1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetLoweringObjectFile.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The constructor takes ownership of TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm, 39 const TargetLoweringObjectFile *tlof) 40 : TargetLoweringBase(tm, tlof) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return NULL; 44 } 45 46 /// Check whether a given call node is in tail position within its function. If 47 /// so, it sets Chain to the input chain of the tail call. 48 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 49 SDValue &Chain) const { 50 const Function *F = DAG.getMachineFunction().getFunction(); 51 52 // Conservatively require the attributes of the call to match those of 53 // the return. Ignore noalias because it doesn't affect the call sequence. 54 AttributeSet CallerAttrs = F->getAttributes(); 55 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 56 .removeAttribute(Attribute::NoAlias).hasAttributes()) 57 return false; 58 59 // It's not safe to eliminate the sign / zero extension of the return value. 60 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 61 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 62 return false; 63 64 // Check if the only use is a function return node. 65 return isUsedByReturnOnly(Node, Chain); 66 } 67 68 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 69 /// and called function attributes. 70 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, 71 unsigned AttrIdx) { 72 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 73 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 74 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 75 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 76 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 77 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 78 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 79 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 80 Alignment = CS->getParamAlignment(AttrIdx); 81 } 82 83 /// Generate a libcall taking the given operands as arguments and returning a 84 /// result of type RetVT. 85 std::pair<SDValue, SDValue> 86 TargetLowering::makeLibCall(SelectionDAG &DAG, 87 RTLIB::Libcall LC, EVT RetVT, 88 const SDValue *Ops, unsigned NumOps, 89 bool isSigned, SDLoc dl, 90 bool doesNotReturn, 91 bool isReturnValueUsed) const { 92 TargetLowering::ArgListTy Args; 93 Args.reserve(NumOps); 94 95 TargetLowering::ArgListEntry Entry; 96 for (unsigned i = 0; i != NumOps; ++i) { 97 Entry.Node = Ops[i]; 98 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 99 Entry.isSExt = isSigned; 100 Entry.isZExt = !isSigned; 101 Args.push_back(Entry); 102 } 103 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy()); 104 105 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 106 TargetLowering:: 107 CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false, 108 false, 0, getLibcallCallingConv(LC), 109 /*isTailCall=*/false, 110 doesNotReturn, isReturnValueUsed, Callee, Args, 111 DAG, dl); 112 return LowerCallTo(CLI); 113 } 114 115 116 /// SoftenSetCCOperands - Soften the operands of a comparison. This code is 117 /// shared among BR_CC, SELECT_CC, and SETCC handlers. 118 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 119 SDValue &NewLHS, SDValue &NewRHS, 120 ISD::CondCode &CCCode, 121 SDLoc dl) const { 122 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 123 && "Unsupported setcc type!"); 124 125 // Expand into one or more soft-fp libcall(s). 126 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 127 switch (CCCode) { 128 case ISD::SETEQ: 129 case ISD::SETOEQ: 130 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 131 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 132 break; 133 case ISD::SETNE: 134 case ISD::SETUNE: 135 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 136 (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128; 137 break; 138 case ISD::SETGE: 139 case ISD::SETOGE: 140 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 141 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 142 break; 143 case ISD::SETLT: 144 case ISD::SETOLT: 145 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 146 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 147 break; 148 case ISD::SETLE: 149 case ISD::SETOLE: 150 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 151 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 152 break; 153 case ISD::SETGT: 154 case ISD::SETOGT: 155 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 156 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 157 break; 158 case ISD::SETUO: 159 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 160 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 161 break; 162 case ISD::SETO: 163 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 164 (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128; 165 break; 166 default: 167 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 168 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 169 switch (CCCode) { 170 case ISD::SETONE: 171 // SETONE = SETOLT | SETOGT 172 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 173 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 174 // Fallthrough 175 case ISD::SETUGT: 176 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 177 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 178 break; 179 case ISD::SETUGE: 180 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 181 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 182 break; 183 case ISD::SETULT: 184 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 185 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 186 break; 187 case ISD::SETULE: 188 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 189 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 190 break; 191 case ISD::SETUEQ: 192 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 193 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 194 break; 195 default: llvm_unreachable("Do not know how to soften this setcc!"); 196 } 197 } 198 199 // Use the target specific return value for comparions lib calls. 200 EVT RetVT = getCmpLibcallReturnType(); 201 SDValue Ops[2] = { NewLHS, NewRHS }; 202 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/, 203 dl).first; 204 NewRHS = DAG.getConstant(0, RetVT); 205 CCCode = getCmpLibcallCC(LC1); 206 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 207 SDValue Tmp = DAG.getNode(ISD::SETCC, dl, 208 getSetCCResultType(*DAG.getContext(), RetVT), 209 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 210 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/, 211 dl).first; 212 NewLHS = DAG.getNode(ISD::SETCC, dl, 213 getSetCCResultType(*DAG.getContext(), RetVT), NewLHS, 214 NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 215 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 216 NewRHS = SDValue(); 217 } 218 } 219 220 /// getJumpTableEncoding - Return the entry encoding for a jump table in the 221 /// current function. The returned value is a member of the 222 /// MachineJumpTableInfo::JTEntryKind enum. 223 unsigned TargetLowering::getJumpTableEncoding() const { 224 // In non-pic modes, just use the address of a block. 225 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 226 return MachineJumpTableInfo::EK_BlockAddress; 227 228 // In PIC mode, if the target supports a GPRel32 directive, use it. 229 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0) 230 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 231 232 // Otherwise, use a label difference. 233 return MachineJumpTableInfo::EK_LabelDifference32; 234 } 235 236 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 237 SelectionDAG &DAG) const { 238 // If our PIC model is GP relative, use the global offset table as the base. 239 unsigned JTEncoding = getJumpTableEncoding(); 240 241 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 242 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 243 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0)); 244 245 return Table; 246 } 247 248 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the 249 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an 250 /// MCExpr. 251 const MCExpr * 252 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 253 unsigned JTI,MCContext &Ctx) const{ 254 // The normal PIC reloc base is the label at the start of the jump table. 255 return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx); 256 } 257 258 bool 259 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 260 // Assume that everything is safe in static mode. 261 if (getTargetMachine().getRelocationModel() == Reloc::Static) 262 return true; 263 264 // In dynamic-no-pic mode, assume that known defined values are safe. 265 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && 266 GA && 267 !GA->getGlobal()->isDeclaration() && 268 !GA->getGlobal()->isWeakForLinker()) 269 return true; 270 271 // Otherwise assume nothing is safe. 272 return false; 273 } 274 275 //===----------------------------------------------------------------------===// 276 // Optimization Methods 277 //===----------------------------------------------------------------------===// 278 279 /// ShrinkDemandedConstant - Check to see if the specified operand of the 280 /// specified instruction is a constant integer. If so, check to see if there 281 /// are any bits set in the constant that are not demanded. If so, shrink the 282 /// constant and return true. 283 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 284 const APInt &Demanded) { 285 SDLoc dl(Op); 286 287 // FIXME: ISD::SELECT, ISD::SELECT_CC 288 switch (Op.getOpcode()) { 289 default: break; 290 case ISD::XOR: 291 case ISD::AND: 292 case ISD::OR: { 293 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 294 if (!C) return false; 295 296 if (Op.getOpcode() == ISD::XOR && 297 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 298 return false; 299 300 // if we can expand it to have all bits set, do it 301 if (C->getAPIntValue().intersects(~Demanded)) { 302 EVT VT = Op.getValueType(); 303 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 304 DAG.getConstant(Demanded & 305 C->getAPIntValue(), 306 VT)); 307 return CombineTo(Op, New); 308 } 309 310 break; 311 } 312 } 313 314 return false; 315 } 316 317 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the 318 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening 319 /// cast, but it could be generalized for targets with other types of 320 /// implicit widening casts. 321 bool 322 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 323 unsigned BitWidth, 324 const APInt &Demanded, 325 SDLoc dl) { 326 assert(Op.getNumOperands() == 2 && 327 "ShrinkDemandedOp only supports binary operators!"); 328 assert(Op.getNode()->getNumValues() == 1 && 329 "ShrinkDemandedOp only supports nodes with one result!"); 330 331 // Don't do this if the node has another user, which may require the 332 // full value. 333 if (!Op.getNode()->hasOneUse()) 334 return false; 335 336 // Search for the smallest integer type with free casts to and from 337 // Op's type. For expedience, just check power-of-2 integer types. 338 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 339 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 340 unsigned SmallVTBits = DemandedSize; 341 if (!isPowerOf2_32(SmallVTBits)) 342 SmallVTBits = NextPowerOf2(SmallVTBits); 343 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 344 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 345 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 346 TLI.isZExtFree(SmallVT, Op.getValueType())) { 347 // We found a type with free casts. 348 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 349 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 350 Op.getNode()->getOperand(0)), 351 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 352 Op.getNode()->getOperand(1))); 353 bool NeedZext = DemandedSize > SmallVTBits; 354 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 355 dl, Op.getValueType(), X); 356 return CombineTo(Op, Z); 357 } 358 } 359 return false; 360 } 361 362 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the 363 /// DemandedMask bits of the result of Op are ever used downstream. If we can 364 /// use this information to simplify Op, create a new simplified DAG node and 365 /// return true, returning the original and new nodes in Old and New. Otherwise, 366 /// analyze the expression and return a mask of KnownOne and KnownZero bits for 367 /// the expression (used to simplify the caller). The KnownZero/One bits may 368 /// only be accurate for those bits in the DemandedMask. 369 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 370 const APInt &DemandedMask, 371 APInt &KnownZero, 372 APInt &KnownOne, 373 TargetLoweringOpt &TLO, 374 unsigned Depth) const { 375 unsigned BitWidth = DemandedMask.getBitWidth(); 376 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && 377 "Mask size mismatches value type size!"); 378 APInt NewMask = DemandedMask; 379 SDLoc dl(Op); 380 381 // Don't know anything. 382 KnownZero = KnownOne = APInt(BitWidth, 0); 383 384 // Other users may use these bits. 385 if (!Op.getNode()->hasOneUse()) { 386 if (Depth != 0) { 387 // If not at the root, Just compute the KnownZero/KnownOne bits to 388 // simplify things downstream. 389 TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth); 390 return false; 391 } 392 // If this is the root being simplified, allow it to have multiple uses, 393 // just set the NewMask to all bits. 394 NewMask = APInt::getAllOnesValue(BitWidth); 395 } else if (DemandedMask == 0) { 396 // Not demanding any bits from Op. 397 if (Op.getOpcode() != ISD::UNDEF) 398 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 399 return false; 400 } else if (Depth == 6) { // Limit search depth. 401 return false; 402 } 403 404 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 405 switch (Op.getOpcode()) { 406 case ISD::Constant: 407 // We know all of the bits for a constant! 408 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 409 KnownZero = ~KnownOne; 410 return false; // Don't fall through, will infinitely loop. 411 case ISD::AND: 412 // If the RHS is a constant, check to see if the LHS would be zero without 413 // using the bits from the RHS. Below, we use knowledge about the RHS to 414 // simplify the LHS, here we're using information from the LHS to simplify 415 // the RHS. 416 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 417 APInt LHSZero, LHSOne; 418 // Do not increment Depth here; that can cause an infinite loop. 419 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 420 // If the LHS already has zeros where RHSC does, this and is dead. 421 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 422 return TLO.CombineTo(Op, Op.getOperand(0)); 423 // If any of the set bits in the RHS are known zero on the LHS, shrink 424 // the constant. 425 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 426 return true; 427 } 428 429 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 430 KnownOne, TLO, Depth+1)) 431 return true; 432 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 433 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 434 KnownZero2, KnownOne2, TLO, Depth+1)) 435 return true; 436 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 437 438 // If all of the demanded bits are known one on one side, return the other. 439 // These bits cannot contribute to the result of the 'and'. 440 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 441 return TLO.CombineTo(Op, Op.getOperand(0)); 442 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 443 return TLO.CombineTo(Op, Op.getOperand(1)); 444 // If all of the demanded bits in the inputs are known zeros, return zero. 445 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 446 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); 447 // If the RHS is a constant, see if we can simplify it. 448 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 449 return true; 450 // If the operation can be done in a smaller type, do so. 451 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 452 return true; 453 454 // Output known-1 bits are only known if set in both the LHS & RHS. 455 KnownOne &= KnownOne2; 456 // Output known-0 are known to be clear if zero in either the LHS | RHS. 457 KnownZero |= KnownZero2; 458 break; 459 case ISD::OR: 460 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 461 KnownOne, TLO, Depth+1)) 462 return true; 463 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 464 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 465 KnownZero2, KnownOne2, TLO, Depth+1)) 466 return true; 467 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 468 469 // If all of the demanded bits are known zero on one side, return the other. 470 // These bits cannot contribute to the result of the 'or'. 471 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 472 return TLO.CombineTo(Op, Op.getOperand(0)); 473 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 474 return TLO.CombineTo(Op, Op.getOperand(1)); 475 // If all of the potentially set bits on one side are known to be set on 476 // the other side, just use the 'other' side. 477 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 478 return TLO.CombineTo(Op, Op.getOperand(0)); 479 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 480 return TLO.CombineTo(Op, Op.getOperand(1)); 481 // If the RHS is a constant, see if we can simplify it. 482 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 483 return true; 484 // If the operation can be done in a smaller type, do so. 485 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 486 return true; 487 488 // Output known-0 bits are only known if clear in both the LHS & RHS. 489 KnownZero &= KnownZero2; 490 // Output known-1 are known to be set if set in either the LHS | RHS. 491 KnownOne |= KnownOne2; 492 break; 493 case ISD::XOR: 494 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 495 KnownOne, TLO, Depth+1)) 496 return true; 497 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 498 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 499 KnownOne2, TLO, Depth+1)) 500 return true; 501 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 502 503 // If all of the demanded bits are known zero on one side, return the other. 504 // These bits cannot contribute to the result of the 'xor'. 505 if ((KnownZero & NewMask) == NewMask) 506 return TLO.CombineTo(Op, Op.getOperand(0)); 507 if ((KnownZero2 & NewMask) == NewMask) 508 return TLO.CombineTo(Op, Op.getOperand(1)); 509 // If the operation can be done in a smaller type, do so. 510 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 511 return true; 512 513 // If all of the unknown bits are known to be zero on one side or the other 514 // (but not both) turn this into an *inclusive* or. 515 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 516 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 517 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 518 Op.getOperand(0), 519 Op.getOperand(1))); 520 521 // Output known-0 bits are known if clear or set in both the LHS & RHS. 522 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 523 // Output known-1 are known to be set if set in only one of the LHS, RHS. 524 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 525 526 // If all of the demanded bits on one side are known, and all of the set 527 // bits on that side are also known to be set on the other side, turn this 528 // into an AND, as we know the bits will be cleared. 529 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 530 // NB: it is okay if more bits are known than are requested 531 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 532 if (KnownOne == KnownOne2) { // set bits are the same on both sides 533 EVT VT = Op.getValueType(); 534 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT); 535 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 536 Op.getOperand(0), ANDC)); 537 } 538 } 539 540 // If the RHS is a constant, see if we can simplify it. 541 // for XOR, we prefer to force bits to 1 if they will make a -1. 542 // if we can't force bits, try to shrink constant 543 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 544 APInt Expanded = C->getAPIntValue() | (~NewMask); 545 // if we can expand it to have all bits set, do it 546 if (Expanded.isAllOnesValue()) { 547 if (Expanded != C->getAPIntValue()) { 548 EVT VT = Op.getValueType(); 549 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 550 TLO.DAG.getConstant(Expanded, VT)); 551 return TLO.CombineTo(Op, New); 552 } 553 // if it already has all the bits set, nothing to change 554 // but don't shrink either! 555 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 556 return true; 557 } 558 } 559 560 KnownZero = KnownZeroOut; 561 KnownOne = KnownOneOut; 562 break; 563 case ISD::SELECT: 564 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 565 KnownOne, TLO, Depth+1)) 566 return true; 567 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 568 KnownOne2, TLO, Depth+1)) 569 return true; 570 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 571 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 572 573 // If the operands are constants, see if we can simplify them. 574 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 575 return true; 576 577 // Only known if known in both the LHS and RHS. 578 KnownOne &= KnownOne2; 579 KnownZero &= KnownZero2; 580 break; 581 case ISD::SELECT_CC: 582 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 583 KnownOne, TLO, Depth+1)) 584 return true; 585 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 586 KnownOne2, TLO, Depth+1)) 587 return true; 588 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 589 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 590 591 // If the operands are constants, see if we can simplify them. 592 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 593 return true; 594 595 // Only known if known in both the LHS and RHS. 596 KnownOne &= KnownOne2; 597 KnownZero &= KnownZero2; 598 break; 599 case ISD::SHL: 600 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 601 unsigned ShAmt = SA->getZExtValue(); 602 SDValue InOp = Op.getOperand(0); 603 604 // If the shift count is an invalid immediate, don't do anything. 605 if (ShAmt >= BitWidth) 606 break; 607 608 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 609 // single shift. We can do this if the bottom bits (which are shifted 610 // out) are never demanded. 611 if (InOp.getOpcode() == ISD::SRL && 612 isa<ConstantSDNode>(InOp.getOperand(1))) { 613 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 614 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 615 unsigned Opc = ISD::SHL; 616 int Diff = ShAmt-C1; 617 if (Diff < 0) { 618 Diff = -Diff; 619 Opc = ISD::SRL; 620 } 621 622 SDValue NewSA = 623 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 624 EVT VT = Op.getValueType(); 625 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 626 InOp.getOperand(0), NewSA)); 627 } 628 } 629 630 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 631 KnownZero, KnownOne, TLO, Depth+1)) 632 return true; 633 634 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 635 // are not demanded. This will likely allow the anyext to be folded away. 636 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 637 SDValue InnerOp = InOp.getNode()->getOperand(0); 638 EVT InnerVT = InnerOp.getValueType(); 639 unsigned InnerBits = InnerVT.getSizeInBits(); 640 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 641 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 642 EVT ShTy = getShiftAmountTy(InnerVT); 643 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 644 ShTy = InnerVT; 645 SDValue NarrowShl = 646 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 647 TLO.DAG.getConstant(ShAmt, ShTy)); 648 return 649 TLO.CombineTo(Op, 650 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 651 NarrowShl)); 652 } 653 // Repeat the SHL optimization above in cases where an extension 654 // intervenes: (shl (anyext (shr x, c1)), c2) to 655 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 656 // aren't demanded (as above) and that the shifted upper c1 bits of 657 // x aren't demanded. 658 if (InOp.hasOneUse() && 659 InnerOp.getOpcode() == ISD::SRL && 660 InnerOp.hasOneUse() && 661 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 662 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 663 ->getZExtValue(); 664 if (InnerShAmt < ShAmt && 665 InnerShAmt < InnerBits && 666 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 667 NewMask.trunc(ShAmt) == 0) { 668 SDValue NewSA = 669 TLO.DAG.getConstant(ShAmt - InnerShAmt, 670 Op.getOperand(1).getValueType()); 671 EVT VT = Op.getValueType(); 672 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 673 InnerOp.getOperand(0)); 674 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 675 NewExt, NewSA)); 676 } 677 } 678 } 679 680 KnownZero <<= SA->getZExtValue(); 681 KnownOne <<= SA->getZExtValue(); 682 // low bits known zero. 683 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 684 } 685 break; 686 case ISD::SRL: 687 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 688 EVT VT = Op.getValueType(); 689 unsigned ShAmt = SA->getZExtValue(); 690 unsigned VTSize = VT.getSizeInBits(); 691 SDValue InOp = Op.getOperand(0); 692 693 // If the shift count is an invalid immediate, don't do anything. 694 if (ShAmt >= BitWidth) 695 break; 696 697 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 698 // single shift. We can do this if the top bits (which are shifted out) 699 // are never demanded. 700 if (InOp.getOpcode() == ISD::SHL && 701 isa<ConstantSDNode>(InOp.getOperand(1))) { 702 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 703 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 704 unsigned Opc = ISD::SRL; 705 int Diff = ShAmt-C1; 706 if (Diff < 0) { 707 Diff = -Diff; 708 Opc = ISD::SHL; 709 } 710 711 SDValue NewSA = 712 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 713 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 714 InOp.getOperand(0), NewSA)); 715 } 716 } 717 718 // Compute the new bits that are at the top now. 719 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt), 720 KnownZero, KnownOne, TLO, Depth+1)) 721 return true; 722 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 723 KnownZero = KnownZero.lshr(ShAmt); 724 KnownOne = KnownOne.lshr(ShAmt); 725 726 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 727 KnownZero |= HighBits; // High bits known zero. 728 } 729 break; 730 case ISD::SRA: 731 // If this is an arithmetic shift right and only the low-bit is set, we can 732 // always convert this into a logical shr, even if the shift amount is 733 // variable. The low bit of the shift cannot be an input sign bit unless 734 // the shift amount is >= the size of the datatype, which is undefined. 735 if (NewMask == 1) 736 return TLO.CombineTo(Op, 737 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 738 Op.getOperand(0), Op.getOperand(1))); 739 740 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 741 EVT VT = Op.getValueType(); 742 unsigned ShAmt = SA->getZExtValue(); 743 744 // If the shift count is an invalid immediate, don't do anything. 745 if (ShAmt >= BitWidth) 746 break; 747 748 APInt InDemandedMask = (NewMask << ShAmt); 749 750 // If any of the demanded bits are produced by the sign extension, we also 751 // demand the input sign bit. 752 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 753 if (HighBits.intersects(NewMask)) 754 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); 755 756 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 757 KnownZero, KnownOne, TLO, Depth+1)) 758 return true; 759 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 760 KnownZero = KnownZero.lshr(ShAmt); 761 KnownOne = KnownOne.lshr(ShAmt); 762 763 // Handle the sign bit, adjusted to where it is now in the mask. 764 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 765 766 // If the input sign bit is known to be zero, or if none of the top bits 767 // are demanded, turn this into an unsigned shift right. 768 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) 769 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 770 Op.getOperand(0), 771 Op.getOperand(1))); 772 773 int Log2 = NewMask.exactLogBase2(); 774 if (Log2 >= 0) { 775 // The bit must come from the sign. 776 SDValue NewSA = 777 TLO.DAG.getConstant(BitWidth - 1 - Log2, 778 Op.getOperand(1).getValueType()); 779 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 780 Op.getOperand(0), NewSA)); 781 } 782 783 if (KnownOne.intersects(SignBit)) 784 // New bits are known one. 785 KnownOne |= HighBits; 786 } 787 break; 788 case ISD::SIGN_EXTEND_INREG: { 789 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 790 791 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 792 // If we only care about the highest bit, don't bother shifting right. 793 if (MsbMask == DemandedMask) { 794 unsigned ShAmt = ExVT.getScalarType().getSizeInBits(); 795 SDValue InOp = Op.getOperand(0); 796 797 // Compute the correct shift amount type, which must be getShiftAmountTy 798 // for scalar types after legalization. 799 EVT ShiftAmtTy = Op.getValueType(); 800 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 801 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy); 802 803 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy); 804 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 805 Op.getValueType(), InOp, ShiftAmt)); 806 } 807 808 // Sign extension. Compute the demanded bits in the result that are not 809 // present in the input. 810 APInt NewBits = 811 APInt::getHighBitsSet(BitWidth, 812 BitWidth - ExVT.getScalarType().getSizeInBits()); 813 814 // If none of the extended bits are demanded, eliminate the sextinreg. 815 if ((NewBits & NewMask) == 0) 816 return TLO.CombineTo(Op, Op.getOperand(0)); 817 818 APInt InSignBit = 819 APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth); 820 APInt InputDemandedBits = 821 APInt::getLowBitsSet(BitWidth, 822 ExVT.getScalarType().getSizeInBits()) & 823 NewMask; 824 825 // Since the sign extended bits are demanded, we know that the sign 826 // bit is demanded. 827 InputDemandedBits |= InSignBit; 828 829 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 830 KnownZero, KnownOne, TLO, Depth+1)) 831 return true; 832 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 833 834 // If the sign bit of the input is known set or clear, then we know the 835 // top bits of the result. 836 837 // If the input sign bit is known zero, convert this into a zero extension. 838 if (KnownZero.intersects(InSignBit)) 839 return TLO.CombineTo(Op, 840 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT)); 841 842 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 843 KnownOne |= NewBits; 844 KnownZero &= ~NewBits; 845 } else { // Input sign bit unknown 846 KnownZero &= ~NewBits; 847 KnownOne &= ~NewBits; 848 } 849 break; 850 } 851 case ISD::ZERO_EXTEND: { 852 unsigned OperandBitWidth = 853 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 854 APInt InMask = NewMask.trunc(OperandBitWidth); 855 856 // If none of the top bits are demanded, convert this into an any_extend. 857 APInt NewBits = 858 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 859 if (!NewBits.intersects(NewMask)) 860 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 861 Op.getValueType(), 862 Op.getOperand(0))); 863 864 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 865 KnownZero, KnownOne, TLO, Depth+1)) 866 return true; 867 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 868 KnownZero = KnownZero.zext(BitWidth); 869 KnownOne = KnownOne.zext(BitWidth); 870 KnownZero |= NewBits; 871 break; 872 } 873 case ISD::SIGN_EXTEND: { 874 EVT InVT = Op.getOperand(0).getValueType(); 875 unsigned InBits = InVT.getScalarType().getSizeInBits(); 876 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 877 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 878 APInt NewBits = ~InMask & NewMask; 879 880 // If none of the top bits are demanded, convert this into an any_extend. 881 if (NewBits == 0) 882 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 883 Op.getValueType(), 884 Op.getOperand(0))); 885 886 // Since some of the sign extended bits are demanded, we know that the sign 887 // bit is demanded. 888 APInt InDemandedBits = InMask & NewMask; 889 InDemandedBits |= InSignBit; 890 InDemandedBits = InDemandedBits.trunc(InBits); 891 892 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 893 KnownOne, TLO, Depth+1)) 894 return true; 895 KnownZero = KnownZero.zext(BitWidth); 896 KnownOne = KnownOne.zext(BitWidth); 897 898 // If the sign bit is known zero, convert this to a zero extend. 899 if (KnownZero.intersects(InSignBit)) 900 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 901 Op.getValueType(), 902 Op.getOperand(0))); 903 904 // If the sign bit is known one, the top bits match. 905 if (KnownOne.intersects(InSignBit)) { 906 KnownOne |= NewBits; 907 assert((KnownZero & NewBits) == 0); 908 } else { // Otherwise, top bits aren't known. 909 assert((KnownOne & NewBits) == 0); 910 assert((KnownZero & NewBits) == 0); 911 } 912 break; 913 } 914 case ISD::ANY_EXTEND: { 915 unsigned OperandBitWidth = 916 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 917 APInt InMask = NewMask.trunc(OperandBitWidth); 918 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 919 KnownZero, KnownOne, TLO, Depth+1)) 920 return true; 921 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 922 KnownZero = KnownZero.zext(BitWidth); 923 KnownOne = KnownOne.zext(BitWidth); 924 break; 925 } 926 case ISD::TRUNCATE: { 927 // Simplify the input, using demanded bit information, and compute the known 928 // zero/one bits live out. 929 unsigned OperandBitWidth = 930 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 931 APInt TruncMask = NewMask.zext(OperandBitWidth); 932 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 933 KnownZero, KnownOne, TLO, Depth+1)) 934 return true; 935 KnownZero = KnownZero.trunc(BitWidth); 936 KnownOne = KnownOne.trunc(BitWidth); 937 938 // If the input is only used by this truncate, see if we can shrink it based 939 // on the known demanded bits. 940 if (Op.getOperand(0).getNode()->hasOneUse()) { 941 SDValue In = Op.getOperand(0); 942 switch (In.getOpcode()) { 943 default: break; 944 case ISD::SRL: 945 // Shrink SRL by a constant if none of the high bits shifted in are 946 // demanded. 947 if (TLO.LegalTypes() && 948 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 949 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 950 // undesirable. 951 break; 952 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 953 if (!ShAmt) 954 break; 955 SDValue Shift = In.getOperand(1); 956 if (TLO.LegalTypes()) { 957 uint64_t ShVal = ShAmt->getZExtValue(); 958 Shift = 959 TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType())); 960 } 961 962 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 963 OperandBitWidth - BitWidth); 964 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 965 966 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 967 // None of the shifted in bits are needed. Add a truncate of the 968 // shift input, then shift it. 969 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 970 Op.getValueType(), 971 In.getOperand(0)); 972 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 973 Op.getValueType(), 974 NewTrunc, 975 Shift)); 976 } 977 break; 978 } 979 } 980 981 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 982 break; 983 } 984 case ISD::AssertZext: { 985 // AssertZext demands all of the high bits, plus any of the low bits 986 // demanded by its users. 987 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 988 APInt InMask = APInt::getLowBitsSet(BitWidth, 989 VT.getSizeInBits()); 990 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 991 KnownZero, KnownOne, TLO, Depth+1)) 992 return true; 993 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 994 995 KnownZero |= ~InMask & NewMask; 996 break; 997 } 998 case ISD::BITCAST: 999 // If this is an FP->Int bitcast and if the sign bit is the only 1000 // thing demanded, turn this into a FGETSIGN. 1001 if (!TLO.LegalOperations() && 1002 !Op.getValueType().isVector() && 1003 !Op.getOperand(0).getValueType().isVector() && 1004 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && 1005 Op.getOperand(0).getValueType().isFloatingPoint()) { 1006 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1007 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1008 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) { 1009 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1010 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1011 // place. We expect the SHL to be eliminated by other optimizations. 1012 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1013 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); 1014 if (!OpVTLegal && OpVTSizeInBits > 32) 1015 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1016 unsigned ShVal = Op.getValueType().getSizeInBits()-1; 1017 SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType()); 1018 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1019 Op.getValueType(), 1020 Sign, ShAmt)); 1021 } 1022 } 1023 break; 1024 case ISD::ADD: 1025 case ISD::MUL: 1026 case ISD::SUB: { 1027 // Add, Sub, and Mul don't demand any bits in positions beyond that 1028 // of the highest bit demanded of them. 1029 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1030 BitWidth - NewMask.countLeadingZeros()); 1031 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1032 KnownOne2, TLO, Depth+1)) 1033 return true; 1034 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1035 KnownOne2, TLO, Depth+1)) 1036 return true; 1037 // See if the operation should be performed at a smaller bit width. 1038 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1039 return true; 1040 } 1041 // FALL THROUGH 1042 default: 1043 // Just use ComputeMaskedBits to compute output bits. 1044 TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth); 1045 break; 1046 } 1047 1048 // If we know the value of all of the demanded bits, return this as a 1049 // constant. 1050 if ((NewMask & (KnownZero|KnownOne)) == NewMask) 1051 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); 1052 1053 return false; 1054 } 1055 1056 /// computeMaskedBitsForTargetNode - Determine which of the bits specified 1057 /// in Mask are known to be either zero or one and return them in the 1058 /// KnownZero/KnownOne bitsets. 1059 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 1060 APInt &KnownZero, 1061 APInt &KnownOne, 1062 const SelectionDAG &DAG, 1063 unsigned Depth) const { 1064 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1065 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1066 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1067 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1068 "Should use MaskedValueIsZero if you don't know whether Op" 1069 " is a target node!"); 1070 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1071 } 1072 1073 /// ComputeNumSignBitsForTargetNode - This method can be implemented by 1074 /// targets that want to expose additional information about sign bits to the 1075 /// DAG Combiner. 1076 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1077 unsigned Depth) const { 1078 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1079 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1080 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1081 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1082 "Should use ComputeNumSignBits if you don't know whether Op" 1083 " is a target node!"); 1084 return 1; 1085 } 1086 1087 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly 1088 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to 1089 /// determine which bit is set. 1090 /// 1091 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { 1092 // A left-shift of a constant one will have exactly one bit set, because 1093 // shifting the bit off the end is undefined. 1094 if (Val.getOpcode() == ISD::SHL) 1095 if (ConstantSDNode *C = 1096 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1097 if (C->getAPIntValue() == 1) 1098 return true; 1099 1100 // Similarly, a right-shift of a constant sign-bit will have exactly 1101 // one bit set. 1102 if (Val.getOpcode() == ISD::SRL) 1103 if (ConstantSDNode *C = 1104 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1105 if (C->getAPIntValue().isSignBit()) 1106 return true; 1107 1108 // More could be done here, though the above checks are enough 1109 // to handle some common cases. 1110 1111 // Fall back to ComputeMaskedBits to catch other known cases. 1112 EVT OpVT = Val.getValueType(); 1113 unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); 1114 APInt KnownZero, KnownOne; 1115 DAG.ComputeMaskedBits(Val, KnownZero, KnownOne); 1116 return (KnownZero.countPopulation() == BitWidth - 1) && 1117 (KnownOne.countPopulation() == 1); 1118 } 1119 1120 /// SimplifySetCC - Try to simplify a setcc built with the specified operands 1121 /// and cc. If it is unable to simplify it, return a null SDValue. 1122 SDValue 1123 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1124 ISD::CondCode Cond, bool foldBooleans, 1125 DAGCombinerInfo &DCI, SDLoc dl) const { 1126 SelectionDAG &DAG = DCI.DAG; 1127 1128 // These setcc operations always fold. 1129 switch (Cond) { 1130 default: break; 1131 case ISD::SETFALSE: 1132 case ISD::SETFALSE2: return DAG.getConstant(0, VT); 1133 case ISD::SETTRUE: 1134 case ISD::SETTRUE2: { 1135 TargetLowering::BooleanContent Cnt = getBooleanContents(VT.isVector()); 1136 return DAG.getConstant( 1137 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT); 1138 } 1139 } 1140 1141 // Ensure that the constant occurs on the RHS, and fold constant 1142 // comparisons. 1143 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1144 if (isa<ConstantSDNode>(N0.getNode()) && 1145 (DCI.isBeforeLegalizeOps() || 1146 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1147 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1148 1149 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1150 const APInt &C1 = N1C->getAPIntValue(); 1151 1152 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1153 // equality comparison, then we're just comparing whether X itself is 1154 // zero. 1155 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1156 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1157 N0.getOperand(1).getOpcode() == ISD::Constant) { 1158 const APInt &ShAmt 1159 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1160 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1161 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { 1162 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1163 // (srl (ctlz x), 5) == 0 -> X != 0 1164 // (srl (ctlz x), 5) != 1 -> X != 0 1165 Cond = ISD::SETNE; 1166 } else { 1167 // (srl (ctlz x), 5) != 0 -> X == 0 1168 // (srl (ctlz x), 5) == 1 -> X == 0 1169 Cond = ISD::SETEQ; 1170 } 1171 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 1172 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1173 Zero, Cond); 1174 } 1175 } 1176 1177 SDValue CTPOP = N0; 1178 // Look through truncs that don't change the value of a ctpop. 1179 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1180 CTPOP = N0.getOperand(0); 1181 1182 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1183 (N0 == CTPOP || N0.getValueType().getSizeInBits() > 1184 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { 1185 EVT CTVT = CTPOP.getValueType(); 1186 SDValue CTOp = CTPOP.getOperand(0); 1187 1188 // (ctpop x) u< 2 -> (x & x-1) == 0 1189 // (ctpop x) u> 1 -> (x & x-1) != 0 1190 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1191 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1192 DAG.getConstant(1, CTVT)); 1193 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1194 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1195 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC); 1196 } 1197 1198 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1199 } 1200 1201 // (zext x) == C --> x == (trunc C) 1202 if (DCI.isBeforeLegalize() && N0->hasOneUse() && 1203 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1204 unsigned MinBits = N0.getValueSizeInBits(); 1205 SDValue PreZExt; 1206 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1207 // ZExt 1208 MinBits = N0->getOperand(0).getValueSizeInBits(); 1209 PreZExt = N0->getOperand(0); 1210 } else if (N0->getOpcode() == ISD::AND) { 1211 // DAGCombine turns costly ZExts into ANDs 1212 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1213 if ((C->getAPIntValue()+1).isPowerOf2()) { 1214 MinBits = C->getAPIntValue().countTrailingOnes(); 1215 PreZExt = N0->getOperand(0); 1216 } 1217 } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) { 1218 // ZEXTLOAD 1219 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1220 MinBits = LN0->getMemoryVT().getSizeInBits(); 1221 PreZExt = N0; 1222 } 1223 } 1224 1225 // Make sure we're not losing bits from the constant. 1226 if (MinBits > 0 && 1227 MinBits < C1.getBitWidth() && MinBits >= C1.getActiveBits()) { 1228 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1229 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1230 // Will get folded away. 1231 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt); 1232 SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT); 1233 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1234 } 1235 } 1236 } 1237 1238 // If the LHS is '(and load, const)', the RHS is 0, 1239 // the test is for equality or unsigned, and all 1 bits of the const are 1240 // in the same partial word, see if we can shorten the load. 1241 if (DCI.isBeforeLegalize() && 1242 !ISD::isSignedIntSetCC(Cond) && 1243 N0.getOpcode() == ISD::AND && C1 == 0 && 1244 N0.getNode()->hasOneUse() && 1245 isa<LoadSDNode>(N0.getOperand(0)) && 1246 N0.getOperand(0).getNode()->hasOneUse() && 1247 isa<ConstantSDNode>(N0.getOperand(1))) { 1248 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1249 APInt bestMask; 1250 unsigned bestWidth = 0, bestOffset = 0; 1251 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1252 unsigned origWidth = N0.getValueType().getSizeInBits(); 1253 unsigned maskWidth = origWidth; 1254 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1255 // 8 bits, but have to be careful... 1256 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1257 origWidth = Lod->getMemoryVT().getSizeInBits(); 1258 const APInt &Mask = 1259 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1260 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1261 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1262 for (unsigned offset=0; offset<origWidth/width; offset++) { 1263 if ((newMask & Mask) == Mask) { 1264 if (!getDataLayout()->isLittleEndian()) 1265 bestOffset = (origWidth/width - offset - 1) * (width/8); 1266 else 1267 bestOffset = (uint64_t)offset * (width/8); 1268 bestMask = Mask.lshr(offset * (width/8) * 8); 1269 bestWidth = width; 1270 break; 1271 } 1272 newMask = newMask << width; 1273 } 1274 } 1275 } 1276 if (bestWidth) { 1277 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1278 if (newVT.isRound()) { 1279 EVT PtrType = Lod->getOperand(1).getValueType(); 1280 SDValue Ptr = Lod->getBasePtr(); 1281 if (bestOffset != 0) 1282 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1283 DAG.getConstant(bestOffset, PtrType)); 1284 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1285 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 1286 Lod->getPointerInfo().getWithOffset(bestOffset), 1287 false, false, false, NewAlign); 1288 return DAG.getSetCC(dl, VT, 1289 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1290 DAG.getConstant(bestMask.trunc(bestWidth), 1291 newVT)), 1292 DAG.getConstant(0LL, newVT), Cond); 1293 } 1294 } 1295 } 1296 1297 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1298 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1299 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); 1300 1301 // If the comparison constant has bits in the upper part, the 1302 // zero-extended value could never match. 1303 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1304 C1.getBitWidth() - InSize))) { 1305 switch (Cond) { 1306 case ISD::SETUGT: 1307 case ISD::SETUGE: 1308 case ISD::SETEQ: return DAG.getConstant(0, VT); 1309 case ISD::SETULT: 1310 case ISD::SETULE: 1311 case ISD::SETNE: return DAG.getConstant(1, VT); 1312 case ISD::SETGT: 1313 case ISD::SETGE: 1314 // True if the sign bit of C1 is set. 1315 return DAG.getConstant(C1.isNegative(), VT); 1316 case ISD::SETLT: 1317 case ISD::SETLE: 1318 // True if the sign bit of C1 isn't set. 1319 return DAG.getConstant(C1.isNonNegative(), VT); 1320 default: 1321 break; 1322 } 1323 } 1324 1325 // Otherwise, we can perform the comparison with the low bits. 1326 switch (Cond) { 1327 case ISD::SETEQ: 1328 case ISD::SETNE: 1329 case ISD::SETUGT: 1330 case ISD::SETUGE: 1331 case ISD::SETULT: 1332 case ISD::SETULE: { 1333 EVT newVT = N0.getOperand(0).getValueType(); 1334 if (DCI.isBeforeLegalizeOps() || 1335 (isOperationLegal(ISD::SETCC, newVT) && 1336 getCondCodeAction(Cond, newVT.getSimpleVT())==Legal)) 1337 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1338 DAG.getConstant(C1.trunc(InSize), newVT), 1339 Cond); 1340 break; 1341 } 1342 default: 1343 break; // todo, be more careful with signed comparisons 1344 } 1345 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1346 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1347 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1348 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1349 EVT ExtDstTy = N0.getValueType(); 1350 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1351 1352 // If the constant doesn't fit into the number of bits for the source of 1353 // the sign extension, it is impossible for both sides to be equal. 1354 if (C1.getMinSignedBits() > ExtSrcTyBits) 1355 return DAG.getConstant(Cond == ISD::SETNE, VT); 1356 1357 SDValue ZextOp; 1358 EVT Op0Ty = N0.getOperand(0).getValueType(); 1359 if (Op0Ty == ExtSrcTy) { 1360 ZextOp = N0.getOperand(0); 1361 } else { 1362 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1363 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1364 DAG.getConstant(Imm, Op0Ty)); 1365 } 1366 if (!DCI.isCalledByLegalizer()) 1367 DCI.AddToWorklist(ZextOp.getNode()); 1368 // Otherwise, make this a use of a zext. 1369 return DAG.getSetCC(dl, VT, ZextOp, 1370 DAG.getConstant(C1 & APInt::getLowBitsSet( 1371 ExtDstTyBits, 1372 ExtSrcTyBits), 1373 ExtDstTy), 1374 Cond); 1375 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1376 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1377 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1378 if (N0.getOpcode() == ISD::SETCC && 1379 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1380 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1381 if (TrueWhenTrue) 1382 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1383 // Invert the condition. 1384 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1385 CC = ISD::getSetCCInverse(CC, 1386 N0.getOperand(0).getValueType().isInteger()); 1387 if (DCI.isBeforeLegalizeOps() || 1388 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1389 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1390 } 1391 1392 if ((N0.getOpcode() == ISD::XOR || 1393 (N0.getOpcode() == ISD::AND && 1394 N0.getOperand(0).getOpcode() == ISD::XOR && 1395 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1396 isa<ConstantSDNode>(N0.getOperand(1)) && 1397 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1398 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1399 // can only do this if the top bits are known zero. 1400 unsigned BitWidth = N0.getValueSizeInBits(); 1401 if (DAG.MaskedValueIsZero(N0, 1402 APInt::getHighBitsSet(BitWidth, 1403 BitWidth-1))) { 1404 // Okay, get the un-inverted input value. 1405 SDValue Val; 1406 if (N0.getOpcode() == ISD::XOR) 1407 Val = N0.getOperand(0); 1408 else { 1409 assert(N0.getOpcode() == ISD::AND && 1410 N0.getOperand(0).getOpcode() == ISD::XOR); 1411 // ((X^1)&1)^1 -> X & 1 1412 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1413 N0.getOperand(0).getOperand(0), 1414 N0.getOperand(1)); 1415 } 1416 1417 return DAG.getSetCC(dl, VT, Val, N1, 1418 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1419 } 1420 } else if (N1C->getAPIntValue() == 1 && 1421 (VT == MVT::i1 || 1422 getBooleanContents(false) == ZeroOrOneBooleanContent)) { 1423 SDValue Op0 = N0; 1424 if (Op0.getOpcode() == ISD::TRUNCATE) 1425 Op0 = Op0.getOperand(0); 1426 1427 if ((Op0.getOpcode() == ISD::XOR) && 1428 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1429 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1430 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1431 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1432 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1433 Cond); 1434 } 1435 if (Op0.getOpcode() == ISD::AND && 1436 isa<ConstantSDNode>(Op0.getOperand(1)) && 1437 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1438 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1439 if (Op0.getValueType().bitsGT(VT)) 1440 Op0 = DAG.getNode(ISD::AND, dl, VT, 1441 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1442 DAG.getConstant(1, VT)); 1443 else if (Op0.getValueType().bitsLT(VT)) 1444 Op0 = DAG.getNode(ISD::AND, dl, VT, 1445 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1446 DAG.getConstant(1, VT)); 1447 1448 return DAG.getSetCC(dl, VT, Op0, 1449 DAG.getConstant(0, Op0.getValueType()), 1450 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1451 } 1452 if (Op0.getOpcode() == ISD::AssertZext && 1453 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1454 return DAG.getSetCC(dl, VT, Op0, 1455 DAG.getConstant(0, Op0.getValueType()), 1456 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1457 } 1458 } 1459 1460 APInt MinVal, MaxVal; 1461 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1462 if (ISD::isSignedIntSetCC(Cond)) { 1463 MinVal = APInt::getSignedMinValue(OperandBitSize); 1464 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1465 } else { 1466 MinVal = APInt::getMinValue(OperandBitSize); 1467 MaxVal = APInt::getMaxValue(OperandBitSize); 1468 } 1469 1470 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1471 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1472 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true 1473 // X >= C0 --> X > (C0-1) 1474 APInt C = C1-1; 1475 if (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1476 isLegalICmpImmediate(C.getSExtValue()))) 1477 return DAG.getSetCC(dl, VT, N0, 1478 DAG.getConstant(C, N1.getValueType()), 1479 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT); 1480 } 1481 1482 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1483 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true 1484 // X <= C0 --> X < (C0+1) 1485 APInt C = C1+1; 1486 if (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1487 isLegalICmpImmediate(C.getSExtValue()))) 1488 return DAG.getSetCC(dl, VT, N0, 1489 DAG.getConstant(C, N1.getValueType()), 1490 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT); 1491 } 1492 1493 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1494 return DAG.getConstant(0, VT); // X < MIN --> false 1495 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1496 return DAG.getConstant(1, VT); // X >= MIN --> true 1497 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1498 return DAG.getConstant(0, VT); // X > MAX --> false 1499 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1500 return DAG.getConstant(1, VT); // X <= MAX --> true 1501 1502 // Canonicalize setgt X, Min --> setne X, Min 1503 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1504 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1505 // Canonicalize setlt X, Max --> setne X, Max 1506 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1507 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1508 1509 // If we have setult X, 1, turn it into seteq X, 0 1510 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1511 return DAG.getSetCC(dl, VT, N0, 1512 DAG.getConstant(MinVal, N0.getValueType()), 1513 ISD::SETEQ); 1514 // If we have setugt X, Max-1, turn it into seteq X, Max 1515 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1516 return DAG.getSetCC(dl, VT, N0, 1517 DAG.getConstant(MaxVal, N0.getValueType()), 1518 ISD::SETEQ); 1519 1520 // If we have "setcc X, C0", check to see if we can shrink the immediate 1521 // by changing cc. 1522 1523 // SETUGT X, SINTMAX -> SETLT X, 0 1524 if (Cond == ISD::SETUGT && 1525 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1526 return DAG.getSetCC(dl, VT, N0, 1527 DAG.getConstant(0, N1.getValueType()), 1528 ISD::SETLT); 1529 1530 // SETULT X, SINTMIN -> SETGT X, -1 1531 if (Cond == ISD::SETULT && 1532 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1533 SDValue ConstMinusOne = 1534 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), 1535 N1.getValueType()); 1536 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1537 } 1538 1539 // Fold bit comparisons when we can. 1540 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1541 (VT == N0.getValueType() || 1542 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1543 N0.getOpcode() == ISD::AND) 1544 if (ConstantSDNode *AndRHS = 1545 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1546 EVT ShiftTy = DCI.isBeforeLegalize() ? 1547 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1548 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1549 // Perform the xform if the AND RHS is a single bit. 1550 if (AndRHS->getAPIntValue().isPowerOf2()) { 1551 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1552 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1553 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy))); 1554 } 1555 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1556 // (X & 8) == 8 --> (X & 8) >> 3 1557 // Perform the xform if C1 is a single bit. 1558 if (C1.isPowerOf2()) { 1559 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1560 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1561 DAG.getConstant(C1.logBase2(), ShiftTy))); 1562 } 1563 } 1564 } 1565 1566 if (C1.getMinSignedBits() <= 64 && 1567 !isLegalICmpImmediate(C1.getSExtValue())) { 1568 // (X & -256) == 256 -> (X >> 8) == 1 1569 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1570 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1571 if (ConstantSDNode *AndRHS = 1572 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1573 const APInt &AndRHSC = AndRHS->getAPIntValue(); 1574 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 1575 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 1576 EVT ShiftTy = DCI.isBeforeLegalize() ? 1577 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1578 EVT CmpTy = N0.getValueType(); 1579 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 1580 DAG.getConstant(ShiftBits, ShiftTy)); 1581 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy); 1582 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 1583 } 1584 } 1585 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 1586 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 1587 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 1588 // X < 0x100000000 -> (X >> 32) < 1 1589 // X >= 0x100000000 -> (X >> 32) >= 1 1590 // X <= 0x0ffffffff -> (X >> 32) < 1 1591 // X > 0x0ffffffff -> (X >> 32) >= 1 1592 unsigned ShiftBits; 1593 APInt NewC = C1; 1594 ISD::CondCode NewCond = Cond; 1595 if (AdjOne) { 1596 ShiftBits = C1.countTrailingOnes(); 1597 NewC = NewC + 1; 1598 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 1599 } else { 1600 ShiftBits = C1.countTrailingZeros(); 1601 } 1602 NewC = NewC.lshr(ShiftBits); 1603 if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) { 1604 EVT ShiftTy = DCI.isBeforeLegalize() ? 1605 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1606 EVT CmpTy = N0.getValueType(); 1607 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 1608 DAG.getConstant(ShiftBits, ShiftTy)); 1609 SDValue CmpRHS = DAG.getConstant(NewC, CmpTy); 1610 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 1611 } 1612 } 1613 } 1614 } 1615 1616 if (isa<ConstantFPSDNode>(N0.getNode())) { 1617 // Constant fold or commute setcc. 1618 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 1619 if (O.getNode()) return O; 1620 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 1621 // If the RHS of an FP comparison is a constant, simplify it away in 1622 // some cases. 1623 if (CFP->getValueAPF().isNaN()) { 1624 // If an operand is known to be a nan, we can fold it. 1625 switch (ISD::getUnorderedFlavor(Cond)) { 1626 default: llvm_unreachable("Unknown flavor!"); 1627 case 0: // Known false. 1628 return DAG.getConstant(0, VT); 1629 case 1: // Known true. 1630 return DAG.getConstant(1, VT); 1631 case 2: // Undefined. 1632 return DAG.getUNDEF(VT); 1633 } 1634 } 1635 1636 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 1637 // constant if knowing that the operand is non-nan is enough. We prefer to 1638 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 1639 // materialize 0.0. 1640 if (Cond == ISD::SETO || Cond == ISD::SETUO) 1641 return DAG.getSetCC(dl, VT, N0, N0, Cond); 1642 1643 // If the condition is not legal, see if we can find an equivalent one 1644 // which is legal. 1645 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1646 // If the comparison was an awkward floating-point == or != and one of 1647 // the comparison operands is infinity or negative infinity, convert the 1648 // condition to a less-awkward <= or >=. 1649 if (CFP->getValueAPF().isInfinity()) { 1650 if (CFP->getValueAPF().isNegative()) { 1651 if (Cond == ISD::SETOEQ && 1652 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1653 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 1654 if (Cond == ISD::SETUEQ && 1655 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1656 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 1657 if (Cond == ISD::SETUNE && 1658 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1659 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 1660 if (Cond == ISD::SETONE && 1661 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1662 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 1663 } else { 1664 if (Cond == ISD::SETOEQ && 1665 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1666 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 1667 if (Cond == ISD::SETUEQ && 1668 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1669 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 1670 if (Cond == ISD::SETUNE && 1671 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1672 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 1673 if (Cond == ISD::SETONE && 1674 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1675 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 1676 } 1677 } 1678 } 1679 } 1680 1681 if (N0 == N1) { 1682 // The sext(setcc()) => setcc() optimization relies on the appropriate 1683 // constant being emitted. 1684 uint64_t EqVal = 0; 1685 switch (getBooleanContents(N0.getValueType().isVector())) { 1686 case UndefinedBooleanContent: 1687 case ZeroOrOneBooleanContent: 1688 EqVal = ISD::isTrueWhenEqual(Cond); 1689 break; 1690 case ZeroOrNegativeOneBooleanContent: 1691 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 1692 break; 1693 } 1694 1695 // We can always fold X == X for integer setcc's. 1696 if (N0.getValueType().isInteger()) { 1697 return DAG.getConstant(EqVal, VT); 1698 } 1699 unsigned UOF = ISD::getUnorderedFlavor(Cond); 1700 if (UOF == 2) // FP operators that are undefined on NaNs. 1701 return DAG.getConstant(EqVal, VT); 1702 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 1703 return DAG.getConstant(EqVal, VT); 1704 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 1705 // if it is not already. 1706 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 1707 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 1708 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 1709 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 1710 } 1711 1712 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1713 N0.getValueType().isInteger()) { 1714 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 1715 N0.getOpcode() == ISD::XOR) { 1716 // Simplify (X+Y) == (X+Z) --> Y == Z 1717 if (N0.getOpcode() == N1.getOpcode()) { 1718 if (N0.getOperand(0) == N1.getOperand(0)) 1719 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 1720 if (N0.getOperand(1) == N1.getOperand(1)) 1721 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 1722 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 1723 // If X op Y == Y op X, try other combinations. 1724 if (N0.getOperand(0) == N1.getOperand(1)) 1725 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 1726 Cond); 1727 if (N0.getOperand(1) == N1.getOperand(0)) 1728 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 1729 Cond); 1730 } 1731 } 1732 1733 // If RHS is a legal immediate value for a compare instruction, we need 1734 // to be careful about increasing register pressure needlessly. 1735 bool LegalRHSImm = false; 1736 1737 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { 1738 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1739 // Turn (X+C1) == C2 --> X == C2-C1 1740 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 1741 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1742 DAG.getConstant(RHSC->getAPIntValue()- 1743 LHSR->getAPIntValue(), 1744 N0.getValueType()), Cond); 1745 } 1746 1747 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 1748 if (N0.getOpcode() == ISD::XOR) 1749 // If we know that all of the inverted bits are zero, don't bother 1750 // performing the inversion. 1751 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 1752 return 1753 DAG.getSetCC(dl, VT, N0.getOperand(0), 1754 DAG.getConstant(LHSR->getAPIntValue() ^ 1755 RHSC->getAPIntValue(), 1756 N0.getValueType()), 1757 Cond); 1758 } 1759 1760 // Turn (C1-X) == C2 --> X == C1-C2 1761 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 1762 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 1763 return 1764 DAG.getSetCC(dl, VT, N0.getOperand(1), 1765 DAG.getConstant(SUBC->getAPIntValue() - 1766 RHSC->getAPIntValue(), 1767 N0.getValueType()), 1768 Cond); 1769 } 1770 } 1771 1772 // Could RHSC fold directly into a compare? 1773 if (RHSC->getValueType(0).getSizeInBits() <= 64) 1774 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 1775 } 1776 1777 // Simplify (X+Z) == X --> Z == 0 1778 // Don't do this if X is an immediate that can fold into a cmp 1779 // instruction and X+Z has other uses. It could be an induction variable 1780 // chain, and the transform would increase register pressure. 1781 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 1782 if (N0.getOperand(0) == N1) 1783 return DAG.getSetCC(dl, VT, N0.getOperand(1), 1784 DAG.getConstant(0, N0.getValueType()), Cond); 1785 if (N0.getOperand(1) == N1) { 1786 if (DAG.isCommutativeBinOp(N0.getOpcode())) 1787 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1788 DAG.getConstant(0, N0.getValueType()), Cond); 1789 if (N0.getNode()->hasOneUse()) { 1790 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 1791 // (Z-X) == X --> Z == X<<1 1792 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1, 1793 DAG.getConstant(1, getShiftAmountTy(N1.getValueType()))); 1794 if (!DCI.isCalledByLegalizer()) 1795 DCI.AddToWorklist(SH.getNode()); 1796 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 1797 } 1798 } 1799 } 1800 } 1801 1802 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 1803 N1.getOpcode() == ISD::XOR) { 1804 // Simplify X == (X+Z) --> Z == 0 1805 if (N1.getOperand(0) == N0) 1806 return DAG.getSetCC(dl, VT, N1.getOperand(1), 1807 DAG.getConstant(0, N1.getValueType()), Cond); 1808 if (N1.getOperand(1) == N0) { 1809 if (DAG.isCommutativeBinOp(N1.getOpcode())) 1810 return DAG.getSetCC(dl, VT, N1.getOperand(0), 1811 DAG.getConstant(0, N1.getValueType()), Cond); 1812 if (N1.getNode()->hasOneUse()) { 1813 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 1814 // X == (Z-X) --> X<<1 == Z 1815 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, 1816 DAG.getConstant(1, getShiftAmountTy(N0.getValueType()))); 1817 if (!DCI.isCalledByLegalizer()) 1818 DCI.AddToWorklist(SH.getNode()); 1819 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 1820 } 1821 } 1822 } 1823 1824 // Simplify x&y == y to x&y != 0 if y has exactly one bit set. 1825 // Note that where y is variable and is known to have at most 1826 // one bit set (for example, if it is z&1) we cannot do this; 1827 // the expressions are not equivalent when y==0. 1828 if (N0.getOpcode() == ISD::AND) 1829 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { 1830 if (ValueHasExactlyOneBitSet(N1, DAG)) { 1831 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1832 if (DCI.isBeforeLegalizeOps() || 1833 isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1834 SDValue Zero = DAG.getConstant(0, N1.getValueType()); 1835 return DAG.getSetCC(dl, VT, N0, Zero, Cond); 1836 } 1837 } 1838 } 1839 if (N1.getOpcode() == ISD::AND) 1840 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { 1841 if (ValueHasExactlyOneBitSet(N0, DAG)) { 1842 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1843 if (DCI.isBeforeLegalizeOps() || 1844 isCondCodeLegal(Cond, N1.getSimpleValueType())) { 1845 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 1846 return DAG.getSetCC(dl, VT, N1, Zero, Cond); 1847 } 1848 } 1849 } 1850 } 1851 1852 // Fold away ALL boolean setcc's. 1853 SDValue Temp; 1854 if (N0.getValueType() == MVT::i1 && foldBooleans) { 1855 switch (Cond) { 1856 default: llvm_unreachable("Unknown integer setcc!"); 1857 case ISD::SETEQ: // X == Y -> ~(X^Y) 1858 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 1859 N0 = DAG.getNOT(dl, Temp, MVT::i1); 1860 if (!DCI.isCalledByLegalizer()) 1861 DCI.AddToWorklist(Temp.getNode()); 1862 break; 1863 case ISD::SETNE: // X != Y --> (X^Y) 1864 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 1865 break; 1866 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 1867 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 1868 Temp = DAG.getNOT(dl, N0, MVT::i1); 1869 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 1870 if (!DCI.isCalledByLegalizer()) 1871 DCI.AddToWorklist(Temp.getNode()); 1872 break; 1873 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 1874 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 1875 Temp = DAG.getNOT(dl, N1, MVT::i1); 1876 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 1877 if (!DCI.isCalledByLegalizer()) 1878 DCI.AddToWorklist(Temp.getNode()); 1879 break; 1880 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 1881 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 1882 Temp = DAG.getNOT(dl, N0, MVT::i1); 1883 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 1884 if (!DCI.isCalledByLegalizer()) 1885 DCI.AddToWorklist(Temp.getNode()); 1886 break; 1887 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 1888 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 1889 Temp = DAG.getNOT(dl, N1, MVT::i1); 1890 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 1891 break; 1892 } 1893 if (VT != MVT::i1) { 1894 if (!DCI.isCalledByLegalizer()) 1895 DCI.AddToWorklist(N0.getNode()); 1896 // FIXME: If running after legalize, we probably can't do this. 1897 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 1898 } 1899 return N0; 1900 } 1901 1902 // Could not fold it. 1903 return SDValue(); 1904 } 1905 1906 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the 1907 /// node is a GlobalAddress + offset. 1908 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 1909 int64_t &Offset) const { 1910 if (isa<GlobalAddressSDNode>(N)) { 1911 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N); 1912 GA = GASD->getGlobal(); 1913 Offset += GASD->getOffset(); 1914 return true; 1915 } 1916 1917 if (N->getOpcode() == ISD::ADD) { 1918 SDValue N1 = N->getOperand(0); 1919 SDValue N2 = N->getOperand(1); 1920 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 1921 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2); 1922 if (V) { 1923 Offset += V->getSExtValue(); 1924 return true; 1925 } 1926 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 1927 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1); 1928 if (V) { 1929 Offset += V->getSExtValue(); 1930 return true; 1931 } 1932 } 1933 } 1934 1935 return false; 1936 } 1937 1938 1939 SDValue TargetLowering:: 1940 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { 1941 // Default implementation: no optimization. 1942 return SDValue(); 1943 } 1944 1945 //===----------------------------------------------------------------------===// 1946 // Inline Assembler Implementation Methods 1947 //===----------------------------------------------------------------------===// 1948 1949 1950 TargetLowering::ConstraintType 1951 TargetLowering::getConstraintType(const std::string &Constraint) const { 1952 unsigned S = Constraint.size(); 1953 1954 if (S == 1) { 1955 switch (Constraint[0]) { 1956 default: break; 1957 case 'r': return C_RegisterClass; 1958 case 'm': // memory 1959 case 'o': // offsetable 1960 case 'V': // not offsetable 1961 return C_Memory; 1962 case 'i': // Simple Integer or Relocatable Constant 1963 case 'n': // Simple Integer 1964 case 'E': // Floating Point Constant 1965 case 'F': // Floating Point Constant 1966 case 's': // Relocatable Constant 1967 case 'p': // Address. 1968 case 'X': // Allow ANY value. 1969 case 'I': // Target registers. 1970 case 'J': 1971 case 'K': 1972 case 'L': 1973 case 'M': 1974 case 'N': 1975 case 'O': 1976 case 'P': 1977 case '<': 1978 case '>': 1979 return C_Other; 1980 } 1981 } 1982 1983 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 1984 if (S == 8 && !Constraint.compare(1, 6, "memory", 6)) // "{memory}" 1985 return C_Memory; 1986 return C_Register; 1987 } 1988 return C_Unknown; 1989 } 1990 1991 /// LowerXConstraint - try to replace an X constraint, which matches anything, 1992 /// with another that has more specific requirements based on the type of the 1993 /// corresponding operand. 1994 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 1995 if (ConstraintVT.isInteger()) 1996 return "r"; 1997 if (ConstraintVT.isFloatingPoint()) 1998 return "f"; // works for many targets 1999 return 0; 2000 } 2001 2002 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 2003 /// vector. If it is invalid, don't add anything to Ops. 2004 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2005 std::string &Constraint, 2006 std::vector<SDValue> &Ops, 2007 SelectionDAG &DAG) const { 2008 2009 if (Constraint.length() > 1) return; 2010 2011 char ConstraintLetter = Constraint[0]; 2012 switch (ConstraintLetter) { 2013 default: break; 2014 case 'X': // Allows any operand; labels (basic block) use this. 2015 if (Op.getOpcode() == ISD::BasicBlock) { 2016 Ops.push_back(Op); 2017 return; 2018 } 2019 // fall through 2020 case 'i': // Simple Integer or Relocatable Constant 2021 case 'n': // Simple Integer 2022 case 's': { // Relocatable Constant 2023 // These operands are interested in values of the form (GV+C), where C may 2024 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2025 // is possible and fine if either GV or C are missing. 2026 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2027 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2028 2029 // If we have "(add GV, C)", pull out GV/C 2030 if (Op.getOpcode() == ISD::ADD) { 2031 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2032 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2033 if (C == 0 || GA == 0) { 2034 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2035 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2036 } 2037 if (C == 0 || GA == 0) 2038 C = 0, GA = 0; 2039 } 2040 2041 // If we find a valid operand, map to the TargetXXX version so that the 2042 // value itself doesn't get selected. 2043 if (GA) { // Either &GV or &GV+C 2044 if (ConstraintLetter != 'n') { 2045 int64_t Offs = GA->getOffset(); 2046 if (C) Offs += C->getZExtValue(); 2047 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2048 C ? SDLoc(C) : SDLoc(), 2049 Op.getValueType(), Offs)); 2050 return; 2051 } 2052 } 2053 if (C) { // just C, no GV. 2054 // Simple constants are not allowed for 's'. 2055 if (ConstraintLetter != 's') { 2056 // gcc prints these as sign extended. Sign extend value to 64 bits 2057 // now; without this it would get ZExt'd later in 2058 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2059 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2060 MVT::i64)); 2061 return; 2062 } 2063 } 2064 break; 2065 } 2066 } 2067 } 2068 2069 std::pair<unsigned, const TargetRegisterClass*> TargetLowering:: 2070 getRegForInlineAsmConstraint(const std::string &Constraint, 2071 MVT VT) const { 2072 if (Constraint.empty() || Constraint[0] != '{') 2073 return std::make_pair(0u, static_cast<TargetRegisterClass*>(0)); 2074 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2075 2076 // Remove the braces from around the name. 2077 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2078 2079 std::pair<unsigned, const TargetRegisterClass*> R = 2080 std::make_pair(0u, static_cast<const TargetRegisterClass*>(0)); 2081 2082 // Figure out which register class contains this reg. 2083 const TargetRegisterInfo *RI = getTargetMachine().getRegisterInfo(); 2084 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2085 E = RI->regclass_end(); RCI != E; ++RCI) { 2086 const TargetRegisterClass *RC = *RCI; 2087 2088 // If none of the value types for this register class are valid, we 2089 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2090 if (!isLegalRC(RC)) 2091 continue; 2092 2093 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2094 I != E; ++I) { 2095 if (RegName.equals_lower(RI->getName(*I))) { 2096 std::pair<unsigned, const TargetRegisterClass*> S = 2097 std::make_pair(*I, RC); 2098 2099 // If this register class has the requested value type, return it, 2100 // otherwise keep searching and return the first class found 2101 // if no other is found which explicitly has the requested type. 2102 if (RC->hasType(VT)) 2103 return S; 2104 else if (!R.second) 2105 R = S; 2106 } 2107 } 2108 } 2109 2110 return R; 2111 } 2112 2113 //===----------------------------------------------------------------------===// 2114 // Constraint Selection. 2115 2116 /// isMatchingInputConstraint - Return true of this is an input operand that is 2117 /// a matching constraint like "4". 2118 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2119 assert(!ConstraintCode.empty() && "No known constraint!"); 2120 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2121 } 2122 2123 /// getMatchedOperand - If this is an input matching constraint, this method 2124 /// returns the output operand it matches. 2125 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2126 assert(!ConstraintCode.empty() && "No known constraint!"); 2127 return atoi(ConstraintCode.c_str()); 2128 } 2129 2130 2131 /// ParseConstraints - Split up the constraint string from the inline 2132 /// assembly value into the specific constraints and their prefixes, 2133 /// and also tie in the associated operand values. 2134 /// If this returns an empty vector, and if the constraint string itself 2135 /// isn't empty, there was an error parsing. 2136 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints( 2137 ImmutableCallSite CS) const { 2138 /// ConstraintOperands - Information about all of the constraints. 2139 AsmOperandInfoVector ConstraintOperands; 2140 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2141 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2142 2143 // Do a prepass over the constraints, canonicalizing them, and building up the 2144 // ConstraintOperands list. 2145 InlineAsm::ConstraintInfoVector 2146 ConstraintInfos = IA->ParseConstraints(); 2147 2148 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2149 unsigned ResNo = 0; // ResNo - The result number of the next output. 2150 2151 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 2152 ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i])); 2153 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2154 2155 // Update multiple alternative constraint count. 2156 if (OpInfo.multipleAlternatives.size() > maCount) 2157 maCount = OpInfo.multipleAlternatives.size(); 2158 2159 OpInfo.ConstraintVT = MVT::Other; 2160 2161 // Compute the value type for each operand. 2162 switch (OpInfo.Type) { 2163 case InlineAsm::isOutput: 2164 // Indirect outputs just consume an argument. 2165 if (OpInfo.isIndirect) { 2166 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2167 break; 2168 } 2169 2170 // The return value of the call is this value. As such, there is no 2171 // corresponding argument. 2172 assert(!CS.getType()->isVoidTy() && 2173 "Bad inline asm!"); 2174 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2175 OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo)); 2176 } else { 2177 assert(ResNo == 0 && "Asm only has one result!"); 2178 OpInfo.ConstraintVT = getSimpleValueType(CS.getType()); 2179 } 2180 ++ResNo; 2181 break; 2182 case InlineAsm::isInput: 2183 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2184 break; 2185 case InlineAsm::isClobber: 2186 // Nothing to do. 2187 break; 2188 } 2189 2190 if (OpInfo.CallOperandVal) { 2191 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2192 if (OpInfo.isIndirect) { 2193 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2194 if (!PtrTy) 2195 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2196 OpTy = PtrTy->getElementType(); 2197 } 2198 2199 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2200 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2201 if (STy->getNumElements() == 1) 2202 OpTy = STy->getElementType(0); 2203 2204 // If OpTy is not a single value, it may be a struct/union that we 2205 // can tile with integers. 2206 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2207 unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy); 2208 switch (BitSize) { 2209 default: break; 2210 case 1: 2211 case 8: 2212 case 16: 2213 case 32: 2214 case 64: 2215 case 128: 2216 OpInfo.ConstraintVT = 2217 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2218 break; 2219 } 2220 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2221 unsigned PtrSize 2222 = getDataLayout()->getPointerSizeInBits(PT->getAddressSpace()); 2223 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2224 } else { 2225 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2226 } 2227 } 2228 } 2229 2230 // If we have multiple alternative constraints, select the best alternative. 2231 if (ConstraintInfos.size()) { 2232 if (maCount) { 2233 unsigned bestMAIndex = 0; 2234 int bestWeight = -1; 2235 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2236 int weight = -1; 2237 unsigned maIndex; 2238 // Compute the sums of the weights for each alternative, keeping track 2239 // of the best (highest weight) one so far. 2240 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2241 int weightSum = 0; 2242 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2243 cIndex != eIndex; ++cIndex) { 2244 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2245 if (OpInfo.Type == InlineAsm::isClobber) 2246 continue; 2247 2248 // If this is an output operand with a matching input operand, 2249 // look up the matching input. If their types mismatch, e.g. one 2250 // is an integer, the other is floating point, or their sizes are 2251 // different, flag it as an maCantMatch. 2252 if (OpInfo.hasMatchingInput()) { 2253 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2254 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2255 if ((OpInfo.ConstraintVT.isInteger() != 2256 Input.ConstraintVT.isInteger()) || 2257 (OpInfo.ConstraintVT.getSizeInBits() != 2258 Input.ConstraintVT.getSizeInBits())) { 2259 weightSum = -1; // Can't match. 2260 break; 2261 } 2262 } 2263 } 2264 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2265 if (weight == -1) { 2266 weightSum = -1; 2267 break; 2268 } 2269 weightSum += weight; 2270 } 2271 // Update best. 2272 if (weightSum > bestWeight) { 2273 bestWeight = weightSum; 2274 bestMAIndex = maIndex; 2275 } 2276 } 2277 2278 // Now select chosen alternative in each constraint. 2279 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2280 cIndex != eIndex; ++cIndex) { 2281 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2282 if (cInfo.Type == InlineAsm::isClobber) 2283 continue; 2284 cInfo.selectAlternative(bestMAIndex); 2285 } 2286 } 2287 } 2288 2289 // Check and hook up tied operands, choose constraint code to use. 2290 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2291 cIndex != eIndex; ++cIndex) { 2292 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2293 2294 // If this is an output operand with a matching input operand, look up the 2295 // matching input. If their types mismatch, e.g. one is an integer, the 2296 // other is floating point, or their sizes are different, flag it as an 2297 // error. 2298 if (OpInfo.hasMatchingInput()) { 2299 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2300 2301 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2302 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 2303 getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 2304 OpInfo.ConstraintVT); 2305 std::pair<unsigned, const TargetRegisterClass*> InputRC = 2306 getRegForInlineAsmConstraint(Input.ConstraintCode, 2307 Input.ConstraintVT); 2308 if ((OpInfo.ConstraintVT.isInteger() != 2309 Input.ConstraintVT.isInteger()) || 2310 (MatchRC.second != InputRC.second)) { 2311 report_fatal_error("Unsupported asm: input constraint" 2312 " with a matching output constraint of" 2313 " incompatible type!"); 2314 } 2315 } 2316 2317 } 2318 } 2319 2320 return ConstraintOperands; 2321 } 2322 2323 2324 /// getConstraintGenerality - Return an integer indicating how general CT 2325 /// is. 2326 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2327 switch (CT) { 2328 case TargetLowering::C_Other: 2329 case TargetLowering::C_Unknown: 2330 return 0; 2331 case TargetLowering::C_Register: 2332 return 1; 2333 case TargetLowering::C_RegisterClass: 2334 return 2; 2335 case TargetLowering::C_Memory: 2336 return 3; 2337 } 2338 llvm_unreachable("Invalid constraint type"); 2339 } 2340 2341 /// Examine constraint type and operand type and determine a weight value. 2342 /// This object must already have been set up with the operand type 2343 /// and the current alternative constraint selected. 2344 TargetLowering::ConstraintWeight 2345 TargetLowering::getMultipleConstraintMatchWeight( 2346 AsmOperandInfo &info, int maIndex) const { 2347 InlineAsm::ConstraintCodeVector *rCodes; 2348 if (maIndex >= (int)info.multipleAlternatives.size()) 2349 rCodes = &info.Codes; 2350 else 2351 rCodes = &info.multipleAlternatives[maIndex].Codes; 2352 ConstraintWeight BestWeight = CW_Invalid; 2353 2354 // Loop over the options, keeping track of the most general one. 2355 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2356 ConstraintWeight weight = 2357 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2358 if (weight > BestWeight) 2359 BestWeight = weight; 2360 } 2361 2362 return BestWeight; 2363 } 2364 2365 /// Examine constraint type and operand type and determine a weight value. 2366 /// This object must already have been set up with the operand type 2367 /// and the current alternative constraint selected. 2368 TargetLowering::ConstraintWeight 2369 TargetLowering::getSingleConstraintMatchWeight( 2370 AsmOperandInfo &info, const char *constraint) const { 2371 ConstraintWeight weight = CW_Invalid; 2372 Value *CallOperandVal = info.CallOperandVal; 2373 // If we don't have a value, we can't do a match, 2374 // but allow it at the lowest weight. 2375 if (CallOperandVal == NULL) 2376 return CW_Default; 2377 // Look at the constraint type. 2378 switch (*constraint) { 2379 case 'i': // immediate integer. 2380 case 'n': // immediate integer with a known value. 2381 if (isa<ConstantInt>(CallOperandVal)) 2382 weight = CW_Constant; 2383 break; 2384 case 's': // non-explicit intregal immediate. 2385 if (isa<GlobalValue>(CallOperandVal)) 2386 weight = CW_Constant; 2387 break; 2388 case 'E': // immediate float if host format. 2389 case 'F': // immediate float. 2390 if (isa<ConstantFP>(CallOperandVal)) 2391 weight = CW_Constant; 2392 break; 2393 case '<': // memory operand with autodecrement. 2394 case '>': // memory operand with autoincrement. 2395 case 'm': // memory operand. 2396 case 'o': // offsettable memory operand 2397 case 'V': // non-offsettable memory operand 2398 weight = CW_Memory; 2399 break; 2400 case 'r': // general register. 2401 case 'g': // general register, memory operand or immediate integer. 2402 // note: Clang converts "g" to "imr". 2403 if (CallOperandVal->getType()->isIntegerTy()) 2404 weight = CW_Register; 2405 break; 2406 case 'X': // any operand. 2407 default: 2408 weight = CW_Default; 2409 break; 2410 } 2411 return weight; 2412 } 2413 2414 /// ChooseConstraint - If there are multiple different constraints that we 2415 /// could pick for this operand (e.g. "imr") try to pick the 'best' one. 2416 /// This is somewhat tricky: constraints fall into four classes: 2417 /// Other -> immediates and magic values 2418 /// Register -> one specific register 2419 /// RegisterClass -> a group of regs 2420 /// Memory -> memory 2421 /// Ideally, we would pick the most specific constraint possible: if we have 2422 /// something that fits into a register, we would pick it. The problem here 2423 /// is that if we have something that could either be in a register or in 2424 /// memory that use of the register could cause selection of *other* 2425 /// operands to fail: they might only succeed if we pick memory. Because of 2426 /// this the heuristic we use is: 2427 /// 2428 /// 1) If there is an 'other' constraint, and if the operand is valid for 2429 /// that constraint, use it. This makes us take advantage of 'i' 2430 /// constraints when available. 2431 /// 2) Otherwise, pick the most general constraint present. This prefers 2432 /// 'm' over 'r', for example. 2433 /// 2434 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2435 const TargetLowering &TLI, 2436 SDValue Op, SelectionDAG *DAG) { 2437 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2438 unsigned BestIdx = 0; 2439 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2440 int BestGenerality = -1; 2441 2442 // Loop over the options, keeping track of the most general one. 2443 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2444 TargetLowering::ConstraintType CType = 2445 TLI.getConstraintType(OpInfo.Codes[i]); 2446 2447 // If this is an 'other' constraint, see if the operand is valid for it. 2448 // For example, on X86 we might have an 'rI' constraint. If the operand 2449 // is an integer in the range [0..31] we want to use I (saving a load 2450 // of a register), otherwise we must use 'r'. 2451 if (CType == TargetLowering::C_Other && Op.getNode()) { 2452 assert(OpInfo.Codes[i].size() == 1 && 2453 "Unhandled multi-letter 'other' constraint"); 2454 std::vector<SDValue> ResultOps; 2455 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2456 ResultOps, *DAG); 2457 if (!ResultOps.empty()) { 2458 BestType = CType; 2459 BestIdx = i; 2460 break; 2461 } 2462 } 2463 2464 // Things with matching constraints can only be registers, per gcc 2465 // documentation. This mainly affects "g" constraints. 2466 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2467 continue; 2468 2469 // This constraint letter is more general than the previous one, use it. 2470 int Generality = getConstraintGenerality(CType); 2471 if (Generality > BestGenerality) { 2472 BestType = CType; 2473 BestIdx = i; 2474 BestGenerality = Generality; 2475 } 2476 } 2477 2478 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2479 OpInfo.ConstraintType = BestType; 2480 } 2481 2482 /// ComputeConstraintToUse - Determines the constraint code and constraint 2483 /// type to use for the specific AsmOperandInfo, setting 2484 /// OpInfo.ConstraintCode and OpInfo.ConstraintType. 2485 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2486 SDValue Op, 2487 SelectionDAG *DAG) const { 2488 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2489 2490 // Single-letter constraints ('r') are very common. 2491 if (OpInfo.Codes.size() == 1) { 2492 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2493 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2494 } else { 2495 ChooseConstraint(OpInfo, *this, Op, DAG); 2496 } 2497 2498 // 'X' matches anything. 2499 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2500 // Labels and constants are handled elsewhere ('X' is the only thing 2501 // that matches labels). For Functions, the type here is the type of 2502 // the result, which is not what we want to look at; leave them alone. 2503 Value *v = OpInfo.CallOperandVal; 2504 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2505 OpInfo.CallOperandVal = v; 2506 return; 2507 } 2508 2509 // Otherwise, try to resolve it to something we know about by looking at 2510 // the actual operand type. 2511 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2512 OpInfo.ConstraintCode = Repl; 2513 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2514 } 2515 } 2516 } 2517 2518 /// \brief Given an exact SDIV by a constant, create a multiplication 2519 /// with the multiplicative inverse of the constant. 2520 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl, 2521 SelectionDAG &DAG) const { 2522 ConstantSDNode *C = cast<ConstantSDNode>(Op2); 2523 APInt d = C->getAPIntValue(); 2524 assert(d != 0 && "Division by zero!"); 2525 2526 // Shift the value upfront if it is even, so the LSB is one. 2527 unsigned ShAmt = d.countTrailingZeros(); 2528 if (ShAmt) { 2529 // TODO: For UDIV use SRL instead of SRA. 2530 SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType())); 2531 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt); 2532 d = d.ashr(ShAmt); 2533 } 2534 2535 // Calculate the multiplicative inverse, using Newton's method. 2536 APInt t, xn = d; 2537 while ((t = d*xn) != 1) 2538 xn *= APInt(d.getBitWidth(), 2) - t; 2539 2540 Op2 = DAG.getConstant(xn, Op1.getValueType()); 2541 return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2542 } 2543 2544 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2545 /// return a DAG expression to select that will generate the same value by 2546 /// multiplying by a magic number. See: 2547 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> 2548 SDValue TargetLowering:: 2549 BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, 2550 std::vector<SDNode*> *Created) const { 2551 EVT VT = N->getValueType(0); 2552 SDLoc dl(N); 2553 2554 // Check to see if we can do this. 2555 // FIXME: We should be more aggressive here. 2556 if (!isTypeLegal(VT)) 2557 return SDValue(); 2558 2559 APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); 2560 APInt::ms magics = d.magic(); 2561 2562 // Multiply the numerator (operand 0) by the magic value 2563 // FIXME: We should support doing a MUL in a wider type 2564 SDValue Q; 2565 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2566 isOperationLegalOrCustom(ISD::MULHS, VT)) 2567 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 2568 DAG.getConstant(magics.m, VT)); 2569 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 2570 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 2571 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 2572 N->getOperand(0), 2573 DAG.getConstant(magics.m, VT)).getNode(), 1); 2574 else 2575 return SDValue(); // No mulhs or equvialent 2576 // If d > 0 and m < 0, add the numerator 2577 if (d.isStrictlyPositive() && magics.m.isNegative()) { 2578 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 2579 if (Created) 2580 Created->push_back(Q.getNode()); 2581 } 2582 // If d < 0 and m > 0, subtract the numerator. 2583 if (d.isNegative() && magics.m.isStrictlyPositive()) { 2584 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 2585 if (Created) 2586 Created->push_back(Q.getNode()); 2587 } 2588 // Shift right algebraic if shift value is nonzero 2589 if (magics.s > 0) { 2590 Q = DAG.getNode(ISD::SRA, dl, VT, Q, 2591 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 2592 if (Created) 2593 Created->push_back(Q.getNode()); 2594 } 2595 // Extract the sign bit and add it to the quotient 2596 SDValue T = 2597 DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1, 2598 getShiftAmountTy(Q.getValueType()))); 2599 if (Created) 2600 Created->push_back(T.getNode()); 2601 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 2602 } 2603 2604 /// \brief Given an ISD::UDIV node expressing a divide by constant, 2605 /// return a DAG expression to select that will generate the same value by 2606 /// multiplying by a magic number. See: 2607 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> 2608 SDValue TargetLowering:: 2609 BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, 2610 std::vector<SDNode*> *Created) const { 2611 EVT VT = N->getValueType(0); 2612 SDLoc dl(N); 2613 2614 // Check to see if we can do this. 2615 // FIXME: We should be more aggressive here. 2616 if (!isTypeLegal(VT)) 2617 return SDValue(); 2618 2619 // FIXME: We should use a narrower constant when the upper 2620 // bits are known to be zero. 2621 const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); 2622 APInt::mu magics = N1C.magicu(); 2623 2624 SDValue Q = N->getOperand(0); 2625 2626 // If the divisor is even, we can avoid using the expensive fixup by shifting 2627 // the divided value upfront. 2628 if (magics.a != 0 && !N1C[0]) { 2629 unsigned Shift = N1C.countTrailingZeros(); 2630 Q = DAG.getNode(ISD::SRL, dl, VT, Q, 2631 DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType()))); 2632 if (Created) 2633 Created->push_back(Q.getNode()); 2634 2635 // Get magic number for the shifted divisor. 2636 magics = N1C.lshr(Shift).magicu(Shift); 2637 assert(magics.a == 0 && "Should use cheap fixup now"); 2638 } 2639 2640 // Multiply the numerator (operand 0) by the magic value 2641 // FIXME: We should support doing a MUL in a wider type 2642 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 2643 isOperationLegalOrCustom(ISD::MULHU, VT)) 2644 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT)); 2645 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 2646 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 2647 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 2648 DAG.getConstant(magics.m, VT)).getNode(), 1); 2649 else 2650 return SDValue(); // No mulhu or equvialent 2651 if (Created) 2652 Created->push_back(Q.getNode()); 2653 2654 if (magics.a == 0) { 2655 assert(magics.s < N1C.getBitWidth() && 2656 "We shouldn't generate an undefined shift!"); 2657 return DAG.getNode(ISD::SRL, dl, VT, Q, 2658 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 2659 } else { 2660 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 2661 if (Created) 2662 Created->push_back(NPQ.getNode()); 2663 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, 2664 DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType()))); 2665 if (Created) 2666 Created->push_back(NPQ.getNode()); 2667 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 2668 if (Created) 2669 Created->push_back(NPQ.getNode()); 2670 return DAG.getNode(ISD::SRL, dl, VT, NPQ, 2671 DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType()))); 2672 } 2673 } 2674 2675 bool TargetLowering:: 2676 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 2677 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 2678 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 2679 "be a constant integer"); 2680 return true; 2681 } 2682 2683 return false; 2684 } 2685