x, c1)), c2) to 1483 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1484 // aren't demanded (as above) and that the shifted upper c1 bits of 1485 // x aren't demanded. 1486 // TODO - support non-uniform vector amounts. 1487 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1488 InnerOp.hasOneUse()) { 1489 if (const APInt *SA2 = 1490 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1491 unsigned InnerShAmt = SA2->getZExtValue(); 1492 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1493 DemandedBits.getActiveBits() <= 1494 (InnerBits - InnerShAmt + ShAmt) && 1495 DemandedBits.countTrailingZeros() >= ShAmt) { 1496 SDValue NewSA = 1497 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1498 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1499 InnerOp.getOperand(0)); 1500 return TLO.CombineTo( 1501 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1502 } 1503 } 1504 } 1505 } 1506 1507 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1508 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1509 Depth + 1)) 1510 return true; 1511 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1512 Known.Zero <<= ShAmt; 1513 Known.One <<= ShAmt; 1514 // low bits known zero. 1515 Known.Zero.setLowBits(ShAmt); 1516 1517 // Try shrinking the operation as long as the shift amount will still be 1518 // in range. 1519 if ((ShAmt < DemandedBits.getActiveBits()) && 1520 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1521 return true; 1522 } 1523 1524 // If we are only demanding sign bits then we can use the shift source 1525 // directly. 1526 if (const APInt *MaxSA = 1527 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1528 unsigned ShAmt = MaxSA->getZExtValue(); 1529 unsigned NumSignBits = 1530 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1531 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1532 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1533 return TLO.CombineTo(Op, Op0); 1534 } 1535 break; 1536 } 1537 case ISD::SRL: { 1538 SDValue Op0 = Op.getOperand(0); 1539 SDValue Op1 = Op.getOperand(1); 1540 EVT ShiftVT = Op1.getValueType(); 1541 1542 if (const APInt *SA = 1543 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1544 unsigned ShAmt = SA->getZExtValue(); 1545 if (ShAmt == 0) 1546 return TLO.CombineTo(Op, Op0); 1547 1548 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1549 // single shift. We can do this if the top bits (which are shifted out) 1550 // are never demanded. 1551 // TODO - support non-uniform vector amounts. 1552 if (Op0.getOpcode() == ISD::SHL) { 1553 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1554 if (const APInt *SA2 = 1555 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1556 unsigned C1 = SA2->getZExtValue(); 1557 unsigned Opc = ISD::SRL; 1558 int Diff = ShAmt - C1; 1559 if (Diff < 0) { 1560 Diff = -Diff; 1561 Opc = ISD::SHL; 1562 } 1563 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1564 return TLO.CombineTo( 1565 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1566 } 1567 } 1568 } 1569 1570 APInt InDemandedMask = (DemandedBits << ShAmt); 1571 1572 // If the shift is exact, then it does demand the low bits (and knows that 1573 // they are zero). 1574 if (Op->getFlags().hasExact()) 1575 InDemandedMask.setLowBits(ShAmt); 1576 1577 // Compute the new bits that are at the top now. 1578 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1579 Depth + 1)) 1580 return true; 1581 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1582 Known.Zero.lshrInPlace(ShAmt); 1583 Known.One.lshrInPlace(ShAmt); 1584 // High bits known zero. 1585 Known.Zero.setHighBits(ShAmt); 1586 } 1587 break; 1588 } 1589 case ISD::SRA: { 1590 SDValue Op0 = Op.getOperand(0); 1591 SDValue Op1 = Op.getOperand(1); 1592 EVT ShiftVT = Op1.getValueType(); 1593 1594 // If we only want bits that already match the signbit then we don't need 1595 // to shift. 1596 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1597 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1598 NumHiDemandedBits) 1599 return TLO.CombineTo(Op, Op0); 1600 1601 // If this is an arithmetic shift right and only the low-bit is set, we can 1602 // always convert this into a logical shr, even if the shift amount is 1603 // variable. The low bit of the shift cannot be an input sign bit unless 1604 // the shift amount is >= the size of the datatype, which is undefined. 1605 if (DemandedBits.isOneValue()) 1606 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1607 1608 if (const APInt *SA = 1609 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1610 unsigned ShAmt = SA->getZExtValue(); 1611 if (ShAmt == 0) 1612 return TLO.CombineTo(Op, Op0); 1613 1614 APInt InDemandedMask = (DemandedBits << ShAmt); 1615 1616 // If the shift is exact, then it does demand the low bits (and knows that 1617 // they are zero). 1618 if (Op->getFlags().hasExact()) 1619 InDemandedMask.setLowBits(ShAmt); 1620 1621 // If any of the demanded bits are produced by the sign extension, we also 1622 // demand the input sign bit. 1623 if (DemandedBits.countLeadingZeros() < ShAmt) 1624 InDemandedMask.setSignBit(); 1625 1626 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1627 Depth + 1)) 1628 return true; 1629 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1630 Known.Zero.lshrInPlace(ShAmt); 1631 Known.One.lshrInPlace(ShAmt); 1632 1633 // If the input sign bit is known to be zero, or if none of the top bits 1634 // are demanded, turn this into an unsigned shift right. 1635 if (Known.Zero[BitWidth - ShAmt - 1] || 1636 DemandedBits.countLeadingZeros() >= ShAmt) { 1637 SDNodeFlags Flags; 1638 Flags.setExact(Op->getFlags().hasExact()); 1639 return TLO.CombineTo( 1640 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1641 } 1642 1643 int Log2 = DemandedBits.exactLogBase2(); 1644 if (Log2 >= 0) { 1645 // The bit must come from the sign. 1646 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1647 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1648 } 1649 1650 if (Known.One[BitWidth - ShAmt - 1]) 1651 // New bits are known one. 1652 Known.One.setHighBits(ShAmt); 1653 1654 // Attempt to avoid multi-use ops if we don't need anything from them. 1655 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1656 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1657 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1658 if (DemandedOp0) { 1659 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1660 return TLO.CombineTo(Op, NewOp); 1661 } 1662 } 1663 } 1664 break; 1665 } 1666 case ISD::FSHL: 1667 case ISD::FSHR: { 1668 SDValue Op0 = Op.getOperand(0); 1669 SDValue Op1 = Op.getOperand(1); 1670 SDValue Op2 = Op.getOperand(2); 1671 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1672 1673 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1674 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1675 1676 // For fshl, 0-shift returns the 1st arg. 1677 // For fshr, 0-shift returns the 2nd arg. 1678 if (Amt == 0) { 1679 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1680 Known, TLO, Depth + 1)) 1681 return true; 1682 break; 1683 } 1684 1685 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1686 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1687 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1688 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1689 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1690 Depth + 1)) 1691 return true; 1692 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1693 Depth + 1)) 1694 return true; 1695 1696 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1697 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1698 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1699 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1700 Known.One |= Known2.One; 1701 Known.Zero |= Known2.Zero; 1702 } 1703 1704 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1705 if (isPowerOf2_32(BitWidth)) { 1706 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1707 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1708 Known2, TLO, Depth + 1)) 1709 return true; 1710 } 1711 break; 1712 } 1713 case ISD::ROTL: 1714 case ISD::ROTR: { 1715 SDValue Op0 = Op.getOperand(0); 1716 SDValue Op1 = Op.getOperand(1); 1717 1718 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1719 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1720 return TLO.CombineTo(Op, Op0); 1721 1722 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1723 if (isPowerOf2_32(BitWidth)) { 1724 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1725 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1726 Depth + 1)) 1727 return true; 1728 } 1729 break; 1730 } 1731 case ISD::UMIN: { 1732 // Check if one arg is always less than (or equal) to the other arg. 1733 SDValue Op0 = Op.getOperand(0); 1734 SDValue Op1 = Op.getOperand(1); 1735 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1736 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1737 Known = KnownBits::umin(Known0, Known1); 1738 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1739 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1740 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1741 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1742 break; 1743 } 1744 case ISD::UMAX: { 1745 // Check if one arg is always greater than (or equal) to the other arg. 1746 SDValue Op0 = Op.getOperand(0); 1747 SDValue Op1 = Op.getOperand(1); 1748 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1749 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1750 Known = KnownBits::umax(Known0, Known1); 1751 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1752 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1753 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1754 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1755 break; 1756 } 1757 case ISD::BITREVERSE: { 1758 SDValue Src = Op.getOperand(0); 1759 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1760 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1761 Depth + 1)) 1762 return true; 1763 Known.One = Known2.One.reverseBits(); 1764 Known.Zero = Known2.Zero.reverseBits(); 1765 break; 1766 } 1767 case ISD::BSWAP: { 1768 SDValue Src = Op.getOperand(0); 1769 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1770 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1771 Depth + 1)) 1772 return true; 1773 Known.One = Known2.One.byteSwap(); 1774 Known.Zero = Known2.Zero.byteSwap(); 1775 break; 1776 } 1777 case ISD::CTPOP: { 1778 // If only 1 bit is demanded, replace with PARITY as long as we're before 1779 // op legalization. 1780 // FIXME: Limit to scalars for now. 1781 if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector()) 1782 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1783 Op.getOperand(0))); 1784 1785 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1786 break; 1787 } 1788 case ISD::SIGN_EXTEND_INREG: { 1789 SDValue Op0 = Op.getOperand(0); 1790 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1791 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1792 1793 // If we only care about the highest bit, don't bother shifting right. 1794 if (DemandedBits.isSignMask()) { 1795 unsigned NumSignBits = 1796 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1797 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1798 // However if the input is already sign extended we expect the sign 1799 // extension to be dropped altogether later and do not simplify. 1800 if (!AlreadySignExtended) { 1801 // Compute the correct shift amount type, which must be getShiftAmountTy 1802 // for scalar types after legalization. 1803 EVT ShiftAmtTy = VT; 1804 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1805 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1806 1807 SDValue ShiftAmt = 1808 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1809 return TLO.CombineTo(Op, 1810 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1811 } 1812 } 1813 1814 // If none of the extended bits are demanded, eliminate the sextinreg. 1815 if (DemandedBits.getActiveBits() <= ExVTBits) 1816 return TLO.CombineTo(Op, Op0); 1817 1818 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1819 1820 // Since the sign extended bits are demanded, we know that the sign 1821 // bit is demanded. 1822 InputDemandedBits.setBit(ExVTBits - 1); 1823 1824 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1825 return true; 1826 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1827 1828 // If the sign bit of the input is known set or clear, then we know the 1829 // top bits of the result. 1830 1831 // If the input sign bit is known zero, convert this into a zero extension. 1832 if (Known.Zero[ExVTBits - 1]) 1833 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1834 1835 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1836 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1837 Known.One.setBitsFrom(ExVTBits); 1838 Known.Zero &= Mask; 1839 } else { // Input sign bit unknown 1840 Known.Zero &= Mask; 1841 Known.One &= Mask; 1842 } 1843 break; 1844 } 1845 case ISD::BUILD_PAIR: { 1846 EVT HalfVT = Op.getOperand(0).getValueType(); 1847 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1848 1849 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1850 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1851 1852 KnownBits KnownLo, KnownHi; 1853 1854 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1855 return true; 1856 1857 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1858 return true; 1859 1860 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1861 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1862 1863 Known.One = KnownLo.One.zext(BitWidth) | 1864 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1865 break; 1866 } 1867 case ISD::ZERO_EXTEND: 1868 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1869 SDValue Src = Op.getOperand(0); 1870 EVT SrcVT = Src.getValueType(); 1871 unsigned InBits = SrcVT.getScalarSizeInBits(); 1872 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1873 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1874 1875 // If none of the top bits are demanded, convert this into an any_extend. 1876 if (DemandedBits.getActiveBits() <= InBits) { 1877 // If we only need the non-extended bits of the bottom element 1878 // then we can just bitcast to the result. 1879 if (IsVecInReg && DemandedElts == 1 && 1880 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1881 TLO.DAG.getDataLayout().isLittleEndian()) 1882 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1883 1884 unsigned Opc = 1885 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1886 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1887 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1888 } 1889 1890 APInt InDemandedBits = DemandedBits.trunc(InBits); 1891 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1892 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1893 Depth + 1)) 1894 return true; 1895 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1896 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1897 Known = Known.zext(BitWidth); 1898 1899 // Attempt to avoid multi-use ops if we don't need anything from them. 1900 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1901 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1902 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1903 break; 1904 } 1905 case ISD::SIGN_EXTEND: 1906 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1907 SDValue Src = Op.getOperand(0); 1908 EVT SrcVT = Src.getValueType(); 1909 unsigned InBits = SrcVT.getScalarSizeInBits(); 1910 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1911 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1912 1913 // If none of the top bits are demanded, convert this into an any_extend. 1914 if (DemandedBits.getActiveBits() <= InBits) { 1915 // If we only need the non-extended bits of the bottom element 1916 // then we can just bitcast to the result. 1917 if (IsVecInReg && DemandedElts == 1 && 1918 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1919 TLO.DAG.getDataLayout().isLittleEndian()) 1920 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1921 1922 unsigned Opc = 1923 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1924 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1925 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1926 } 1927 1928 APInt InDemandedBits = DemandedBits.trunc(InBits); 1929 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1930 1931 // Since some of the sign extended bits are demanded, we know that the sign 1932 // bit is demanded. 1933 InDemandedBits.setBit(InBits - 1); 1934 1935 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1936 Depth + 1)) 1937 return true; 1938 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1939 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1940 1941 // If the sign bit is known one, the top bits match. 1942 Known = Known.sext(BitWidth); 1943 1944 // If the sign bit is known zero, convert this to a zero extend. 1945 if (Known.isNonNegative()) { 1946 unsigned Opc = 1947 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1948 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1949 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1950 } 1951 1952 // Attempt to avoid multi-use ops if we don't need anything from them. 1953 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1954 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1955 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1956 break; 1957 } 1958 case ISD::ANY_EXTEND: 1959 case ISD::ANY_EXTEND_VECTOR_INREG: { 1960 SDValue Src = Op.getOperand(0); 1961 EVT SrcVT = Src.getValueType(); 1962 unsigned InBits = SrcVT.getScalarSizeInBits(); 1963 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1964 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1965 1966 // If we only need the bottom element then we can just bitcast. 1967 // TODO: Handle ANY_EXTEND? 1968 if (IsVecInReg && DemandedElts == 1 && 1969 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1970 TLO.DAG.getDataLayout().isLittleEndian()) 1971 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1972 1973 APInt InDemandedBits = DemandedBits.trunc(InBits); 1974 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1975 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1976 Depth + 1)) 1977 return true; 1978 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1979 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1980 Known = Known.anyext(BitWidth); 1981 1982 // Attempt to avoid multi-use ops if we don't need anything from them. 1983 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1984 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1985 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1986 break; 1987 } 1988 case ISD::TRUNCATE: { 1989 SDValue Src = Op.getOperand(0); 1990 1991 // Simplify the input, using demanded bit information, and compute the known 1992 // zero/one bits live out. 1993 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1994 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1995 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 1996 Depth + 1)) 1997 return true; 1998 Known = Known.trunc(BitWidth); 1999 2000 // Attempt to avoid multi-use ops if we don't need anything from them. 2001 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2002 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2003 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2004 2005 // If the input is only used by this truncate, see if we can shrink it based 2006 // on the known demanded bits. 2007 if (Src.getNode()->hasOneUse()) { 2008 switch (Src.getOpcode()) { 2009 default: 2010 break; 2011 case ISD::SRL: 2012 // Shrink SRL by a constant if none of the high bits shifted in are 2013 // demanded. 2014 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2015 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2016 // undesirable. 2017 break; 2018 2019 const APInt *ShAmtC = 2020 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2021 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2022 break; 2023 uint64_t ShVal = ShAmtC->getZExtValue(); 2024 2025 APInt HighBits = 2026 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2027 HighBits.lshrInPlace(ShVal); 2028 HighBits = HighBits.trunc(BitWidth); 2029 2030 if (!(HighBits & DemandedBits)) { 2031 // None of the shifted in bits are needed. Add a truncate of the 2032 // shift input, then shift it. 2033 SDValue NewShAmt = TLO.DAG.getConstant( 2034 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2035 SDValue NewTrunc = 2036 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2037 return TLO.CombineTo( 2038 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2039 } 2040 break; 2041 } 2042 } 2043 2044 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2045 break; 2046 } 2047 case ISD::AssertZext: { 2048 // AssertZext demands all of the high bits, plus any of the low bits 2049 // demanded by its users. 2050 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2051 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2052 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2053 TLO, Depth + 1)) 2054 return true; 2055 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2056 2057 Known.Zero |= ~InMask; 2058 break; 2059 } 2060 case ISD::EXTRACT_VECTOR_ELT: { 2061 SDValue Src = Op.getOperand(0); 2062 SDValue Idx = Op.getOperand(1); 2063 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2064 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2065 2066 if (SrcEltCnt.isScalable()) 2067 return false; 2068 2069 // Demand the bits from every vector element without a constant index. 2070 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2071 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 2072 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2073 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2074 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2075 2076 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2077 // anything about the extended bits. 2078 APInt DemandedSrcBits = DemandedBits; 2079 if (BitWidth > EltBitWidth) 2080 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2081 2082 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2083 Depth + 1)) 2084 return true; 2085 2086 // Attempt to avoid multi-use ops if we don't need anything from them. 2087 if (!DemandedSrcBits.isAllOnesValue() || 2088 !DemandedSrcElts.isAllOnesValue()) { 2089 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2090 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2091 SDValue NewOp = 2092 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2093 return TLO.CombineTo(Op, NewOp); 2094 } 2095 } 2096 2097 Known = Known2; 2098 if (BitWidth > EltBitWidth) 2099 Known = Known.anyext(BitWidth); 2100 break; 2101 } 2102 case ISD::BITCAST: { 2103 SDValue Src = Op.getOperand(0); 2104 EVT SrcVT = Src.getValueType(); 2105 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2106 2107 // If this is an FP->Int bitcast and if the sign bit is the only 2108 // thing demanded, turn this into a FGETSIGN. 2109 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2110 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2111 SrcVT.isFloatingPoint()) { 2112 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2113 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2114 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2115 SrcVT != MVT::f128) { 2116 // Cannot eliminate/lower SHL for f128 yet. 2117 EVT Ty = OpVTLegal ? VT : MVT::i32; 2118 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2119 // place. We expect the SHL to be eliminated by other optimizations. 2120 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2121 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2122 if (!OpVTLegal && OpVTSizeInBits > 32) 2123 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2124 unsigned ShVal = Op.getValueSizeInBits() - 1; 2125 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2126 return TLO.CombineTo(Op, 2127 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2128 } 2129 } 2130 2131 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2132 // Demand the elt/bit if any of the original elts/bits are demanded. 2133 // TODO - bigendian once we have test coverage. 2134 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2135 TLO.DAG.getDataLayout().isLittleEndian()) { 2136 unsigned Scale = BitWidth / NumSrcEltBits; 2137 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2138 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2139 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2140 for (unsigned i = 0; i != Scale; ++i) { 2141 unsigned Offset = i * NumSrcEltBits; 2142 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2143 if (!Sub.isNullValue()) { 2144 DemandedSrcBits |= Sub; 2145 for (unsigned j = 0; j != NumElts; ++j) 2146 if (DemandedElts[j]) 2147 DemandedSrcElts.setBit((j * Scale) + i); 2148 } 2149 } 2150 2151 APInt KnownSrcUndef, KnownSrcZero; 2152 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2153 KnownSrcZero, TLO, Depth + 1)) 2154 return true; 2155 2156 KnownBits KnownSrcBits; 2157 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2158 KnownSrcBits, TLO, Depth + 1)) 2159 return true; 2160 } else if ((NumSrcEltBits % BitWidth) == 0 && 2161 TLO.DAG.getDataLayout().isLittleEndian()) { 2162 unsigned Scale = NumSrcEltBits / BitWidth; 2163 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2164 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2165 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2166 for (unsigned i = 0; i != NumElts; ++i) 2167 if (DemandedElts[i]) { 2168 unsigned Offset = (i % Scale) * BitWidth; 2169 DemandedSrcBits.insertBits(DemandedBits, Offset); 2170 DemandedSrcElts.setBit(i / Scale); 2171 } 2172 2173 if (SrcVT.isVector()) { 2174 APInt KnownSrcUndef, KnownSrcZero; 2175 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2176 KnownSrcZero, TLO, Depth + 1)) 2177 return true; 2178 } 2179 2180 KnownBits KnownSrcBits; 2181 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2182 KnownSrcBits, TLO, Depth + 1)) 2183 return true; 2184 } 2185 2186 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2187 // recursive call where Known may be useful to the caller. 2188 if (Depth > 0) { 2189 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2190 return false; 2191 } 2192 break; 2193 } 2194 case ISD::ADD: 2195 case ISD::MUL: 2196 case ISD::SUB: { 2197 // Add, Sub, and Mul don't demand any bits in positions beyond that 2198 // of the highest bit demanded of them. 2199 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2200 SDNodeFlags Flags = Op.getNode()->getFlags(); 2201 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2202 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2203 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2204 Depth + 1) || 2205 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2206 Depth + 1) || 2207 // See if the operation should be performed at a smaller bit width. 2208 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2209 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2210 // Disable the nsw and nuw flags. We can no longer guarantee that we 2211 // won't wrap after simplification. 2212 Flags.setNoSignedWrap(false); 2213 Flags.setNoUnsignedWrap(false); 2214 SDValue NewOp = 2215 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2216 return TLO.CombineTo(Op, NewOp); 2217 } 2218 return true; 2219 } 2220 2221 // Attempt to avoid multi-use ops if we don't need anything from them. 2222 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2223 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2224 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2225 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2226 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2227 if (DemandedOp0 || DemandedOp1) { 2228 Flags.setNoSignedWrap(false); 2229 Flags.setNoUnsignedWrap(false); 2230 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2231 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2232 SDValue NewOp = 2233 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2234 return TLO.CombineTo(Op, NewOp); 2235 } 2236 } 2237 2238 // If we have a constant operand, we may be able to turn it into -1 if we 2239 // do not demand the high bits. This can make the constant smaller to 2240 // encode, allow more general folding, or match specialized instruction 2241 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2242 // is probably not useful (and could be detrimental). 2243 ConstantSDNode *C = isConstOrConstSplat(Op1); 2244 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2245 if (C && !C->isAllOnesValue() && !C->isOne() && 2246 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2247 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2248 // Disable the nsw and nuw flags. We can no longer guarantee that we 2249 // won't wrap after simplification. 2250 Flags.setNoSignedWrap(false); 2251 Flags.setNoUnsignedWrap(false); 2252 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2253 return TLO.CombineTo(Op, NewOp); 2254 } 2255 2256 LLVM_FALLTHROUGH; 2257 } 2258 default: 2259 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2260 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2261 Known, TLO, Depth)) 2262 return true; 2263 break; 2264 } 2265 2266 // Just use computeKnownBits to compute output bits. 2267 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2268 break; 2269 } 2270 2271 // If we know the value of all of the demanded bits, return this as a 2272 // constant. 2273 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2274 // Avoid folding to a constant if any OpaqueConstant is involved. 2275 const SDNode *N = Op.getNode(); 2276 for (SDNode *Op : 2277 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2278 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2279 if (C->isOpaque()) 2280 return false; 2281 } 2282 if (VT.isInteger()) 2283 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2284 if (VT.isFloatingPoint()) 2285 return TLO.CombineTo( 2286 Op, 2287 TLO.DAG.getConstantFP( 2288 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2289 } 2290 2291 return false; 2292 } 2293 2294 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2295 const APInt &DemandedElts, 2296 APInt &KnownUndef, 2297 APInt &KnownZero, 2298 DAGCombinerInfo &DCI) const { 2299 SelectionDAG &DAG = DCI.DAG; 2300 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2301 !DCI.isBeforeLegalizeOps()); 2302 2303 bool Simplified = 2304 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2305 if (Simplified) { 2306 DCI.AddToWorklist(Op.getNode()); 2307 DCI.CommitTargetLoweringOpt(TLO); 2308 } 2309 2310 return Simplified; 2311 } 2312 2313 /// Given a vector binary operation and known undefined elements for each input 2314 /// operand, compute whether each element of the output is undefined. 2315 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2316 const APInt &UndefOp0, 2317 const APInt &UndefOp1) { 2318 EVT VT = BO.getValueType(); 2319 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2320 "Vector binop only"); 2321 2322 EVT EltVT = VT.getVectorElementType(); 2323 unsigned NumElts = VT.getVectorNumElements(); 2324 assert(UndefOp0.getBitWidth() == NumElts && 2325 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2326 2327 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2328 const APInt &UndefVals) { 2329 if (UndefVals[Index]) 2330 return DAG.getUNDEF(EltVT); 2331 2332 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2333 // Try hard to make sure that the getNode() call is not creating temporary 2334 // nodes. Ignore opaque integers because they do not constant fold. 2335 SDValue Elt = BV->getOperand(Index); 2336 auto *C = dyn_cast<ConstantSDNode>(Elt); 2337 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2338 return Elt; 2339 } 2340 2341 return SDValue(); 2342 }; 2343 2344 APInt KnownUndef = APInt::getNullValue(NumElts); 2345 for (unsigned i = 0; i != NumElts; ++i) { 2346 // If both inputs for this element are either constant or undef and match 2347 // the element type, compute the constant/undef result for this element of 2348 // the vector. 2349 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2350 // not handle FP constants. The code within getNode() should be refactored 2351 // to avoid the danger of creating a bogus temporary node here. 2352 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2353 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2354 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2355 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2356 KnownUndef.setBit(i); 2357 } 2358 return KnownUndef; 2359 } 2360 2361 bool TargetLowering::SimplifyDemandedVectorElts( 2362 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2363 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2364 bool AssumeSingleUse) const { 2365 EVT VT = Op.getValueType(); 2366 unsigned Opcode = Op.getOpcode(); 2367 APInt DemandedElts = OriginalDemandedElts; 2368 unsigned NumElts = DemandedElts.getBitWidth(); 2369 assert(VT.isVector() && "Expected vector op"); 2370 2371 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2372 2373 // TODO: For now we assume we know nothing about scalable vectors. 2374 if (VT.isScalableVector()) 2375 return false; 2376 2377 assert(VT.getVectorNumElements() == NumElts && 2378 "Mask size mismatches value type element count!"); 2379 2380 // Undef operand. 2381 if (Op.isUndef()) { 2382 KnownUndef.setAllBits(); 2383 return false; 2384 } 2385 2386 // If Op has other users, assume that all elements are needed. 2387 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2388 DemandedElts.setAllBits(); 2389 2390 // Not demanding any elements from Op. 2391 if (DemandedElts == 0) { 2392 KnownUndef.setAllBits(); 2393 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2394 } 2395 2396 // Limit search depth. 2397 if (Depth >= SelectionDAG::MaxRecursionDepth) 2398 return false; 2399 2400 SDLoc DL(Op); 2401 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2402 2403 // Helper for demanding the specified elements and all the bits of both binary 2404 // operands. 2405 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2406 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2407 TLO.DAG, Depth + 1); 2408 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2409 TLO.DAG, Depth + 1); 2410 if (NewOp0 || NewOp1) { 2411 SDValue NewOp = TLO.DAG.getNode( 2412 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2413 return TLO.CombineTo(Op, NewOp); 2414 } 2415 return false; 2416 }; 2417 2418 switch (Opcode) { 2419 case ISD::SCALAR_TO_VECTOR: { 2420 if (!DemandedElts[0]) { 2421 KnownUndef.setAllBits(); 2422 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2423 } 2424 SDValue ScalarSrc = Op.getOperand(0); 2425 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2426 SDValue Src = ScalarSrc.getOperand(0); 2427 SDValue Idx = ScalarSrc.getOperand(1); 2428 EVT SrcVT = Src.getValueType(); 2429 2430 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2431 2432 if (SrcEltCnt.isScalable()) 2433 return false; 2434 2435 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2436 if (isNullConstant(Idx)) { 2437 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2438 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2439 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2440 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2441 TLO, Depth + 1)) 2442 return true; 2443 } 2444 } 2445 KnownUndef.setHighBits(NumElts - 1); 2446 break; 2447 } 2448 case ISD::BITCAST: { 2449 SDValue Src = Op.getOperand(0); 2450 EVT SrcVT = Src.getValueType(); 2451 2452 // We only handle vectors here. 2453 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2454 if (!SrcVT.isVector()) 2455 break; 2456 2457 // Fast handling of 'identity' bitcasts. 2458 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2459 if (NumSrcElts == NumElts) 2460 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2461 KnownZero, TLO, Depth + 1); 2462 2463 APInt SrcZero, SrcUndef; 2464 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2465 2466 // Bitcast from 'large element' src vector to 'small element' vector, we 2467 // must demand a source element if any DemandedElt maps to it. 2468 if ((NumElts % NumSrcElts) == 0) { 2469 unsigned Scale = NumElts / NumSrcElts; 2470 for (unsigned i = 0; i != NumElts; ++i) 2471 if (DemandedElts[i]) 2472 SrcDemandedElts.setBit(i / Scale); 2473 2474 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2475 TLO, Depth + 1)) 2476 return true; 2477 2478 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2479 // of the large element. 2480 // TODO - bigendian once we have test coverage. 2481 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2482 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2483 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2484 for (unsigned i = 0; i != NumElts; ++i) 2485 if (DemandedElts[i]) { 2486 unsigned Ofs = (i % Scale) * EltSizeInBits; 2487 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2488 } 2489 2490 KnownBits Known; 2491 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2492 TLO, Depth + 1)) 2493 return true; 2494 } 2495 2496 // If the src element is zero/undef then all the output elements will be - 2497 // only demanded elements are guaranteed to be correct. 2498 for (unsigned i = 0; i != NumSrcElts; ++i) { 2499 if (SrcDemandedElts[i]) { 2500 if (SrcZero[i]) 2501 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2502 if (SrcUndef[i]) 2503 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2504 } 2505 } 2506 } 2507 2508 // Bitcast from 'small element' src vector to 'large element' vector, we 2509 // demand all smaller source elements covered by the larger demanded element 2510 // of this vector. 2511 if ((NumSrcElts % NumElts) == 0) { 2512 unsigned Scale = NumSrcElts / NumElts; 2513 for (unsigned i = 0; i != NumElts; ++i) 2514 if (DemandedElts[i]) 2515 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2516 2517 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2518 TLO, Depth + 1)) 2519 return true; 2520 2521 // If all the src elements covering an output element are zero/undef, then 2522 // the output element will be as well, assuming it was demanded. 2523 for (unsigned i = 0; i != NumElts; ++i) { 2524 if (DemandedElts[i]) { 2525 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2526 KnownZero.setBit(i); 2527 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2528 KnownUndef.setBit(i); 2529 } 2530 } 2531 } 2532 break; 2533 } 2534 case ISD::BUILD_VECTOR: { 2535 // Check all elements and simplify any unused elements with UNDEF. 2536 if (!DemandedElts.isAllOnesValue()) { 2537 // Don't simplify BROADCASTS. 2538 if (llvm::any_of(Op->op_values(), 2539 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2540 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2541 bool Updated = false; 2542 for (unsigned i = 0; i != NumElts; ++i) { 2543 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2544 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2545 KnownUndef.setBit(i); 2546 Updated = true; 2547 } 2548 } 2549 if (Updated) 2550 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2551 } 2552 } 2553 for (unsigned i = 0; i != NumElts; ++i) { 2554 SDValue SrcOp = Op.getOperand(i); 2555 if (SrcOp.isUndef()) { 2556 KnownUndef.setBit(i); 2557 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2558 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2559 KnownZero.setBit(i); 2560 } 2561 } 2562 break; 2563 } 2564 case ISD::CONCAT_VECTORS: { 2565 EVT SubVT = Op.getOperand(0).getValueType(); 2566 unsigned NumSubVecs = Op.getNumOperands(); 2567 unsigned NumSubElts = SubVT.getVectorNumElements(); 2568 for (unsigned i = 0; i != NumSubVecs; ++i) { 2569 SDValue SubOp = Op.getOperand(i); 2570 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2571 APInt SubUndef, SubZero; 2572 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2573 Depth + 1)) 2574 return true; 2575 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2576 KnownZero.insertBits(SubZero, i * NumSubElts); 2577 } 2578 break; 2579 } 2580 case ISD::INSERT_SUBVECTOR: { 2581 // Demand any elements from the subvector and the remainder from the src its 2582 // inserted into. 2583 SDValue Src = Op.getOperand(0); 2584 SDValue Sub = Op.getOperand(1); 2585 uint64_t Idx = Op.getConstantOperandVal(2); 2586 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2587 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2588 APInt DemandedSrcElts = DemandedElts; 2589 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2590 2591 APInt SubUndef, SubZero; 2592 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2593 Depth + 1)) 2594 return true; 2595 2596 // If none of the src operand elements are demanded, replace it with undef. 2597 if (!DemandedSrcElts && !Src.isUndef()) 2598 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2599 TLO.DAG.getUNDEF(VT), Sub, 2600 Op.getOperand(2))); 2601 2602 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2603 TLO, Depth + 1)) 2604 return true; 2605 KnownUndef.insertBits(SubUndef, Idx); 2606 KnownZero.insertBits(SubZero, Idx); 2607 2608 // Attempt to avoid multi-use ops if we don't need anything from them. 2609 if (!DemandedSrcElts.isAllOnesValue() || 2610 !DemandedSubElts.isAllOnesValue()) { 2611 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2612 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2613 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2614 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2615 if (NewSrc || NewSub) { 2616 NewSrc = NewSrc ? NewSrc : Src; 2617 NewSub = NewSub ? NewSub : Sub; 2618 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2619 NewSub, Op.getOperand(2)); 2620 return TLO.CombineTo(Op, NewOp); 2621 } 2622 } 2623 break; 2624 } 2625 case ISD::EXTRACT_SUBVECTOR: { 2626 // Offset the demanded elts by the subvector index. 2627 SDValue Src = Op.getOperand(0); 2628 if (Src.getValueType().isScalableVector()) 2629 break; 2630 uint64_t Idx = Op.getConstantOperandVal(1); 2631 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2632 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2633 2634 APInt SrcUndef, SrcZero; 2635 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2636 Depth + 1)) 2637 return true; 2638 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2639 KnownZero = SrcZero.extractBits(NumElts, Idx); 2640 2641 // Attempt to avoid multi-use ops if we don't need anything from them. 2642 if (!DemandedElts.isAllOnesValue()) { 2643 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2644 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2645 if (NewSrc) { 2646 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2647 Op.getOperand(1)); 2648 return TLO.CombineTo(Op, NewOp); 2649 } 2650 } 2651 break; 2652 } 2653 case ISD::INSERT_VECTOR_ELT: { 2654 SDValue Vec = Op.getOperand(0); 2655 SDValue Scl = Op.getOperand(1); 2656 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2657 2658 // For a legal, constant insertion index, if we don't need this insertion 2659 // then strip it, else remove it from the demanded elts. 2660 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2661 unsigned Idx = CIdx->getZExtValue(); 2662 if (!DemandedElts[Idx]) 2663 return TLO.CombineTo(Op, Vec); 2664 2665 APInt DemandedVecElts(DemandedElts); 2666 DemandedVecElts.clearBit(Idx); 2667 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2668 KnownZero, TLO, Depth + 1)) 2669 return true; 2670 2671 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2672 2673 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2674 break; 2675 } 2676 2677 APInt VecUndef, VecZero; 2678 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2679 Depth + 1)) 2680 return true; 2681 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2682 break; 2683 } 2684 case ISD::VSELECT: { 2685 // Try to transform the select condition based on the current demanded 2686 // elements. 2687 // TODO: If a condition element is undef, we can choose from one arm of the 2688 // select (and if one arm is undef, then we can propagate that to the 2689 // result). 2690 // TODO - add support for constant vselect masks (see IR version of this). 2691 APInt UnusedUndef, UnusedZero; 2692 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2693 UnusedZero, TLO, Depth + 1)) 2694 return true; 2695 2696 // See if we can simplify either vselect operand. 2697 APInt DemandedLHS(DemandedElts); 2698 APInt DemandedRHS(DemandedElts); 2699 APInt UndefLHS, ZeroLHS; 2700 APInt UndefRHS, ZeroRHS; 2701 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2702 ZeroLHS, TLO, Depth + 1)) 2703 return true; 2704 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2705 ZeroRHS, TLO, Depth + 1)) 2706 return true; 2707 2708 KnownUndef = UndefLHS & UndefRHS; 2709 KnownZero = ZeroLHS & ZeroRHS; 2710 break; 2711 } 2712 case ISD::VECTOR_SHUFFLE: { 2713 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2714 2715 // Collect demanded elements from shuffle operands.. 2716 APInt DemandedLHS(NumElts, 0); 2717 APInt DemandedRHS(NumElts, 0); 2718 for (unsigned i = 0; i != NumElts; ++i) { 2719 int M = ShuffleMask[i]; 2720 if (M < 0 || !DemandedElts[i]) 2721 continue; 2722 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2723 if (M < (int)NumElts) 2724 DemandedLHS.setBit(M); 2725 else 2726 DemandedRHS.setBit(M - NumElts); 2727 } 2728 2729 // See if we can simplify either shuffle operand. 2730 APInt UndefLHS, ZeroLHS; 2731 APInt UndefRHS, ZeroRHS; 2732 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2733 ZeroLHS, TLO, Depth + 1)) 2734 return true; 2735 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2736 ZeroRHS, TLO, Depth + 1)) 2737 return true; 2738 2739 // Simplify mask using undef elements from LHS/RHS. 2740 bool Updated = false; 2741 bool IdentityLHS = true, IdentityRHS = true; 2742 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2743 for (unsigned i = 0; i != NumElts; ++i) { 2744 int &M = NewMask[i]; 2745 if (M < 0) 2746 continue; 2747 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2748 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2749 Updated = true; 2750 M = -1; 2751 } 2752 IdentityLHS &= (M < 0) || (M == (int)i); 2753 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2754 } 2755 2756 // Update legal shuffle masks based on demanded elements if it won't reduce 2757 // to Identity which can cause premature removal of the shuffle mask. 2758 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2759 SDValue LegalShuffle = 2760 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2761 NewMask, TLO.DAG); 2762 if (LegalShuffle) 2763 return TLO.CombineTo(Op, LegalShuffle); 2764 } 2765 2766 // Propagate undef/zero elements from LHS/RHS. 2767 for (unsigned i = 0; i != NumElts; ++i) { 2768 int M = ShuffleMask[i]; 2769 if (M < 0) { 2770 KnownUndef.setBit(i); 2771 } else if (M < (int)NumElts) { 2772 if (UndefLHS[M]) 2773 KnownUndef.setBit(i); 2774 if (ZeroLHS[M]) 2775 KnownZero.setBit(i); 2776 } else { 2777 if (UndefRHS[M - NumElts]) 2778 KnownUndef.setBit(i); 2779 if (ZeroRHS[M - NumElts]) 2780 KnownZero.setBit(i); 2781 } 2782 } 2783 break; 2784 } 2785 case ISD::ANY_EXTEND_VECTOR_INREG: 2786 case ISD::SIGN_EXTEND_VECTOR_INREG: 2787 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2788 APInt SrcUndef, SrcZero; 2789 SDValue Src = Op.getOperand(0); 2790 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2791 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2792 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2793 Depth + 1)) 2794 return true; 2795 KnownZero = SrcZero.zextOrTrunc(NumElts); 2796 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2797 2798 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2799 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2800 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2801 // aext - if we just need the bottom element then we can bitcast. 2802 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2803 } 2804 2805 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2806 // zext(undef) upper bits are guaranteed to be zero. 2807 if (DemandedElts.isSubsetOf(KnownUndef)) 2808 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2809 KnownUndef.clearAllBits(); 2810 } 2811 break; 2812 } 2813 2814 // TODO: There are more binop opcodes that could be handled here - MIN, 2815 // MAX, saturated math, etc. 2816 case ISD::OR: 2817 case ISD::XOR: 2818 case ISD::ADD: 2819 case ISD::SUB: 2820 case ISD::FADD: 2821 case ISD::FSUB: 2822 case ISD::FMUL: 2823 case ISD::FDIV: 2824 case ISD::FREM: { 2825 SDValue Op0 = Op.getOperand(0); 2826 SDValue Op1 = Op.getOperand(1); 2827 2828 APInt UndefRHS, ZeroRHS; 2829 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2830 Depth + 1)) 2831 return true; 2832 APInt UndefLHS, ZeroLHS; 2833 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2834 Depth + 1)) 2835 return true; 2836 2837 KnownZero = ZeroLHS & ZeroRHS; 2838 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2839 2840 // Attempt to avoid multi-use ops if we don't need anything from them. 2841 // TODO - use KnownUndef to relax the demandedelts? 2842 if (!DemandedElts.isAllOnesValue()) 2843 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2844 return true; 2845 break; 2846 } 2847 case ISD::SHL: 2848 case ISD::SRL: 2849 case ISD::SRA: 2850 case ISD::ROTL: 2851 case ISD::ROTR: { 2852 SDValue Op0 = Op.getOperand(0); 2853 SDValue Op1 = Op.getOperand(1); 2854 2855 APInt UndefRHS, ZeroRHS; 2856 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2857 Depth + 1)) 2858 return true; 2859 APInt UndefLHS, ZeroLHS; 2860 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2861 Depth + 1)) 2862 return true; 2863 2864 KnownZero = ZeroLHS; 2865 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2866 2867 // Attempt to avoid multi-use ops if we don't need anything from them. 2868 // TODO - use KnownUndef to relax the demandedelts? 2869 if (!DemandedElts.isAllOnesValue()) 2870 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2871 return true; 2872 break; 2873 } 2874 case ISD::MUL: 2875 case ISD::AND: { 2876 SDValue Op0 = Op.getOperand(0); 2877 SDValue Op1 = Op.getOperand(1); 2878 2879 APInt SrcUndef, SrcZero; 2880 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2881 Depth + 1)) 2882 return true; 2883 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2884 TLO, Depth + 1)) 2885 return true; 2886 2887 // If either side has a zero element, then the result element is zero, even 2888 // if the other is an UNDEF. 2889 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2890 // and then handle 'and' nodes with the rest of the binop opcodes. 2891 KnownZero |= SrcZero; 2892 KnownUndef &= SrcUndef; 2893 KnownUndef &= ~KnownZero; 2894 2895 // Attempt to avoid multi-use ops if we don't need anything from them. 2896 // TODO - use KnownUndef to relax the demandedelts? 2897 if (!DemandedElts.isAllOnesValue()) 2898 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2899 return true; 2900 break; 2901 } 2902 case ISD::TRUNCATE: 2903 case ISD::SIGN_EXTEND: 2904 case ISD::ZERO_EXTEND: 2905 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2906 KnownZero, TLO, Depth + 1)) 2907 return true; 2908 2909 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2910 // zext(undef) upper bits are guaranteed to be zero. 2911 if (DemandedElts.isSubsetOf(KnownUndef)) 2912 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2913 KnownUndef.clearAllBits(); 2914 } 2915 break; 2916 default: { 2917 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2918 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2919 KnownZero, TLO, Depth)) 2920 return true; 2921 } else { 2922 KnownBits Known; 2923 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2924 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2925 TLO, Depth, AssumeSingleUse)) 2926 return true; 2927 } 2928 break; 2929 } 2930 } 2931 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2932 2933 // Constant fold all undef cases. 2934 // TODO: Handle zero cases as well. 2935 if (DemandedElts.isSubsetOf(KnownUndef)) 2936 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2937 2938 return false; 2939 } 2940 2941 /// Determine which of the bits specified in Mask are known to be either zero or 2942 /// one and return them in the Known. 2943 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2944 KnownBits &Known, 2945 const APInt &DemandedElts, 2946 const SelectionDAG &DAG, 2947 unsigned Depth) const { 2948 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2949 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2950 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2951 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2952 "Should use MaskedValueIsZero if you don't know whether Op" 2953 " is a target node!"); 2954 Known.resetAll(); 2955 } 2956 2957 void TargetLowering::computeKnownBitsForTargetInstr( 2958 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2959 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2960 unsigned Depth) const { 2961 Known.resetAll(); 2962 } 2963 2964 void TargetLowering::computeKnownBitsForFrameIndex( 2965 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2966 // The low bits are known zero if the pointer is aligned. 2967 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2968 } 2969 2970 Align TargetLowering::computeKnownAlignForTargetInstr( 2971 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 2972 unsigned Depth) const { 2973 return Align(1); 2974 } 2975 2976 /// This method can be implemented by targets that want to expose additional 2977 /// information about sign bits to the DAG Combiner. 2978 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2979 const APInt &, 2980 const SelectionDAG &, 2981 unsigned Depth) const { 2982 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2983 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2984 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2985 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2986 "Should use ComputeNumSignBits if you don't know whether Op" 2987 " is a target node!"); 2988 return 1; 2989 } 2990 2991 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2992 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2993 const MachineRegisterInfo &MRI, unsigned Depth) const { 2994 return 1; 2995 } 2996 2997 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2998 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2999 TargetLoweringOpt &TLO, unsigned Depth) const { 3000 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3001 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3002 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3003 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3004 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3005 " is a target node!"); 3006 return false; 3007 } 3008 3009 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3010 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3011 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3012 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3013 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3014 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3015 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3016 "Should use SimplifyDemandedBits if you don't know whether Op" 3017 " is a target node!"); 3018 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3019 return false; 3020 } 3021 3022 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3023 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3024 SelectionDAG &DAG, unsigned Depth) const { 3025 assert( 3026 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3027 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3028 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3029 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3030 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3031 " is a target node!"); 3032 return SDValue(); 3033 } 3034 3035 SDValue 3036 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3037 SDValue N1, MutableArrayRef<int> Mask, 3038 SelectionDAG &DAG) const { 3039 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3040 if (!LegalMask) { 3041 std::swap(N0, N1); 3042 ShuffleVectorSDNode::commuteMask(Mask); 3043 LegalMask = isShuffleMaskLegal(Mask, VT); 3044 } 3045 3046 if (!LegalMask) 3047 return SDValue(); 3048 3049 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3050 } 3051 3052 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3053 return nullptr; 3054 } 3055 3056 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3057 const SelectionDAG &DAG, 3058 bool SNaN, 3059 unsigned Depth) const { 3060 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3061 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3062 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3063 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3064 "Should use isKnownNeverNaN if you don't know whether Op" 3065 " is a target node!"); 3066 return false; 3067 } 3068 3069 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3070 // work with truncating build vectors and vectors with elements of less than 3071 // 8 bits. 3072 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3073 if (!N) 3074 return false; 3075 3076 APInt CVal; 3077 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3078 CVal = CN->getAPIntValue(); 3079 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3080 auto *CN = BV->getConstantSplatNode(); 3081 if (!CN) 3082 return false; 3083 3084 // If this is a truncating build vector, truncate the splat value. 3085 // Otherwise, we may fail to match the expected values below. 3086 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3087 CVal = CN->getAPIntValue(); 3088 if (BVEltWidth < CVal.getBitWidth()) 3089 CVal = CVal.trunc(BVEltWidth); 3090 } else { 3091 return false; 3092 } 3093 3094 switch (getBooleanContents(N->getValueType(0))) { 3095 case UndefinedBooleanContent: 3096 return CVal[0]; 3097 case ZeroOrOneBooleanContent: 3098 return CVal.isOneValue(); 3099 case ZeroOrNegativeOneBooleanContent: 3100 return CVal.isAllOnesValue(); 3101 } 3102 3103 llvm_unreachable("Invalid boolean contents"); 3104 } 3105 3106 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3107 if (!N) 3108 return false; 3109 3110 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3111 if (!CN) { 3112 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3113 if (!BV) 3114 return false; 3115 3116 // Only interested in constant splats, we don't care about undef 3117 // elements in identifying boolean constants and getConstantSplatNode 3118 // returns NULL if all ops are undef; 3119 CN = BV->getConstantSplatNode(); 3120 if (!CN) 3121 return false; 3122 } 3123 3124 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3125 return !CN->getAPIntValue()[0]; 3126 3127 return CN->isNullValue(); 3128 } 3129 3130 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3131 bool SExt) const { 3132 if (VT == MVT::i1) 3133 return N->isOne(); 3134 3135 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3136 switch (Cnt) { 3137 case TargetLowering::ZeroOrOneBooleanContent: 3138 // An extended value of 1 is always true, unless its original type is i1, 3139 // in which case it will be sign extended to -1. 3140 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3141 case TargetLowering::UndefinedBooleanContent: 3142 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3143 return N->isAllOnesValue() && SExt; 3144 } 3145 llvm_unreachable("Unexpected enumeration."); 3146 } 3147 3148 /// This helper function of SimplifySetCC tries to optimize the comparison when 3149 /// either operand of the SetCC node is a bitwise-and instruction. 3150 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3151 ISD::CondCode Cond, const SDLoc &DL, 3152 DAGCombinerInfo &DCI) const { 3153 // Match these patterns in any of their permutations: 3154 // (X & Y) == Y 3155 // (X & Y) != Y 3156 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3157 std::swap(N0, N1); 3158 3159 EVT OpVT = N0.getValueType(); 3160 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3161 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3162 return SDValue(); 3163 3164 SDValue X, Y; 3165 if (N0.getOperand(0) == N1) { 3166 X = N0.getOperand(1); 3167 Y = N0.getOperand(0); 3168 } else if (N0.getOperand(1) == N1) { 3169 X = N0.getOperand(0); 3170 Y = N0.getOperand(1); 3171 } else { 3172 return SDValue(); 3173 } 3174 3175 SelectionDAG &DAG = DCI.DAG; 3176 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3177 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3178 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3179 // Note that where Y is variable and is known to have at most one bit set 3180 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3181 // equivalent when Y == 0. 3182 assert(OpVT.isInteger()); 3183 Cond = ISD::getSetCCInverse(Cond, OpVT); 3184 if (DCI.isBeforeLegalizeOps() || 3185 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3186 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3187 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3188 // If the target supports an 'and-not' or 'and-complement' logic operation, 3189 // try to use that to make a comparison operation more efficient. 3190 // But don't do this transform if the mask is a single bit because there are 3191 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3192 // 'rlwinm' on PPC). 3193 3194 // Bail out if the compare operand that we want to turn into a zero is 3195 // already a zero (otherwise, infinite loop). 3196 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3197 if (YConst && YConst->isNullValue()) 3198 return SDValue(); 3199 3200 // Transform this into: ~X & Y == 0. 3201 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3202 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3203 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3204 } 3205 3206 return SDValue(); 3207 } 3208 3209 /// There are multiple IR patterns that could be checking whether certain 3210 /// truncation of a signed number would be lossy or not. The pattern which is 3211 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3212 /// We are looking for the following pattern: (KeptBits is a constant) 3213 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3214 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3215 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3216 /// We will unfold it into the natural trunc+sext pattern: 3217 /// ((%x << C) a>> C) dstcond %x 3218 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3219 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3220 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3221 const SDLoc &DL) const { 3222 // We must be comparing with a constant. 3223 ConstantSDNode *C1; 3224 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3225 return SDValue(); 3226 3227 // N0 should be: add %x, (1 << (KeptBits-1)) 3228 if (N0->getOpcode() != ISD::ADD) 3229 return SDValue(); 3230 3231 // And we must be 'add'ing a constant. 3232 ConstantSDNode *C01; 3233 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3234 return SDValue(); 3235 3236 SDValue X = N0->getOperand(0); 3237 EVT XVT = X.getValueType(); 3238 3239 // Validate constants ... 3240 3241 APInt I1 = C1->getAPIntValue(); 3242 3243 ISD::CondCode NewCond; 3244 if (Cond == ISD::CondCode::SETULT) { 3245 NewCond = ISD::CondCode::SETEQ; 3246 } else if (Cond == ISD::CondCode::SETULE) { 3247 NewCond = ISD::CondCode::SETEQ; 3248 // But need to 'canonicalize' the constant. 3249 I1 += 1; 3250 } else if (Cond == ISD::CondCode::SETUGT) { 3251 NewCond = ISD::CondCode::SETNE; 3252 // But need to 'canonicalize' the constant. 3253 I1 += 1; 3254 } else if (Cond == ISD::CondCode::SETUGE) { 3255 NewCond = ISD::CondCode::SETNE; 3256 } else 3257 return SDValue(); 3258 3259 APInt I01 = C01->getAPIntValue(); 3260 3261 auto checkConstants = [&I1, &I01]() -> bool { 3262 // Both of them must be power-of-two, and the constant from setcc is bigger. 3263 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3264 }; 3265 3266 if (checkConstants()) { 3267 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3268 } else { 3269 // What if we invert constants? (and the target predicate) 3270 I1.negate(); 3271 I01.negate(); 3272 assert(XVT.isInteger()); 3273 NewCond = getSetCCInverse(NewCond, XVT); 3274 if (!checkConstants()) 3275 return SDValue(); 3276 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3277 } 3278 3279 // They are power-of-two, so which bit is set? 3280 const unsigned KeptBits = I1.logBase2(); 3281 const unsigned KeptBitsMinusOne = I01.logBase2(); 3282 3283 // Magic! 3284 if (KeptBits != (KeptBitsMinusOne + 1)) 3285 return SDValue(); 3286 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3287 3288 // We don't want to do this in every single case. 3289 SelectionDAG &DAG = DCI.DAG; 3290 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3291 XVT, KeptBits)) 3292 return SDValue(); 3293 3294 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3295 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3296 3297 // Unfold into: ((%x << C) a>> C) cond %x 3298 // Where 'cond' will be either 'eq' or 'ne'. 3299 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3300 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3301 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3302 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3303 3304 return T2; 3305 } 3306 3307 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3308 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3309 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3310 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3311 assert(isConstOrConstSplat(N1C) && 3312 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3313 "Should be a comparison with 0."); 3314 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3315 "Valid only for [in]equality comparisons."); 3316 3317 unsigned NewShiftOpcode; 3318 SDValue X, C, Y; 3319 3320 SelectionDAG &DAG = DCI.DAG; 3321 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3322 3323 // Look for '(C l>>/<< Y)'. 3324 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3325 // The shift should be one-use. 3326 if (!V.hasOneUse()) 3327 return false; 3328 unsigned OldShiftOpcode = V.getOpcode(); 3329 switch (OldShiftOpcode) { 3330 case ISD::SHL: 3331 NewShiftOpcode = ISD::SRL; 3332 break; 3333 case ISD::SRL: 3334 NewShiftOpcode = ISD::SHL; 3335 break; 3336 default: 3337 return false; // must be a logical shift. 3338 } 3339 // We should be shifting a constant. 3340 // FIXME: best to use isConstantOrConstantVector(). 3341 C = V.getOperand(0); 3342 ConstantSDNode *CC = 3343 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3344 if (!CC) 3345 return false; 3346 Y = V.getOperand(1); 3347 3348 ConstantSDNode *XC = 3349 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3350 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3351 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3352 }; 3353 3354 // LHS of comparison should be an one-use 'and'. 3355 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3356 return SDValue(); 3357 3358 X = N0.getOperand(0); 3359 SDValue Mask = N0.getOperand(1); 3360 3361 // 'and' is commutative! 3362 if (!Match(Mask)) { 3363 std::swap(X, Mask); 3364 if (!Match(Mask)) 3365 return SDValue(); 3366 } 3367 3368 EVT VT = X.getValueType(); 3369 3370 // Produce: 3371 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3372 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3373 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3374 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3375 return T2; 3376 } 3377 3378 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3379 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3380 /// handle the commuted versions of these patterns. 3381 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3382 ISD::CondCode Cond, const SDLoc &DL, 3383 DAGCombinerInfo &DCI) const { 3384 unsigned BOpcode = N0.getOpcode(); 3385 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3386 "Unexpected binop"); 3387 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3388 3389 // (X + Y) == X --> Y == 0 3390 // (X - Y) == X --> Y == 0 3391 // (X ^ Y) == X --> Y == 0 3392 SelectionDAG &DAG = DCI.DAG; 3393 EVT OpVT = N0.getValueType(); 3394 SDValue X = N0.getOperand(0); 3395 SDValue Y = N0.getOperand(1); 3396 if (X == N1) 3397 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3398 3399 if (Y != N1) 3400 return SDValue(); 3401 3402 // (X + Y) == Y --> X == 0 3403 // (X ^ Y) == Y --> X == 0 3404 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3405 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3406 3407 // The shift would not be valid if the operands are boolean (i1). 3408 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3409 return SDValue(); 3410 3411 // (X - Y) == Y --> X == Y << 1 3412 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3413 !DCI.isBeforeLegalize()); 3414 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3415 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3416 if (!DCI.isCalledByLegalizer()) 3417 DCI.AddToWorklist(YShl1.getNode()); 3418 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3419 } 3420 3421 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3422 SDValue N0, const APInt &C1, 3423 ISD::CondCode Cond, const SDLoc &dl, 3424 SelectionDAG &DAG) { 3425 // Look through truncs that don't change the value of a ctpop. 3426 // FIXME: Add vector support? Need to be careful with setcc result type below. 3427 SDValue CTPOP = N0; 3428 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3429 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3430 CTPOP = N0.getOperand(0); 3431 3432 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3433 return SDValue(); 3434 3435 EVT CTVT = CTPOP.getValueType(); 3436 SDValue CTOp = CTPOP.getOperand(0); 3437 3438 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3439 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3440 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3441 return SDValue(); 3442 3443 // (ctpop x) u< 2 -> (x & x-1) == 0 3444 // (ctpop x) u> 1 -> (x & x-1) != 0 3445 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3446 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3447 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3448 return SDValue(); 3449 if (C1 == 0 && (Cond == ISD::SETULT)) 3450 return SDValue(); // This is handled elsewhere. 3451 3452 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3453 3454 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3455 SDValue Result = CTOp; 3456 for (unsigned i = 0; i < Passes; i++) { 3457 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3458 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3459 } 3460 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3461 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3462 } 3463 3464 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3465 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3466 // For scalars, keep CTPOP if it is legal or custom. 3467 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3468 return SDValue(); 3469 // This is based on X86's custom lowering for CTPOP which produces more 3470 // instructions than the expansion here. 3471 3472 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3473 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3474 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3475 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3476 assert(CTVT.isInteger()); 3477 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3478 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3479 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3480 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3481 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3482 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3483 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3484 } 3485 3486 return SDValue(); 3487 } 3488 3489 /// Try to simplify a setcc built with the specified operands and cc. If it is 3490 /// unable to simplify it, return a null SDValue. 3491 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3492 ISD::CondCode Cond, bool foldBooleans, 3493 DAGCombinerInfo &DCI, 3494 const SDLoc &dl) const { 3495 SelectionDAG &DAG = DCI.DAG; 3496 const DataLayout &Layout = DAG.getDataLayout(); 3497 EVT OpVT = N0.getValueType(); 3498 3499 // Constant fold or commute setcc. 3500 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3501 return Fold; 3502 3503 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3504 // TODO: Handle non-splat vector constants. All undef causes trouble. 3505 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3506 // infinite loop here when we encounter one. 3507 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3508 if (isConstOrConstSplat(N0) && 3509 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3510 (DCI.isBeforeLegalizeOps() || 3511 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3512 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3513 3514 // If we have a subtract with the same 2 non-constant operands as this setcc 3515 // -- but in reverse order -- then try to commute the operands of this setcc 3516 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3517 // instruction on some targets. 3518 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3519 (DCI.isBeforeLegalizeOps() || 3520 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3521 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3522 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3523 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3524 3525 if (auto *N1C = isConstOrConstSplat(N1)) { 3526 const APInt &C1 = N1C->getAPIntValue(); 3527 3528 // Optimize some CTPOP cases. 3529 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3530 return V; 3531 3532 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3533 // equality comparison, then we're just comparing whether X itself is 3534 // zero. 3535 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3536 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3537 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3538 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3539 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3540 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3541 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3542 // (srl (ctlz x), 5) == 0 -> X != 0 3543 // (srl (ctlz x), 5) != 1 -> X != 0 3544 Cond = ISD::SETNE; 3545 } else { 3546 // (srl (ctlz x), 5) != 0 -> X == 0 3547 // (srl (ctlz x), 5) == 1 -> X == 0 3548 Cond = ISD::SETEQ; 3549 } 3550 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3551 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3552 Cond); 3553 } 3554 } 3555 } 3556 } 3557 3558 // FIXME: Support vectors. 3559 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3560 const APInt &C1 = N1C->getAPIntValue(); 3561 3562 // (zext x) == C --> x == (trunc C) 3563 // (sext x) == C --> x == (trunc C) 3564 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3565 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3566 unsigned MinBits = N0.getValueSizeInBits(); 3567 SDValue PreExt; 3568 bool Signed = false; 3569 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3570 // ZExt 3571 MinBits = N0->getOperand(0).getValueSizeInBits(); 3572 PreExt = N0->getOperand(0); 3573 } else if (N0->getOpcode() == ISD::AND) { 3574 // DAGCombine turns costly ZExts into ANDs 3575 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3576 if ((C->getAPIntValue()+1).isPowerOf2()) { 3577 MinBits = C->getAPIntValue().countTrailingOnes(); 3578 PreExt = N0->getOperand(0); 3579 } 3580 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3581 // SExt 3582 MinBits = N0->getOperand(0).getValueSizeInBits(); 3583 PreExt = N0->getOperand(0); 3584 Signed = true; 3585 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3586 // ZEXTLOAD / SEXTLOAD 3587 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3588 MinBits = LN0->getMemoryVT().getSizeInBits(); 3589 PreExt = N0; 3590 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3591 Signed = true; 3592 MinBits = LN0->getMemoryVT().getSizeInBits(); 3593 PreExt = N0; 3594 } 3595 } 3596 3597 // Figure out how many bits we need to preserve this constant. 3598 unsigned ReqdBits = Signed ? 3599 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3600 C1.getActiveBits(); 3601 3602 // Make sure we're not losing bits from the constant. 3603 if (MinBits > 0 && 3604 MinBits < C1.getBitWidth() && 3605 MinBits >= ReqdBits) { 3606 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3607 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3608 // Will get folded away. 3609 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3610 if (MinBits == 1 && C1 == 1) 3611 // Invert the condition. 3612 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3613 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3614 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3615 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3616 } 3617 3618 // If truncating the setcc operands is not desirable, we can still 3619 // simplify the expression in some cases: 3620 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3621 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3622 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3623 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3624 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3625 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3626 SDValue TopSetCC = N0->getOperand(0); 3627 unsigned N0Opc = N0->getOpcode(); 3628 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3629 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3630 TopSetCC.getOpcode() == ISD::SETCC && 3631 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3632 (isConstFalseVal(N1C) || 3633 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3634 3635 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3636 (!N1C->isNullValue() && Cond == ISD::SETNE); 3637 3638 if (!Inverse) 3639 return TopSetCC; 3640 3641 ISD::CondCode InvCond = ISD::getSetCCInverse( 3642 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3643 TopSetCC.getOperand(0).getValueType()); 3644 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3645 TopSetCC.getOperand(1), 3646 InvCond); 3647 } 3648 } 3649 } 3650 3651 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3652 // equality or unsigned, and all 1 bits of the const are in the same 3653 // partial word, see if we can shorten the load. 3654 if (DCI.isBeforeLegalize() && 3655 !ISD::isSignedIntSetCC(Cond) && 3656 N0.getOpcode() == ISD::AND && C1 == 0 && 3657 N0.getNode()->hasOneUse() && 3658 isa<LoadSDNode>(N0.getOperand(0)) && 3659 N0.getOperand(0).getNode()->hasOneUse() && 3660 isa<ConstantSDNode>(N0.getOperand(1))) { 3661 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3662 APInt bestMask; 3663 unsigned bestWidth = 0, bestOffset = 0; 3664 if (Lod->isSimple() && Lod->isUnindexed()) { 3665 unsigned origWidth = N0.getValueSizeInBits(); 3666 unsigned maskWidth = origWidth; 3667 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3668 // 8 bits, but have to be careful... 3669 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3670 origWidth = Lod->getMemoryVT().getSizeInBits(); 3671 const APInt &Mask = N0.getConstantOperandAPInt(1); 3672 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3673 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3674 for (unsigned offset=0; offset<origWidth/width; offset++) { 3675 if (Mask.isSubsetOf(newMask)) { 3676 if (Layout.isLittleEndian()) 3677 bestOffset = (uint64_t)offset * (width/8); 3678 else 3679 bestOffset = (origWidth/width - offset - 1) * (width/8); 3680 bestMask = Mask.lshr(offset * (width/8) * 8); 3681 bestWidth = width; 3682 break; 3683 } 3684 newMask <<= width; 3685 } 3686 } 3687 } 3688 if (bestWidth) { 3689 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3690 if (newVT.isRound() && 3691 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3692 SDValue Ptr = Lod->getBasePtr(); 3693 if (bestOffset != 0) 3694 Ptr = 3695 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3696 SDValue NewLoad = 3697 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3698 Lod->getPointerInfo().getWithOffset(bestOffset), 3699 Lod->getOriginalAlign()); 3700 return DAG.getSetCC(dl, VT, 3701 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3702 DAG.getConstant(bestMask.trunc(bestWidth), 3703 dl, newVT)), 3704 DAG.getConstant(0LL, dl, newVT), Cond); 3705 } 3706 } 3707 } 3708 3709 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3710 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3711 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3712 3713 // If the comparison constant has bits in the upper part, the 3714 // zero-extended value could never match. 3715 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3716 C1.getBitWidth() - InSize))) { 3717 switch (Cond) { 3718 case ISD::SETUGT: 3719 case ISD::SETUGE: 3720 case ISD::SETEQ: 3721 return DAG.getConstant(0, dl, VT); 3722 case ISD::SETULT: 3723 case ISD::SETULE: 3724 case ISD::SETNE: 3725 return DAG.getConstant(1, dl, VT); 3726 case ISD::SETGT: 3727 case ISD::SETGE: 3728 // True if the sign bit of C1 is set. 3729 return DAG.getConstant(C1.isNegative(), dl, VT); 3730 case ISD::SETLT: 3731 case ISD::SETLE: 3732 // True if the sign bit of C1 isn't set. 3733 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3734 default: 3735 break; 3736 } 3737 } 3738 3739 // Otherwise, we can perform the comparison with the low bits. 3740 switch (Cond) { 3741 case ISD::SETEQ: 3742 case ISD::SETNE: 3743 case ISD::SETUGT: 3744 case ISD::SETUGE: 3745 case ISD::SETULT: 3746 case ISD::SETULE: { 3747 EVT newVT = N0.getOperand(0).getValueType(); 3748 if (DCI.isBeforeLegalizeOps() || 3749 (isOperationLegal(ISD::SETCC, newVT) && 3750 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3751 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3752 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3753 3754 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3755 NewConst, Cond); 3756 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3757 } 3758 break; 3759 } 3760 default: 3761 break; // todo, be more careful with signed comparisons 3762 } 3763 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3764 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3765 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3766 OpVT)) { 3767 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3768 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3769 EVT ExtDstTy = N0.getValueType(); 3770 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3771 3772 // If the constant doesn't fit into the number of bits for the source of 3773 // the sign extension, it is impossible for both sides to be equal. 3774 if (C1.getMinSignedBits() > ExtSrcTyBits) 3775 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3776 3777 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3778 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3779 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3780 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3781 DAG.getConstant(Imm, dl, ExtDstTy)); 3782 if (!DCI.isCalledByLegalizer()) 3783 DCI.AddToWorklist(ZextOp.getNode()); 3784 // Otherwise, make this a use of a zext. 3785 return DAG.getSetCC(dl, VT, ZextOp, 3786 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3787 } else if ((N1C->isNullValue() || N1C->isOne()) && 3788 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3789 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3790 if (N0.getOpcode() == ISD::SETCC && 3791 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3792 (N0.getValueType() == MVT::i1 || 3793 getBooleanContents(N0.getOperand(0).getValueType()) == 3794 ZeroOrOneBooleanContent)) { 3795 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3796 if (TrueWhenTrue) 3797 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3798 // Invert the condition. 3799 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3800 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3801 if (DCI.isBeforeLegalizeOps() || 3802 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3803 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3804 } 3805 3806 if ((N0.getOpcode() == ISD::XOR || 3807 (N0.getOpcode() == ISD::AND && 3808 N0.getOperand(0).getOpcode() == ISD::XOR && 3809 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3810 isOneConstant(N0.getOperand(1))) { 3811 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3812 // can only do this if the top bits are known zero. 3813 unsigned BitWidth = N0.getValueSizeInBits(); 3814 if (DAG.MaskedValueIsZero(N0, 3815 APInt::getHighBitsSet(BitWidth, 3816 BitWidth-1))) { 3817 // Okay, get the un-inverted input value. 3818 SDValue Val; 3819 if (N0.getOpcode() == ISD::XOR) { 3820 Val = N0.getOperand(0); 3821 } else { 3822 assert(N0.getOpcode() == ISD::AND && 3823 N0.getOperand(0).getOpcode() == ISD::XOR); 3824 // ((X^1)&1)^1 -> X & 1 3825 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3826 N0.getOperand(0).getOperand(0), 3827 N0.getOperand(1)); 3828 } 3829 3830 return DAG.getSetCC(dl, VT, Val, N1, 3831 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3832 } 3833 } else if (N1C->isOne()) { 3834 SDValue Op0 = N0; 3835 if (Op0.getOpcode() == ISD::TRUNCATE) 3836 Op0 = Op0.getOperand(0); 3837 3838 if ((Op0.getOpcode() == ISD::XOR) && 3839 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3840 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3841 SDValue XorLHS = Op0.getOperand(0); 3842 SDValue XorRHS = Op0.getOperand(1); 3843 // Ensure that the input setccs return an i1 type or 0/1 value. 3844 if (Op0.getValueType() == MVT::i1 || 3845 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3846 ZeroOrOneBooleanContent && 3847 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3848 ZeroOrOneBooleanContent)) { 3849 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3850 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3851 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3852 } 3853 } 3854 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 3855 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3856 if (Op0.getValueType().bitsGT(VT)) 3857 Op0 = DAG.getNode(ISD::AND, dl, VT, 3858 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3859 DAG.getConstant(1, dl, VT)); 3860 else if (Op0.getValueType().bitsLT(VT)) 3861 Op0 = DAG.getNode(ISD::AND, dl, VT, 3862 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3863 DAG.getConstant(1, dl, VT)); 3864 3865 return DAG.getSetCC(dl, VT, Op0, 3866 DAG.getConstant(0, dl, Op0.getValueType()), 3867 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3868 } 3869 if (Op0.getOpcode() == ISD::AssertZext && 3870 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3871 return DAG.getSetCC(dl, VT, Op0, 3872 DAG.getConstant(0, dl, Op0.getValueType()), 3873 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3874 } 3875 } 3876 3877 // Given: 3878 // icmp eq/ne (urem %x, %y), 0 3879 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3880 // icmp eq/ne %x, 0 3881 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3882 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3883 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3884 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3885 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3886 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3887 } 3888 3889 if (SDValue V = 3890 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3891 return V; 3892 } 3893 3894 // These simplifications apply to splat vectors as well. 3895 // TODO: Handle more splat vector cases. 3896 if (auto *N1C = isConstOrConstSplat(N1)) { 3897 const APInt &C1 = N1C->getAPIntValue(); 3898 3899 APInt MinVal, MaxVal; 3900 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3901 if (ISD::isSignedIntSetCC(Cond)) { 3902 MinVal = APInt::getSignedMinValue(OperandBitSize); 3903 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3904 } else { 3905 MinVal = APInt::getMinValue(OperandBitSize); 3906 MaxVal = APInt::getMaxValue(OperandBitSize); 3907 } 3908 3909 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3910 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3911 // X >= MIN --> true 3912 if (C1 == MinVal) 3913 return DAG.getBoolConstant(true, dl, VT, OpVT); 3914 3915 if (!VT.isVector()) { // TODO: Support this for vectors. 3916 // X >= C0 --> X > (C0 - 1) 3917 APInt C = C1 - 1; 3918 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3919 if ((DCI.isBeforeLegalizeOps() || 3920 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3921 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3922 isLegalICmpImmediate(C.getSExtValue())))) { 3923 return DAG.getSetCC(dl, VT, N0, 3924 DAG.getConstant(C, dl, N1.getValueType()), 3925 NewCC); 3926 } 3927 } 3928 } 3929 3930 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3931 // X <= MAX --> true 3932 if (C1 == MaxVal) 3933 return DAG.getBoolConstant(true, dl, VT, OpVT); 3934 3935 // X <= C0 --> X < (C0 + 1) 3936 if (!VT.isVector()) { // TODO: Support this for vectors. 3937 APInt C = C1 + 1; 3938 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3939 if ((DCI.isBeforeLegalizeOps() || 3940 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3941 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3942 isLegalICmpImmediate(C.getSExtValue())))) { 3943 return DAG.getSetCC(dl, VT, N0, 3944 DAG.getConstant(C, dl, N1.getValueType()), 3945 NewCC); 3946 } 3947 } 3948 } 3949 3950 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3951 if (C1 == MinVal) 3952 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3953 3954 // TODO: Support this for vectors after legalize ops. 3955 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3956 // Canonicalize setlt X, Max --> setne X, Max 3957 if (C1 == MaxVal) 3958 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3959 3960 // If we have setult X, 1, turn it into seteq X, 0 3961 if (C1 == MinVal+1) 3962 return DAG.getSetCC(dl, VT, N0, 3963 DAG.getConstant(MinVal, dl, N0.getValueType()), 3964 ISD::SETEQ); 3965 } 3966 } 3967 3968 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3969 if (C1 == MaxVal) 3970 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3971 3972 // TODO: Support this for vectors after legalize ops. 3973 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3974 // Canonicalize setgt X, Min --> setne X, Min 3975 if (C1 == MinVal) 3976 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3977 3978 // If we have setugt X, Max-1, turn it into seteq X, Max 3979 if (C1 == MaxVal-1) 3980 return DAG.getSetCC(dl, VT, N0, 3981 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3982 ISD::SETEQ); 3983 } 3984 } 3985 3986 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3987 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3988 if (C1.isNullValue()) 3989 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3990 VT, N0, N1, Cond, DCI, dl)) 3991 return CC; 3992 3993 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 3994 // For example, when high 32-bits of i64 X are known clear: 3995 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 3996 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 3997 bool CmpZero = N1C->getAPIntValue().isNullValue(); 3998 bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue(); 3999 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4000 // Match or(lo,shl(hi,bw/2)) pattern. 4001 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4002 unsigned EltBits = V.getScalarValueSizeInBits(); 4003 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4004 return false; 4005 SDValue LHS = V.getOperand(0); 4006 SDValue RHS = V.getOperand(1); 4007 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4008 // Unshifted element must have zero upperbits. 4009 if (RHS.getOpcode() == ISD::SHL && 4010 isa<ConstantSDNode>(RHS.getOperand(1)) && 4011 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4012 DAG.MaskedValueIsZero(LHS, HiBits)) { 4013 Lo = LHS; 4014 Hi = RHS.getOperand(0); 4015 return true; 4016 } 4017 if (LHS.getOpcode() == ISD::SHL && 4018 isa<ConstantSDNode>(LHS.getOperand(1)) && 4019 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4020 DAG.MaskedValueIsZero(RHS, HiBits)) { 4021 Lo = RHS; 4022 Hi = LHS.getOperand(0); 4023 return true; 4024 } 4025 return false; 4026 }; 4027 4028 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4029 unsigned EltBits = N0.getScalarValueSizeInBits(); 4030 unsigned HalfBits = EltBits / 2; 4031 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4032 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4033 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4034 SDValue NewN0 = 4035 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4036 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4037 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4038 }; 4039 4040 SDValue Lo, Hi; 4041 if (IsConcat(N0, Lo, Hi)) 4042 return MergeConcat(Lo, Hi); 4043 4044 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4045 SDValue Lo0, Lo1, Hi0, Hi1; 4046 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4047 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4048 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4049 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4050 } 4051 } 4052 } 4053 } 4054 4055 // If we have "setcc X, C0", check to see if we can shrink the immediate 4056 // by changing cc. 4057 // TODO: Support this for vectors after legalize ops. 4058 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4059 // SETUGT X, SINTMAX -> SETLT X, 0 4060 // SETUGE X, SINTMIN -> SETLT X, 0 4061 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4062 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4063 return DAG.getSetCC(dl, VT, N0, 4064 DAG.getConstant(0, dl, N1.getValueType()), 4065 ISD::SETLT); 4066 4067 // SETULT X, SINTMIN -> SETGT X, -1 4068 // SETULE X, SINTMAX -> SETGT X, -1 4069 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4070 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4071 return DAG.getSetCC(dl, VT, N0, 4072 DAG.getAllOnesConstant(dl, N1.getValueType()), 4073 ISD::SETGT); 4074 } 4075 } 4076 4077 // Back to non-vector simplifications. 4078 // TODO: Can we do these for vector splats? 4079 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4080 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4081 const APInt &C1 = N1C->getAPIntValue(); 4082 EVT ShValTy = N0.getValueType(); 4083 4084 // Fold bit comparisons when we can. This will result in an 4085 // incorrect value when boolean false is negative one, unless 4086 // the bitsize is 1 in which case the false value is the same 4087 // in practice regardless of the representation. 4088 if ((VT.getSizeInBits() == 1 || 4089 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4090 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4091 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4092 N0.getOpcode() == ISD::AND) { 4093 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4094 EVT ShiftTy = 4095 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4096 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4097 // Perform the xform if the AND RHS is a single bit. 4098 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4099 if (AndRHS->getAPIntValue().isPowerOf2() && 4100 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4101 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4102 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4103 DAG.getConstant(ShCt, dl, ShiftTy))); 4104 } 4105 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4106 // (X & 8) == 8 --> (X & 8) >> 3 4107 // Perform the xform if C1 is a single bit. 4108 unsigned ShCt = C1.logBase2(); 4109 if (C1.isPowerOf2() && 4110 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4111 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4112 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4113 DAG.getConstant(ShCt, dl, ShiftTy))); 4114 } 4115 } 4116 } 4117 } 4118 4119 if (C1.getMinSignedBits() <= 64 && 4120 !isLegalICmpImmediate(C1.getSExtValue())) { 4121 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4122 // (X & -256) == 256 -> (X >> 8) == 1 4123 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4124 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4125 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4126 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4127 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 4128 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4129 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4130 SDValue Shift = 4131 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4132 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4133 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4134 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4135 } 4136 } 4137 } 4138 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4139 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4140 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4141 // X < 0x100000000 -> (X >> 32) < 1 4142 // X >= 0x100000000 -> (X >> 32) >= 1 4143 // X <= 0x0ffffffff -> (X >> 32) < 1 4144 // X > 0x0ffffffff -> (X >> 32) >= 1 4145 unsigned ShiftBits; 4146 APInt NewC = C1; 4147 ISD::CondCode NewCond = Cond; 4148 if (AdjOne) { 4149 ShiftBits = C1.countTrailingOnes(); 4150 NewC = NewC + 1; 4151 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4152 } else { 4153 ShiftBits = C1.countTrailingZeros(); 4154 } 4155 NewC.lshrInPlace(ShiftBits); 4156 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4157 isLegalICmpImmediate(NewC.getSExtValue()) && 4158 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4159 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4160 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4161 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4162 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4163 } 4164 } 4165 } 4166 } 4167 4168 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4169 auto *CFP = cast<ConstantFPSDNode>(N1); 4170 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4171 4172 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4173 // constant if knowing that the operand is non-nan is enough. We prefer to 4174 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4175 // materialize 0.0. 4176 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4177 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4178 4179 // setcc (fneg x), C -> setcc swap(pred) x, -C 4180 if (N0.getOpcode() == ISD::FNEG) { 4181 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4182 if (DCI.isBeforeLegalizeOps() || 4183 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4184 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4185 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4186 } 4187 } 4188 4189 // If the condition is not legal, see if we can find an equivalent one 4190 // which is legal. 4191 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4192 // If the comparison was an awkward floating-point == or != and one of 4193 // the comparison operands is infinity or negative infinity, convert the 4194 // condition to a less-awkward <= or >=. 4195 if (CFP->getValueAPF().isInfinity()) { 4196 bool IsNegInf = CFP->getValueAPF().isNegative(); 4197 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4198 switch (Cond) { 4199 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4200 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4201 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4202 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4203 default: break; 4204 } 4205 if (NewCond != ISD::SETCC_INVALID && 4206 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4207 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4208 } 4209 } 4210 } 4211 4212 if (N0 == N1) { 4213 // The sext(setcc()) => setcc() optimization relies on the appropriate 4214 // constant being emitted. 4215 assert(!N0.getValueType().isInteger() && 4216 "Integer types should be handled by FoldSetCC"); 4217 4218 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4219 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4220 if (UOF == 2) // FP operators that are undefined on NaNs. 4221 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4222 if (UOF == unsigned(EqTrue)) 4223 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4224 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4225 // if it is not already. 4226 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4227 if (NewCond != Cond && 4228 (DCI.isBeforeLegalizeOps() || 4229 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4230 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4231 } 4232 4233 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4234 N0.getValueType().isInteger()) { 4235 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4236 N0.getOpcode() == ISD::XOR) { 4237 // Simplify (X+Y) == (X+Z) --> Y == Z 4238 if (N0.getOpcode() == N1.getOpcode()) { 4239 if (N0.getOperand(0) == N1.getOperand(0)) 4240 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4241 if (N0.getOperand(1) == N1.getOperand(1)) 4242 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4243 if (isCommutativeBinOp(N0.getOpcode())) { 4244 // If X op Y == Y op X, try other combinations. 4245 if (N0.getOperand(0) == N1.getOperand(1)) 4246 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4247 Cond); 4248 if (N0.getOperand(1) == N1.getOperand(0)) 4249 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4250 Cond); 4251 } 4252 } 4253 4254 // If RHS is a legal immediate value for a compare instruction, we need 4255 // to be careful about increasing register pressure needlessly. 4256 bool LegalRHSImm = false; 4257 4258 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4259 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4260 // Turn (X+C1) == C2 --> X == C2-C1 4261 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4262 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4263 DAG.getConstant(RHSC->getAPIntValue()- 4264 LHSR->getAPIntValue(), 4265 dl, N0.getValueType()), Cond); 4266 } 4267 4268 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4269 if (N0.getOpcode() == ISD::XOR) 4270 // If we know that all of the inverted bits are zero, don't bother 4271 // performing the inversion. 4272 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4273 return 4274 DAG.getSetCC(dl, VT, N0.getOperand(0), 4275 DAG.getConstant(LHSR->getAPIntValue() ^ 4276 RHSC->getAPIntValue(), 4277 dl, N0.getValueType()), 4278 Cond); 4279 } 4280 4281 // Turn (C1-X) == C2 --> X == C1-C2 4282 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4283 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4284 return 4285 DAG.getSetCC(dl, VT, N0.getOperand(1), 4286 DAG.getConstant(SUBC->getAPIntValue() - 4287 RHSC->getAPIntValue(), 4288 dl, N0.getValueType()), 4289 Cond); 4290 } 4291 } 4292 4293 // Could RHSC fold directly into a compare? 4294 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4295 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4296 } 4297 4298 // (X+Y) == X --> Y == 0 and similar folds. 4299 // Don't do this if X is an immediate that can fold into a cmp 4300 // instruction and X+Y has other uses. It could be an induction variable 4301 // chain, and the transform would increase register pressure. 4302 if (!LegalRHSImm || N0.hasOneUse()) 4303 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4304 return V; 4305 } 4306 4307 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4308 N1.getOpcode() == ISD::XOR) 4309 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4310 return V; 4311 4312 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4313 return V; 4314 } 4315 4316 // Fold remainder of division by a constant. 4317 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4318 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4319 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4320 4321 // When division is cheap or optimizing for minimum size, 4322 // fall through to DIVREM creation by skipping this fold. 4323 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4324 if (N0.getOpcode() == ISD::UREM) { 4325 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4326 return Folded; 4327 } else if (N0.getOpcode() == ISD::SREM) { 4328 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4329 return Folded; 4330 } 4331 } 4332 } 4333 4334 // Fold away ALL boolean setcc's. 4335 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4336 SDValue Temp; 4337 switch (Cond) { 4338 default: llvm_unreachable("Unknown integer setcc!"); 4339 case ISD::SETEQ: // X == Y -> ~(X^Y) 4340 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4341 N0 = DAG.getNOT(dl, Temp, OpVT); 4342 if (!DCI.isCalledByLegalizer()) 4343 DCI.AddToWorklist(Temp.getNode()); 4344 break; 4345 case ISD::SETNE: // X != Y --> (X^Y) 4346 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4347 break; 4348 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4349 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4350 Temp = DAG.getNOT(dl, N0, OpVT); 4351 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4352 if (!DCI.isCalledByLegalizer()) 4353 DCI.AddToWorklist(Temp.getNode()); 4354 break; 4355 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4356 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4357 Temp = DAG.getNOT(dl, N1, OpVT); 4358 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4359 if (!DCI.isCalledByLegalizer()) 4360 DCI.AddToWorklist(Temp.getNode()); 4361 break; 4362 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4363 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4364 Temp = DAG.getNOT(dl, N0, OpVT); 4365 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4366 if (!DCI.isCalledByLegalizer()) 4367 DCI.AddToWorklist(Temp.getNode()); 4368 break; 4369 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4370 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4371 Temp = DAG.getNOT(dl, N1, OpVT); 4372 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4373 break; 4374 } 4375 if (VT.getScalarType() != MVT::i1) { 4376 if (!DCI.isCalledByLegalizer()) 4377 DCI.AddToWorklist(N0.getNode()); 4378 // FIXME: If running after legalize, we probably can't do this. 4379 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4380 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4381 } 4382 return N0; 4383 } 4384 4385 // Could not fold it. 4386 return SDValue(); 4387 } 4388 4389 /// Returns true (and the GlobalValue and the offset) if the node is a 4390 /// GlobalAddress + offset. 4391 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4392 int64_t &Offset) const { 4393 4394 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4395 4396 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4397 GA = GASD->getGlobal(); 4398 Offset += GASD->getOffset(); 4399 return true; 4400 } 4401 4402 if (N->getOpcode() == ISD::ADD) { 4403 SDValue N1 = N->getOperand(0); 4404 SDValue N2 = N->getOperand(1); 4405 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4406 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4407 Offset += V->getSExtValue(); 4408 return true; 4409 } 4410 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4411 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4412 Offset += V->getSExtValue(); 4413 return true; 4414 } 4415 } 4416 } 4417 4418 return false; 4419 } 4420 4421 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4422 DAGCombinerInfo &DCI) const { 4423 // Default implementation: no optimization. 4424 return SDValue(); 4425 } 4426 4427 //===----------------------------------------------------------------------===// 4428 // Inline Assembler Implementation Methods 4429 //===----------------------------------------------------------------------===// 4430 4431 TargetLowering::ConstraintType 4432 TargetLowering::getConstraintType(StringRef Constraint) const { 4433 unsigned S = Constraint.size(); 4434 4435 if (S == 1) { 4436 switch (Constraint[0]) { 4437 default: break; 4438 case 'r': 4439 return C_RegisterClass; 4440 case 'm': // memory 4441 case 'o': // offsetable 4442 case 'V': // not offsetable 4443 return C_Memory; 4444 case 'n': // Simple Integer 4445 case 'E': // Floating Point Constant 4446 case 'F': // Floating Point Constant 4447 return C_Immediate; 4448 case 'i': // Simple Integer or Relocatable Constant 4449 case 's': // Relocatable Constant 4450 case 'p': // Address. 4451 case 'X': // Allow ANY value. 4452 case 'I': // Target registers. 4453 case 'J': 4454 case 'K': 4455 case 'L': 4456 case 'M': 4457 case 'N': 4458 case 'O': 4459 case 'P': 4460 case '<': 4461 case '>': 4462 return C_Other; 4463 } 4464 } 4465 4466 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4467 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4468 return C_Memory; 4469 return C_Register; 4470 } 4471 return C_Unknown; 4472 } 4473 4474 /// Try to replace an X constraint, which matches anything, with another that 4475 /// has more specific requirements based on the type of the corresponding 4476 /// operand. 4477 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4478 if (ConstraintVT.isInteger()) 4479 return "r"; 4480 if (ConstraintVT.isFloatingPoint()) 4481 return "f"; // works for many targets 4482 return nullptr; 4483 } 4484 4485 SDValue TargetLowering::LowerAsmOutputForConstraint( 4486 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4487 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4488 return SDValue(); 4489 } 4490 4491 /// Lower the specified operand into the Ops vector. 4492 /// If it is invalid, don't add anything to Ops. 4493 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4494 std::string &Constraint, 4495 std::vector<SDValue> &Ops, 4496 SelectionDAG &DAG) const { 4497 4498 if (Constraint.length() > 1) return; 4499 4500 char ConstraintLetter = Constraint[0]; 4501 switch (ConstraintLetter) { 4502 default: break; 4503 case 'X': // Allows any operand; labels (basic block) use this. 4504 if (Op.getOpcode() == ISD::BasicBlock || 4505 Op.getOpcode() == ISD::TargetBlockAddress) { 4506 Ops.push_back(Op); 4507 return; 4508 } 4509 LLVM_FALLTHROUGH; 4510 case 'i': // Simple Integer or Relocatable Constant 4511 case 'n': // Simple Integer 4512 case 's': { // Relocatable Constant 4513 4514 GlobalAddressSDNode *GA; 4515 ConstantSDNode *C; 4516 BlockAddressSDNode *BA; 4517 uint64_t Offset = 0; 4518 4519 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4520 // etc., since getelementpointer is variadic. We can't use 4521 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4522 // while in this case the GA may be furthest from the root node which is 4523 // likely an ISD::ADD. 4524 while (1) { 4525 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4526 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4527 GA->getValueType(0), 4528 Offset + GA->getOffset())); 4529 return; 4530 } 4531 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4532 // gcc prints these as sign extended. Sign extend value to 64 bits 4533 // now; without this it would get ZExt'd later in 4534 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4535 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4536 BooleanContent BCont = getBooleanContents(MVT::i64); 4537 ISD::NodeType ExtOpc = 4538 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4539 int64_t ExtVal = 4540 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4541 Ops.push_back( 4542 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4543 return; 4544 } 4545 if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4546 Ops.push_back(DAG.getTargetBlockAddress( 4547 BA->getBlockAddress(), BA->getValueType(0), 4548 Offset + BA->getOffset(), BA->getTargetFlags())); 4549 return; 4550 } 4551 const unsigned OpCode = Op.getOpcode(); 4552 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4553 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4554 Op = Op.getOperand(1); 4555 // Subtraction is not commutative. 4556 else if (OpCode == ISD::ADD && 4557 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4558 Op = Op.getOperand(0); 4559 else 4560 return; 4561 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4562 continue; 4563 } 4564 return; 4565 } 4566 break; 4567 } 4568 } 4569 } 4570 4571 std::pair<unsigned, const TargetRegisterClass *> 4572 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4573 StringRef Constraint, 4574 MVT VT) const { 4575 if (Constraint.empty() || Constraint[0] != '{') 4576 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4577 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4578 4579 // Remove the braces from around the name. 4580 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4581 4582 std::pair<unsigned, const TargetRegisterClass *> R = 4583 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4584 4585 // Figure out which register class contains this reg. 4586 for (const TargetRegisterClass *RC : RI->regclasses()) { 4587 // If none of the value types for this register class are valid, we 4588 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4589 if (!isLegalRC(*RI, *RC)) 4590 continue; 4591 4592 for (const MCPhysReg &PR : *RC) { 4593 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4594 std::pair<unsigned, const TargetRegisterClass *> S = 4595 std::make_pair(PR, RC); 4596 4597 // If this register class has the requested value type, return it, 4598 // otherwise keep searching and return the first class found 4599 // if no other is found which explicitly has the requested type. 4600 if (RI->isTypeLegalForClass(*RC, VT)) 4601 return S; 4602 if (!R.second) 4603 R = S; 4604 } 4605 } 4606 } 4607 4608 return R; 4609 } 4610 4611 //===----------------------------------------------------------------------===// 4612 // Constraint Selection. 4613 4614 /// Return true of this is an input operand that is a matching constraint like 4615 /// "4". 4616 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4617 assert(!ConstraintCode.empty() && "No known constraint!"); 4618 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4619 } 4620 4621 /// If this is an input matching constraint, this method returns the output 4622 /// operand it matches. 4623 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4624 assert(!ConstraintCode.empty() && "No known constraint!"); 4625 return atoi(ConstraintCode.c_str()); 4626 } 4627 4628 /// Split up the constraint string from the inline assembly value into the 4629 /// specific constraints and their prefixes, and also tie in the associated 4630 /// operand values. 4631 /// If this returns an empty vector, and if the constraint string itself 4632 /// isn't empty, there was an error parsing. 4633 TargetLowering::AsmOperandInfoVector 4634 TargetLowering::ParseConstraints(const DataLayout &DL, 4635 const TargetRegisterInfo *TRI, 4636 const CallBase &Call) const { 4637 /// Information about all of the constraints. 4638 AsmOperandInfoVector ConstraintOperands; 4639 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4640 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4641 4642 // Do a prepass over the constraints, canonicalizing them, and building up the 4643 // ConstraintOperands list. 4644 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4645 unsigned ResNo = 0; // ResNo - The result number of the next output. 4646 4647 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4648 ConstraintOperands.emplace_back(std::move(CI)); 4649 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4650 4651 // Update multiple alternative constraint count. 4652 if (OpInfo.multipleAlternatives.size() > maCount) 4653 maCount = OpInfo.multipleAlternatives.size(); 4654 4655 OpInfo.ConstraintVT = MVT::Other; 4656 4657 // Compute the value type for each operand. 4658 switch (OpInfo.Type) { 4659 case InlineAsm::isOutput: 4660 // Indirect outputs just consume an argument. 4661 if (OpInfo.isIndirect) { 4662 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4663 break; 4664 } 4665 4666 // The return value of the call is this value. As such, there is no 4667 // corresponding argument. 4668 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4669 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4670 OpInfo.ConstraintVT = 4671 getSimpleValueType(DL, STy->getElementType(ResNo)); 4672 } else { 4673 assert(ResNo == 0 && "Asm only has one result!"); 4674 OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType()); 4675 } 4676 ++ResNo; 4677 break; 4678 case InlineAsm::isInput: 4679 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4680 break; 4681 case InlineAsm::isClobber: 4682 // Nothing to do. 4683 break; 4684 } 4685 4686 if (OpInfo.CallOperandVal) { 4687 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4688 if (OpInfo.isIndirect) { 4689 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4690 if (!PtrTy) 4691 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4692 OpTy = PtrTy->getElementType(); 4693 } 4694 4695 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4696 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4697 if (STy->getNumElements() == 1) 4698 OpTy = STy->getElementType(0); 4699 4700 // If OpTy is not a single value, it may be a struct/union that we 4701 // can tile with integers. 4702 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4703 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4704 switch (BitSize) { 4705 default: break; 4706 case 1: 4707 case 8: 4708 case 16: 4709 case 32: 4710 case 64: 4711 case 128: 4712 OpInfo.ConstraintVT = 4713 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4714 break; 4715 } 4716 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4717 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4718 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4719 } else { 4720 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4721 } 4722 } 4723 } 4724 4725 // If we have multiple alternative constraints, select the best alternative. 4726 if (!ConstraintOperands.empty()) { 4727 if (maCount) { 4728 unsigned bestMAIndex = 0; 4729 int bestWeight = -1; 4730 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4731 int weight = -1; 4732 unsigned maIndex; 4733 // Compute the sums of the weights for each alternative, keeping track 4734 // of the best (highest weight) one so far. 4735 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4736 int weightSum = 0; 4737 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4738 cIndex != eIndex; ++cIndex) { 4739 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4740 if (OpInfo.Type == InlineAsm::isClobber) 4741 continue; 4742 4743 // If this is an output operand with a matching input operand, 4744 // look up the matching input. If their types mismatch, e.g. one 4745 // is an integer, the other is floating point, or their sizes are 4746 // different, flag it as an maCantMatch. 4747 if (OpInfo.hasMatchingInput()) { 4748 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4749 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4750 if ((OpInfo.ConstraintVT.isInteger() != 4751 Input.ConstraintVT.isInteger()) || 4752 (OpInfo.ConstraintVT.getSizeInBits() != 4753 Input.ConstraintVT.getSizeInBits())) { 4754 weightSum = -1; // Can't match. 4755 break; 4756 } 4757 } 4758 } 4759 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4760 if (weight == -1) { 4761 weightSum = -1; 4762 break; 4763 } 4764 weightSum += weight; 4765 } 4766 // Update best. 4767 if (weightSum > bestWeight) { 4768 bestWeight = weightSum; 4769 bestMAIndex = maIndex; 4770 } 4771 } 4772 4773 // Now select chosen alternative in each constraint. 4774 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4775 cIndex != eIndex; ++cIndex) { 4776 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4777 if (cInfo.Type == InlineAsm::isClobber) 4778 continue; 4779 cInfo.selectAlternative(bestMAIndex); 4780 } 4781 } 4782 } 4783 4784 // Check and hook up tied operands, choose constraint code to use. 4785 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4786 cIndex != eIndex; ++cIndex) { 4787 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4788 4789 // If this is an output operand with a matching input operand, look up the 4790 // matching input. If their types mismatch, e.g. one is an integer, the 4791 // other is floating point, or their sizes are different, flag it as an 4792 // error. 4793 if (OpInfo.hasMatchingInput()) { 4794 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4795 4796 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4797 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4798 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4799 OpInfo.ConstraintVT); 4800 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4801 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4802 Input.ConstraintVT); 4803 if ((OpInfo.ConstraintVT.isInteger() != 4804 Input.ConstraintVT.isInteger()) || 4805 (MatchRC.second != InputRC.second)) { 4806 report_fatal_error("Unsupported asm: input constraint" 4807 " with a matching output constraint of" 4808 " incompatible type!"); 4809 } 4810 } 4811 } 4812 } 4813 4814 return ConstraintOperands; 4815 } 4816 4817 /// Return an integer indicating how general CT is. 4818 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4819 switch (CT) { 4820 case TargetLowering::C_Immediate: 4821 case TargetLowering::C_Other: 4822 case TargetLowering::C_Unknown: 4823 return 0; 4824 case TargetLowering::C_Register: 4825 return 1; 4826 case TargetLowering::C_RegisterClass: 4827 return 2; 4828 case TargetLowering::C_Memory: 4829 return 3; 4830 } 4831 llvm_unreachable("Invalid constraint type"); 4832 } 4833 4834 /// Examine constraint type and operand type and determine a weight value. 4835 /// This object must already have been set up with the operand type 4836 /// and the current alternative constraint selected. 4837 TargetLowering::ConstraintWeight 4838 TargetLowering::getMultipleConstraintMatchWeight( 4839 AsmOperandInfo &info, int maIndex) const { 4840 InlineAsm::ConstraintCodeVector *rCodes; 4841 if (maIndex >= (int)info.multipleAlternatives.size()) 4842 rCodes = &info.Codes; 4843 else 4844 rCodes = &info.multipleAlternatives[maIndex].Codes; 4845 ConstraintWeight BestWeight = CW_Invalid; 4846 4847 // Loop over the options, keeping track of the most general one. 4848 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4849 ConstraintWeight weight = 4850 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4851 if (weight > BestWeight) 4852 BestWeight = weight; 4853 } 4854 4855 return BestWeight; 4856 } 4857 4858 /// Examine constraint type and operand type and determine a weight value. 4859 /// This object must already have been set up with the operand type 4860 /// and the current alternative constraint selected. 4861 TargetLowering::ConstraintWeight 4862 TargetLowering::getSingleConstraintMatchWeight( 4863 AsmOperandInfo &info, const char *constraint) const { 4864 ConstraintWeight weight = CW_Invalid; 4865 Value *CallOperandVal = info.CallOperandVal; 4866 // If we don't have a value, we can't do a match, 4867 // but allow it at the lowest weight. 4868 if (!CallOperandVal) 4869 return CW_Default; 4870 // Look at the constraint type. 4871 switch (*constraint) { 4872 case 'i': // immediate integer. 4873 case 'n': // immediate integer with a known value. 4874 if (isa<ConstantInt>(CallOperandVal)) 4875 weight = CW_Constant; 4876 break; 4877 case 's': // non-explicit intregal immediate. 4878 if (isa<GlobalValue>(CallOperandVal)) 4879 weight = CW_Constant; 4880 break; 4881 case 'E': // immediate float if host format. 4882 case 'F': // immediate float. 4883 if (isa<ConstantFP>(CallOperandVal)) 4884 weight = CW_Constant; 4885 break; 4886 case '<': // memory operand with autodecrement. 4887 case '>': // memory operand with autoincrement. 4888 case 'm': // memory operand. 4889 case 'o': // offsettable memory operand 4890 case 'V': // non-offsettable memory operand 4891 weight = CW_Memory; 4892 break; 4893 case 'r': // general register. 4894 case 'g': // general register, memory operand or immediate integer. 4895 // note: Clang converts "g" to "imr". 4896 if (CallOperandVal->getType()->isIntegerTy()) 4897 weight = CW_Register; 4898 break; 4899 case 'X': // any operand. 4900 default: 4901 weight = CW_Default; 4902 break; 4903 } 4904 return weight; 4905 } 4906 4907 /// If there are multiple different constraints that we could pick for this 4908 /// operand (e.g. "imr") try to pick the 'best' one. 4909 /// This is somewhat tricky: constraints fall into four classes: 4910 /// Other -> immediates and magic values 4911 /// Register -> one specific register 4912 /// RegisterClass -> a group of regs 4913 /// Memory -> memory 4914 /// Ideally, we would pick the most specific constraint possible: if we have 4915 /// something that fits into a register, we would pick it. The problem here 4916 /// is that if we have something that could either be in a register or in 4917 /// memory that use of the register could cause selection of *other* 4918 /// operands to fail: they might only succeed if we pick memory. Because of 4919 /// this the heuristic we use is: 4920 /// 4921 /// 1) If there is an 'other' constraint, and if the operand is valid for 4922 /// that constraint, use it. This makes us take advantage of 'i' 4923 /// constraints when available. 4924 /// 2) Otherwise, pick the most general constraint present. This prefers 4925 /// 'm' over 'r', for example. 4926 /// 4927 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4928 const TargetLowering &TLI, 4929 SDValue Op, SelectionDAG *DAG) { 4930 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4931 unsigned BestIdx = 0; 4932 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4933 int BestGenerality = -1; 4934 4935 // Loop over the options, keeping track of the most general one. 4936 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4937 TargetLowering::ConstraintType CType = 4938 TLI.getConstraintType(OpInfo.Codes[i]); 4939 4940 // Indirect 'other' or 'immediate' constraints are not allowed. 4941 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4942 CType == TargetLowering::C_Register || 4943 CType == TargetLowering::C_RegisterClass)) 4944 continue; 4945 4946 // If this is an 'other' or 'immediate' constraint, see if the operand is 4947 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4948 // the operand is an integer in the range [0..31] we want to use I (saving a 4949 // load of a register), otherwise we must use 'r'. 4950 if ((CType == TargetLowering::C_Other || 4951 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4952 assert(OpInfo.Codes[i].size() == 1 && 4953 "Unhandled multi-letter 'other' constraint"); 4954 std::vector<SDValue> ResultOps; 4955 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4956 ResultOps, *DAG); 4957 if (!ResultOps.empty()) { 4958 BestType = CType; 4959 BestIdx = i; 4960 break; 4961 } 4962 } 4963 4964 // Things with matching constraints can only be registers, per gcc 4965 // documentation. This mainly affects "g" constraints. 4966 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4967 continue; 4968 4969 // This constraint letter is more general than the previous one, use it. 4970 int Generality = getConstraintGenerality(CType); 4971 if (Generality > BestGenerality) { 4972 BestType = CType; 4973 BestIdx = i; 4974 BestGenerality = Generality; 4975 } 4976 } 4977 4978 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4979 OpInfo.ConstraintType = BestType; 4980 } 4981 4982 /// Determines the constraint code and constraint type to use for the specific 4983 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4984 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4985 SDValue Op, 4986 SelectionDAG *DAG) const { 4987 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4988 4989 // Single-letter constraints ('r') are very common. 4990 if (OpInfo.Codes.size() == 1) { 4991 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4992 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4993 } else { 4994 ChooseConstraint(OpInfo, *this, Op, DAG); 4995 } 4996 4997 // 'X' matches anything. 4998 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4999 // Labels and constants are handled elsewhere ('X' is the only thing 5000 // that matches labels). For Functions, the type here is the type of 5001 // the result, which is not what we want to look at; leave them alone. 5002 Value *v = OpInfo.CallOperandVal; 5003 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 5004 OpInfo.CallOperandVal = v; 5005 return; 5006 } 5007 5008 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 5009 return; 5010 5011 // Otherwise, try to resolve it to something we know about by looking at 5012 // the actual operand type. 5013 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5014 OpInfo.ConstraintCode = Repl; 5015 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5016 } 5017 } 5018 } 5019 5020 /// Given an exact SDIV by a constant, create a multiplication 5021 /// with the multiplicative inverse of the constant. 5022 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5023 const SDLoc &dl, SelectionDAG &DAG, 5024 SmallVectorImpl<SDNode *> &Created) { 5025 SDValue Op0 = N->getOperand(0); 5026 SDValue Op1 = N->getOperand(1); 5027 EVT VT = N->getValueType(0); 5028 EVT SVT = VT.getScalarType(); 5029 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5030 EVT ShSVT = ShVT.getScalarType(); 5031 5032 bool UseSRA = false; 5033 SmallVector<SDValue, 16> Shifts, Factors; 5034 5035 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5036 if (C->isNullValue()) 5037 return false; 5038 APInt Divisor = C->getAPIntValue(); 5039 unsigned Shift = Divisor.countTrailingZeros(); 5040 if (Shift) { 5041 Divisor.ashrInPlace(Shift); 5042 UseSRA = true; 5043 } 5044 // Calculate the multiplicative inverse, using Newton's method. 5045 APInt t; 5046 APInt Factor = Divisor; 5047 while ((t = Divisor * Factor) != 1) 5048 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5049 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5050 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5051 return true; 5052 }; 5053 5054 // Collect all magic values from the build vector. 5055 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5056 return SDValue(); 5057 5058 SDValue Shift, Factor; 5059 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5060 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5061 Factor = DAG.getBuildVector(VT, dl, Factors); 5062 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5063 assert(Shifts.size() == 1 && Factors.size() == 1 && 5064 "Expected matchUnaryPredicate to return one element for scalable " 5065 "vectors"); 5066 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5067 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5068 } else { 5069 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5070 Shift = Shifts[0]; 5071 Factor = Factors[0]; 5072 } 5073 5074 SDValue Res = Op0; 5075 5076 // Shift the value upfront if it is even, so the LSB is one. 5077 if (UseSRA) { 5078 // TODO: For UDIV use SRL instead of SRA. 5079 SDNodeFlags Flags; 5080 Flags.setExact(true); 5081 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5082 Created.push_back(Res.getNode()); 5083 } 5084 5085 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5086 } 5087 5088 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5089 SelectionDAG &DAG, 5090 SmallVectorImpl<SDNode *> &Created) const { 5091 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5092 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5093 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5094 return SDValue(N, 0); // Lower SDIV as SDIV 5095 return SDValue(); 5096 } 5097 5098 /// Given an ISD::SDIV node expressing a divide by constant, 5099 /// return a DAG expression to select that will generate the same value by 5100 /// multiplying by a magic number. 5101 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5102 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5103 bool IsAfterLegalization, 5104 SmallVectorImpl<SDNode *> &Created) const { 5105 SDLoc dl(N); 5106 EVT VT = N->getValueType(0); 5107 EVT SVT = VT.getScalarType(); 5108 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5109 EVT ShSVT = ShVT.getScalarType(); 5110 unsigned EltBits = VT.getScalarSizeInBits(); 5111 EVT MulVT; 5112 5113 // Check to see if we can do this. 5114 // FIXME: We should be more aggressive here. 5115 if (!isTypeLegal(VT)) { 5116 // Limit this to simple scalars for now. 5117 if (VT.isVector() || !VT.isSimple()) 5118 return SDValue(); 5119 5120 // If this type will be promoted to a large enough type with a legal 5121 // multiply operation, we can go ahead and do this transform. 5122 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5123 return SDValue(); 5124 5125 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5126 if (MulVT.getSizeInBits() < (2 * EltBits) || 5127 !isOperationLegal(ISD::MUL, MulVT)) 5128 return SDValue(); 5129 } 5130 5131 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5132 if (N->getFlags().hasExact()) 5133 return BuildExactSDIV(*this, N, dl, DAG, Created); 5134 5135 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5136 5137 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5138 if (C->isNullValue()) 5139 return false; 5140 5141 const APInt &Divisor = C->getAPIntValue(); 5142 APInt::ms magics = Divisor.magic(); 5143 int NumeratorFactor = 0; 5144 int ShiftMask = -1; 5145 5146 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 5147 // If d is +1/-1, we just multiply the numerator by +1/-1. 5148 NumeratorFactor = Divisor.getSExtValue(); 5149 magics.m = 0; 5150 magics.s = 0; 5151 ShiftMask = 0; 5152 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 5153 // If d > 0 and m < 0, add the numerator. 5154 NumeratorFactor = 1; 5155 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 5156 // If d < 0 and m > 0, subtract the numerator. 5157 NumeratorFactor = -1; 5158 } 5159 5160 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 5161 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5162 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 5163 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5164 return true; 5165 }; 5166 5167 SDValue N0 = N->getOperand(0); 5168 SDValue N1 = N->getOperand(1); 5169 5170 // Collect the shifts / magic values from each element. 5171 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5172 return SDValue(); 5173 5174 SDValue MagicFactor, Factor, Shift, ShiftMask; 5175 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5176 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5177 Factor = DAG.getBuildVector(VT, dl, Factors); 5178 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5179 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5180 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5181 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5182 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5183 "Expected matchUnaryPredicate to return one element for scalable " 5184 "vectors"); 5185 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5186 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5187 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5188 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5189 } else { 5190 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5191 MagicFactor = MagicFactors[0]; 5192 Factor = Factors[0]; 5193 Shift = Shifts[0]; 5194 ShiftMask = ShiftMasks[0]; 5195 } 5196 5197 // Multiply the numerator (operand 0) by the magic value. 5198 // FIXME: We should support doing a MUL in a wider type. 5199 auto GetMULHS = [&](SDValue X, SDValue Y) { 5200 // If the type isn't legal, use a wider mul of the the type calculated 5201 // earlier. 5202 if (!isTypeLegal(VT)) { 5203 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5204 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5205 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5206 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5207 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5208 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5209 } 5210 5211 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5212 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5213 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5214 SDValue LoHi = 5215 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5216 return SDValue(LoHi.getNode(), 1); 5217 } 5218 return SDValue(); 5219 }; 5220 5221 SDValue Q = GetMULHS(N0, MagicFactor); 5222 if (!Q) 5223 return SDValue(); 5224 5225 Created.push_back(Q.getNode()); 5226 5227 // (Optionally) Add/subtract the numerator using Factor. 5228 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5229 Created.push_back(Factor.getNode()); 5230 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5231 Created.push_back(Q.getNode()); 5232 5233 // Shift right algebraic by shift value. 5234 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5235 Created.push_back(Q.getNode()); 5236 5237 // Extract the sign bit, mask it and add it to the quotient. 5238 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5239 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5240 Created.push_back(T.getNode()); 5241 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5242 Created.push_back(T.getNode()); 5243 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5244 } 5245 5246 /// Given an ISD::UDIV node expressing a divide by constant, 5247 /// return a DAG expression to select that will generate the same value by 5248 /// multiplying by a magic number. 5249 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5250 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5251 bool IsAfterLegalization, 5252 SmallVectorImpl<SDNode *> &Created) const { 5253 SDLoc dl(N); 5254 EVT VT = N->getValueType(0); 5255 EVT SVT = VT.getScalarType(); 5256 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5257 EVT ShSVT = ShVT.getScalarType(); 5258 unsigned EltBits = VT.getScalarSizeInBits(); 5259 EVT MulVT; 5260 5261 // Check to see if we can do this. 5262 // FIXME: We should be more aggressive here. 5263 if (!isTypeLegal(VT)) { 5264 // Limit this to simple scalars for now. 5265 if (VT.isVector() || !VT.isSimple()) 5266 return SDValue(); 5267 5268 // If this type will be promoted to a large enough type with a legal 5269 // multiply operation, we can go ahead and do this transform. 5270 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5271 return SDValue(); 5272 5273 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5274 if (MulVT.getSizeInBits() < (2 * EltBits) || 5275 !isOperationLegal(ISD::MUL, MulVT)) 5276 return SDValue(); 5277 } 5278 5279 bool UseNPQ = false; 5280 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5281 5282 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5283 if (C->isNullValue()) 5284 return false; 5285 // FIXME: We should use a narrower constant when the upper 5286 // bits are known to be zero. 5287 const APInt& Divisor = C->getAPIntValue(); 5288 APInt::mu magics = Divisor.magicu(); 5289 unsigned PreShift = 0, PostShift = 0; 5290 5291 // If the divisor is even, we can avoid using the expensive fixup by 5292 // shifting the divided value upfront. 5293 if (magics.a != 0 && !Divisor[0]) { 5294 PreShift = Divisor.countTrailingZeros(); 5295 // Get magic number for the shifted divisor. 5296 magics = Divisor.lshr(PreShift).magicu(PreShift); 5297 assert(magics.a == 0 && "Should use cheap fixup now"); 5298 } 5299 5300 APInt Magic = magics.m; 5301 5302 unsigned SelNPQ; 5303 if (magics.a == 0 || Divisor.isOneValue()) { 5304 assert(magics.s < Divisor.getBitWidth() && 5305 "We shouldn't generate an undefined shift!"); 5306 PostShift = magics.s; 5307 SelNPQ = false; 5308 } else { 5309 PostShift = magics.s - 1; 5310 SelNPQ = true; 5311 } 5312 5313 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5314 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5315 NPQFactors.push_back( 5316 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5317 : APInt::getNullValue(EltBits), 5318 dl, SVT)); 5319 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5320 UseNPQ |= SelNPQ; 5321 return true; 5322 }; 5323 5324 SDValue N0 = N->getOperand(0); 5325 SDValue N1 = N->getOperand(1); 5326 5327 // Collect the shifts/magic values from each element. 5328 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5329 return SDValue(); 5330 5331 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5332 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5333 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5334 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5335 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5336 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5337 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5338 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5339 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5340 "Expected matchUnaryPredicate to return one for scalable vectors"); 5341 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5342 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5343 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5344 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5345 } else { 5346 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5347 PreShift = PreShifts[0]; 5348 MagicFactor = MagicFactors[0]; 5349 PostShift = PostShifts[0]; 5350 } 5351 5352 SDValue Q = N0; 5353 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5354 Created.push_back(Q.getNode()); 5355 5356 // FIXME: We should support doing a MUL in a wider type. 5357 auto GetMULHU = [&](SDValue X, SDValue Y) { 5358 // If the type isn't legal, use a wider mul of the the type calculated 5359 // earlier. 5360 if (!isTypeLegal(VT)) { 5361 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5362 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5363 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5364 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5365 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5366 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5367 } 5368 5369 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5370 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5371 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5372 SDValue LoHi = 5373 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5374 return SDValue(LoHi.getNode(), 1); 5375 } 5376 return SDValue(); // No mulhu or equivalent 5377 }; 5378 5379 // Multiply the numerator (operand 0) by the magic value. 5380 Q = GetMULHU(Q, MagicFactor); 5381 if (!Q) 5382 return SDValue(); 5383 5384 Created.push_back(Q.getNode()); 5385 5386 if (UseNPQ) { 5387 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5388 Created.push_back(NPQ.getNode()); 5389 5390 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5391 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5392 if (VT.isVector()) 5393 NPQ = GetMULHU(NPQ, NPQFactor); 5394 else 5395 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5396 5397 Created.push_back(NPQ.getNode()); 5398 5399 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5400 Created.push_back(Q.getNode()); 5401 } 5402 5403 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5404 Created.push_back(Q.getNode()); 5405 5406 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5407 5408 SDValue One = DAG.getConstant(1, dl, VT); 5409 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5410 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5411 } 5412 5413 /// If all values in Values that *don't* match the predicate are same 'splat' 5414 /// value, then replace all values with that splat value. 5415 /// Else, if AlternativeReplacement was provided, then replace all values that 5416 /// do match predicate with AlternativeReplacement value. 5417 static void 5418 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5419 std::function<bool(SDValue)> Predicate, 5420 SDValue AlternativeReplacement = SDValue()) { 5421 SDValue Replacement; 5422 // Is there a value for which the Predicate does *NOT* match? What is it? 5423 auto SplatValue = llvm::find_if_not(Values, Predicate); 5424 if (SplatValue != Values.end()) { 5425 // Does Values consist only of SplatValue's and values matching Predicate? 5426 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5427 return Value == *SplatValue || Predicate(Value); 5428 })) // Then we shall replace values matching predicate with SplatValue. 5429 Replacement = *SplatValue; 5430 } 5431 if (!Replacement) { 5432 // Oops, we did not find the "baseline" splat value. 5433 if (!AlternativeReplacement) 5434 return; // Nothing to do. 5435 // Let's replace with provided value then. 5436 Replacement = AlternativeReplacement; 5437 } 5438 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5439 } 5440 5441 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5442 /// where the divisor is constant and the comparison target is zero, 5443 /// return a DAG expression that will generate the same comparison result 5444 /// using only multiplications, additions and shifts/rotations. 5445 /// Ref: "Hacker's Delight" 10-17. 5446 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5447 SDValue CompTargetNode, 5448 ISD::CondCode Cond, 5449 DAGCombinerInfo &DCI, 5450 const SDLoc &DL) const { 5451 SmallVector<SDNode *, 5> Built; 5452 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5453 DCI, DL, Built)) { 5454 for (SDNode *N : Built) 5455 DCI.AddToWorklist(N); 5456 return Folded; 5457 } 5458 5459 return SDValue(); 5460 } 5461 5462 SDValue 5463 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5464 SDValue CompTargetNode, ISD::CondCode Cond, 5465 DAGCombinerInfo &DCI, const SDLoc &DL, 5466 SmallVectorImpl<SDNode *> &Created) const { 5467 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5468 // - D must be constant, with D = D0 * 2^K where D0 is odd 5469 // - P is the multiplicative inverse of D0 modulo 2^W 5470 // - Q = floor(((2^W) - 1) / D) 5471 // where W is the width of the common type of N and D. 5472 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5473 "Only applicable for (in)equality comparisons."); 5474 5475 SelectionDAG &DAG = DCI.DAG; 5476 5477 EVT VT = REMNode.getValueType(); 5478 EVT SVT = VT.getScalarType(); 5479 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5480 EVT ShSVT = ShVT.getScalarType(); 5481 5482 // If MUL is unavailable, we cannot proceed in any case. 5483 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5484 return SDValue(); 5485 5486 bool ComparingWithAllZeros = true; 5487 bool AllComparisonsWithNonZerosAreTautological = true; 5488 bool HadTautologicalLanes = false; 5489 bool AllLanesAreTautological = true; 5490 bool HadEvenDivisor = false; 5491 bool AllDivisorsArePowerOfTwo = true; 5492 bool HadTautologicalInvertedLanes = false; 5493 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5494 5495 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5496 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5497 if (CDiv->isNullValue()) 5498 return false; 5499 5500 const APInt &D = CDiv->getAPIntValue(); 5501 const APInt &Cmp = CCmp->getAPIntValue(); 5502 5503 ComparingWithAllZeros &= Cmp.isNullValue(); 5504 5505 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5506 // if C2 is not less than C1, the comparison is always false. 5507 // But we will only be able to produce the comparison that will give the 5508 // opposive tautological answer. So this lane would need to be fixed up. 5509 bool TautologicalInvertedLane = D.ule(Cmp); 5510 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5511 5512 // If all lanes are tautological (either all divisors are ones, or divisor 5513 // is not greater than the constant we are comparing with), 5514 // we will prefer to avoid the fold. 5515 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5516 HadTautologicalLanes |= TautologicalLane; 5517 AllLanesAreTautological &= TautologicalLane; 5518 5519 // If we are comparing with non-zero, we need'll need to subtract said 5520 // comparison value from the LHS. But there is no point in doing that if 5521 // every lane where we are comparing with non-zero is tautological.. 5522 if (!Cmp.isNullValue()) 5523 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5524 5525 // Decompose D into D0 * 2^K 5526 unsigned K = D.countTrailingZeros(); 5527 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5528 APInt D0 = D.lshr(K); 5529 5530 // D is even if it has trailing zeros. 5531 HadEvenDivisor |= (K != 0); 5532 // D is a power-of-two if D0 is one. 5533 // If all divisors are power-of-two, we will prefer to avoid the fold. 5534 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5535 5536 // P = inv(D0, 2^W) 5537 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5538 unsigned W = D.getBitWidth(); 5539 APInt P = D0.zext(W + 1) 5540 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5541 .trunc(W); 5542 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5543 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5544 5545 // Q = floor((2^W - 1) u/ D) 5546 // R = ((2^W - 1) u% D) 5547 APInt Q, R; 5548 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5549 5550 // If we are comparing with zero, then that comparison constant is okay, 5551 // else it may need to be one less than that. 5552 if (Cmp.ugt(R)) 5553 Q -= 1; 5554 5555 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5556 "We are expecting that K is always less than all-ones for ShSVT"); 5557 5558 // If the lane is tautological the result can be constant-folded. 5559 if (TautologicalLane) { 5560 // Set P and K amount to a bogus values so we can try to splat them. 5561 P = 0; 5562 K = -1; 5563 // And ensure that comparison constant is tautological, 5564 // it will always compare true/false. 5565 Q = -1; 5566 } 5567 5568 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5569 KAmts.push_back( 5570 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5571 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5572 return true; 5573 }; 5574 5575 SDValue N = REMNode.getOperand(0); 5576 SDValue D = REMNode.getOperand(1); 5577 5578 // Collect the values from each element. 5579 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5580 return SDValue(); 5581 5582 // If all lanes are tautological, the result can be constant-folded. 5583 if (AllLanesAreTautological) 5584 return SDValue(); 5585 5586 // If this is a urem by a powers-of-two, avoid the fold since it can be 5587 // best implemented as a bit test. 5588 if (AllDivisorsArePowerOfTwo) 5589 return SDValue(); 5590 5591 SDValue PVal, KVal, QVal; 5592 if (VT.isVector()) { 5593 if (HadTautologicalLanes) { 5594 // Try to turn PAmts into a splat, since we don't care about the values 5595 // that are currently '0'. If we can't, just keep '0'`s. 5596 turnVectorIntoSplatVector(PAmts, isNullConstant); 5597 // Try to turn KAmts into a splat, since we don't care about the values 5598 // that are currently '-1'. If we can't, change them to '0'`s. 5599 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5600 DAG.getConstant(0, DL, ShSVT)); 5601 } 5602 5603 PVal = DAG.getBuildVector(VT, DL, PAmts); 5604 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5605 QVal = DAG.getBuildVector(VT, DL, QAmts); 5606 } else { 5607 PVal = PAmts[0]; 5608 KVal = KAmts[0]; 5609 QVal = QAmts[0]; 5610 } 5611 5612 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5613 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5614 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5615 assert(CompTargetNode.getValueType() == N.getValueType() && 5616 "Expecting that the types on LHS and RHS of comparisons match."); 5617 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5618 } 5619 5620 // (mul N, P) 5621 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5622 Created.push_back(Op0.getNode()); 5623 5624 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5625 // divisors as a performance improvement, since rotating by 0 is a no-op. 5626 if (HadEvenDivisor) { 5627 // We need ROTR to do this. 5628 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5629 return SDValue(); 5630 SDNodeFlags Flags; 5631 Flags.setExact(true); 5632 // UREM: (rotr (mul N, P), K) 5633 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5634 Created.push_back(Op0.getNode()); 5635 } 5636 5637 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5638 SDValue NewCC = 5639 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5640 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5641 if (!HadTautologicalInvertedLanes) 5642 return NewCC; 5643 5644 // If any lanes previously compared always-false, the NewCC will give 5645 // always-true result for them, so we need to fixup those lanes. 5646 // Or the other way around for inequality predicate. 5647 assert(VT.isVector() && "Can/should only get here for vectors."); 5648 Created.push_back(NewCC.getNode()); 5649 5650 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5651 // if C2 is not less than C1, the comparison is always false. 5652 // But we have produced the comparison that will give the 5653 // opposive tautological answer. So these lanes would need to be fixed up. 5654 SDValue TautologicalInvertedChannels = 5655 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5656 Created.push_back(TautologicalInvertedChannels.getNode()); 5657 5658 // NOTE: we avoid letting illegal types through even if we're before legalize 5659 // ops – legalization has a hard time producing good code for this. 5660 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5661 // If we have a vector select, let's replace the comparison results in the 5662 // affected lanes with the correct tautological result. 5663 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5664 DL, SETCCVT, SETCCVT); 5665 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5666 Replacement, NewCC); 5667 } 5668 5669 // Else, we can just invert the comparison result in the appropriate lanes. 5670 // 5671 // NOTE: see the note above VSELECT above. 5672 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5673 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5674 TautologicalInvertedChannels); 5675 5676 return SDValue(); // Don't know how to lower. 5677 } 5678 5679 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5680 /// where the divisor is constant and the comparison target is zero, 5681 /// return a DAG expression that will generate the same comparison result 5682 /// using only multiplications, additions and shifts/rotations. 5683 /// Ref: "Hacker's Delight" 10-17. 5684 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5685 SDValue CompTargetNode, 5686 ISD::CondCode Cond, 5687 DAGCombinerInfo &DCI, 5688 const SDLoc &DL) const { 5689 SmallVector<SDNode *, 7> Built; 5690 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5691 DCI, DL, Built)) { 5692 assert(Built.size() <= 7 && "Max size prediction failed."); 5693 for (SDNode *N : Built) 5694 DCI.AddToWorklist(N); 5695 return Folded; 5696 } 5697 5698 return SDValue(); 5699 } 5700 5701 SDValue 5702 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5703 SDValue CompTargetNode, ISD::CondCode Cond, 5704 DAGCombinerInfo &DCI, const SDLoc &DL, 5705 SmallVectorImpl<SDNode *> &Created) const { 5706 // Fold: 5707 // (seteq/ne (srem N, D), 0) 5708 // To: 5709 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5710 // 5711 // - D must be constant, with D = D0 * 2^K where D0 is odd 5712 // - P is the multiplicative inverse of D0 modulo 2^W 5713 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5714 // - Q = floor((2 * A) / (2^K)) 5715 // where W is the width of the common type of N and D. 5716 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5717 "Only applicable for (in)equality comparisons."); 5718 5719 SelectionDAG &DAG = DCI.DAG; 5720 5721 EVT VT = REMNode.getValueType(); 5722 EVT SVT = VT.getScalarType(); 5723 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5724 EVT ShSVT = ShVT.getScalarType(); 5725 5726 // If we are after ops legalization, and MUL is unavailable, we can not 5727 // proceed. 5728 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5729 return SDValue(); 5730 5731 // TODO: Could support comparing with non-zero too. 5732 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5733 if (!CompTarget || !CompTarget->isNullValue()) 5734 return SDValue(); 5735 5736 bool HadIntMinDivisor = false; 5737 bool HadOneDivisor = false; 5738 bool AllDivisorsAreOnes = true; 5739 bool HadEvenDivisor = false; 5740 bool NeedToApplyOffset = false; 5741 bool AllDivisorsArePowerOfTwo = true; 5742 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5743 5744 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5745 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5746 if (C->isNullValue()) 5747 return false; 5748 5749 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5750 5751 // WARNING: this fold is only valid for positive divisors! 5752 APInt D = C->getAPIntValue(); 5753 if (D.isNegative()) 5754 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5755 5756 HadIntMinDivisor |= D.isMinSignedValue(); 5757 5758 // If all divisors are ones, we will prefer to avoid the fold. 5759 HadOneDivisor |= D.isOneValue(); 5760 AllDivisorsAreOnes &= D.isOneValue(); 5761 5762 // Decompose D into D0 * 2^K 5763 unsigned K = D.countTrailingZeros(); 5764 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5765 APInt D0 = D.lshr(K); 5766 5767 if (!D.isMinSignedValue()) { 5768 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5769 // we don't care about this lane in this fold, we'll special-handle it. 5770 HadEvenDivisor |= (K != 0); 5771 } 5772 5773 // D is a power-of-two if D0 is one. This includes INT_MIN. 5774 // If all divisors are power-of-two, we will prefer to avoid the fold. 5775 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5776 5777 // P = inv(D0, 2^W) 5778 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5779 unsigned W = D.getBitWidth(); 5780 APInt P = D0.zext(W + 1) 5781 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5782 .trunc(W); 5783 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5784 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5785 5786 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5787 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5788 A.clearLowBits(K); 5789 5790 if (!D.isMinSignedValue()) { 5791 // If divisor INT_MIN, then we don't care about this lane in this fold, 5792 // we'll special-handle it. 5793 NeedToApplyOffset |= A != 0; 5794 } 5795 5796 // Q = floor((2 * A) / (2^K)) 5797 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5798 5799 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5800 "We are expecting that A is always less than all-ones for SVT"); 5801 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5802 "We are expecting that K is always less than all-ones for ShSVT"); 5803 5804 // If the divisor is 1 the result can be constant-folded. Likewise, we 5805 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5806 if (D.isOneValue()) { 5807 // Set P, A and K to a bogus values so we can try to splat them. 5808 P = 0; 5809 A = -1; 5810 K = -1; 5811 5812 // x ?% 1 == 0 <--> true <--> x u<= -1 5813 Q = -1; 5814 } 5815 5816 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5817 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5818 KAmts.push_back( 5819 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5820 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5821 return true; 5822 }; 5823 5824 SDValue N = REMNode.getOperand(0); 5825 SDValue D = REMNode.getOperand(1); 5826 5827 // Collect the values from each element. 5828 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5829 return SDValue(); 5830 5831 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5832 if (AllDivisorsAreOnes) 5833 return SDValue(); 5834 5835 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5836 // since it can be best implemented as a bit test. 5837 if (AllDivisorsArePowerOfTwo) 5838 return SDValue(); 5839 5840 SDValue PVal, AVal, KVal, QVal; 5841 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5842 if (HadOneDivisor) { 5843 // Try to turn PAmts into a splat, since we don't care about the values 5844 // that are currently '0'. If we can't, just keep '0'`s. 5845 turnVectorIntoSplatVector(PAmts, isNullConstant); 5846 // Try to turn AAmts into a splat, since we don't care about the 5847 // values that are currently '-1'. If we can't, change them to '0'`s. 5848 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5849 DAG.getConstant(0, DL, SVT)); 5850 // Try to turn KAmts into a splat, since we don't care about the values 5851 // that are currently '-1'. If we can't, change them to '0'`s. 5852 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5853 DAG.getConstant(0, DL, ShSVT)); 5854 } 5855 5856 PVal = DAG.getBuildVector(VT, DL, PAmts); 5857 AVal = DAG.getBuildVector(VT, DL, AAmts); 5858 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5859 QVal = DAG.getBuildVector(VT, DL, QAmts); 5860 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5861 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 5862 QAmts.size() == 1 && 5863 "Expected matchUnaryPredicate to return one element for scalable " 5864 "vectors"); 5865 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5866 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 5867 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5868 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5869 } else { 5870 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 5871 PVal = PAmts[0]; 5872 AVal = AAmts[0]; 5873 KVal = KAmts[0]; 5874 QVal = QAmts[0]; 5875 } 5876 5877 // (mul N, P) 5878 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5879 Created.push_back(Op0.getNode()); 5880 5881 if (NeedToApplyOffset) { 5882 // We need ADD to do this. 5883 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 5884 return SDValue(); 5885 5886 // (add (mul N, P), A) 5887 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5888 Created.push_back(Op0.getNode()); 5889 } 5890 5891 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5892 // divisors as a performance improvement, since rotating by 0 is a no-op. 5893 if (HadEvenDivisor) { 5894 // We need ROTR to do this. 5895 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5896 return SDValue(); 5897 SDNodeFlags Flags; 5898 Flags.setExact(true); 5899 // SREM: (rotr (add (mul N, P), A), K) 5900 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5901 Created.push_back(Op0.getNode()); 5902 } 5903 5904 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5905 SDValue Fold = 5906 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5907 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5908 5909 // If we didn't have lanes with INT_MIN divisor, then we're done. 5910 if (!HadIntMinDivisor) 5911 return Fold; 5912 5913 // That fold is only valid for positive divisors. Which effectively means, 5914 // it is invalid for INT_MIN divisors. So if we have such a lane, 5915 // we must fix-up results for said lanes. 5916 assert(VT.isVector() && "Can/should only get here for vectors."); 5917 5918 // NOTE: we avoid letting illegal types through even if we're before legalize 5919 // ops – legalization has a hard time producing good code for the code that 5920 // follows. 5921 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5922 !isOperationLegalOrCustom(ISD::AND, VT) || 5923 !isOperationLegalOrCustom(Cond, VT) || 5924 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5925 return SDValue(); 5926 5927 Created.push_back(Fold.getNode()); 5928 5929 SDValue IntMin = DAG.getConstant( 5930 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5931 SDValue IntMax = DAG.getConstant( 5932 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5933 SDValue Zero = 5934 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5935 5936 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5937 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5938 Created.push_back(DivisorIsIntMin.getNode()); 5939 5940 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5941 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5942 Created.push_back(Masked.getNode()); 5943 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5944 Created.push_back(MaskedIsZero.getNode()); 5945 5946 // To produce final result we need to blend 2 vectors: 'SetCC' and 5947 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5948 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5949 // constant-folded, select can get lowered to a shuffle with constant mask. 5950 SDValue Blended = 5951 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5952 5953 return Blended; 5954 } 5955 5956 bool TargetLowering:: 5957 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5958 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5959 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5960 "be a constant integer"); 5961 return true; 5962 } 5963 5964 return false; 5965 } 5966 5967 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 5968 const DenormalMode &Mode) const { 5969 SDLoc DL(Op); 5970 EVT VT = Op.getValueType(); 5971 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5972 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 5973 // Testing it with denormal inputs to avoid wrong estimate. 5974 if (Mode.Input == DenormalMode::IEEE) { 5975 // This is specifically a check for the handling of denormal inputs, 5976 // not the result. 5977 5978 // Test = fabs(X) < SmallestNormal 5979 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 5980 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 5981 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 5982 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 5983 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 5984 } 5985 // Test = X == 0.0 5986 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 5987 } 5988 5989 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5990 bool LegalOps, bool OptForSize, 5991 NegatibleCost &Cost, 5992 unsigned Depth) const { 5993 // fneg is removable even if it has multiple uses. 5994 if (Op.getOpcode() == ISD::FNEG) { 5995 Cost = NegatibleCost::Cheaper; 5996 return Op.getOperand(0); 5997 } 5998 5999 // Don't recurse exponentially. 6000 if (Depth > SelectionDAG::MaxRecursionDepth) 6001 return SDValue(); 6002 6003 // Pre-increment recursion depth for use in recursive calls. 6004 ++Depth; 6005 const SDNodeFlags Flags = Op->getFlags(); 6006 const TargetOptions &Options = DAG.getTarget().Options; 6007 EVT VT = Op.getValueType(); 6008 unsigned Opcode = Op.getOpcode(); 6009 6010 // Don't allow anything with multiple uses unless we know it is free. 6011 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6012 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6013 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6014 if (!IsFreeExtend) 6015 return SDValue(); 6016 } 6017 6018 auto RemoveDeadNode = [&](SDValue N) { 6019 if (N && N.getNode()->use_empty()) 6020 DAG.RemoveDeadNode(N.getNode()); 6021 }; 6022 6023 SDLoc DL(Op); 6024 6025 // Because getNegatedExpression can delete nodes we need a handle to keep 6026 // temporary nodes alive in case the recursion manages to create an identical 6027 // node. 6028 std::list<HandleSDNode> Handles; 6029 6030 switch (Opcode) { 6031 case ISD::ConstantFP: { 6032 // Don't invert constant FP values after legalization unless the target says 6033 // the negated constant is legal. 6034 bool IsOpLegal = 6035 isOperationLegal(ISD::ConstantFP, VT) || 6036 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6037 OptForSize); 6038 6039 if (LegalOps && !IsOpLegal) 6040 break; 6041 6042 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6043 V.changeSign(); 6044 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6045 6046 // If we already have the use of the negated floating constant, it is free 6047 // to negate it even it has multiple uses. 6048 if (!Op.hasOneUse() && CFP.use_empty()) 6049 break; 6050 Cost = NegatibleCost::Neutral; 6051 return CFP; 6052 } 6053 case ISD::BUILD_VECTOR: { 6054 // Only permit BUILD_VECTOR of constants. 6055 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6056 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6057 })) 6058 break; 6059 6060 bool IsOpLegal = 6061 (isOperationLegal(ISD::ConstantFP, VT) && 6062 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6063 llvm::all_of(Op->op_values(), [&](SDValue N) { 6064 return N.isUndef() || 6065 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6066 OptForSize); 6067 }); 6068 6069 if (LegalOps && !IsOpLegal) 6070 break; 6071 6072 SmallVector<SDValue, 4> Ops; 6073 for (SDValue C : Op->op_values()) { 6074 if (C.isUndef()) { 6075 Ops.push_back(C); 6076 continue; 6077 } 6078 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6079 V.changeSign(); 6080 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6081 } 6082 Cost = NegatibleCost::Neutral; 6083 return DAG.getBuildVector(VT, DL, Ops); 6084 } 6085 case ISD::FADD: { 6086 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6087 break; 6088 6089 // After operation legalization, it might not be legal to create new FSUBs. 6090 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6091 break; 6092 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6093 6094 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6095 NegatibleCost CostX = NegatibleCost::Expensive; 6096 SDValue NegX = 6097 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6098 // Prevent this node from being deleted by the next call. 6099 if (NegX) 6100 Handles.emplace_back(NegX); 6101 6102 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6103 NegatibleCost CostY = NegatibleCost::Expensive; 6104 SDValue NegY = 6105 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6106 6107 // We're done with the handles. 6108 Handles.clear(); 6109 6110 // Negate the X if its cost is less or equal than Y. 6111 if (NegX && (CostX <= CostY)) { 6112 Cost = CostX; 6113 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6114 if (NegY != N) 6115 RemoveDeadNode(NegY); 6116 return N; 6117 } 6118 6119 // Negate the Y if it is not expensive. 6120 if (NegY) { 6121 Cost = CostY; 6122 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6123 if (NegX != N) 6124 RemoveDeadNode(NegX); 6125 return N; 6126 } 6127 break; 6128 } 6129 case ISD::FSUB: { 6130 // We can't turn -(A-B) into B-A when we honor signed zeros. 6131 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6132 break; 6133 6134 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6135 // fold (fneg (fsub 0, Y)) -> Y 6136 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6137 if (C->isZero()) { 6138 Cost = NegatibleCost::Cheaper; 6139 return Y; 6140 } 6141 6142 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6143 Cost = NegatibleCost::Neutral; 6144 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6145 } 6146 case ISD::FMUL: 6147 case ISD::FDIV: { 6148 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6149 6150 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6151 NegatibleCost CostX = NegatibleCost::Expensive; 6152 SDValue NegX = 6153 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6154 // Prevent this node from being deleted by the next call. 6155 if (NegX) 6156 Handles.emplace_back(NegX); 6157 6158 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6159 NegatibleCost CostY = NegatibleCost::Expensive; 6160 SDValue NegY = 6161 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6162 6163 // We're done with the handles. 6164 Handles.clear(); 6165 6166 // Negate the X if its cost is less or equal than Y. 6167 if (NegX && (CostX <= CostY)) { 6168 Cost = CostX; 6169 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6170 if (NegY != N) 6171 RemoveDeadNode(NegY); 6172 return N; 6173 } 6174 6175 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6176 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6177 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6178 break; 6179 6180 // Negate the Y if it is not expensive. 6181 if (NegY) { 6182 Cost = CostY; 6183 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6184 if (NegX != N) 6185 RemoveDeadNode(NegX); 6186 return N; 6187 } 6188 break; 6189 } 6190 case ISD::FMA: 6191 case ISD::FMAD: { 6192 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6193 break; 6194 6195 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6196 NegatibleCost CostZ = NegatibleCost::Expensive; 6197 SDValue NegZ = 6198 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6199 // Give up if fail to negate the Z. 6200 if (!NegZ) 6201 break; 6202 6203 // Prevent this node from being deleted by the next two calls. 6204 Handles.emplace_back(NegZ); 6205 6206 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6207 NegatibleCost CostX = NegatibleCost::Expensive; 6208 SDValue NegX = 6209 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6210 // Prevent this node from being deleted by the next call. 6211 if (NegX) 6212 Handles.emplace_back(NegX); 6213 6214 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6215 NegatibleCost CostY = NegatibleCost::Expensive; 6216 SDValue NegY = 6217 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6218 6219 // We're done with the handles. 6220 Handles.clear(); 6221 6222 // Negate the X if its cost is less or equal than Y. 6223 if (NegX && (CostX <= CostY)) { 6224 Cost = std::min(CostX, CostZ); 6225 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6226 if (NegY != N) 6227 RemoveDeadNode(NegY); 6228 return N; 6229 } 6230 6231 // Negate the Y if it is not expensive. 6232 if (NegY) { 6233 Cost = std::min(CostY, CostZ); 6234 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6235 if (NegX != N) 6236 RemoveDeadNode(NegX); 6237 return N; 6238 } 6239 break; 6240 } 6241 6242 case ISD::FP_EXTEND: 6243 case ISD::FSIN: 6244 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6245 OptForSize, Cost, Depth)) 6246 return DAG.getNode(Opcode, DL, VT, NegV); 6247 break; 6248 case ISD::FP_ROUND: 6249 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6250 OptForSize, Cost, Depth)) 6251 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6252 break; 6253 } 6254 6255 return SDValue(); 6256 } 6257 6258 //===----------------------------------------------------------------------===// 6259 // Legalization Utilities 6260 //===----------------------------------------------------------------------===// 6261 6262 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6263 SDValue LHS, SDValue RHS, 6264 SmallVectorImpl<SDValue> &Result, 6265 EVT HiLoVT, SelectionDAG &DAG, 6266 MulExpansionKind Kind, SDValue LL, 6267 SDValue LH, SDValue RL, SDValue RH) const { 6268 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6269 Opcode == ISD::SMUL_LOHI); 6270 6271 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6272 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6273 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6274 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6275 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6276 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6277 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6278 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6279 6280 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6281 return false; 6282 6283 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6284 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6285 6286 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6287 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6288 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6289 6290 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6291 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6292 bool Signed) -> bool { 6293 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6294 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6295 Hi = SDValue(Lo.getNode(), 1); 6296 return true; 6297 } 6298 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6299 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6300 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6301 return true; 6302 } 6303 return false; 6304 }; 6305 6306 SDValue Lo, Hi; 6307 6308 if (!LL.getNode() && !RL.getNode() && 6309 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6310 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6311 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6312 } 6313 6314 if (!LL.getNode()) 6315 return false; 6316 6317 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6318 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6319 DAG.MaskedValueIsZero(RHS, HighMask)) { 6320 // The inputs are both zero-extended. 6321 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6322 Result.push_back(Lo); 6323 Result.push_back(Hi); 6324 if (Opcode != ISD::MUL) { 6325 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6326 Result.push_back(Zero); 6327 Result.push_back(Zero); 6328 } 6329 return true; 6330 } 6331 } 6332 6333 if (!VT.isVector() && Opcode == ISD::MUL && 6334 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6335 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6336 // The input values are both sign-extended. 6337 // TODO non-MUL case? 6338 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6339 Result.push_back(Lo); 6340 Result.push_back(Hi); 6341 return true; 6342 } 6343 } 6344 6345 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6346 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6347 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 6348 // FIXME getShiftAmountTy does not always return a sensible result when VT 6349 // is an illegal type, and so the type may be too small to fit the shift 6350 // amount. Override it with i32. The shift will have to be legalized. 6351 ShiftAmountTy = MVT::i32; 6352 } 6353 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6354 6355 if (!LH.getNode() && !RH.getNode() && 6356 isOperationLegalOrCustom(ISD::SRL, VT) && 6357 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6358 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6359 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6360 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6361 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6362 } 6363 6364 if (!LH.getNode()) 6365 return false; 6366 6367 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6368 return false; 6369 6370 Result.push_back(Lo); 6371 6372 if (Opcode == ISD::MUL) { 6373 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6374 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6375 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6376 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6377 Result.push_back(Hi); 6378 return true; 6379 } 6380 6381 // Compute the full width result. 6382 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6383 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6384 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6385 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6386 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6387 }; 6388 6389 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6390 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6391 return false; 6392 6393 // This is effectively the add part of a multiply-add of half-sized operands, 6394 // so it cannot overflow. 6395 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6396 6397 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6398 return false; 6399 6400 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6401 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6402 6403 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6404 isOperationLegalOrCustom(ISD::ADDE, VT)); 6405 if (UseGlue) 6406 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6407 Merge(Lo, Hi)); 6408 else 6409 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6410 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6411 6412 SDValue Carry = Next.getValue(1); 6413 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6414 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6415 6416 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6417 return false; 6418 6419 if (UseGlue) 6420 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6421 Carry); 6422 else 6423 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6424 Zero, Carry); 6425 6426 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6427 6428 if (Opcode == ISD::SMUL_LOHI) { 6429 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6430 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6431 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6432 6433 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6434 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6435 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6436 } 6437 6438 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6439 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6440 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6441 return true; 6442 } 6443 6444 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6445 SelectionDAG &DAG, MulExpansionKind Kind, 6446 SDValue LL, SDValue LH, SDValue RL, 6447 SDValue RH) const { 6448 SmallVector<SDValue, 2> Result; 6449 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6450 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6451 DAG, Kind, LL, LH, RL, RH); 6452 if (Ok) { 6453 assert(Result.size() == 2); 6454 Lo = Result[0]; 6455 Hi = Result[1]; 6456 } 6457 return Ok; 6458 } 6459 6460 // Check that (every element of) Z is undef or not an exact multiple of BW. 6461 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6462 return ISD::matchUnaryPredicate( 6463 Z, 6464 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6465 true); 6466 } 6467 6468 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6469 SelectionDAG &DAG) const { 6470 EVT VT = Node->getValueType(0); 6471 6472 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6473 !isOperationLegalOrCustom(ISD::SRL, VT) || 6474 !isOperationLegalOrCustom(ISD::SUB, VT) || 6475 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6476 return false; 6477 6478 SDValue X = Node->getOperand(0); 6479 SDValue Y = Node->getOperand(1); 6480 SDValue Z = Node->getOperand(2); 6481 6482 unsigned BW = VT.getScalarSizeInBits(); 6483 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6484 SDLoc DL(SDValue(Node, 0)); 6485 6486 EVT ShVT = Z.getValueType(); 6487 6488 // If a funnel shift in the other direction is more supported, use it. 6489 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6490 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6491 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6492 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6493 // fshl X, Y, Z -> fshr X, Y, -Z 6494 // fshr X, Y, Z -> fshl X, Y, -Z 6495 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6496 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6497 } else { 6498 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6499 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6500 SDValue One = DAG.getConstant(1, DL, ShVT); 6501 if (IsFSHL) { 6502 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6503 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6504 } else { 6505 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6506 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6507 } 6508 Z = DAG.getNOT(DL, Z, ShVT); 6509 } 6510 Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6511 return true; 6512 } 6513 6514 SDValue ShX, ShY; 6515 SDValue ShAmt, InvShAmt; 6516 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6517 // fshl: X << C | Y >> (BW - C) 6518 // fshr: X << (BW - C) | Y >> C 6519 // where C = Z % BW is not zero 6520 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6521 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6522 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6523 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6524 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6525 } else { 6526 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6527 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6528 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6529 if (isPowerOf2_32(BW)) { 6530 // Z % BW -> Z & (BW - 1) 6531 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6532 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6533 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6534 } else { 6535 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6536 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6537 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6538 } 6539 6540 SDValue One = DAG.getConstant(1, DL, ShVT); 6541 if (IsFSHL) { 6542 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6543 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6544 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6545 } else { 6546 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6547 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6548 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6549 } 6550 } 6551 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6552 return true; 6553 } 6554 6555 // TODO: Merge with expandFunnelShift. 6556 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6557 SDValue &Result, SelectionDAG &DAG) const { 6558 EVT VT = Node->getValueType(0); 6559 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6560 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6561 SDValue Op0 = Node->getOperand(0); 6562 SDValue Op1 = Node->getOperand(1); 6563 SDLoc DL(SDValue(Node, 0)); 6564 6565 EVT ShVT = Op1.getValueType(); 6566 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6567 6568 // If a rotate in the other direction is supported, use it. 6569 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6570 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6571 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6572 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6573 return true; 6574 } 6575 6576 if (!AllowVectorOps && VT.isVector() && 6577 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6578 !isOperationLegalOrCustom(ISD::SRL, VT) || 6579 !isOperationLegalOrCustom(ISD::SUB, VT) || 6580 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6581 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6582 return false; 6583 6584 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6585 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6586 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6587 SDValue ShVal; 6588 SDValue HsVal; 6589 if (isPowerOf2_32(EltSizeInBits)) { 6590 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6591 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6592 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6593 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6594 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6595 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6596 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6597 } else { 6598 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6599 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6600 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6601 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6602 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6603 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6604 SDValue One = DAG.getConstant(1, DL, ShVT); 6605 HsVal = 6606 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6607 } 6608 Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6609 return true; 6610 } 6611 6612 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6613 SelectionDAG &DAG) const { 6614 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6615 EVT VT = Node->getValueType(0); 6616 unsigned VTBits = VT.getScalarSizeInBits(); 6617 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6618 6619 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6620 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6621 SDValue ShOpLo = Node->getOperand(0); 6622 SDValue ShOpHi = Node->getOperand(1); 6623 SDValue ShAmt = Node->getOperand(2); 6624 EVT ShAmtVT = ShAmt.getValueType(); 6625 EVT ShAmtCCVT = 6626 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6627 SDLoc dl(Node); 6628 6629 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6630 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6631 // away during isel. 6632 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6633 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6634 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6635 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6636 : DAG.getConstant(0, dl, VT); 6637 6638 SDValue Tmp2, Tmp3; 6639 if (IsSHL) { 6640 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6641 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6642 } else { 6643 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6644 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6645 } 6646 6647 // If the shift amount is larger or equal than the width of a part we don't 6648 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 6649 // values for large shift amounts. 6650 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6651 DAG.getConstant(VTBits, dl, ShAmtVT)); 6652 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 6653 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 6654 6655 if (IsSHL) { 6656 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6657 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6658 } else { 6659 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6660 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6661 } 6662 } 6663 6664 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6665 SelectionDAG &DAG) const { 6666 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6667 SDValue Src = Node->getOperand(OpNo); 6668 EVT SrcVT = Src.getValueType(); 6669 EVT DstVT = Node->getValueType(0); 6670 SDLoc dl(SDValue(Node, 0)); 6671 6672 // FIXME: Only f32 to i64 conversions are supported. 6673 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6674 return false; 6675 6676 if (Node->isStrictFPOpcode()) 6677 // When a NaN is converted to an integer a trap is allowed. We can't 6678 // use this expansion here because it would eliminate that trap. Other 6679 // traps are also allowed and cannot be eliminated. See 6680 // IEEE 754-2008 sec 5.8. 6681 return false; 6682 6683 // Expand f32 -> i64 conversion 6684 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6685 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6686 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6687 EVT IntVT = SrcVT.changeTypeToInteger(); 6688 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6689 6690 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6691 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6692 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6693 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6694 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6695 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6696 6697 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6698 6699 SDValue ExponentBits = DAG.getNode( 6700 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6701 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6702 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6703 6704 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6705 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6706 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6707 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6708 6709 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6710 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6711 DAG.getConstant(0x00800000, dl, IntVT)); 6712 6713 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6714 6715 R = DAG.getSelectCC( 6716 dl, Exponent, ExponentLoBit, 6717 DAG.getNode(ISD::SHL, dl, DstVT, R, 6718 DAG.getZExtOrTrunc( 6719 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6720 dl, IntShVT)), 6721 DAG.getNode(ISD::SRL, dl, DstVT, R, 6722 DAG.getZExtOrTrunc( 6723 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6724 dl, IntShVT)), 6725 ISD::SETGT); 6726 6727 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6728 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6729 6730 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6731 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6732 return true; 6733 } 6734 6735 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6736 SDValue &Chain, 6737 SelectionDAG &DAG) const { 6738 SDLoc dl(SDValue(Node, 0)); 6739 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6740 SDValue Src = Node->getOperand(OpNo); 6741 6742 EVT SrcVT = Src.getValueType(); 6743 EVT DstVT = Node->getValueType(0); 6744 EVT SetCCVT = 6745 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6746 EVT DstSetCCVT = 6747 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6748 6749 // Only expand vector types if we have the appropriate vector bit operations. 6750 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6751 ISD::FP_TO_SINT; 6752 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6753 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6754 return false; 6755 6756 // If the maximum float value is smaller then the signed integer range, 6757 // the destination signmask can't be represented by the float, so we can 6758 // just use FP_TO_SINT directly. 6759 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6760 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6761 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6762 if (APFloat::opOverflow & 6763 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6764 if (Node->isStrictFPOpcode()) { 6765 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6766 { Node->getOperand(0), Src }); 6767 Chain = Result.getValue(1); 6768 } else 6769 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6770 return true; 6771 } 6772 6773 // Don't expand it if there isn't cheap fsub instruction. 6774 if (!isOperationLegalOrCustom( 6775 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6776 return false; 6777 6778 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6779 SDValue Sel; 6780 6781 if (Node->isStrictFPOpcode()) { 6782 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6783 Node->getOperand(0), /*IsSignaling*/ true); 6784 Chain = Sel.getValue(1); 6785 } else { 6786 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6787 } 6788 6789 bool Strict = Node->isStrictFPOpcode() || 6790 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6791 6792 if (Strict) { 6793 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6794 // signmask then offset (the result of which should be fully representable). 6795 // Sel = Src < 0x8000000000000000 6796 // FltOfs = select Sel, 0, 0x8000000000000000 6797 // IntOfs = select Sel, 0, 0x8000000000000000 6798 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6799 6800 // TODO: Should any fast-math-flags be set for the FSUB? 6801 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6802 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6803 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6804 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6805 DAG.getConstant(0, dl, DstVT), 6806 DAG.getConstant(SignMask, dl, DstVT)); 6807 SDValue SInt; 6808 if (Node->isStrictFPOpcode()) { 6809 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6810 { Chain, Src, FltOfs }); 6811 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6812 { Val.getValue(1), Val }); 6813 Chain = SInt.getValue(1); 6814 } else { 6815 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6816 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6817 } 6818 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6819 } else { 6820 // Expand based on maximum range of FP_TO_SINT: 6821 // True = fp_to_sint(Src) 6822 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6823 // Result = select (Src < 0x8000000000000000), True, False 6824 6825 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6826 // TODO: Should any fast-math-flags be set for the FSUB? 6827 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6828 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6829 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6830 DAG.getConstant(SignMask, dl, DstVT)); 6831 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6832 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6833 } 6834 return true; 6835 } 6836 6837 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6838 SDValue &Chain, 6839 SelectionDAG &DAG) const { 6840 // This transform is not correct for converting 0 when rounding mode is set 6841 // to round toward negative infinity which will produce -0.0. So disable under 6842 // strictfp. 6843 if (Node->isStrictFPOpcode()) 6844 return false; 6845 6846 SDValue Src = Node->getOperand(0); 6847 EVT SrcVT = Src.getValueType(); 6848 EVT DstVT = Node->getValueType(0); 6849 6850 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6851 return false; 6852 6853 // Only expand vector types if we have the appropriate vector bit operations. 6854 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6855 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6856 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6857 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6858 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6859 return false; 6860 6861 SDLoc dl(SDValue(Node, 0)); 6862 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6863 6864 // Implementation of unsigned i64 to f64 following the algorithm in 6865 // __floatundidf in compiler_rt. This implementation performs rounding 6866 // correctly in all rounding modes with the exception of converting 0 6867 // when rounding toward negative infinity. In that case the fsub will produce 6868 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 6869 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6870 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6871 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6872 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6873 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6874 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6875 6876 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6877 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6878 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6879 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6880 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6881 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6882 SDValue HiSub = 6883 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6884 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6885 return true; 6886 } 6887 6888 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6889 SelectionDAG &DAG) const { 6890 SDLoc dl(Node); 6891 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6892 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6893 EVT VT = Node->getValueType(0); 6894 6895 if (VT.isScalableVector()) 6896 report_fatal_error( 6897 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 6898 6899 if (isOperationLegalOrCustom(NewOp, VT)) { 6900 SDValue Quiet0 = Node->getOperand(0); 6901 SDValue Quiet1 = Node->getOperand(1); 6902 6903 if (!Node->getFlags().hasNoNaNs()) { 6904 // Insert canonicalizes if it's possible we need to quiet to get correct 6905 // sNaN behavior. 6906 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6907 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6908 Node->getFlags()); 6909 } 6910 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6911 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6912 Node->getFlags()); 6913 } 6914 } 6915 6916 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6917 } 6918 6919 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6920 // instead if there are no NaNs. 6921 if (Node->getFlags().hasNoNaNs()) { 6922 unsigned IEEE2018Op = 6923 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6924 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6925 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6926 Node->getOperand(1), Node->getFlags()); 6927 } 6928 } 6929 6930 // If none of the above worked, but there are no NaNs, then expand to 6931 // a compare/select sequence. This is required for correctness since 6932 // InstCombine might have canonicalized a fcmp+select sequence to a 6933 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6934 // expansion to libcall, we might introduce a link-time dependency 6935 // on libm into a file that originally did not have one. 6936 if (Node->getFlags().hasNoNaNs()) { 6937 ISD::CondCode Pred = 6938 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6939 SDValue Op1 = Node->getOperand(0); 6940 SDValue Op2 = Node->getOperand(1); 6941 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6942 // Copy FMF flags, but always set the no-signed-zeros flag 6943 // as this is implied by the FMINNUM/FMAXNUM semantics. 6944 SDNodeFlags Flags = Node->getFlags(); 6945 Flags.setNoSignedZeros(true); 6946 SelCC->setFlags(Flags); 6947 return SelCC; 6948 } 6949 6950 return SDValue(); 6951 } 6952 6953 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6954 SelectionDAG &DAG) const { 6955 SDLoc dl(Node); 6956 EVT VT = Node->getValueType(0); 6957 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6958 SDValue Op = Node->getOperand(0); 6959 unsigned Len = VT.getScalarSizeInBits(); 6960 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6961 6962 // TODO: Add support for irregular type lengths. 6963 if (!(Len <= 128 && Len % 8 == 0)) 6964 return false; 6965 6966 // Only expand vector types if we have the appropriate vector bit operations. 6967 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6968 !isOperationLegalOrCustom(ISD::SUB, VT) || 6969 !isOperationLegalOrCustom(ISD::SRL, VT) || 6970 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6971 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6972 return false; 6973 6974 // This is the "best" algorithm from 6975 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6976 SDValue Mask55 = 6977 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6978 SDValue Mask33 = 6979 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6980 SDValue Mask0F = 6981 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6982 SDValue Mask01 = 6983 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6984 6985 // v = v - ((v >> 1) & 0x55555555...) 6986 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6987 DAG.getNode(ISD::AND, dl, VT, 6988 DAG.getNode(ISD::SRL, dl, VT, Op, 6989 DAG.getConstant(1, dl, ShVT)), 6990 Mask55)); 6991 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6992 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6993 DAG.getNode(ISD::AND, dl, VT, 6994 DAG.getNode(ISD::SRL, dl, VT, Op, 6995 DAG.getConstant(2, dl, ShVT)), 6996 Mask33)); 6997 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6998 Op = DAG.getNode(ISD::AND, dl, VT, 6999 DAG.getNode(ISD::ADD, dl, VT, Op, 7000 DAG.getNode(ISD::SRL, dl, VT, Op, 7001 DAG.getConstant(4, dl, ShVT))), 7002 Mask0F); 7003 // v = (v * 0x01010101...) >> (Len - 8) 7004 if (Len > 8) 7005 Op = 7006 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7007 DAG.getConstant(Len - 8, dl, ShVT)); 7008 7009 Result = Op; 7010 return true; 7011 } 7012 7013 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 7014 SelectionDAG &DAG) const { 7015 SDLoc dl(Node); 7016 EVT VT = Node->getValueType(0); 7017 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7018 SDValue Op = Node->getOperand(0); 7019 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7020 7021 // If the non-ZERO_UNDEF version is supported we can use that instead. 7022 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7023 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 7024 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 7025 return true; 7026 } 7027 7028 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7029 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7030 EVT SetCCVT = 7031 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7032 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7033 SDValue Zero = DAG.getConstant(0, dl, VT); 7034 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7035 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7036 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7037 return true; 7038 } 7039 7040 // Only expand vector types if we have the appropriate vector bit operations. 7041 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7042 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 7043 !isOperationLegalOrCustom(ISD::SRL, VT) || 7044 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7045 return false; 7046 7047 // for now, we do this: 7048 // x = x | (x >> 1); 7049 // x = x | (x >> 2); 7050 // ... 7051 // x = x | (x >>16); 7052 // x = x | (x >>32); // for 64-bit input 7053 // return popcount(~x); 7054 // 7055 // Ref: "Hacker's Delight" by Henry Warren 7056 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7057 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7058 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7059 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7060 } 7061 Op = DAG.getNOT(dl, Op, VT); 7062 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 7063 return true; 7064 } 7065 7066 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 7067 SelectionDAG &DAG) const { 7068 SDLoc dl(Node); 7069 EVT VT = Node->getValueType(0); 7070 SDValue Op = Node->getOperand(0); 7071 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7072 7073 // If the non-ZERO_UNDEF version is supported we can use that instead. 7074 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7075 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 7076 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 7077 return true; 7078 } 7079 7080 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7081 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7082 EVT SetCCVT = 7083 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7084 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7085 SDValue Zero = DAG.getConstant(0, dl, VT); 7086 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7087 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7088 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7089 return true; 7090 } 7091 7092 // Only expand vector types if we have the appropriate vector bit operations. 7093 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7094 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7095 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 7096 !isOperationLegalOrCustom(ISD::SUB, VT) || 7097 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7098 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7099 return false; 7100 7101 // for now, we use: { return popcount(~x & (x - 1)); } 7102 // unless the target has ctlz but not ctpop, in which case we use: 7103 // { return 32 - nlz(~x & (x-1)); } 7104 // Ref: "Hacker's Delight" by Henry Warren 7105 SDValue Tmp = DAG.getNode( 7106 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7107 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7108 7109 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7110 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7111 Result = 7112 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7113 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7114 return true; 7115 } 7116 7117 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7118 return true; 7119 } 7120 7121 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 7122 SelectionDAG &DAG, bool IsNegative) const { 7123 SDLoc dl(N); 7124 EVT VT = N->getValueType(0); 7125 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7126 SDValue Op = N->getOperand(0); 7127 7128 // abs(x) -> smax(x,sub(0,x)) 7129 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7130 isOperationLegal(ISD::SMAX, VT)) { 7131 SDValue Zero = DAG.getConstant(0, dl, VT); 7132 Result = DAG.getNode(ISD::SMAX, dl, VT, Op, 7133 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7134 return true; 7135 } 7136 7137 // abs(x) -> umin(x,sub(0,x)) 7138 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7139 isOperationLegal(ISD::UMIN, VT)) { 7140 SDValue Zero = DAG.getConstant(0, dl, VT); 7141 Result = DAG.getNode(ISD::UMIN, dl, VT, Op, 7142 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7143 return true; 7144 } 7145 7146 // 0 - abs(x) -> smin(x, sub(0,x)) 7147 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7148 isOperationLegal(ISD::SMIN, VT)) { 7149 SDValue Zero = DAG.getConstant(0, dl, VT); 7150 Result = DAG.getNode(ISD::SMIN, dl, VT, Op, 7151 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7152 return true; 7153 } 7154 7155 // Only expand vector types if we have the appropriate vector operations. 7156 if (VT.isVector() && 7157 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7158 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7159 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7160 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7161 return false; 7162 7163 SDValue Shift = 7164 DAG.getNode(ISD::SRA, dl, VT, Op, 7165 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7166 if (!IsNegative) { 7167 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7168 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7169 } else { 7170 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7171 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7172 Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7173 } 7174 return true; 7175 } 7176 7177 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7178 SDLoc dl(N); 7179 EVT VT = N->getValueType(0); 7180 SDValue Op = N->getOperand(0); 7181 7182 if (!VT.isSimple()) 7183 return SDValue(); 7184 7185 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7186 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7187 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7188 default: 7189 return SDValue(); 7190 case MVT::i16: 7191 // Use a rotate by 8. This can be further expanded if necessary. 7192 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7193 case MVT::i32: 7194 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7195 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7196 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7197 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7198 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7199 DAG.getConstant(0xFF0000, dl, VT)); 7200 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7201 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7202 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7203 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7204 case MVT::i64: 7205 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7206 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7207 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7208 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7209 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7210 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7211 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7212 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7213 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7214 DAG.getConstant(255ULL<<48, dl, VT)); 7215 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7216 DAG.getConstant(255ULL<<40, dl, VT)); 7217 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7218 DAG.getConstant(255ULL<<32, dl, VT)); 7219 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7220 DAG.getConstant(255ULL<<24, dl, VT)); 7221 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7222 DAG.getConstant(255ULL<<16, dl, VT)); 7223 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7224 DAG.getConstant(255ULL<<8 , dl, VT)); 7225 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7226 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7227 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7228 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7229 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7230 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7231 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7232 } 7233 } 7234 7235 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7236 SDLoc dl(N); 7237 EVT VT = N->getValueType(0); 7238 SDValue Op = N->getOperand(0); 7239 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7240 unsigned Sz = VT.getScalarSizeInBits(); 7241 7242 SDValue Tmp, Tmp2, Tmp3; 7243 7244 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7245 // and finally the i1 pairs. 7246 // TODO: We can easily support i4/i2 legal types if any target ever does. 7247 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7248 // Create the masks - repeating the pattern every byte. 7249 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 7250 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 7251 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 7252 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7253 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7254 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7255 7256 // BSWAP if the type is wider than a single byte. 7257 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7258 7259 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 7260 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 7261 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 7262 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 7263 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7264 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7265 7266 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 7267 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 7268 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 7269 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 7270 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7271 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7272 7273 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 7274 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 7275 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 7276 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 7277 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7278 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7279 return Tmp; 7280 } 7281 7282 Tmp = DAG.getConstant(0, dl, VT); 7283 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7284 if (I < J) 7285 Tmp2 = 7286 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7287 else 7288 Tmp2 = 7289 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7290 7291 APInt Shift(Sz, 1); 7292 Shift <<= J; 7293 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7294 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7295 } 7296 7297 return Tmp; 7298 } 7299 7300 std::pair<SDValue, SDValue> 7301 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7302 SelectionDAG &DAG) const { 7303 SDLoc SL(LD); 7304 SDValue Chain = LD->getChain(); 7305 SDValue BasePTR = LD->getBasePtr(); 7306 EVT SrcVT = LD->getMemoryVT(); 7307 EVT DstVT = LD->getValueType(0); 7308 ISD::LoadExtType ExtType = LD->getExtensionType(); 7309 7310 if (SrcVT.isScalableVector()) 7311 report_fatal_error("Cannot scalarize scalable vector loads"); 7312 7313 unsigned NumElem = SrcVT.getVectorNumElements(); 7314 7315 EVT SrcEltVT = SrcVT.getScalarType(); 7316 EVT DstEltVT = DstVT.getScalarType(); 7317 7318 // A vector must always be stored in memory as-is, i.e. without any padding 7319 // between the elements, since various code depend on it, e.g. in the 7320 // handling of a bitcast of a vector type to int, which may be done with a 7321 // vector store followed by an integer load. A vector that does not have 7322 // elements that are byte-sized must therefore be stored as an integer 7323 // built out of the extracted vector elements. 7324 if (!SrcEltVT.isByteSized()) { 7325 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7326 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7327 7328 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7329 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7330 7331 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7332 SDValue SrcEltBitMask = DAG.getConstant( 7333 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7334 7335 // Load the whole vector and avoid masking off the top bits as it makes 7336 // the codegen worse. 7337 SDValue Load = 7338 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7339 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7340 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7341 7342 SmallVector<SDValue, 8> Vals; 7343 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7344 unsigned ShiftIntoIdx = 7345 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7346 SDValue ShiftAmount = 7347 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7348 LoadVT, SL, /*LegalTypes=*/false); 7349 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7350 SDValue Elt = 7351 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7352 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7353 7354 if (ExtType != ISD::NON_EXTLOAD) { 7355 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7356 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7357 } 7358 7359 Vals.push_back(Scalar); 7360 } 7361 7362 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7363 return std::make_pair(Value, Load.getValue(1)); 7364 } 7365 7366 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7367 assert(SrcEltVT.isByteSized()); 7368 7369 SmallVector<SDValue, 8> Vals; 7370 SmallVector<SDValue, 8> LoadChains; 7371 7372 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7373 SDValue ScalarLoad = 7374 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7375 LD->getPointerInfo().getWithOffset(Idx * Stride), 7376 SrcEltVT, LD->getOriginalAlign(), 7377 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7378 7379 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7380 7381 Vals.push_back(ScalarLoad.getValue(0)); 7382 LoadChains.push_back(ScalarLoad.getValue(1)); 7383 } 7384 7385 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7386 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7387 7388 return std::make_pair(Value, NewChain); 7389 } 7390 7391 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7392 SelectionDAG &DAG) const { 7393 SDLoc SL(ST); 7394 7395 SDValue Chain = ST->getChain(); 7396 SDValue BasePtr = ST->getBasePtr(); 7397 SDValue Value = ST->getValue(); 7398 EVT StVT = ST->getMemoryVT(); 7399 7400 if (StVT.isScalableVector()) 7401 report_fatal_error("Cannot scalarize scalable vector stores"); 7402 7403 // The type of the data we want to save 7404 EVT RegVT = Value.getValueType(); 7405 EVT RegSclVT = RegVT.getScalarType(); 7406 7407 // The type of data as saved in memory. 7408 EVT MemSclVT = StVT.getScalarType(); 7409 7410 unsigned NumElem = StVT.getVectorNumElements(); 7411 7412 // A vector must always be stored in memory as-is, i.e. without any padding 7413 // between the elements, since various code depend on it, e.g. in the 7414 // handling of a bitcast of a vector type to int, which may be done with a 7415 // vector store followed by an integer load. A vector that does not have 7416 // elements that are byte-sized must therefore be stored as an integer 7417 // built out of the extracted vector elements. 7418 if (!MemSclVT.isByteSized()) { 7419 unsigned NumBits = StVT.getSizeInBits(); 7420 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7421 7422 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7423 7424 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7425 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7426 DAG.getVectorIdxConstant(Idx, SL)); 7427 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7428 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7429 unsigned ShiftIntoIdx = 7430 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7431 SDValue ShiftAmount = 7432 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7433 SDValue ShiftedElt = 7434 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7435 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7436 } 7437 7438 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7439 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7440 ST->getAAInfo()); 7441 } 7442 7443 // Store Stride in bytes 7444 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7445 assert(Stride && "Zero stride!"); 7446 // Extract each of the elements from the original vector and save them into 7447 // memory individually. 7448 SmallVector<SDValue, 8> Stores; 7449 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7450 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7451 DAG.getVectorIdxConstant(Idx, SL)); 7452 7453 SDValue Ptr = 7454 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7455 7456 // This scalar TruncStore may be illegal, but we legalize it later. 7457 SDValue Store = DAG.getTruncStore( 7458 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7459 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7460 ST->getAAInfo()); 7461 7462 Stores.push_back(Store); 7463 } 7464 7465 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7466 } 7467 7468 std::pair<SDValue, SDValue> 7469 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7470 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7471 "unaligned indexed loads not implemented!"); 7472 SDValue Chain = LD->getChain(); 7473 SDValue Ptr = LD->getBasePtr(); 7474 EVT VT = LD->getValueType(0); 7475 EVT LoadedVT = LD->getMemoryVT(); 7476 SDLoc dl(LD); 7477 auto &MF = DAG.getMachineFunction(); 7478 7479 if (VT.isFloatingPoint() || VT.isVector()) { 7480 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7481 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7482 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7483 LoadedVT.isVector()) { 7484 // Scalarize the load and let the individual components be handled. 7485 return scalarizeVectorLoad(LD, DAG); 7486 } 7487 7488 // Expand to a (misaligned) integer load of the same size, 7489 // then bitconvert to floating point or vector. 7490 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7491 LD->getMemOperand()); 7492 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7493 if (LoadedVT != VT) 7494 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7495 ISD::ANY_EXTEND, dl, VT, Result); 7496 7497 return std::make_pair(Result, newLoad.getValue(1)); 7498 } 7499 7500 // Copy the value to a (aligned) stack slot using (unaligned) integer 7501 // loads and stores, then do a (aligned) load from the stack slot. 7502 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7503 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7504 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7505 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7506 7507 // Make sure the stack slot is also aligned for the register type. 7508 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7509 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7510 SmallVector<SDValue, 8> Stores; 7511 SDValue StackPtr = StackBase; 7512 unsigned Offset = 0; 7513 7514 EVT PtrVT = Ptr.getValueType(); 7515 EVT StackPtrVT = StackPtr.getValueType(); 7516 7517 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7518 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7519 7520 // Do all but one copies using the full register width. 7521 for (unsigned i = 1; i < NumRegs; i++) { 7522 // Load one integer register's worth from the original location. 7523 SDValue Load = DAG.getLoad( 7524 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7525 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7526 LD->getAAInfo()); 7527 // Follow the load with a store to the stack slot. Remember the store. 7528 Stores.push_back(DAG.getStore( 7529 Load.getValue(1), dl, Load, StackPtr, 7530 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7531 // Increment the pointers. 7532 Offset += RegBytes; 7533 7534 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7535 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7536 } 7537 7538 // The last copy may be partial. Do an extending load. 7539 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7540 8 * (LoadedBytes - Offset)); 7541 SDValue Load = 7542 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7543 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7544 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7545 LD->getAAInfo()); 7546 // Follow the load with a store to the stack slot. Remember the store. 7547 // On big-endian machines this requires a truncating store to ensure 7548 // that the bits end up in the right place. 7549 Stores.push_back(DAG.getTruncStore( 7550 Load.getValue(1), dl, Load, StackPtr, 7551 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7552 7553 // The order of the stores doesn't matter - say it with a TokenFactor. 7554 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7555 7556 // Finally, perform the original load only redirected to the stack slot. 7557 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7558 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7559 LoadedVT); 7560 7561 // Callers expect a MERGE_VALUES node. 7562 return std::make_pair(Load, TF); 7563 } 7564 7565 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7566 "Unaligned load of unsupported type."); 7567 7568 // Compute the new VT that is half the size of the old one. This is an 7569 // integer MVT. 7570 unsigned NumBits = LoadedVT.getSizeInBits(); 7571 EVT NewLoadedVT; 7572 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7573 NumBits >>= 1; 7574 7575 Align Alignment = LD->getOriginalAlign(); 7576 unsigned IncrementSize = NumBits / 8; 7577 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7578 7579 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7580 if (HiExtType == ISD::NON_EXTLOAD) 7581 HiExtType = ISD::ZEXTLOAD; 7582 7583 // Load the value in two parts 7584 SDValue Lo, Hi; 7585 if (DAG.getDataLayout().isLittleEndian()) { 7586 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7587 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7588 LD->getAAInfo()); 7589 7590 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7591 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7592 LD->getPointerInfo().getWithOffset(IncrementSize), 7593 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7594 LD->getAAInfo()); 7595 } else { 7596 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7597 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7598 LD->getAAInfo()); 7599 7600 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7601 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7602 LD->getPointerInfo().getWithOffset(IncrementSize), 7603 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7604 LD->getAAInfo()); 7605 } 7606 7607 // aggregate the two parts 7608 SDValue ShiftAmount = 7609 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7610 DAG.getDataLayout())); 7611 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7612 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7613 7614 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7615 Hi.getValue(1)); 7616 7617 return std::make_pair(Result, TF); 7618 } 7619 7620 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7621 SelectionDAG &DAG) const { 7622 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7623 "unaligned indexed stores not implemented!"); 7624 SDValue Chain = ST->getChain(); 7625 SDValue Ptr = ST->getBasePtr(); 7626 SDValue Val = ST->getValue(); 7627 EVT VT = Val.getValueType(); 7628 Align Alignment = ST->getOriginalAlign(); 7629 auto &MF = DAG.getMachineFunction(); 7630 EVT StoreMemVT = ST->getMemoryVT(); 7631 7632 SDLoc dl(ST); 7633 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7634 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7635 if (isTypeLegal(intVT)) { 7636 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7637 StoreMemVT.isVector()) { 7638 // Scalarize the store and let the individual components be handled. 7639 SDValue Result = scalarizeVectorStore(ST, DAG); 7640 return Result; 7641 } 7642 // Expand to a bitconvert of the value to the integer type of the 7643 // same size, then a (misaligned) int store. 7644 // FIXME: Does not handle truncating floating point stores! 7645 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7646 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7647 Alignment, ST->getMemOperand()->getFlags()); 7648 return Result; 7649 } 7650 // Do a (aligned) store to a stack slot, then copy from the stack slot 7651 // to the final destination using (unaligned) integer loads and stores. 7652 MVT RegVT = getRegisterType( 7653 *DAG.getContext(), 7654 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7655 EVT PtrVT = Ptr.getValueType(); 7656 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7657 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7658 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7659 7660 // Make sure the stack slot is also aligned for the register type. 7661 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7662 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7663 7664 // Perform the original store, only redirected to the stack slot. 7665 SDValue Store = DAG.getTruncStore( 7666 Chain, dl, Val, StackPtr, 7667 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7668 7669 EVT StackPtrVT = StackPtr.getValueType(); 7670 7671 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7672 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7673 SmallVector<SDValue, 8> Stores; 7674 unsigned Offset = 0; 7675 7676 // Do all but one copies using the full register width. 7677 for (unsigned i = 1; i < NumRegs; i++) { 7678 // Load one integer register's worth from the stack slot. 7679 SDValue Load = DAG.getLoad( 7680 RegVT, dl, Store, StackPtr, 7681 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7682 // Store it to the final location. Remember the store. 7683 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7684 ST->getPointerInfo().getWithOffset(Offset), 7685 ST->getOriginalAlign(), 7686 ST->getMemOperand()->getFlags())); 7687 // Increment the pointers. 7688 Offset += RegBytes; 7689 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7690 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7691 } 7692 7693 // The last store may be partial. Do a truncating store. On big-endian 7694 // machines this requires an extending load from the stack slot to ensure 7695 // that the bits are in the right place. 7696 EVT LoadMemVT = 7697 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7698 7699 // Load from the stack slot. 7700 SDValue Load = DAG.getExtLoad( 7701 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7702 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7703 7704 Stores.push_back( 7705 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7706 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7707 ST->getOriginalAlign(), 7708 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7709 // The order of the stores doesn't matter - say it with a TokenFactor. 7710 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7711 return Result; 7712 } 7713 7714 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7715 "Unaligned store of unknown type."); 7716 // Get the half-size VT 7717 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7718 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7719 unsigned IncrementSize = NumBits / 8; 7720 7721 // Divide the stored value in two parts. 7722 SDValue ShiftAmount = DAG.getConstant( 7723 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7724 SDValue Lo = Val; 7725 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7726 7727 // Store the two parts 7728 SDValue Store1, Store2; 7729 Store1 = DAG.getTruncStore(Chain, dl, 7730 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7731 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7732 ST->getMemOperand()->getFlags()); 7733 7734 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7735 Store2 = DAG.getTruncStore( 7736 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7737 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7738 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7739 7740 SDValue Result = 7741 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7742 return Result; 7743 } 7744 7745 SDValue 7746 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7747 const SDLoc &DL, EVT DataVT, 7748 SelectionDAG &DAG, 7749 bool IsCompressedMemory) const { 7750 SDValue Increment; 7751 EVT AddrVT = Addr.getValueType(); 7752 EVT MaskVT = Mask.getValueType(); 7753 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7754 "Incompatible types of Data and Mask"); 7755 if (IsCompressedMemory) { 7756 if (DataVT.isScalableVector()) 7757 report_fatal_error( 7758 "Cannot currently handle compressed memory with scalable vectors"); 7759 // Incrementing the pointer according to number of '1's in the mask. 7760 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7761 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7762 if (MaskIntVT.getSizeInBits() < 32) { 7763 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7764 MaskIntVT = MVT::i32; 7765 } 7766 7767 // Count '1's with POPCNT. 7768 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7769 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7770 // Scale is an element size in bytes. 7771 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7772 AddrVT); 7773 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7774 } else if (DataVT.isScalableVector()) { 7775 Increment = DAG.getVScale(DL, AddrVT, 7776 APInt(AddrVT.getFixedSizeInBits(), 7777 DataVT.getStoreSize().getKnownMinSize())); 7778 } else 7779 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7780 7781 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7782 } 7783 7784 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 7785 EVT VecVT, const SDLoc &dl, 7786 unsigned NumSubElts) { 7787 if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx)) 7788 return Idx; 7789 7790 EVT IdxVT = Idx.getValueType(); 7791 unsigned NElts = VecVT.getVectorMinNumElements(); 7792 if (VecVT.isScalableVector()) { 7793 // If this is a constant index and we know the value plus the number of the 7794 // elements in the subvector minus one is less than the minimum number of 7795 // elements then it's safe to return Idx. 7796 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 7797 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 7798 return Idx; 7799 SDValue VS = 7800 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 7801 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 7802 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 7803 DAG.getConstant(NumSubElts, dl, IdxVT)); 7804 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7805 } 7806 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 7807 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 7808 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7809 DAG.getConstant(Imm, dl, IdxVT)); 7810 } 7811 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 7812 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7813 DAG.getConstant(MaxIndex, dl, IdxVT)); 7814 } 7815 7816 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7817 SDValue VecPtr, EVT VecVT, 7818 SDValue Index) const { 7819 return getVectorSubVecPointer( 7820 DAG, VecPtr, VecVT, 7821 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 7822 Index); 7823 } 7824 7825 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 7826 SDValue VecPtr, EVT VecVT, 7827 EVT SubVecVT, 7828 SDValue Index) const { 7829 SDLoc dl(Index); 7830 // Make sure the index type is big enough to compute in. 7831 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7832 7833 EVT EltVT = VecVT.getVectorElementType(); 7834 7835 // Calculate the element offset and add it to the pointer. 7836 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7837 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7838 "Converting bits to bytes lost precision"); 7839 7840 assert(SubVecVT.isFixedLengthVector() && 7841 SubVecVT.getVectorElementType() == EltVT && 7842 "Sub-vector must be a fixed vector with matching element type"); 7843 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 7844 SubVecVT.getVectorNumElements()); 7845 7846 EVT IdxVT = Index.getValueType(); 7847 7848 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7849 DAG.getConstant(EltSize, dl, IdxVT)); 7850 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7851 } 7852 7853 //===----------------------------------------------------------------------===// 7854 // Implementation of Emulated TLS Model 7855 //===----------------------------------------------------------------------===// 7856 7857 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7858 SelectionDAG &DAG) const { 7859 // Access to address of TLS varialbe xyz is lowered to a function call: 7860 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7861 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7862 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7863 SDLoc dl(GA); 7864 7865 ArgListTy Args; 7866 ArgListEntry Entry; 7867 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7868 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7869 StringRef EmuTlsVarName(NameString); 7870 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7871 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7872 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7873 Entry.Ty = VoidPtrType; 7874 Args.push_back(Entry); 7875 7876 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7877 7878 TargetLowering::CallLoweringInfo CLI(DAG); 7879 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7880 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7881 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7882 7883 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7884 // At last for X86 targets, maybe good for other targets too? 7885 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7886 MFI.setAdjustsStack(true); // Is this only for X86 target? 7887 MFI.setHasCalls(true); 7888 7889 assert((GA->getOffset() == 0) && 7890 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7891 return CallResult.first; 7892 } 7893 7894 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7895 SelectionDAG &DAG) const { 7896 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7897 if (!isCtlzFast()) 7898 return SDValue(); 7899 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7900 SDLoc dl(Op); 7901 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7902 if (C->isNullValue() && CC == ISD::SETEQ) { 7903 EVT VT = Op.getOperand(0).getValueType(); 7904 SDValue Zext = Op.getOperand(0); 7905 if (VT.bitsLT(MVT::i32)) { 7906 VT = MVT::i32; 7907 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7908 } 7909 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7910 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7911 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7912 DAG.getConstant(Log2b, dl, MVT::i32)); 7913 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7914 } 7915 } 7916 return SDValue(); 7917 } 7918 7919 // Convert redundant addressing modes (e.g. scaling is redundant 7920 // when accessing bytes). 7921 ISD::MemIndexType 7922 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 7923 SDValue Offsets) const { 7924 bool IsScaledIndex = 7925 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 7926 bool IsSignedIndex = 7927 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 7928 7929 // Scaling is unimportant for bytes, canonicalize to unscaled. 7930 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) { 7931 IsScaledIndex = false; 7932 IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 7933 } 7934 7935 return IndexType; 7936 } 7937 7938 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 7939 SDValue Op0 = Node->getOperand(0); 7940 SDValue Op1 = Node->getOperand(1); 7941 EVT VT = Op0.getValueType(); 7942 unsigned Opcode = Node->getOpcode(); 7943 SDLoc DL(Node); 7944 7945 // umin(x,y) -> sub(x,usubsat(x,y)) 7946 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 7947 isOperationLegal(ISD::USUBSAT, VT)) { 7948 return DAG.getNode(ISD::SUB, DL, VT, Op0, 7949 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 7950 } 7951 7952 // umax(x,y) -> add(x,usubsat(y,x)) 7953 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 7954 isOperationLegal(ISD::USUBSAT, VT)) { 7955 return DAG.getNode(ISD::ADD, DL, VT, Op0, 7956 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 7957 } 7958 7959 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 7960 ISD::CondCode CC; 7961 switch (Opcode) { 7962 default: llvm_unreachable("How did we get here?"); 7963 case ISD::SMAX: CC = ISD::SETGT; break; 7964 case ISD::SMIN: CC = ISD::SETLT; break; 7965 case ISD::UMAX: CC = ISD::SETUGT; break; 7966 case ISD::UMIN: CC = ISD::SETULT; break; 7967 } 7968 7969 // FIXME: Should really try to split the vector in case it's legal on a 7970 // subvector. 7971 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 7972 return DAG.UnrollVectorOp(Node); 7973 7974 SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC); 7975 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 7976 } 7977 7978 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7979 unsigned Opcode = Node->getOpcode(); 7980 SDValue LHS = Node->getOperand(0); 7981 SDValue RHS = Node->getOperand(1); 7982 EVT VT = LHS.getValueType(); 7983 SDLoc dl(Node); 7984 7985 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7986 assert(VT.isInteger() && "Expected operands to be integers"); 7987 7988 // usub.sat(a, b) -> umax(a, b) - b 7989 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 7990 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7991 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7992 } 7993 7994 // uadd.sat(a, b) -> umin(a, ~b) + b 7995 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 7996 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7997 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7998 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7999 } 8000 8001 unsigned OverflowOp; 8002 switch (Opcode) { 8003 case ISD::SADDSAT: 8004 OverflowOp = ISD::SADDO; 8005 break; 8006 case ISD::UADDSAT: 8007 OverflowOp = ISD::UADDO; 8008 break; 8009 case ISD::SSUBSAT: 8010 OverflowOp = ISD::SSUBO; 8011 break; 8012 case ISD::USUBSAT: 8013 OverflowOp = ISD::USUBO; 8014 break; 8015 default: 8016 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8017 "addition or subtraction node."); 8018 } 8019 8020 // FIXME: Should really try to split the vector in case it's legal on a 8021 // subvector. 8022 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8023 return DAG.UnrollVectorOp(Node); 8024 8025 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8026 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8027 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8028 SDValue SumDiff = Result.getValue(0); 8029 SDValue Overflow = Result.getValue(1); 8030 SDValue Zero = DAG.getConstant(0, dl, VT); 8031 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8032 8033 if (Opcode == ISD::UADDSAT) { 8034 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8035 // (LHS + RHS) | OverflowMask 8036 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8037 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8038 } 8039 // Overflow ? 0xffff.... : (LHS + RHS) 8040 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8041 } 8042 8043 if (Opcode == ISD::USUBSAT) { 8044 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8045 // (LHS - RHS) & ~OverflowMask 8046 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8047 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8048 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8049 } 8050 // Overflow ? 0 : (LHS - RHS) 8051 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8052 } 8053 8054 // SatMax -> Overflow && SumDiff < 0 8055 // SatMin -> Overflow && SumDiff >= 0 8056 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8057 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 8058 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8059 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8060 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 8061 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 8062 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8063 } 8064 8065 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8066 unsigned Opcode = Node->getOpcode(); 8067 bool IsSigned = Opcode == ISD::SSHLSAT; 8068 SDValue LHS = Node->getOperand(0); 8069 SDValue RHS = Node->getOperand(1); 8070 EVT VT = LHS.getValueType(); 8071 SDLoc dl(Node); 8072 8073 assert((Node->getOpcode() == ISD::SSHLSAT || 8074 Node->getOpcode() == ISD::USHLSAT) && 8075 "Expected a SHLSAT opcode"); 8076 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8077 assert(VT.isInteger() && "Expected operands to be integers"); 8078 8079 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8080 8081 unsigned BW = VT.getScalarSizeInBits(); 8082 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8083 SDValue Orig = 8084 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8085 8086 SDValue SatVal; 8087 if (IsSigned) { 8088 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8089 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8090 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8091 SatMin, SatMax, ISD::SETLT); 8092 } else { 8093 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8094 } 8095 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8096 8097 return Result; 8098 } 8099 8100 SDValue 8101 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8102 assert((Node->getOpcode() == ISD::SMULFIX || 8103 Node->getOpcode() == ISD::UMULFIX || 8104 Node->getOpcode() == ISD::SMULFIXSAT || 8105 Node->getOpcode() == ISD::UMULFIXSAT) && 8106 "Expected a fixed point multiplication opcode"); 8107 8108 SDLoc dl(Node); 8109 SDValue LHS = Node->getOperand(0); 8110 SDValue RHS = Node->getOperand(1); 8111 EVT VT = LHS.getValueType(); 8112 unsigned Scale = Node->getConstantOperandVal(2); 8113 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8114 Node->getOpcode() == ISD::UMULFIXSAT); 8115 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8116 Node->getOpcode() == ISD::SMULFIXSAT); 8117 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8118 unsigned VTSize = VT.getScalarSizeInBits(); 8119 8120 if (!Scale) { 8121 // [us]mul.fix(a, b, 0) -> mul(a, b) 8122 if (!Saturating) { 8123 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8124 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8125 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8126 SDValue Result = 8127 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8128 SDValue Product = Result.getValue(0); 8129 SDValue Overflow = Result.getValue(1); 8130 SDValue Zero = DAG.getConstant(0, dl, VT); 8131 8132 APInt MinVal = APInt::getSignedMinValue(VTSize); 8133 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8134 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8135 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8136 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 8137 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 8138 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8139 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8140 SDValue Result = 8141 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8142 SDValue Product = Result.getValue(0); 8143 SDValue Overflow = Result.getValue(1); 8144 8145 APInt MaxVal = APInt::getMaxValue(VTSize); 8146 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8147 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8148 } 8149 } 8150 8151 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8152 "Expected scale to be less than the number of bits if signed or at " 8153 "most the number of bits if unsigned."); 8154 assert(LHS.getValueType() == RHS.getValueType() && 8155 "Expected both operands to be the same type"); 8156 8157 // Get the upper and lower bits of the result. 8158 SDValue Lo, Hi; 8159 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8160 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8161 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8162 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8163 Lo = Result.getValue(0); 8164 Hi = Result.getValue(1); 8165 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8166 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8167 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8168 } else if (VT.isVector()) { 8169 return SDValue(); 8170 } else { 8171 report_fatal_error("Unable to expand fixed point multiplication."); 8172 } 8173 8174 if (Scale == VTSize) 8175 // Result is just the top half since we'd be shifting by the width of the 8176 // operand. Overflow impossible so this works for both UMULFIX and 8177 // UMULFIXSAT. 8178 return Hi; 8179 8180 // The result will need to be shifted right by the scale since both operands 8181 // are scaled. The result is given to us in 2 halves, so we only want part of 8182 // both in the result. 8183 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8184 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8185 DAG.getConstant(Scale, dl, ShiftTy)); 8186 if (!Saturating) 8187 return Result; 8188 8189 if (!Signed) { 8190 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8191 // widened multiplication) aren't all zeroes. 8192 8193 // Saturate to max if ((Hi >> Scale) != 0), 8194 // which is the same as if (Hi > ((1 << Scale) - 1)) 8195 APInt MaxVal = APInt::getMaxValue(VTSize); 8196 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8197 dl, VT); 8198 Result = DAG.getSelectCC(dl, Hi, LowMask, 8199 DAG.getConstant(MaxVal, dl, VT), Result, 8200 ISD::SETUGT); 8201 8202 return Result; 8203 } 8204 8205 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8206 // widened multiplication) aren't all ones or all zeroes. 8207 8208 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8209 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8210 8211 if (Scale == 0) { 8212 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8213 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8214 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8215 // Saturated to SatMin if wide product is negative, and SatMax if wide 8216 // product is positive ... 8217 SDValue Zero = DAG.getConstant(0, dl, VT); 8218 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8219 ISD::SETLT); 8220 // ... but only if we overflowed. 8221 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8222 } 8223 8224 // We handled Scale==0 above so all the bits to examine is in Hi. 8225 8226 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8227 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8228 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8229 dl, VT); 8230 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8231 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8232 // which is the same as if (HI < (-1 << (Scale - 1)) 8233 SDValue HighMask = 8234 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8235 dl, VT); 8236 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8237 return Result; 8238 } 8239 8240 SDValue 8241 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8242 SDValue LHS, SDValue RHS, 8243 unsigned Scale, SelectionDAG &DAG) const { 8244 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8245 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8246 "Expected a fixed point division opcode"); 8247 8248 EVT VT = LHS.getValueType(); 8249 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8250 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8251 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8252 8253 // If there is enough room in the type to upscale the LHS or downscale the 8254 // RHS before the division, we can perform it in this type without having to 8255 // resize. For signed operations, the LHS headroom is the number of 8256 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8257 // The headroom for the RHS is the number of trailing zeroes. 8258 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8259 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8260 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8261 8262 // For signed saturating operations, we need to be able to detect true integer 8263 // division overflow; that is, when you have MIN / -EPS. However, this 8264 // is undefined behavior and if we emit divisions that could take such 8265 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8266 // example). 8267 // Avoid this by requiring an extra bit so that we never get this case. 8268 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8269 // signed saturating division, we need to emit a whopping 32-bit division. 8270 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8271 return SDValue(); 8272 8273 unsigned LHSShift = std::min(LHSLead, Scale); 8274 unsigned RHSShift = Scale - LHSShift; 8275 8276 // At this point, we know that if we shift the LHS up by LHSShift and the 8277 // RHS down by RHSShift, we can emit a regular division with a final scaling 8278 // factor of Scale. 8279 8280 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8281 if (LHSShift) 8282 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8283 DAG.getConstant(LHSShift, dl, ShiftTy)); 8284 if (RHSShift) 8285 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8286 DAG.getConstant(RHSShift, dl, ShiftTy)); 8287 8288 SDValue Quot; 8289 if (Signed) { 8290 // For signed operations, if the resulting quotient is negative and the 8291 // remainder is nonzero, subtract 1 from the quotient to round towards 8292 // negative infinity. 8293 SDValue Rem; 8294 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8295 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8296 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8297 if (isTypeLegal(VT) && 8298 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8299 Quot = DAG.getNode(ISD::SDIVREM, dl, 8300 DAG.getVTList(VT, VT), 8301 LHS, RHS); 8302 Rem = Quot.getValue(1); 8303 Quot = Quot.getValue(0); 8304 } else { 8305 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8306 LHS, RHS); 8307 Rem = DAG.getNode(ISD::SREM, dl, VT, 8308 LHS, RHS); 8309 } 8310 SDValue Zero = DAG.getConstant(0, dl, VT); 8311 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8312 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8313 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8314 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8315 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8316 DAG.getConstant(1, dl, VT)); 8317 Quot = DAG.getSelect(dl, VT, 8318 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8319 Sub1, Quot); 8320 } else 8321 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8322 LHS, RHS); 8323 8324 return Quot; 8325 } 8326 8327 void TargetLowering::expandUADDSUBO( 8328 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8329 SDLoc dl(Node); 8330 SDValue LHS = Node->getOperand(0); 8331 SDValue RHS = Node->getOperand(1); 8332 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8333 8334 // If ADD/SUBCARRY is legal, use that instead. 8335 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8336 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8337 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8338 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8339 { LHS, RHS, CarryIn }); 8340 Result = SDValue(NodeCarry.getNode(), 0); 8341 Overflow = SDValue(NodeCarry.getNode(), 1); 8342 return; 8343 } 8344 8345 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8346 LHS.getValueType(), LHS, RHS); 8347 8348 EVT ResultType = Node->getValueType(1); 8349 EVT SetCCType = getSetCCResultType( 8350 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8351 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8352 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8353 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8354 } 8355 8356 void TargetLowering::expandSADDSUBO( 8357 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8358 SDLoc dl(Node); 8359 SDValue LHS = Node->getOperand(0); 8360 SDValue RHS = Node->getOperand(1); 8361 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8362 8363 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8364 LHS.getValueType(), LHS, RHS); 8365 8366 EVT ResultType = Node->getValueType(1); 8367 EVT OType = getSetCCResultType( 8368 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8369 8370 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8371 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8372 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 8373 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8374 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8375 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8376 return; 8377 } 8378 8379 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8380 8381 // For an addition, the result should be less than one of the operands (LHS) 8382 // if and only if the other operand (RHS) is negative, otherwise there will 8383 // be overflow. 8384 // For a subtraction, the result should be less than one of the operands 8385 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8386 // otherwise there will be overflow. 8387 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8388 SDValue ConditionRHS = 8389 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8390 8391 Overflow = DAG.getBoolExtOrTrunc( 8392 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8393 ResultType, ResultType); 8394 } 8395 8396 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8397 SDValue &Overflow, SelectionDAG &DAG) const { 8398 SDLoc dl(Node); 8399 EVT VT = Node->getValueType(0); 8400 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8401 SDValue LHS = Node->getOperand(0); 8402 SDValue RHS = Node->getOperand(1); 8403 bool isSigned = Node->getOpcode() == ISD::SMULO; 8404 8405 // For power-of-two multiplications we can use a simpler shift expansion. 8406 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8407 const APInt &C = RHSC->getAPIntValue(); 8408 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8409 if (C.isPowerOf2()) { 8410 // smulo(x, signed_min) is same as umulo(x, signed_min). 8411 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8412 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8413 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8414 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8415 Overflow = DAG.getSetCC(dl, SetCCVT, 8416 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8417 dl, VT, Result, ShiftAmt), 8418 LHS, ISD::SETNE); 8419 return true; 8420 } 8421 } 8422 8423 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8424 if (VT.isVector()) 8425 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 8426 VT.getVectorNumElements()); 8427 8428 SDValue BottomHalf; 8429 SDValue TopHalf; 8430 static const unsigned Ops[2][3] = 8431 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8432 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8433 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8434 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8435 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8436 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8437 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8438 RHS); 8439 TopHalf = BottomHalf.getValue(1); 8440 } else if (isTypeLegal(WideVT)) { 8441 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8442 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8443 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8444 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8445 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8446 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8447 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8448 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8449 } else { 8450 if (VT.isVector()) 8451 return false; 8452 8453 // We can fall back to a libcall with an illegal type for the MUL if we 8454 // have a libcall big enough. 8455 // Also, we can fall back to a division in some cases, but that's a big 8456 // performance hit in the general case. 8457 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8458 if (WideVT == MVT::i16) 8459 LC = RTLIB::MUL_I16; 8460 else if (WideVT == MVT::i32) 8461 LC = RTLIB::MUL_I32; 8462 else if (WideVT == MVT::i64) 8463 LC = RTLIB::MUL_I64; 8464 else if (WideVT == MVT::i128) 8465 LC = RTLIB::MUL_I128; 8466 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8467 8468 SDValue HiLHS; 8469 SDValue HiRHS; 8470 if (isSigned) { 8471 // The high part is obtained by SRA'ing all but one of the bits of low 8472 // part. 8473 unsigned LoSize = VT.getFixedSizeInBits(); 8474 HiLHS = 8475 DAG.getNode(ISD::SRA, dl, VT, LHS, 8476 DAG.getConstant(LoSize - 1, dl, 8477 getPointerTy(DAG.getDataLayout()))); 8478 HiRHS = 8479 DAG.getNode(ISD::SRA, dl, VT, RHS, 8480 DAG.getConstant(LoSize - 1, dl, 8481 getPointerTy(DAG.getDataLayout()))); 8482 } else { 8483 HiLHS = DAG.getConstant(0, dl, VT); 8484 HiRHS = DAG.getConstant(0, dl, VT); 8485 } 8486 8487 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8488 // pre-lowered to the correct types. This all depends upon WideVT not 8489 // being a legal type for the architecture and thus has to be split to 8490 // two arguments. 8491 SDValue Ret; 8492 TargetLowering::MakeLibCallOptions CallOptions; 8493 CallOptions.setSExt(isSigned); 8494 CallOptions.setIsPostTypeLegalization(true); 8495 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8496 // Halves of WideVT are packed into registers in different order 8497 // depending on platform endianness. This is usually handled by 8498 // the C calling convention, but we can't defer to it in 8499 // the legalizer. 8500 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8501 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8502 } else { 8503 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8504 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8505 } 8506 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8507 "Ret value is a collection of constituent nodes holding result."); 8508 if (DAG.getDataLayout().isLittleEndian()) { 8509 // Same as above. 8510 BottomHalf = Ret.getOperand(0); 8511 TopHalf = Ret.getOperand(1); 8512 } else { 8513 BottomHalf = Ret.getOperand(1); 8514 TopHalf = Ret.getOperand(0); 8515 } 8516 } 8517 8518 Result = BottomHalf; 8519 if (isSigned) { 8520 SDValue ShiftAmt = DAG.getConstant( 8521 VT.getScalarSizeInBits() - 1, dl, 8522 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8523 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8524 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8525 } else { 8526 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8527 DAG.getConstant(0, dl, VT), ISD::SETNE); 8528 } 8529 8530 // Truncate the result if SetCC returns a larger type than needed. 8531 EVT RType = Node->getValueType(1); 8532 if (RType.bitsLT(Overflow.getValueType())) 8533 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8534 8535 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8536 "Unexpected result type for S/UMULO legalization"); 8537 return true; 8538 } 8539 8540 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8541 SDLoc dl(Node); 8542 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8543 SDValue Op = Node->getOperand(0); 8544 EVT VT = Op.getValueType(); 8545 8546 if (VT.isScalableVector()) 8547 report_fatal_error( 8548 "Expanding reductions for scalable vectors is undefined."); 8549 8550 // Try to use a shuffle reduction for power of two vectors. 8551 if (VT.isPow2VectorType()) { 8552 while (VT.getVectorNumElements() > 1) { 8553 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8554 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8555 break; 8556 8557 SDValue Lo, Hi; 8558 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8559 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8560 VT = HalfVT; 8561 } 8562 } 8563 8564 EVT EltVT = VT.getVectorElementType(); 8565 unsigned NumElts = VT.getVectorNumElements(); 8566 8567 SmallVector<SDValue, 8> Ops; 8568 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8569 8570 SDValue Res = Ops[0]; 8571 for (unsigned i = 1; i < NumElts; i++) 8572 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8573 8574 // Result type may be wider than element type. 8575 if (EltVT != Node->getValueType(0)) 8576 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8577 return Res; 8578 } 8579 8580 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8581 SDLoc dl(Node); 8582 SDValue AccOp = Node->getOperand(0); 8583 SDValue VecOp = Node->getOperand(1); 8584 SDNodeFlags Flags = Node->getFlags(); 8585 8586 EVT VT = VecOp.getValueType(); 8587 EVT EltVT = VT.getVectorElementType(); 8588 8589 if (VT.isScalableVector()) 8590 report_fatal_error( 8591 "Expanding reductions for scalable vectors is undefined."); 8592 8593 unsigned NumElts = VT.getVectorNumElements(); 8594 8595 SmallVector<SDValue, 8> Ops; 8596 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8597 8598 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8599 8600 SDValue Res = AccOp; 8601 for (unsigned i = 0; i < NumElts; i++) 8602 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8603 8604 return Res; 8605 } 8606 8607 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8608 SelectionDAG &DAG) const { 8609 EVT VT = Node->getValueType(0); 8610 SDLoc dl(Node); 8611 bool isSigned = Node->getOpcode() == ISD::SREM; 8612 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8613 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8614 SDValue Dividend = Node->getOperand(0); 8615 SDValue Divisor = Node->getOperand(1); 8616 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8617 SDVTList VTs = DAG.getVTList(VT, VT); 8618 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8619 return true; 8620 } 8621 if (isOperationLegalOrCustom(DivOpc, VT)) { 8622 // X % Y -> X-X/Y*Y 8623 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8624 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8625 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8626 return true; 8627 } 8628 return false; 8629 } 8630 8631 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8632 SelectionDAG &DAG) const { 8633 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8634 SDLoc dl(SDValue(Node, 0)); 8635 SDValue Src = Node->getOperand(0); 8636 8637 // DstVT is the result type, while SatVT is the size to which we saturate 8638 EVT SrcVT = Src.getValueType(); 8639 EVT DstVT = Node->getValueType(0); 8640 8641 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8642 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8643 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8644 assert(SatWidth <= DstWidth && 8645 "Expected saturation width smaller than result width"); 8646 8647 // Determine minimum and maximum integer values and their corresponding 8648 // floating-point values. 8649 APInt MinInt, MaxInt; 8650 if (IsSigned) { 8651 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8652 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8653 } else { 8654 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8655 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8656 } 8657 8658 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8659 // libcall emission cannot handle this. Large result types will fail. 8660 if (SrcVT == MVT::f16) { 8661 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8662 SrcVT = Src.getValueType(); 8663 } 8664 8665 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8666 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8667 8668 APFloat::opStatus MinStatus = 8669 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8670 APFloat::opStatus MaxStatus = 8671 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8672 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8673 !(MaxStatus & APFloat::opStatus::opInexact); 8674 8675 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8676 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8677 8678 // If the integer bounds are exactly representable as floats and min/max are 8679 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8680 // of comparisons and selects. 8681 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8682 isOperationLegal(ISD::FMAXNUM, SrcVT); 8683 if (AreExactFloatBounds && MinMaxLegal) { 8684 SDValue Clamped = Src; 8685 8686 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8687 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8688 // Clamp by MaxFloat from above. NaN cannot occur. 8689 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8690 // Convert clamped value to integer. 8691 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8692 dl, DstVT, Clamped); 8693 8694 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8695 // which will cast to zero. 8696 if (!IsSigned) 8697 return FpToInt; 8698 8699 // Otherwise, select 0 if Src is NaN. 8700 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8701 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8702 ISD::CondCode::SETUO); 8703 } 8704 8705 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8706 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8707 8708 // Result of direct conversion. The assumption here is that the operation is 8709 // non-trapping and it's fine to apply it to an out-of-range value if we 8710 // select it away later. 8711 SDValue FpToInt = 8712 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8713 8714 SDValue Select = FpToInt; 8715 8716 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8717 // MinInt if Src is NaN. 8718 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8719 ISD::CondCode::SETULT); 8720 // If Src OGT MaxFloat, select MaxInt. 8721 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8722 ISD::CondCode::SETOGT); 8723 8724 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8725 // is already zero. 8726 if (!IsSigned) 8727 return Select; 8728 8729 // Otherwise, select 0 if Src is NaN. 8730 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8731 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8732 } 8733 8734 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8735 SelectionDAG &DAG) const { 8736 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8737 assert(Node->getValueType(0).isScalableVector() && 8738 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8739 8740 EVT VT = Node->getValueType(0); 8741 SDValue V1 = Node->getOperand(0); 8742 SDValue V2 = Node->getOperand(1); 8743 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8744 SDLoc DL(Node); 8745 8746 // Expand through memory thusly: 8747 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8748 // Store V1, Ptr 8749 // Store V2, Ptr + sizeof(V1) 8750 // If (Imm < 0) 8751 // TrailingElts = -Imm 8752 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8753 // else 8754 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8755 // Res = Load Ptr 8756 8757 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8758 8759 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8760 VT.getVectorElementCount() * 2); 8761 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8762 EVT PtrVT = StackPtr.getValueType(); 8763 auto &MF = DAG.getMachineFunction(); 8764 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8765 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8766 8767 // Store the lo part of CONCAT_VECTORS(V1, V2) 8768 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8769 // Store the hi part of CONCAT_VECTORS(V1, V2) 8770 SDValue OffsetToV2 = DAG.getVScale( 8771 DL, PtrVT, 8772 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8773 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8774 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8775 8776 if (Imm >= 0) { 8777 // Load back the required element. getVectorElementPointer takes care of 8778 // clamping the index if it's out-of-bounds. 8779 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8780 // Load the spliced result 8781 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8782 MachinePointerInfo::getUnknownStack(MF)); 8783 } 8784 8785 uint64_t TrailingElts = -Imm; 8786 8787 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8788 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8789 SDValue TrailingBytes = 8790 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8791 8792 if (TrailingElts > VT.getVectorMinNumElements()) { 8793 SDValue VLBytes = DAG.getVScale( 8794 DL, PtrVT, 8795 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8796 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8797 } 8798 8799 // Calculate the start address of the spliced result. 8800 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8801 8802 // Load the spliced result 8803 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8804 MachinePointerInfo::getUnknownStack(MF)); 8805 } 8806 8807 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8808 SDValue &LHS, SDValue &RHS, 8809 SDValue &CC, bool &NeedInvert, 8810 const SDLoc &dl, SDValue &Chain, 8811 bool IsSignaling) const { 8812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8813 MVT OpVT = LHS.getSimpleValueType(); 8814 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8815 NeedInvert = false; 8816 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8817 default: 8818 llvm_unreachable("Unknown condition code action!"); 8819 case TargetLowering::Legal: 8820 // Nothing to do. 8821 break; 8822 case TargetLowering::Expand: { 8823 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8824 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8825 std::swap(LHS, RHS); 8826 CC = DAG.getCondCode(InvCC); 8827 return true; 8828 } 8829 // Swapping operands didn't work. Try inverting the condition. 8830 bool NeedSwap = false; 8831 InvCC = getSetCCInverse(CCCode, OpVT); 8832 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8833 // If inverting the condition is not enough, try swapping operands 8834 // on top of it. 8835 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8836 NeedSwap = true; 8837 } 8838 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8839 CC = DAG.getCondCode(InvCC); 8840 NeedInvert = true; 8841 if (NeedSwap) 8842 std::swap(LHS, RHS); 8843 return true; 8844 } 8845 8846 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8847 unsigned Opc = 0; 8848 switch (CCCode) { 8849 default: 8850 llvm_unreachable("Don't know how to expand this condition!"); 8851 case ISD::SETUO: 8852 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8853 CC1 = ISD::SETUNE; 8854 CC2 = ISD::SETUNE; 8855 Opc = ISD::OR; 8856 break; 8857 } 8858 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8859 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 8860 NeedInvert = true; 8861 LLVM_FALLTHROUGH; 8862 case ISD::SETO: 8863 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8864 "If SETO is expanded, SETOEQ must be legal!"); 8865 CC1 = ISD::SETOEQ; 8866 CC2 = ISD::SETOEQ; 8867 Opc = ISD::AND; 8868 break; 8869 case ISD::SETONE: 8870 case ISD::SETUEQ: 8871 // If the SETUO or SETO CC isn't legal, we might be able to use 8872 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 8873 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 8874 // the operands. 8875 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8876 if (!TLI.isCondCodeLegal(CC2, OpVT) && 8877 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 8878 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 8879 CC1 = ISD::SETOGT; 8880 CC2 = ISD::SETOLT; 8881 Opc = ISD::OR; 8882 NeedInvert = ((unsigned)CCCode & 0x8U); 8883 break; 8884 } 8885 LLVM_FALLTHROUGH; 8886 case ISD::SETOEQ: 8887 case ISD::SETOGT: 8888 case ISD::SETOGE: 8889 case ISD::SETOLT: 8890 case ISD::SETOLE: 8891 case ISD::SETUNE: 8892 case ISD::SETUGT: 8893 case ISD::SETUGE: 8894 case ISD::SETULT: 8895 case ISD::SETULE: 8896 // If we are floating point, assign and break, otherwise fall through. 8897 if (!OpVT.isInteger()) { 8898 // We can use the 4th bit to tell if we are the unordered 8899 // or ordered version of the opcode. 8900 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8901 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 8902 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 8903 break; 8904 } 8905 // Fallthrough if we are unsigned integer. 8906 LLVM_FALLTHROUGH; 8907 case ISD::SETLE: 8908 case ISD::SETGT: 8909 case ISD::SETGE: 8910 case ISD::SETLT: 8911 case ISD::SETNE: 8912 case ISD::SETEQ: 8913 // If all combinations of inverting the condition and swapping operands 8914 // didn't work then we have no means to expand the condition. 8915 llvm_unreachable("Don't know how to expand this condition!"); 8916 } 8917 8918 SDValue SetCC1, SetCC2; 8919 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 8920 // If we aren't the ordered or unorder operation, 8921 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 8922 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 8923 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 8924 } else { 8925 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 8926 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 8927 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 8928 } 8929 if (Chain) 8930 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 8931 SetCC2.getValue(1)); 8932 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 8933 RHS = SDValue(); 8934 CC = SDValue(); 8935 return true; 8936 } 8937 } 8938 return false; 8939 } 8940