1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40     : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // First, check if tail calls have been disabled in this function.
57   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
58     return false;
59 
60   // Conservatively require the attributes of the call to match those of
61   // the return. Ignore following attributes because they don't affect the
62   // call sequence.
63   AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex);
64   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
65                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
66                            Attribute::NonNull})
67     CallerAttrs.removeAttribute(Attr);
68 
69   if (CallerAttrs.hasAttributes())
70     return false;
71 
72   // It's not safe to eliminate the sign / zero extension of the return value.
73   if (CallerAttrs.contains(Attribute::ZExt) ||
74       CallerAttrs.contains(Attribute::SExt))
75     return false;
76 
77   // Check if the only use is a function return node.
78   return isUsedByReturnOnly(Node, Chain);
79 }
80 
81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
82     const uint32_t *CallerPreservedMask,
83     const SmallVectorImpl<CCValAssign> &ArgLocs,
84     const SmallVectorImpl<SDValue> &OutVals) const {
85   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
86     const CCValAssign &ArgLoc = ArgLocs[I];
87     if (!ArgLoc.isRegLoc())
88       continue;
89     MCRegister Reg = ArgLoc.getLocReg();
90     // Only look at callee saved registers.
91     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
92       continue;
93     // Check that we pass the value used for the caller.
94     // (We look for a CopyFromReg reading a virtual register that is used
95     //  for the function live-in value of register Reg)
96     SDValue Value = OutVals[I];
97     if (Value->getOpcode() != ISD::CopyFromReg)
98       return false;
99     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
100     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
101       return false;
102   }
103   return true;
104 }
105 
106 /// Set CallLoweringInfo attribute flags based on a call instruction
107 /// and called function attributes.
108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
109                                                      unsigned ArgIdx) {
110   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
111   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
112   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
113   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
114   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
115   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
116   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
117   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
118   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
119   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
120   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
121   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
122   Alignment = Call->getParamStackAlign(ArgIdx);
123   IndirectType = nullptr;
124   assert(IsByVal + IsPreallocated + IsInAlloca <= 1 &&
125          "multiple ABI attributes?");
126   if (IsByVal) {
127     IndirectType = Call->getParamByValType(ArgIdx);
128     if (!Alignment)
129       Alignment = Call->getParamAlign(ArgIdx);
130   }
131   if (IsPreallocated)
132     IndirectType = Call->getParamPreallocatedType(ArgIdx);
133   if (IsInAlloca)
134     IndirectType = Call->getParamInAllocaType(ArgIdx);
135 }
136 
137 /// Generate a libcall taking the given operands as arguments and returning a
138 /// result of type RetVT.
139 std::pair<SDValue, SDValue>
140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
141                             ArrayRef<SDValue> Ops,
142                             MakeLibCallOptions CallOptions,
143                             const SDLoc &dl,
144                             SDValue InChain) const {
145   if (!InChain)
146     InChain = DAG.getEntryNode();
147 
148   TargetLowering::ArgListTy Args;
149   Args.reserve(Ops.size());
150 
151   TargetLowering::ArgListEntry Entry;
152   for (unsigned i = 0; i < Ops.size(); ++i) {
153     SDValue NewOp = Ops[i];
154     Entry.Node = NewOp;
155     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
156     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
157                                                  CallOptions.IsSExt);
158     Entry.IsZExt = !Entry.IsSExt;
159 
160     if (CallOptions.IsSoften &&
161         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
162       Entry.IsSExt = Entry.IsZExt = false;
163     }
164     Args.push_back(Entry);
165   }
166 
167   if (LC == RTLIB::UNKNOWN_LIBCALL)
168     report_fatal_error("Unsupported library call operation!");
169   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
170                                          getPointerTy(DAG.getDataLayout()));
171 
172   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
173   TargetLowering::CallLoweringInfo CLI(DAG);
174   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
175   bool zeroExtend = !signExtend;
176 
177   if (CallOptions.IsSoften &&
178       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
179     signExtend = zeroExtend = false;
180   }
181 
182   CLI.setDebugLoc(dl)
183       .setChain(InChain)
184       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
185       .setNoReturn(CallOptions.DoesNotReturn)
186       .setDiscardResult(!CallOptions.IsReturnValueUsed)
187       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
188       .setSExtResult(signExtend)
189       .setZExtResult(zeroExtend);
190   return LowerCallTo(CLI);
191 }
192 
193 bool TargetLowering::findOptimalMemOpLowering(
194     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
195     unsigned SrcAS, const AttributeList &FuncAttributes) const {
196   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
197     return false;
198 
199   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
200 
201   if (VT == MVT::Other) {
202     // Use the largest integer type whose alignment constraints are satisfied.
203     // We only need to check DstAlign here as SrcAlign is always greater or
204     // equal to DstAlign (or zero).
205     VT = MVT::i64;
206     if (Op.isFixedDstAlign())
207       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
208              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
209         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
210     assert(VT.isInteger());
211 
212     // Find the largest legal integer type.
213     MVT LVT = MVT::i64;
214     while (!isTypeLegal(LVT))
215       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
216     assert(LVT.isInteger());
217 
218     // If the type we've chosen is larger than the largest legal integer type
219     // then use that instead.
220     if (VT.bitsGT(LVT))
221       VT = LVT;
222   }
223 
224   unsigned NumMemOps = 0;
225   uint64_t Size = Op.size();
226   while (Size) {
227     unsigned VTSize = VT.getSizeInBits() / 8;
228     while (VTSize > Size) {
229       // For now, only use non-vector load / store's for the left-over pieces.
230       EVT NewVT = VT;
231       unsigned NewVTSize;
232 
233       bool Found = false;
234       if (VT.isVector() || VT.isFloatingPoint()) {
235         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
236         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
237             isSafeMemOpType(NewVT.getSimpleVT()))
238           Found = true;
239         else if (NewVT == MVT::i64 &&
240                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
241                  isSafeMemOpType(MVT::f64)) {
242           // i64 is usually not legal on 32-bit targets, but f64 may be.
243           NewVT = MVT::f64;
244           Found = true;
245         }
246       }
247 
248       if (!Found) {
249         do {
250           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
251           if (NewVT == MVT::i8)
252             break;
253         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
254       }
255       NewVTSize = NewVT.getSizeInBits() / 8;
256 
257       // If the new VT cannot cover all of the remaining bits, then consider
258       // issuing a (or a pair of) unaligned and overlapping load / store.
259       bool Fast;
260       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
261           allowsMisalignedMemoryAccesses(
262               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
263               MachineMemOperand::MONone, &Fast) &&
264           Fast)
265         VTSize = Size;
266       else {
267         VT = NewVT;
268         VTSize = NewVTSize;
269       }
270     }
271 
272     if (++NumMemOps > Limit)
273       return false;
274 
275     MemOps.push_back(VT);
276     Size -= VTSize;
277   }
278 
279   return true;
280 }
281 
282 /// Soften the operands of a comparison. This code is shared among BR_CC,
283 /// SELECT_CC, and SETCC handlers.
284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
285                                          SDValue &NewLHS, SDValue &NewRHS,
286                                          ISD::CondCode &CCCode,
287                                          const SDLoc &dl, const SDValue OldLHS,
288                                          const SDValue OldRHS) const {
289   SDValue Chain;
290   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
291                              OldRHS, Chain);
292 }
293 
294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
295                                          SDValue &NewLHS, SDValue &NewRHS,
296                                          ISD::CondCode &CCCode,
297                                          const SDLoc &dl, const SDValue OldLHS,
298                                          const SDValue OldRHS,
299                                          SDValue &Chain,
300                                          bool IsSignaling) const {
301   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
302   // not supporting it. We can update this code when libgcc provides such
303   // functions.
304 
305   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
306          && "Unsupported setcc type!");
307 
308   // Expand into one or more soft-fp libcall(s).
309   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
310   bool ShouldInvertCC = false;
311   switch (CCCode) {
312   case ISD::SETEQ:
313   case ISD::SETOEQ:
314     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
315           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
316           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
317     break;
318   case ISD::SETNE:
319   case ISD::SETUNE:
320     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
321           (VT == MVT::f64) ? RTLIB::UNE_F64 :
322           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
323     break;
324   case ISD::SETGE:
325   case ISD::SETOGE:
326     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
327           (VT == MVT::f64) ? RTLIB::OGE_F64 :
328           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
329     break;
330   case ISD::SETLT:
331   case ISD::SETOLT:
332     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
333           (VT == MVT::f64) ? RTLIB::OLT_F64 :
334           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
335     break;
336   case ISD::SETLE:
337   case ISD::SETOLE:
338     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
339           (VT == MVT::f64) ? RTLIB::OLE_F64 :
340           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
341     break;
342   case ISD::SETGT:
343   case ISD::SETOGT:
344     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
345           (VT == MVT::f64) ? RTLIB::OGT_F64 :
346           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
347     break;
348   case ISD::SETO:
349     ShouldInvertCC = true;
350     LLVM_FALLTHROUGH;
351   case ISD::SETUO:
352     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
353           (VT == MVT::f64) ? RTLIB::UO_F64 :
354           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
355     break;
356   case ISD::SETONE:
357     // SETONE = O && UNE
358     ShouldInvertCC = true;
359     LLVM_FALLTHROUGH;
360   case ISD::SETUEQ:
361     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
362           (VT == MVT::f64) ? RTLIB::UO_F64 :
363           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
364     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
365           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
366           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
367     break;
368   default:
369     // Invert CC for unordered comparisons
370     ShouldInvertCC = true;
371     switch (CCCode) {
372     case ISD::SETULT:
373       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
374             (VT == MVT::f64) ? RTLIB::OGE_F64 :
375             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
376       break;
377     case ISD::SETULE:
378       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
379             (VT == MVT::f64) ? RTLIB::OGT_F64 :
380             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
381       break;
382     case ISD::SETUGT:
383       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
384             (VT == MVT::f64) ? RTLIB::OLE_F64 :
385             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
386       break;
387     case ISD::SETUGE:
388       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
389             (VT == MVT::f64) ? RTLIB::OLT_F64 :
390             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
391       break;
392     default: llvm_unreachable("Do not know how to soften this setcc!");
393     }
394   }
395 
396   // Use the target specific return value for comparions lib calls.
397   EVT RetVT = getCmpLibcallReturnType();
398   SDValue Ops[2] = {NewLHS, NewRHS};
399   TargetLowering::MakeLibCallOptions CallOptions;
400   EVT OpsVT[2] = { OldLHS.getValueType(),
401                    OldRHS.getValueType() };
402   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
403   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
404   NewLHS = Call.first;
405   NewRHS = DAG.getConstant(0, dl, RetVT);
406 
407   CCCode = getCmpLibcallCC(LC1);
408   if (ShouldInvertCC) {
409     assert(RetVT.isInteger());
410     CCCode = getSetCCInverse(CCCode, RetVT);
411   }
412 
413   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
414     // Update Chain.
415     Chain = Call.second;
416   } else {
417     EVT SetCCVT =
418         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
419     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
420     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
421     CCCode = getCmpLibcallCC(LC2);
422     if (ShouldInvertCC)
423       CCCode = getSetCCInverse(CCCode, RetVT);
424     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
425     if (Chain)
426       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
427                           Call2.second);
428     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
429                          Tmp.getValueType(), Tmp, NewLHS);
430     NewRHS = SDValue();
431   }
432 }
433 
434 /// Return the entry encoding for a jump table in the current function. The
435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
436 unsigned TargetLowering::getJumpTableEncoding() const {
437   // In non-pic modes, just use the address of a block.
438   if (!isPositionIndependent())
439     return MachineJumpTableInfo::EK_BlockAddress;
440 
441   // In PIC mode, if the target supports a GPRel32 directive, use it.
442   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
443     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
444 
445   // Otherwise, use a label difference.
446   return MachineJumpTableInfo::EK_LabelDifference32;
447 }
448 
449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
450                                                  SelectionDAG &DAG) const {
451   // If our PIC model is GP relative, use the global offset table as the base.
452   unsigned JTEncoding = getJumpTableEncoding();
453 
454   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
455       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
456     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
457 
458   return Table;
459 }
460 
461 /// This returns the relocation base for the given PIC jumptable, the same as
462 /// getPICJumpTableRelocBase, but as an MCExpr.
463 const MCExpr *
464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
465                                              unsigned JTI,MCContext &Ctx) const{
466   // The normal PIC reloc base is the label at the start of the jump table.
467   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
468 }
469 
470 bool
471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
472   const TargetMachine &TM = getTargetMachine();
473   const GlobalValue *GV = GA->getGlobal();
474 
475   // If the address is not even local to this DSO we will have to load it from
476   // a got and then add the offset.
477   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
478     return false;
479 
480   // If the code is position independent we will have to add a base register.
481   if (isPositionIndependent())
482     return false;
483 
484   // Otherwise we can do it.
485   return true;
486 }
487 
488 //===----------------------------------------------------------------------===//
489 //  Optimization Methods
490 //===----------------------------------------------------------------------===//
491 
492 /// If the specified instruction has a constant integer operand and there are
493 /// bits set in that constant that are not demanded, then clear those bits and
494 /// return true.
495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
496                                             const APInt &DemandedBits,
497                                             const APInt &DemandedElts,
498                                             TargetLoweringOpt &TLO) const {
499   SDLoc DL(Op);
500   unsigned Opcode = Op.getOpcode();
501 
502   // Do target-specific constant optimization.
503   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
504     return TLO.New.getNode();
505 
506   // FIXME: ISD::SELECT, ISD::SELECT_CC
507   switch (Opcode) {
508   default:
509     break;
510   case ISD::XOR:
511   case ISD::AND:
512   case ISD::OR: {
513     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
514     if (!Op1C || Op1C->isOpaque())
515       return false;
516 
517     // If this is a 'not' op, don't touch it because that's a canonical form.
518     const APInt &C = Op1C->getAPIntValue();
519     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
520       return false;
521 
522     if (!C.isSubsetOf(DemandedBits)) {
523       EVT VT = Op.getValueType();
524       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
525       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
526       return TLO.CombineTo(Op, NewOp);
527     }
528 
529     break;
530   }
531   }
532 
533   return false;
534 }
535 
536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
537                                             const APInt &DemandedBits,
538                                             TargetLoweringOpt &TLO) const {
539   EVT VT = Op.getValueType();
540   APInt DemandedElts = VT.isVector()
541                            ? APInt::getAllOnes(VT.getVectorNumElements())
542                            : APInt(1, 1);
543   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
544 }
545 
546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
548 /// generalized for targets with other types of implicit widening casts.
549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
550                                       const APInt &Demanded,
551                                       TargetLoweringOpt &TLO) const {
552   assert(Op.getNumOperands() == 2 &&
553          "ShrinkDemandedOp only supports binary operators!");
554   assert(Op.getNode()->getNumValues() == 1 &&
555          "ShrinkDemandedOp only supports nodes with one result!");
556 
557   SelectionDAG &DAG = TLO.DAG;
558   SDLoc dl(Op);
559 
560   // Early return, as this function cannot handle vector types.
561   if (Op.getValueType().isVector())
562     return false;
563 
564   // Don't do this if the node has another user, which may require the
565   // full value.
566   if (!Op.getNode()->hasOneUse())
567     return false;
568 
569   // Search for the smallest integer type with free casts to and from
570   // Op's type. For expedience, just check power-of-2 integer types.
571   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
572   unsigned DemandedSize = Demanded.getActiveBits();
573   unsigned SmallVTBits = DemandedSize;
574   if (!isPowerOf2_32(SmallVTBits))
575     SmallVTBits = NextPowerOf2(SmallVTBits);
576   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
577     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
578     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
579         TLI.isZExtFree(SmallVT, Op.getValueType())) {
580       // We found a type with free casts.
581       SDValue X = DAG.getNode(
582           Op.getOpcode(), dl, SmallVT,
583           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
584           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
585       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
586       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
587       return TLO.CombineTo(Op, Z);
588     }
589   }
590   return false;
591 }
592 
593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
594                                           DAGCombinerInfo &DCI) const {
595   SelectionDAG &DAG = DCI.DAG;
596   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
597                         !DCI.isBeforeLegalizeOps());
598   KnownBits Known;
599 
600   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
601   if (Simplified) {
602     DCI.AddToWorklist(Op.getNode());
603     DCI.CommitTargetLoweringOpt(TLO);
604   }
605   return Simplified;
606 }
607 
608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
609                                           KnownBits &Known,
610                                           TargetLoweringOpt &TLO,
611                                           unsigned Depth,
612                                           bool AssumeSingleUse) const {
613   EVT VT = Op.getValueType();
614 
615   // TODO: We can probably do more work on calculating the known bits and
616   // simplifying the operations for scalable vectors, but for now we just
617   // bail out.
618   if (VT.isScalableVector()) {
619     // Pretend we don't know anything for now.
620     Known = KnownBits(DemandedBits.getBitWidth());
621     return false;
622   }
623 
624   APInt DemandedElts = VT.isVector()
625                            ? APInt::getAllOnes(VT.getVectorNumElements())
626                            : APInt(1, 1);
627   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
628                               AssumeSingleUse);
629 }
630 
631 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
632 // TODO: Under what circumstances can we create nodes? Constant folding?
633 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
634     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
635     SelectionDAG &DAG, unsigned Depth) const {
636   // Limit search depth.
637   if (Depth >= SelectionDAG::MaxRecursionDepth)
638     return SDValue();
639 
640   // Ignore UNDEFs.
641   if (Op.isUndef())
642     return SDValue();
643 
644   // Not demanding any bits/elts from Op.
645   if (DemandedBits == 0 || DemandedElts == 0)
646     return DAG.getUNDEF(Op.getValueType());
647 
648   unsigned NumElts = DemandedElts.getBitWidth();
649   unsigned BitWidth = DemandedBits.getBitWidth();
650   KnownBits LHSKnown, RHSKnown;
651   switch (Op.getOpcode()) {
652   case ISD::BITCAST: {
653     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
654     EVT SrcVT = Src.getValueType();
655     EVT DstVT = Op.getValueType();
656     if (SrcVT == DstVT)
657       return Src;
658 
659     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
660     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
661     if (NumSrcEltBits == NumDstEltBits)
662       if (SDValue V = SimplifyMultipleUseDemandedBits(
663               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
664         return DAG.getBitcast(DstVT, V);
665 
666     // TODO - bigendian once we have test coverage.
667     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
668         DAG.getDataLayout().isLittleEndian()) {
669       unsigned Scale = NumDstEltBits / NumSrcEltBits;
670       unsigned NumSrcElts = SrcVT.getVectorNumElements();
671       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
672       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
673       for (unsigned i = 0; i != Scale; ++i) {
674         unsigned Offset = i * NumSrcEltBits;
675         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
676         if (!Sub.isZero()) {
677           DemandedSrcBits |= Sub;
678           for (unsigned j = 0; j != NumElts; ++j)
679             if (DemandedElts[j])
680               DemandedSrcElts.setBit((j * Scale) + i);
681         }
682       }
683 
684       if (SDValue V = SimplifyMultipleUseDemandedBits(
685               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
686         return DAG.getBitcast(DstVT, V);
687     }
688 
689     // TODO - bigendian once we have test coverage.
690     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
691         DAG.getDataLayout().isLittleEndian()) {
692       unsigned Scale = NumSrcEltBits / NumDstEltBits;
693       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
694       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
695       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
696       for (unsigned i = 0; i != NumElts; ++i)
697         if (DemandedElts[i]) {
698           unsigned Offset = (i % Scale) * NumDstEltBits;
699           DemandedSrcBits.insertBits(DemandedBits, Offset);
700           DemandedSrcElts.setBit(i / Scale);
701         }
702 
703       if (SDValue V = SimplifyMultipleUseDemandedBits(
704               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
705         return DAG.getBitcast(DstVT, V);
706     }
707 
708     break;
709   }
710   case ISD::AND: {
711     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
712     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
713 
714     // If all of the demanded bits are known 1 on one side, return the other.
715     // These bits cannot contribute to the result of the 'and' in this
716     // context.
717     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
718       return Op.getOperand(0);
719     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
720       return Op.getOperand(1);
721     break;
722   }
723   case ISD::OR: {
724     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
725     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
726 
727     // If all of the demanded bits are known zero on one side, return the
728     // other.  These bits cannot contribute to the result of the 'or' in this
729     // context.
730     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
731       return Op.getOperand(0);
732     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
733       return Op.getOperand(1);
734     break;
735   }
736   case ISD::XOR: {
737     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
738     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
739 
740     // If all of the demanded bits are known zero on one side, return the
741     // other.
742     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
743       return Op.getOperand(0);
744     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
745       return Op.getOperand(1);
746     break;
747   }
748   case ISD::SHL: {
749     // If we are only demanding sign bits then we can use the shift source
750     // directly.
751     if (const APInt *MaxSA =
752             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
753       SDValue Op0 = Op.getOperand(0);
754       unsigned ShAmt = MaxSA->getZExtValue();
755       unsigned NumSignBits =
756           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
757       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
758       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
759         return Op0;
760     }
761     break;
762   }
763   case ISD::SETCC: {
764     SDValue Op0 = Op.getOperand(0);
765     SDValue Op1 = Op.getOperand(1);
766     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
767     // If (1) we only need the sign-bit, (2) the setcc operands are the same
768     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
769     // -1, we may be able to bypass the setcc.
770     if (DemandedBits.isSignMask() &&
771         Op0.getScalarValueSizeInBits() == BitWidth &&
772         getBooleanContents(Op0.getValueType()) ==
773             BooleanContent::ZeroOrNegativeOneBooleanContent) {
774       // If we're testing X < 0, then this compare isn't needed - just use X!
775       // FIXME: We're limiting to integer types here, but this should also work
776       // if we don't care about FP signed-zero. The use of SETLT with FP means
777       // that we don't care about NaNs.
778       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
779           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
780         return Op0;
781     }
782     break;
783   }
784   case ISD::SIGN_EXTEND_INREG: {
785     // If none of the extended bits are demanded, eliminate the sextinreg.
786     SDValue Op0 = Op.getOperand(0);
787     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
788     unsigned ExBits = ExVT.getScalarSizeInBits();
789     if (DemandedBits.getActiveBits() <= ExBits)
790       return Op0;
791     // If the input is already sign extended, just drop the extension.
792     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
793     if (NumSignBits >= (BitWidth - ExBits + 1))
794       return Op0;
795     break;
796   }
797   case ISD::ANY_EXTEND_VECTOR_INREG:
798   case ISD::SIGN_EXTEND_VECTOR_INREG:
799   case ISD::ZERO_EXTEND_VECTOR_INREG: {
800     // If we only want the lowest element and none of extended bits, then we can
801     // return the bitcasted source vector.
802     SDValue Src = Op.getOperand(0);
803     EVT SrcVT = Src.getValueType();
804     EVT DstVT = Op.getValueType();
805     if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
806         DAG.getDataLayout().isLittleEndian() &&
807         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
808       return DAG.getBitcast(DstVT, Src);
809     }
810     break;
811   }
812   case ISD::INSERT_VECTOR_ELT: {
813     // If we don't demand the inserted element, return the base vector.
814     SDValue Vec = Op.getOperand(0);
815     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
816     EVT VecVT = Vec.getValueType();
817     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
818         !DemandedElts[CIdx->getZExtValue()])
819       return Vec;
820     break;
821   }
822   case ISD::INSERT_SUBVECTOR: {
823     SDValue Vec = Op.getOperand(0);
824     SDValue Sub = Op.getOperand(1);
825     uint64_t Idx = Op.getConstantOperandVal(2);
826     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
827     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
828     // If we don't demand the inserted subvector, return the base vector.
829     if (DemandedSubElts == 0)
830       return Vec;
831     // If this simply widens the lowest subvector, see if we can do it earlier.
832     if (Idx == 0 && Vec.isUndef()) {
833       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
834               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
835         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
836                            Op.getOperand(0), NewSub, Op.getOperand(2));
837     }
838     break;
839   }
840   case ISD::VECTOR_SHUFFLE: {
841     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
842 
843     // If all the demanded elts are from one operand and are inline,
844     // then we can use the operand directly.
845     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
846     for (unsigned i = 0; i != NumElts; ++i) {
847       int M = ShuffleMask[i];
848       if (M < 0 || !DemandedElts[i])
849         continue;
850       AllUndef = false;
851       IdentityLHS &= (M == (int)i);
852       IdentityRHS &= ((M - NumElts) == i);
853     }
854 
855     if (AllUndef)
856       return DAG.getUNDEF(Op.getValueType());
857     if (IdentityLHS)
858       return Op.getOperand(0);
859     if (IdentityRHS)
860       return Op.getOperand(1);
861     break;
862   }
863   default:
864     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
865       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
866               Op, DemandedBits, DemandedElts, DAG, Depth))
867         return V;
868     break;
869   }
870   return SDValue();
871 }
872 
873 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
874     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
875     unsigned Depth) const {
876   EVT VT = Op.getValueType();
877   APInt DemandedElts = VT.isVector()
878                            ? APInt::getAllOnes(VT.getVectorNumElements())
879                            : APInt(1, 1);
880   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
881                                          Depth);
882 }
883 
884 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
885     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
886     unsigned Depth) const {
887   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
888   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
889                                          Depth);
890 }
891 
892 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
893 /// result of Op are ever used downstream. If we can use this information to
894 /// simplify Op, create a new simplified DAG node and return true, returning the
895 /// original and new nodes in Old and New. Otherwise, analyze the expression and
896 /// return a mask of Known bits for the expression (used to simplify the
897 /// caller).  The Known bits may only be accurate for those bits in the
898 /// OriginalDemandedBits and OriginalDemandedElts.
899 bool TargetLowering::SimplifyDemandedBits(
900     SDValue Op, const APInt &OriginalDemandedBits,
901     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
902     unsigned Depth, bool AssumeSingleUse) const {
903   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
904   assert(Op.getScalarValueSizeInBits() == BitWidth &&
905          "Mask size mismatches value type size!");
906 
907   // Don't know anything.
908   Known = KnownBits(BitWidth);
909 
910   // TODO: We can probably do more work on calculating the known bits and
911   // simplifying the operations for scalable vectors, but for now we just
912   // bail out.
913   if (Op.getValueType().isScalableVector())
914     return false;
915 
916   unsigned NumElts = OriginalDemandedElts.getBitWidth();
917   assert((!Op.getValueType().isVector() ||
918           NumElts == Op.getValueType().getVectorNumElements()) &&
919          "Unexpected vector size");
920 
921   APInt DemandedBits = OriginalDemandedBits;
922   APInt DemandedElts = OriginalDemandedElts;
923   SDLoc dl(Op);
924   auto &DL = TLO.DAG.getDataLayout();
925 
926   // Undef operand.
927   if (Op.isUndef())
928     return false;
929 
930   if (Op.getOpcode() == ISD::Constant) {
931     // We know all of the bits for a constant!
932     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
933     return false;
934   }
935 
936   if (Op.getOpcode() == ISD::ConstantFP) {
937     // We know all of the bits for a floating point constant!
938     Known = KnownBits::makeConstant(
939         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
940     return false;
941   }
942 
943   // Other users may use these bits.
944   EVT VT = Op.getValueType();
945   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
946     if (Depth != 0) {
947       // If not at the root, Just compute the Known bits to
948       // simplify things downstream.
949       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
950       return false;
951     }
952     // If this is the root being simplified, allow it to have multiple uses,
953     // just set the DemandedBits/Elts to all bits.
954     DemandedBits = APInt::getAllOnes(BitWidth);
955     DemandedElts = APInt::getAllOnes(NumElts);
956   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
957     // Not demanding any bits/elts from Op.
958     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
959   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
960     // Limit search depth.
961     return false;
962   }
963 
964   KnownBits Known2;
965   switch (Op.getOpcode()) {
966   case ISD::TargetConstant:
967     llvm_unreachable("Can't simplify this node");
968   case ISD::SCALAR_TO_VECTOR: {
969     if (!DemandedElts[0])
970       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
971 
972     KnownBits SrcKnown;
973     SDValue Src = Op.getOperand(0);
974     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
975     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
976     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
977       return true;
978 
979     // Upper elements are undef, so only get the knownbits if we just demand
980     // the bottom element.
981     if (DemandedElts == 1)
982       Known = SrcKnown.anyextOrTrunc(BitWidth);
983     break;
984   }
985   case ISD::BUILD_VECTOR:
986     // Collect the known bits that are shared by every demanded element.
987     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
988     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
989     return false; // Don't fall through, will infinitely loop.
990   case ISD::LOAD: {
991     auto *LD = cast<LoadSDNode>(Op);
992     if (getTargetConstantFromLoad(LD)) {
993       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
994       return false; // Don't fall through, will infinitely loop.
995     }
996     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
997       // If this is a ZEXTLoad and we are looking at the loaded value.
998       EVT MemVT = LD->getMemoryVT();
999       unsigned MemBits = MemVT.getScalarSizeInBits();
1000       Known.Zero.setBitsFrom(MemBits);
1001       return false; // Don't fall through, will infinitely loop.
1002     }
1003     break;
1004   }
1005   case ISD::INSERT_VECTOR_ELT: {
1006     SDValue Vec = Op.getOperand(0);
1007     SDValue Scl = Op.getOperand(1);
1008     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1009     EVT VecVT = Vec.getValueType();
1010 
1011     // If index isn't constant, assume we need all vector elements AND the
1012     // inserted element.
1013     APInt DemandedVecElts(DemandedElts);
1014     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1015       unsigned Idx = CIdx->getZExtValue();
1016       DemandedVecElts.clearBit(Idx);
1017 
1018       // Inserted element is not required.
1019       if (!DemandedElts[Idx])
1020         return TLO.CombineTo(Op, Vec);
1021     }
1022 
1023     KnownBits KnownScl;
1024     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1025     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1026     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1027       return true;
1028 
1029     Known = KnownScl.anyextOrTrunc(BitWidth);
1030 
1031     KnownBits KnownVec;
1032     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1033                              Depth + 1))
1034       return true;
1035 
1036     if (!!DemandedVecElts)
1037       Known = KnownBits::commonBits(Known, KnownVec);
1038 
1039     return false;
1040   }
1041   case ISD::INSERT_SUBVECTOR: {
1042     // Demand any elements from the subvector and the remainder from the src its
1043     // inserted into.
1044     SDValue Src = Op.getOperand(0);
1045     SDValue Sub = Op.getOperand(1);
1046     uint64_t Idx = Op.getConstantOperandVal(2);
1047     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1048     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1049     APInt DemandedSrcElts = DemandedElts;
1050     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1051 
1052     KnownBits KnownSub, KnownSrc;
1053     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1054                              Depth + 1))
1055       return true;
1056     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1057                              Depth + 1))
1058       return true;
1059 
1060     Known.Zero.setAllBits();
1061     Known.One.setAllBits();
1062     if (!!DemandedSubElts)
1063       Known = KnownBits::commonBits(Known, KnownSub);
1064     if (!!DemandedSrcElts)
1065       Known = KnownBits::commonBits(Known, KnownSrc);
1066 
1067     // Attempt to avoid multi-use src if we don't need anything from it.
1068     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1069         !DemandedSrcElts.isAllOnes()) {
1070       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1071           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1072       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1073           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1074       if (NewSub || NewSrc) {
1075         NewSub = NewSub ? NewSub : Sub;
1076         NewSrc = NewSrc ? NewSrc : Src;
1077         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1078                                         Op.getOperand(2));
1079         return TLO.CombineTo(Op, NewOp);
1080       }
1081     }
1082     break;
1083   }
1084   case ISD::EXTRACT_SUBVECTOR: {
1085     // Offset the demanded elts by the subvector index.
1086     SDValue Src = Op.getOperand(0);
1087     if (Src.getValueType().isScalableVector())
1088       break;
1089     uint64_t Idx = Op.getConstantOperandVal(1);
1090     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1091     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1092 
1093     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1094                              Depth + 1))
1095       return true;
1096 
1097     // Attempt to avoid multi-use src if we don't need anything from it.
1098     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1099       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1100           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1101       if (DemandedSrc) {
1102         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1103                                         Op.getOperand(1));
1104         return TLO.CombineTo(Op, NewOp);
1105       }
1106     }
1107     break;
1108   }
1109   case ISD::CONCAT_VECTORS: {
1110     Known.Zero.setAllBits();
1111     Known.One.setAllBits();
1112     EVT SubVT = Op.getOperand(0).getValueType();
1113     unsigned NumSubVecs = Op.getNumOperands();
1114     unsigned NumSubElts = SubVT.getVectorNumElements();
1115     for (unsigned i = 0; i != NumSubVecs; ++i) {
1116       APInt DemandedSubElts =
1117           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1118       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1119                                Known2, TLO, Depth + 1))
1120         return true;
1121       // Known bits are shared by every demanded subvector element.
1122       if (!!DemandedSubElts)
1123         Known = KnownBits::commonBits(Known, Known2);
1124     }
1125     break;
1126   }
1127   case ISD::VECTOR_SHUFFLE: {
1128     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1129 
1130     // Collect demanded elements from shuffle operands..
1131     APInt DemandedLHS(NumElts, 0);
1132     APInt DemandedRHS(NumElts, 0);
1133     for (unsigned i = 0; i != NumElts; ++i) {
1134       if (!DemandedElts[i])
1135         continue;
1136       int M = ShuffleMask[i];
1137       if (M < 0) {
1138         // For UNDEF elements, we don't know anything about the common state of
1139         // the shuffle result.
1140         DemandedLHS.clearAllBits();
1141         DemandedRHS.clearAllBits();
1142         break;
1143       }
1144       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1145       if (M < (int)NumElts)
1146         DemandedLHS.setBit(M);
1147       else
1148         DemandedRHS.setBit(M - NumElts);
1149     }
1150 
1151     if (!!DemandedLHS || !!DemandedRHS) {
1152       SDValue Op0 = Op.getOperand(0);
1153       SDValue Op1 = Op.getOperand(1);
1154 
1155       Known.Zero.setAllBits();
1156       Known.One.setAllBits();
1157       if (!!DemandedLHS) {
1158         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1159                                  Depth + 1))
1160           return true;
1161         Known = KnownBits::commonBits(Known, Known2);
1162       }
1163       if (!!DemandedRHS) {
1164         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1165                                  Depth + 1))
1166           return true;
1167         Known = KnownBits::commonBits(Known, Known2);
1168       }
1169 
1170       // Attempt to avoid multi-use ops if we don't need anything from them.
1171       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1172           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1173       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1174           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1175       if (DemandedOp0 || DemandedOp1) {
1176         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1177         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1178         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1179         return TLO.CombineTo(Op, NewOp);
1180       }
1181     }
1182     break;
1183   }
1184   case ISD::AND: {
1185     SDValue Op0 = Op.getOperand(0);
1186     SDValue Op1 = Op.getOperand(1);
1187 
1188     // If the RHS is a constant, check to see if the LHS would be zero without
1189     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1190     // simplify the LHS, here we're using information from the LHS to simplify
1191     // the RHS.
1192     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1193       // Do not increment Depth here; that can cause an infinite loop.
1194       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1195       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1196       if ((LHSKnown.Zero & DemandedBits) ==
1197           (~RHSC->getAPIntValue() & DemandedBits))
1198         return TLO.CombineTo(Op, Op0);
1199 
1200       // If any of the set bits in the RHS are known zero on the LHS, shrink
1201       // the constant.
1202       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1203                                  DemandedElts, TLO))
1204         return true;
1205 
1206       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1207       // constant, but if this 'and' is only clearing bits that were just set by
1208       // the xor, then this 'and' can be eliminated by shrinking the mask of
1209       // the xor. For example, for a 32-bit X:
1210       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1211       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1212           LHSKnown.One == ~RHSC->getAPIntValue()) {
1213         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1214         return TLO.CombineTo(Op, Xor);
1215       }
1216     }
1217 
1218     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1219                              Depth + 1))
1220       return true;
1221     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1222     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1223                              Known2, TLO, Depth + 1))
1224       return true;
1225     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1226 
1227     // Attempt to avoid multi-use ops if we don't need anything from them.
1228     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1229       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1230           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1231       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1232           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1233       if (DemandedOp0 || DemandedOp1) {
1234         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1235         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1236         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1237         return TLO.CombineTo(Op, NewOp);
1238       }
1239     }
1240 
1241     // If all of the demanded bits are known one on one side, return the other.
1242     // These bits cannot contribute to the result of the 'and'.
1243     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1244       return TLO.CombineTo(Op, Op0);
1245     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1246       return TLO.CombineTo(Op, Op1);
1247     // If all of the demanded bits in the inputs are known zeros, return zero.
1248     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1249       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1250     // If the RHS is a constant, see if we can simplify it.
1251     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1252                                TLO))
1253       return true;
1254     // If the operation can be done in a smaller type, do so.
1255     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1256       return true;
1257 
1258     Known &= Known2;
1259     break;
1260   }
1261   case ISD::OR: {
1262     SDValue Op0 = Op.getOperand(0);
1263     SDValue Op1 = Op.getOperand(1);
1264 
1265     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1266                              Depth + 1))
1267       return true;
1268     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1269     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1270                              Known2, TLO, Depth + 1))
1271       return true;
1272     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1273 
1274     // Attempt to avoid multi-use ops if we don't need anything from them.
1275     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1276       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1277           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1278       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1279           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1280       if (DemandedOp0 || DemandedOp1) {
1281         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1282         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1283         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1284         return TLO.CombineTo(Op, NewOp);
1285       }
1286     }
1287 
1288     // If all of the demanded bits are known zero on one side, return the other.
1289     // These bits cannot contribute to the result of the 'or'.
1290     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1291       return TLO.CombineTo(Op, Op0);
1292     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1293       return TLO.CombineTo(Op, Op1);
1294     // If the RHS is a constant, see if we can simplify it.
1295     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1296       return true;
1297     // If the operation can be done in a smaller type, do so.
1298     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1299       return true;
1300 
1301     Known |= Known2;
1302     break;
1303   }
1304   case ISD::XOR: {
1305     SDValue Op0 = Op.getOperand(0);
1306     SDValue Op1 = Op.getOperand(1);
1307 
1308     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1309                              Depth + 1))
1310       return true;
1311     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1312     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1313                              Depth + 1))
1314       return true;
1315     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1316 
1317     // Attempt to avoid multi-use ops if we don't need anything from them.
1318     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1319       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1320           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1321       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1322           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1323       if (DemandedOp0 || DemandedOp1) {
1324         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1325         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1326         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1327         return TLO.CombineTo(Op, NewOp);
1328       }
1329     }
1330 
1331     // If all of the demanded bits are known zero on one side, return the other.
1332     // These bits cannot contribute to the result of the 'xor'.
1333     if (DemandedBits.isSubsetOf(Known.Zero))
1334       return TLO.CombineTo(Op, Op0);
1335     if (DemandedBits.isSubsetOf(Known2.Zero))
1336       return TLO.CombineTo(Op, Op1);
1337     // If the operation can be done in a smaller type, do so.
1338     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1339       return true;
1340 
1341     // If all of the unknown bits are known to be zero on one side or the other
1342     // turn this into an *inclusive* or.
1343     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1344     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1345       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1346 
1347     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1348     if (C) {
1349       // If one side is a constant, and all of the set bits in the constant are
1350       // also known set on the other side, turn this into an AND, as we know
1351       // the bits will be cleared.
1352       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1353       // NB: it is okay if more bits are known than are requested
1354       if (C->getAPIntValue() == Known2.One) {
1355         SDValue ANDC =
1356             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1357         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1358       }
1359 
1360       // If the RHS is a constant, see if we can change it. Don't alter a -1
1361       // constant because that's a 'not' op, and that is better for combining
1362       // and codegen.
1363       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1364         // We're flipping all demanded bits. Flip the undemanded bits too.
1365         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1366         return TLO.CombineTo(Op, New);
1367       }
1368     }
1369 
1370     // If we can't turn this into a 'not', try to shrink the constant.
1371     if (!C || !C->isAllOnes())
1372       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1373         return true;
1374 
1375     Known ^= Known2;
1376     break;
1377   }
1378   case ISD::SELECT:
1379     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1380                              Depth + 1))
1381       return true;
1382     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1383                              Depth + 1))
1384       return true;
1385     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1386     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1387 
1388     // If the operands are constants, see if we can simplify them.
1389     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1390       return true;
1391 
1392     // Only known if known in both the LHS and RHS.
1393     Known = KnownBits::commonBits(Known, Known2);
1394     break;
1395   case ISD::SELECT_CC:
1396     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1397                              Depth + 1))
1398       return true;
1399     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1400                              Depth + 1))
1401       return true;
1402     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1403     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1404 
1405     // If the operands are constants, see if we can simplify them.
1406     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1407       return true;
1408 
1409     // Only known if known in both the LHS and RHS.
1410     Known = KnownBits::commonBits(Known, Known2);
1411     break;
1412   case ISD::SETCC: {
1413     SDValue Op0 = Op.getOperand(0);
1414     SDValue Op1 = Op.getOperand(1);
1415     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1416     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1417     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1418     // -1, we may be able to bypass the setcc.
1419     if (DemandedBits.isSignMask() &&
1420         Op0.getScalarValueSizeInBits() == BitWidth &&
1421         getBooleanContents(Op0.getValueType()) ==
1422             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1423       // If we're testing X < 0, then this compare isn't needed - just use X!
1424       // FIXME: We're limiting to integer types here, but this should also work
1425       // if we don't care about FP signed-zero. The use of SETLT with FP means
1426       // that we don't care about NaNs.
1427       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1428           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1429         return TLO.CombineTo(Op, Op0);
1430 
1431       // TODO: Should we check for other forms of sign-bit comparisons?
1432       // Examples: X <= -1, X >= 0
1433     }
1434     if (getBooleanContents(Op0.getValueType()) ==
1435             TargetLowering::ZeroOrOneBooleanContent &&
1436         BitWidth > 1)
1437       Known.Zero.setBitsFrom(1);
1438     break;
1439   }
1440   case ISD::SHL: {
1441     SDValue Op0 = Op.getOperand(0);
1442     SDValue Op1 = Op.getOperand(1);
1443     EVT ShiftVT = Op1.getValueType();
1444 
1445     if (const APInt *SA =
1446             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1447       unsigned ShAmt = SA->getZExtValue();
1448       if (ShAmt == 0)
1449         return TLO.CombineTo(Op, Op0);
1450 
1451       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1452       // single shift.  We can do this if the bottom bits (which are shifted
1453       // out) are never demanded.
1454       // TODO - support non-uniform vector amounts.
1455       if (Op0.getOpcode() == ISD::SRL) {
1456         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1457           if (const APInt *SA2 =
1458                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1459             unsigned C1 = SA2->getZExtValue();
1460             unsigned Opc = ISD::SHL;
1461             int Diff = ShAmt - C1;
1462             if (Diff < 0) {
1463               Diff = -Diff;
1464               Opc = ISD::SRL;
1465             }
1466             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1467             return TLO.CombineTo(
1468                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1469           }
1470         }
1471       }
1472 
1473       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1474       // are not demanded. This will likely allow the anyext to be folded away.
1475       // TODO - support non-uniform vector amounts.
1476       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1477         SDValue InnerOp = Op0.getOperand(0);
1478         EVT InnerVT = InnerOp.getValueType();
1479         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1480         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1481             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1482           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1483           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1484             ShTy = InnerVT;
1485           SDValue NarrowShl =
1486               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1487                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1488           return TLO.CombineTo(
1489               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1490         }
1491 
1492         // Repeat the SHL optimization above in cases where an extension
1493         // intervenes: (shl (anyext (shr x, c1)), c2) to
1494         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1495         // aren't demanded (as above) and that the shifted upper c1 bits of
1496         // x aren't demanded.
1497         // TODO - support non-uniform vector amounts.
1498         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1499             InnerOp.hasOneUse()) {
1500           if (const APInt *SA2 =
1501                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1502             unsigned InnerShAmt = SA2->getZExtValue();
1503             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1504                 DemandedBits.getActiveBits() <=
1505                     (InnerBits - InnerShAmt + ShAmt) &&
1506                 DemandedBits.countTrailingZeros() >= ShAmt) {
1507               SDValue NewSA =
1508                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1509               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1510                                                InnerOp.getOperand(0));
1511               return TLO.CombineTo(
1512                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1513             }
1514           }
1515         }
1516       }
1517 
1518       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1519       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1520                                Depth + 1))
1521         return true;
1522       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1523       Known.Zero <<= ShAmt;
1524       Known.One <<= ShAmt;
1525       // low bits known zero.
1526       Known.Zero.setLowBits(ShAmt);
1527 
1528       // Try shrinking the operation as long as the shift amount will still be
1529       // in range.
1530       if ((ShAmt < DemandedBits.getActiveBits()) &&
1531           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1532         return true;
1533     }
1534 
1535     // If we are only demanding sign bits then we can use the shift source
1536     // directly.
1537     if (const APInt *MaxSA =
1538             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1539       unsigned ShAmt = MaxSA->getZExtValue();
1540       unsigned NumSignBits =
1541           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1542       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1543       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1544         return TLO.CombineTo(Op, Op0);
1545     }
1546     break;
1547   }
1548   case ISD::SRL: {
1549     SDValue Op0 = Op.getOperand(0);
1550     SDValue Op1 = Op.getOperand(1);
1551     EVT ShiftVT = Op1.getValueType();
1552 
1553     if (const APInt *SA =
1554             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1555       unsigned ShAmt = SA->getZExtValue();
1556       if (ShAmt == 0)
1557         return TLO.CombineTo(Op, Op0);
1558 
1559       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1560       // single shift.  We can do this if the top bits (which are shifted out)
1561       // are never demanded.
1562       // TODO - support non-uniform vector amounts.
1563       if (Op0.getOpcode() == ISD::SHL) {
1564         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1565           if (const APInt *SA2 =
1566                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1567             unsigned C1 = SA2->getZExtValue();
1568             unsigned Opc = ISD::SRL;
1569             int Diff = ShAmt - C1;
1570             if (Diff < 0) {
1571               Diff = -Diff;
1572               Opc = ISD::SHL;
1573             }
1574             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1575             return TLO.CombineTo(
1576                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1577           }
1578         }
1579       }
1580 
1581       APInt InDemandedMask = (DemandedBits << ShAmt);
1582 
1583       // If the shift is exact, then it does demand the low bits (and knows that
1584       // they are zero).
1585       if (Op->getFlags().hasExact())
1586         InDemandedMask.setLowBits(ShAmt);
1587 
1588       // Compute the new bits that are at the top now.
1589       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1590                                Depth + 1))
1591         return true;
1592       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1593       Known.Zero.lshrInPlace(ShAmt);
1594       Known.One.lshrInPlace(ShAmt);
1595       // High bits known zero.
1596       Known.Zero.setHighBits(ShAmt);
1597     }
1598     break;
1599   }
1600   case ISD::SRA: {
1601     SDValue Op0 = Op.getOperand(0);
1602     SDValue Op1 = Op.getOperand(1);
1603     EVT ShiftVT = Op1.getValueType();
1604 
1605     // If we only want bits that already match the signbit then we don't need
1606     // to shift.
1607     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1608     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1609         NumHiDemandedBits)
1610       return TLO.CombineTo(Op, Op0);
1611 
1612     // If this is an arithmetic shift right and only the low-bit is set, we can
1613     // always convert this into a logical shr, even if the shift amount is
1614     // variable.  The low bit of the shift cannot be an input sign bit unless
1615     // the shift amount is >= the size of the datatype, which is undefined.
1616     if (DemandedBits.isOne())
1617       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1618 
1619     if (const APInt *SA =
1620             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1621       unsigned ShAmt = SA->getZExtValue();
1622       if (ShAmt == 0)
1623         return TLO.CombineTo(Op, Op0);
1624 
1625       APInt InDemandedMask = (DemandedBits << ShAmt);
1626 
1627       // If the shift is exact, then it does demand the low bits (and knows that
1628       // they are zero).
1629       if (Op->getFlags().hasExact())
1630         InDemandedMask.setLowBits(ShAmt);
1631 
1632       // If any of the demanded bits are produced by the sign extension, we also
1633       // demand the input sign bit.
1634       if (DemandedBits.countLeadingZeros() < ShAmt)
1635         InDemandedMask.setSignBit();
1636 
1637       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1638                                Depth + 1))
1639         return true;
1640       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1641       Known.Zero.lshrInPlace(ShAmt);
1642       Known.One.lshrInPlace(ShAmt);
1643 
1644       // If the input sign bit is known to be zero, or if none of the top bits
1645       // are demanded, turn this into an unsigned shift right.
1646       if (Known.Zero[BitWidth - ShAmt - 1] ||
1647           DemandedBits.countLeadingZeros() >= ShAmt) {
1648         SDNodeFlags Flags;
1649         Flags.setExact(Op->getFlags().hasExact());
1650         return TLO.CombineTo(
1651             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1652       }
1653 
1654       int Log2 = DemandedBits.exactLogBase2();
1655       if (Log2 >= 0) {
1656         // The bit must come from the sign.
1657         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1658         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1659       }
1660 
1661       if (Known.One[BitWidth - ShAmt - 1])
1662         // New bits are known one.
1663         Known.One.setHighBits(ShAmt);
1664 
1665       // Attempt to avoid multi-use ops if we don't need anything from them.
1666       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1667         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1668             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1669         if (DemandedOp0) {
1670           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1671           return TLO.CombineTo(Op, NewOp);
1672         }
1673       }
1674     }
1675     break;
1676   }
1677   case ISD::FSHL:
1678   case ISD::FSHR: {
1679     SDValue Op0 = Op.getOperand(0);
1680     SDValue Op1 = Op.getOperand(1);
1681     SDValue Op2 = Op.getOperand(2);
1682     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1683 
1684     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1685       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1686 
1687       // For fshl, 0-shift returns the 1st arg.
1688       // For fshr, 0-shift returns the 2nd arg.
1689       if (Amt == 0) {
1690         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1691                                  Known, TLO, Depth + 1))
1692           return true;
1693         break;
1694       }
1695 
1696       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1697       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1698       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1699       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1700       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1701                                Depth + 1))
1702         return true;
1703       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1704                                Depth + 1))
1705         return true;
1706 
1707       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1708       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1709       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1710       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1711       Known.One |= Known2.One;
1712       Known.Zero |= Known2.Zero;
1713     }
1714 
1715     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1716     if (isPowerOf2_32(BitWidth)) {
1717       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1718       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1719                                Known2, TLO, Depth + 1))
1720         return true;
1721     }
1722     break;
1723   }
1724   case ISD::ROTL:
1725   case ISD::ROTR: {
1726     SDValue Op0 = Op.getOperand(0);
1727     SDValue Op1 = Op.getOperand(1);
1728     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1729 
1730     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1731     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1732       return TLO.CombineTo(Op, Op0);
1733 
1734     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1735       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1736       unsigned RevAmt = BitWidth - Amt;
1737 
1738       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1739       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1740       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1741       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1742                                Depth + 1))
1743         return true;
1744 
1745       // rot*(x, 0) --> x
1746       if (Amt == 0)
1747         return TLO.CombineTo(Op, Op0);
1748 
1749       // See if we don't demand either half of the rotated bits.
1750       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1751           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1752         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1753         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1754       }
1755       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1756           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1757         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1758         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1759       }
1760     }
1761 
1762     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1763     if (isPowerOf2_32(BitWidth)) {
1764       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1765       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1766                                Depth + 1))
1767         return true;
1768     }
1769     break;
1770   }
1771   case ISD::UMIN: {
1772     // Check if one arg is always less than (or equal) to the other arg.
1773     SDValue Op0 = Op.getOperand(0);
1774     SDValue Op1 = Op.getOperand(1);
1775     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1776     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1777     Known = KnownBits::umin(Known0, Known1);
1778     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1779       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1780     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1781       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1782     break;
1783   }
1784   case ISD::UMAX: {
1785     // Check if one arg is always greater than (or equal) to the other arg.
1786     SDValue Op0 = Op.getOperand(0);
1787     SDValue Op1 = Op.getOperand(1);
1788     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1789     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1790     Known = KnownBits::umax(Known0, Known1);
1791     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1792       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1793     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1794       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1795     break;
1796   }
1797   case ISD::BITREVERSE: {
1798     SDValue Src = Op.getOperand(0);
1799     APInt DemandedSrcBits = DemandedBits.reverseBits();
1800     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1801                              Depth + 1))
1802       return true;
1803     Known.One = Known2.One.reverseBits();
1804     Known.Zero = Known2.Zero.reverseBits();
1805     break;
1806   }
1807   case ISD::BSWAP: {
1808     SDValue Src = Op.getOperand(0);
1809     APInt DemandedSrcBits = DemandedBits.byteSwap();
1810     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1811                              Depth + 1))
1812       return true;
1813     Known.One = Known2.One.byteSwap();
1814     Known.Zero = Known2.Zero.byteSwap();
1815     break;
1816   }
1817   case ISD::CTPOP: {
1818     // If only 1 bit is demanded, replace with PARITY as long as we're before
1819     // op legalization.
1820     // FIXME: Limit to scalars for now.
1821     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
1822       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1823                                                Op.getOperand(0)));
1824 
1825     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1826     break;
1827   }
1828   case ISD::SIGN_EXTEND_INREG: {
1829     SDValue Op0 = Op.getOperand(0);
1830     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1831     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1832 
1833     // If we only care about the highest bit, don't bother shifting right.
1834     if (DemandedBits.isSignMask()) {
1835       unsigned MinSignedBits =
1836           TLO.DAG.ComputeMinSignedBits(Op0, DemandedElts, Depth + 1);
1837       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
1838       // However if the input is already sign extended we expect the sign
1839       // extension to be dropped altogether later and do not simplify.
1840       if (!AlreadySignExtended) {
1841         // Compute the correct shift amount type, which must be getShiftAmountTy
1842         // for scalar types after legalization.
1843         EVT ShiftAmtTy = VT;
1844         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1845           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1846 
1847         SDValue ShiftAmt =
1848             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1849         return TLO.CombineTo(Op,
1850                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1851       }
1852     }
1853 
1854     // If none of the extended bits are demanded, eliminate the sextinreg.
1855     if (DemandedBits.getActiveBits() <= ExVTBits)
1856       return TLO.CombineTo(Op, Op0);
1857 
1858     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1859 
1860     // Since the sign extended bits are demanded, we know that the sign
1861     // bit is demanded.
1862     InputDemandedBits.setBit(ExVTBits - 1);
1863 
1864     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1865       return true;
1866     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1867 
1868     // If the sign bit of the input is known set or clear, then we know the
1869     // top bits of the result.
1870 
1871     // If the input sign bit is known zero, convert this into a zero extension.
1872     if (Known.Zero[ExVTBits - 1])
1873       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1874 
1875     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1876     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1877       Known.One.setBitsFrom(ExVTBits);
1878       Known.Zero &= Mask;
1879     } else { // Input sign bit unknown
1880       Known.Zero &= Mask;
1881       Known.One &= Mask;
1882     }
1883     break;
1884   }
1885   case ISD::BUILD_PAIR: {
1886     EVT HalfVT = Op.getOperand(0).getValueType();
1887     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1888 
1889     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1890     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1891 
1892     KnownBits KnownLo, KnownHi;
1893 
1894     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1895       return true;
1896 
1897     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1898       return true;
1899 
1900     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1901                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1902 
1903     Known.One = KnownLo.One.zext(BitWidth) |
1904                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1905     break;
1906   }
1907   case ISD::ZERO_EXTEND:
1908   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1909     SDValue Src = Op.getOperand(0);
1910     EVT SrcVT = Src.getValueType();
1911     unsigned InBits = SrcVT.getScalarSizeInBits();
1912     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1913     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1914 
1915     // If none of the top bits are demanded, convert this into an any_extend.
1916     if (DemandedBits.getActiveBits() <= InBits) {
1917       // If we only need the non-extended bits of the bottom element
1918       // then we can just bitcast to the result.
1919       if (IsVecInReg && DemandedElts == 1 &&
1920           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1921           TLO.DAG.getDataLayout().isLittleEndian())
1922         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1923 
1924       unsigned Opc =
1925           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1926       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1927         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1928     }
1929 
1930     APInt InDemandedBits = DemandedBits.trunc(InBits);
1931     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1932     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1933                              Depth + 1))
1934       return true;
1935     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1936     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1937     Known = Known.zext(BitWidth);
1938 
1939     // Attempt to avoid multi-use ops if we don't need anything from them.
1940     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1941             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1942       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1943     break;
1944   }
1945   case ISD::SIGN_EXTEND:
1946   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1947     SDValue Src = Op.getOperand(0);
1948     EVT SrcVT = Src.getValueType();
1949     unsigned InBits = SrcVT.getScalarSizeInBits();
1950     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1951     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1952 
1953     // If none of the top bits are demanded, convert this into an any_extend.
1954     if (DemandedBits.getActiveBits() <= InBits) {
1955       // If we only need the non-extended bits of the bottom element
1956       // then we can just bitcast to the result.
1957       if (IsVecInReg && DemandedElts == 1 &&
1958           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1959           TLO.DAG.getDataLayout().isLittleEndian())
1960         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1961 
1962       unsigned Opc =
1963           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1964       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1965         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1966     }
1967 
1968     APInt InDemandedBits = DemandedBits.trunc(InBits);
1969     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1970 
1971     // Since some of the sign extended bits are demanded, we know that the sign
1972     // bit is demanded.
1973     InDemandedBits.setBit(InBits - 1);
1974 
1975     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1976                              Depth + 1))
1977       return true;
1978     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1979     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1980 
1981     // If the sign bit is known one, the top bits match.
1982     Known = Known.sext(BitWidth);
1983 
1984     // If the sign bit is known zero, convert this to a zero extend.
1985     if (Known.isNonNegative()) {
1986       unsigned Opc =
1987           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1988       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1989         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1990     }
1991 
1992     // Attempt to avoid multi-use ops if we don't need anything from them.
1993     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1994             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1995       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1996     break;
1997   }
1998   case ISD::ANY_EXTEND:
1999   case ISD::ANY_EXTEND_VECTOR_INREG: {
2000     SDValue Src = Op.getOperand(0);
2001     EVT SrcVT = Src.getValueType();
2002     unsigned InBits = SrcVT.getScalarSizeInBits();
2003     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2004     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2005 
2006     // If we only need the bottom element then we can just bitcast.
2007     // TODO: Handle ANY_EXTEND?
2008     if (IsVecInReg && DemandedElts == 1 &&
2009         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
2010         TLO.DAG.getDataLayout().isLittleEndian())
2011       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2012 
2013     APInt InDemandedBits = DemandedBits.trunc(InBits);
2014     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2015     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2016                              Depth + 1))
2017       return true;
2018     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2019     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2020     Known = Known.anyext(BitWidth);
2021 
2022     // Attempt to avoid multi-use ops if we don't need anything from them.
2023     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2024             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2025       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2026     break;
2027   }
2028   case ISD::TRUNCATE: {
2029     SDValue Src = Op.getOperand(0);
2030 
2031     // Simplify the input, using demanded bit information, and compute the known
2032     // zero/one bits live out.
2033     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2034     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2035     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2036                              Depth + 1))
2037       return true;
2038     Known = Known.trunc(BitWidth);
2039 
2040     // Attempt to avoid multi-use ops if we don't need anything from them.
2041     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2042             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2043       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2044 
2045     // If the input is only used by this truncate, see if we can shrink it based
2046     // on the known demanded bits.
2047     if (Src.getNode()->hasOneUse()) {
2048       switch (Src.getOpcode()) {
2049       default:
2050         break;
2051       case ISD::SRL:
2052         // Shrink SRL by a constant if none of the high bits shifted in are
2053         // demanded.
2054         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2055           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2056           // undesirable.
2057           break;
2058 
2059         const APInt *ShAmtC =
2060             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2061         if (!ShAmtC || ShAmtC->uge(BitWidth))
2062           break;
2063         uint64_t ShVal = ShAmtC->getZExtValue();
2064 
2065         APInt HighBits =
2066             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2067         HighBits.lshrInPlace(ShVal);
2068         HighBits = HighBits.trunc(BitWidth);
2069 
2070         if (!(HighBits & DemandedBits)) {
2071           // None of the shifted in bits are needed.  Add a truncate of the
2072           // shift input, then shift it.
2073           SDValue NewShAmt = TLO.DAG.getConstant(
2074               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2075           SDValue NewTrunc =
2076               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2077           return TLO.CombineTo(
2078               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2079         }
2080         break;
2081       }
2082     }
2083 
2084     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2085     break;
2086   }
2087   case ISD::AssertZext: {
2088     // AssertZext demands all of the high bits, plus any of the low bits
2089     // demanded by its users.
2090     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2091     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2092     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2093                              TLO, Depth + 1))
2094       return true;
2095     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2096 
2097     Known.Zero |= ~InMask;
2098     break;
2099   }
2100   case ISD::EXTRACT_VECTOR_ELT: {
2101     SDValue Src = Op.getOperand(0);
2102     SDValue Idx = Op.getOperand(1);
2103     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2104     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2105 
2106     if (SrcEltCnt.isScalable())
2107       return false;
2108 
2109     // Demand the bits from every vector element without a constant index.
2110     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2111     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2112     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2113       if (CIdx->getAPIntValue().ult(NumSrcElts))
2114         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2115 
2116     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2117     // anything about the extended bits.
2118     APInt DemandedSrcBits = DemandedBits;
2119     if (BitWidth > EltBitWidth)
2120       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2121 
2122     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2123                              Depth + 1))
2124       return true;
2125 
2126     // Attempt to avoid multi-use ops if we don't need anything from them.
2127     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2128       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2129               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2130         SDValue NewOp =
2131             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2132         return TLO.CombineTo(Op, NewOp);
2133       }
2134     }
2135 
2136     Known = Known2;
2137     if (BitWidth > EltBitWidth)
2138       Known = Known.anyext(BitWidth);
2139     break;
2140   }
2141   case ISD::BITCAST: {
2142     SDValue Src = Op.getOperand(0);
2143     EVT SrcVT = Src.getValueType();
2144     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2145 
2146     // If this is an FP->Int bitcast and if the sign bit is the only
2147     // thing demanded, turn this into a FGETSIGN.
2148     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2149         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2150         SrcVT.isFloatingPoint()) {
2151       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2152       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2153       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2154           SrcVT != MVT::f128) {
2155         // Cannot eliminate/lower SHL for f128 yet.
2156         EVT Ty = OpVTLegal ? VT : MVT::i32;
2157         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2158         // place.  We expect the SHL to be eliminated by other optimizations.
2159         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2160         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2161         if (!OpVTLegal && OpVTSizeInBits > 32)
2162           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2163         unsigned ShVal = Op.getValueSizeInBits() - 1;
2164         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2165         return TLO.CombineTo(Op,
2166                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2167       }
2168     }
2169 
2170     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2171     // Demand the elt/bit if any of the original elts/bits are demanded.
2172     // TODO - bigendian once we have test coverage.
2173     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2174         TLO.DAG.getDataLayout().isLittleEndian()) {
2175       unsigned Scale = BitWidth / NumSrcEltBits;
2176       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2177       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2178       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2179       for (unsigned i = 0; i != Scale; ++i) {
2180         unsigned Offset = i * NumSrcEltBits;
2181         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2182         if (!Sub.isZero()) {
2183           DemandedSrcBits |= Sub;
2184           for (unsigned j = 0; j != NumElts; ++j)
2185             if (DemandedElts[j])
2186               DemandedSrcElts.setBit((j * Scale) + i);
2187         }
2188       }
2189 
2190       APInt KnownSrcUndef, KnownSrcZero;
2191       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2192                                      KnownSrcZero, TLO, Depth + 1))
2193         return true;
2194 
2195       KnownBits KnownSrcBits;
2196       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2197                                KnownSrcBits, TLO, Depth + 1))
2198         return true;
2199     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2200                TLO.DAG.getDataLayout().isLittleEndian()) {
2201       unsigned Scale = NumSrcEltBits / BitWidth;
2202       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2203       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2204       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2205       for (unsigned i = 0; i != NumElts; ++i)
2206         if (DemandedElts[i]) {
2207           unsigned Offset = (i % Scale) * BitWidth;
2208           DemandedSrcBits.insertBits(DemandedBits, Offset);
2209           DemandedSrcElts.setBit(i / Scale);
2210         }
2211 
2212       if (SrcVT.isVector()) {
2213         APInt KnownSrcUndef, KnownSrcZero;
2214         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2215                                        KnownSrcZero, TLO, Depth + 1))
2216           return true;
2217       }
2218 
2219       KnownBits KnownSrcBits;
2220       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2221                                KnownSrcBits, TLO, Depth + 1))
2222         return true;
2223     }
2224 
2225     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2226     // recursive call where Known may be useful to the caller.
2227     if (Depth > 0) {
2228       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2229       return false;
2230     }
2231     break;
2232   }
2233   case ISD::ADD:
2234   case ISD::MUL:
2235   case ISD::SUB: {
2236     // Add, Sub, and Mul don't demand any bits in positions beyond that
2237     // of the highest bit demanded of them.
2238     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2239     SDNodeFlags Flags = Op.getNode()->getFlags();
2240     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2241     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2242     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2243                              Depth + 1) ||
2244         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2245                              Depth + 1) ||
2246         // See if the operation should be performed at a smaller bit width.
2247         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2248       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2249         // Disable the nsw and nuw flags. We can no longer guarantee that we
2250         // won't wrap after simplification.
2251         Flags.setNoSignedWrap(false);
2252         Flags.setNoUnsignedWrap(false);
2253         SDValue NewOp =
2254             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2255         return TLO.CombineTo(Op, NewOp);
2256       }
2257       return true;
2258     }
2259 
2260     // Attempt to avoid multi-use ops if we don't need anything from them.
2261     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2262       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2263           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2264       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2265           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2266       if (DemandedOp0 || DemandedOp1) {
2267         Flags.setNoSignedWrap(false);
2268         Flags.setNoUnsignedWrap(false);
2269         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2270         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2271         SDValue NewOp =
2272             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2273         return TLO.CombineTo(Op, NewOp);
2274       }
2275     }
2276 
2277     // If we have a constant operand, we may be able to turn it into -1 if we
2278     // do not demand the high bits. This can make the constant smaller to
2279     // encode, allow more general folding, or match specialized instruction
2280     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2281     // is probably not useful (and could be detrimental).
2282     ConstantSDNode *C = isConstOrConstSplat(Op1);
2283     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2284     if (C && !C->isAllOnes() && !C->isOne() &&
2285         (C->getAPIntValue() | HighMask).isAllOnes()) {
2286       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2287       // Disable the nsw and nuw flags. We can no longer guarantee that we
2288       // won't wrap after simplification.
2289       Flags.setNoSignedWrap(false);
2290       Flags.setNoUnsignedWrap(false);
2291       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2292       return TLO.CombineTo(Op, NewOp);
2293     }
2294 
2295     LLVM_FALLTHROUGH;
2296   }
2297   default:
2298     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2299       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2300                                             Known, TLO, Depth))
2301         return true;
2302       break;
2303     }
2304 
2305     // Just use computeKnownBits to compute output bits.
2306     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2307     break;
2308   }
2309 
2310   // If we know the value of all of the demanded bits, return this as a
2311   // constant.
2312   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2313     // Avoid folding to a constant if any OpaqueConstant is involved.
2314     const SDNode *N = Op.getNode();
2315     for (SDNode *Op :
2316          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2317       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2318         if (C->isOpaque())
2319           return false;
2320     }
2321     if (VT.isInteger())
2322       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2323     if (VT.isFloatingPoint())
2324       return TLO.CombineTo(
2325           Op,
2326           TLO.DAG.getConstantFP(
2327               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2328   }
2329 
2330   return false;
2331 }
2332 
2333 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2334                                                 const APInt &DemandedElts,
2335                                                 APInt &KnownUndef,
2336                                                 APInt &KnownZero,
2337                                                 DAGCombinerInfo &DCI) const {
2338   SelectionDAG &DAG = DCI.DAG;
2339   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2340                         !DCI.isBeforeLegalizeOps());
2341 
2342   bool Simplified =
2343       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2344   if (Simplified) {
2345     DCI.AddToWorklist(Op.getNode());
2346     DCI.CommitTargetLoweringOpt(TLO);
2347   }
2348 
2349   return Simplified;
2350 }
2351 
2352 /// Given a vector binary operation and known undefined elements for each input
2353 /// operand, compute whether each element of the output is undefined.
2354 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2355                                          const APInt &UndefOp0,
2356                                          const APInt &UndefOp1) {
2357   EVT VT = BO.getValueType();
2358   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2359          "Vector binop only");
2360 
2361   EVT EltVT = VT.getVectorElementType();
2362   unsigned NumElts = VT.getVectorNumElements();
2363   assert(UndefOp0.getBitWidth() == NumElts &&
2364          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2365 
2366   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2367                                    const APInt &UndefVals) {
2368     if (UndefVals[Index])
2369       return DAG.getUNDEF(EltVT);
2370 
2371     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2372       // Try hard to make sure that the getNode() call is not creating temporary
2373       // nodes. Ignore opaque integers because they do not constant fold.
2374       SDValue Elt = BV->getOperand(Index);
2375       auto *C = dyn_cast<ConstantSDNode>(Elt);
2376       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2377         return Elt;
2378     }
2379 
2380     return SDValue();
2381   };
2382 
2383   APInt KnownUndef = APInt::getZero(NumElts);
2384   for (unsigned i = 0; i != NumElts; ++i) {
2385     // If both inputs for this element are either constant or undef and match
2386     // the element type, compute the constant/undef result for this element of
2387     // the vector.
2388     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2389     // not handle FP constants. The code within getNode() should be refactored
2390     // to avoid the danger of creating a bogus temporary node here.
2391     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2392     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2393     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2394       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2395         KnownUndef.setBit(i);
2396   }
2397   return KnownUndef;
2398 }
2399 
2400 bool TargetLowering::SimplifyDemandedVectorElts(
2401     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2402     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2403     bool AssumeSingleUse) const {
2404   EVT VT = Op.getValueType();
2405   unsigned Opcode = Op.getOpcode();
2406   APInt DemandedElts = OriginalDemandedElts;
2407   unsigned NumElts = DemandedElts.getBitWidth();
2408   assert(VT.isVector() && "Expected vector op");
2409 
2410   KnownUndef = KnownZero = APInt::getZero(NumElts);
2411 
2412   // TODO: For now we assume we know nothing about scalable vectors.
2413   if (VT.isScalableVector())
2414     return false;
2415 
2416   assert(VT.getVectorNumElements() == NumElts &&
2417          "Mask size mismatches value type element count!");
2418 
2419   // Undef operand.
2420   if (Op.isUndef()) {
2421     KnownUndef.setAllBits();
2422     return false;
2423   }
2424 
2425   // If Op has other users, assume that all elements are needed.
2426   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2427     DemandedElts.setAllBits();
2428 
2429   // Not demanding any elements from Op.
2430   if (DemandedElts == 0) {
2431     KnownUndef.setAllBits();
2432     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2433   }
2434 
2435   // Limit search depth.
2436   if (Depth >= SelectionDAG::MaxRecursionDepth)
2437     return false;
2438 
2439   SDLoc DL(Op);
2440   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2441 
2442   // Helper for demanding the specified elements and all the bits of both binary
2443   // operands.
2444   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2445     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2446                                                            TLO.DAG, Depth + 1);
2447     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2448                                                            TLO.DAG, Depth + 1);
2449     if (NewOp0 || NewOp1) {
2450       SDValue NewOp = TLO.DAG.getNode(
2451           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2452       return TLO.CombineTo(Op, NewOp);
2453     }
2454     return false;
2455   };
2456 
2457   switch (Opcode) {
2458   case ISD::SCALAR_TO_VECTOR: {
2459     if (!DemandedElts[0]) {
2460       KnownUndef.setAllBits();
2461       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2462     }
2463     SDValue ScalarSrc = Op.getOperand(0);
2464     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2465       SDValue Src = ScalarSrc.getOperand(0);
2466       SDValue Idx = ScalarSrc.getOperand(1);
2467       EVT SrcVT = Src.getValueType();
2468 
2469       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2470 
2471       if (SrcEltCnt.isScalable())
2472         return false;
2473 
2474       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2475       if (isNullConstant(Idx)) {
2476         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2477         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2478         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2479         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2480                                        TLO, Depth + 1))
2481           return true;
2482       }
2483     }
2484     KnownUndef.setHighBits(NumElts - 1);
2485     break;
2486   }
2487   case ISD::BITCAST: {
2488     SDValue Src = Op.getOperand(0);
2489     EVT SrcVT = Src.getValueType();
2490 
2491     // We only handle vectors here.
2492     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2493     if (!SrcVT.isVector())
2494       break;
2495 
2496     // Fast handling of 'identity' bitcasts.
2497     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2498     if (NumSrcElts == NumElts)
2499       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2500                                         KnownZero, TLO, Depth + 1);
2501 
2502     APInt SrcDemandedElts, SrcZero, SrcUndef;
2503 
2504     // Bitcast from 'large element' src vector to 'small element' vector, we
2505     // must demand a source element if any DemandedElt maps to it.
2506     if ((NumElts % NumSrcElts) == 0) {
2507       unsigned Scale = NumElts / NumSrcElts;
2508       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2509       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2510                                      TLO, Depth + 1))
2511         return true;
2512 
2513       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2514       // of the large element.
2515       // TODO - bigendian once we have test coverage.
2516       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2517         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2518         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2519         for (unsigned i = 0; i != NumElts; ++i)
2520           if (DemandedElts[i]) {
2521             unsigned Ofs = (i % Scale) * EltSizeInBits;
2522             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2523           }
2524 
2525         KnownBits Known;
2526         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2527                                  TLO, Depth + 1))
2528           return true;
2529       }
2530 
2531       // If the src element is zero/undef then all the output elements will be -
2532       // only demanded elements are guaranteed to be correct.
2533       for (unsigned i = 0; i != NumSrcElts; ++i) {
2534         if (SrcDemandedElts[i]) {
2535           if (SrcZero[i])
2536             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2537           if (SrcUndef[i])
2538             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2539         }
2540       }
2541     }
2542 
2543     // Bitcast from 'small element' src vector to 'large element' vector, we
2544     // demand all smaller source elements covered by the larger demanded element
2545     // of this vector.
2546     if ((NumSrcElts % NumElts) == 0) {
2547       unsigned Scale = NumSrcElts / NumElts;
2548       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2549       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2550                                      TLO, Depth + 1))
2551         return true;
2552 
2553       // If all the src elements covering an output element are zero/undef, then
2554       // the output element will be as well, assuming it was demanded.
2555       for (unsigned i = 0; i != NumElts; ++i) {
2556         if (DemandedElts[i]) {
2557           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2558             KnownZero.setBit(i);
2559           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2560             KnownUndef.setBit(i);
2561         }
2562       }
2563     }
2564     break;
2565   }
2566   case ISD::BUILD_VECTOR: {
2567     // Check all elements and simplify any unused elements with UNDEF.
2568     if (!DemandedElts.isAllOnes()) {
2569       // Don't simplify BROADCASTS.
2570       if (llvm::any_of(Op->op_values(),
2571                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2572         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2573         bool Updated = false;
2574         for (unsigned i = 0; i != NumElts; ++i) {
2575           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2576             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2577             KnownUndef.setBit(i);
2578             Updated = true;
2579           }
2580         }
2581         if (Updated)
2582           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2583       }
2584     }
2585     for (unsigned i = 0; i != NumElts; ++i) {
2586       SDValue SrcOp = Op.getOperand(i);
2587       if (SrcOp.isUndef()) {
2588         KnownUndef.setBit(i);
2589       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2590                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2591         KnownZero.setBit(i);
2592       }
2593     }
2594     break;
2595   }
2596   case ISD::CONCAT_VECTORS: {
2597     EVT SubVT = Op.getOperand(0).getValueType();
2598     unsigned NumSubVecs = Op.getNumOperands();
2599     unsigned NumSubElts = SubVT.getVectorNumElements();
2600     for (unsigned i = 0; i != NumSubVecs; ++i) {
2601       SDValue SubOp = Op.getOperand(i);
2602       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2603       APInt SubUndef, SubZero;
2604       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2605                                      Depth + 1))
2606         return true;
2607       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2608       KnownZero.insertBits(SubZero, i * NumSubElts);
2609     }
2610     break;
2611   }
2612   case ISD::INSERT_SUBVECTOR: {
2613     // Demand any elements from the subvector and the remainder from the src its
2614     // inserted into.
2615     SDValue Src = Op.getOperand(0);
2616     SDValue Sub = Op.getOperand(1);
2617     uint64_t Idx = Op.getConstantOperandVal(2);
2618     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2619     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2620     APInt DemandedSrcElts = DemandedElts;
2621     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2622 
2623     APInt SubUndef, SubZero;
2624     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2625                                    Depth + 1))
2626       return true;
2627 
2628     // If none of the src operand elements are demanded, replace it with undef.
2629     if (!DemandedSrcElts && !Src.isUndef())
2630       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2631                                                TLO.DAG.getUNDEF(VT), Sub,
2632                                                Op.getOperand(2)));
2633 
2634     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2635                                    TLO, Depth + 1))
2636       return true;
2637     KnownUndef.insertBits(SubUndef, Idx);
2638     KnownZero.insertBits(SubZero, Idx);
2639 
2640     // Attempt to avoid multi-use ops if we don't need anything from them.
2641     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2642       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2643           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2644       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2645           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2646       if (NewSrc || NewSub) {
2647         NewSrc = NewSrc ? NewSrc : Src;
2648         NewSub = NewSub ? NewSub : Sub;
2649         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2650                                         NewSub, Op.getOperand(2));
2651         return TLO.CombineTo(Op, NewOp);
2652       }
2653     }
2654     break;
2655   }
2656   case ISD::EXTRACT_SUBVECTOR: {
2657     // Offset the demanded elts by the subvector index.
2658     SDValue Src = Op.getOperand(0);
2659     if (Src.getValueType().isScalableVector())
2660       break;
2661     uint64_t Idx = Op.getConstantOperandVal(1);
2662     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2663     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2664 
2665     APInt SrcUndef, SrcZero;
2666     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2667                                    Depth + 1))
2668       return true;
2669     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2670     KnownZero = SrcZero.extractBits(NumElts, Idx);
2671 
2672     // Attempt to avoid multi-use ops if we don't need anything from them.
2673     if (!DemandedElts.isAllOnes()) {
2674       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2675           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2676       if (NewSrc) {
2677         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2678                                         Op.getOperand(1));
2679         return TLO.CombineTo(Op, NewOp);
2680       }
2681     }
2682     break;
2683   }
2684   case ISD::INSERT_VECTOR_ELT: {
2685     SDValue Vec = Op.getOperand(0);
2686     SDValue Scl = Op.getOperand(1);
2687     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2688 
2689     // For a legal, constant insertion index, if we don't need this insertion
2690     // then strip it, else remove it from the demanded elts.
2691     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2692       unsigned Idx = CIdx->getZExtValue();
2693       if (!DemandedElts[Idx])
2694         return TLO.CombineTo(Op, Vec);
2695 
2696       APInt DemandedVecElts(DemandedElts);
2697       DemandedVecElts.clearBit(Idx);
2698       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2699                                      KnownZero, TLO, Depth + 1))
2700         return true;
2701 
2702       KnownUndef.setBitVal(Idx, Scl.isUndef());
2703 
2704       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2705       break;
2706     }
2707 
2708     APInt VecUndef, VecZero;
2709     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2710                                    Depth + 1))
2711       return true;
2712     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2713     break;
2714   }
2715   case ISD::VSELECT: {
2716     // Try to transform the select condition based on the current demanded
2717     // elements.
2718     // TODO: If a condition element is undef, we can choose from one arm of the
2719     //       select (and if one arm is undef, then we can propagate that to the
2720     //       result).
2721     // TODO - add support for constant vselect masks (see IR version of this).
2722     APInt UnusedUndef, UnusedZero;
2723     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2724                                    UnusedZero, TLO, Depth + 1))
2725       return true;
2726 
2727     // See if we can simplify either vselect operand.
2728     APInt DemandedLHS(DemandedElts);
2729     APInt DemandedRHS(DemandedElts);
2730     APInt UndefLHS, ZeroLHS;
2731     APInt UndefRHS, ZeroRHS;
2732     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2733                                    ZeroLHS, TLO, Depth + 1))
2734       return true;
2735     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2736                                    ZeroRHS, TLO, Depth + 1))
2737       return true;
2738 
2739     KnownUndef = UndefLHS & UndefRHS;
2740     KnownZero = ZeroLHS & ZeroRHS;
2741     break;
2742   }
2743   case ISD::VECTOR_SHUFFLE: {
2744     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2745 
2746     // Collect demanded elements from shuffle operands..
2747     APInt DemandedLHS(NumElts, 0);
2748     APInt DemandedRHS(NumElts, 0);
2749     for (unsigned i = 0; i != NumElts; ++i) {
2750       int M = ShuffleMask[i];
2751       if (M < 0 || !DemandedElts[i])
2752         continue;
2753       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2754       if (M < (int)NumElts)
2755         DemandedLHS.setBit(M);
2756       else
2757         DemandedRHS.setBit(M - NumElts);
2758     }
2759 
2760     // See if we can simplify either shuffle operand.
2761     APInt UndefLHS, ZeroLHS;
2762     APInt UndefRHS, ZeroRHS;
2763     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2764                                    ZeroLHS, TLO, Depth + 1))
2765       return true;
2766     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2767                                    ZeroRHS, TLO, Depth + 1))
2768       return true;
2769 
2770     // Simplify mask using undef elements from LHS/RHS.
2771     bool Updated = false;
2772     bool IdentityLHS = true, IdentityRHS = true;
2773     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2774     for (unsigned i = 0; i != NumElts; ++i) {
2775       int &M = NewMask[i];
2776       if (M < 0)
2777         continue;
2778       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2779           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2780         Updated = true;
2781         M = -1;
2782       }
2783       IdentityLHS &= (M < 0) || (M == (int)i);
2784       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2785     }
2786 
2787     // Update legal shuffle masks based on demanded elements if it won't reduce
2788     // to Identity which can cause premature removal of the shuffle mask.
2789     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2790       SDValue LegalShuffle =
2791           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2792                                   NewMask, TLO.DAG);
2793       if (LegalShuffle)
2794         return TLO.CombineTo(Op, LegalShuffle);
2795     }
2796 
2797     // Propagate undef/zero elements from LHS/RHS.
2798     for (unsigned i = 0; i != NumElts; ++i) {
2799       int M = ShuffleMask[i];
2800       if (M < 0) {
2801         KnownUndef.setBit(i);
2802       } else if (M < (int)NumElts) {
2803         if (UndefLHS[M])
2804           KnownUndef.setBit(i);
2805         if (ZeroLHS[M])
2806           KnownZero.setBit(i);
2807       } else {
2808         if (UndefRHS[M - NumElts])
2809           KnownUndef.setBit(i);
2810         if (ZeroRHS[M - NumElts])
2811           KnownZero.setBit(i);
2812       }
2813     }
2814     break;
2815   }
2816   case ISD::ANY_EXTEND_VECTOR_INREG:
2817   case ISD::SIGN_EXTEND_VECTOR_INREG:
2818   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2819     APInt SrcUndef, SrcZero;
2820     SDValue Src = Op.getOperand(0);
2821     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2822     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2823     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2824                                    Depth + 1))
2825       return true;
2826     KnownZero = SrcZero.zextOrTrunc(NumElts);
2827     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2828 
2829     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2830         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2831         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2832       // aext - if we just need the bottom element then we can bitcast.
2833       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2834     }
2835 
2836     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2837       // zext(undef) upper bits are guaranteed to be zero.
2838       if (DemandedElts.isSubsetOf(KnownUndef))
2839         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2840       KnownUndef.clearAllBits();
2841 
2842       // zext - if we just need the bottom element then we can mask:
2843       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
2844       if (DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian() &&
2845           Src.getOpcode() == ISD::AND && Op->isOnlyUserOf(Src.getNode()) &&
2846           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
2847         SDLoc DL(Op);
2848         EVT SrcVT = Src.getValueType();
2849         EVT SrcSVT = SrcVT.getScalarType();
2850         SmallVector<SDValue> MaskElts;
2851         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
2852         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
2853         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
2854         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
2855                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
2856           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
2857           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
2858         }
2859       }
2860     }
2861     break;
2862   }
2863 
2864   // TODO: There are more binop opcodes that could be handled here - MIN,
2865   // MAX, saturated math, etc.
2866   case ISD::OR:
2867   case ISD::XOR:
2868   case ISD::ADD:
2869   case ISD::SUB:
2870   case ISD::FADD:
2871   case ISD::FSUB:
2872   case ISD::FMUL:
2873   case ISD::FDIV:
2874   case ISD::FREM: {
2875     SDValue Op0 = Op.getOperand(0);
2876     SDValue Op1 = Op.getOperand(1);
2877 
2878     APInt UndefRHS, ZeroRHS;
2879     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2880                                    Depth + 1))
2881       return true;
2882     APInt UndefLHS, ZeroLHS;
2883     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2884                                    Depth + 1))
2885       return true;
2886 
2887     KnownZero = ZeroLHS & ZeroRHS;
2888     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2889 
2890     // Attempt to avoid multi-use ops if we don't need anything from them.
2891     // TODO - use KnownUndef to relax the demandedelts?
2892     if (!DemandedElts.isAllOnes())
2893       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2894         return true;
2895     break;
2896   }
2897   case ISD::SHL:
2898   case ISD::SRL:
2899   case ISD::SRA:
2900   case ISD::ROTL:
2901   case ISD::ROTR: {
2902     SDValue Op0 = Op.getOperand(0);
2903     SDValue Op1 = Op.getOperand(1);
2904 
2905     APInt UndefRHS, ZeroRHS;
2906     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2907                                    Depth + 1))
2908       return true;
2909     APInt UndefLHS, ZeroLHS;
2910     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2911                                    Depth + 1))
2912       return true;
2913 
2914     KnownZero = ZeroLHS;
2915     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2916 
2917     // Attempt to avoid multi-use ops if we don't need anything from them.
2918     // TODO - use KnownUndef to relax the demandedelts?
2919     if (!DemandedElts.isAllOnes())
2920       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2921         return true;
2922     break;
2923   }
2924   case ISD::MUL:
2925   case ISD::AND: {
2926     SDValue Op0 = Op.getOperand(0);
2927     SDValue Op1 = Op.getOperand(1);
2928 
2929     APInt SrcUndef, SrcZero;
2930     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2931                                    Depth + 1))
2932       return true;
2933     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2934                                    TLO, Depth + 1))
2935       return true;
2936 
2937     // If either side has a zero element, then the result element is zero, even
2938     // if the other is an UNDEF.
2939     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2940     // and then handle 'and' nodes with the rest of the binop opcodes.
2941     KnownZero |= SrcZero;
2942     KnownUndef &= SrcUndef;
2943     KnownUndef &= ~KnownZero;
2944 
2945     // Attempt to avoid multi-use ops if we don't need anything from them.
2946     // TODO - use KnownUndef to relax the demandedelts?
2947     if (!DemandedElts.isAllOnes())
2948       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2949         return true;
2950     break;
2951   }
2952   case ISD::TRUNCATE:
2953   case ISD::SIGN_EXTEND:
2954   case ISD::ZERO_EXTEND:
2955     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2956                                    KnownZero, TLO, Depth + 1))
2957       return true;
2958 
2959     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2960       // zext(undef) upper bits are guaranteed to be zero.
2961       if (DemandedElts.isSubsetOf(KnownUndef))
2962         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2963       KnownUndef.clearAllBits();
2964     }
2965     break;
2966   default: {
2967     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2968       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2969                                                   KnownZero, TLO, Depth))
2970         return true;
2971     } else {
2972       KnownBits Known;
2973       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
2974       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2975                                TLO, Depth, AssumeSingleUse))
2976         return true;
2977     }
2978     break;
2979   }
2980   }
2981   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2982 
2983   // Constant fold all undef cases.
2984   // TODO: Handle zero cases as well.
2985   if (DemandedElts.isSubsetOf(KnownUndef))
2986     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2987 
2988   return false;
2989 }
2990 
2991 /// Determine which of the bits specified in Mask are known to be either zero or
2992 /// one and return them in the Known.
2993 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2994                                                    KnownBits &Known,
2995                                                    const APInt &DemandedElts,
2996                                                    const SelectionDAG &DAG,
2997                                                    unsigned Depth) const {
2998   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2999           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3000           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3001           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3002          "Should use MaskedValueIsZero if you don't know whether Op"
3003          " is a target node!");
3004   Known.resetAll();
3005 }
3006 
3007 void TargetLowering::computeKnownBitsForTargetInstr(
3008     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3009     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3010     unsigned Depth) const {
3011   Known.resetAll();
3012 }
3013 
3014 void TargetLowering::computeKnownBitsForFrameIndex(
3015   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3016   // The low bits are known zero if the pointer is aligned.
3017   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3018 }
3019 
3020 Align TargetLowering::computeKnownAlignForTargetInstr(
3021   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3022   unsigned Depth) const {
3023   return Align(1);
3024 }
3025 
3026 /// This method can be implemented by targets that want to expose additional
3027 /// information about sign bits to the DAG Combiner.
3028 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3029                                                          const APInt &,
3030                                                          const SelectionDAG &,
3031                                                          unsigned Depth) const {
3032   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3033           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3034           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3035           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3036          "Should use ComputeNumSignBits if you don't know whether Op"
3037          " is a target node!");
3038   return 1;
3039 }
3040 
3041 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3042   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3043   const MachineRegisterInfo &MRI, unsigned Depth) const {
3044   return 1;
3045 }
3046 
3047 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3048     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3049     TargetLoweringOpt &TLO, unsigned Depth) const {
3050   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3051           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3052           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3053           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3054          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3055          " is a target node!");
3056   return false;
3057 }
3058 
3059 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3060     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3061     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3062   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3063           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3064           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3065           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3066          "Should use SimplifyDemandedBits if you don't know whether Op"
3067          " is a target node!");
3068   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3069   return false;
3070 }
3071 
3072 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3073     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3074     SelectionDAG &DAG, unsigned Depth) const {
3075   assert(
3076       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3077        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3078        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3079        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3080       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3081       " is a target node!");
3082   return SDValue();
3083 }
3084 
3085 SDValue
3086 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3087                                         SDValue N1, MutableArrayRef<int> Mask,
3088                                         SelectionDAG &DAG) const {
3089   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3090   if (!LegalMask) {
3091     std::swap(N0, N1);
3092     ShuffleVectorSDNode::commuteMask(Mask);
3093     LegalMask = isShuffleMaskLegal(Mask, VT);
3094   }
3095 
3096   if (!LegalMask)
3097     return SDValue();
3098 
3099   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3100 }
3101 
3102 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3103   return nullptr;
3104 }
3105 
3106 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3107     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3108     bool PoisonOnly, unsigned Depth) const {
3109   assert(
3110       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3111        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3112        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3113        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3114       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3115       " is a target node!");
3116   return false;
3117 }
3118 
3119 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3120                                                   const SelectionDAG &DAG,
3121                                                   bool SNaN,
3122                                                   unsigned Depth) const {
3123   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3124           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3125           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3126           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3127          "Should use isKnownNeverNaN if you don't know whether Op"
3128          " is a target node!");
3129   return false;
3130 }
3131 
3132 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3133 // work with truncating build vectors and vectors with elements of less than
3134 // 8 bits.
3135 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3136   if (!N)
3137     return false;
3138 
3139   APInt CVal;
3140   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3141     CVal = CN->getAPIntValue();
3142   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3143     auto *CN = BV->getConstantSplatNode();
3144     if (!CN)
3145       return false;
3146 
3147     // If this is a truncating build vector, truncate the splat value.
3148     // Otherwise, we may fail to match the expected values below.
3149     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3150     CVal = CN->getAPIntValue();
3151     if (BVEltWidth < CVal.getBitWidth())
3152       CVal = CVal.trunc(BVEltWidth);
3153   } else {
3154     return false;
3155   }
3156 
3157   switch (getBooleanContents(N->getValueType(0))) {
3158   case UndefinedBooleanContent:
3159     return CVal[0];
3160   case ZeroOrOneBooleanContent:
3161     return CVal.isOne();
3162   case ZeroOrNegativeOneBooleanContent:
3163     return CVal.isAllOnes();
3164   }
3165 
3166   llvm_unreachable("Invalid boolean contents");
3167 }
3168 
3169 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3170   if (!N)
3171     return false;
3172 
3173   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3174   if (!CN) {
3175     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3176     if (!BV)
3177       return false;
3178 
3179     // Only interested in constant splats, we don't care about undef
3180     // elements in identifying boolean constants and getConstantSplatNode
3181     // returns NULL if all ops are undef;
3182     CN = BV->getConstantSplatNode();
3183     if (!CN)
3184       return false;
3185   }
3186 
3187   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3188     return !CN->getAPIntValue()[0];
3189 
3190   return CN->isZero();
3191 }
3192 
3193 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3194                                        bool SExt) const {
3195   if (VT == MVT::i1)
3196     return N->isOne();
3197 
3198   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3199   switch (Cnt) {
3200   case TargetLowering::ZeroOrOneBooleanContent:
3201     // An extended value of 1 is always true, unless its original type is i1,
3202     // in which case it will be sign extended to -1.
3203     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3204   case TargetLowering::UndefinedBooleanContent:
3205   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3206     return N->isAllOnes() && SExt;
3207   }
3208   llvm_unreachable("Unexpected enumeration.");
3209 }
3210 
3211 /// This helper function of SimplifySetCC tries to optimize the comparison when
3212 /// either operand of the SetCC node is a bitwise-and instruction.
3213 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3214                                          ISD::CondCode Cond, const SDLoc &DL,
3215                                          DAGCombinerInfo &DCI) const {
3216   // Match these patterns in any of their permutations:
3217   // (X & Y) == Y
3218   // (X & Y) != Y
3219   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3220     std::swap(N0, N1);
3221 
3222   EVT OpVT = N0.getValueType();
3223   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3224       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3225     return SDValue();
3226 
3227   SDValue X, Y;
3228   if (N0.getOperand(0) == N1) {
3229     X = N0.getOperand(1);
3230     Y = N0.getOperand(0);
3231   } else if (N0.getOperand(1) == N1) {
3232     X = N0.getOperand(0);
3233     Y = N0.getOperand(1);
3234   } else {
3235     return SDValue();
3236   }
3237 
3238   SelectionDAG &DAG = DCI.DAG;
3239   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3240   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3241     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3242     // Note that where Y is variable and is known to have at most one bit set
3243     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3244     // equivalent when Y == 0.
3245     assert(OpVT.isInteger());
3246     Cond = ISD::getSetCCInverse(Cond, OpVT);
3247     if (DCI.isBeforeLegalizeOps() ||
3248         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3249       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3250   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3251     // If the target supports an 'and-not' or 'and-complement' logic operation,
3252     // try to use that to make a comparison operation more efficient.
3253     // But don't do this transform if the mask is a single bit because there are
3254     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3255     // 'rlwinm' on PPC).
3256 
3257     // Bail out if the compare operand that we want to turn into a zero is
3258     // already a zero (otherwise, infinite loop).
3259     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3260     if (YConst && YConst->isZero())
3261       return SDValue();
3262 
3263     // Transform this into: ~X & Y == 0.
3264     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3265     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3266     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3267   }
3268 
3269   return SDValue();
3270 }
3271 
3272 /// There are multiple IR patterns that could be checking whether certain
3273 /// truncation of a signed number would be lossy or not. The pattern which is
3274 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3275 /// We are looking for the following pattern: (KeptBits is a constant)
3276 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3277 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3278 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3279 /// We will unfold it into the natural trunc+sext pattern:
3280 ///   ((%x << C) a>> C) dstcond %x
3281 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3282 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3283     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3284     const SDLoc &DL) const {
3285   // We must be comparing with a constant.
3286   ConstantSDNode *C1;
3287   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3288     return SDValue();
3289 
3290   // N0 should be:  add %x, (1 << (KeptBits-1))
3291   if (N0->getOpcode() != ISD::ADD)
3292     return SDValue();
3293 
3294   // And we must be 'add'ing a constant.
3295   ConstantSDNode *C01;
3296   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3297     return SDValue();
3298 
3299   SDValue X = N0->getOperand(0);
3300   EVT XVT = X.getValueType();
3301 
3302   // Validate constants ...
3303 
3304   APInt I1 = C1->getAPIntValue();
3305 
3306   ISD::CondCode NewCond;
3307   if (Cond == ISD::CondCode::SETULT) {
3308     NewCond = ISD::CondCode::SETEQ;
3309   } else if (Cond == ISD::CondCode::SETULE) {
3310     NewCond = ISD::CondCode::SETEQ;
3311     // But need to 'canonicalize' the constant.
3312     I1 += 1;
3313   } else if (Cond == ISD::CondCode::SETUGT) {
3314     NewCond = ISD::CondCode::SETNE;
3315     // But need to 'canonicalize' the constant.
3316     I1 += 1;
3317   } else if (Cond == ISD::CondCode::SETUGE) {
3318     NewCond = ISD::CondCode::SETNE;
3319   } else
3320     return SDValue();
3321 
3322   APInt I01 = C01->getAPIntValue();
3323 
3324   auto checkConstants = [&I1, &I01]() -> bool {
3325     // Both of them must be power-of-two, and the constant from setcc is bigger.
3326     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3327   };
3328 
3329   if (checkConstants()) {
3330     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3331   } else {
3332     // What if we invert constants? (and the target predicate)
3333     I1.negate();
3334     I01.negate();
3335     assert(XVT.isInteger());
3336     NewCond = getSetCCInverse(NewCond, XVT);
3337     if (!checkConstants())
3338       return SDValue();
3339     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3340   }
3341 
3342   // They are power-of-two, so which bit is set?
3343   const unsigned KeptBits = I1.logBase2();
3344   const unsigned KeptBitsMinusOne = I01.logBase2();
3345 
3346   // Magic!
3347   if (KeptBits != (KeptBitsMinusOne + 1))
3348     return SDValue();
3349   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3350 
3351   // We don't want to do this in every single case.
3352   SelectionDAG &DAG = DCI.DAG;
3353   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3354           XVT, KeptBits))
3355     return SDValue();
3356 
3357   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3358   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3359 
3360   // Unfold into:  ((%x << C) a>> C) cond %x
3361   // Where 'cond' will be either 'eq' or 'ne'.
3362   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3363   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3364   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3365   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3366 
3367   return T2;
3368 }
3369 
3370 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3371 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3372     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3373     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3374   assert(isConstOrConstSplat(N1C) &&
3375          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3376          "Should be a comparison with 0.");
3377   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3378          "Valid only for [in]equality comparisons.");
3379 
3380   unsigned NewShiftOpcode;
3381   SDValue X, C, Y;
3382 
3383   SelectionDAG &DAG = DCI.DAG;
3384   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3385 
3386   // Look for '(C l>>/<< Y)'.
3387   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3388     // The shift should be one-use.
3389     if (!V.hasOneUse())
3390       return false;
3391     unsigned OldShiftOpcode = V.getOpcode();
3392     switch (OldShiftOpcode) {
3393     case ISD::SHL:
3394       NewShiftOpcode = ISD::SRL;
3395       break;
3396     case ISD::SRL:
3397       NewShiftOpcode = ISD::SHL;
3398       break;
3399     default:
3400       return false; // must be a logical shift.
3401     }
3402     // We should be shifting a constant.
3403     // FIXME: best to use isConstantOrConstantVector().
3404     C = V.getOperand(0);
3405     ConstantSDNode *CC =
3406         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3407     if (!CC)
3408       return false;
3409     Y = V.getOperand(1);
3410 
3411     ConstantSDNode *XC =
3412         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3413     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3414         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3415   };
3416 
3417   // LHS of comparison should be an one-use 'and'.
3418   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3419     return SDValue();
3420 
3421   X = N0.getOperand(0);
3422   SDValue Mask = N0.getOperand(1);
3423 
3424   // 'and' is commutative!
3425   if (!Match(Mask)) {
3426     std::swap(X, Mask);
3427     if (!Match(Mask))
3428       return SDValue();
3429   }
3430 
3431   EVT VT = X.getValueType();
3432 
3433   // Produce:
3434   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3435   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3436   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3437   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3438   return T2;
3439 }
3440 
3441 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3442 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3443 /// handle the commuted versions of these patterns.
3444 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3445                                            ISD::CondCode Cond, const SDLoc &DL,
3446                                            DAGCombinerInfo &DCI) const {
3447   unsigned BOpcode = N0.getOpcode();
3448   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3449          "Unexpected binop");
3450   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3451 
3452   // (X + Y) == X --> Y == 0
3453   // (X - Y) == X --> Y == 0
3454   // (X ^ Y) == X --> Y == 0
3455   SelectionDAG &DAG = DCI.DAG;
3456   EVT OpVT = N0.getValueType();
3457   SDValue X = N0.getOperand(0);
3458   SDValue Y = N0.getOperand(1);
3459   if (X == N1)
3460     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3461 
3462   if (Y != N1)
3463     return SDValue();
3464 
3465   // (X + Y) == Y --> X == 0
3466   // (X ^ Y) == Y --> X == 0
3467   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3468     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3469 
3470   // The shift would not be valid if the operands are boolean (i1).
3471   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3472     return SDValue();
3473 
3474   // (X - Y) == Y --> X == Y << 1
3475   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3476                                  !DCI.isBeforeLegalize());
3477   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3478   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3479   if (!DCI.isCalledByLegalizer())
3480     DCI.AddToWorklist(YShl1.getNode());
3481   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3482 }
3483 
3484 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3485                                       SDValue N0, const APInt &C1,
3486                                       ISD::CondCode Cond, const SDLoc &dl,
3487                                       SelectionDAG &DAG) {
3488   // Look through truncs that don't change the value of a ctpop.
3489   // FIXME: Add vector support? Need to be careful with setcc result type below.
3490   SDValue CTPOP = N0;
3491   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3492       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3493     CTPOP = N0.getOperand(0);
3494 
3495   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3496     return SDValue();
3497 
3498   EVT CTVT = CTPOP.getValueType();
3499   SDValue CTOp = CTPOP.getOperand(0);
3500 
3501   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3502   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3503   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3504     return SDValue();
3505 
3506   // (ctpop x) u< 2 -> (x & x-1) == 0
3507   // (ctpop x) u> 1 -> (x & x-1) != 0
3508   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3509     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3510     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3511       return SDValue();
3512     if (C1 == 0 && (Cond == ISD::SETULT))
3513       return SDValue(); // This is handled elsewhere.
3514 
3515     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3516 
3517     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3518     SDValue Result = CTOp;
3519     for (unsigned i = 0; i < Passes; i++) {
3520       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3521       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3522     }
3523     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3524     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3525   }
3526 
3527   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3528   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3529     // For scalars, keep CTPOP if it is legal or custom.
3530     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3531       return SDValue();
3532     // This is based on X86's custom lowering for CTPOP which produces more
3533     // instructions than the expansion here.
3534 
3535     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3536     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3537     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3538     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3539     assert(CTVT.isInteger());
3540     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3541     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3542     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3543     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3544     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3545     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3546     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3547   }
3548 
3549   return SDValue();
3550 }
3551 
3552 /// Try to simplify a setcc built with the specified operands and cc. If it is
3553 /// unable to simplify it, return a null SDValue.
3554 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3555                                       ISD::CondCode Cond, bool foldBooleans,
3556                                       DAGCombinerInfo &DCI,
3557                                       const SDLoc &dl) const {
3558   SelectionDAG &DAG = DCI.DAG;
3559   const DataLayout &Layout = DAG.getDataLayout();
3560   EVT OpVT = N0.getValueType();
3561 
3562   // Constant fold or commute setcc.
3563   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3564     return Fold;
3565 
3566   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3567   // TODO: Handle non-splat vector constants. All undef causes trouble.
3568   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3569   // infinite loop here when we encounter one.
3570   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3571   if (isConstOrConstSplat(N0) &&
3572       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3573       (DCI.isBeforeLegalizeOps() ||
3574        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3575     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3576 
3577   // If we have a subtract with the same 2 non-constant operands as this setcc
3578   // -- but in reverse order -- then try to commute the operands of this setcc
3579   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3580   // instruction on some targets.
3581   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3582       (DCI.isBeforeLegalizeOps() ||
3583        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3584       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3585       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3586     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3587 
3588   if (auto *N1C = isConstOrConstSplat(N1)) {
3589     const APInt &C1 = N1C->getAPIntValue();
3590 
3591     // Optimize some CTPOP cases.
3592     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3593       return V;
3594 
3595     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3596     // equality comparison, then we're just comparing whether X itself is
3597     // zero.
3598     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
3599         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3600         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3601       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3602         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3603             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3604           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3605             // (srl (ctlz x), 5) == 0  -> X != 0
3606             // (srl (ctlz x), 5) != 1  -> X != 0
3607             Cond = ISD::SETNE;
3608           } else {
3609             // (srl (ctlz x), 5) != 0  -> X == 0
3610             // (srl (ctlz x), 5) == 1  -> X == 0
3611             Cond = ISD::SETEQ;
3612           }
3613           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3614           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3615                               Cond);
3616         }
3617       }
3618     }
3619   }
3620 
3621   // FIXME: Support vectors.
3622   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3623     const APInt &C1 = N1C->getAPIntValue();
3624 
3625     // (zext x) == C --> x == (trunc C)
3626     // (sext x) == C --> x == (trunc C)
3627     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3628         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3629       unsigned MinBits = N0.getValueSizeInBits();
3630       SDValue PreExt;
3631       bool Signed = false;
3632       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3633         // ZExt
3634         MinBits = N0->getOperand(0).getValueSizeInBits();
3635         PreExt = N0->getOperand(0);
3636       } else if (N0->getOpcode() == ISD::AND) {
3637         // DAGCombine turns costly ZExts into ANDs
3638         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3639           if ((C->getAPIntValue()+1).isPowerOf2()) {
3640             MinBits = C->getAPIntValue().countTrailingOnes();
3641             PreExt = N0->getOperand(0);
3642           }
3643       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3644         // SExt
3645         MinBits = N0->getOperand(0).getValueSizeInBits();
3646         PreExt = N0->getOperand(0);
3647         Signed = true;
3648       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3649         // ZEXTLOAD / SEXTLOAD
3650         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3651           MinBits = LN0->getMemoryVT().getSizeInBits();
3652           PreExt = N0;
3653         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3654           Signed = true;
3655           MinBits = LN0->getMemoryVT().getSizeInBits();
3656           PreExt = N0;
3657         }
3658       }
3659 
3660       // Figure out how many bits we need to preserve this constant.
3661       unsigned ReqdBits = Signed ?
3662         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3663         C1.getActiveBits();
3664 
3665       // Make sure we're not losing bits from the constant.
3666       if (MinBits > 0 &&
3667           MinBits < C1.getBitWidth() &&
3668           MinBits >= ReqdBits) {
3669         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3670         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3671           // Will get folded away.
3672           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3673           if (MinBits == 1 && C1 == 1)
3674             // Invert the condition.
3675             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3676                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3677           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3678           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3679         }
3680 
3681         // If truncating the setcc operands is not desirable, we can still
3682         // simplify the expression in some cases:
3683         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3684         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3685         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3686         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3687         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3688         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3689         SDValue TopSetCC = N0->getOperand(0);
3690         unsigned N0Opc = N0->getOpcode();
3691         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3692         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3693             TopSetCC.getOpcode() == ISD::SETCC &&
3694             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3695             (isConstFalseVal(N1C) ||
3696              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3697 
3698           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
3699                          (!N1C->isZero() && Cond == ISD::SETNE);
3700 
3701           if (!Inverse)
3702             return TopSetCC;
3703 
3704           ISD::CondCode InvCond = ISD::getSetCCInverse(
3705               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3706               TopSetCC.getOperand(0).getValueType());
3707           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3708                                       TopSetCC.getOperand(1),
3709                                       InvCond);
3710         }
3711       }
3712     }
3713 
3714     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3715     // equality or unsigned, and all 1 bits of the const are in the same
3716     // partial word, see if we can shorten the load.
3717     if (DCI.isBeforeLegalize() &&
3718         !ISD::isSignedIntSetCC(Cond) &&
3719         N0.getOpcode() == ISD::AND && C1 == 0 &&
3720         N0.getNode()->hasOneUse() &&
3721         isa<LoadSDNode>(N0.getOperand(0)) &&
3722         N0.getOperand(0).getNode()->hasOneUse() &&
3723         isa<ConstantSDNode>(N0.getOperand(1))) {
3724       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3725       APInt bestMask;
3726       unsigned bestWidth = 0, bestOffset = 0;
3727       if (Lod->isSimple() && Lod->isUnindexed()) {
3728         unsigned origWidth = N0.getValueSizeInBits();
3729         unsigned maskWidth = origWidth;
3730         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3731         // 8 bits, but have to be careful...
3732         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3733           origWidth = Lod->getMemoryVT().getSizeInBits();
3734         const APInt &Mask = N0.getConstantOperandAPInt(1);
3735         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3736           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3737           for (unsigned offset=0; offset<origWidth/width; offset++) {
3738             if (Mask.isSubsetOf(newMask)) {
3739               if (Layout.isLittleEndian())
3740                 bestOffset = (uint64_t)offset * (width/8);
3741               else
3742                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3743               bestMask = Mask.lshr(offset * (width/8) * 8);
3744               bestWidth = width;
3745               break;
3746             }
3747             newMask <<= width;
3748           }
3749         }
3750       }
3751       if (bestWidth) {
3752         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3753         if (newVT.isRound() &&
3754             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3755           SDValue Ptr = Lod->getBasePtr();
3756           if (bestOffset != 0)
3757             Ptr =
3758                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3759           SDValue NewLoad =
3760               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3761                           Lod->getPointerInfo().getWithOffset(bestOffset),
3762                           Lod->getOriginalAlign());
3763           return DAG.getSetCC(dl, VT,
3764                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3765                                       DAG.getConstant(bestMask.trunc(bestWidth),
3766                                                       dl, newVT)),
3767                               DAG.getConstant(0LL, dl, newVT), Cond);
3768         }
3769       }
3770     }
3771 
3772     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3773     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3774       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3775 
3776       // If the comparison constant has bits in the upper part, the
3777       // zero-extended value could never match.
3778       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3779                                               C1.getBitWidth() - InSize))) {
3780         switch (Cond) {
3781         case ISD::SETUGT:
3782         case ISD::SETUGE:
3783         case ISD::SETEQ:
3784           return DAG.getConstant(0, dl, VT);
3785         case ISD::SETULT:
3786         case ISD::SETULE:
3787         case ISD::SETNE:
3788           return DAG.getConstant(1, dl, VT);
3789         case ISD::SETGT:
3790         case ISD::SETGE:
3791           // True if the sign bit of C1 is set.
3792           return DAG.getConstant(C1.isNegative(), dl, VT);
3793         case ISD::SETLT:
3794         case ISD::SETLE:
3795           // True if the sign bit of C1 isn't set.
3796           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3797         default:
3798           break;
3799         }
3800       }
3801 
3802       // Otherwise, we can perform the comparison with the low bits.
3803       switch (Cond) {
3804       case ISD::SETEQ:
3805       case ISD::SETNE:
3806       case ISD::SETUGT:
3807       case ISD::SETUGE:
3808       case ISD::SETULT:
3809       case ISD::SETULE: {
3810         EVT newVT = N0.getOperand(0).getValueType();
3811         if (DCI.isBeforeLegalizeOps() ||
3812             (isOperationLegal(ISD::SETCC, newVT) &&
3813              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3814           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3815           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3816 
3817           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3818                                           NewConst, Cond);
3819           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3820         }
3821         break;
3822       }
3823       default:
3824         break; // todo, be more careful with signed comparisons
3825       }
3826     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3827                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3828                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3829                                       OpVT)) {
3830       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3831       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3832       EVT ExtDstTy = N0.getValueType();
3833       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3834 
3835       // If the constant doesn't fit into the number of bits for the source of
3836       // the sign extension, it is impossible for both sides to be equal.
3837       if (C1.getMinSignedBits() > ExtSrcTyBits)
3838         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3839 
3840       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
3841              ExtDstTy != ExtSrcTy && "Unexpected types!");
3842       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3843       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3844                                    DAG.getConstant(Imm, dl, ExtDstTy));
3845       if (!DCI.isCalledByLegalizer())
3846         DCI.AddToWorklist(ZextOp.getNode());
3847       // Otherwise, make this a use of a zext.
3848       return DAG.getSetCC(dl, VT, ZextOp,
3849                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3850     } else if ((N1C->isZero() || N1C->isOne()) &&
3851                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3852       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3853       if (N0.getOpcode() == ISD::SETCC &&
3854           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3855           (N0.getValueType() == MVT::i1 ||
3856            getBooleanContents(N0.getOperand(0).getValueType()) ==
3857                        ZeroOrOneBooleanContent)) {
3858         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3859         if (TrueWhenTrue)
3860           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3861         // Invert the condition.
3862         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3863         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3864         if (DCI.isBeforeLegalizeOps() ||
3865             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3866           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3867       }
3868 
3869       if ((N0.getOpcode() == ISD::XOR ||
3870            (N0.getOpcode() == ISD::AND &&
3871             N0.getOperand(0).getOpcode() == ISD::XOR &&
3872             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3873           isOneConstant(N0.getOperand(1))) {
3874         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3875         // can only do this if the top bits are known zero.
3876         unsigned BitWidth = N0.getValueSizeInBits();
3877         if (DAG.MaskedValueIsZero(N0,
3878                                   APInt::getHighBitsSet(BitWidth,
3879                                                         BitWidth-1))) {
3880           // Okay, get the un-inverted input value.
3881           SDValue Val;
3882           if (N0.getOpcode() == ISD::XOR) {
3883             Val = N0.getOperand(0);
3884           } else {
3885             assert(N0.getOpcode() == ISD::AND &&
3886                     N0.getOperand(0).getOpcode() == ISD::XOR);
3887             // ((X^1)&1)^1 -> X & 1
3888             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3889                               N0.getOperand(0).getOperand(0),
3890                               N0.getOperand(1));
3891           }
3892 
3893           return DAG.getSetCC(dl, VT, Val, N1,
3894                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3895         }
3896       } else if (N1C->isOne()) {
3897         SDValue Op0 = N0;
3898         if (Op0.getOpcode() == ISD::TRUNCATE)
3899           Op0 = Op0.getOperand(0);
3900 
3901         if ((Op0.getOpcode() == ISD::XOR) &&
3902             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3903             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3904           SDValue XorLHS = Op0.getOperand(0);
3905           SDValue XorRHS = Op0.getOperand(1);
3906           // Ensure that the input setccs return an i1 type or 0/1 value.
3907           if (Op0.getValueType() == MVT::i1 ||
3908               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3909                       ZeroOrOneBooleanContent &&
3910                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3911                         ZeroOrOneBooleanContent)) {
3912             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3913             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3914             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3915           }
3916         }
3917         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
3918           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3919           if (Op0.getValueType().bitsGT(VT))
3920             Op0 = DAG.getNode(ISD::AND, dl, VT,
3921                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3922                           DAG.getConstant(1, dl, VT));
3923           else if (Op0.getValueType().bitsLT(VT))
3924             Op0 = DAG.getNode(ISD::AND, dl, VT,
3925                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3926                         DAG.getConstant(1, dl, VT));
3927 
3928           return DAG.getSetCC(dl, VT, Op0,
3929                               DAG.getConstant(0, dl, Op0.getValueType()),
3930                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3931         }
3932         if (Op0.getOpcode() == ISD::AssertZext &&
3933             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3934           return DAG.getSetCC(dl, VT, Op0,
3935                               DAG.getConstant(0, dl, Op0.getValueType()),
3936                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3937       }
3938     }
3939 
3940     // Given:
3941     //   icmp eq/ne (urem %x, %y), 0
3942     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3943     //   icmp eq/ne %x, 0
3944     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
3945         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3946       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3947       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3948       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3949         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3950     }
3951 
3952     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
3953     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
3954     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3955         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
3956         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
3957         N1C && N1C->isAllOnes()) {
3958       return DAG.getSetCC(dl, VT, N0.getOperand(0),
3959                           DAG.getConstant(0, dl, OpVT),
3960                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
3961     }
3962 
3963     if (SDValue V =
3964             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3965       return V;
3966   }
3967 
3968   // These simplifications apply to splat vectors as well.
3969   // TODO: Handle more splat vector cases.
3970   if (auto *N1C = isConstOrConstSplat(N1)) {
3971     const APInt &C1 = N1C->getAPIntValue();
3972 
3973     APInt MinVal, MaxVal;
3974     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3975     if (ISD::isSignedIntSetCC(Cond)) {
3976       MinVal = APInt::getSignedMinValue(OperandBitSize);
3977       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3978     } else {
3979       MinVal = APInt::getMinValue(OperandBitSize);
3980       MaxVal = APInt::getMaxValue(OperandBitSize);
3981     }
3982 
3983     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3984     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3985       // X >= MIN --> true
3986       if (C1 == MinVal)
3987         return DAG.getBoolConstant(true, dl, VT, OpVT);
3988 
3989       if (!VT.isVector()) { // TODO: Support this for vectors.
3990         // X >= C0 --> X > (C0 - 1)
3991         APInt C = C1 - 1;
3992         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3993         if ((DCI.isBeforeLegalizeOps() ||
3994              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3995             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3996                                   isLegalICmpImmediate(C.getSExtValue())))) {
3997           return DAG.getSetCC(dl, VT, N0,
3998                               DAG.getConstant(C, dl, N1.getValueType()),
3999                               NewCC);
4000         }
4001       }
4002     }
4003 
4004     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4005       // X <= MAX --> true
4006       if (C1 == MaxVal)
4007         return DAG.getBoolConstant(true, dl, VT, OpVT);
4008 
4009       // X <= C0 --> X < (C0 + 1)
4010       if (!VT.isVector()) { // TODO: Support this for vectors.
4011         APInt C = C1 + 1;
4012         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4013         if ((DCI.isBeforeLegalizeOps() ||
4014              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4015             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4016                                   isLegalICmpImmediate(C.getSExtValue())))) {
4017           return DAG.getSetCC(dl, VT, N0,
4018                               DAG.getConstant(C, dl, N1.getValueType()),
4019                               NewCC);
4020         }
4021       }
4022     }
4023 
4024     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4025       if (C1 == MinVal)
4026         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4027 
4028       // TODO: Support this for vectors after legalize ops.
4029       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4030         // Canonicalize setlt X, Max --> setne X, Max
4031         if (C1 == MaxVal)
4032           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4033 
4034         // If we have setult X, 1, turn it into seteq X, 0
4035         if (C1 == MinVal+1)
4036           return DAG.getSetCC(dl, VT, N0,
4037                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4038                               ISD::SETEQ);
4039       }
4040     }
4041 
4042     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4043       if (C1 == MaxVal)
4044         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4045 
4046       // TODO: Support this for vectors after legalize ops.
4047       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4048         // Canonicalize setgt X, Min --> setne X, Min
4049         if (C1 == MinVal)
4050           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4051 
4052         // If we have setugt X, Max-1, turn it into seteq X, Max
4053         if (C1 == MaxVal-1)
4054           return DAG.getSetCC(dl, VT, N0,
4055                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4056                               ISD::SETEQ);
4057       }
4058     }
4059 
4060     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4061       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4062       if (C1.isZero())
4063         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4064                 VT, N0, N1, Cond, DCI, dl))
4065           return CC;
4066 
4067       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4068       // For example, when high 32-bits of i64 X are known clear:
4069       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4070       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4071       bool CmpZero = N1C->getAPIntValue().isZero();
4072       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4073       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4074         // Match or(lo,shl(hi,bw/2)) pattern.
4075         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4076           unsigned EltBits = V.getScalarValueSizeInBits();
4077           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4078             return false;
4079           SDValue LHS = V.getOperand(0);
4080           SDValue RHS = V.getOperand(1);
4081           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4082           // Unshifted element must have zero upperbits.
4083           if (RHS.getOpcode() == ISD::SHL &&
4084               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4085               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4086               DAG.MaskedValueIsZero(LHS, HiBits)) {
4087             Lo = LHS;
4088             Hi = RHS.getOperand(0);
4089             return true;
4090           }
4091           if (LHS.getOpcode() == ISD::SHL &&
4092               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4093               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4094               DAG.MaskedValueIsZero(RHS, HiBits)) {
4095             Lo = RHS;
4096             Hi = LHS.getOperand(0);
4097             return true;
4098           }
4099           return false;
4100         };
4101 
4102         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4103           unsigned EltBits = N0.getScalarValueSizeInBits();
4104           unsigned HalfBits = EltBits / 2;
4105           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4106           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4107           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4108           SDValue NewN0 =
4109               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4110           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4111           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4112         };
4113 
4114         SDValue Lo, Hi;
4115         if (IsConcat(N0, Lo, Hi))
4116           return MergeConcat(Lo, Hi);
4117 
4118         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4119           SDValue Lo0, Lo1, Hi0, Hi1;
4120           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4121               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4122             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4123                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4124           }
4125         }
4126       }
4127     }
4128 
4129     // If we have "setcc X, C0", check to see if we can shrink the immediate
4130     // by changing cc.
4131     // TODO: Support this for vectors after legalize ops.
4132     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4133       // SETUGT X, SINTMAX  -> SETLT X, 0
4134       // SETUGE X, SINTMIN -> SETLT X, 0
4135       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4136           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4137         return DAG.getSetCC(dl, VT, N0,
4138                             DAG.getConstant(0, dl, N1.getValueType()),
4139                             ISD::SETLT);
4140 
4141       // SETULT X, SINTMIN  -> SETGT X, -1
4142       // SETULE X, SINTMAX  -> SETGT X, -1
4143       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4144           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4145         return DAG.getSetCC(dl, VT, N0,
4146                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4147                             ISD::SETGT);
4148     }
4149   }
4150 
4151   // Back to non-vector simplifications.
4152   // TODO: Can we do these for vector splats?
4153   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4154     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4155     const APInt &C1 = N1C->getAPIntValue();
4156     EVT ShValTy = N0.getValueType();
4157 
4158     // Fold bit comparisons when we can. This will result in an
4159     // incorrect value when boolean false is negative one, unless
4160     // the bitsize is 1 in which case the false value is the same
4161     // in practice regardless of the representation.
4162     if ((VT.getSizeInBits() == 1 ||
4163          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4164         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4165         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4166         N0.getOpcode() == ISD::AND) {
4167       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4168         EVT ShiftTy =
4169             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4170         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4171           // Perform the xform if the AND RHS is a single bit.
4172           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4173           if (AndRHS->getAPIntValue().isPowerOf2() &&
4174               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4175             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4176                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4177                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4178           }
4179         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4180           // (X & 8) == 8  -->  (X & 8) >> 3
4181           // Perform the xform if C1 is a single bit.
4182           unsigned ShCt = C1.logBase2();
4183           if (C1.isPowerOf2() &&
4184               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4185             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4186                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4187                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4188           }
4189         }
4190       }
4191     }
4192 
4193     if (C1.getMinSignedBits() <= 64 &&
4194         !isLegalICmpImmediate(C1.getSExtValue())) {
4195       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4196       // (X & -256) == 256 -> (X >> 8) == 1
4197       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4198           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4199         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4200           const APInt &AndRHSC = AndRHS->getAPIntValue();
4201           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4202             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4203             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4204               SDValue Shift =
4205                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4206                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4207               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4208               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4209             }
4210           }
4211         }
4212       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4213                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4214         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4215         // X <  0x100000000 -> (X >> 32) <  1
4216         // X >= 0x100000000 -> (X >> 32) >= 1
4217         // X <= 0x0ffffffff -> (X >> 32) <  1
4218         // X >  0x0ffffffff -> (X >> 32) >= 1
4219         unsigned ShiftBits;
4220         APInt NewC = C1;
4221         ISD::CondCode NewCond = Cond;
4222         if (AdjOne) {
4223           ShiftBits = C1.countTrailingOnes();
4224           NewC = NewC + 1;
4225           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4226         } else {
4227           ShiftBits = C1.countTrailingZeros();
4228         }
4229         NewC.lshrInPlace(ShiftBits);
4230         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4231             isLegalICmpImmediate(NewC.getSExtValue()) &&
4232             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4233           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4234                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4235           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4236           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4237         }
4238       }
4239     }
4240   }
4241 
4242   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4243     auto *CFP = cast<ConstantFPSDNode>(N1);
4244     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4245 
4246     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4247     // constant if knowing that the operand is non-nan is enough.  We prefer to
4248     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4249     // materialize 0.0.
4250     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4251       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4252 
4253     // setcc (fneg x), C -> setcc swap(pred) x, -C
4254     if (N0.getOpcode() == ISD::FNEG) {
4255       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4256       if (DCI.isBeforeLegalizeOps() ||
4257           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4258         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4259         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4260       }
4261     }
4262 
4263     // If the condition is not legal, see if we can find an equivalent one
4264     // which is legal.
4265     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4266       // If the comparison was an awkward floating-point == or != and one of
4267       // the comparison operands is infinity or negative infinity, convert the
4268       // condition to a less-awkward <= or >=.
4269       if (CFP->getValueAPF().isInfinity()) {
4270         bool IsNegInf = CFP->getValueAPF().isNegative();
4271         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4272         switch (Cond) {
4273         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4274         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4275         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4276         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4277         default: break;
4278         }
4279         if (NewCond != ISD::SETCC_INVALID &&
4280             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4281           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4282       }
4283     }
4284   }
4285 
4286   if (N0 == N1) {
4287     // The sext(setcc()) => setcc() optimization relies on the appropriate
4288     // constant being emitted.
4289     assert(!N0.getValueType().isInteger() &&
4290            "Integer types should be handled by FoldSetCC");
4291 
4292     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4293     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4294     if (UOF == 2) // FP operators that are undefined on NaNs.
4295       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4296     if (UOF == unsigned(EqTrue))
4297       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4298     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4299     // if it is not already.
4300     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4301     if (NewCond != Cond &&
4302         (DCI.isBeforeLegalizeOps() ||
4303                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4304       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4305   }
4306 
4307   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4308       N0.getValueType().isInteger()) {
4309     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4310         N0.getOpcode() == ISD::XOR) {
4311       // Simplify (X+Y) == (X+Z) -->  Y == Z
4312       if (N0.getOpcode() == N1.getOpcode()) {
4313         if (N0.getOperand(0) == N1.getOperand(0))
4314           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4315         if (N0.getOperand(1) == N1.getOperand(1))
4316           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4317         if (isCommutativeBinOp(N0.getOpcode())) {
4318           // If X op Y == Y op X, try other combinations.
4319           if (N0.getOperand(0) == N1.getOperand(1))
4320             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4321                                 Cond);
4322           if (N0.getOperand(1) == N1.getOperand(0))
4323             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4324                                 Cond);
4325         }
4326       }
4327 
4328       // If RHS is a legal immediate value for a compare instruction, we need
4329       // to be careful about increasing register pressure needlessly.
4330       bool LegalRHSImm = false;
4331 
4332       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4333         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4334           // Turn (X+C1) == C2 --> X == C2-C1
4335           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4336             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4337                                 DAG.getConstant(RHSC->getAPIntValue()-
4338                                                 LHSR->getAPIntValue(),
4339                                 dl, N0.getValueType()), Cond);
4340           }
4341 
4342           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4343           if (N0.getOpcode() == ISD::XOR)
4344             // If we know that all of the inverted bits are zero, don't bother
4345             // performing the inversion.
4346             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4347               return
4348                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4349                              DAG.getConstant(LHSR->getAPIntValue() ^
4350                                                RHSC->getAPIntValue(),
4351                                              dl, N0.getValueType()),
4352                              Cond);
4353         }
4354 
4355         // Turn (C1-X) == C2 --> X == C1-C2
4356         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4357           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4358             return
4359               DAG.getSetCC(dl, VT, N0.getOperand(1),
4360                            DAG.getConstant(SUBC->getAPIntValue() -
4361                                              RHSC->getAPIntValue(),
4362                                            dl, N0.getValueType()),
4363                            Cond);
4364           }
4365         }
4366 
4367         // Could RHSC fold directly into a compare?
4368         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4369           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4370       }
4371 
4372       // (X+Y) == X --> Y == 0 and similar folds.
4373       // Don't do this if X is an immediate that can fold into a cmp
4374       // instruction and X+Y has other uses. It could be an induction variable
4375       // chain, and the transform would increase register pressure.
4376       if (!LegalRHSImm || N0.hasOneUse())
4377         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4378           return V;
4379     }
4380 
4381     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4382         N1.getOpcode() == ISD::XOR)
4383       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4384         return V;
4385 
4386     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4387       return V;
4388   }
4389 
4390   // Fold remainder of division by a constant.
4391   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4392       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4393     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4394 
4395     // When division is cheap or optimizing for minimum size,
4396     // fall through to DIVREM creation by skipping this fold.
4397     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4398       if (N0.getOpcode() == ISD::UREM) {
4399         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4400           return Folded;
4401       } else if (N0.getOpcode() == ISD::SREM) {
4402         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4403           return Folded;
4404       }
4405     }
4406   }
4407 
4408   // Fold away ALL boolean setcc's.
4409   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4410     SDValue Temp;
4411     switch (Cond) {
4412     default: llvm_unreachable("Unknown integer setcc!");
4413     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4414       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4415       N0 = DAG.getNOT(dl, Temp, OpVT);
4416       if (!DCI.isCalledByLegalizer())
4417         DCI.AddToWorklist(Temp.getNode());
4418       break;
4419     case ISD::SETNE:  // X != Y   -->  (X^Y)
4420       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4421       break;
4422     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4423     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4424       Temp = DAG.getNOT(dl, N0, OpVT);
4425       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4426       if (!DCI.isCalledByLegalizer())
4427         DCI.AddToWorklist(Temp.getNode());
4428       break;
4429     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4430     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4431       Temp = DAG.getNOT(dl, N1, OpVT);
4432       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4433       if (!DCI.isCalledByLegalizer())
4434         DCI.AddToWorklist(Temp.getNode());
4435       break;
4436     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4437     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4438       Temp = DAG.getNOT(dl, N0, OpVT);
4439       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4440       if (!DCI.isCalledByLegalizer())
4441         DCI.AddToWorklist(Temp.getNode());
4442       break;
4443     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4444     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4445       Temp = DAG.getNOT(dl, N1, OpVT);
4446       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4447       break;
4448     }
4449     if (VT.getScalarType() != MVT::i1) {
4450       if (!DCI.isCalledByLegalizer())
4451         DCI.AddToWorklist(N0.getNode());
4452       // FIXME: If running after legalize, we probably can't do this.
4453       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4454       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4455     }
4456     return N0;
4457   }
4458 
4459   // Could not fold it.
4460   return SDValue();
4461 }
4462 
4463 /// Returns true (and the GlobalValue and the offset) if the node is a
4464 /// GlobalAddress + offset.
4465 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4466                                     int64_t &Offset) const {
4467 
4468   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4469 
4470   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4471     GA = GASD->getGlobal();
4472     Offset += GASD->getOffset();
4473     return true;
4474   }
4475 
4476   if (N->getOpcode() == ISD::ADD) {
4477     SDValue N1 = N->getOperand(0);
4478     SDValue N2 = N->getOperand(1);
4479     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4480       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4481         Offset += V->getSExtValue();
4482         return true;
4483       }
4484     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4485       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4486         Offset += V->getSExtValue();
4487         return true;
4488       }
4489     }
4490   }
4491 
4492   return false;
4493 }
4494 
4495 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4496                                           DAGCombinerInfo &DCI) const {
4497   // Default implementation: no optimization.
4498   return SDValue();
4499 }
4500 
4501 //===----------------------------------------------------------------------===//
4502 //  Inline Assembler Implementation Methods
4503 //===----------------------------------------------------------------------===//
4504 
4505 TargetLowering::ConstraintType
4506 TargetLowering::getConstraintType(StringRef Constraint) const {
4507   unsigned S = Constraint.size();
4508 
4509   if (S == 1) {
4510     switch (Constraint[0]) {
4511     default: break;
4512     case 'r':
4513       return C_RegisterClass;
4514     case 'm': // memory
4515     case 'o': // offsetable
4516     case 'V': // not offsetable
4517       return C_Memory;
4518     case 'n': // Simple Integer
4519     case 'E': // Floating Point Constant
4520     case 'F': // Floating Point Constant
4521       return C_Immediate;
4522     case 'i': // Simple Integer or Relocatable Constant
4523     case 's': // Relocatable Constant
4524     case 'p': // Address.
4525     case 'X': // Allow ANY value.
4526     case 'I': // Target registers.
4527     case 'J':
4528     case 'K':
4529     case 'L':
4530     case 'M':
4531     case 'N':
4532     case 'O':
4533     case 'P':
4534     case '<':
4535     case '>':
4536       return C_Other;
4537     }
4538   }
4539 
4540   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4541     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4542       return C_Memory;
4543     return C_Register;
4544   }
4545   return C_Unknown;
4546 }
4547 
4548 /// Try to replace an X constraint, which matches anything, with another that
4549 /// has more specific requirements based on the type of the corresponding
4550 /// operand.
4551 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4552   if (ConstraintVT.isInteger())
4553     return "r";
4554   if (ConstraintVT.isFloatingPoint())
4555     return "f"; // works for many targets
4556   return nullptr;
4557 }
4558 
4559 SDValue TargetLowering::LowerAsmOutputForConstraint(
4560     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4561     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4562   return SDValue();
4563 }
4564 
4565 /// Lower the specified operand into the Ops vector.
4566 /// If it is invalid, don't add anything to Ops.
4567 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4568                                                   std::string &Constraint,
4569                                                   std::vector<SDValue> &Ops,
4570                                                   SelectionDAG &DAG) const {
4571 
4572   if (Constraint.length() > 1) return;
4573 
4574   char ConstraintLetter = Constraint[0];
4575   switch (ConstraintLetter) {
4576   default: break;
4577   case 'X':     // Allows any operand; labels (basic block) use this.
4578     if (Op.getOpcode() == ISD::BasicBlock ||
4579         Op.getOpcode() == ISD::TargetBlockAddress) {
4580       Ops.push_back(Op);
4581       return;
4582     }
4583     LLVM_FALLTHROUGH;
4584   case 'i':    // Simple Integer or Relocatable Constant
4585   case 'n':    // Simple Integer
4586   case 's': {  // Relocatable Constant
4587 
4588     GlobalAddressSDNode *GA;
4589     ConstantSDNode *C;
4590     BlockAddressSDNode *BA;
4591     uint64_t Offset = 0;
4592 
4593     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4594     // etc., since getelementpointer is variadic. We can't use
4595     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4596     // while in this case the GA may be furthest from the root node which is
4597     // likely an ISD::ADD.
4598     while (1) {
4599       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4600         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4601                                                  GA->getValueType(0),
4602                                                  Offset + GA->getOffset()));
4603         return;
4604       }
4605       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4606         // gcc prints these as sign extended.  Sign extend value to 64 bits
4607         // now; without this it would get ZExt'd later in
4608         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4609         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4610         BooleanContent BCont = getBooleanContents(MVT::i64);
4611         ISD::NodeType ExtOpc =
4612             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4613         int64_t ExtVal =
4614             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4615         Ops.push_back(
4616             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4617         return;
4618       }
4619       if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4620         Ops.push_back(DAG.getTargetBlockAddress(
4621             BA->getBlockAddress(), BA->getValueType(0),
4622             Offset + BA->getOffset(), BA->getTargetFlags()));
4623         return;
4624       }
4625       const unsigned OpCode = Op.getOpcode();
4626       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4627         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4628           Op = Op.getOperand(1);
4629         // Subtraction is not commutative.
4630         else if (OpCode == ISD::ADD &&
4631                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4632           Op = Op.getOperand(0);
4633         else
4634           return;
4635         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4636         continue;
4637       }
4638       return;
4639     }
4640     break;
4641   }
4642   }
4643 }
4644 
4645 std::pair<unsigned, const TargetRegisterClass *>
4646 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4647                                              StringRef Constraint,
4648                                              MVT VT) const {
4649   if (Constraint.empty() || Constraint[0] != '{')
4650     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4651   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4652 
4653   // Remove the braces from around the name.
4654   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4655 
4656   std::pair<unsigned, const TargetRegisterClass *> R =
4657       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4658 
4659   // Figure out which register class contains this reg.
4660   for (const TargetRegisterClass *RC : RI->regclasses()) {
4661     // If none of the value types for this register class are valid, we
4662     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4663     if (!isLegalRC(*RI, *RC))
4664       continue;
4665 
4666     for (const MCPhysReg &PR : *RC) {
4667       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
4668         std::pair<unsigned, const TargetRegisterClass *> S =
4669             std::make_pair(PR, RC);
4670 
4671         // If this register class has the requested value type, return it,
4672         // otherwise keep searching and return the first class found
4673         // if no other is found which explicitly has the requested type.
4674         if (RI->isTypeLegalForClass(*RC, VT))
4675           return S;
4676         if (!R.second)
4677           R = S;
4678       }
4679     }
4680   }
4681 
4682   return R;
4683 }
4684 
4685 //===----------------------------------------------------------------------===//
4686 // Constraint Selection.
4687 
4688 /// Return true of this is an input operand that is a matching constraint like
4689 /// "4".
4690 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4691   assert(!ConstraintCode.empty() && "No known constraint!");
4692   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4693 }
4694 
4695 /// If this is an input matching constraint, this method returns the output
4696 /// operand it matches.
4697 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4698   assert(!ConstraintCode.empty() && "No known constraint!");
4699   return atoi(ConstraintCode.c_str());
4700 }
4701 
4702 /// Split up the constraint string from the inline assembly value into the
4703 /// specific constraints and their prefixes, and also tie in the associated
4704 /// operand values.
4705 /// If this returns an empty vector, and if the constraint string itself
4706 /// isn't empty, there was an error parsing.
4707 TargetLowering::AsmOperandInfoVector
4708 TargetLowering::ParseConstraints(const DataLayout &DL,
4709                                  const TargetRegisterInfo *TRI,
4710                                  const CallBase &Call) const {
4711   /// Information about all of the constraints.
4712   AsmOperandInfoVector ConstraintOperands;
4713   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4714   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4715 
4716   // Do a prepass over the constraints, canonicalizing them, and building up the
4717   // ConstraintOperands list.
4718   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4719   unsigned ResNo = 0; // ResNo - The result number of the next output.
4720 
4721   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4722     ConstraintOperands.emplace_back(std::move(CI));
4723     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4724 
4725     // Update multiple alternative constraint count.
4726     if (OpInfo.multipleAlternatives.size() > maCount)
4727       maCount = OpInfo.multipleAlternatives.size();
4728 
4729     OpInfo.ConstraintVT = MVT::Other;
4730 
4731     // Compute the value type for each operand.
4732     switch (OpInfo.Type) {
4733     case InlineAsm::isOutput:
4734       // Indirect outputs just consume an argument.
4735       if (OpInfo.isIndirect) {
4736         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4737         break;
4738       }
4739 
4740       // The return value of the call is this value.  As such, there is no
4741       // corresponding argument.
4742       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4743       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4744         OpInfo.ConstraintVT =
4745             getSimpleValueType(DL, STy->getElementType(ResNo));
4746       } else {
4747         assert(ResNo == 0 && "Asm only has one result!");
4748         OpInfo.ConstraintVT =
4749             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
4750       }
4751       ++ResNo;
4752       break;
4753     case InlineAsm::isInput:
4754       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4755       break;
4756     case InlineAsm::isClobber:
4757       // Nothing to do.
4758       break;
4759     }
4760 
4761     if (OpInfo.CallOperandVal) {
4762       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4763       if (OpInfo.isIndirect) {
4764         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4765         if (!PtrTy)
4766           report_fatal_error("Indirect operand for inline asm not a pointer!");
4767         OpTy = PtrTy->getElementType();
4768       }
4769 
4770       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4771       if (StructType *STy = dyn_cast<StructType>(OpTy))
4772         if (STy->getNumElements() == 1)
4773           OpTy = STy->getElementType(0);
4774 
4775       // If OpTy is not a single value, it may be a struct/union that we
4776       // can tile with integers.
4777       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4778         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4779         switch (BitSize) {
4780         default: break;
4781         case 1:
4782         case 8:
4783         case 16:
4784         case 32:
4785         case 64:
4786         case 128:
4787           OpInfo.ConstraintVT =
4788               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4789           break;
4790         }
4791       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4792         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4793         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4794       } else {
4795         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4796       }
4797     }
4798   }
4799 
4800   // If we have multiple alternative constraints, select the best alternative.
4801   if (!ConstraintOperands.empty()) {
4802     if (maCount) {
4803       unsigned bestMAIndex = 0;
4804       int bestWeight = -1;
4805       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4806       int weight = -1;
4807       unsigned maIndex;
4808       // Compute the sums of the weights for each alternative, keeping track
4809       // of the best (highest weight) one so far.
4810       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4811         int weightSum = 0;
4812         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4813              cIndex != eIndex; ++cIndex) {
4814           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4815           if (OpInfo.Type == InlineAsm::isClobber)
4816             continue;
4817 
4818           // If this is an output operand with a matching input operand,
4819           // look up the matching input. If their types mismatch, e.g. one
4820           // is an integer, the other is floating point, or their sizes are
4821           // different, flag it as an maCantMatch.
4822           if (OpInfo.hasMatchingInput()) {
4823             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4824             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4825               if ((OpInfo.ConstraintVT.isInteger() !=
4826                    Input.ConstraintVT.isInteger()) ||
4827                   (OpInfo.ConstraintVT.getSizeInBits() !=
4828                    Input.ConstraintVT.getSizeInBits())) {
4829                 weightSum = -1; // Can't match.
4830                 break;
4831               }
4832             }
4833           }
4834           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4835           if (weight == -1) {
4836             weightSum = -1;
4837             break;
4838           }
4839           weightSum += weight;
4840         }
4841         // Update best.
4842         if (weightSum > bestWeight) {
4843           bestWeight = weightSum;
4844           bestMAIndex = maIndex;
4845         }
4846       }
4847 
4848       // Now select chosen alternative in each constraint.
4849       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4850            cIndex != eIndex; ++cIndex) {
4851         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4852         if (cInfo.Type == InlineAsm::isClobber)
4853           continue;
4854         cInfo.selectAlternative(bestMAIndex);
4855       }
4856     }
4857   }
4858 
4859   // Check and hook up tied operands, choose constraint code to use.
4860   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4861        cIndex != eIndex; ++cIndex) {
4862     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4863 
4864     // If this is an output operand with a matching input operand, look up the
4865     // matching input. If their types mismatch, e.g. one is an integer, the
4866     // other is floating point, or their sizes are different, flag it as an
4867     // error.
4868     if (OpInfo.hasMatchingInput()) {
4869       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4870 
4871       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4872         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4873             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4874                                          OpInfo.ConstraintVT);
4875         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4876             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4877                                          Input.ConstraintVT);
4878         if ((OpInfo.ConstraintVT.isInteger() !=
4879              Input.ConstraintVT.isInteger()) ||
4880             (MatchRC.second != InputRC.second)) {
4881           report_fatal_error("Unsupported asm: input constraint"
4882                              " with a matching output constraint of"
4883                              " incompatible type!");
4884         }
4885       }
4886     }
4887   }
4888 
4889   return ConstraintOperands;
4890 }
4891 
4892 /// Return an integer indicating how general CT is.
4893 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4894   switch (CT) {
4895   case TargetLowering::C_Immediate:
4896   case TargetLowering::C_Other:
4897   case TargetLowering::C_Unknown:
4898     return 0;
4899   case TargetLowering::C_Register:
4900     return 1;
4901   case TargetLowering::C_RegisterClass:
4902     return 2;
4903   case TargetLowering::C_Memory:
4904     return 3;
4905   }
4906   llvm_unreachable("Invalid constraint type");
4907 }
4908 
4909 /// Examine constraint type and operand type and determine a weight value.
4910 /// This object must already have been set up with the operand type
4911 /// and the current alternative constraint selected.
4912 TargetLowering::ConstraintWeight
4913   TargetLowering::getMultipleConstraintMatchWeight(
4914     AsmOperandInfo &info, int maIndex) const {
4915   InlineAsm::ConstraintCodeVector *rCodes;
4916   if (maIndex >= (int)info.multipleAlternatives.size())
4917     rCodes = &info.Codes;
4918   else
4919     rCodes = &info.multipleAlternatives[maIndex].Codes;
4920   ConstraintWeight BestWeight = CW_Invalid;
4921 
4922   // Loop over the options, keeping track of the most general one.
4923   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4924     ConstraintWeight weight =
4925       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4926     if (weight > BestWeight)
4927       BestWeight = weight;
4928   }
4929 
4930   return BestWeight;
4931 }
4932 
4933 /// Examine constraint type and operand type and determine a weight value.
4934 /// This object must already have been set up with the operand type
4935 /// and the current alternative constraint selected.
4936 TargetLowering::ConstraintWeight
4937   TargetLowering::getSingleConstraintMatchWeight(
4938     AsmOperandInfo &info, const char *constraint) const {
4939   ConstraintWeight weight = CW_Invalid;
4940   Value *CallOperandVal = info.CallOperandVal;
4941     // If we don't have a value, we can't do a match,
4942     // but allow it at the lowest weight.
4943   if (!CallOperandVal)
4944     return CW_Default;
4945   // Look at the constraint type.
4946   switch (*constraint) {
4947     case 'i': // immediate integer.
4948     case 'n': // immediate integer with a known value.
4949       if (isa<ConstantInt>(CallOperandVal))
4950         weight = CW_Constant;
4951       break;
4952     case 's': // non-explicit intregal immediate.
4953       if (isa<GlobalValue>(CallOperandVal))
4954         weight = CW_Constant;
4955       break;
4956     case 'E': // immediate float if host format.
4957     case 'F': // immediate float.
4958       if (isa<ConstantFP>(CallOperandVal))
4959         weight = CW_Constant;
4960       break;
4961     case '<': // memory operand with autodecrement.
4962     case '>': // memory operand with autoincrement.
4963     case 'm': // memory operand.
4964     case 'o': // offsettable memory operand
4965     case 'V': // non-offsettable memory operand
4966       weight = CW_Memory;
4967       break;
4968     case 'r': // general register.
4969     case 'g': // general register, memory operand or immediate integer.
4970               // note: Clang converts "g" to "imr".
4971       if (CallOperandVal->getType()->isIntegerTy())
4972         weight = CW_Register;
4973       break;
4974     case 'X': // any operand.
4975   default:
4976     weight = CW_Default;
4977     break;
4978   }
4979   return weight;
4980 }
4981 
4982 /// If there are multiple different constraints that we could pick for this
4983 /// operand (e.g. "imr") try to pick the 'best' one.
4984 /// This is somewhat tricky: constraints fall into four classes:
4985 ///    Other         -> immediates and magic values
4986 ///    Register      -> one specific register
4987 ///    RegisterClass -> a group of regs
4988 ///    Memory        -> memory
4989 /// Ideally, we would pick the most specific constraint possible: if we have
4990 /// something that fits into a register, we would pick it.  The problem here
4991 /// is that if we have something that could either be in a register or in
4992 /// memory that use of the register could cause selection of *other*
4993 /// operands to fail: they might only succeed if we pick memory.  Because of
4994 /// this the heuristic we use is:
4995 ///
4996 ///  1) If there is an 'other' constraint, and if the operand is valid for
4997 ///     that constraint, use it.  This makes us take advantage of 'i'
4998 ///     constraints when available.
4999 ///  2) Otherwise, pick the most general constraint present.  This prefers
5000 ///     'm' over 'r', for example.
5001 ///
5002 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5003                              const TargetLowering &TLI,
5004                              SDValue Op, SelectionDAG *DAG) {
5005   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5006   unsigned BestIdx = 0;
5007   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5008   int BestGenerality = -1;
5009 
5010   // Loop over the options, keeping track of the most general one.
5011   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5012     TargetLowering::ConstraintType CType =
5013       TLI.getConstraintType(OpInfo.Codes[i]);
5014 
5015     // Indirect 'other' or 'immediate' constraints are not allowed.
5016     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5017                                CType == TargetLowering::C_Register ||
5018                                CType == TargetLowering::C_RegisterClass))
5019       continue;
5020 
5021     // If this is an 'other' or 'immediate' constraint, see if the operand is
5022     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5023     // the operand is an integer in the range [0..31] we want to use I (saving a
5024     // load of a register), otherwise we must use 'r'.
5025     if ((CType == TargetLowering::C_Other ||
5026          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5027       assert(OpInfo.Codes[i].size() == 1 &&
5028              "Unhandled multi-letter 'other' constraint");
5029       std::vector<SDValue> ResultOps;
5030       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5031                                        ResultOps, *DAG);
5032       if (!ResultOps.empty()) {
5033         BestType = CType;
5034         BestIdx = i;
5035         break;
5036       }
5037     }
5038 
5039     // Things with matching constraints can only be registers, per gcc
5040     // documentation.  This mainly affects "g" constraints.
5041     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5042       continue;
5043 
5044     // This constraint letter is more general than the previous one, use it.
5045     int Generality = getConstraintGenerality(CType);
5046     if (Generality > BestGenerality) {
5047       BestType = CType;
5048       BestIdx = i;
5049       BestGenerality = Generality;
5050     }
5051   }
5052 
5053   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5054   OpInfo.ConstraintType = BestType;
5055 }
5056 
5057 /// Determines the constraint code and constraint type to use for the specific
5058 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5059 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5060                                             SDValue Op,
5061                                             SelectionDAG *DAG) const {
5062   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5063 
5064   // Single-letter constraints ('r') are very common.
5065   if (OpInfo.Codes.size() == 1) {
5066     OpInfo.ConstraintCode = OpInfo.Codes[0];
5067     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5068   } else {
5069     ChooseConstraint(OpInfo, *this, Op, DAG);
5070   }
5071 
5072   // 'X' matches anything.
5073   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5074     // Labels and constants are handled elsewhere ('X' is the only thing
5075     // that matches labels).  For Functions, the type here is the type of
5076     // the result, which is not what we want to look at; leave them alone.
5077     Value *v = OpInfo.CallOperandVal;
5078     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
5079       OpInfo.CallOperandVal = v;
5080       return;
5081     }
5082 
5083     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
5084       return;
5085 
5086     // Otherwise, try to resolve it to something we know about by looking at
5087     // the actual operand type.
5088     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5089       OpInfo.ConstraintCode = Repl;
5090       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5091     }
5092   }
5093 }
5094 
5095 /// Given an exact SDIV by a constant, create a multiplication
5096 /// with the multiplicative inverse of the constant.
5097 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5098                               const SDLoc &dl, SelectionDAG &DAG,
5099                               SmallVectorImpl<SDNode *> &Created) {
5100   SDValue Op0 = N->getOperand(0);
5101   SDValue Op1 = N->getOperand(1);
5102   EVT VT = N->getValueType(0);
5103   EVT SVT = VT.getScalarType();
5104   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5105   EVT ShSVT = ShVT.getScalarType();
5106 
5107   bool UseSRA = false;
5108   SmallVector<SDValue, 16> Shifts, Factors;
5109 
5110   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5111     if (C->isZero())
5112       return false;
5113     APInt Divisor = C->getAPIntValue();
5114     unsigned Shift = Divisor.countTrailingZeros();
5115     if (Shift) {
5116       Divisor.ashrInPlace(Shift);
5117       UseSRA = true;
5118     }
5119     // Calculate the multiplicative inverse, using Newton's method.
5120     APInt t;
5121     APInt Factor = Divisor;
5122     while ((t = Divisor * Factor) != 1)
5123       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5124     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5125     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5126     return true;
5127   };
5128 
5129   // Collect all magic values from the build vector.
5130   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5131     return SDValue();
5132 
5133   SDValue Shift, Factor;
5134   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5135     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5136     Factor = DAG.getBuildVector(VT, dl, Factors);
5137   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5138     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5139            "Expected matchUnaryPredicate to return one element for scalable "
5140            "vectors");
5141     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5142     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5143   } else {
5144     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5145     Shift = Shifts[0];
5146     Factor = Factors[0];
5147   }
5148 
5149   SDValue Res = Op0;
5150 
5151   // Shift the value upfront if it is even, so the LSB is one.
5152   if (UseSRA) {
5153     // TODO: For UDIV use SRL instead of SRA.
5154     SDNodeFlags Flags;
5155     Flags.setExact(true);
5156     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5157     Created.push_back(Res.getNode());
5158   }
5159 
5160   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5161 }
5162 
5163 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5164                               SelectionDAG &DAG,
5165                               SmallVectorImpl<SDNode *> &Created) const {
5166   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5167   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5168   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5169     return SDValue(N, 0); // Lower SDIV as SDIV
5170   return SDValue();
5171 }
5172 
5173 /// Given an ISD::SDIV node expressing a divide by constant,
5174 /// return a DAG expression to select that will generate the same value by
5175 /// multiplying by a magic number.
5176 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5177 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5178                                   bool IsAfterLegalization,
5179                                   SmallVectorImpl<SDNode *> &Created) const {
5180   SDLoc dl(N);
5181   EVT VT = N->getValueType(0);
5182   EVT SVT = VT.getScalarType();
5183   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5184   EVT ShSVT = ShVT.getScalarType();
5185   unsigned EltBits = VT.getScalarSizeInBits();
5186   EVT MulVT;
5187 
5188   // Check to see if we can do this.
5189   // FIXME: We should be more aggressive here.
5190   if (!isTypeLegal(VT)) {
5191     // Limit this to simple scalars for now.
5192     if (VT.isVector() || !VT.isSimple())
5193       return SDValue();
5194 
5195     // If this type will be promoted to a large enough type with a legal
5196     // multiply operation, we can go ahead and do this transform.
5197     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5198       return SDValue();
5199 
5200     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5201     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5202         !isOperationLegal(ISD::MUL, MulVT))
5203       return SDValue();
5204   }
5205 
5206   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5207   if (N->getFlags().hasExact())
5208     return BuildExactSDIV(*this, N, dl, DAG, Created);
5209 
5210   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5211 
5212   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5213     if (C->isZero())
5214       return false;
5215 
5216     const APInt &Divisor = C->getAPIntValue();
5217     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5218     int NumeratorFactor = 0;
5219     int ShiftMask = -1;
5220 
5221     if (Divisor.isOne() || Divisor.isAllOnes()) {
5222       // If d is +1/-1, we just multiply the numerator by +1/-1.
5223       NumeratorFactor = Divisor.getSExtValue();
5224       magics.Magic = 0;
5225       magics.ShiftAmount = 0;
5226       ShiftMask = 0;
5227     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5228       // If d > 0 and m < 0, add the numerator.
5229       NumeratorFactor = 1;
5230     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5231       // If d < 0 and m > 0, subtract the numerator.
5232       NumeratorFactor = -1;
5233     }
5234 
5235     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5236     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5237     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5238     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5239     return true;
5240   };
5241 
5242   SDValue N0 = N->getOperand(0);
5243   SDValue N1 = N->getOperand(1);
5244 
5245   // Collect the shifts / magic values from each element.
5246   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5247     return SDValue();
5248 
5249   SDValue MagicFactor, Factor, Shift, ShiftMask;
5250   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5251     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5252     Factor = DAG.getBuildVector(VT, dl, Factors);
5253     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5254     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5255   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5256     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5257            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5258            "Expected matchUnaryPredicate to return one element for scalable "
5259            "vectors");
5260     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5261     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5262     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5263     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5264   } else {
5265     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5266     MagicFactor = MagicFactors[0];
5267     Factor = Factors[0];
5268     Shift = Shifts[0];
5269     ShiftMask = ShiftMasks[0];
5270   }
5271 
5272   // Multiply the numerator (operand 0) by the magic value.
5273   // FIXME: We should support doing a MUL in a wider type.
5274   auto GetMULHS = [&](SDValue X, SDValue Y) {
5275     // If the type isn't legal, use a wider mul of the the type calculated
5276     // earlier.
5277     if (!isTypeLegal(VT)) {
5278       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5279       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5280       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5281       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5282                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5283       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5284     }
5285 
5286     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5287       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5288     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5289       SDValue LoHi =
5290           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5291       return SDValue(LoHi.getNode(), 1);
5292     }
5293     return SDValue();
5294   };
5295 
5296   SDValue Q = GetMULHS(N0, MagicFactor);
5297   if (!Q)
5298     return SDValue();
5299 
5300   Created.push_back(Q.getNode());
5301 
5302   // (Optionally) Add/subtract the numerator using Factor.
5303   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5304   Created.push_back(Factor.getNode());
5305   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5306   Created.push_back(Q.getNode());
5307 
5308   // Shift right algebraic by shift value.
5309   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5310   Created.push_back(Q.getNode());
5311 
5312   // Extract the sign bit, mask it and add it to the quotient.
5313   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5314   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5315   Created.push_back(T.getNode());
5316   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5317   Created.push_back(T.getNode());
5318   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5319 }
5320 
5321 /// Given an ISD::UDIV node expressing a divide by constant,
5322 /// return a DAG expression to select that will generate the same value by
5323 /// multiplying by a magic number.
5324 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5325 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5326                                   bool IsAfterLegalization,
5327                                   SmallVectorImpl<SDNode *> &Created) const {
5328   SDLoc dl(N);
5329   EVT VT = N->getValueType(0);
5330   EVT SVT = VT.getScalarType();
5331   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5332   EVT ShSVT = ShVT.getScalarType();
5333   unsigned EltBits = VT.getScalarSizeInBits();
5334   EVT MulVT;
5335 
5336   // Check to see if we can do this.
5337   // FIXME: We should be more aggressive here.
5338   if (!isTypeLegal(VT)) {
5339     // Limit this to simple scalars for now.
5340     if (VT.isVector() || !VT.isSimple())
5341       return SDValue();
5342 
5343     // If this type will be promoted to a large enough type with a legal
5344     // multiply operation, we can go ahead and do this transform.
5345     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5346       return SDValue();
5347 
5348     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5349     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5350         !isOperationLegal(ISD::MUL, MulVT))
5351       return SDValue();
5352   }
5353 
5354   bool UseNPQ = false;
5355   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5356 
5357   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5358     if (C->isZero())
5359       return false;
5360     // FIXME: We should use a narrower constant when the upper
5361     // bits are known to be zero.
5362     const APInt& Divisor = C->getAPIntValue();
5363     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5364     unsigned PreShift = 0, PostShift = 0;
5365 
5366     // If the divisor is even, we can avoid using the expensive fixup by
5367     // shifting the divided value upfront.
5368     if (magics.IsAdd != 0 && !Divisor[0]) {
5369       PreShift = Divisor.countTrailingZeros();
5370       // Get magic number for the shifted divisor.
5371       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5372       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5373     }
5374 
5375     APInt Magic = magics.Magic;
5376 
5377     unsigned SelNPQ;
5378     if (magics.IsAdd == 0 || Divisor.isOne()) {
5379       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5380              "We shouldn't generate an undefined shift!");
5381       PostShift = magics.ShiftAmount;
5382       SelNPQ = false;
5383     } else {
5384       PostShift = magics.ShiftAmount - 1;
5385       SelNPQ = true;
5386     }
5387 
5388     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5389     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5390     NPQFactors.push_back(
5391         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5392                                : APInt::getZero(EltBits),
5393                         dl, SVT));
5394     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5395     UseNPQ |= SelNPQ;
5396     return true;
5397   };
5398 
5399   SDValue N0 = N->getOperand(0);
5400   SDValue N1 = N->getOperand(1);
5401 
5402   // Collect the shifts/magic values from each element.
5403   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5404     return SDValue();
5405 
5406   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5407   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5408     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5409     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5410     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5411     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5412   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5413     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5414            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5415            "Expected matchUnaryPredicate to return one for scalable vectors");
5416     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5417     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5418     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5419     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5420   } else {
5421     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5422     PreShift = PreShifts[0];
5423     MagicFactor = MagicFactors[0];
5424     PostShift = PostShifts[0];
5425   }
5426 
5427   SDValue Q = N0;
5428   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5429   Created.push_back(Q.getNode());
5430 
5431   // FIXME: We should support doing a MUL in a wider type.
5432   auto GetMULHU = [&](SDValue X, SDValue Y) {
5433     // If the type isn't legal, use a wider mul of the the type calculated
5434     // earlier.
5435     if (!isTypeLegal(VT)) {
5436       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5437       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5438       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5439       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5440                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5441       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5442     }
5443 
5444     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5445       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5446     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5447       SDValue LoHi =
5448           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5449       return SDValue(LoHi.getNode(), 1);
5450     }
5451     return SDValue(); // No mulhu or equivalent
5452   };
5453 
5454   // Multiply the numerator (operand 0) by the magic value.
5455   Q = GetMULHU(Q, MagicFactor);
5456   if (!Q)
5457     return SDValue();
5458 
5459   Created.push_back(Q.getNode());
5460 
5461   if (UseNPQ) {
5462     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5463     Created.push_back(NPQ.getNode());
5464 
5465     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5466     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5467     if (VT.isVector())
5468       NPQ = GetMULHU(NPQ, NPQFactor);
5469     else
5470       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5471 
5472     Created.push_back(NPQ.getNode());
5473 
5474     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5475     Created.push_back(Q.getNode());
5476   }
5477 
5478   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5479   Created.push_back(Q.getNode());
5480 
5481   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5482 
5483   SDValue One = DAG.getConstant(1, dl, VT);
5484   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5485   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5486 }
5487 
5488 /// If all values in Values that *don't* match the predicate are same 'splat'
5489 /// value, then replace all values with that splat value.
5490 /// Else, if AlternativeReplacement was provided, then replace all values that
5491 /// do match predicate with AlternativeReplacement value.
5492 static void
5493 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5494                           std::function<bool(SDValue)> Predicate,
5495                           SDValue AlternativeReplacement = SDValue()) {
5496   SDValue Replacement;
5497   // Is there a value for which the Predicate does *NOT* match? What is it?
5498   auto SplatValue = llvm::find_if_not(Values, Predicate);
5499   if (SplatValue != Values.end()) {
5500     // Does Values consist only of SplatValue's and values matching Predicate?
5501     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5502           return Value == *SplatValue || Predicate(Value);
5503         })) // Then we shall replace values matching predicate with SplatValue.
5504       Replacement = *SplatValue;
5505   }
5506   if (!Replacement) {
5507     // Oops, we did not find the "baseline" splat value.
5508     if (!AlternativeReplacement)
5509       return; // Nothing to do.
5510     // Let's replace with provided value then.
5511     Replacement = AlternativeReplacement;
5512   }
5513   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5514 }
5515 
5516 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5517 /// where the divisor is constant and the comparison target is zero,
5518 /// return a DAG expression that will generate the same comparison result
5519 /// using only multiplications, additions and shifts/rotations.
5520 /// Ref: "Hacker's Delight" 10-17.
5521 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5522                                         SDValue CompTargetNode,
5523                                         ISD::CondCode Cond,
5524                                         DAGCombinerInfo &DCI,
5525                                         const SDLoc &DL) const {
5526   SmallVector<SDNode *, 5> Built;
5527   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5528                                          DCI, DL, Built)) {
5529     for (SDNode *N : Built)
5530       DCI.AddToWorklist(N);
5531     return Folded;
5532   }
5533 
5534   return SDValue();
5535 }
5536 
5537 SDValue
5538 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5539                                   SDValue CompTargetNode, ISD::CondCode Cond,
5540                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5541                                   SmallVectorImpl<SDNode *> &Created) const {
5542   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5543   // - D must be constant, with D = D0 * 2^K where D0 is odd
5544   // - P is the multiplicative inverse of D0 modulo 2^W
5545   // - Q = floor(((2^W) - 1) / D)
5546   // where W is the width of the common type of N and D.
5547   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5548          "Only applicable for (in)equality comparisons.");
5549 
5550   SelectionDAG &DAG = DCI.DAG;
5551 
5552   EVT VT = REMNode.getValueType();
5553   EVT SVT = VT.getScalarType();
5554   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5555   EVT ShSVT = ShVT.getScalarType();
5556 
5557   // If MUL is unavailable, we cannot proceed in any case.
5558   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5559     return SDValue();
5560 
5561   bool ComparingWithAllZeros = true;
5562   bool AllComparisonsWithNonZerosAreTautological = true;
5563   bool HadTautologicalLanes = false;
5564   bool AllLanesAreTautological = true;
5565   bool HadEvenDivisor = false;
5566   bool AllDivisorsArePowerOfTwo = true;
5567   bool HadTautologicalInvertedLanes = false;
5568   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5569 
5570   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5571     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5572     if (CDiv->isZero())
5573       return false;
5574 
5575     const APInt &D = CDiv->getAPIntValue();
5576     const APInt &Cmp = CCmp->getAPIntValue();
5577 
5578     ComparingWithAllZeros &= Cmp.isZero();
5579 
5580     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5581     // if C2 is not less than C1, the comparison is always false.
5582     // But we will only be able to produce the comparison that will give the
5583     // opposive tautological answer. So this lane would need to be fixed up.
5584     bool TautologicalInvertedLane = D.ule(Cmp);
5585     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5586 
5587     // If all lanes are tautological (either all divisors are ones, or divisor
5588     // is not greater than the constant we are comparing with),
5589     // we will prefer to avoid the fold.
5590     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
5591     HadTautologicalLanes |= TautologicalLane;
5592     AllLanesAreTautological &= TautologicalLane;
5593 
5594     // If we are comparing with non-zero, we need'll need  to subtract said
5595     // comparison value from the LHS. But there is no point in doing that if
5596     // every lane where we are comparing with non-zero is tautological..
5597     if (!Cmp.isZero())
5598       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5599 
5600     // Decompose D into D0 * 2^K
5601     unsigned K = D.countTrailingZeros();
5602     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5603     APInt D0 = D.lshr(K);
5604 
5605     // D is even if it has trailing zeros.
5606     HadEvenDivisor |= (K != 0);
5607     // D is a power-of-two if D0 is one.
5608     // If all divisors are power-of-two, we will prefer to avoid the fold.
5609     AllDivisorsArePowerOfTwo &= D0.isOne();
5610 
5611     // P = inv(D0, 2^W)
5612     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5613     unsigned W = D.getBitWidth();
5614     APInt P = D0.zext(W + 1)
5615                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5616                   .trunc(W);
5617     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5618     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
5619 
5620     // Q = floor((2^W - 1) u/ D)
5621     // R = ((2^W - 1) u% D)
5622     APInt Q, R;
5623     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
5624 
5625     // If we are comparing with zero, then that comparison constant is okay,
5626     // else it may need to be one less than that.
5627     if (Cmp.ugt(R))
5628       Q -= 1;
5629 
5630     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5631            "We are expecting that K is always less than all-ones for ShSVT");
5632 
5633     // If the lane is tautological the result can be constant-folded.
5634     if (TautologicalLane) {
5635       // Set P and K amount to a bogus values so we can try to splat them.
5636       P = 0;
5637       K = -1;
5638       // And ensure that comparison constant is tautological,
5639       // it will always compare true/false.
5640       Q = -1;
5641     }
5642 
5643     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5644     KAmts.push_back(
5645         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5646     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5647     return true;
5648   };
5649 
5650   SDValue N = REMNode.getOperand(0);
5651   SDValue D = REMNode.getOperand(1);
5652 
5653   // Collect the values from each element.
5654   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5655     return SDValue();
5656 
5657   // If all lanes are tautological, the result can be constant-folded.
5658   if (AllLanesAreTautological)
5659     return SDValue();
5660 
5661   // If this is a urem by a powers-of-two, avoid the fold since it can be
5662   // best implemented as a bit test.
5663   if (AllDivisorsArePowerOfTwo)
5664     return SDValue();
5665 
5666   SDValue PVal, KVal, QVal;
5667   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5668     if (HadTautologicalLanes) {
5669       // Try to turn PAmts into a splat, since we don't care about the values
5670       // that are currently '0'. If we can't, just keep '0'`s.
5671       turnVectorIntoSplatVector(PAmts, isNullConstant);
5672       // Try to turn KAmts into a splat, since we don't care about the values
5673       // that are currently '-1'. If we can't, change them to '0'`s.
5674       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5675                                 DAG.getConstant(0, DL, ShSVT));
5676     }
5677 
5678     PVal = DAG.getBuildVector(VT, DL, PAmts);
5679     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5680     QVal = DAG.getBuildVector(VT, DL, QAmts);
5681   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5682     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
5683            "Expected matchBinaryPredicate to return one element for "
5684            "SPLAT_VECTORs");
5685     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5686     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5687     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5688   } else {
5689     PVal = PAmts[0];
5690     KVal = KAmts[0];
5691     QVal = QAmts[0];
5692   }
5693 
5694   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5695     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5696       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5697     assert(CompTargetNode.getValueType() == N.getValueType() &&
5698            "Expecting that the types on LHS and RHS of comparisons match.");
5699     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5700   }
5701 
5702   // (mul N, P)
5703   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5704   Created.push_back(Op0.getNode());
5705 
5706   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5707   // divisors as a performance improvement, since rotating by 0 is a no-op.
5708   if (HadEvenDivisor) {
5709     // We need ROTR to do this.
5710     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5711       return SDValue();
5712     // UREM: (rotr (mul N, P), K)
5713     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5714     Created.push_back(Op0.getNode());
5715   }
5716 
5717   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5718   SDValue NewCC =
5719       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5720                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5721   if (!HadTautologicalInvertedLanes)
5722     return NewCC;
5723 
5724   // If any lanes previously compared always-false, the NewCC will give
5725   // always-true result for them, so we need to fixup those lanes.
5726   // Or the other way around for inequality predicate.
5727   assert(VT.isVector() && "Can/should only get here for vectors.");
5728   Created.push_back(NewCC.getNode());
5729 
5730   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5731   // if C2 is not less than C1, the comparison is always false.
5732   // But we have produced the comparison that will give the
5733   // opposive tautological answer. So these lanes would need to be fixed up.
5734   SDValue TautologicalInvertedChannels =
5735       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5736   Created.push_back(TautologicalInvertedChannels.getNode());
5737 
5738   // NOTE: we avoid letting illegal types through even if we're before legalize
5739   // ops – legalization has a hard time producing good code for this.
5740   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5741     // If we have a vector select, let's replace the comparison results in the
5742     // affected lanes with the correct tautological result.
5743     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5744                                               DL, SETCCVT, SETCCVT);
5745     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5746                        Replacement, NewCC);
5747   }
5748 
5749   // Else, we can just invert the comparison result in the appropriate lanes.
5750   //
5751   // NOTE: see the note above VSELECT above.
5752   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5753     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5754                        TautologicalInvertedChannels);
5755 
5756   return SDValue(); // Don't know how to lower.
5757 }
5758 
5759 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5760 /// where the divisor is constant and the comparison target is zero,
5761 /// return a DAG expression that will generate the same comparison result
5762 /// using only multiplications, additions and shifts/rotations.
5763 /// Ref: "Hacker's Delight" 10-17.
5764 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5765                                         SDValue CompTargetNode,
5766                                         ISD::CondCode Cond,
5767                                         DAGCombinerInfo &DCI,
5768                                         const SDLoc &DL) const {
5769   SmallVector<SDNode *, 7> Built;
5770   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5771                                          DCI, DL, Built)) {
5772     assert(Built.size() <= 7 && "Max size prediction failed.");
5773     for (SDNode *N : Built)
5774       DCI.AddToWorklist(N);
5775     return Folded;
5776   }
5777 
5778   return SDValue();
5779 }
5780 
5781 SDValue
5782 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5783                                   SDValue CompTargetNode, ISD::CondCode Cond,
5784                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5785                                   SmallVectorImpl<SDNode *> &Created) const {
5786   // Fold:
5787   //   (seteq/ne (srem N, D), 0)
5788   // To:
5789   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5790   //
5791   // - D must be constant, with D = D0 * 2^K where D0 is odd
5792   // - P is the multiplicative inverse of D0 modulo 2^W
5793   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5794   // - Q = floor((2 * A) / (2^K))
5795   // where W is the width of the common type of N and D.
5796   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5797          "Only applicable for (in)equality comparisons.");
5798 
5799   SelectionDAG &DAG = DCI.DAG;
5800 
5801   EVT VT = REMNode.getValueType();
5802   EVT SVT = VT.getScalarType();
5803   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5804   EVT ShSVT = ShVT.getScalarType();
5805 
5806   // If we are after ops legalization, and MUL is unavailable, we can not
5807   // proceed.
5808   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5809     return SDValue();
5810 
5811   // TODO: Could support comparing with non-zero too.
5812   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5813   if (!CompTarget || !CompTarget->isZero())
5814     return SDValue();
5815 
5816   bool HadIntMinDivisor = false;
5817   bool HadOneDivisor = false;
5818   bool AllDivisorsAreOnes = true;
5819   bool HadEvenDivisor = false;
5820   bool NeedToApplyOffset = false;
5821   bool AllDivisorsArePowerOfTwo = true;
5822   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5823 
5824   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5825     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5826     if (C->isZero())
5827       return false;
5828 
5829     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5830 
5831     // WARNING: this fold is only valid for positive divisors!
5832     APInt D = C->getAPIntValue();
5833     if (D.isNegative())
5834       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5835 
5836     HadIntMinDivisor |= D.isMinSignedValue();
5837 
5838     // If all divisors are ones, we will prefer to avoid the fold.
5839     HadOneDivisor |= D.isOne();
5840     AllDivisorsAreOnes &= D.isOne();
5841 
5842     // Decompose D into D0 * 2^K
5843     unsigned K = D.countTrailingZeros();
5844     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5845     APInt D0 = D.lshr(K);
5846 
5847     if (!D.isMinSignedValue()) {
5848       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5849       // we don't care about this lane in this fold, we'll special-handle it.
5850       HadEvenDivisor |= (K != 0);
5851     }
5852 
5853     // D is a power-of-two if D0 is one. This includes INT_MIN.
5854     // If all divisors are power-of-two, we will prefer to avoid the fold.
5855     AllDivisorsArePowerOfTwo &= D0.isOne();
5856 
5857     // P = inv(D0, 2^W)
5858     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5859     unsigned W = D.getBitWidth();
5860     APInt P = D0.zext(W + 1)
5861                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5862                   .trunc(W);
5863     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5864     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
5865 
5866     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5867     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5868     A.clearLowBits(K);
5869 
5870     if (!D.isMinSignedValue()) {
5871       // If divisor INT_MIN, then we don't care about this lane in this fold,
5872       // we'll special-handle it.
5873       NeedToApplyOffset |= A != 0;
5874     }
5875 
5876     // Q = floor((2 * A) / (2^K))
5877     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5878 
5879     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
5880            "We are expecting that A is always less than all-ones for SVT");
5881     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5882            "We are expecting that K is always less than all-ones for ShSVT");
5883 
5884     // If the divisor is 1 the result can be constant-folded. Likewise, we
5885     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5886     if (D.isOne()) {
5887       // Set P, A and K to a bogus values so we can try to splat them.
5888       P = 0;
5889       A = -1;
5890       K = -1;
5891 
5892       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5893       Q = -1;
5894     }
5895 
5896     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5897     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5898     KAmts.push_back(
5899         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5900     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5901     return true;
5902   };
5903 
5904   SDValue N = REMNode.getOperand(0);
5905   SDValue D = REMNode.getOperand(1);
5906 
5907   // Collect the values from each element.
5908   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5909     return SDValue();
5910 
5911   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5912   if (AllDivisorsAreOnes)
5913     return SDValue();
5914 
5915   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5916   // since it can be best implemented as a bit test.
5917   if (AllDivisorsArePowerOfTwo)
5918     return SDValue();
5919 
5920   SDValue PVal, AVal, KVal, QVal;
5921   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5922     if (HadOneDivisor) {
5923       // Try to turn PAmts into a splat, since we don't care about the values
5924       // that are currently '0'. If we can't, just keep '0'`s.
5925       turnVectorIntoSplatVector(PAmts, isNullConstant);
5926       // Try to turn AAmts into a splat, since we don't care about the
5927       // values that are currently '-1'. If we can't, change them to '0'`s.
5928       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5929                                 DAG.getConstant(0, DL, SVT));
5930       // Try to turn KAmts into a splat, since we don't care about the values
5931       // that are currently '-1'. If we can't, change them to '0'`s.
5932       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5933                                 DAG.getConstant(0, DL, ShSVT));
5934     }
5935 
5936     PVal = DAG.getBuildVector(VT, DL, PAmts);
5937     AVal = DAG.getBuildVector(VT, DL, AAmts);
5938     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5939     QVal = DAG.getBuildVector(VT, DL, QAmts);
5940   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5941     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
5942            QAmts.size() == 1 &&
5943            "Expected matchUnaryPredicate to return one element for scalable "
5944            "vectors");
5945     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5946     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
5947     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5948     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5949   } else {
5950     assert(isa<ConstantSDNode>(D) && "Expected a constant");
5951     PVal = PAmts[0];
5952     AVal = AAmts[0];
5953     KVal = KAmts[0];
5954     QVal = QAmts[0];
5955   }
5956 
5957   // (mul N, P)
5958   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5959   Created.push_back(Op0.getNode());
5960 
5961   if (NeedToApplyOffset) {
5962     // We need ADD to do this.
5963     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
5964       return SDValue();
5965 
5966     // (add (mul N, P), A)
5967     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5968     Created.push_back(Op0.getNode());
5969   }
5970 
5971   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5972   // divisors as a performance improvement, since rotating by 0 is a no-op.
5973   if (HadEvenDivisor) {
5974     // We need ROTR to do this.
5975     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5976       return SDValue();
5977     // SREM: (rotr (add (mul N, P), A), K)
5978     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5979     Created.push_back(Op0.getNode());
5980   }
5981 
5982   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5983   SDValue Fold =
5984       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5985                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5986 
5987   // If we didn't have lanes with INT_MIN divisor, then we're done.
5988   if (!HadIntMinDivisor)
5989     return Fold;
5990 
5991   // That fold is only valid for positive divisors. Which effectively means,
5992   // it is invalid for INT_MIN divisors. So if we have such a lane,
5993   // we must fix-up results for said lanes.
5994   assert(VT.isVector() && "Can/should only get here for vectors.");
5995 
5996   // NOTE: we avoid letting illegal types through even if we're before legalize
5997   // ops – legalization has a hard time producing good code for the code that
5998   // follows.
5999   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6000       !isOperationLegalOrCustom(ISD::AND, VT) ||
6001       !isOperationLegalOrCustom(Cond, VT) ||
6002       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6003     return SDValue();
6004 
6005   Created.push_back(Fold.getNode());
6006 
6007   SDValue IntMin = DAG.getConstant(
6008       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6009   SDValue IntMax = DAG.getConstant(
6010       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6011   SDValue Zero =
6012       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6013 
6014   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6015   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6016   Created.push_back(DivisorIsIntMin.getNode());
6017 
6018   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6019   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6020   Created.push_back(Masked.getNode());
6021   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6022   Created.push_back(MaskedIsZero.getNode());
6023 
6024   // To produce final result we need to blend 2 vectors: 'SetCC' and
6025   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6026   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6027   // constant-folded, select can get lowered to a shuffle with constant mask.
6028   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6029                                 MaskedIsZero, Fold);
6030 
6031   return Blended;
6032 }
6033 
6034 bool TargetLowering::
6035 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6036   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6037     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6038                                 "be a constant integer");
6039     return true;
6040   }
6041 
6042   return false;
6043 }
6044 
6045 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6046                                          const DenormalMode &Mode) const {
6047   SDLoc DL(Op);
6048   EVT VT = Op.getValueType();
6049   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6050   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6051   // Testing it with denormal inputs to avoid wrong estimate.
6052   if (Mode.Input == DenormalMode::IEEE) {
6053     // This is specifically a check for the handling of denormal inputs,
6054     // not the result.
6055 
6056     // Test = fabs(X) < SmallestNormal
6057     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6058     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6059     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6060     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6061     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6062   }
6063   // Test = X == 0.0
6064   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6065 }
6066 
6067 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6068                                              bool LegalOps, bool OptForSize,
6069                                              NegatibleCost &Cost,
6070                                              unsigned Depth) const {
6071   // fneg is removable even if it has multiple uses.
6072   if (Op.getOpcode() == ISD::FNEG) {
6073     Cost = NegatibleCost::Cheaper;
6074     return Op.getOperand(0);
6075   }
6076 
6077   // Don't recurse exponentially.
6078   if (Depth > SelectionDAG::MaxRecursionDepth)
6079     return SDValue();
6080 
6081   // Pre-increment recursion depth for use in recursive calls.
6082   ++Depth;
6083   const SDNodeFlags Flags = Op->getFlags();
6084   const TargetOptions &Options = DAG.getTarget().Options;
6085   EVT VT = Op.getValueType();
6086   unsigned Opcode = Op.getOpcode();
6087 
6088   // Don't allow anything with multiple uses unless we know it is free.
6089   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6090     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6091                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6092     if (!IsFreeExtend)
6093       return SDValue();
6094   }
6095 
6096   auto RemoveDeadNode = [&](SDValue N) {
6097     if (N && N.getNode()->use_empty())
6098       DAG.RemoveDeadNode(N.getNode());
6099   };
6100 
6101   SDLoc DL(Op);
6102 
6103   // Because getNegatedExpression can delete nodes we need a handle to keep
6104   // temporary nodes alive in case the recursion manages to create an identical
6105   // node.
6106   std::list<HandleSDNode> Handles;
6107 
6108   switch (Opcode) {
6109   case ISD::ConstantFP: {
6110     // Don't invert constant FP values after legalization unless the target says
6111     // the negated constant is legal.
6112     bool IsOpLegal =
6113         isOperationLegal(ISD::ConstantFP, VT) ||
6114         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6115                      OptForSize);
6116 
6117     if (LegalOps && !IsOpLegal)
6118       break;
6119 
6120     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6121     V.changeSign();
6122     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6123 
6124     // If we already have the use of the negated floating constant, it is free
6125     // to negate it even it has multiple uses.
6126     if (!Op.hasOneUse() && CFP.use_empty())
6127       break;
6128     Cost = NegatibleCost::Neutral;
6129     return CFP;
6130   }
6131   case ISD::BUILD_VECTOR: {
6132     // Only permit BUILD_VECTOR of constants.
6133     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6134           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6135         }))
6136       break;
6137 
6138     bool IsOpLegal =
6139         (isOperationLegal(ISD::ConstantFP, VT) &&
6140          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6141         llvm::all_of(Op->op_values(), [&](SDValue N) {
6142           return N.isUndef() ||
6143                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6144                               OptForSize);
6145         });
6146 
6147     if (LegalOps && !IsOpLegal)
6148       break;
6149 
6150     SmallVector<SDValue, 4> Ops;
6151     for (SDValue C : Op->op_values()) {
6152       if (C.isUndef()) {
6153         Ops.push_back(C);
6154         continue;
6155       }
6156       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6157       V.changeSign();
6158       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6159     }
6160     Cost = NegatibleCost::Neutral;
6161     return DAG.getBuildVector(VT, DL, Ops);
6162   }
6163   case ISD::FADD: {
6164     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6165       break;
6166 
6167     // After operation legalization, it might not be legal to create new FSUBs.
6168     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6169       break;
6170     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6171 
6172     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6173     NegatibleCost CostX = NegatibleCost::Expensive;
6174     SDValue NegX =
6175         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6176     // Prevent this node from being deleted by the next call.
6177     if (NegX)
6178       Handles.emplace_back(NegX);
6179 
6180     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6181     NegatibleCost CostY = NegatibleCost::Expensive;
6182     SDValue NegY =
6183         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6184 
6185     // We're done with the handles.
6186     Handles.clear();
6187 
6188     // Negate the X if its cost is less or equal than Y.
6189     if (NegX && (CostX <= CostY)) {
6190       Cost = CostX;
6191       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6192       if (NegY != N)
6193         RemoveDeadNode(NegY);
6194       return N;
6195     }
6196 
6197     // Negate the Y if it is not expensive.
6198     if (NegY) {
6199       Cost = CostY;
6200       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6201       if (NegX != N)
6202         RemoveDeadNode(NegX);
6203       return N;
6204     }
6205     break;
6206   }
6207   case ISD::FSUB: {
6208     // We can't turn -(A-B) into B-A when we honor signed zeros.
6209     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6210       break;
6211 
6212     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6213     // fold (fneg (fsub 0, Y)) -> Y
6214     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6215       if (C->isZero()) {
6216         Cost = NegatibleCost::Cheaper;
6217         return Y;
6218       }
6219 
6220     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6221     Cost = NegatibleCost::Neutral;
6222     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6223   }
6224   case ISD::FMUL:
6225   case ISD::FDIV: {
6226     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6227 
6228     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6229     NegatibleCost CostX = NegatibleCost::Expensive;
6230     SDValue NegX =
6231         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6232     // Prevent this node from being deleted by the next call.
6233     if (NegX)
6234       Handles.emplace_back(NegX);
6235 
6236     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6237     NegatibleCost CostY = NegatibleCost::Expensive;
6238     SDValue NegY =
6239         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6240 
6241     // We're done with the handles.
6242     Handles.clear();
6243 
6244     // Negate the X if its cost is less or equal than Y.
6245     if (NegX && (CostX <= CostY)) {
6246       Cost = CostX;
6247       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6248       if (NegY != N)
6249         RemoveDeadNode(NegY);
6250       return N;
6251     }
6252 
6253     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6254     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6255       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6256         break;
6257 
6258     // Negate the Y if it is not expensive.
6259     if (NegY) {
6260       Cost = CostY;
6261       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6262       if (NegX != N)
6263         RemoveDeadNode(NegX);
6264       return N;
6265     }
6266     break;
6267   }
6268   case ISD::FMA:
6269   case ISD::FMAD: {
6270     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6271       break;
6272 
6273     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6274     NegatibleCost CostZ = NegatibleCost::Expensive;
6275     SDValue NegZ =
6276         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6277     // Give up if fail to negate the Z.
6278     if (!NegZ)
6279       break;
6280 
6281     // Prevent this node from being deleted by the next two calls.
6282     Handles.emplace_back(NegZ);
6283 
6284     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6285     NegatibleCost CostX = NegatibleCost::Expensive;
6286     SDValue NegX =
6287         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6288     // Prevent this node from being deleted by the next call.
6289     if (NegX)
6290       Handles.emplace_back(NegX);
6291 
6292     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6293     NegatibleCost CostY = NegatibleCost::Expensive;
6294     SDValue NegY =
6295         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6296 
6297     // We're done with the handles.
6298     Handles.clear();
6299 
6300     // Negate the X if its cost is less or equal than Y.
6301     if (NegX && (CostX <= CostY)) {
6302       Cost = std::min(CostX, CostZ);
6303       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6304       if (NegY != N)
6305         RemoveDeadNode(NegY);
6306       return N;
6307     }
6308 
6309     // Negate the Y if it is not expensive.
6310     if (NegY) {
6311       Cost = std::min(CostY, CostZ);
6312       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6313       if (NegX != N)
6314         RemoveDeadNode(NegX);
6315       return N;
6316     }
6317     break;
6318   }
6319 
6320   case ISD::FP_EXTEND:
6321   case ISD::FSIN:
6322     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6323                                             OptForSize, Cost, Depth))
6324       return DAG.getNode(Opcode, DL, VT, NegV);
6325     break;
6326   case ISD::FP_ROUND:
6327     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6328                                             OptForSize, Cost, Depth))
6329       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6330     break;
6331   }
6332 
6333   return SDValue();
6334 }
6335 
6336 //===----------------------------------------------------------------------===//
6337 // Legalization Utilities
6338 //===----------------------------------------------------------------------===//
6339 
6340 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6341                                     SDValue LHS, SDValue RHS,
6342                                     SmallVectorImpl<SDValue> &Result,
6343                                     EVT HiLoVT, SelectionDAG &DAG,
6344                                     MulExpansionKind Kind, SDValue LL,
6345                                     SDValue LH, SDValue RL, SDValue RH) const {
6346   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6347          Opcode == ISD::SMUL_LOHI);
6348 
6349   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6350                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6351   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6352                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6353   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6354                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6355   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6356                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6357 
6358   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6359     return false;
6360 
6361   unsigned OuterBitSize = VT.getScalarSizeInBits();
6362   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6363 
6364   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6365   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6366          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6367 
6368   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6369   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6370                           bool Signed) -> bool {
6371     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6372       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6373       Hi = SDValue(Lo.getNode(), 1);
6374       return true;
6375     }
6376     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6377       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6378       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6379       return true;
6380     }
6381     return false;
6382   };
6383 
6384   SDValue Lo, Hi;
6385 
6386   if (!LL.getNode() && !RL.getNode() &&
6387       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6388     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6389     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6390   }
6391 
6392   if (!LL.getNode())
6393     return false;
6394 
6395   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6396   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6397       DAG.MaskedValueIsZero(RHS, HighMask)) {
6398     // The inputs are both zero-extended.
6399     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6400       Result.push_back(Lo);
6401       Result.push_back(Hi);
6402       if (Opcode != ISD::MUL) {
6403         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6404         Result.push_back(Zero);
6405         Result.push_back(Zero);
6406       }
6407       return true;
6408     }
6409   }
6410 
6411   if (!VT.isVector() && Opcode == ISD::MUL &&
6412       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6413       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6414     // The input values are both sign-extended.
6415     // TODO non-MUL case?
6416     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6417       Result.push_back(Lo);
6418       Result.push_back(Hi);
6419       return true;
6420     }
6421   }
6422 
6423   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6424   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6425   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6426     // FIXME getShiftAmountTy does not always return a sensible result when VT
6427     // is an illegal type, and so the type may be too small to fit the shift
6428     // amount. Override it with i32. The shift will have to be legalized.
6429     ShiftAmountTy = MVT::i32;
6430   }
6431   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6432 
6433   if (!LH.getNode() && !RH.getNode() &&
6434       isOperationLegalOrCustom(ISD::SRL, VT) &&
6435       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6436     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6437     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6438     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6439     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6440   }
6441 
6442   if (!LH.getNode())
6443     return false;
6444 
6445   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6446     return false;
6447 
6448   Result.push_back(Lo);
6449 
6450   if (Opcode == ISD::MUL) {
6451     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6452     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6453     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6454     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6455     Result.push_back(Hi);
6456     return true;
6457   }
6458 
6459   // Compute the full width result.
6460   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6461     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6462     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6463     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6464     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6465   };
6466 
6467   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6468   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6469     return false;
6470 
6471   // This is effectively the add part of a multiply-add of half-sized operands,
6472   // so it cannot overflow.
6473   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6474 
6475   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6476     return false;
6477 
6478   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6479   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6480 
6481   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6482                   isOperationLegalOrCustom(ISD::ADDE, VT));
6483   if (UseGlue)
6484     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6485                        Merge(Lo, Hi));
6486   else
6487     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6488                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6489 
6490   SDValue Carry = Next.getValue(1);
6491   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6492   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6493 
6494   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6495     return false;
6496 
6497   if (UseGlue)
6498     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6499                      Carry);
6500   else
6501     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6502                      Zero, Carry);
6503 
6504   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6505 
6506   if (Opcode == ISD::SMUL_LOHI) {
6507     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6508                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6509     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6510 
6511     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6512                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6513     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6514   }
6515 
6516   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6517   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6518   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6519   return true;
6520 }
6521 
6522 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6523                                SelectionDAG &DAG, MulExpansionKind Kind,
6524                                SDValue LL, SDValue LH, SDValue RL,
6525                                SDValue RH) const {
6526   SmallVector<SDValue, 2> Result;
6527   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6528                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6529                            DAG, Kind, LL, LH, RL, RH);
6530   if (Ok) {
6531     assert(Result.size() == 2);
6532     Lo = Result[0];
6533     Hi = Result[1];
6534   }
6535   return Ok;
6536 }
6537 
6538 // Check that (every element of) Z is undef or not an exact multiple of BW.
6539 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6540   return ISD::matchUnaryPredicate(
6541       Z,
6542       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6543       true);
6544 }
6545 
6546 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6547                                        SelectionDAG &DAG) const {
6548   EVT VT = Node->getValueType(0);
6549 
6550   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6551                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6552                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6553                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6554     return false;
6555 
6556   SDValue X = Node->getOperand(0);
6557   SDValue Y = Node->getOperand(1);
6558   SDValue Z = Node->getOperand(2);
6559 
6560   unsigned BW = VT.getScalarSizeInBits();
6561   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6562   SDLoc DL(SDValue(Node, 0));
6563 
6564   EVT ShVT = Z.getValueType();
6565 
6566   // If a funnel shift in the other direction is more supported, use it.
6567   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6568   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6569       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6570     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6571       // fshl X, Y, Z -> fshr X, Y, -Z
6572       // fshr X, Y, Z -> fshl X, Y, -Z
6573       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6574       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6575     } else {
6576       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6577       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6578       SDValue One = DAG.getConstant(1, DL, ShVT);
6579       if (IsFSHL) {
6580         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6581         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6582       } else {
6583         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6584         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6585       }
6586       Z = DAG.getNOT(DL, Z, ShVT);
6587     }
6588     Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6589     return true;
6590   }
6591 
6592   SDValue ShX, ShY;
6593   SDValue ShAmt, InvShAmt;
6594   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6595     // fshl: X << C | Y >> (BW - C)
6596     // fshr: X << (BW - C) | Y >> C
6597     // where C = Z % BW is not zero
6598     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6599     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6600     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6601     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6602     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6603   } else {
6604     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6605     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6606     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6607     if (isPowerOf2_32(BW)) {
6608       // Z % BW -> Z & (BW - 1)
6609       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6610       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6611       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6612     } else {
6613       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6614       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6615       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6616     }
6617 
6618     SDValue One = DAG.getConstant(1, DL, ShVT);
6619     if (IsFSHL) {
6620       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6621       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6622       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6623     } else {
6624       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6625       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6626       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6627     }
6628   }
6629   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6630   return true;
6631 }
6632 
6633 // TODO: Merge with expandFunnelShift.
6634 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6635                                SDValue &Result, SelectionDAG &DAG) const {
6636   EVT VT = Node->getValueType(0);
6637   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6638   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6639   SDValue Op0 = Node->getOperand(0);
6640   SDValue Op1 = Node->getOperand(1);
6641   SDLoc DL(SDValue(Node, 0));
6642 
6643   EVT ShVT = Op1.getValueType();
6644   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6645 
6646   // If a rotate in the other direction is supported, use it.
6647   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6648   if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6649     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6650     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6651     return true;
6652   }
6653 
6654   if (!AllowVectorOps && VT.isVector() &&
6655       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6656        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6657        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6658        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6659        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6660     return false;
6661 
6662   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6663   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6664   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6665   SDValue ShVal;
6666   SDValue HsVal;
6667   if (isPowerOf2_32(EltSizeInBits)) {
6668     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6669     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6670     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6671     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6672     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6673     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6674     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6675   } else {
6676     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6677     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6678     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6679     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6680     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6681     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6682     SDValue One = DAG.getConstant(1, DL, ShVT);
6683     HsVal =
6684         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6685   }
6686   Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6687   return true;
6688 }
6689 
6690 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
6691                                       SelectionDAG &DAG) const {
6692   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
6693   EVT VT = Node->getValueType(0);
6694   unsigned VTBits = VT.getScalarSizeInBits();
6695   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
6696 
6697   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
6698   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
6699   SDValue ShOpLo = Node->getOperand(0);
6700   SDValue ShOpHi = Node->getOperand(1);
6701   SDValue ShAmt = Node->getOperand(2);
6702   EVT ShAmtVT = ShAmt.getValueType();
6703   EVT ShAmtCCVT =
6704       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
6705   SDLoc dl(Node);
6706 
6707   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
6708   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
6709   // away during isel.
6710   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6711                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
6712   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6713                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
6714                        : DAG.getConstant(0, dl, VT);
6715 
6716   SDValue Tmp2, Tmp3;
6717   if (IsSHL) {
6718     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
6719     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
6720   } else {
6721     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
6722     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
6723   }
6724 
6725   // If the shift amount is larger or equal than the width of a part we don't
6726   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
6727   // values for large shift amounts.
6728   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6729                                 DAG.getConstant(VTBits, dl, ShAmtVT));
6730   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
6731                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
6732 
6733   if (IsSHL) {
6734     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6735     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6736   } else {
6737     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6738     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6739   }
6740 }
6741 
6742 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6743                                       SelectionDAG &DAG) const {
6744   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6745   SDValue Src = Node->getOperand(OpNo);
6746   EVT SrcVT = Src.getValueType();
6747   EVT DstVT = Node->getValueType(0);
6748   SDLoc dl(SDValue(Node, 0));
6749 
6750   // FIXME: Only f32 to i64 conversions are supported.
6751   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6752     return false;
6753 
6754   if (Node->isStrictFPOpcode())
6755     // When a NaN is converted to an integer a trap is allowed. We can't
6756     // use this expansion here because it would eliminate that trap. Other
6757     // traps are also allowed and cannot be eliminated. See
6758     // IEEE 754-2008 sec 5.8.
6759     return false;
6760 
6761   // Expand f32 -> i64 conversion
6762   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6763   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6764   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6765   EVT IntVT = SrcVT.changeTypeToInteger();
6766   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6767 
6768   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6769   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6770   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6771   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6772   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6773   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6774 
6775   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6776 
6777   SDValue ExponentBits = DAG.getNode(
6778       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6779       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6780   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6781 
6782   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6783                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6784                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6785   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6786 
6787   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6788                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6789                           DAG.getConstant(0x00800000, dl, IntVT));
6790 
6791   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6792 
6793   R = DAG.getSelectCC(
6794       dl, Exponent, ExponentLoBit,
6795       DAG.getNode(ISD::SHL, dl, DstVT, R,
6796                   DAG.getZExtOrTrunc(
6797                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6798                       dl, IntShVT)),
6799       DAG.getNode(ISD::SRL, dl, DstVT, R,
6800                   DAG.getZExtOrTrunc(
6801                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6802                       dl, IntShVT)),
6803       ISD::SETGT);
6804 
6805   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6806                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6807 
6808   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6809                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6810   return true;
6811 }
6812 
6813 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6814                                       SDValue &Chain,
6815                                       SelectionDAG &DAG) const {
6816   SDLoc dl(SDValue(Node, 0));
6817   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6818   SDValue Src = Node->getOperand(OpNo);
6819 
6820   EVT SrcVT = Src.getValueType();
6821   EVT DstVT = Node->getValueType(0);
6822   EVT SetCCVT =
6823       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6824   EVT DstSetCCVT =
6825       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6826 
6827   // Only expand vector types if we have the appropriate vector bit operations.
6828   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6829                                                    ISD::FP_TO_SINT;
6830   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6831                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6832     return false;
6833 
6834   // If the maximum float value is smaller then the signed integer range,
6835   // the destination signmask can't be represented by the float, so we can
6836   // just use FP_TO_SINT directly.
6837   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6838   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
6839   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6840   if (APFloat::opOverflow &
6841       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6842     if (Node->isStrictFPOpcode()) {
6843       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6844                            { Node->getOperand(0), Src });
6845       Chain = Result.getValue(1);
6846     } else
6847       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6848     return true;
6849   }
6850 
6851   // Don't expand it if there isn't cheap fsub instruction.
6852   if (!isOperationLegalOrCustom(
6853           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6854     return false;
6855 
6856   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6857   SDValue Sel;
6858 
6859   if (Node->isStrictFPOpcode()) {
6860     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6861                        Node->getOperand(0), /*IsSignaling*/ true);
6862     Chain = Sel.getValue(1);
6863   } else {
6864     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6865   }
6866 
6867   bool Strict = Node->isStrictFPOpcode() ||
6868                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6869 
6870   if (Strict) {
6871     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6872     // signmask then offset (the result of which should be fully representable).
6873     // Sel = Src < 0x8000000000000000
6874     // FltOfs = select Sel, 0, 0x8000000000000000
6875     // IntOfs = select Sel, 0, 0x8000000000000000
6876     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6877 
6878     // TODO: Should any fast-math-flags be set for the FSUB?
6879     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6880                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6881     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6882     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6883                                    DAG.getConstant(0, dl, DstVT),
6884                                    DAG.getConstant(SignMask, dl, DstVT));
6885     SDValue SInt;
6886     if (Node->isStrictFPOpcode()) {
6887       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6888                                 { Chain, Src, FltOfs });
6889       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6890                          { Val.getValue(1), Val });
6891       Chain = SInt.getValue(1);
6892     } else {
6893       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6894       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6895     }
6896     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6897   } else {
6898     // Expand based on maximum range of FP_TO_SINT:
6899     // True = fp_to_sint(Src)
6900     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6901     // Result = select (Src < 0x8000000000000000), True, False
6902 
6903     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6904     // TODO: Should any fast-math-flags be set for the FSUB?
6905     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6906                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6907     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6908                         DAG.getConstant(SignMask, dl, DstVT));
6909     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6910     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6911   }
6912   return true;
6913 }
6914 
6915 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6916                                       SDValue &Chain,
6917                                       SelectionDAG &DAG) const {
6918   // This transform is not correct for converting 0 when rounding mode is set
6919   // to round toward negative infinity which will produce -0.0. So disable under
6920   // strictfp.
6921   if (Node->isStrictFPOpcode())
6922     return false;
6923 
6924   SDValue Src = Node->getOperand(0);
6925   EVT SrcVT = Src.getValueType();
6926   EVT DstVT = Node->getValueType(0);
6927 
6928   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6929     return false;
6930 
6931   // Only expand vector types if we have the appropriate vector bit operations.
6932   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6933                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6934                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6935                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6936                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6937     return false;
6938 
6939   SDLoc dl(SDValue(Node, 0));
6940   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6941 
6942   // Implementation of unsigned i64 to f64 following the algorithm in
6943   // __floatundidf in compiler_rt.  This implementation performs rounding
6944   // correctly in all rounding modes with the exception of converting 0
6945   // when rounding toward negative infinity. In that case the fsub will produce
6946   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6947   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6948   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6949       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6950   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6951   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6952   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6953 
6954   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6955   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6956   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6957   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6958   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6959   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6960   SDValue HiSub =
6961       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6962   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6963   return true;
6964 }
6965 
6966 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6967                                               SelectionDAG &DAG) const {
6968   SDLoc dl(Node);
6969   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6970     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6971   EVT VT = Node->getValueType(0);
6972 
6973   if (VT.isScalableVector())
6974     report_fatal_error(
6975         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
6976 
6977   if (isOperationLegalOrCustom(NewOp, VT)) {
6978     SDValue Quiet0 = Node->getOperand(0);
6979     SDValue Quiet1 = Node->getOperand(1);
6980 
6981     if (!Node->getFlags().hasNoNaNs()) {
6982       // Insert canonicalizes if it's possible we need to quiet to get correct
6983       // sNaN behavior.
6984       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6985         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6986                              Node->getFlags());
6987       }
6988       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6989         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6990                              Node->getFlags());
6991       }
6992     }
6993 
6994     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6995   }
6996 
6997   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6998   // instead if there are no NaNs.
6999   if (Node->getFlags().hasNoNaNs()) {
7000     unsigned IEEE2018Op =
7001         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7002     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7003       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7004                          Node->getOperand(1), Node->getFlags());
7005     }
7006   }
7007 
7008   // If none of the above worked, but there are no NaNs, then expand to
7009   // a compare/select sequence.  This is required for correctness since
7010   // InstCombine might have canonicalized a fcmp+select sequence to a
7011   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
7012   // expansion to libcall, we might introduce a link-time dependency
7013   // on libm into a file that originally did not have one.
7014   if (Node->getFlags().hasNoNaNs()) {
7015     ISD::CondCode Pred =
7016         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7017     SDValue Op1 = Node->getOperand(0);
7018     SDValue Op2 = Node->getOperand(1);
7019     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
7020     // Copy FMF flags, but always set the no-signed-zeros flag
7021     // as this is implied by the FMINNUM/FMAXNUM semantics.
7022     SDNodeFlags Flags = Node->getFlags();
7023     Flags.setNoSignedZeros(true);
7024     SelCC->setFlags(Flags);
7025     return SelCC;
7026   }
7027 
7028   return SDValue();
7029 }
7030 
7031 // Only expand vector types if we have the appropriate vector bit operations.
7032 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7033   assert(VT.isVector() && "Expected vector type");
7034   unsigned Len = VT.getScalarSizeInBits();
7035   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7036          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7037          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7038          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7039          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7040 }
7041 
7042 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7043   SDLoc dl(Node);
7044   EVT VT = Node->getValueType(0);
7045   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7046   SDValue Op = Node->getOperand(0);
7047   unsigned Len = VT.getScalarSizeInBits();
7048   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7049 
7050   // TODO: Add support for irregular type lengths.
7051   if (!(Len <= 128 && Len % 8 == 0))
7052     return SDValue();
7053 
7054   // Only expand vector types if we have the appropriate vector bit operations.
7055   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7056     return SDValue();
7057 
7058   // This is the "best" algorithm from
7059   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7060   SDValue Mask55 =
7061       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7062   SDValue Mask33 =
7063       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7064   SDValue Mask0F =
7065       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7066   SDValue Mask01 =
7067       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7068 
7069   // v = v - ((v >> 1) & 0x55555555...)
7070   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7071                    DAG.getNode(ISD::AND, dl, VT,
7072                                DAG.getNode(ISD::SRL, dl, VT, Op,
7073                                            DAG.getConstant(1, dl, ShVT)),
7074                                Mask55));
7075   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7076   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7077                    DAG.getNode(ISD::AND, dl, VT,
7078                                DAG.getNode(ISD::SRL, dl, VT, Op,
7079                                            DAG.getConstant(2, dl, ShVT)),
7080                                Mask33));
7081   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7082   Op = DAG.getNode(ISD::AND, dl, VT,
7083                    DAG.getNode(ISD::ADD, dl, VT, Op,
7084                                DAG.getNode(ISD::SRL, dl, VT, Op,
7085                                            DAG.getConstant(4, dl, ShVT))),
7086                    Mask0F);
7087   // v = (v * 0x01010101...) >> (Len - 8)
7088   if (Len > 8)
7089     Op =
7090         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7091                     DAG.getConstant(Len - 8, dl, ShVT));
7092 
7093   return Op;
7094 }
7095 
7096 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7097   SDLoc dl(Node);
7098   EVT VT = Node->getValueType(0);
7099   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7100   SDValue Op = Node->getOperand(0);
7101   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7102 
7103   // If the non-ZERO_UNDEF version is supported we can use that instead.
7104   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7105       isOperationLegalOrCustom(ISD::CTLZ, VT))
7106     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7107 
7108   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7109   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7110     EVT SetCCVT =
7111         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7112     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7113     SDValue Zero = DAG.getConstant(0, dl, VT);
7114     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7115     return DAG.getSelect(dl, VT, SrcIsZero,
7116                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7117   }
7118 
7119   // Only expand vector types if we have the appropriate vector bit operations.
7120   // This includes the operations needed to expand CTPOP if it isn't supported.
7121   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7122                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7123                          !canExpandVectorCTPOP(*this, VT)) ||
7124                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7125                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7126     return SDValue();
7127 
7128   // for now, we do this:
7129   // x = x | (x >> 1);
7130   // x = x | (x >> 2);
7131   // ...
7132   // x = x | (x >>16);
7133   // x = x | (x >>32); // for 64-bit input
7134   // return popcount(~x);
7135   //
7136   // Ref: "Hacker's Delight" by Henry Warren
7137   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7138     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7139     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7140                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7141   }
7142   Op = DAG.getNOT(dl, Op, VT);
7143   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7144 }
7145 
7146 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7147   SDLoc dl(Node);
7148   EVT VT = Node->getValueType(0);
7149   SDValue Op = Node->getOperand(0);
7150   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7151 
7152   // If the non-ZERO_UNDEF version is supported we can use that instead.
7153   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7154       isOperationLegalOrCustom(ISD::CTTZ, VT))
7155     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7156 
7157   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7158   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7159     EVT SetCCVT =
7160         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7161     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7162     SDValue Zero = DAG.getConstant(0, dl, VT);
7163     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7164     return DAG.getSelect(dl, VT, SrcIsZero,
7165                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7166   }
7167 
7168   // Only expand vector types if we have the appropriate vector bit operations.
7169   // This includes the operations needed to expand CTPOP if it isn't supported.
7170   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7171                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7172                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7173                          !canExpandVectorCTPOP(*this, VT)) ||
7174                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7175                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7176                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7177     return SDValue();
7178 
7179   // for now, we use: { return popcount(~x & (x - 1)); }
7180   // unless the target has ctlz but not ctpop, in which case we use:
7181   // { return 32 - nlz(~x & (x-1)); }
7182   // Ref: "Hacker's Delight" by Henry Warren
7183   SDValue Tmp = DAG.getNode(
7184       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7185       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7186 
7187   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7188   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7189     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7190                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7191   }
7192 
7193   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7194 }
7195 
7196 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7197                                   bool IsNegative) const {
7198   SDLoc dl(N);
7199   EVT VT = N->getValueType(0);
7200   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7201   SDValue Op = N->getOperand(0);
7202 
7203   // abs(x) -> smax(x,sub(0,x))
7204   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7205       isOperationLegal(ISD::SMAX, VT)) {
7206     SDValue Zero = DAG.getConstant(0, dl, VT);
7207     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7208                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7209   }
7210 
7211   // abs(x) -> umin(x,sub(0,x))
7212   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7213       isOperationLegal(ISD::UMIN, VT)) {
7214     SDValue Zero = DAG.getConstant(0, dl, VT);
7215     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7216                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7217   }
7218 
7219   // 0 - abs(x) -> smin(x, sub(0,x))
7220   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7221       isOperationLegal(ISD::SMIN, VT)) {
7222     SDValue Zero = DAG.getConstant(0, dl, VT);
7223     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7224                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7225   }
7226 
7227   // Only expand vector types if we have the appropriate vector operations.
7228   if (VT.isVector() &&
7229       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7230        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7231        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7232        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7233     return SDValue();
7234 
7235   SDValue Shift =
7236       DAG.getNode(ISD::SRA, dl, VT, Op,
7237                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7238   if (!IsNegative) {
7239     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7240     return DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7241   }
7242 
7243   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7244   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7245   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7246 }
7247 
7248 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7249   SDLoc dl(N);
7250   EVT VT = N->getValueType(0);
7251   SDValue Op = N->getOperand(0);
7252 
7253   if (!VT.isSimple())
7254     return SDValue();
7255 
7256   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7257   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7258   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7259   default:
7260     return SDValue();
7261   case MVT::i16:
7262     // Use a rotate by 8. This can be further expanded if necessary.
7263     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7264   case MVT::i32:
7265     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7266     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7267     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7268     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7269     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7270                        DAG.getConstant(0xFF0000, dl, VT));
7271     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7272     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7273     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7274     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7275   case MVT::i64:
7276     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7277     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7278     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7279     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7280     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7281     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7282     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7283     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7284     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7285                        DAG.getConstant(255ULL<<48, dl, VT));
7286     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7287                        DAG.getConstant(255ULL<<40, dl, VT));
7288     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7289                        DAG.getConstant(255ULL<<32, dl, VT));
7290     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7291                        DAG.getConstant(255ULL<<24, dl, VT));
7292     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7293                        DAG.getConstant(255ULL<<16, dl, VT));
7294     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7295                        DAG.getConstant(255ULL<<8 , dl, VT));
7296     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7297     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7298     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7299     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7300     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7301     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7302     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7303   }
7304 }
7305 
7306 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7307   SDLoc dl(N);
7308   EVT VT = N->getValueType(0);
7309   SDValue Op = N->getOperand(0);
7310   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7311   unsigned Sz = VT.getScalarSizeInBits();
7312 
7313   SDValue Tmp, Tmp2, Tmp3;
7314 
7315   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7316   // and finally the i1 pairs.
7317   // TODO: We can easily support i4/i2 legal types if any target ever does.
7318   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7319     // Create the masks - repeating the pattern every byte.
7320     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7321     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7322     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7323 
7324     // BSWAP if the type is wider than a single byte.
7325     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7326 
7327     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7328     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7329     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7330     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7331     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7332     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7333 
7334     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
7335     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
7336     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
7337     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
7338     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7339     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7340 
7341     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
7342     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
7343     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
7344     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
7345     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7346     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7347     return Tmp;
7348   }
7349 
7350   Tmp = DAG.getConstant(0, dl, VT);
7351   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7352     if (I < J)
7353       Tmp2 =
7354           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7355     else
7356       Tmp2 =
7357           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7358 
7359     APInt Shift(Sz, 1);
7360     Shift <<= J;
7361     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7362     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7363   }
7364 
7365   return Tmp;
7366 }
7367 
7368 std::pair<SDValue, SDValue>
7369 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7370                                     SelectionDAG &DAG) const {
7371   SDLoc SL(LD);
7372   SDValue Chain = LD->getChain();
7373   SDValue BasePTR = LD->getBasePtr();
7374   EVT SrcVT = LD->getMemoryVT();
7375   EVT DstVT = LD->getValueType(0);
7376   ISD::LoadExtType ExtType = LD->getExtensionType();
7377 
7378   if (SrcVT.isScalableVector())
7379     report_fatal_error("Cannot scalarize scalable vector loads");
7380 
7381   unsigned NumElem = SrcVT.getVectorNumElements();
7382 
7383   EVT SrcEltVT = SrcVT.getScalarType();
7384   EVT DstEltVT = DstVT.getScalarType();
7385 
7386   // A vector must always be stored in memory as-is, i.e. without any padding
7387   // between the elements, since various code depend on it, e.g. in the
7388   // handling of a bitcast of a vector type to int, which may be done with a
7389   // vector store followed by an integer load. A vector that does not have
7390   // elements that are byte-sized must therefore be stored as an integer
7391   // built out of the extracted vector elements.
7392   if (!SrcEltVT.isByteSized()) {
7393     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7394     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7395 
7396     unsigned NumSrcBits = SrcVT.getSizeInBits();
7397     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7398 
7399     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7400     SDValue SrcEltBitMask = DAG.getConstant(
7401         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7402 
7403     // Load the whole vector and avoid masking off the top bits as it makes
7404     // the codegen worse.
7405     SDValue Load =
7406         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7407                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7408                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7409 
7410     SmallVector<SDValue, 8> Vals;
7411     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7412       unsigned ShiftIntoIdx =
7413           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7414       SDValue ShiftAmount =
7415           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7416                                      LoadVT, SL, /*LegalTypes=*/false);
7417       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7418       SDValue Elt =
7419           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7420       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7421 
7422       if (ExtType != ISD::NON_EXTLOAD) {
7423         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7424         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7425       }
7426 
7427       Vals.push_back(Scalar);
7428     }
7429 
7430     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7431     return std::make_pair(Value, Load.getValue(1));
7432   }
7433 
7434   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7435   assert(SrcEltVT.isByteSized());
7436 
7437   SmallVector<SDValue, 8> Vals;
7438   SmallVector<SDValue, 8> LoadChains;
7439 
7440   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7441     SDValue ScalarLoad =
7442         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7443                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7444                        SrcEltVT, LD->getOriginalAlign(),
7445                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7446 
7447     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7448 
7449     Vals.push_back(ScalarLoad.getValue(0));
7450     LoadChains.push_back(ScalarLoad.getValue(1));
7451   }
7452 
7453   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7454   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7455 
7456   return std::make_pair(Value, NewChain);
7457 }
7458 
7459 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7460                                              SelectionDAG &DAG) const {
7461   SDLoc SL(ST);
7462 
7463   SDValue Chain = ST->getChain();
7464   SDValue BasePtr = ST->getBasePtr();
7465   SDValue Value = ST->getValue();
7466   EVT StVT = ST->getMemoryVT();
7467 
7468   if (StVT.isScalableVector())
7469     report_fatal_error("Cannot scalarize scalable vector stores");
7470 
7471   // The type of the data we want to save
7472   EVT RegVT = Value.getValueType();
7473   EVT RegSclVT = RegVT.getScalarType();
7474 
7475   // The type of data as saved in memory.
7476   EVT MemSclVT = StVT.getScalarType();
7477 
7478   unsigned NumElem = StVT.getVectorNumElements();
7479 
7480   // A vector must always be stored in memory as-is, i.e. without any padding
7481   // between the elements, since various code depend on it, e.g. in the
7482   // handling of a bitcast of a vector type to int, which may be done with a
7483   // vector store followed by an integer load. A vector that does not have
7484   // elements that are byte-sized must therefore be stored as an integer
7485   // built out of the extracted vector elements.
7486   if (!MemSclVT.isByteSized()) {
7487     unsigned NumBits = StVT.getSizeInBits();
7488     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7489 
7490     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7491 
7492     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7493       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7494                                 DAG.getVectorIdxConstant(Idx, SL));
7495       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7496       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7497       unsigned ShiftIntoIdx =
7498           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7499       SDValue ShiftAmount =
7500           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7501       SDValue ShiftedElt =
7502           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7503       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7504     }
7505 
7506     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7507                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7508                         ST->getAAInfo());
7509   }
7510 
7511   // Store Stride in bytes
7512   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7513   assert(Stride && "Zero stride!");
7514   // Extract each of the elements from the original vector and save them into
7515   // memory individually.
7516   SmallVector<SDValue, 8> Stores;
7517   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7518     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7519                               DAG.getVectorIdxConstant(Idx, SL));
7520 
7521     SDValue Ptr =
7522         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7523 
7524     // This scalar TruncStore may be illegal, but we legalize it later.
7525     SDValue Store = DAG.getTruncStore(
7526         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7527         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7528         ST->getAAInfo());
7529 
7530     Stores.push_back(Store);
7531   }
7532 
7533   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7534 }
7535 
7536 std::pair<SDValue, SDValue>
7537 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7538   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7539          "unaligned indexed loads not implemented!");
7540   SDValue Chain = LD->getChain();
7541   SDValue Ptr = LD->getBasePtr();
7542   EVT VT = LD->getValueType(0);
7543   EVT LoadedVT = LD->getMemoryVT();
7544   SDLoc dl(LD);
7545   auto &MF = DAG.getMachineFunction();
7546 
7547   if (VT.isFloatingPoint() || VT.isVector()) {
7548     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7549     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7550       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7551           LoadedVT.isVector()) {
7552         // Scalarize the load and let the individual components be handled.
7553         return scalarizeVectorLoad(LD, DAG);
7554       }
7555 
7556       // Expand to a (misaligned) integer load of the same size,
7557       // then bitconvert to floating point or vector.
7558       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7559                                     LD->getMemOperand());
7560       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7561       if (LoadedVT != VT)
7562         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7563                              ISD::ANY_EXTEND, dl, VT, Result);
7564 
7565       return std::make_pair(Result, newLoad.getValue(1));
7566     }
7567 
7568     // Copy the value to a (aligned) stack slot using (unaligned) integer
7569     // loads and stores, then do a (aligned) load from the stack slot.
7570     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7571     unsigned LoadedBytes = LoadedVT.getStoreSize();
7572     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7573     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7574 
7575     // Make sure the stack slot is also aligned for the register type.
7576     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7577     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7578     SmallVector<SDValue, 8> Stores;
7579     SDValue StackPtr = StackBase;
7580     unsigned Offset = 0;
7581 
7582     EVT PtrVT = Ptr.getValueType();
7583     EVT StackPtrVT = StackPtr.getValueType();
7584 
7585     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7586     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7587 
7588     // Do all but one copies using the full register width.
7589     for (unsigned i = 1; i < NumRegs; i++) {
7590       // Load one integer register's worth from the original location.
7591       SDValue Load = DAG.getLoad(
7592           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7593           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7594           LD->getAAInfo());
7595       // Follow the load with a store to the stack slot.  Remember the store.
7596       Stores.push_back(DAG.getStore(
7597           Load.getValue(1), dl, Load, StackPtr,
7598           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7599       // Increment the pointers.
7600       Offset += RegBytes;
7601 
7602       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7603       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7604     }
7605 
7606     // The last copy may be partial.  Do an extending load.
7607     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7608                                   8 * (LoadedBytes - Offset));
7609     SDValue Load =
7610         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7611                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7612                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7613                        LD->getAAInfo());
7614     // Follow the load with a store to the stack slot.  Remember the store.
7615     // On big-endian machines this requires a truncating store to ensure
7616     // that the bits end up in the right place.
7617     Stores.push_back(DAG.getTruncStore(
7618         Load.getValue(1), dl, Load, StackPtr,
7619         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7620 
7621     // The order of the stores doesn't matter - say it with a TokenFactor.
7622     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7623 
7624     // Finally, perform the original load only redirected to the stack slot.
7625     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7626                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7627                           LoadedVT);
7628 
7629     // Callers expect a MERGE_VALUES node.
7630     return std::make_pair(Load, TF);
7631   }
7632 
7633   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7634          "Unaligned load of unsupported type.");
7635 
7636   // Compute the new VT that is half the size of the old one.  This is an
7637   // integer MVT.
7638   unsigned NumBits = LoadedVT.getSizeInBits();
7639   EVT NewLoadedVT;
7640   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7641   NumBits >>= 1;
7642 
7643   Align Alignment = LD->getOriginalAlign();
7644   unsigned IncrementSize = NumBits / 8;
7645   ISD::LoadExtType HiExtType = LD->getExtensionType();
7646 
7647   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7648   if (HiExtType == ISD::NON_EXTLOAD)
7649     HiExtType = ISD::ZEXTLOAD;
7650 
7651   // Load the value in two parts
7652   SDValue Lo, Hi;
7653   if (DAG.getDataLayout().isLittleEndian()) {
7654     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7655                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7656                         LD->getAAInfo());
7657 
7658     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7659     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7660                         LD->getPointerInfo().getWithOffset(IncrementSize),
7661                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7662                         LD->getAAInfo());
7663   } else {
7664     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7665                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7666                         LD->getAAInfo());
7667 
7668     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7669     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7670                         LD->getPointerInfo().getWithOffset(IncrementSize),
7671                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7672                         LD->getAAInfo());
7673   }
7674 
7675   // aggregate the two parts
7676   SDValue ShiftAmount =
7677       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7678                                                     DAG.getDataLayout()));
7679   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7680   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7681 
7682   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7683                              Hi.getValue(1));
7684 
7685   return std::make_pair(Result, TF);
7686 }
7687 
7688 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7689                                              SelectionDAG &DAG) const {
7690   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7691          "unaligned indexed stores not implemented!");
7692   SDValue Chain = ST->getChain();
7693   SDValue Ptr = ST->getBasePtr();
7694   SDValue Val = ST->getValue();
7695   EVT VT = Val.getValueType();
7696   Align Alignment = ST->getOriginalAlign();
7697   auto &MF = DAG.getMachineFunction();
7698   EVT StoreMemVT = ST->getMemoryVT();
7699 
7700   SDLoc dl(ST);
7701   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7702     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7703     if (isTypeLegal(intVT)) {
7704       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7705           StoreMemVT.isVector()) {
7706         // Scalarize the store and let the individual components be handled.
7707         SDValue Result = scalarizeVectorStore(ST, DAG);
7708         return Result;
7709       }
7710       // Expand to a bitconvert of the value to the integer type of the
7711       // same size, then a (misaligned) int store.
7712       // FIXME: Does not handle truncating floating point stores!
7713       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7714       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7715                             Alignment, ST->getMemOperand()->getFlags());
7716       return Result;
7717     }
7718     // Do a (aligned) store to a stack slot, then copy from the stack slot
7719     // to the final destination using (unaligned) integer loads and stores.
7720     MVT RegVT = getRegisterType(
7721         *DAG.getContext(),
7722         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7723     EVT PtrVT = Ptr.getValueType();
7724     unsigned StoredBytes = StoreMemVT.getStoreSize();
7725     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7726     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7727 
7728     // Make sure the stack slot is also aligned for the register type.
7729     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7730     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7731 
7732     // Perform the original store, only redirected to the stack slot.
7733     SDValue Store = DAG.getTruncStore(
7734         Chain, dl, Val, StackPtr,
7735         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7736 
7737     EVT StackPtrVT = StackPtr.getValueType();
7738 
7739     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7740     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7741     SmallVector<SDValue, 8> Stores;
7742     unsigned Offset = 0;
7743 
7744     // Do all but one copies using the full register width.
7745     for (unsigned i = 1; i < NumRegs; i++) {
7746       // Load one integer register's worth from the stack slot.
7747       SDValue Load = DAG.getLoad(
7748           RegVT, dl, Store, StackPtr,
7749           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7750       // Store it to the final location.  Remember the store.
7751       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7752                                     ST->getPointerInfo().getWithOffset(Offset),
7753                                     ST->getOriginalAlign(),
7754                                     ST->getMemOperand()->getFlags()));
7755       // Increment the pointers.
7756       Offset += RegBytes;
7757       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7758       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7759     }
7760 
7761     // The last store may be partial.  Do a truncating store.  On big-endian
7762     // machines this requires an extending load from the stack slot to ensure
7763     // that the bits are in the right place.
7764     EVT LoadMemVT =
7765         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7766 
7767     // Load from the stack slot.
7768     SDValue Load = DAG.getExtLoad(
7769         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7770         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7771 
7772     Stores.push_back(
7773         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7774                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7775                           ST->getOriginalAlign(),
7776                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7777     // The order of the stores doesn't matter - say it with a TokenFactor.
7778     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7779     return Result;
7780   }
7781 
7782   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7783          "Unaligned store of unknown type.");
7784   // Get the half-size VT
7785   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7786   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7787   unsigned IncrementSize = NumBits / 8;
7788 
7789   // Divide the stored value in two parts.
7790   SDValue ShiftAmount = DAG.getConstant(
7791       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7792   SDValue Lo = Val;
7793   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7794 
7795   // Store the two parts
7796   SDValue Store1, Store2;
7797   Store1 = DAG.getTruncStore(Chain, dl,
7798                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7799                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7800                              ST->getMemOperand()->getFlags());
7801 
7802   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7803   Store2 = DAG.getTruncStore(
7804       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7805       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7806       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7807 
7808   SDValue Result =
7809       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7810   return Result;
7811 }
7812 
7813 SDValue
7814 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7815                                        const SDLoc &DL, EVT DataVT,
7816                                        SelectionDAG &DAG,
7817                                        bool IsCompressedMemory) const {
7818   SDValue Increment;
7819   EVT AddrVT = Addr.getValueType();
7820   EVT MaskVT = Mask.getValueType();
7821   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7822          "Incompatible types of Data and Mask");
7823   if (IsCompressedMemory) {
7824     if (DataVT.isScalableVector())
7825       report_fatal_error(
7826           "Cannot currently handle compressed memory with scalable vectors");
7827     // Incrementing the pointer according to number of '1's in the mask.
7828     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7829     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7830     if (MaskIntVT.getSizeInBits() < 32) {
7831       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7832       MaskIntVT = MVT::i32;
7833     }
7834 
7835     // Count '1's with POPCNT.
7836     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7837     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7838     // Scale is an element size in bytes.
7839     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7840                                     AddrVT);
7841     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7842   } else if (DataVT.isScalableVector()) {
7843     Increment = DAG.getVScale(DL, AddrVT,
7844                               APInt(AddrVT.getFixedSizeInBits(),
7845                                     DataVT.getStoreSize().getKnownMinSize()));
7846   } else
7847     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7848 
7849   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7850 }
7851 
7852 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
7853                                        EVT VecVT, const SDLoc &dl,
7854                                        ElementCount SubEC) {
7855   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
7856          "Cannot index a scalable vector within a fixed-width vector");
7857 
7858   unsigned NElts = VecVT.getVectorMinNumElements();
7859   unsigned NumSubElts = SubEC.getKnownMinValue();
7860   EVT IdxVT = Idx.getValueType();
7861 
7862   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
7863     // If this is a constant index and we know the value plus the number of the
7864     // elements in the subvector minus one is less than the minimum number of
7865     // elements then it's safe to return Idx.
7866     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
7867       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
7868         return Idx;
7869     SDValue VS =
7870         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
7871     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
7872     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
7873                               DAG.getConstant(NumSubElts, dl, IdxVT));
7874     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7875   }
7876   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
7877     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
7878     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7879                        DAG.getConstant(Imm, dl, IdxVT));
7880   }
7881   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
7882   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7883                      DAG.getConstant(MaxIndex, dl, IdxVT));
7884 }
7885 
7886 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7887                                                 SDValue VecPtr, EVT VecVT,
7888                                                 SDValue Index) const {
7889   return getVectorSubVecPointer(
7890       DAG, VecPtr, VecVT,
7891       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
7892       Index);
7893 }
7894 
7895 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
7896                                                SDValue VecPtr, EVT VecVT,
7897                                                EVT SubVecVT,
7898                                                SDValue Index) const {
7899   SDLoc dl(Index);
7900   // Make sure the index type is big enough to compute in.
7901   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7902 
7903   EVT EltVT = VecVT.getVectorElementType();
7904 
7905   // Calculate the element offset and add it to the pointer.
7906   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7907   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7908          "Converting bits to bytes lost precision");
7909   assert(SubVecVT.getVectorElementType() == EltVT &&
7910          "Sub-vector must be a vector with matching element type");
7911   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
7912                                   SubVecVT.getVectorElementCount());
7913 
7914   EVT IdxVT = Index.getValueType();
7915   if (SubVecVT.isScalableVector())
7916     Index =
7917         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7918                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
7919 
7920   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7921                       DAG.getConstant(EltSize, dl, IdxVT));
7922   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7923 }
7924 
7925 //===----------------------------------------------------------------------===//
7926 // Implementation of Emulated TLS Model
7927 //===----------------------------------------------------------------------===//
7928 
7929 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7930                                                 SelectionDAG &DAG) const {
7931   // Access to address of TLS varialbe xyz is lowered to a function call:
7932   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7933   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7934   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7935   SDLoc dl(GA);
7936 
7937   ArgListTy Args;
7938   ArgListEntry Entry;
7939   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7940   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7941   StringRef EmuTlsVarName(NameString);
7942   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7943   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7944   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7945   Entry.Ty = VoidPtrType;
7946   Args.push_back(Entry);
7947 
7948   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7949 
7950   TargetLowering::CallLoweringInfo CLI(DAG);
7951   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7952   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7953   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7954 
7955   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7956   // At last for X86 targets, maybe good for other targets too?
7957   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7958   MFI.setAdjustsStack(true); // Is this only for X86 target?
7959   MFI.setHasCalls(true);
7960 
7961   assert((GA->getOffset() == 0) &&
7962          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7963   return CallResult.first;
7964 }
7965 
7966 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7967                                                 SelectionDAG &DAG) const {
7968   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7969   if (!isCtlzFast())
7970     return SDValue();
7971   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7972   SDLoc dl(Op);
7973   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7974     if (C->isZero() && CC == ISD::SETEQ) {
7975       EVT VT = Op.getOperand(0).getValueType();
7976       SDValue Zext = Op.getOperand(0);
7977       if (VT.bitsLT(MVT::i32)) {
7978         VT = MVT::i32;
7979         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7980       }
7981       unsigned Log2b = Log2_32(VT.getSizeInBits());
7982       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7983       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7984                                 DAG.getConstant(Log2b, dl, MVT::i32));
7985       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7986     }
7987   }
7988   return SDValue();
7989 }
7990 
7991 // Convert redundant addressing modes (e.g. scaling is redundant
7992 // when accessing bytes).
7993 ISD::MemIndexType
7994 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
7995                                       SDValue Offsets) const {
7996   bool IsScaledIndex =
7997       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
7998   bool IsSignedIndex =
7999       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
8000 
8001   // Scaling is unimportant for bytes, canonicalize to unscaled.
8002   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8)
8003     return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
8004 
8005   return IndexType;
8006 }
8007 
8008 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8009   SDValue Op0 = Node->getOperand(0);
8010   SDValue Op1 = Node->getOperand(1);
8011   EVT VT = Op0.getValueType();
8012   unsigned Opcode = Node->getOpcode();
8013   SDLoc DL(Node);
8014 
8015   // umin(x,y) -> sub(x,usubsat(x,y))
8016   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8017       isOperationLegal(ISD::USUBSAT, VT)) {
8018     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8019                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8020   }
8021 
8022   // umax(x,y) -> add(x,usubsat(y,x))
8023   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8024       isOperationLegal(ISD::USUBSAT, VT)) {
8025     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8026                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8027   }
8028 
8029   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8030   ISD::CondCode CC;
8031   switch (Opcode) {
8032   default: llvm_unreachable("How did we get here?");
8033   case ISD::SMAX: CC = ISD::SETGT; break;
8034   case ISD::SMIN: CC = ISD::SETLT; break;
8035   case ISD::UMAX: CC = ISD::SETUGT; break;
8036   case ISD::UMIN: CC = ISD::SETULT; break;
8037   }
8038 
8039   // FIXME: Should really try to split the vector in case it's legal on a
8040   // subvector.
8041   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8042     return DAG.UnrollVectorOp(Node);
8043 
8044   SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC);
8045   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8046 }
8047 
8048 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8049   unsigned Opcode = Node->getOpcode();
8050   SDValue LHS = Node->getOperand(0);
8051   SDValue RHS = Node->getOperand(1);
8052   EVT VT = LHS.getValueType();
8053   SDLoc dl(Node);
8054 
8055   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8056   assert(VT.isInteger() && "Expected operands to be integers");
8057 
8058   // usub.sat(a, b) -> umax(a, b) - b
8059   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8060     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8061     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8062   }
8063 
8064   // uadd.sat(a, b) -> umin(a, ~b) + b
8065   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8066     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8067     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8068     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8069   }
8070 
8071   unsigned OverflowOp;
8072   switch (Opcode) {
8073   case ISD::SADDSAT:
8074     OverflowOp = ISD::SADDO;
8075     break;
8076   case ISD::UADDSAT:
8077     OverflowOp = ISD::UADDO;
8078     break;
8079   case ISD::SSUBSAT:
8080     OverflowOp = ISD::SSUBO;
8081     break;
8082   case ISD::USUBSAT:
8083     OverflowOp = ISD::USUBO;
8084     break;
8085   default:
8086     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8087                      "addition or subtraction node.");
8088   }
8089 
8090   // FIXME: Should really try to split the vector in case it's legal on a
8091   // subvector.
8092   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8093     return DAG.UnrollVectorOp(Node);
8094 
8095   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8096   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8097   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8098   SDValue SumDiff = Result.getValue(0);
8099   SDValue Overflow = Result.getValue(1);
8100   SDValue Zero = DAG.getConstant(0, dl, VT);
8101   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8102 
8103   if (Opcode == ISD::UADDSAT) {
8104     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8105       // (LHS + RHS) | OverflowMask
8106       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8107       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8108     }
8109     // Overflow ? 0xffff.... : (LHS + RHS)
8110     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8111   }
8112 
8113   if (Opcode == ISD::USUBSAT) {
8114     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8115       // (LHS - RHS) & ~OverflowMask
8116       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8117       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8118       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8119     }
8120     // Overflow ? 0 : (LHS - RHS)
8121     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8122   }
8123 
8124   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8125   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8126   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8127   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8128                               DAG.getConstant(BitWidth - 1, dl, VT));
8129   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8130   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8131 }
8132 
8133 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8134   unsigned Opcode = Node->getOpcode();
8135   bool IsSigned = Opcode == ISD::SSHLSAT;
8136   SDValue LHS = Node->getOperand(0);
8137   SDValue RHS = Node->getOperand(1);
8138   EVT VT = LHS.getValueType();
8139   SDLoc dl(Node);
8140 
8141   assert((Node->getOpcode() == ISD::SSHLSAT ||
8142           Node->getOpcode() == ISD::USHLSAT) &&
8143           "Expected a SHLSAT opcode");
8144   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8145   assert(VT.isInteger() && "Expected operands to be integers");
8146 
8147   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8148 
8149   unsigned BW = VT.getScalarSizeInBits();
8150   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8151   SDValue Orig =
8152       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8153 
8154   SDValue SatVal;
8155   if (IsSigned) {
8156     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8157     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8158     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8159                              SatMin, SatMax, ISD::SETLT);
8160   } else {
8161     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8162   }
8163   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8164 
8165   return Result;
8166 }
8167 
8168 SDValue
8169 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8170   assert((Node->getOpcode() == ISD::SMULFIX ||
8171           Node->getOpcode() == ISD::UMULFIX ||
8172           Node->getOpcode() == ISD::SMULFIXSAT ||
8173           Node->getOpcode() == ISD::UMULFIXSAT) &&
8174          "Expected a fixed point multiplication opcode");
8175 
8176   SDLoc dl(Node);
8177   SDValue LHS = Node->getOperand(0);
8178   SDValue RHS = Node->getOperand(1);
8179   EVT VT = LHS.getValueType();
8180   unsigned Scale = Node->getConstantOperandVal(2);
8181   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8182                      Node->getOpcode() == ISD::UMULFIXSAT);
8183   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8184                  Node->getOpcode() == ISD::SMULFIXSAT);
8185   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8186   unsigned VTSize = VT.getScalarSizeInBits();
8187 
8188   if (!Scale) {
8189     // [us]mul.fix(a, b, 0) -> mul(a, b)
8190     if (!Saturating) {
8191       if (isOperationLegalOrCustom(ISD::MUL, VT))
8192         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8193     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8194       SDValue Result =
8195           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8196       SDValue Product = Result.getValue(0);
8197       SDValue Overflow = Result.getValue(1);
8198       SDValue Zero = DAG.getConstant(0, dl, VT);
8199 
8200       APInt MinVal = APInt::getSignedMinValue(VTSize);
8201       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8202       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8203       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8204       // Xor the inputs, if resulting sign bit is 0 the product will be
8205       // positive, else negative.
8206       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8207       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8208       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8209       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8210     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8211       SDValue Result =
8212           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8213       SDValue Product = Result.getValue(0);
8214       SDValue Overflow = Result.getValue(1);
8215 
8216       APInt MaxVal = APInt::getMaxValue(VTSize);
8217       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8218       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8219     }
8220   }
8221 
8222   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8223          "Expected scale to be less than the number of bits if signed or at "
8224          "most the number of bits if unsigned.");
8225   assert(LHS.getValueType() == RHS.getValueType() &&
8226          "Expected both operands to be the same type");
8227 
8228   // Get the upper and lower bits of the result.
8229   SDValue Lo, Hi;
8230   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8231   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8232   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8233     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8234     Lo = Result.getValue(0);
8235     Hi = Result.getValue(1);
8236   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8237     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8238     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8239   } else if (VT.isVector()) {
8240     return SDValue();
8241   } else {
8242     report_fatal_error("Unable to expand fixed point multiplication.");
8243   }
8244 
8245   if (Scale == VTSize)
8246     // Result is just the top half since we'd be shifting by the width of the
8247     // operand. Overflow impossible so this works for both UMULFIX and
8248     // UMULFIXSAT.
8249     return Hi;
8250 
8251   // The result will need to be shifted right by the scale since both operands
8252   // are scaled. The result is given to us in 2 halves, so we only want part of
8253   // both in the result.
8254   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8255   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8256                                DAG.getConstant(Scale, dl, ShiftTy));
8257   if (!Saturating)
8258     return Result;
8259 
8260   if (!Signed) {
8261     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8262     // widened multiplication) aren't all zeroes.
8263 
8264     // Saturate to max if ((Hi >> Scale) != 0),
8265     // which is the same as if (Hi > ((1 << Scale) - 1))
8266     APInt MaxVal = APInt::getMaxValue(VTSize);
8267     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8268                                       dl, VT);
8269     Result = DAG.getSelectCC(dl, Hi, LowMask,
8270                              DAG.getConstant(MaxVal, dl, VT), Result,
8271                              ISD::SETUGT);
8272 
8273     return Result;
8274   }
8275 
8276   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8277   // widened multiplication) aren't all ones or all zeroes.
8278 
8279   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8280   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8281 
8282   if (Scale == 0) {
8283     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8284                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8285     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8286     // Saturated to SatMin if wide product is negative, and SatMax if wide
8287     // product is positive ...
8288     SDValue Zero = DAG.getConstant(0, dl, VT);
8289     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8290                                                ISD::SETLT);
8291     // ... but only if we overflowed.
8292     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8293   }
8294 
8295   //  We handled Scale==0 above so all the bits to examine is in Hi.
8296 
8297   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8298   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8299   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8300                                     dl, VT);
8301   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8302   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8303   // which is the same as if (HI < (-1 << (Scale - 1))
8304   SDValue HighMask =
8305       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8306                       dl, VT);
8307   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8308   return Result;
8309 }
8310 
8311 SDValue
8312 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8313                                     SDValue LHS, SDValue RHS,
8314                                     unsigned Scale, SelectionDAG &DAG) const {
8315   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8316           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8317          "Expected a fixed point division opcode");
8318 
8319   EVT VT = LHS.getValueType();
8320   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8321   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8322   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8323 
8324   // If there is enough room in the type to upscale the LHS or downscale the
8325   // RHS before the division, we can perform it in this type without having to
8326   // resize. For signed operations, the LHS headroom is the number of
8327   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8328   // The headroom for the RHS is the number of trailing zeroes.
8329   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8330                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8331   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8332 
8333   // For signed saturating operations, we need to be able to detect true integer
8334   // division overflow; that is, when you have MIN / -EPS. However, this
8335   // is undefined behavior and if we emit divisions that could take such
8336   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8337   // example).
8338   // Avoid this by requiring an extra bit so that we never get this case.
8339   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8340   // signed saturating division, we need to emit a whopping 32-bit division.
8341   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8342     return SDValue();
8343 
8344   unsigned LHSShift = std::min(LHSLead, Scale);
8345   unsigned RHSShift = Scale - LHSShift;
8346 
8347   // At this point, we know that if we shift the LHS up by LHSShift and the
8348   // RHS down by RHSShift, we can emit a regular division with a final scaling
8349   // factor of Scale.
8350 
8351   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8352   if (LHSShift)
8353     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8354                       DAG.getConstant(LHSShift, dl, ShiftTy));
8355   if (RHSShift)
8356     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8357                       DAG.getConstant(RHSShift, dl, ShiftTy));
8358 
8359   SDValue Quot;
8360   if (Signed) {
8361     // For signed operations, if the resulting quotient is negative and the
8362     // remainder is nonzero, subtract 1 from the quotient to round towards
8363     // negative infinity.
8364     SDValue Rem;
8365     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8366     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8367     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8368     if (isTypeLegal(VT) &&
8369         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8370       Quot = DAG.getNode(ISD::SDIVREM, dl,
8371                          DAG.getVTList(VT, VT),
8372                          LHS, RHS);
8373       Rem = Quot.getValue(1);
8374       Quot = Quot.getValue(0);
8375     } else {
8376       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8377                          LHS, RHS);
8378       Rem = DAG.getNode(ISD::SREM, dl, VT,
8379                         LHS, RHS);
8380     }
8381     SDValue Zero = DAG.getConstant(0, dl, VT);
8382     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8383     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8384     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8385     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8386     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8387                                DAG.getConstant(1, dl, VT));
8388     Quot = DAG.getSelect(dl, VT,
8389                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8390                          Sub1, Quot);
8391   } else
8392     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8393                        LHS, RHS);
8394 
8395   return Quot;
8396 }
8397 
8398 void TargetLowering::expandUADDSUBO(
8399     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8400   SDLoc dl(Node);
8401   SDValue LHS = Node->getOperand(0);
8402   SDValue RHS = Node->getOperand(1);
8403   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8404 
8405   // If ADD/SUBCARRY is legal, use that instead.
8406   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8407   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8408     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8409     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8410                                     { LHS, RHS, CarryIn });
8411     Result = SDValue(NodeCarry.getNode(), 0);
8412     Overflow = SDValue(NodeCarry.getNode(), 1);
8413     return;
8414   }
8415 
8416   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8417                             LHS.getValueType(), LHS, RHS);
8418 
8419   EVT ResultType = Node->getValueType(1);
8420   EVT SetCCType = getSetCCResultType(
8421       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8422   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8423   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8424   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8425 }
8426 
8427 void TargetLowering::expandSADDSUBO(
8428     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8429   SDLoc dl(Node);
8430   SDValue LHS = Node->getOperand(0);
8431   SDValue RHS = Node->getOperand(1);
8432   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8433 
8434   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8435                             LHS.getValueType(), LHS, RHS);
8436 
8437   EVT ResultType = Node->getValueType(1);
8438   EVT OType = getSetCCResultType(
8439       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8440 
8441   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8442   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8443   if (isOperationLegal(OpcSat, LHS.getValueType())) {
8444     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8445     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8446     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8447     return;
8448   }
8449 
8450   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8451 
8452   // For an addition, the result should be less than one of the operands (LHS)
8453   // if and only if the other operand (RHS) is negative, otherwise there will
8454   // be overflow.
8455   // For a subtraction, the result should be less than one of the operands
8456   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8457   // otherwise there will be overflow.
8458   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8459   SDValue ConditionRHS =
8460       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8461 
8462   Overflow = DAG.getBoolExtOrTrunc(
8463       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8464       ResultType, ResultType);
8465 }
8466 
8467 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8468                                 SDValue &Overflow, SelectionDAG &DAG) const {
8469   SDLoc dl(Node);
8470   EVT VT = Node->getValueType(0);
8471   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8472   SDValue LHS = Node->getOperand(0);
8473   SDValue RHS = Node->getOperand(1);
8474   bool isSigned = Node->getOpcode() == ISD::SMULO;
8475 
8476   // For power-of-two multiplications we can use a simpler shift expansion.
8477   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8478     const APInt &C = RHSC->getAPIntValue();
8479     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8480     if (C.isPowerOf2()) {
8481       // smulo(x, signed_min) is same as umulo(x, signed_min).
8482       bool UseArithShift = isSigned && !C.isMinSignedValue();
8483       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8484       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8485       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8486       Overflow = DAG.getSetCC(dl, SetCCVT,
8487           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8488                       dl, VT, Result, ShiftAmt),
8489           LHS, ISD::SETNE);
8490       return true;
8491     }
8492   }
8493 
8494   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8495   if (VT.isVector())
8496     WideVT =
8497         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
8498 
8499   SDValue BottomHalf;
8500   SDValue TopHalf;
8501   static const unsigned Ops[2][3] =
8502       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8503         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8504   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8505     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8506     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8507   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8508     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8509                              RHS);
8510     TopHalf = BottomHalf.getValue(1);
8511   } else if (isTypeLegal(WideVT)) {
8512     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8513     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8514     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8515     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8516     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8517         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8518     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8519                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8520   } else {
8521     if (VT.isVector())
8522       return false;
8523 
8524     // We can fall back to a libcall with an illegal type for the MUL if we
8525     // have a libcall big enough.
8526     // Also, we can fall back to a division in some cases, but that's a big
8527     // performance hit in the general case.
8528     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8529     if (WideVT == MVT::i16)
8530       LC = RTLIB::MUL_I16;
8531     else if (WideVT == MVT::i32)
8532       LC = RTLIB::MUL_I32;
8533     else if (WideVT == MVT::i64)
8534       LC = RTLIB::MUL_I64;
8535     else if (WideVT == MVT::i128)
8536       LC = RTLIB::MUL_I128;
8537     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8538 
8539     SDValue HiLHS;
8540     SDValue HiRHS;
8541     if (isSigned) {
8542       // The high part is obtained by SRA'ing all but one of the bits of low
8543       // part.
8544       unsigned LoSize = VT.getFixedSizeInBits();
8545       HiLHS =
8546           DAG.getNode(ISD::SRA, dl, VT, LHS,
8547                       DAG.getConstant(LoSize - 1, dl,
8548                                       getPointerTy(DAG.getDataLayout())));
8549       HiRHS =
8550           DAG.getNode(ISD::SRA, dl, VT, RHS,
8551                       DAG.getConstant(LoSize - 1, dl,
8552                                       getPointerTy(DAG.getDataLayout())));
8553     } else {
8554         HiLHS = DAG.getConstant(0, dl, VT);
8555         HiRHS = DAG.getConstant(0, dl, VT);
8556     }
8557 
8558     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8559     // pre-lowered to the correct types. This all depends upon WideVT not
8560     // being a legal type for the architecture and thus has to be split to
8561     // two arguments.
8562     SDValue Ret;
8563     TargetLowering::MakeLibCallOptions CallOptions;
8564     CallOptions.setSExt(isSigned);
8565     CallOptions.setIsPostTypeLegalization(true);
8566     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8567       // Halves of WideVT are packed into registers in different order
8568       // depending on platform endianness. This is usually handled by
8569       // the C calling convention, but we can't defer to it in
8570       // the legalizer.
8571       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8572       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8573     } else {
8574       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8575       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8576     }
8577     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8578            "Ret value is a collection of constituent nodes holding result.");
8579     if (DAG.getDataLayout().isLittleEndian()) {
8580       // Same as above.
8581       BottomHalf = Ret.getOperand(0);
8582       TopHalf = Ret.getOperand(1);
8583     } else {
8584       BottomHalf = Ret.getOperand(1);
8585       TopHalf = Ret.getOperand(0);
8586     }
8587   }
8588 
8589   Result = BottomHalf;
8590   if (isSigned) {
8591     SDValue ShiftAmt = DAG.getConstant(
8592         VT.getScalarSizeInBits() - 1, dl,
8593         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8594     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8595     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8596   } else {
8597     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8598                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8599   }
8600 
8601   // Truncate the result if SetCC returns a larger type than needed.
8602   EVT RType = Node->getValueType(1);
8603   if (RType.bitsLT(Overflow.getValueType()))
8604     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8605 
8606   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8607          "Unexpected result type for S/UMULO legalization");
8608   return true;
8609 }
8610 
8611 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8612   SDLoc dl(Node);
8613   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8614   SDValue Op = Node->getOperand(0);
8615   EVT VT = Op.getValueType();
8616 
8617   if (VT.isScalableVector())
8618     report_fatal_error(
8619         "Expanding reductions for scalable vectors is undefined.");
8620 
8621   // Try to use a shuffle reduction for power of two vectors.
8622   if (VT.isPow2VectorType()) {
8623     while (VT.getVectorNumElements() > 1) {
8624       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8625       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8626         break;
8627 
8628       SDValue Lo, Hi;
8629       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8630       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8631       VT = HalfVT;
8632     }
8633   }
8634 
8635   EVT EltVT = VT.getVectorElementType();
8636   unsigned NumElts = VT.getVectorNumElements();
8637 
8638   SmallVector<SDValue, 8> Ops;
8639   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8640 
8641   SDValue Res = Ops[0];
8642   for (unsigned i = 1; i < NumElts; i++)
8643     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8644 
8645   // Result type may be wider than element type.
8646   if (EltVT != Node->getValueType(0))
8647     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8648   return Res;
8649 }
8650 
8651 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8652   SDLoc dl(Node);
8653   SDValue AccOp = Node->getOperand(0);
8654   SDValue VecOp = Node->getOperand(1);
8655   SDNodeFlags Flags = Node->getFlags();
8656 
8657   EVT VT = VecOp.getValueType();
8658   EVT EltVT = VT.getVectorElementType();
8659 
8660   if (VT.isScalableVector())
8661     report_fatal_error(
8662         "Expanding reductions for scalable vectors is undefined.");
8663 
8664   unsigned NumElts = VT.getVectorNumElements();
8665 
8666   SmallVector<SDValue, 8> Ops;
8667   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8668 
8669   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8670 
8671   SDValue Res = AccOp;
8672   for (unsigned i = 0; i < NumElts; i++)
8673     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8674 
8675   return Res;
8676 }
8677 
8678 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8679                                SelectionDAG &DAG) const {
8680   EVT VT = Node->getValueType(0);
8681   SDLoc dl(Node);
8682   bool isSigned = Node->getOpcode() == ISD::SREM;
8683   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8684   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8685   SDValue Dividend = Node->getOperand(0);
8686   SDValue Divisor = Node->getOperand(1);
8687   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8688     SDVTList VTs = DAG.getVTList(VT, VT);
8689     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8690     return true;
8691   }
8692   if (isOperationLegalOrCustom(DivOpc, VT)) {
8693     // X % Y -> X-X/Y*Y
8694     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8695     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8696     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8697     return true;
8698   }
8699   return false;
8700 }
8701 
8702 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8703                                             SelectionDAG &DAG) const {
8704   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8705   SDLoc dl(SDValue(Node, 0));
8706   SDValue Src = Node->getOperand(0);
8707 
8708   // DstVT is the result type, while SatVT is the size to which we saturate
8709   EVT SrcVT = Src.getValueType();
8710   EVT DstVT = Node->getValueType(0);
8711 
8712   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
8713   unsigned SatWidth = SatVT.getScalarSizeInBits();
8714   unsigned DstWidth = DstVT.getScalarSizeInBits();
8715   assert(SatWidth <= DstWidth &&
8716          "Expected saturation width smaller than result width");
8717 
8718   // Determine minimum and maximum integer values and their corresponding
8719   // floating-point values.
8720   APInt MinInt, MaxInt;
8721   if (IsSigned) {
8722     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8723     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8724   } else {
8725     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8726     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8727   }
8728 
8729   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8730   // libcall emission cannot handle this. Large result types will fail.
8731   if (SrcVT == MVT::f16) {
8732     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8733     SrcVT = Src.getValueType();
8734   }
8735 
8736   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8737   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8738 
8739   APFloat::opStatus MinStatus =
8740       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8741   APFloat::opStatus MaxStatus =
8742       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8743   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8744                              !(MaxStatus & APFloat::opStatus::opInexact);
8745 
8746   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8747   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8748 
8749   // If the integer bounds are exactly representable as floats and min/max are
8750   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8751   // of comparisons and selects.
8752   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8753                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8754   if (AreExactFloatBounds && MinMaxLegal) {
8755     SDValue Clamped = Src;
8756 
8757     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8758     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8759     // Clamp by MaxFloat from above. NaN cannot occur.
8760     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8761     // Convert clamped value to integer.
8762     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8763                                   dl, DstVT, Clamped);
8764 
8765     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8766     // which will cast to zero.
8767     if (!IsSigned)
8768       return FpToInt;
8769 
8770     // Otherwise, select 0 if Src is NaN.
8771     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8772     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8773                            ISD::CondCode::SETUO);
8774   }
8775 
8776   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8777   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8778 
8779   // Result of direct conversion. The assumption here is that the operation is
8780   // non-trapping and it's fine to apply it to an out-of-range value if we
8781   // select it away later.
8782   SDValue FpToInt =
8783       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8784 
8785   SDValue Select = FpToInt;
8786 
8787   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8788   // MinInt if Src is NaN.
8789   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8790                            ISD::CondCode::SETULT);
8791   // If Src OGT MaxFloat, select MaxInt.
8792   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8793                            ISD::CondCode::SETOGT);
8794 
8795   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8796   // is already zero.
8797   if (!IsSigned)
8798     return Select;
8799 
8800   // Otherwise, select 0 if Src is NaN.
8801   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8802   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8803 }
8804 
8805 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
8806                                            SelectionDAG &DAG) const {
8807   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
8808   assert(Node->getValueType(0).isScalableVector() &&
8809          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
8810 
8811   EVT VT = Node->getValueType(0);
8812   SDValue V1 = Node->getOperand(0);
8813   SDValue V2 = Node->getOperand(1);
8814   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
8815   SDLoc DL(Node);
8816 
8817   // Expand through memory thusly:
8818   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
8819   //  Store V1, Ptr
8820   //  Store V2, Ptr + sizeof(V1)
8821   //  If (Imm < 0)
8822   //    TrailingElts = -Imm
8823   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
8824   //  else
8825   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
8826   //  Res = Load Ptr
8827 
8828   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
8829 
8830   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8831                                VT.getVectorElementCount() * 2);
8832   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
8833   EVT PtrVT = StackPtr.getValueType();
8834   auto &MF = DAG.getMachineFunction();
8835   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8836   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
8837 
8838   // Store the lo part of CONCAT_VECTORS(V1, V2)
8839   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
8840   // Store the hi part of CONCAT_VECTORS(V1, V2)
8841   SDValue OffsetToV2 = DAG.getVScale(
8842       DL, PtrVT,
8843       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8844   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
8845   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
8846 
8847   if (Imm >= 0) {
8848     // Load back the required element. getVectorElementPointer takes care of
8849     // clamping the index if it's out-of-bounds.
8850     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
8851     // Load the spliced result
8852     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
8853                        MachinePointerInfo::getUnknownStack(MF));
8854   }
8855 
8856   uint64_t TrailingElts = -Imm;
8857 
8858   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
8859   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
8860   SDValue TrailingBytes =
8861       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
8862 
8863   if (TrailingElts > VT.getVectorMinNumElements()) {
8864     SDValue VLBytes = DAG.getVScale(
8865         DL, PtrVT,
8866         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8867     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
8868   }
8869 
8870   // Calculate the start address of the spliced result.
8871   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
8872 
8873   // Load the spliced result
8874   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
8875                      MachinePointerInfo::getUnknownStack(MF));
8876 }
8877 
8878 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
8879                                            SDValue &LHS, SDValue &RHS,
8880                                            SDValue &CC, bool &NeedInvert,
8881                                            const SDLoc &dl, SDValue &Chain,
8882                                            bool IsSignaling) const {
8883   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8884   MVT OpVT = LHS.getSimpleValueType();
8885   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
8886   NeedInvert = false;
8887   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
8888   default:
8889     llvm_unreachable("Unknown condition code action!");
8890   case TargetLowering::Legal:
8891     // Nothing to do.
8892     break;
8893   case TargetLowering::Expand: {
8894     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
8895     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8896       std::swap(LHS, RHS);
8897       CC = DAG.getCondCode(InvCC);
8898       return true;
8899     }
8900     // Swapping operands didn't work. Try inverting the condition.
8901     bool NeedSwap = false;
8902     InvCC = getSetCCInverse(CCCode, OpVT);
8903     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8904       // If inverting the condition is not enough, try swapping operands
8905       // on top of it.
8906       InvCC = ISD::getSetCCSwappedOperands(InvCC);
8907       NeedSwap = true;
8908     }
8909     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8910       CC = DAG.getCondCode(InvCC);
8911       NeedInvert = true;
8912       if (NeedSwap)
8913         std::swap(LHS, RHS);
8914       return true;
8915     }
8916 
8917     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
8918     unsigned Opc = 0;
8919     switch (CCCode) {
8920     default:
8921       llvm_unreachable("Don't know how to expand this condition!");
8922     case ISD::SETUO:
8923       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
8924         CC1 = ISD::SETUNE;
8925         CC2 = ISD::SETUNE;
8926         Opc = ISD::OR;
8927         break;
8928       }
8929       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8930              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
8931       NeedInvert = true;
8932       LLVM_FALLTHROUGH;
8933     case ISD::SETO:
8934       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8935              "If SETO is expanded, SETOEQ must be legal!");
8936       CC1 = ISD::SETOEQ;
8937       CC2 = ISD::SETOEQ;
8938       Opc = ISD::AND;
8939       break;
8940     case ISD::SETONE:
8941     case ISD::SETUEQ:
8942       // If the SETUO or SETO CC isn't legal, we might be able to use
8943       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
8944       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
8945       // the operands.
8946       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8947       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
8948           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
8949            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
8950         CC1 = ISD::SETOGT;
8951         CC2 = ISD::SETOLT;
8952         Opc = ISD::OR;
8953         NeedInvert = ((unsigned)CCCode & 0x8U);
8954         break;
8955       }
8956       LLVM_FALLTHROUGH;
8957     case ISD::SETOEQ:
8958     case ISD::SETOGT:
8959     case ISD::SETOGE:
8960     case ISD::SETOLT:
8961     case ISD::SETOLE:
8962     case ISD::SETUNE:
8963     case ISD::SETUGT:
8964     case ISD::SETUGE:
8965     case ISD::SETULT:
8966     case ISD::SETULE:
8967       // If we are floating point, assign and break, otherwise fall through.
8968       if (!OpVT.isInteger()) {
8969         // We can use the 4th bit to tell if we are the unordered
8970         // or ordered version of the opcode.
8971         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8972         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
8973         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
8974         break;
8975       }
8976       // Fallthrough if we are unsigned integer.
8977       LLVM_FALLTHROUGH;
8978     case ISD::SETLE:
8979     case ISD::SETGT:
8980     case ISD::SETGE:
8981     case ISD::SETLT:
8982     case ISD::SETNE:
8983     case ISD::SETEQ:
8984       // If all combinations of inverting the condition and swapping operands
8985       // didn't work then we have no means to expand the condition.
8986       llvm_unreachable("Don't know how to expand this condition!");
8987     }
8988 
8989     SDValue SetCC1, SetCC2;
8990     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
8991       // If we aren't the ordered or unorder operation,
8992       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
8993       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
8994       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
8995     } else {
8996       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
8997       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
8998       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
8999     }
9000     if (Chain)
9001       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9002                           SetCC2.getValue(1));
9003     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9004     RHS = SDValue();
9005     CC = SDValue();
9006     return true;
9007   }
9008   }
9009   return false;
9010 }
9011