1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // First, check if tail calls have been disabled in this function. 57 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 58 return false; 59 60 // Conservatively require the attributes of the call to match those of 61 // the return. Ignore following attributes because they don't affect the 62 // call sequence. 63 AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex); 64 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 65 Attribute::DereferenceableOrNull, Attribute::NoAlias, 66 Attribute::NonNull}) 67 CallerAttrs.removeAttribute(Attr); 68 69 if (CallerAttrs.hasAttributes()) 70 return false; 71 72 // It's not safe to eliminate the sign / zero extension of the return value. 73 if (CallerAttrs.contains(Attribute::ZExt) || 74 CallerAttrs.contains(Attribute::SExt)) 75 return false; 76 77 // Check if the only use is a function return node. 78 return isUsedByReturnOnly(Node, Chain); 79 } 80 81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 82 const uint32_t *CallerPreservedMask, 83 const SmallVectorImpl<CCValAssign> &ArgLocs, 84 const SmallVectorImpl<SDValue> &OutVals) const { 85 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 86 const CCValAssign &ArgLoc = ArgLocs[I]; 87 if (!ArgLoc.isRegLoc()) 88 continue; 89 MCRegister Reg = ArgLoc.getLocReg(); 90 // Only look at callee saved registers. 91 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 92 continue; 93 // Check that we pass the value used for the caller. 94 // (We look for a CopyFromReg reading a virtual register that is used 95 // for the function live-in value of register Reg) 96 SDValue Value = OutVals[I]; 97 if (Value->getOpcode() != ISD::CopyFromReg) 98 return false; 99 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 100 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 101 return false; 102 } 103 return true; 104 } 105 106 /// Set CallLoweringInfo attribute flags based on a call instruction 107 /// and called function attributes. 108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 109 unsigned ArgIdx) { 110 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 111 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 112 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 113 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 114 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 115 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 116 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 117 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 118 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 119 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 120 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 121 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 122 Alignment = Call->getParamStackAlign(ArgIdx); 123 IndirectType = nullptr; 124 assert(IsByVal + IsPreallocated + IsInAlloca <= 1 && 125 "multiple ABI attributes?"); 126 if (IsByVal) { 127 IndirectType = Call->getParamByValType(ArgIdx); 128 if (!Alignment) 129 Alignment = Call->getParamAlign(ArgIdx); 130 } 131 if (IsPreallocated) 132 IndirectType = Call->getParamPreallocatedType(ArgIdx); 133 if (IsInAlloca) 134 IndirectType = Call->getParamInAllocaType(ArgIdx); 135 } 136 137 /// Generate a libcall taking the given operands as arguments and returning a 138 /// result of type RetVT. 139 std::pair<SDValue, SDValue> 140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 141 ArrayRef<SDValue> Ops, 142 MakeLibCallOptions CallOptions, 143 const SDLoc &dl, 144 SDValue InChain) const { 145 if (!InChain) 146 InChain = DAG.getEntryNode(); 147 148 TargetLowering::ArgListTy Args; 149 Args.reserve(Ops.size()); 150 151 TargetLowering::ArgListEntry Entry; 152 for (unsigned i = 0; i < Ops.size(); ++i) { 153 SDValue NewOp = Ops[i]; 154 Entry.Node = NewOp; 155 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 156 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 157 CallOptions.IsSExt); 158 Entry.IsZExt = !Entry.IsSExt; 159 160 if (CallOptions.IsSoften && 161 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 162 Entry.IsSExt = Entry.IsZExt = false; 163 } 164 Args.push_back(Entry); 165 } 166 167 if (LC == RTLIB::UNKNOWN_LIBCALL) 168 report_fatal_error("Unsupported library call operation!"); 169 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 170 getPointerTy(DAG.getDataLayout())); 171 172 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 173 TargetLowering::CallLoweringInfo CLI(DAG); 174 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 175 bool zeroExtend = !signExtend; 176 177 if (CallOptions.IsSoften && 178 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 179 signExtend = zeroExtend = false; 180 } 181 182 CLI.setDebugLoc(dl) 183 .setChain(InChain) 184 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 185 .setNoReturn(CallOptions.DoesNotReturn) 186 .setDiscardResult(!CallOptions.IsReturnValueUsed) 187 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 188 .setSExtResult(signExtend) 189 .setZExtResult(zeroExtend); 190 return LowerCallTo(CLI); 191 } 192 193 bool TargetLowering::findOptimalMemOpLowering( 194 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 195 unsigned SrcAS, const AttributeList &FuncAttributes) const { 196 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 197 return false; 198 199 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 200 201 if (VT == MVT::Other) { 202 // Use the largest integer type whose alignment constraints are satisfied. 203 // We only need to check DstAlign here as SrcAlign is always greater or 204 // equal to DstAlign (or zero). 205 VT = MVT::i64; 206 if (Op.isFixedDstAlign()) 207 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 208 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 209 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 210 assert(VT.isInteger()); 211 212 // Find the largest legal integer type. 213 MVT LVT = MVT::i64; 214 while (!isTypeLegal(LVT)) 215 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 216 assert(LVT.isInteger()); 217 218 // If the type we've chosen is larger than the largest legal integer type 219 // then use that instead. 220 if (VT.bitsGT(LVT)) 221 VT = LVT; 222 } 223 224 unsigned NumMemOps = 0; 225 uint64_t Size = Op.size(); 226 while (Size) { 227 unsigned VTSize = VT.getSizeInBits() / 8; 228 while (VTSize > Size) { 229 // For now, only use non-vector load / store's for the left-over pieces. 230 EVT NewVT = VT; 231 unsigned NewVTSize; 232 233 bool Found = false; 234 if (VT.isVector() || VT.isFloatingPoint()) { 235 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 236 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 237 isSafeMemOpType(NewVT.getSimpleVT())) 238 Found = true; 239 else if (NewVT == MVT::i64 && 240 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 241 isSafeMemOpType(MVT::f64)) { 242 // i64 is usually not legal on 32-bit targets, but f64 may be. 243 NewVT = MVT::f64; 244 Found = true; 245 } 246 } 247 248 if (!Found) { 249 do { 250 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 251 if (NewVT == MVT::i8) 252 break; 253 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 254 } 255 NewVTSize = NewVT.getSizeInBits() / 8; 256 257 // If the new VT cannot cover all of the remaining bits, then consider 258 // issuing a (or a pair of) unaligned and overlapping load / store. 259 bool Fast; 260 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 261 allowsMisalignedMemoryAccesses( 262 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 263 MachineMemOperand::MONone, &Fast) && 264 Fast) 265 VTSize = Size; 266 else { 267 VT = NewVT; 268 VTSize = NewVTSize; 269 } 270 } 271 272 if (++NumMemOps > Limit) 273 return false; 274 275 MemOps.push_back(VT); 276 Size -= VTSize; 277 } 278 279 return true; 280 } 281 282 /// Soften the operands of a comparison. This code is shared among BR_CC, 283 /// SELECT_CC, and SETCC handlers. 284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 285 SDValue &NewLHS, SDValue &NewRHS, 286 ISD::CondCode &CCCode, 287 const SDLoc &dl, const SDValue OldLHS, 288 const SDValue OldRHS) const { 289 SDValue Chain; 290 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 291 OldRHS, Chain); 292 } 293 294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 295 SDValue &NewLHS, SDValue &NewRHS, 296 ISD::CondCode &CCCode, 297 const SDLoc &dl, const SDValue OldLHS, 298 const SDValue OldRHS, 299 SDValue &Chain, 300 bool IsSignaling) const { 301 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 302 // not supporting it. We can update this code when libgcc provides such 303 // functions. 304 305 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 306 && "Unsupported setcc type!"); 307 308 // Expand into one or more soft-fp libcall(s). 309 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 310 bool ShouldInvertCC = false; 311 switch (CCCode) { 312 case ISD::SETEQ: 313 case ISD::SETOEQ: 314 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 315 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 316 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 317 break; 318 case ISD::SETNE: 319 case ISD::SETUNE: 320 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 321 (VT == MVT::f64) ? RTLIB::UNE_F64 : 322 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 323 break; 324 case ISD::SETGE: 325 case ISD::SETOGE: 326 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 327 (VT == MVT::f64) ? RTLIB::OGE_F64 : 328 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 329 break; 330 case ISD::SETLT: 331 case ISD::SETOLT: 332 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 333 (VT == MVT::f64) ? RTLIB::OLT_F64 : 334 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 335 break; 336 case ISD::SETLE: 337 case ISD::SETOLE: 338 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 339 (VT == MVT::f64) ? RTLIB::OLE_F64 : 340 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 341 break; 342 case ISD::SETGT: 343 case ISD::SETOGT: 344 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 345 (VT == MVT::f64) ? RTLIB::OGT_F64 : 346 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 347 break; 348 case ISD::SETO: 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUO: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 break; 356 case ISD::SETONE: 357 // SETONE = O && UNE 358 ShouldInvertCC = true; 359 LLVM_FALLTHROUGH; 360 case ISD::SETUEQ: 361 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 362 (VT == MVT::f64) ? RTLIB::UO_F64 : 363 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 364 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 365 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 366 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 367 break; 368 default: 369 // Invert CC for unordered comparisons 370 ShouldInvertCC = true; 371 switch (CCCode) { 372 case ISD::SETULT: 373 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 374 (VT == MVT::f64) ? RTLIB::OGE_F64 : 375 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 376 break; 377 case ISD::SETULE: 378 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 379 (VT == MVT::f64) ? RTLIB::OGT_F64 : 380 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 381 break; 382 case ISD::SETUGT: 383 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 384 (VT == MVT::f64) ? RTLIB::OLE_F64 : 385 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 386 break; 387 case ISD::SETUGE: 388 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 389 (VT == MVT::f64) ? RTLIB::OLT_F64 : 390 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 391 break; 392 default: llvm_unreachable("Do not know how to soften this setcc!"); 393 } 394 } 395 396 // Use the target specific return value for comparions lib calls. 397 EVT RetVT = getCmpLibcallReturnType(); 398 SDValue Ops[2] = {NewLHS, NewRHS}; 399 TargetLowering::MakeLibCallOptions CallOptions; 400 EVT OpsVT[2] = { OldLHS.getValueType(), 401 OldRHS.getValueType() }; 402 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 403 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 404 NewLHS = Call.first; 405 NewRHS = DAG.getConstant(0, dl, RetVT); 406 407 CCCode = getCmpLibcallCC(LC1); 408 if (ShouldInvertCC) { 409 assert(RetVT.isInteger()); 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 } 412 413 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 414 // Update Chain. 415 Chain = Call.second; 416 } else { 417 EVT SetCCVT = 418 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 419 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 420 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 421 CCCode = getCmpLibcallCC(LC2); 422 if (ShouldInvertCC) 423 CCCode = getSetCCInverse(CCCode, RetVT); 424 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 425 if (Chain) 426 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 427 Call2.second); 428 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 429 Tmp.getValueType(), Tmp, NewLHS); 430 NewRHS = SDValue(); 431 } 432 } 433 434 /// Return the entry encoding for a jump table in the current function. The 435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 436 unsigned TargetLowering::getJumpTableEncoding() const { 437 // In non-pic modes, just use the address of a block. 438 if (!isPositionIndependent()) 439 return MachineJumpTableInfo::EK_BlockAddress; 440 441 // In PIC mode, if the target supports a GPRel32 directive, use it. 442 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 443 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 444 445 // Otherwise, use a label difference. 446 return MachineJumpTableInfo::EK_LabelDifference32; 447 } 448 449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 450 SelectionDAG &DAG) const { 451 // If our PIC model is GP relative, use the global offset table as the base. 452 unsigned JTEncoding = getJumpTableEncoding(); 453 454 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 455 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 456 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 457 458 return Table; 459 } 460 461 /// This returns the relocation base for the given PIC jumptable, the same as 462 /// getPICJumpTableRelocBase, but as an MCExpr. 463 const MCExpr * 464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 465 unsigned JTI,MCContext &Ctx) const{ 466 // The normal PIC reloc base is the label at the start of the jump table. 467 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 468 } 469 470 bool 471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 472 const TargetMachine &TM = getTargetMachine(); 473 const GlobalValue *GV = GA->getGlobal(); 474 475 // If the address is not even local to this DSO we will have to load it from 476 // a got and then add the offset. 477 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 478 return false; 479 480 // If the code is position independent we will have to add a base register. 481 if (isPositionIndependent()) 482 return false; 483 484 // Otherwise we can do it. 485 return true; 486 } 487 488 //===----------------------------------------------------------------------===// 489 // Optimization Methods 490 //===----------------------------------------------------------------------===// 491 492 /// If the specified instruction has a constant integer operand and there are 493 /// bits set in that constant that are not demanded, then clear those bits and 494 /// return true. 495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 496 const APInt &DemandedBits, 497 const APInt &DemandedElts, 498 TargetLoweringOpt &TLO) const { 499 SDLoc DL(Op); 500 unsigned Opcode = Op.getOpcode(); 501 502 // Do target-specific constant optimization. 503 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 504 return TLO.New.getNode(); 505 506 // FIXME: ISD::SELECT, ISD::SELECT_CC 507 switch (Opcode) { 508 default: 509 break; 510 case ISD::XOR: 511 case ISD::AND: 512 case ISD::OR: { 513 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 514 if (!Op1C || Op1C->isOpaque()) 515 return false; 516 517 // If this is a 'not' op, don't touch it because that's a canonical form. 518 const APInt &C = Op1C->getAPIntValue(); 519 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 520 return false; 521 522 if (!C.isSubsetOf(DemandedBits)) { 523 EVT VT = Op.getValueType(); 524 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 525 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 526 return TLO.CombineTo(Op, NewOp); 527 } 528 529 break; 530 } 531 } 532 533 return false; 534 } 535 536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 537 const APInt &DemandedBits, 538 TargetLoweringOpt &TLO) const { 539 EVT VT = Op.getValueType(); 540 APInt DemandedElts = VT.isVector() 541 ? APInt::getAllOnes(VT.getVectorNumElements()) 542 : APInt(1, 1); 543 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 544 } 545 546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 548 /// generalized for targets with other types of implicit widening casts. 549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 550 const APInt &Demanded, 551 TargetLoweringOpt &TLO) const { 552 assert(Op.getNumOperands() == 2 && 553 "ShrinkDemandedOp only supports binary operators!"); 554 assert(Op.getNode()->getNumValues() == 1 && 555 "ShrinkDemandedOp only supports nodes with one result!"); 556 557 SelectionDAG &DAG = TLO.DAG; 558 SDLoc dl(Op); 559 560 // Early return, as this function cannot handle vector types. 561 if (Op.getValueType().isVector()) 562 return false; 563 564 // Don't do this if the node has another user, which may require the 565 // full value. 566 if (!Op.getNode()->hasOneUse()) 567 return false; 568 569 // Search for the smallest integer type with free casts to and from 570 // Op's type. For expedience, just check power-of-2 integer types. 571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 572 unsigned DemandedSize = Demanded.getActiveBits(); 573 unsigned SmallVTBits = DemandedSize; 574 if (!isPowerOf2_32(SmallVTBits)) 575 SmallVTBits = NextPowerOf2(SmallVTBits); 576 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 577 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 578 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 579 TLI.isZExtFree(SmallVT, Op.getValueType())) { 580 // We found a type with free casts. 581 SDValue X = DAG.getNode( 582 Op.getOpcode(), dl, SmallVT, 583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 584 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 585 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 586 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 587 return TLO.CombineTo(Op, Z); 588 } 589 } 590 return false; 591 } 592 593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 594 DAGCombinerInfo &DCI) const { 595 SelectionDAG &DAG = DCI.DAG; 596 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 597 !DCI.isBeforeLegalizeOps()); 598 KnownBits Known; 599 600 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 601 if (Simplified) { 602 DCI.AddToWorklist(Op.getNode()); 603 DCI.CommitTargetLoweringOpt(TLO); 604 } 605 return Simplified; 606 } 607 608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 609 KnownBits &Known, 610 TargetLoweringOpt &TLO, 611 unsigned Depth, 612 bool AssumeSingleUse) const { 613 EVT VT = Op.getValueType(); 614 615 // TODO: We can probably do more work on calculating the known bits and 616 // simplifying the operations for scalable vectors, but for now we just 617 // bail out. 618 if (VT.isScalableVector()) { 619 // Pretend we don't know anything for now. 620 Known = KnownBits(DemandedBits.getBitWidth()); 621 return false; 622 } 623 624 APInt DemandedElts = VT.isVector() 625 ? APInt::getAllOnes(VT.getVectorNumElements()) 626 : APInt(1, 1); 627 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 628 AssumeSingleUse); 629 } 630 631 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 632 // TODO: Under what circumstances can we create nodes? Constant folding? 633 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 634 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 635 SelectionDAG &DAG, unsigned Depth) const { 636 // Limit search depth. 637 if (Depth >= SelectionDAG::MaxRecursionDepth) 638 return SDValue(); 639 640 // Ignore UNDEFs. 641 if (Op.isUndef()) 642 return SDValue(); 643 644 // Not demanding any bits/elts from Op. 645 if (DemandedBits == 0 || DemandedElts == 0) 646 return DAG.getUNDEF(Op.getValueType()); 647 648 unsigned NumElts = DemandedElts.getBitWidth(); 649 unsigned BitWidth = DemandedBits.getBitWidth(); 650 KnownBits LHSKnown, RHSKnown; 651 switch (Op.getOpcode()) { 652 case ISD::BITCAST: { 653 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 654 EVT SrcVT = Src.getValueType(); 655 EVT DstVT = Op.getValueType(); 656 if (SrcVT == DstVT) 657 return Src; 658 659 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 660 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 661 if (NumSrcEltBits == NumDstEltBits) 662 if (SDValue V = SimplifyMultipleUseDemandedBits( 663 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 664 return DAG.getBitcast(DstVT, V); 665 666 // TODO - bigendian once we have test coverage. 667 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 668 DAG.getDataLayout().isLittleEndian()) { 669 unsigned Scale = NumDstEltBits / NumSrcEltBits; 670 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 671 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 672 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 673 for (unsigned i = 0; i != Scale; ++i) { 674 unsigned Offset = i * NumSrcEltBits; 675 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 676 if (!Sub.isZero()) { 677 DemandedSrcBits |= Sub; 678 for (unsigned j = 0; j != NumElts; ++j) 679 if (DemandedElts[j]) 680 DemandedSrcElts.setBit((j * Scale) + i); 681 } 682 } 683 684 if (SDValue V = SimplifyMultipleUseDemandedBits( 685 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 686 return DAG.getBitcast(DstVT, V); 687 } 688 689 // TODO - bigendian once we have test coverage. 690 if ((NumSrcEltBits % NumDstEltBits) == 0 && 691 DAG.getDataLayout().isLittleEndian()) { 692 unsigned Scale = NumSrcEltBits / NumDstEltBits; 693 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 694 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 695 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 696 for (unsigned i = 0; i != NumElts; ++i) 697 if (DemandedElts[i]) { 698 unsigned Offset = (i % Scale) * NumDstEltBits; 699 DemandedSrcBits.insertBits(DemandedBits, Offset); 700 DemandedSrcElts.setBit(i / Scale); 701 } 702 703 if (SDValue V = SimplifyMultipleUseDemandedBits( 704 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 705 return DAG.getBitcast(DstVT, V); 706 } 707 708 break; 709 } 710 case ISD::AND: { 711 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 712 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 713 714 // If all of the demanded bits are known 1 on one side, return the other. 715 // These bits cannot contribute to the result of the 'and' in this 716 // context. 717 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 718 return Op.getOperand(0); 719 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 720 return Op.getOperand(1); 721 break; 722 } 723 case ISD::OR: { 724 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 725 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 726 727 // If all of the demanded bits are known zero on one side, return the 728 // other. These bits cannot contribute to the result of the 'or' in this 729 // context. 730 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 731 return Op.getOperand(0); 732 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 733 return Op.getOperand(1); 734 break; 735 } 736 case ISD::XOR: { 737 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 738 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 739 740 // If all of the demanded bits are known zero on one side, return the 741 // other. 742 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 743 return Op.getOperand(0); 744 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 745 return Op.getOperand(1); 746 break; 747 } 748 case ISD::SHL: { 749 // If we are only demanding sign bits then we can use the shift source 750 // directly. 751 if (const APInt *MaxSA = 752 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 753 SDValue Op0 = Op.getOperand(0); 754 unsigned ShAmt = MaxSA->getZExtValue(); 755 unsigned NumSignBits = 756 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 757 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 758 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 759 return Op0; 760 } 761 break; 762 } 763 case ISD::SETCC: { 764 SDValue Op0 = Op.getOperand(0); 765 SDValue Op1 = Op.getOperand(1); 766 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 767 // If (1) we only need the sign-bit, (2) the setcc operands are the same 768 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 769 // -1, we may be able to bypass the setcc. 770 if (DemandedBits.isSignMask() && 771 Op0.getScalarValueSizeInBits() == BitWidth && 772 getBooleanContents(Op0.getValueType()) == 773 BooleanContent::ZeroOrNegativeOneBooleanContent) { 774 // If we're testing X < 0, then this compare isn't needed - just use X! 775 // FIXME: We're limiting to integer types here, but this should also work 776 // if we don't care about FP signed-zero. The use of SETLT with FP means 777 // that we don't care about NaNs. 778 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 779 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 780 return Op0; 781 } 782 break; 783 } 784 case ISD::SIGN_EXTEND_INREG: { 785 // If none of the extended bits are demanded, eliminate the sextinreg. 786 SDValue Op0 = Op.getOperand(0); 787 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 788 unsigned ExBits = ExVT.getScalarSizeInBits(); 789 if (DemandedBits.getActiveBits() <= ExBits) 790 return Op0; 791 // If the input is already sign extended, just drop the extension. 792 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 793 if (NumSignBits >= (BitWidth - ExBits + 1)) 794 return Op0; 795 break; 796 } 797 case ISD::ANY_EXTEND_VECTOR_INREG: 798 case ISD::SIGN_EXTEND_VECTOR_INREG: 799 case ISD::ZERO_EXTEND_VECTOR_INREG: { 800 // If we only want the lowest element and none of extended bits, then we can 801 // return the bitcasted source vector. 802 SDValue Src = Op.getOperand(0); 803 EVT SrcVT = Src.getValueType(); 804 EVT DstVT = Op.getValueType(); 805 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 806 DAG.getDataLayout().isLittleEndian() && 807 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 808 return DAG.getBitcast(DstVT, Src); 809 } 810 break; 811 } 812 case ISD::INSERT_VECTOR_ELT: { 813 // If we don't demand the inserted element, return the base vector. 814 SDValue Vec = Op.getOperand(0); 815 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 816 EVT VecVT = Vec.getValueType(); 817 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 818 !DemandedElts[CIdx->getZExtValue()]) 819 return Vec; 820 break; 821 } 822 case ISD::INSERT_SUBVECTOR: { 823 SDValue Vec = Op.getOperand(0); 824 SDValue Sub = Op.getOperand(1); 825 uint64_t Idx = Op.getConstantOperandVal(2); 826 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 827 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 828 // If we don't demand the inserted subvector, return the base vector. 829 if (DemandedSubElts == 0) 830 return Vec; 831 // If this simply widens the lowest subvector, see if we can do it earlier. 832 if (Idx == 0 && Vec.isUndef()) { 833 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 834 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 835 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 836 Op.getOperand(0), NewSub, Op.getOperand(2)); 837 } 838 break; 839 } 840 case ISD::VECTOR_SHUFFLE: { 841 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 842 843 // If all the demanded elts are from one operand and are inline, 844 // then we can use the operand directly. 845 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 846 for (unsigned i = 0; i != NumElts; ++i) { 847 int M = ShuffleMask[i]; 848 if (M < 0 || !DemandedElts[i]) 849 continue; 850 AllUndef = false; 851 IdentityLHS &= (M == (int)i); 852 IdentityRHS &= ((M - NumElts) == i); 853 } 854 855 if (AllUndef) 856 return DAG.getUNDEF(Op.getValueType()); 857 if (IdentityLHS) 858 return Op.getOperand(0); 859 if (IdentityRHS) 860 return Op.getOperand(1); 861 break; 862 } 863 default: 864 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 865 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 866 Op, DemandedBits, DemandedElts, DAG, Depth)) 867 return V; 868 break; 869 } 870 return SDValue(); 871 } 872 873 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 874 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 875 unsigned Depth) const { 876 EVT VT = Op.getValueType(); 877 APInt DemandedElts = VT.isVector() 878 ? APInt::getAllOnes(VT.getVectorNumElements()) 879 : APInt(1, 1); 880 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 881 Depth); 882 } 883 884 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 885 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 886 unsigned Depth) const { 887 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 888 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 889 Depth); 890 } 891 892 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 893 /// result of Op are ever used downstream. If we can use this information to 894 /// simplify Op, create a new simplified DAG node and return true, returning the 895 /// original and new nodes in Old and New. Otherwise, analyze the expression and 896 /// return a mask of Known bits for the expression (used to simplify the 897 /// caller). The Known bits may only be accurate for those bits in the 898 /// OriginalDemandedBits and OriginalDemandedElts. 899 bool TargetLowering::SimplifyDemandedBits( 900 SDValue Op, const APInt &OriginalDemandedBits, 901 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 902 unsigned Depth, bool AssumeSingleUse) const { 903 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 904 assert(Op.getScalarValueSizeInBits() == BitWidth && 905 "Mask size mismatches value type size!"); 906 907 // Don't know anything. 908 Known = KnownBits(BitWidth); 909 910 // TODO: We can probably do more work on calculating the known bits and 911 // simplifying the operations for scalable vectors, but for now we just 912 // bail out. 913 if (Op.getValueType().isScalableVector()) 914 return false; 915 916 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 917 assert((!Op.getValueType().isVector() || 918 NumElts == Op.getValueType().getVectorNumElements()) && 919 "Unexpected vector size"); 920 921 APInt DemandedBits = OriginalDemandedBits; 922 APInt DemandedElts = OriginalDemandedElts; 923 SDLoc dl(Op); 924 auto &DL = TLO.DAG.getDataLayout(); 925 926 // Undef operand. 927 if (Op.isUndef()) 928 return false; 929 930 if (Op.getOpcode() == ISD::Constant) { 931 // We know all of the bits for a constant! 932 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 933 return false; 934 } 935 936 if (Op.getOpcode() == ISD::ConstantFP) { 937 // We know all of the bits for a floating point constant! 938 Known = KnownBits::makeConstant( 939 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 940 return false; 941 } 942 943 // Other users may use these bits. 944 EVT VT = Op.getValueType(); 945 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 946 if (Depth != 0) { 947 // If not at the root, Just compute the Known bits to 948 // simplify things downstream. 949 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 950 return false; 951 } 952 // If this is the root being simplified, allow it to have multiple uses, 953 // just set the DemandedBits/Elts to all bits. 954 DemandedBits = APInt::getAllOnes(BitWidth); 955 DemandedElts = APInt::getAllOnes(NumElts); 956 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 957 // Not demanding any bits/elts from Op. 958 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 959 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 960 // Limit search depth. 961 return false; 962 } 963 964 KnownBits Known2; 965 switch (Op.getOpcode()) { 966 case ISD::TargetConstant: 967 llvm_unreachable("Can't simplify this node"); 968 case ISD::SCALAR_TO_VECTOR: { 969 if (!DemandedElts[0]) 970 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 971 972 KnownBits SrcKnown; 973 SDValue Src = Op.getOperand(0); 974 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 975 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 976 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 977 return true; 978 979 // Upper elements are undef, so only get the knownbits if we just demand 980 // the bottom element. 981 if (DemandedElts == 1) 982 Known = SrcKnown.anyextOrTrunc(BitWidth); 983 break; 984 } 985 case ISD::BUILD_VECTOR: 986 // Collect the known bits that are shared by every demanded element. 987 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 988 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 989 return false; // Don't fall through, will infinitely loop. 990 case ISD::LOAD: { 991 auto *LD = cast<LoadSDNode>(Op); 992 if (getTargetConstantFromLoad(LD)) { 993 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 994 return false; // Don't fall through, will infinitely loop. 995 } 996 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 997 // If this is a ZEXTLoad and we are looking at the loaded value. 998 EVT MemVT = LD->getMemoryVT(); 999 unsigned MemBits = MemVT.getScalarSizeInBits(); 1000 Known.Zero.setBitsFrom(MemBits); 1001 return false; // Don't fall through, will infinitely loop. 1002 } 1003 break; 1004 } 1005 case ISD::INSERT_VECTOR_ELT: { 1006 SDValue Vec = Op.getOperand(0); 1007 SDValue Scl = Op.getOperand(1); 1008 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1009 EVT VecVT = Vec.getValueType(); 1010 1011 // If index isn't constant, assume we need all vector elements AND the 1012 // inserted element. 1013 APInt DemandedVecElts(DemandedElts); 1014 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1015 unsigned Idx = CIdx->getZExtValue(); 1016 DemandedVecElts.clearBit(Idx); 1017 1018 // Inserted element is not required. 1019 if (!DemandedElts[Idx]) 1020 return TLO.CombineTo(Op, Vec); 1021 } 1022 1023 KnownBits KnownScl; 1024 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1025 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1026 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1027 return true; 1028 1029 Known = KnownScl.anyextOrTrunc(BitWidth); 1030 1031 KnownBits KnownVec; 1032 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1033 Depth + 1)) 1034 return true; 1035 1036 if (!!DemandedVecElts) 1037 Known = KnownBits::commonBits(Known, KnownVec); 1038 1039 return false; 1040 } 1041 case ISD::INSERT_SUBVECTOR: { 1042 // Demand any elements from the subvector and the remainder from the src its 1043 // inserted into. 1044 SDValue Src = Op.getOperand(0); 1045 SDValue Sub = Op.getOperand(1); 1046 uint64_t Idx = Op.getConstantOperandVal(2); 1047 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1048 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1049 APInt DemandedSrcElts = DemandedElts; 1050 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1051 1052 KnownBits KnownSub, KnownSrc; 1053 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1054 Depth + 1)) 1055 return true; 1056 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1057 Depth + 1)) 1058 return true; 1059 1060 Known.Zero.setAllBits(); 1061 Known.One.setAllBits(); 1062 if (!!DemandedSubElts) 1063 Known = KnownBits::commonBits(Known, KnownSub); 1064 if (!!DemandedSrcElts) 1065 Known = KnownBits::commonBits(Known, KnownSrc); 1066 1067 // Attempt to avoid multi-use src if we don't need anything from it. 1068 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1069 !DemandedSrcElts.isAllOnes()) { 1070 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1071 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1072 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1073 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1074 if (NewSub || NewSrc) { 1075 NewSub = NewSub ? NewSub : Sub; 1076 NewSrc = NewSrc ? NewSrc : Src; 1077 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1078 Op.getOperand(2)); 1079 return TLO.CombineTo(Op, NewOp); 1080 } 1081 } 1082 break; 1083 } 1084 case ISD::EXTRACT_SUBVECTOR: { 1085 // Offset the demanded elts by the subvector index. 1086 SDValue Src = Op.getOperand(0); 1087 if (Src.getValueType().isScalableVector()) 1088 break; 1089 uint64_t Idx = Op.getConstantOperandVal(1); 1090 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1091 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1092 1093 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1094 Depth + 1)) 1095 return true; 1096 1097 // Attempt to avoid multi-use src if we don't need anything from it. 1098 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1099 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1100 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1101 if (DemandedSrc) { 1102 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1103 Op.getOperand(1)); 1104 return TLO.CombineTo(Op, NewOp); 1105 } 1106 } 1107 break; 1108 } 1109 case ISD::CONCAT_VECTORS: { 1110 Known.Zero.setAllBits(); 1111 Known.One.setAllBits(); 1112 EVT SubVT = Op.getOperand(0).getValueType(); 1113 unsigned NumSubVecs = Op.getNumOperands(); 1114 unsigned NumSubElts = SubVT.getVectorNumElements(); 1115 for (unsigned i = 0; i != NumSubVecs; ++i) { 1116 APInt DemandedSubElts = 1117 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1118 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1119 Known2, TLO, Depth + 1)) 1120 return true; 1121 // Known bits are shared by every demanded subvector element. 1122 if (!!DemandedSubElts) 1123 Known = KnownBits::commonBits(Known, Known2); 1124 } 1125 break; 1126 } 1127 case ISD::VECTOR_SHUFFLE: { 1128 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1129 1130 // Collect demanded elements from shuffle operands.. 1131 APInt DemandedLHS(NumElts, 0); 1132 APInt DemandedRHS(NumElts, 0); 1133 for (unsigned i = 0; i != NumElts; ++i) { 1134 if (!DemandedElts[i]) 1135 continue; 1136 int M = ShuffleMask[i]; 1137 if (M < 0) { 1138 // For UNDEF elements, we don't know anything about the common state of 1139 // the shuffle result. 1140 DemandedLHS.clearAllBits(); 1141 DemandedRHS.clearAllBits(); 1142 break; 1143 } 1144 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1145 if (M < (int)NumElts) 1146 DemandedLHS.setBit(M); 1147 else 1148 DemandedRHS.setBit(M - NumElts); 1149 } 1150 1151 if (!!DemandedLHS || !!DemandedRHS) { 1152 SDValue Op0 = Op.getOperand(0); 1153 SDValue Op1 = Op.getOperand(1); 1154 1155 Known.Zero.setAllBits(); 1156 Known.One.setAllBits(); 1157 if (!!DemandedLHS) { 1158 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1159 Depth + 1)) 1160 return true; 1161 Known = KnownBits::commonBits(Known, Known2); 1162 } 1163 if (!!DemandedRHS) { 1164 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1165 Depth + 1)) 1166 return true; 1167 Known = KnownBits::commonBits(Known, Known2); 1168 } 1169 1170 // Attempt to avoid multi-use ops if we don't need anything from them. 1171 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1172 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1173 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1174 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1175 if (DemandedOp0 || DemandedOp1) { 1176 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1177 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1178 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1179 return TLO.CombineTo(Op, NewOp); 1180 } 1181 } 1182 break; 1183 } 1184 case ISD::AND: { 1185 SDValue Op0 = Op.getOperand(0); 1186 SDValue Op1 = Op.getOperand(1); 1187 1188 // If the RHS is a constant, check to see if the LHS would be zero without 1189 // using the bits from the RHS. Below, we use knowledge about the RHS to 1190 // simplify the LHS, here we're using information from the LHS to simplify 1191 // the RHS. 1192 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1193 // Do not increment Depth here; that can cause an infinite loop. 1194 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1195 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1196 if ((LHSKnown.Zero & DemandedBits) == 1197 (~RHSC->getAPIntValue() & DemandedBits)) 1198 return TLO.CombineTo(Op, Op0); 1199 1200 // If any of the set bits in the RHS are known zero on the LHS, shrink 1201 // the constant. 1202 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1203 DemandedElts, TLO)) 1204 return true; 1205 1206 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1207 // constant, but if this 'and' is only clearing bits that were just set by 1208 // the xor, then this 'and' can be eliminated by shrinking the mask of 1209 // the xor. For example, for a 32-bit X: 1210 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1211 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1212 LHSKnown.One == ~RHSC->getAPIntValue()) { 1213 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1214 return TLO.CombineTo(Op, Xor); 1215 } 1216 } 1217 1218 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1219 Depth + 1)) 1220 return true; 1221 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1222 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1223 Known2, TLO, Depth + 1)) 1224 return true; 1225 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1226 1227 // Attempt to avoid multi-use ops if we don't need anything from them. 1228 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1229 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1230 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1231 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1232 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1233 if (DemandedOp0 || DemandedOp1) { 1234 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1235 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1236 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1237 return TLO.CombineTo(Op, NewOp); 1238 } 1239 } 1240 1241 // If all of the demanded bits are known one on one side, return the other. 1242 // These bits cannot contribute to the result of the 'and'. 1243 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1244 return TLO.CombineTo(Op, Op0); 1245 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1246 return TLO.CombineTo(Op, Op1); 1247 // If all of the demanded bits in the inputs are known zeros, return zero. 1248 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1249 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1250 // If the RHS is a constant, see if we can simplify it. 1251 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1252 TLO)) 1253 return true; 1254 // If the operation can be done in a smaller type, do so. 1255 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1256 return true; 1257 1258 Known &= Known2; 1259 break; 1260 } 1261 case ISD::OR: { 1262 SDValue Op0 = Op.getOperand(0); 1263 SDValue Op1 = Op.getOperand(1); 1264 1265 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1266 Depth + 1)) 1267 return true; 1268 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1269 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1270 Known2, TLO, Depth + 1)) 1271 return true; 1272 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1273 1274 // Attempt to avoid multi-use ops if we don't need anything from them. 1275 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1276 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1277 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1278 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1279 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1280 if (DemandedOp0 || DemandedOp1) { 1281 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1282 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1283 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1284 return TLO.CombineTo(Op, NewOp); 1285 } 1286 } 1287 1288 // If all of the demanded bits are known zero on one side, return the other. 1289 // These bits cannot contribute to the result of the 'or'. 1290 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1291 return TLO.CombineTo(Op, Op0); 1292 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1293 return TLO.CombineTo(Op, Op1); 1294 // If the RHS is a constant, see if we can simplify it. 1295 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1296 return true; 1297 // If the operation can be done in a smaller type, do so. 1298 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1299 return true; 1300 1301 Known |= Known2; 1302 break; 1303 } 1304 case ISD::XOR: { 1305 SDValue Op0 = Op.getOperand(0); 1306 SDValue Op1 = Op.getOperand(1); 1307 1308 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1309 Depth + 1)) 1310 return true; 1311 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1312 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1313 Depth + 1)) 1314 return true; 1315 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1316 1317 // Attempt to avoid multi-use ops if we don't need anything from them. 1318 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1319 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1320 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1321 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1322 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1323 if (DemandedOp0 || DemandedOp1) { 1324 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1325 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1326 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1327 return TLO.CombineTo(Op, NewOp); 1328 } 1329 } 1330 1331 // If all of the demanded bits are known zero on one side, return the other. 1332 // These bits cannot contribute to the result of the 'xor'. 1333 if (DemandedBits.isSubsetOf(Known.Zero)) 1334 return TLO.CombineTo(Op, Op0); 1335 if (DemandedBits.isSubsetOf(Known2.Zero)) 1336 return TLO.CombineTo(Op, Op1); 1337 // If the operation can be done in a smaller type, do so. 1338 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1339 return true; 1340 1341 // If all of the unknown bits are known to be zero on one side or the other 1342 // turn this into an *inclusive* or. 1343 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1344 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1345 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1346 1347 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1348 if (C) { 1349 // If one side is a constant, and all of the set bits in the constant are 1350 // also known set on the other side, turn this into an AND, as we know 1351 // the bits will be cleared. 1352 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1353 // NB: it is okay if more bits are known than are requested 1354 if (C->getAPIntValue() == Known2.One) { 1355 SDValue ANDC = 1356 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1357 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1358 } 1359 1360 // If the RHS is a constant, see if we can change it. Don't alter a -1 1361 // constant because that's a 'not' op, and that is better for combining 1362 // and codegen. 1363 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1364 // We're flipping all demanded bits. Flip the undemanded bits too. 1365 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1366 return TLO.CombineTo(Op, New); 1367 } 1368 } 1369 1370 // If we can't turn this into a 'not', try to shrink the constant. 1371 if (!C || !C->isAllOnes()) 1372 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1373 return true; 1374 1375 Known ^= Known2; 1376 break; 1377 } 1378 case ISD::SELECT: 1379 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1380 Depth + 1)) 1381 return true; 1382 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1383 Depth + 1)) 1384 return true; 1385 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1386 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1387 1388 // If the operands are constants, see if we can simplify them. 1389 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1390 return true; 1391 1392 // Only known if known in both the LHS and RHS. 1393 Known = KnownBits::commonBits(Known, Known2); 1394 break; 1395 case ISD::SELECT_CC: 1396 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1397 Depth + 1)) 1398 return true; 1399 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1400 Depth + 1)) 1401 return true; 1402 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1403 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1404 1405 // If the operands are constants, see if we can simplify them. 1406 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1407 return true; 1408 1409 // Only known if known in both the LHS and RHS. 1410 Known = KnownBits::commonBits(Known, Known2); 1411 break; 1412 case ISD::SETCC: { 1413 SDValue Op0 = Op.getOperand(0); 1414 SDValue Op1 = Op.getOperand(1); 1415 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1416 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1417 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1418 // -1, we may be able to bypass the setcc. 1419 if (DemandedBits.isSignMask() && 1420 Op0.getScalarValueSizeInBits() == BitWidth && 1421 getBooleanContents(Op0.getValueType()) == 1422 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1423 // If we're testing X < 0, then this compare isn't needed - just use X! 1424 // FIXME: We're limiting to integer types here, but this should also work 1425 // if we don't care about FP signed-zero. The use of SETLT with FP means 1426 // that we don't care about NaNs. 1427 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1428 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1429 return TLO.CombineTo(Op, Op0); 1430 1431 // TODO: Should we check for other forms of sign-bit comparisons? 1432 // Examples: X <= -1, X >= 0 1433 } 1434 if (getBooleanContents(Op0.getValueType()) == 1435 TargetLowering::ZeroOrOneBooleanContent && 1436 BitWidth > 1) 1437 Known.Zero.setBitsFrom(1); 1438 break; 1439 } 1440 case ISD::SHL: { 1441 SDValue Op0 = Op.getOperand(0); 1442 SDValue Op1 = Op.getOperand(1); 1443 EVT ShiftVT = Op1.getValueType(); 1444 1445 if (const APInt *SA = 1446 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1447 unsigned ShAmt = SA->getZExtValue(); 1448 if (ShAmt == 0) 1449 return TLO.CombineTo(Op, Op0); 1450 1451 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1452 // single shift. We can do this if the bottom bits (which are shifted 1453 // out) are never demanded. 1454 // TODO - support non-uniform vector amounts. 1455 if (Op0.getOpcode() == ISD::SRL) { 1456 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1457 if (const APInt *SA2 = 1458 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1459 unsigned C1 = SA2->getZExtValue(); 1460 unsigned Opc = ISD::SHL; 1461 int Diff = ShAmt - C1; 1462 if (Diff < 0) { 1463 Diff = -Diff; 1464 Opc = ISD::SRL; 1465 } 1466 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1467 return TLO.CombineTo( 1468 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1469 } 1470 } 1471 } 1472 1473 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1474 // are not demanded. This will likely allow the anyext to be folded away. 1475 // TODO - support non-uniform vector amounts. 1476 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1477 SDValue InnerOp = Op0.getOperand(0); 1478 EVT InnerVT = InnerOp.getValueType(); 1479 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1480 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1481 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1482 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1483 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1484 ShTy = InnerVT; 1485 SDValue NarrowShl = 1486 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1487 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1488 return TLO.CombineTo( 1489 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1490 } 1491 1492 // Repeat the SHL optimization above in cases where an extension 1493 // intervenes: (shl (anyext (shr x, c1)), c2) to 1494 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1495 // aren't demanded (as above) and that the shifted upper c1 bits of 1496 // x aren't demanded. 1497 // TODO - support non-uniform vector amounts. 1498 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1499 InnerOp.hasOneUse()) { 1500 if (const APInt *SA2 = 1501 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1502 unsigned InnerShAmt = SA2->getZExtValue(); 1503 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1504 DemandedBits.getActiveBits() <= 1505 (InnerBits - InnerShAmt + ShAmt) && 1506 DemandedBits.countTrailingZeros() >= ShAmt) { 1507 SDValue NewSA = 1508 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1509 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1510 InnerOp.getOperand(0)); 1511 return TLO.CombineTo( 1512 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1513 } 1514 } 1515 } 1516 } 1517 1518 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1519 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1520 Depth + 1)) 1521 return true; 1522 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1523 Known.Zero <<= ShAmt; 1524 Known.One <<= ShAmt; 1525 // low bits known zero. 1526 Known.Zero.setLowBits(ShAmt); 1527 1528 // Try shrinking the operation as long as the shift amount will still be 1529 // in range. 1530 if ((ShAmt < DemandedBits.getActiveBits()) && 1531 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1532 return true; 1533 } 1534 1535 // If we are only demanding sign bits then we can use the shift source 1536 // directly. 1537 if (const APInt *MaxSA = 1538 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1539 unsigned ShAmt = MaxSA->getZExtValue(); 1540 unsigned NumSignBits = 1541 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1542 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1543 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1544 return TLO.CombineTo(Op, Op0); 1545 } 1546 break; 1547 } 1548 case ISD::SRL: { 1549 SDValue Op0 = Op.getOperand(0); 1550 SDValue Op1 = Op.getOperand(1); 1551 EVT ShiftVT = Op1.getValueType(); 1552 1553 if (const APInt *SA = 1554 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1555 unsigned ShAmt = SA->getZExtValue(); 1556 if (ShAmt == 0) 1557 return TLO.CombineTo(Op, Op0); 1558 1559 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1560 // single shift. We can do this if the top bits (which are shifted out) 1561 // are never demanded. 1562 // TODO - support non-uniform vector amounts. 1563 if (Op0.getOpcode() == ISD::SHL) { 1564 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1565 if (const APInt *SA2 = 1566 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1567 unsigned C1 = SA2->getZExtValue(); 1568 unsigned Opc = ISD::SRL; 1569 int Diff = ShAmt - C1; 1570 if (Diff < 0) { 1571 Diff = -Diff; 1572 Opc = ISD::SHL; 1573 } 1574 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1575 return TLO.CombineTo( 1576 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1577 } 1578 } 1579 } 1580 1581 APInt InDemandedMask = (DemandedBits << ShAmt); 1582 1583 // If the shift is exact, then it does demand the low bits (and knows that 1584 // they are zero). 1585 if (Op->getFlags().hasExact()) 1586 InDemandedMask.setLowBits(ShAmt); 1587 1588 // Compute the new bits that are at the top now. 1589 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1590 Depth + 1)) 1591 return true; 1592 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1593 Known.Zero.lshrInPlace(ShAmt); 1594 Known.One.lshrInPlace(ShAmt); 1595 // High bits known zero. 1596 Known.Zero.setHighBits(ShAmt); 1597 } 1598 break; 1599 } 1600 case ISD::SRA: { 1601 SDValue Op0 = Op.getOperand(0); 1602 SDValue Op1 = Op.getOperand(1); 1603 EVT ShiftVT = Op1.getValueType(); 1604 1605 // If we only want bits that already match the signbit then we don't need 1606 // to shift. 1607 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1608 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1609 NumHiDemandedBits) 1610 return TLO.CombineTo(Op, Op0); 1611 1612 // If this is an arithmetic shift right and only the low-bit is set, we can 1613 // always convert this into a logical shr, even if the shift amount is 1614 // variable. The low bit of the shift cannot be an input sign bit unless 1615 // the shift amount is >= the size of the datatype, which is undefined. 1616 if (DemandedBits.isOne()) 1617 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1618 1619 if (const APInt *SA = 1620 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1621 unsigned ShAmt = SA->getZExtValue(); 1622 if (ShAmt == 0) 1623 return TLO.CombineTo(Op, Op0); 1624 1625 APInt InDemandedMask = (DemandedBits << ShAmt); 1626 1627 // If the shift is exact, then it does demand the low bits (and knows that 1628 // they are zero). 1629 if (Op->getFlags().hasExact()) 1630 InDemandedMask.setLowBits(ShAmt); 1631 1632 // If any of the demanded bits are produced by the sign extension, we also 1633 // demand the input sign bit. 1634 if (DemandedBits.countLeadingZeros() < ShAmt) 1635 InDemandedMask.setSignBit(); 1636 1637 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1638 Depth + 1)) 1639 return true; 1640 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1641 Known.Zero.lshrInPlace(ShAmt); 1642 Known.One.lshrInPlace(ShAmt); 1643 1644 // If the input sign bit is known to be zero, or if none of the top bits 1645 // are demanded, turn this into an unsigned shift right. 1646 if (Known.Zero[BitWidth - ShAmt - 1] || 1647 DemandedBits.countLeadingZeros() >= ShAmt) { 1648 SDNodeFlags Flags; 1649 Flags.setExact(Op->getFlags().hasExact()); 1650 return TLO.CombineTo( 1651 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1652 } 1653 1654 int Log2 = DemandedBits.exactLogBase2(); 1655 if (Log2 >= 0) { 1656 // The bit must come from the sign. 1657 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1658 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1659 } 1660 1661 if (Known.One[BitWidth - ShAmt - 1]) 1662 // New bits are known one. 1663 Known.One.setHighBits(ShAmt); 1664 1665 // Attempt to avoid multi-use ops if we don't need anything from them. 1666 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1667 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1668 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1669 if (DemandedOp0) { 1670 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1671 return TLO.CombineTo(Op, NewOp); 1672 } 1673 } 1674 } 1675 break; 1676 } 1677 case ISD::FSHL: 1678 case ISD::FSHR: { 1679 SDValue Op0 = Op.getOperand(0); 1680 SDValue Op1 = Op.getOperand(1); 1681 SDValue Op2 = Op.getOperand(2); 1682 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1683 1684 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1685 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1686 1687 // For fshl, 0-shift returns the 1st arg. 1688 // For fshr, 0-shift returns the 2nd arg. 1689 if (Amt == 0) { 1690 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1691 Known, TLO, Depth + 1)) 1692 return true; 1693 break; 1694 } 1695 1696 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1697 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1698 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1699 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1700 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1701 Depth + 1)) 1702 return true; 1703 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1704 Depth + 1)) 1705 return true; 1706 1707 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1708 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1709 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1710 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1711 Known.One |= Known2.One; 1712 Known.Zero |= Known2.Zero; 1713 } 1714 1715 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1716 if (isPowerOf2_32(BitWidth)) { 1717 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1718 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1719 Known2, TLO, Depth + 1)) 1720 return true; 1721 } 1722 break; 1723 } 1724 case ISD::ROTL: 1725 case ISD::ROTR: { 1726 SDValue Op0 = Op.getOperand(0); 1727 SDValue Op1 = Op.getOperand(1); 1728 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1729 1730 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1731 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1732 return TLO.CombineTo(Op, Op0); 1733 1734 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1735 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1736 unsigned RevAmt = BitWidth - Amt; 1737 1738 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 1739 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 1740 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 1741 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1742 Depth + 1)) 1743 return true; 1744 1745 // rot*(x, 0) --> x 1746 if (Amt == 0) 1747 return TLO.CombineTo(Op, Op0); 1748 1749 // See if we don't demand either half of the rotated bits. 1750 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 1751 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 1752 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 1753 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 1754 } 1755 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 1756 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 1757 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 1758 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1759 } 1760 } 1761 1762 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1763 if (isPowerOf2_32(BitWidth)) { 1764 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1765 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1766 Depth + 1)) 1767 return true; 1768 } 1769 break; 1770 } 1771 case ISD::UMIN: { 1772 // Check if one arg is always less than (or equal) to the other arg. 1773 SDValue Op0 = Op.getOperand(0); 1774 SDValue Op1 = Op.getOperand(1); 1775 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1776 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1777 Known = KnownBits::umin(Known0, Known1); 1778 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1779 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1780 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1781 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1782 break; 1783 } 1784 case ISD::UMAX: { 1785 // Check if one arg is always greater than (or equal) to the other arg. 1786 SDValue Op0 = Op.getOperand(0); 1787 SDValue Op1 = Op.getOperand(1); 1788 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1789 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1790 Known = KnownBits::umax(Known0, Known1); 1791 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1792 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1793 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1794 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1795 break; 1796 } 1797 case ISD::BITREVERSE: { 1798 SDValue Src = Op.getOperand(0); 1799 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1800 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1801 Depth + 1)) 1802 return true; 1803 Known.One = Known2.One.reverseBits(); 1804 Known.Zero = Known2.Zero.reverseBits(); 1805 break; 1806 } 1807 case ISD::BSWAP: { 1808 SDValue Src = Op.getOperand(0); 1809 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1810 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1811 Depth + 1)) 1812 return true; 1813 Known.One = Known2.One.byteSwap(); 1814 Known.Zero = Known2.Zero.byteSwap(); 1815 break; 1816 } 1817 case ISD::CTPOP: { 1818 // If only 1 bit is demanded, replace with PARITY as long as we're before 1819 // op legalization. 1820 // FIXME: Limit to scalars for now. 1821 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 1822 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1823 Op.getOperand(0))); 1824 1825 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1826 break; 1827 } 1828 case ISD::SIGN_EXTEND_INREG: { 1829 SDValue Op0 = Op.getOperand(0); 1830 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1831 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1832 1833 // If we only care about the highest bit, don't bother shifting right. 1834 if (DemandedBits.isSignMask()) { 1835 unsigned MinSignedBits = 1836 TLO.DAG.ComputeMinSignedBits(Op0, DemandedElts, Depth + 1); 1837 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 1838 // However if the input is already sign extended we expect the sign 1839 // extension to be dropped altogether later and do not simplify. 1840 if (!AlreadySignExtended) { 1841 // Compute the correct shift amount type, which must be getShiftAmountTy 1842 // for scalar types after legalization. 1843 EVT ShiftAmtTy = VT; 1844 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1845 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1846 1847 SDValue ShiftAmt = 1848 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1849 return TLO.CombineTo(Op, 1850 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1851 } 1852 } 1853 1854 // If none of the extended bits are demanded, eliminate the sextinreg. 1855 if (DemandedBits.getActiveBits() <= ExVTBits) 1856 return TLO.CombineTo(Op, Op0); 1857 1858 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1859 1860 // Since the sign extended bits are demanded, we know that the sign 1861 // bit is demanded. 1862 InputDemandedBits.setBit(ExVTBits - 1); 1863 1864 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1865 return true; 1866 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1867 1868 // If the sign bit of the input is known set or clear, then we know the 1869 // top bits of the result. 1870 1871 // If the input sign bit is known zero, convert this into a zero extension. 1872 if (Known.Zero[ExVTBits - 1]) 1873 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1874 1875 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1876 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1877 Known.One.setBitsFrom(ExVTBits); 1878 Known.Zero &= Mask; 1879 } else { // Input sign bit unknown 1880 Known.Zero &= Mask; 1881 Known.One &= Mask; 1882 } 1883 break; 1884 } 1885 case ISD::BUILD_PAIR: { 1886 EVT HalfVT = Op.getOperand(0).getValueType(); 1887 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1888 1889 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1890 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1891 1892 KnownBits KnownLo, KnownHi; 1893 1894 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1895 return true; 1896 1897 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1898 return true; 1899 1900 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1901 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1902 1903 Known.One = KnownLo.One.zext(BitWidth) | 1904 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1905 break; 1906 } 1907 case ISD::ZERO_EXTEND: 1908 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1909 SDValue Src = Op.getOperand(0); 1910 EVT SrcVT = Src.getValueType(); 1911 unsigned InBits = SrcVT.getScalarSizeInBits(); 1912 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1913 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1914 1915 // If none of the top bits are demanded, convert this into an any_extend. 1916 if (DemandedBits.getActiveBits() <= InBits) { 1917 // If we only need the non-extended bits of the bottom element 1918 // then we can just bitcast to the result. 1919 if (IsVecInReg && DemandedElts == 1 && 1920 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1921 TLO.DAG.getDataLayout().isLittleEndian()) 1922 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1923 1924 unsigned Opc = 1925 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1926 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1927 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1928 } 1929 1930 APInt InDemandedBits = DemandedBits.trunc(InBits); 1931 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1932 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1933 Depth + 1)) 1934 return true; 1935 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1936 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1937 Known = Known.zext(BitWidth); 1938 1939 // Attempt to avoid multi-use ops if we don't need anything from them. 1940 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1941 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1942 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1943 break; 1944 } 1945 case ISD::SIGN_EXTEND: 1946 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1947 SDValue Src = Op.getOperand(0); 1948 EVT SrcVT = Src.getValueType(); 1949 unsigned InBits = SrcVT.getScalarSizeInBits(); 1950 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1951 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1952 1953 // If none of the top bits are demanded, convert this into an any_extend. 1954 if (DemandedBits.getActiveBits() <= InBits) { 1955 // If we only need the non-extended bits of the bottom element 1956 // then we can just bitcast to the result. 1957 if (IsVecInReg && DemandedElts == 1 && 1958 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1959 TLO.DAG.getDataLayout().isLittleEndian()) 1960 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1961 1962 unsigned Opc = 1963 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1964 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1965 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1966 } 1967 1968 APInt InDemandedBits = DemandedBits.trunc(InBits); 1969 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1970 1971 // Since some of the sign extended bits are demanded, we know that the sign 1972 // bit is demanded. 1973 InDemandedBits.setBit(InBits - 1); 1974 1975 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1976 Depth + 1)) 1977 return true; 1978 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1979 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1980 1981 // If the sign bit is known one, the top bits match. 1982 Known = Known.sext(BitWidth); 1983 1984 // If the sign bit is known zero, convert this to a zero extend. 1985 if (Known.isNonNegative()) { 1986 unsigned Opc = 1987 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1988 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1989 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1990 } 1991 1992 // Attempt to avoid multi-use ops if we don't need anything from them. 1993 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1994 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1995 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1996 break; 1997 } 1998 case ISD::ANY_EXTEND: 1999 case ISD::ANY_EXTEND_VECTOR_INREG: { 2000 SDValue Src = Op.getOperand(0); 2001 EVT SrcVT = Src.getValueType(); 2002 unsigned InBits = SrcVT.getScalarSizeInBits(); 2003 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2004 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2005 2006 // If we only need the bottom element then we can just bitcast. 2007 // TODO: Handle ANY_EXTEND? 2008 if (IsVecInReg && DemandedElts == 1 && 2009 VT.getSizeInBits() == SrcVT.getSizeInBits() && 2010 TLO.DAG.getDataLayout().isLittleEndian()) 2011 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2012 2013 APInt InDemandedBits = DemandedBits.trunc(InBits); 2014 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2015 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2016 Depth + 1)) 2017 return true; 2018 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2019 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2020 Known = Known.anyext(BitWidth); 2021 2022 // Attempt to avoid multi-use ops if we don't need anything from them. 2023 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2024 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2025 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2026 break; 2027 } 2028 case ISD::TRUNCATE: { 2029 SDValue Src = Op.getOperand(0); 2030 2031 // Simplify the input, using demanded bit information, and compute the known 2032 // zero/one bits live out. 2033 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2034 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2035 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2036 Depth + 1)) 2037 return true; 2038 Known = Known.trunc(BitWidth); 2039 2040 // Attempt to avoid multi-use ops if we don't need anything from them. 2041 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2042 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2043 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2044 2045 // If the input is only used by this truncate, see if we can shrink it based 2046 // on the known demanded bits. 2047 if (Src.getNode()->hasOneUse()) { 2048 switch (Src.getOpcode()) { 2049 default: 2050 break; 2051 case ISD::SRL: 2052 // Shrink SRL by a constant if none of the high bits shifted in are 2053 // demanded. 2054 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2055 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2056 // undesirable. 2057 break; 2058 2059 const APInt *ShAmtC = 2060 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2061 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2062 break; 2063 uint64_t ShVal = ShAmtC->getZExtValue(); 2064 2065 APInt HighBits = 2066 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2067 HighBits.lshrInPlace(ShVal); 2068 HighBits = HighBits.trunc(BitWidth); 2069 2070 if (!(HighBits & DemandedBits)) { 2071 // None of the shifted in bits are needed. Add a truncate of the 2072 // shift input, then shift it. 2073 SDValue NewShAmt = TLO.DAG.getConstant( 2074 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2075 SDValue NewTrunc = 2076 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2077 return TLO.CombineTo( 2078 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2079 } 2080 break; 2081 } 2082 } 2083 2084 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2085 break; 2086 } 2087 case ISD::AssertZext: { 2088 // AssertZext demands all of the high bits, plus any of the low bits 2089 // demanded by its users. 2090 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2091 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2092 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2093 TLO, Depth + 1)) 2094 return true; 2095 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2096 2097 Known.Zero |= ~InMask; 2098 break; 2099 } 2100 case ISD::EXTRACT_VECTOR_ELT: { 2101 SDValue Src = Op.getOperand(0); 2102 SDValue Idx = Op.getOperand(1); 2103 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2104 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2105 2106 if (SrcEltCnt.isScalable()) 2107 return false; 2108 2109 // Demand the bits from every vector element without a constant index. 2110 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2111 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2112 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2113 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2114 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2115 2116 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2117 // anything about the extended bits. 2118 APInt DemandedSrcBits = DemandedBits; 2119 if (BitWidth > EltBitWidth) 2120 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2121 2122 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2123 Depth + 1)) 2124 return true; 2125 2126 // Attempt to avoid multi-use ops if we don't need anything from them. 2127 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2128 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2129 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2130 SDValue NewOp = 2131 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2132 return TLO.CombineTo(Op, NewOp); 2133 } 2134 } 2135 2136 Known = Known2; 2137 if (BitWidth > EltBitWidth) 2138 Known = Known.anyext(BitWidth); 2139 break; 2140 } 2141 case ISD::BITCAST: { 2142 SDValue Src = Op.getOperand(0); 2143 EVT SrcVT = Src.getValueType(); 2144 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2145 2146 // If this is an FP->Int bitcast and if the sign bit is the only 2147 // thing demanded, turn this into a FGETSIGN. 2148 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2149 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2150 SrcVT.isFloatingPoint()) { 2151 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2152 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2153 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2154 SrcVT != MVT::f128) { 2155 // Cannot eliminate/lower SHL for f128 yet. 2156 EVT Ty = OpVTLegal ? VT : MVT::i32; 2157 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2158 // place. We expect the SHL to be eliminated by other optimizations. 2159 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2160 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2161 if (!OpVTLegal && OpVTSizeInBits > 32) 2162 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2163 unsigned ShVal = Op.getValueSizeInBits() - 1; 2164 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2165 return TLO.CombineTo(Op, 2166 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2167 } 2168 } 2169 2170 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2171 // Demand the elt/bit if any of the original elts/bits are demanded. 2172 // TODO - bigendian once we have test coverage. 2173 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2174 TLO.DAG.getDataLayout().isLittleEndian()) { 2175 unsigned Scale = BitWidth / NumSrcEltBits; 2176 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2177 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2178 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2179 for (unsigned i = 0; i != Scale; ++i) { 2180 unsigned Offset = i * NumSrcEltBits; 2181 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2182 if (!Sub.isZero()) { 2183 DemandedSrcBits |= Sub; 2184 for (unsigned j = 0; j != NumElts; ++j) 2185 if (DemandedElts[j]) 2186 DemandedSrcElts.setBit((j * Scale) + i); 2187 } 2188 } 2189 2190 APInt KnownSrcUndef, KnownSrcZero; 2191 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2192 KnownSrcZero, TLO, Depth + 1)) 2193 return true; 2194 2195 KnownBits KnownSrcBits; 2196 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2197 KnownSrcBits, TLO, Depth + 1)) 2198 return true; 2199 } else if ((NumSrcEltBits % BitWidth) == 0 && 2200 TLO.DAG.getDataLayout().isLittleEndian()) { 2201 unsigned Scale = NumSrcEltBits / BitWidth; 2202 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2203 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2204 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2205 for (unsigned i = 0; i != NumElts; ++i) 2206 if (DemandedElts[i]) { 2207 unsigned Offset = (i % Scale) * BitWidth; 2208 DemandedSrcBits.insertBits(DemandedBits, Offset); 2209 DemandedSrcElts.setBit(i / Scale); 2210 } 2211 2212 if (SrcVT.isVector()) { 2213 APInt KnownSrcUndef, KnownSrcZero; 2214 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2215 KnownSrcZero, TLO, Depth + 1)) 2216 return true; 2217 } 2218 2219 KnownBits KnownSrcBits; 2220 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2221 KnownSrcBits, TLO, Depth + 1)) 2222 return true; 2223 } 2224 2225 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2226 // recursive call where Known may be useful to the caller. 2227 if (Depth > 0) { 2228 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2229 return false; 2230 } 2231 break; 2232 } 2233 case ISD::ADD: 2234 case ISD::MUL: 2235 case ISD::SUB: { 2236 // Add, Sub, and Mul don't demand any bits in positions beyond that 2237 // of the highest bit demanded of them. 2238 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2239 SDNodeFlags Flags = Op.getNode()->getFlags(); 2240 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2241 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2242 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2243 Depth + 1) || 2244 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2245 Depth + 1) || 2246 // See if the operation should be performed at a smaller bit width. 2247 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2248 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2249 // Disable the nsw and nuw flags. We can no longer guarantee that we 2250 // won't wrap after simplification. 2251 Flags.setNoSignedWrap(false); 2252 Flags.setNoUnsignedWrap(false); 2253 SDValue NewOp = 2254 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2255 return TLO.CombineTo(Op, NewOp); 2256 } 2257 return true; 2258 } 2259 2260 // Attempt to avoid multi-use ops if we don't need anything from them. 2261 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2262 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2263 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2264 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2265 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2266 if (DemandedOp0 || DemandedOp1) { 2267 Flags.setNoSignedWrap(false); 2268 Flags.setNoUnsignedWrap(false); 2269 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2270 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2271 SDValue NewOp = 2272 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2273 return TLO.CombineTo(Op, NewOp); 2274 } 2275 } 2276 2277 // If we have a constant operand, we may be able to turn it into -1 if we 2278 // do not demand the high bits. This can make the constant smaller to 2279 // encode, allow more general folding, or match specialized instruction 2280 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2281 // is probably not useful (and could be detrimental). 2282 ConstantSDNode *C = isConstOrConstSplat(Op1); 2283 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2284 if (C && !C->isAllOnes() && !C->isOne() && 2285 (C->getAPIntValue() | HighMask).isAllOnes()) { 2286 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2287 // Disable the nsw and nuw flags. We can no longer guarantee that we 2288 // won't wrap after simplification. 2289 Flags.setNoSignedWrap(false); 2290 Flags.setNoUnsignedWrap(false); 2291 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2292 return TLO.CombineTo(Op, NewOp); 2293 } 2294 2295 LLVM_FALLTHROUGH; 2296 } 2297 default: 2298 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2299 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2300 Known, TLO, Depth)) 2301 return true; 2302 break; 2303 } 2304 2305 // Just use computeKnownBits to compute output bits. 2306 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2307 break; 2308 } 2309 2310 // If we know the value of all of the demanded bits, return this as a 2311 // constant. 2312 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2313 // Avoid folding to a constant if any OpaqueConstant is involved. 2314 const SDNode *N = Op.getNode(); 2315 for (SDNode *Op : 2316 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2317 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2318 if (C->isOpaque()) 2319 return false; 2320 } 2321 if (VT.isInteger()) 2322 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2323 if (VT.isFloatingPoint()) 2324 return TLO.CombineTo( 2325 Op, 2326 TLO.DAG.getConstantFP( 2327 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2328 } 2329 2330 return false; 2331 } 2332 2333 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2334 const APInt &DemandedElts, 2335 APInt &KnownUndef, 2336 APInt &KnownZero, 2337 DAGCombinerInfo &DCI) const { 2338 SelectionDAG &DAG = DCI.DAG; 2339 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2340 !DCI.isBeforeLegalizeOps()); 2341 2342 bool Simplified = 2343 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2344 if (Simplified) { 2345 DCI.AddToWorklist(Op.getNode()); 2346 DCI.CommitTargetLoweringOpt(TLO); 2347 } 2348 2349 return Simplified; 2350 } 2351 2352 /// Given a vector binary operation and known undefined elements for each input 2353 /// operand, compute whether each element of the output is undefined. 2354 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2355 const APInt &UndefOp0, 2356 const APInt &UndefOp1) { 2357 EVT VT = BO.getValueType(); 2358 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2359 "Vector binop only"); 2360 2361 EVT EltVT = VT.getVectorElementType(); 2362 unsigned NumElts = VT.getVectorNumElements(); 2363 assert(UndefOp0.getBitWidth() == NumElts && 2364 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2365 2366 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2367 const APInt &UndefVals) { 2368 if (UndefVals[Index]) 2369 return DAG.getUNDEF(EltVT); 2370 2371 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2372 // Try hard to make sure that the getNode() call is not creating temporary 2373 // nodes. Ignore opaque integers because they do not constant fold. 2374 SDValue Elt = BV->getOperand(Index); 2375 auto *C = dyn_cast<ConstantSDNode>(Elt); 2376 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2377 return Elt; 2378 } 2379 2380 return SDValue(); 2381 }; 2382 2383 APInt KnownUndef = APInt::getZero(NumElts); 2384 for (unsigned i = 0; i != NumElts; ++i) { 2385 // If both inputs for this element are either constant or undef and match 2386 // the element type, compute the constant/undef result for this element of 2387 // the vector. 2388 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2389 // not handle FP constants. The code within getNode() should be refactored 2390 // to avoid the danger of creating a bogus temporary node here. 2391 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2392 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2393 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2394 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2395 KnownUndef.setBit(i); 2396 } 2397 return KnownUndef; 2398 } 2399 2400 bool TargetLowering::SimplifyDemandedVectorElts( 2401 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2402 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2403 bool AssumeSingleUse) const { 2404 EVT VT = Op.getValueType(); 2405 unsigned Opcode = Op.getOpcode(); 2406 APInt DemandedElts = OriginalDemandedElts; 2407 unsigned NumElts = DemandedElts.getBitWidth(); 2408 assert(VT.isVector() && "Expected vector op"); 2409 2410 KnownUndef = KnownZero = APInt::getZero(NumElts); 2411 2412 // TODO: For now we assume we know nothing about scalable vectors. 2413 if (VT.isScalableVector()) 2414 return false; 2415 2416 assert(VT.getVectorNumElements() == NumElts && 2417 "Mask size mismatches value type element count!"); 2418 2419 // Undef operand. 2420 if (Op.isUndef()) { 2421 KnownUndef.setAllBits(); 2422 return false; 2423 } 2424 2425 // If Op has other users, assume that all elements are needed. 2426 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2427 DemandedElts.setAllBits(); 2428 2429 // Not demanding any elements from Op. 2430 if (DemandedElts == 0) { 2431 KnownUndef.setAllBits(); 2432 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2433 } 2434 2435 // Limit search depth. 2436 if (Depth >= SelectionDAG::MaxRecursionDepth) 2437 return false; 2438 2439 SDLoc DL(Op); 2440 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2441 2442 // Helper for demanding the specified elements and all the bits of both binary 2443 // operands. 2444 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2445 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2446 TLO.DAG, Depth + 1); 2447 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2448 TLO.DAG, Depth + 1); 2449 if (NewOp0 || NewOp1) { 2450 SDValue NewOp = TLO.DAG.getNode( 2451 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2452 return TLO.CombineTo(Op, NewOp); 2453 } 2454 return false; 2455 }; 2456 2457 switch (Opcode) { 2458 case ISD::SCALAR_TO_VECTOR: { 2459 if (!DemandedElts[0]) { 2460 KnownUndef.setAllBits(); 2461 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2462 } 2463 SDValue ScalarSrc = Op.getOperand(0); 2464 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2465 SDValue Src = ScalarSrc.getOperand(0); 2466 SDValue Idx = ScalarSrc.getOperand(1); 2467 EVT SrcVT = Src.getValueType(); 2468 2469 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2470 2471 if (SrcEltCnt.isScalable()) 2472 return false; 2473 2474 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2475 if (isNullConstant(Idx)) { 2476 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2477 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2478 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2479 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2480 TLO, Depth + 1)) 2481 return true; 2482 } 2483 } 2484 KnownUndef.setHighBits(NumElts - 1); 2485 break; 2486 } 2487 case ISD::BITCAST: { 2488 SDValue Src = Op.getOperand(0); 2489 EVT SrcVT = Src.getValueType(); 2490 2491 // We only handle vectors here. 2492 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2493 if (!SrcVT.isVector()) 2494 break; 2495 2496 // Fast handling of 'identity' bitcasts. 2497 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2498 if (NumSrcElts == NumElts) 2499 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2500 KnownZero, TLO, Depth + 1); 2501 2502 APInt SrcDemandedElts, SrcZero, SrcUndef; 2503 2504 // Bitcast from 'large element' src vector to 'small element' vector, we 2505 // must demand a source element if any DemandedElt maps to it. 2506 if ((NumElts % NumSrcElts) == 0) { 2507 unsigned Scale = NumElts / NumSrcElts; 2508 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2509 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2510 TLO, Depth + 1)) 2511 return true; 2512 2513 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2514 // of the large element. 2515 // TODO - bigendian once we have test coverage. 2516 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2517 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2518 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2519 for (unsigned i = 0; i != NumElts; ++i) 2520 if (DemandedElts[i]) { 2521 unsigned Ofs = (i % Scale) * EltSizeInBits; 2522 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2523 } 2524 2525 KnownBits Known; 2526 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2527 TLO, Depth + 1)) 2528 return true; 2529 } 2530 2531 // If the src element is zero/undef then all the output elements will be - 2532 // only demanded elements are guaranteed to be correct. 2533 for (unsigned i = 0; i != NumSrcElts; ++i) { 2534 if (SrcDemandedElts[i]) { 2535 if (SrcZero[i]) 2536 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2537 if (SrcUndef[i]) 2538 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2539 } 2540 } 2541 } 2542 2543 // Bitcast from 'small element' src vector to 'large element' vector, we 2544 // demand all smaller source elements covered by the larger demanded element 2545 // of this vector. 2546 if ((NumSrcElts % NumElts) == 0) { 2547 unsigned Scale = NumSrcElts / NumElts; 2548 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2549 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2550 TLO, Depth + 1)) 2551 return true; 2552 2553 // If all the src elements covering an output element are zero/undef, then 2554 // the output element will be as well, assuming it was demanded. 2555 for (unsigned i = 0; i != NumElts; ++i) { 2556 if (DemandedElts[i]) { 2557 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2558 KnownZero.setBit(i); 2559 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2560 KnownUndef.setBit(i); 2561 } 2562 } 2563 } 2564 break; 2565 } 2566 case ISD::BUILD_VECTOR: { 2567 // Check all elements and simplify any unused elements with UNDEF. 2568 if (!DemandedElts.isAllOnes()) { 2569 // Don't simplify BROADCASTS. 2570 if (llvm::any_of(Op->op_values(), 2571 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2572 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2573 bool Updated = false; 2574 for (unsigned i = 0; i != NumElts; ++i) { 2575 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2576 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2577 KnownUndef.setBit(i); 2578 Updated = true; 2579 } 2580 } 2581 if (Updated) 2582 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2583 } 2584 } 2585 for (unsigned i = 0; i != NumElts; ++i) { 2586 SDValue SrcOp = Op.getOperand(i); 2587 if (SrcOp.isUndef()) { 2588 KnownUndef.setBit(i); 2589 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2590 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2591 KnownZero.setBit(i); 2592 } 2593 } 2594 break; 2595 } 2596 case ISD::CONCAT_VECTORS: { 2597 EVT SubVT = Op.getOperand(0).getValueType(); 2598 unsigned NumSubVecs = Op.getNumOperands(); 2599 unsigned NumSubElts = SubVT.getVectorNumElements(); 2600 for (unsigned i = 0; i != NumSubVecs; ++i) { 2601 SDValue SubOp = Op.getOperand(i); 2602 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2603 APInt SubUndef, SubZero; 2604 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2605 Depth + 1)) 2606 return true; 2607 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2608 KnownZero.insertBits(SubZero, i * NumSubElts); 2609 } 2610 break; 2611 } 2612 case ISD::INSERT_SUBVECTOR: { 2613 // Demand any elements from the subvector and the remainder from the src its 2614 // inserted into. 2615 SDValue Src = Op.getOperand(0); 2616 SDValue Sub = Op.getOperand(1); 2617 uint64_t Idx = Op.getConstantOperandVal(2); 2618 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2619 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2620 APInt DemandedSrcElts = DemandedElts; 2621 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2622 2623 APInt SubUndef, SubZero; 2624 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2625 Depth + 1)) 2626 return true; 2627 2628 // If none of the src operand elements are demanded, replace it with undef. 2629 if (!DemandedSrcElts && !Src.isUndef()) 2630 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2631 TLO.DAG.getUNDEF(VT), Sub, 2632 Op.getOperand(2))); 2633 2634 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2635 TLO, Depth + 1)) 2636 return true; 2637 KnownUndef.insertBits(SubUndef, Idx); 2638 KnownZero.insertBits(SubZero, Idx); 2639 2640 // Attempt to avoid multi-use ops if we don't need anything from them. 2641 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2642 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2643 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2644 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2645 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2646 if (NewSrc || NewSub) { 2647 NewSrc = NewSrc ? NewSrc : Src; 2648 NewSub = NewSub ? NewSub : Sub; 2649 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2650 NewSub, Op.getOperand(2)); 2651 return TLO.CombineTo(Op, NewOp); 2652 } 2653 } 2654 break; 2655 } 2656 case ISD::EXTRACT_SUBVECTOR: { 2657 // Offset the demanded elts by the subvector index. 2658 SDValue Src = Op.getOperand(0); 2659 if (Src.getValueType().isScalableVector()) 2660 break; 2661 uint64_t Idx = Op.getConstantOperandVal(1); 2662 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2663 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2664 2665 APInt SrcUndef, SrcZero; 2666 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2667 Depth + 1)) 2668 return true; 2669 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2670 KnownZero = SrcZero.extractBits(NumElts, Idx); 2671 2672 // Attempt to avoid multi-use ops if we don't need anything from them. 2673 if (!DemandedElts.isAllOnes()) { 2674 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2675 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2676 if (NewSrc) { 2677 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2678 Op.getOperand(1)); 2679 return TLO.CombineTo(Op, NewOp); 2680 } 2681 } 2682 break; 2683 } 2684 case ISD::INSERT_VECTOR_ELT: { 2685 SDValue Vec = Op.getOperand(0); 2686 SDValue Scl = Op.getOperand(1); 2687 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2688 2689 // For a legal, constant insertion index, if we don't need this insertion 2690 // then strip it, else remove it from the demanded elts. 2691 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2692 unsigned Idx = CIdx->getZExtValue(); 2693 if (!DemandedElts[Idx]) 2694 return TLO.CombineTo(Op, Vec); 2695 2696 APInt DemandedVecElts(DemandedElts); 2697 DemandedVecElts.clearBit(Idx); 2698 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2699 KnownZero, TLO, Depth + 1)) 2700 return true; 2701 2702 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2703 2704 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2705 break; 2706 } 2707 2708 APInt VecUndef, VecZero; 2709 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2710 Depth + 1)) 2711 return true; 2712 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2713 break; 2714 } 2715 case ISD::VSELECT: { 2716 // Try to transform the select condition based on the current demanded 2717 // elements. 2718 // TODO: If a condition element is undef, we can choose from one arm of the 2719 // select (and if one arm is undef, then we can propagate that to the 2720 // result). 2721 // TODO - add support for constant vselect masks (see IR version of this). 2722 APInt UnusedUndef, UnusedZero; 2723 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2724 UnusedZero, TLO, Depth + 1)) 2725 return true; 2726 2727 // See if we can simplify either vselect operand. 2728 APInt DemandedLHS(DemandedElts); 2729 APInt DemandedRHS(DemandedElts); 2730 APInt UndefLHS, ZeroLHS; 2731 APInt UndefRHS, ZeroRHS; 2732 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2733 ZeroLHS, TLO, Depth + 1)) 2734 return true; 2735 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2736 ZeroRHS, TLO, Depth + 1)) 2737 return true; 2738 2739 KnownUndef = UndefLHS & UndefRHS; 2740 KnownZero = ZeroLHS & ZeroRHS; 2741 break; 2742 } 2743 case ISD::VECTOR_SHUFFLE: { 2744 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2745 2746 // Collect demanded elements from shuffle operands.. 2747 APInt DemandedLHS(NumElts, 0); 2748 APInt DemandedRHS(NumElts, 0); 2749 for (unsigned i = 0; i != NumElts; ++i) { 2750 int M = ShuffleMask[i]; 2751 if (M < 0 || !DemandedElts[i]) 2752 continue; 2753 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2754 if (M < (int)NumElts) 2755 DemandedLHS.setBit(M); 2756 else 2757 DemandedRHS.setBit(M - NumElts); 2758 } 2759 2760 // See if we can simplify either shuffle operand. 2761 APInt UndefLHS, ZeroLHS; 2762 APInt UndefRHS, ZeroRHS; 2763 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2764 ZeroLHS, TLO, Depth + 1)) 2765 return true; 2766 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2767 ZeroRHS, TLO, Depth + 1)) 2768 return true; 2769 2770 // Simplify mask using undef elements from LHS/RHS. 2771 bool Updated = false; 2772 bool IdentityLHS = true, IdentityRHS = true; 2773 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2774 for (unsigned i = 0; i != NumElts; ++i) { 2775 int &M = NewMask[i]; 2776 if (M < 0) 2777 continue; 2778 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2779 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2780 Updated = true; 2781 M = -1; 2782 } 2783 IdentityLHS &= (M < 0) || (M == (int)i); 2784 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2785 } 2786 2787 // Update legal shuffle masks based on demanded elements if it won't reduce 2788 // to Identity which can cause premature removal of the shuffle mask. 2789 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2790 SDValue LegalShuffle = 2791 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2792 NewMask, TLO.DAG); 2793 if (LegalShuffle) 2794 return TLO.CombineTo(Op, LegalShuffle); 2795 } 2796 2797 // Propagate undef/zero elements from LHS/RHS. 2798 for (unsigned i = 0; i != NumElts; ++i) { 2799 int M = ShuffleMask[i]; 2800 if (M < 0) { 2801 KnownUndef.setBit(i); 2802 } else if (M < (int)NumElts) { 2803 if (UndefLHS[M]) 2804 KnownUndef.setBit(i); 2805 if (ZeroLHS[M]) 2806 KnownZero.setBit(i); 2807 } else { 2808 if (UndefRHS[M - NumElts]) 2809 KnownUndef.setBit(i); 2810 if (ZeroRHS[M - NumElts]) 2811 KnownZero.setBit(i); 2812 } 2813 } 2814 break; 2815 } 2816 case ISD::ANY_EXTEND_VECTOR_INREG: 2817 case ISD::SIGN_EXTEND_VECTOR_INREG: 2818 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2819 APInt SrcUndef, SrcZero; 2820 SDValue Src = Op.getOperand(0); 2821 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2822 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2823 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2824 Depth + 1)) 2825 return true; 2826 KnownZero = SrcZero.zextOrTrunc(NumElts); 2827 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2828 2829 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2830 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2831 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2832 // aext - if we just need the bottom element then we can bitcast. 2833 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2834 } 2835 2836 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2837 // zext(undef) upper bits are guaranteed to be zero. 2838 if (DemandedElts.isSubsetOf(KnownUndef)) 2839 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2840 KnownUndef.clearAllBits(); 2841 2842 // zext - if we just need the bottom element then we can mask: 2843 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 2844 if (DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian() && 2845 Src.getOpcode() == ISD::AND && Op->isOnlyUserOf(Src.getNode()) && 2846 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 2847 SDLoc DL(Op); 2848 EVT SrcVT = Src.getValueType(); 2849 EVT SrcSVT = SrcVT.getScalarType(); 2850 SmallVector<SDValue> MaskElts; 2851 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 2852 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 2853 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 2854 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 2855 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 2856 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 2857 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 2858 } 2859 } 2860 } 2861 break; 2862 } 2863 2864 // TODO: There are more binop opcodes that could be handled here - MIN, 2865 // MAX, saturated math, etc. 2866 case ISD::OR: 2867 case ISD::XOR: 2868 case ISD::ADD: 2869 case ISD::SUB: 2870 case ISD::FADD: 2871 case ISD::FSUB: 2872 case ISD::FMUL: 2873 case ISD::FDIV: 2874 case ISD::FREM: { 2875 SDValue Op0 = Op.getOperand(0); 2876 SDValue Op1 = Op.getOperand(1); 2877 2878 APInt UndefRHS, ZeroRHS; 2879 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2880 Depth + 1)) 2881 return true; 2882 APInt UndefLHS, ZeroLHS; 2883 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2884 Depth + 1)) 2885 return true; 2886 2887 KnownZero = ZeroLHS & ZeroRHS; 2888 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2889 2890 // Attempt to avoid multi-use ops if we don't need anything from them. 2891 // TODO - use KnownUndef to relax the demandedelts? 2892 if (!DemandedElts.isAllOnes()) 2893 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2894 return true; 2895 break; 2896 } 2897 case ISD::SHL: 2898 case ISD::SRL: 2899 case ISD::SRA: 2900 case ISD::ROTL: 2901 case ISD::ROTR: { 2902 SDValue Op0 = Op.getOperand(0); 2903 SDValue Op1 = Op.getOperand(1); 2904 2905 APInt UndefRHS, ZeroRHS; 2906 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2907 Depth + 1)) 2908 return true; 2909 APInt UndefLHS, ZeroLHS; 2910 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2911 Depth + 1)) 2912 return true; 2913 2914 KnownZero = ZeroLHS; 2915 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2916 2917 // Attempt to avoid multi-use ops if we don't need anything from them. 2918 // TODO - use KnownUndef to relax the demandedelts? 2919 if (!DemandedElts.isAllOnes()) 2920 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2921 return true; 2922 break; 2923 } 2924 case ISD::MUL: 2925 case ISD::AND: { 2926 SDValue Op0 = Op.getOperand(0); 2927 SDValue Op1 = Op.getOperand(1); 2928 2929 APInt SrcUndef, SrcZero; 2930 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2931 Depth + 1)) 2932 return true; 2933 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2934 TLO, Depth + 1)) 2935 return true; 2936 2937 // If either side has a zero element, then the result element is zero, even 2938 // if the other is an UNDEF. 2939 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2940 // and then handle 'and' nodes with the rest of the binop opcodes. 2941 KnownZero |= SrcZero; 2942 KnownUndef &= SrcUndef; 2943 KnownUndef &= ~KnownZero; 2944 2945 // Attempt to avoid multi-use ops if we don't need anything from them. 2946 // TODO - use KnownUndef to relax the demandedelts? 2947 if (!DemandedElts.isAllOnes()) 2948 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2949 return true; 2950 break; 2951 } 2952 case ISD::TRUNCATE: 2953 case ISD::SIGN_EXTEND: 2954 case ISD::ZERO_EXTEND: 2955 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2956 KnownZero, TLO, Depth + 1)) 2957 return true; 2958 2959 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2960 // zext(undef) upper bits are guaranteed to be zero. 2961 if (DemandedElts.isSubsetOf(KnownUndef)) 2962 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2963 KnownUndef.clearAllBits(); 2964 } 2965 break; 2966 default: { 2967 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2968 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2969 KnownZero, TLO, Depth)) 2970 return true; 2971 } else { 2972 KnownBits Known; 2973 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 2974 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2975 TLO, Depth, AssumeSingleUse)) 2976 return true; 2977 } 2978 break; 2979 } 2980 } 2981 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2982 2983 // Constant fold all undef cases. 2984 // TODO: Handle zero cases as well. 2985 if (DemandedElts.isSubsetOf(KnownUndef)) 2986 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2987 2988 return false; 2989 } 2990 2991 /// Determine which of the bits specified in Mask are known to be either zero or 2992 /// one and return them in the Known. 2993 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2994 KnownBits &Known, 2995 const APInt &DemandedElts, 2996 const SelectionDAG &DAG, 2997 unsigned Depth) const { 2998 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2999 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3000 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3001 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3002 "Should use MaskedValueIsZero if you don't know whether Op" 3003 " is a target node!"); 3004 Known.resetAll(); 3005 } 3006 3007 void TargetLowering::computeKnownBitsForTargetInstr( 3008 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3009 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3010 unsigned Depth) const { 3011 Known.resetAll(); 3012 } 3013 3014 void TargetLowering::computeKnownBitsForFrameIndex( 3015 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3016 // The low bits are known zero if the pointer is aligned. 3017 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3018 } 3019 3020 Align TargetLowering::computeKnownAlignForTargetInstr( 3021 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3022 unsigned Depth) const { 3023 return Align(1); 3024 } 3025 3026 /// This method can be implemented by targets that want to expose additional 3027 /// information about sign bits to the DAG Combiner. 3028 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3029 const APInt &, 3030 const SelectionDAG &, 3031 unsigned Depth) const { 3032 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3033 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3034 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3035 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3036 "Should use ComputeNumSignBits if you don't know whether Op" 3037 " is a target node!"); 3038 return 1; 3039 } 3040 3041 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3042 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3043 const MachineRegisterInfo &MRI, unsigned Depth) const { 3044 return 1; 3045 } 3046 3047 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3048 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3049 TargetLoweringOpt &TLO, unsigned Depth) const { 3050 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3051 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3052 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3053 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3054 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3055 " is a target node!"); 3056 return false; 3057 } 3058 3059 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3060 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3061 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3062 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3063 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3064 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3065 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3066 "Should use SimplifyDemandedBits if you don't know whether Op" 3067 " is a target node!"); 3068 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3069 return false; 3070 } 3071 3072 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3073 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3074 SelectionDAG &DAG, unsigned Depth) const { 3075 assert( 3076 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3077 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3078 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3079 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3080 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3081 " is a target node!"); 3082 return SDValue(); 3083 } 3084 3085 SDValue 3086 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3087 SDValue N1, MutableArrayRef<int> Mask, 3088 SelectionDAG &DAG) const { 3089 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3090 if (!LegalMask) { 3091 std::swap(N0, N1); 3092 ShuffleVectorSDNode::commuteMask(Mask); 3093 LegalMask = isShuffleMaskLegal(Mask, VT); 3094 } 3095 3096 if (!LegalMask) 3097 return SDValue(); 3098 3099 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3100 } 3101 3102 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3103 return nullptr; 3104 } 3105 3106 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3107 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3108 bool PoisonOnly, unsigned Depth) const { 3109 assert( 3110 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3111 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3112 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3113 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3114 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3115 " is a target node!"); 3116 return false; 3117 } 3118 3119 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3120 const SelectionDAG &DAG, 3121 bool SNaN, 3122 unsigned Depth) const { 3123 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3124 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3125 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3126 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3127 "Should use isKnownNeverNaN if you don't know whether Op" 3128 " is a target node!"); 3129 return false; 3130 } 3131 3132 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3133 // work with truncating build vectors and vectors with elements of less than 3134 // 8 bits. 3135 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3136 if (!N) 3137 return false; 3138 3139 APInt CVal; 3140 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3141 CVal = CN->getAPIntValue(); 3142 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3143 auto *CN = BV->getConstantSplatNode(); 3144 if (!CN) 3145 return false; 3146 3147 // If this is a truncating build vector, truncate the splat value. 3148 // Otherwise, we may fail to match the expected values below. 3149 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3150 CVal = CN->getAPIntValue(); 3151 if (BVEltWidth < CVal.getBitWidth()) 3152 CVal = CVal.trunc(BVEltWidth); 3153 } else { 3154 return false; 3155 } 3156 3157 switch (getBooleanContents(N->getValueType(0))) { 3158 case UndefinedBooleanContent: 3159 return CVal[0]; 3160 case ZeroOrOneBooleanContent: 3161 return CVal.isOne(); 3162 case ZeroOrNegativeOneBooleanContent: 3163 return CVal.isAllOnes(); 3164 } 3165 3166 llvm_unreachable("Invalid boolean contents"); 3167 } 3168 3169 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3170 if (!N) 3171 return false; 3172 3173 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3174 if (!CN) { 3175 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3176 if (!BV) 3177 return false; 3178 3179 // Only interested in constant splats, we don't care about undef 3180 // elements in identifying boolean constants and getConstantSplatNode 3181 // returns NULL if all ops are undef; 3182 CN = BV->getConstantSplatNode(); 3183 if (!CN) 3184 return false; 3185 } 3186 3187 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3188 return !CN->getAPIntValue()[0]; 3189 3190 return CN->isZero(); 3191 } 3192 3193 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3194 bool SExt) const { 3195 if (VT == MVT::i1) 3196 return N->isOne(); 3197 3198 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3199 switch (Cnt) { 3200 case TargetLowering::ZeroOrOneBooleanContent: 3201 // An extended value of 1 is always true, unless its original type is i1, 3202 // in which case it will be sign extended to -1. 3203 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3204 case TargetLowering::UndefinedBooleanContent: 3205 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3206 return N->isAllOnes() && SExt; 3207 } 3208 llvm_unreachable("Unexpected enumeration."); 3209 } 3210 3211 /// This helper function of SimplifySetCC tries to optimize the comparison when 3212 /// either operand of the SetCC node is a bitwise-and instruction. 3213 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3214 ISD::CondCode Cond, const SDLoc &DL, 3215 DAGCombinerInfo &DCI) const { 3216 // Match these patterns in any of their permutations: 3217 // (X & Y) == Y 3218 // (X & Y) != Y 3219 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3220 std::swap(N0, N1); 3221 3222 EVT OpVT = N0.getValueType(); 3223 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3224 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3225 return SDValue(); 3226 3227 SDValue X, Y; 3228 if (N0.getOperand(0) == N1) { 3229 X = N0.getOperand(1); 3230 Y = N0.getOperand(0); 3231 } else if (N0.getOperand(1) == N1) { 3232 X = N0.getOperand(0); 3233 Y = N0.getOperand(1); 3234 } else { 3235 return SDValue(); 3236 } 3237 3238 SelectionDAG &DAG = DCI.DAG; 3239 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3240 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3241 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3242 // Note that where Y is variable and is known to have at most one bit set 3243 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3244 // equivalent when Y == 0. 3245 assert(OpVT.isInteger()); 3246 Cond = ISD::getSetCCInverse(Cond, OpVT); 3247 if (DCI.isBeforeLegalizeOps() || 3248 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3249 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3250 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3251 // If the target supports an 'and-not' or 'and-complement' logic operation, 3252 // try to use that to make a comparison operation more efficient. 3253 // But don't do this transform if the mask is a single bit because there are 3254 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3255 // 'rlwinm' on PPC). 3256 3257 // Bail out if the compare operand that we want to turn into a zero is 3258 // already a zero (otherwise, infinite loop). 3259 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3260 if (YConst && YConst->isZero()) 3261 return SDValue(); 3262 3263 // Transform this into: ~X & Y == 0. 3264 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3265 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3266 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3267 } 3268 3269 return SDValue(); 3270 } 3271 3272 /// There are multiple IR patterns that could be checking whether certain 3273 /// truncation of a signed number would be lossy or not. The pattern which is 3274 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3275 /// We are looking for the following pattern: (KeptBits is a constant) 3276 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3277 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3278 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3279 /// We will unfold it into the natural trunc+sext pattern: 3280 /// ((%x << C) a>> C) dstcond %x 3281 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3282 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3283 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3284 const SDLoc &DL) const { 3285 // We must be comparing with a constant. 3286 ConstantSDNode *C1; 3287 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3288 return SDValue(); 3289 3290 // N0 should be: add %x, (1 << (KeptBits-1)) 3291 if (N0->getOpcode() != ISD::ADD) 3292 return SDValue(); 3293 3294 // And we must be 'add'ing a constant. 3295 ConstantSDNode *C01; 3296 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3297 return SDValue(); 3298 3299 SDValue X = N0->getOperand(0); 3300 EVT XVT = X.getValueType(); 3301 3302 // Validate constants ... 3303 3304 APInt I1 = C1->getAPIntValue(); 3305 3306 ISD::CondCode NewCond; 3307 if (Cond == ISD::CondCode::SETULT) { 3308 NewCond = ISD::CondCode::SETEQ; 3309 } else if (Cond == ISD::CondCode::SETULE) { 3310 NewCond = ISD::CondCode::SETEQ; 3311 // But need to 'canonicalize' the constant. 3312 I1 += 1; 3313 } else if (Cond == ISD::CondCode::SETUGT) { 3314 NewCond = ISD::CondCode::SETNE; 3315 // But need to 'canonicalize' the constant. 3316 I1 += 1; 3317 } else if (Cond == ISD::CondCode::SETUGE) { 3318 NewCond = ISD::CondCode::SETNE; 3319 } else 3320 return SDValue(); 3321 3322 APInt I01 = C01->getAPIntValue(); 3323 3324 auto checkConstants = [&I1, &I01]() -> bool { 3325 // Both of them must be power-of-two, and the constant from setcc is bigger. 3326 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3327 }; 3328 3329 if (checkConstants()) { 3330 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3331 } else { 3332 // What if we invert constants? (and the target predicate) 3333 I1.negate(); 3334 I01.negate(); 3335 assert(XVT.isInteger()); 3336 NewCond = getSetCCInverse(NewCond, XVT); 3337 if (!checkConstants()) 3338 return SDValue(); 3339 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3340 } 3341 3342 // They are power-of-two, so which bit is set? 3343 const unsigned KeptBits = I1.logBase2(); 3344 const unsigned KeptBitsMinusOne = I01.logBase2(); 3345 3346 // Magic! 3347 if (KeptBits != (KeptBitsMinusOne + 1)) 3348 return SDValue(); 3349 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3350 3351 // We don't want to do this in every single case. 3352 SelectionDAG &DAG = DCI.DAG; 3353 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3354 XVT, KeptBits)) 3355 return SDValue(); 3356 3357 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3358 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3359 3360 // Unfold into: ((%x << C) a>> C) cond %x 3361 // Where 'cond' will be either 'eq' or 'ne'. 3362 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3363 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3364 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3365 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3366 3367 return T2; 3368 } 3369 3370 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3371 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3372 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3373 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3374 assert(isConstOrConstSplat(N1C) && 3375 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3376 "Should be a comparison with 0."); 3377 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3378 "Valid only for [in]equality comparisons."); 3379 3380 unsigned NewShiftOpcode; 3381 SDValue X, C, Y; 3382 3383 SelectionDAG &DAG = DCI.DAG; 3384 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3385 3386 // Look for '(C l>>/<< Y)'. 3387 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3388 // The shift should be one-use. 3389 if (!V.hasOneUse()) 3390 return false; 3391 unsigned OldShiftOpcode = V.getOpcode(); 3392 switch (OldShiftOpcode) { 3393 case ISD::SHL: 3394 NewShiftOpcode = ISD::SRL; 3395 break; 3396 case ISD::SRL: 3397 NewShiftOpcode = ISD::SHL; 3398 break; 3399 default: 3400 return false; // must be a logical shift. 3401 } 3402 // We should be shifting a constant. 3403 // FIXME: best to use isConstantOrConstantVector(). 3404 C = V.getOperand(0); 3405 ConstantSDNode *CC = 3406 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3407 if (!CC) 3408 return false; 3409 Y = V.getOperand(1); 3410 3411 ConstantSDNode *XC = 3412 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3413 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3414 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3415 }; 3416 3417 // LHS of comparison should be an one-use 'and'. 3418 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3419 return SDValue(); 3420 3421 X = N0.getOperand(0); 3422 SDValue Mask = N0.getOperand(1); 3423 3424 // 'and' is commutative! 3425 if (!Match(Mask)) { 3426 std::swap(X, Mask); 3427 if (!Match(Mask)) 3428 return SDValue(); 3429 } 3430 3431 EVT VT = X.getValueType(); 3432 3433 // Produce: 3434 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3435 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3436 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3437 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3438 return T2; 3439 } 3440 3441 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3442 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3443 /// handle the commuted versions of these patterns. 3444 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3445 ISD::CondCode Cond, const SDLoc &DL, 3446 DAGCombinerInfo &DCI) const { 3447 unsigned BOpcode = N0.getOpcode(); 3448 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3449 "Unexpected binop"); 3450 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3451 3452 // (X + Y) == X --> Y == 0 3453 // (X - Y) == X --> Y == 0 3454 // (X ^ Y) == X --> Y == 0 3455 SelectionDAG &DAG = DCI.DAG; 3456 EVT OpVT = N0.getValueType(); 3457 SDValue X = N0.getOperand(0); 3458 SDValue Y = N0.getOperand(1); 3459 if (X == N1) 3460 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3461 3462 if (Y != N1) 3463 return SDValue(); 3464 3465 // (X + Y) == Y --> X == 0 3466 // (X ^ Y) == Y --> X == 0 3467 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3468 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3469 3470 // The shift would not be valid if the operands are boolean (i1). 3471 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3472 return SDValue(); 3473 3474 // (X - Y) == Y --> X == Y << 1 3475 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3476 !DCI.isBeforeLegalize()); 3477 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3478 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3479 if (!DCI.isCalledByLegalizer()) 3480 DCI.AddToWorklist(YShl1.getNode()); 3481 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3482 } 3483 3484 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3485 SDValue N0, const APInt &C1, 3486 ISD::CondCode Cond, const SDLoc &dl, 3487 SelectionDAG &DAG) { 3488 // Look through truncs that don't change the value of a ctpop. 3489 // FIXME: Add vector support? Need to be careful with setcc result type below. 3490 SDValue CTPOP = N0; 3491 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3492 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3493 CTPOP = N0.getOperand(0); 3494 3495 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3496 return SDValue(); 3497 3498 EVT CTVT = CTPOP.getValueType(); 3499 SDValue CTOp = CTPOP.getOperand(0); 3500 3501 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3502 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3503 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3504 return SDValue(); 3505 3506 // (ctpop x) u< 2 -> (x & x-1) == 0 3507 // (ctpop x) u> 1 -> (x & x-1) != 0 3508 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3509 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3510 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3511 return SDValue(); 3512 if (C1 == 0 && (Cond == ISD::SETULT)) 3513 return SDValue(); // This is handled elsewhere. 3514 3515 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3516 3517 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3518 SDValue Result = CTOp; 3519 for (unsigned i = 0; i < Passes; i++) { 3520 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3521 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3522 } 3523 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3524 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3525 } 3526 3527 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3528 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3529 // For scalars, keep CTPOP if it is legal or custom. 3530 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3531 return SDValue(); 3532 // This is based on X86's custom lowering for CTPOP which produces more 3533 // instructions than the expansion here. 3534 3535 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3536 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3537 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3538 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3539 assert(CTVT.isInteger()); 3540 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3541 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3542 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3543 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3544 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3545 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3546 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3547 } 3548 3549 return SDValue(); 3550 } 3551 3552 /// Try to simplify a setcc built with the specified operands and cc. If it is 3553 /// unable to simplify it, return a null SDValue. 3554 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3555 ISD::CondCode Cond, bool foldBooleans, 3556 DAGCombinerInfo &DCI, 3557 const SDLoc &dl) const { 3558 SelectionDAG &DAG = DCI.DAG; 3559 const DataLayout &Layout = DAG.getDataLayout(); 3560 EVT OpVT = N0.getValueType(); 3561 3562 // Constant fold or commute setcc. 3563 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3564 return Fold; 3565 3566 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3567 // TODO: Handle non-splat vector constants. All undef causes trouble. 3568 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3569 // infinite loop here when we encounter one. 3570 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3571 if (isConstOrConstSplat(N0) && 3572 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3573 (DCI.isBeforeLegalizeOps() || 3574 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3575 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3576 3577 // If we have a subtract with the same 2 non-constant operands as this setcc 3578 // -- but in reverse order -- then try to commute the operands of this setcc 3579 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3580 // instruction on some targets. 3581 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3582 (DCI.isBeforeLegalizeOps() || 3583 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3584 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3585 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3586 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3587 3588 if (auto *N1C = isConstOrConstSplat(N1)) { 3589 const APInt &C1 = N1C->getAPIntValue(); 3590 3591 // Optimize some CTPOP cases. 3592 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3593 return V; 3594 3595 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3596 // equality comparison, then we're just comparing whether X itself is 3597 // zero. 3598 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 3599 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3600 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3601 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3602 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3603 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3604 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3605 // (srl (ctlz x), 5) == 0 -> X != 0 3606 // (srl (ctlz x), 5) != 1 -> X != 0 3607 Cond = ISD::SETNE; 3608 } else { 3609 // (srl (ctlz x), 5) != 0 -> X == 0 3610 // (srl (ctlz x), 5) == 1 -> X == 0 3611 Cond = ISD::SETEQ; 3612 } 3613 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3614 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3615 Cond); 3616 } 3617 } 3618 } 3619 } 3620 3621 // FIXME: Support vectors. 3622 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3623 const APInt &C1 = N1C->getAPIntValue(); 3624 3625 // (zext x) == C --> x == (trunc C) 3626 // (sext x) == C --> x == (trunc C) 3627 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3628 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3629 unsigned MinBits = N0.getValueSizeInBits(); 3630 SDValue PreExt; 3631 bool Signed = false; 3632 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3633 // ZExt 3634 MinBits = N0->getOperand(0).getValueSizeInBits(); 3635 PreExt = N0->getOperand(0); 3636 } else if (N0->getOpcode() == ISD::AND) { 3637 // DAGCombine turns costly ZExts into ANDs 3638 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3639 if ((C->getAPIntValue()+1).isPowerOf2()) { 3640 MinBits = C->getAPIntValue().countTrailingOnes(); 3641 PreExt = N0->getOperand(0); 3642 } 3643 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3644 // SExt 3645 MinBits = N0->getOperand(0).getValueSizeInBits(); 3646 PreExt = N0->getOperand(0); 3647 Signed = true; 3648 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3649 // ZEXTLOAD / SEXTLOAD 3650 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3651 MinBits = LN0->getMemoryVT().getSizeInBits(); 3652 PreExt = N0; 3653 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3654 Signed = true; 3655 MinBits = LN0->getMemoryVT().getSizeInBits(); 3656 PreExt = N0; 3657 } 3658 } 3659 3660 // Figure out how many bits we need to preserve this constant. 3661 unsigned ReqdBits = Signed ? 3662 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3663 C1.getActiveBits(); 3664 3665 // Make sure we're not losing bits from the constant. 3666 if (MinBits > 0 && 3667 MinBits < C1.getBitWidth() && 3668 MinBits >= ReqdBits) { 3669 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3670 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3671 // Will get folded away. 3672 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3673 if (MinBits == 1 && C1 == 1) 3674 // Invert the condition. 3675 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3676 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3677 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3678 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3679 } 3680 3681 // If truncating the setcc operands is not desirable, we can still 3682 // simplify the expression in some cases: 3683 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3684 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3685 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3686 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3687 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3688 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3689 SDValue TopSetCC = N0->getOperand(0); 3690 unsigned N0Opc = N0->getOpcode(); 3691 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3692 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3693 TopSetCC.getOpcode() == ISD::SETCC && 3694 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3695 (isConstFalseVal(N1C) || 3696 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3697 3698 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 3699 (!N1C->isZero() && Cond == ISD::SETNE); 3700 3701 if (!Inverse) 3702 return TopSetCC; 3703 3704 ISD::CondCode InvCond = ISD::getSetCCInverse( 3705 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3706 TopSetCC.getOperand(0).getValueType()); 3707 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3708 TopSetCC.getOperand(1), 3709 InvCond); 3710 } 3711 } 3712 } 3713 3714 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3715 // equality or unsigned, and all 1 bits of the const are in the same 3716 // partial word, see if we can shorten the load. 3717 if (DCI.isBeforeLegalize() && 3718 !ISD::isSignedIntSetCC(Cond) && 3719 N0.getOpcode() == ISD::AND && C1 == 0 && 3720 N0.getNode()->hasOneUse() && 3721 isa<LoadSDNode>(N0.getOperand(0)) && 3722 N0.getOperand(0).getNode()->hasOneUse() && 3723 isa<ConstantSDNode>(N0.getOperand(1))) { 3724 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3725 APInt bestMask; 3726 unsigned bestWidth = 0, bestOffset = 0; 3727 if (Lod->isSimple() && Lod->isUnindexed()) { 3728 unsigned origWidth = N0.getValueSizeInBits(); 3729 unsigned maskWidth = origWidth; 3730 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3731 // 8 bits, but have to be careful... 3732 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3733 origWidth = Lod->getMemoryVT().getSizeInBits(); 3734 const APInt &Mask = N0.getConstantOperandAPInt(1); 3735 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3736 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3737 for (unsigned offset=0; offset<origWidth/width; offset++) { 3738 if (Mask.isSubsetOf(newMask)) { 3739 if (Layout.isLittleEndian()) 3740 bestOffset = (uint64_t)offset * (width/8); 3741 else 3742 bestOffset = (origWidth/width - offset - 1) * (width/8); 3743 bestMask = Mask.lshr(offset * (width/8) * 8); 3744 bestWidth = width; 3745 break; 3746 } 3747 newMask <<= width; 3748 } 3749 } 3750 } 3751 if (bestWidth) { 3752 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3753 if (newVT.isRound() && 3754 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3755 SDValue Ptr = Lod->getBasePtr(); 3756 if (bestOffset != 0) 3757 Ptr = 3758 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3759 SDValue NewLoad = 3760 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3761 Lod->getPointerInfo().getWithOffset(bestOffset), 3762 Lod->getOriginalAlign()); 3763 return DAG.getSetCC(dl, VT, 3764 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3765 DAG.getConstant(bestMask.trunc(bestWidth), 3766 dl, newVT)), 3767 DAG.getConstant(0LL, dl, newVT), Cond); 3768 } 3769 } 3770 } 3771 3772 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3773 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3774 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3775 3776 // If the comparison constant has bits in the upper part, the 3777 // zero-extended value could never match. 3778 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3779 C1.getBitWidth() - InSize))) { 3780 switch (Cond) { 3781 case ISD::SETUGT: 3782 case ISD::SETUGE: 3783 case ISD::SETEQ: 3784 return DAG.getConstant(0, dl, VT); 3785 case ISD::SETULT: 3786 case ISD::SETULE: 3787 case ISD::SETNE: 3788 return DAG.getConstant(1, dl, VT); 3789 case ISD::SETGT: 3790 case ISD::SETGE: 3791 // True if the sign bit of C1 is set. 3792 return DAG.getConstant(C1.isNegative(), dl, VT); 3793 case ISD::SETLT: 3794 case ISD::SETLE: 3795 // True if the sign bit of C1 isn't set. 3796 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3797 default: 3798 break; 3799 } 3800 } 3801 3802 // Otherwise, we can perform the comparison with the low bits. 3803 switch (Cond) { 3804 case ISD::SETEQ: 3805 case ISD::SETNE: 3806 case ISD::SETUGT: 3807 case ISD::SETUGE: 3808 case ISD::SETULT: 3809 case ISD::SETULE: { 3810 EVT newVT = N0.getOperand(0).getValueType(); 3811 if (DCI.isBeforeLegalizeOps() || 3812 (isOperationLegal(ISD::SETCC, newVT) && 3813 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3814 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3815 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3816 3817 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3818 NewConst, Cond); 3819 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3820 } 3821 break; 3822 } 3823 default: 3824 break; // todo, be more careful with signed comparisons 3825 } 3826 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3827 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3828 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3829 OpVT)) { 3830 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3831 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3832 EVT ExtDstTy = N0.getValueType(); 3833 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3834 3835 // If the constant doesn't fit into the number of bits for the source of 3836 // the sign extension, it is impossible for both sides to be equal. 3837 if (C1.getMinSignedBits() > ExtSrcTyBits) 3838 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3839 3840 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3841 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3842 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3843 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3844 DAG.getConstant(Imm, dl, ExtDstTy)); 3845 if (!DCI.isCalledByLegalizer()) 3846 DCI.AddToWorklist(ZextOp.getNode()); 3847 // Otherwise, make this a use of a zext. 3848 return DAG.getSetCC(dl, VT, ZextOp, 3849 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3850 } else if ((N1C->isZero() || N1C->isOne()) && 3851 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3852 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3853 if (N0.getOpcode() == ISD::SETCC && 3854 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3855 (N0.getValueType() == MVT::i1 || 3856 getBooleanContents(N0.getOperand(0).getValueType()) == 3857 ZeroOrOneBooleanContent)) { 3858 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3859 if (TrueWhenTrue) 3860 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3861 // Invert the condition. 3862 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3863 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3864 if (DCI.isBeforeLegalizeOps() || 3865 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3866 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3867 } 3868 3869 if ((N0.getOpcode() == ISD::XOR || 3870 (N0.getOpcode() == ISD::AND && 3871 N0.getOperand(0).getOpcode() == ISD::XOR && 3872 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3873 isOneConstant(N0.getOperand(1))) { 3874 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3875 // can only do this if the top bits are known zero. 3876 unsigned BitWidth = N0.getValueSizeInBits(); 3877 if (DAG.MaskedValueIsZero(N0, 3878 APInt::getHighBitsSet(BitWidth, 3879 BitWidth-1))) { 3880 // Okay, get the un-inverted input value. 3881 SDValue Val; 3882 if (N0.getOpcode() == ISD::XOR) { 3883 Val = N0.getOperand(0); 3884 } else { 3885 assert(N0.getOpcode() == ISD::AND && 3886 N0.getOperand(0).getOpcode() == ISD::XOR); 3887 // ((X^1)&1)^1 -> X & 1 3888 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3889 N0.getOperand(0).getOperand(0), 3890 N0.getOperand(1)); 3891 } 3892 3893 return DAG.getSetCC(dl, VT, Val, N1, 3894 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3895 } 3896 } else if (N1C->isOne()) { 3897 SDValue Op0 = N0; 3898 if (Op0.getOpcode() == ISD::TRUNCATE) 3899 Op0 = Op0.getOperand(0); 3900 3901 if ((Op0.getOpcode() == ISD::XOR) && 3902 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3903 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3904 SDValue XorLHS = Op0.getOperand(0); 3905 SDValue XorRHS = Op0.getOperand(1); 3906 // Ensure that the input setccs return an i1 type or 0/1 value. 3907 if (Op0.getValueType() == MVT::i1 || 3908 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3909 ZeroOrOneBooleanContent && 3910 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3911 ZeroOrOneBooleanContent)) { 3912 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3913 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3914 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3915 } 3916 } 3917 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 3918 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3919 if (Op0.getValueType().bitsGT(VT)) 3920 Op0 = DAG.getNode(ISD::AND, dl, VT, 3921 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3922 DAG.getConstant(1, dl, VT)); 3923 else if (Op0.getValueType().bitsLT(VT)) 3924 Op0 = DAG.getNode(ISD::AND, dl, VT, 3925 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3926 DAG.getConstant(1, dl, VT)); 3927 3928 return DAG.getSetCC(dl, VT, Op0, 3929 DAG.getConstant(0, dl, Op0.getValueType()), 3930 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3931 } 3932 if (Op0.getOpcode() == ISD::AssertZext && 3933 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3934 return DAG.getSetCC(dl, VT, Op0, 3935 DAG.getConstant(0, dl, Op0.getValueType()), 3936 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3937 } 3938 } 3939 3940 // Given: 3941 // icmp eq/ne (urem %x, %y), 0 3942 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3943 // icmp eq/ne %x, 0 3944 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 3945 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3946 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3947 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3948 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3949 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3950 } 3951 3952 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 3953 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 3954 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3955 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 3956 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 3957 N1C && N1C->isAllOnes()) { 3958 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3959 DAG.getConstant(0, dl, OpVT), 3960 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 3961 } 3962 3963 if (SDValue V = 3964 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3965 return V; 3966 } 3967 3968 // These simplifications apply to splat vectors as well. 3969 // TODO: Handle more splat vector cases. 3970 if (auto *N1C = isConstOrConstSplat(N1)) { 3971 const APInt &C1 = N1C->getAPIntValue(); 3972 3973 APInt MinVal, MaxVal; 3974 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3975 if (ISD::isSignedIntSetCC(Cond)) { 3976 MinVal = APInt::getSignedMinValue(OperandBitSize); 3977 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3978 } else { 3979 MinVal = APInt::getMinValue(OperandBitSize); 3980 MaxVal = APInt::getMaxValue(OperandBitSize); 3981 } 3982 3983 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3984 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3985 // X >= MIN --> true 3986 if (C1 == MinVal) 3987 return DAG.getBoolConstant(true, dl, VT, OpVT); 3988 3989 if (!VT.isVector()) { // TODO: Support this for vectors. 3990 // X >= C0 --> X > (C0 - 1) 3991 APInt C = C1 - 1; 3992 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3993 if ((DCI.isBeforeLegalizeOps() || 3994 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3995 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3996 isLegalICmpImmediate(C.getSExtValue())))) { 3997 return DAG.getSetCC(dl, VT, N0, 3998 DAG.getConstant(C, dl, N1.getValueType()), 3999 NewCC); 4000 } 4001 } 4002 } 4003 4004 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4005 // X <= MAX --> true 4006 if (C1 == MaxVal) 4007 return DAG.getBoolConstant(true, dl, VT, OpVT); 4008 4009 // X <= C0 --> X < (C0 + 1) 4010 if (!VT.isVector()) { // TODO: Support this for vectors. 4011 APInt C = C1 + 1; 4012 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4013 if ((DCI.isBeforeLegalizeOps() || 4014 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4015 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4016 isLegalICmpImmediate(C.getSExtValue())))) { 4017 return DAG.getSetCC(dl, VT, N0, 4018 DAG.getConstant(C, dl, N1.getValueType()), 4019 NewCC); 4020 } 4021 } 4022 } 4023 4024 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4025 if (C1 == MinVal) 4026 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4027 4028 // TODO: Support this for vectors after legalize ops. 4029 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4030 // Canonicalize setlt X, Max --> setne X, Max 4031 if (C1 == MaxVal) 4032 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4033 4034 // If we have setult X, 1, turn it into seteq X, 0 4035 if (C1 == MinVal+1) 4036 return DAG.getSetCC(dl, VT, N0, 4037 DAG.getConstant(MinVal, dl, N0.getValueType()), 4038 ISD::SETEQ); 4039 } 4040 } 4041 4042 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4043 if (C1 == MaxVal) 4044 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4045 4046 // TODO: Support this for vectors after legalize ops. 4047 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4048 // Canonicalize setgt X, Min --> setne X, Min 4049 if (C1 == MinVal) 4050 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4051 4052 // If we have setugt X, Max-1, turn it into seteq X, Max 4053 if (C1 == MaxVal-1) 4054 return DAG.getSetCC(dl, VT, N0, 4055 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4056 ISD::SETEQ); 4057 } 4058 } 4059 4060 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4061 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4062 if (C1.isZero()) 4063 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4064 VT, N0, N1, Cond, DCI, dl)) 4065 return CC; 4066 4067 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4068 // For example, when high 32-bits of i64 X are known clear: 4069 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4070 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4071 bool CmpZero = N1C->getAPIntValue().isZero(); 4072 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4073 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4074 // Match or(lo,shl(hi,bw/2)) pattern. 4075 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4076 unsigned EltBits = V.getScalarValueSizeInBits(); 4077 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4078 return false; 4079 SDValue LHS = V.getOperand(0); 4080 SDValue RHS = V.getOperand(1); 4081 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4082 // Unshifted element must have zero upperbits. 4083 if (RHS.getOpcode() == ISD::SHL && 4084 isa<ConstantSDNode>(RHS.getOperand(1)) && 4085 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4086 DAG.MaskedValueIsZero(LHS, HiBits)) { 4087 Lo = LHS; 4088 Hi = RHS.getOperand(0); 4089 return true; 4090 } 4091 if (LHS.getOpcode() == ISD::SHL && 4092 isa<ConstantSDNode>(LHS.getOperand(1)) && 4093 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4094 DAG.MaskedValueIsZero(RHS, HiBits)) { 4095 Lo = RHS; 4096 Hi = LHS.getOperand(0); 4097 return true; 4098 } 4099 return false; 4100 }; 4101 4102 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4103 unsigned EltBits = N0.getScalarValueSizeInBits(); 4104 unsigned HalfBits = EltBits / 2; 4105 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4106 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4107 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4108 SDValue NewN0 = 4109 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4110 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4111 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4112 }; 4113 4114 SDValue Lo, Hi; 4115 if (IsConcat(N0, Lo, Hi)) 4116 return MergeConcat(Lo, Hi); 4117 4118 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4119 SDValue Lo0, Lo1, Hi0, Hi1; 4120 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4121 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4122 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4123 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4124 } 4125 } 4126 } 4127 } 4128 4129 // If we have "setcc X, C0", check to see if we can shrink the immediate 4130 // by changing cc. 4131 // TODO: Support this for vectors after legalize ops. 4132 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4133 // SETUGT X, SINTMAX -> SETLT X, 0 4134 // SETUGE X, SINTMIN -> SETLT X, 0 4135 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4136 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4137 return DAG.getSetCC(dl, VT, N0, 4138 DAG.getConstant(0, dl, N1.getValueType()), 4139 ISD::SETLT); 4140 4141 // SETULT X, SINTMIN -> SETGT X, -1 4142 // SETULE X, SINTMAX -> SETGT X, -1 4143 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4144 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4145 return DAG.getSetCC(dl, VT, N0, 4146 DAG.getAllOnesConstant(dl, N1.getValueType()), 4147 ISD::SETGT); 4148 } 4149 } 4150 4151 // Back to non-vector simplifications. 4152 // TODO: Can we do these for vector splats? 4153 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4154 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4155 const APInt &C1 = N1C->getAPIntValue(); 4156 EVT ShValTy = N0.getValueType(); 4157 4158 // Fold bit comparisons when we can. This will result in an 4159 // incorrect value when boolean false is negative one, unless 4160 // the bitsize is 1 in which case the false value is the same 4161 // in practice regardless of the representation. 4162 if ((VT.getSizeInBits() == 1 || 4163 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4164 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4165 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4166 N0.getOpcode() == ISD::AND) { 4167 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4168 EVT ShiftTy = 4169 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4170 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4171 // Perform the xform if the AND RHS is a single bit. 4172 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4173 if (AndRHS->getAPIntValue().isPowerOf2() && 4174 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4175 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4176 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4177 DAG.getConstant(ShCt, dl, ShiftTy))); 4178 } 4179 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4180 // (X & 8) == 8 --> (X & 8) >> 3 4181 // Perform the xform if C1 is a single bit. 4182 unsigned ShCt = C1.logBase2(); 4183 if (C1.isPowerOf2() && 4184 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4185 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4186 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4187 DAG.getConstant(ShCt, dl, ShiftTy))); 4188 } 4189 } 4190 } 4191 } 4192 4193 if (C1.getMinSignedBits() <= 64 && 4194 !isLegalICmpImmediate(C1.getSExtValue())) { 4195 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4196 // (X & -256) == 256 -> (X >> 8) == 1 4197 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4198 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4199 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4200 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4201 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4202 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4203 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4204 SDValue Shift = 4205 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4206 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4207 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4208 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4209 } 4210 } 4211 } 4212 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4213 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4214 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4215 // X < 0x100000000 -> (X >> 32) < 1 4216 // X >= 0x100000000 -> (X >> 32) >= 1 4217 // X <= 0x0ffffffff -> (X >> 32) < 1 4218 // X > 0x0ffffffff -> (X >> 32) >= 1 4219 unsigned ShiftBits; 4220 APInt NewC = C1; 4221 ISD::CondCode NewCond = Cond; 4222 if (AdjOne) { 4223 ShiftBits = C1.countTrailingOnes(); 4224 NewC = NewC + 1; 4225 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4226 } else { 4227 ShiftBits = C1.countTrailingZeros(); 4228 } 4229 NewC.lshrInPlace(ShiftBits); 4230 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4231 isLegalICmpImmediate(NewC.getSExtValue()) && 4232 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4233 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4234 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4235 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4236 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4237 } 4238 } 4239 } 4240 } 4241 4242 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4243 auto *CFP = cast<ConstantFPSDNode>(N1); 4244 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4245 4246 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4247 // constant if knowing that the operand is non-nan is enough. We prefer to 4248 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4249 // materialize 0.0. 4250 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4251 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4252 4253 // setcc (fneg x), C -> setcc swap(pred) x, -C 4254 if (N0.getOpcode() == ISD::FNEG) { 4255 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4256 if (DCI.isBeforeLegalizeOps() || 4257 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4258 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4259 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4260 } 4261 } 4262 4263 // If the condition is not legal, see if we can find an equivalent one 4264 // which is legal. 4265 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4266 // If the comparison was an awkward floating-point == or != and one of 4267 // the comparison operands is infinity or negative infinity, convert the 4268 // condition to a less-awkward <= or >=. 4269 if (CFP->getValueAPF().isInfinity()) { 4270 bool IsNegInf = CFP->getValueAPF().isNegative(); 4271 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4272 switch (Cond) { 4273 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4274 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4275 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4276 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4277 default: break; 4278 } 4279 if (NewCond != ISD::SETCC_INVALID && 4280 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4281 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4282 } 4283 } 4284 } 4285 4286 if (N0 == N1) { 4287 // The sext(setcc()) => setcc() optimization relies on the appropriate 4288 // constant being emitted. 4289 assert(!N0.getValueType().isInteger() && 4290 "Integer types should be handled by FoldSetCC"); 4291 4292 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4293 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4294 if (UOF == 2) // FP operators that are undefined on NaNs. 4295 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4296 if (UOF == unsigned(EqTrue)) 4297 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4298 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4299 // if it is not already. 4300 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4301 if (NewCond != Cond && 4302 (DCI.isBeforeLegalizeOps() || 4303 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4304 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4305 } 4306 4307 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4308 N0.getValueType().isInteger()) { 4309 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4310 N0.getOpcode() == ISD::XOR) { 4311 // Simplify (X+Y) == (X+Z) --> Y == Z 4312 if (N0.getOpcode() == N1.getOpcode()) { 4313 if (N0.getOperand(0) == N1.getOperand(0)) 4314 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4315 if (N0.getOperand(1) == N1.getOperand(1)) 4316 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4317 if (isCommutativeBinOp(N0.getOpcode())) { 4318 // If X op Y == Y op X, try other combinations. 4319 if (N0.getOperand(0) == N1.getOperand(1)) 4320 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4321 Cond); 4322 if (N0.getOperand(1) == N1.getOperand(0)) 4323 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4324 Cond); 4325 } 4326 } 4327 4328 // If RHS is a legal immediate value for a compare instruction, we need 4329 // to be careful about increasing register pressure needlessly. 4330 bool LegalRHSImm = false; 4331 4332 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4333 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4334 // Turn (X+C1) == C2 --> X == C2-C1 4335 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4336 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4337 DAG.getConstant(RHSC->getAPIntValue()- 4338 LHSR->getAPIntValue(), 4339 dl, N0.getValueType()), Cond); 4340 } 4341 4342 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4343 if (N0.getOpcode() == ISD::XOR) 4344 // If we know that all of the inverted bits are zero, don't bother 4345 // performing the inversion. 4346 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4347 return 4348 DAG.getSetCC(dl, VT, N0.getOperand(0), 4349 DAG.getConstant(LHSR->getAPIntValue() ^ 4350 RHSC->getAPIntValue(), 4351 dl, N0.getValueType()), 4352 Cond); 4353 } 4354 4355 // Turn (C1-X) == C2 --> X == C1-C2 4356 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4357 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4358 return 4359 DAG.getSetCC(dl, VT, N0.getOperand(1), 4360 DAG.getConstant(SUBC->getAPIntValue() - 4361 RHSC->getAPIntValue(), 4362 dl, N0.getValueType()), 4363 Cond); 4364 } 4365 } 4366 4367 // Could RHSC fold directly into a compare? 4368 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4369 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4370 } 4371 4372 // (X+Y) == X --> Y == 0 and similar folds. 4373 // Don't do this if X is an immediate that can fold into a cmp 4374 // instruction and X+Y has other uses. It could be an induction variable 4375 // chain, and the transform would increase register pressure. 4376 if (!LegalRHSImm || N0.hasOneUse()) 4377 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4378 return V; 4379 } 4380 4381 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4382 N1.getOpcode() == ISD::XOR) 4383 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4384 return V; 4385 4386 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4387 return V; 4388 } 4389 4390 // Fold remainder of division by a constant. 4391 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4392 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4393 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4394 4395 // When division is cheap or optimizing for minimum size, 4396 // fall through to DIVREM creation by skipping this fold. 4397 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4398 if (N0.getOpcode() == ISD::UREM) { 4399 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4400 return Folded; 4401 } else if (N0.getOpcode() == ISD::SREM) { 4402 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4403 return Folded; 4404 } 4405 } 4406 } 4407 4408 // Fold away ALL boolean setcc's. 4409 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4410 SDValue Temp; 4411 switch (Cond) { 4412 default: llvm_unreachable("Unknown integer setcc!"); 4413 case ISD::SETEQ: // X == Y -> ~(X^Y) 4414 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4415 N0 = DAG.getNOT(dl, Temp, OpVT); 4416 if (!DCI.isCalledByLegalizer()) 4417 DCI.AddToWorklist(Temp.getNode()); 4418 break; 4419 case ISD::SETNE: // X != Y --> (X^Y) 4420 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4421 break; 4422 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4423 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4424 Temp = DAG.getNOT(dl, N0, OpVT); 4425 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4426 if (!DCI.isCalledByLegalizer()) 4427 DCI.AddToWorklist(Temp.getNode()); 4428 break; 4429 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4430 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4431 Temp = DAG.getNOT(dl, N1, OpVT); 4432 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4433 if (!DCI.isCalledByLegalizer()) 4434 DCI.AddToWorklist(Temp.getNode()); 4435 break; 4436 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4437 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4438 Temp = DAG.getNOT(dl, N0, OpVT); 4439 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4440 if (!DCI.isCalledByLegalizer()) 4441 DCI.AddToWorklist(Temp.getNode()); 4442 break; 4443 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4444 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4445 Temp = DAG.getNOT(dl, N1, OpVT); 4446 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4447 break; 4448 } 4449 if (VT.getScalarType() != MVT::i1) { 4450 if (!DCI.isCalledByLegalizer()) 4451 DCI.AddToWorklist(N0.getNode()); 4452 // FIXME: If running after legalize, we probably can't do this. 4453 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4454 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4455 } 4456 return N0; 4457 } 4458 4459 // Could not fold it. 4460 return SDValue(); 4461 } 4462 4463 /// Returns true (and the GlobalValue and the offset) if the node is a 4464 /// GlobalAddress + offset. 4465 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4466 int64_t &Offset) const { 4467 4468 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4469 4470 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4471 GA = GASD->getGlobal(); 4472 Offset += GASD->getOffset(); 4473 return true; 4474 } 4475 4476 if (N->getOpcode() == ISD::ADD) { 4477 SDValue N1 = N->getOperand(0); 4478 SDValue N2 = N->getOperand(1); 4479 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4480 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4481 Offset += V->getSExtValue(); 4482 return true; 4483 } 4484 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4485 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4486 Offset += V->getSExtValue(); 4487 return true; 4488 } 4489 } 4490 } 4491 4492 return false; 4493 } 4494 4495 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4496 DAGCombinerInfo &DCI) const { 4497 // Default implementation: no optimization. 4498 return SDValue(); 4499 } 4500 4501 //===----------------------------------------------------------------------===// 4502 // Inline Assembler Implementation Methods 4503 //===----------------------------------------------------------------------===// 4504 4505 TargetLowering::ConstraintType 4506 TargetLowering::getConstraintType(StringRef Constraint) const { 4507 unsigned S = Constraint.size(); 4508 4509 if (S == 1) { 4510 switch (Constraint[0]) { 4511 default: break; 4512 case 'r': 4513 return C_RegisterClass; 4514 case 'm': // memory 4515 case 'o': // offsetable 4516 case 'V': // not offsetable 4517 return C_Memory; 4518 case 'n': // Simple Integer 4519 case 'E': // Floating Point Constant 4520 case 'F': // Floating Point Constant 4521 return C_Immediate; 4522 case 'i': // Simple Integer or Relocatable Constant 4523 case 's': // Relocatable Constant 4524 case 'p': // Address. 4525 case 'X': // Allow ANY value. 4526 case 'I': // Target registers. 4527 case 'J': 4528 case 'K': 4529 case 'L': 4530 case 'M': 4531 case 'N': 4532 case 'O': 4533 case 'P': 4534 case '<': 4535 case '>': 4536 return C_Other; 4537 } 4538 } 4539 4540 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4541 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4542 return C_Memory; 4543 return C_Register; 4544 } 4545 return C_Unknown; 4546 } 4547 4548 /// Try to replace an X constraint, which matches anything, with another that 4549 /// has more specific requirements based on the type of the corresponding 4550 /// operand. 4551 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4552 if (ConstraintVT.isInteger()) 4553 return "r"; 4554 if (ConstraintVT.isFloatingPoint()) 4555 return "f"; // works for many targets 4556 return nullptr; 4557 } 4558 4559 SDValue TargetLowering::LowerAsmOutputForConstraint( 4560 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4561 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4562 return SDValue(); 4563 } 4564 4565 /// Lower the specified operand into the Ops vector. 4566 /// If it is invalid, don't add anything to Ops. 4567 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4568 std::string &Constraint, 4569 std::vector<SDValue> &Ops, 4570 SelectionDAG &DAG) const { 4571 4572 if (Constraint.length() > 1) return; 4573 4574 char ConstraintLetter = Constraint[0]; 4575 switch (ConstraintLetter) { 4576 default: break; 4577 case 'X': // Allows any operand; labels (basic block) use this. 4578 if (Op.getOpcode() == ISD::BasicBlock || 4579 Op.getOpcode() == ISD::TargetBlockAddress) { 4580 Ops.push_back(Op); 4581 return; 4582 } 4583 LLVM_FALLTHROUGH; 4584 case 'i': // Simple Integer or Relocatable Constant 4585 case 'n': // Simple Integer 4586 case 's': { // Relocatable Constant 4587 4588 GlobalAddressSDNode *GA; 4589 ConstantSDNode *C; 4590 BlockAddressSDNode *BA; 4591 uint64_t Offset = 0; 4592 4593 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4594 // etc., since getelementpointer is variadic. We can't use 4595 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4596 // while in this case the GA may be furthest from the root node which is 4597 // likely an ISD::ADD. 4598 while (1) { 4599 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4600 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4601 GA->getValueType(0), 4602 Offset + GA->getOffset())); 4603 return; 4604 } 4605 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4606 // gcc prints these as sign extended. Sign extend value to 64 bits 4607 // now; without this it would get ZExt'd later in 4608 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4609 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4610 BooleanContent BCont = getBooleanContents(MVT::i64); 4611 ISD::NodeType ExtOpc = 4612 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4613 int64_t ExtVal = 4614 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4615 Ops.push_back( 4616 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4617 return; 4618 } 4619 if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4620 Ops.push_back(DAG.getTargetBlockAddress( 4621 BA->getBlockAddress(), BA->getValueType(0), 4622 Offset + BA->getOffset(), BA->getTargetFlags())); 4623 return; 4624 } 4625 const unsigned OpCode = Op.getOpcode(); 4626 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4627 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4628 Op = Op.getOperand(1); 4629 // Subtraction is not commutative. 4630 else if (OpCode == ISD::ADD && 4631 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4632 Op = Op.getOperand(0); 4633 else 4634 return; 4635 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4636 continue; 4637 } 4638 return; 4639 } 4640 break; 4641 } 4642 } 4643 } 4644 4645 std::pair<unsigned, const TargetRegisterClass *> 4646 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4647 StringRef Constraint, 4648 MVT VT) const { 4649 if (Constraint.empty() || Constraint[0] != '{') 4650 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4651 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4652 4653 // Remove the braces from around the name. 4654 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4655 4656 std::pair<unsigned, const TargetRegisterClass *> R = 4657 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4658 4659 // Figure out which register class contains this reg. 4660 for (const TargetRegisterClass *RC : RI->regclasses()) { 4661 // If none of the value types for this register class are valid, we 4662 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4663 if (!isLegalRC(*RI, *RC)) 4664 continue; 4665 4666 for (const MCPhysReg &PR : *RC) { 4667 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4668 std::pair<unsigned, const TargetRegisterClass *> S = 4669 std::make_pair(PR, RC); 4670 4671 // If this register class has the requested value type, return it, 4672 // otherwise keep searching and return the first class found 4673 // if no other is found which explicitly has the requested type. 4674 if (RI->isTypeLegalForClass(*RC, VT)) 4675 return S; 4676 if (!R.second) 4677 R = S; 4678 } 4679 } 4680 } 4681 4682 return R; 4683 } 4684 4685 //===----------------------------------------------------------------------===// 4686 // Constraint Selection. 4687 4688 /// Return true of this is an input operand that is a matching constraint like 4689 /// "4". 4690 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4691 assert(!ConstraintCode.empty() && "No known constraint!"); 4692 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4693 } 4694 4695 /// If this is an input matching constraint, this method returns the output 4696 /// operand it matches. 4697 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4698 assert(!ConstraintCode.empty() && "No known constraint!"); 4699 return atoi(ConstraintCode.c_str()); 4700 } 4701 4702 /// Split up the constraint string from the inline assembly value into the 4703 /// specific constraints and their prefixes, and also tie in the associated 4704 /// operand values. 4705 /// If this returns an empty vector, and if the constraint string itself 4706 /// isn't empty, there was an error parsing. 4707 TargetLowering::AsmOperandInfoVector 4708 TargetLowering::ParseConstraints(const DataLayout &DL, 4709 const TargetRegisterInfo *TRI, 4710 const CallBase &Call) const { 4711 /// Information about all of the constraints. 4712 AsmOperandInfoVector ConstraintOperands; 4713 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4714 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4715 4716 // Do a prepass over the constraints, canonicalizing them, and building up the 4717 // ConstraintOperands list. 4718 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4719 unsigned ResNo = 0; // ResNo - The result number of the next output. 4720 4721 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4722 ConstraintOperands.emplace_back(std::move(CI)); 4723 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4724 4725 // Update multiple alternative constraint count. 4726 if (OpInfo.multipleAlternatives.size() > maCount) 4727 maCount = OpInfo.multipleAlternatives.size(); 4728 4729 OpInfo.ConstraintVT = MVT::Other; 4730 4731 // Compute the value type for each operand. 4732 switch (OpInfo.Type) { 4733 case InlineAsm::isOutput: 4734 // Indirect outputs just consume an argument. 4735 if (OpInfo.isIndirect) { 4736 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4737 break; 4738 } 4739 4740 // The return value of the call is this value. As such, there is no 4741 // corresponding argument. 4742 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4743 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4744 OpInfo.ConstraintVT = 4745 getSimpleValueType(DL, STy->getElementType(ResNo)); 4746 } else { 4747 assert(ResNo == 0 && "Asm only has one result!"); 4748 OpInfo.ConstraintVT = 4749 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 4750 } 4751 ++ResNo; 4752 break; 4753 case InlineAsm::isInput: 4754 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4755 break; 4756 case InlineAsm::isClobber: 4757 // Nothing to do. 4758 break; 4759 } 4760 4761 if (OpInfo.CallOperandVal) { 4762 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4763 if (OpInfo.isIndirect) { 4764 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4765 if (!PtrTy) 4766 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4767 OpTy = PtrTy->getElementType(); 4768 } 4769 4770 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4771 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4772 if (STy->getNumElements() == 1) 4773 OpTy = STy->getElementType(0); 4774 4775 // If OpTy is not a single value, it may be a struct/union that we 4776 // can tile with integers. 4777 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4778 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4779 switch (BitSize) { 4780 default: break; 4781 case 1: 4782 case 8: 4783 case 16: 4784 case 32: 4785 case 64: 4786 case 128: 4787 OpInfo.ConstraintVT = 4788 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4789 break; 4790 } 4791 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4792 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4793 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4794 } else { 4795 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4796 } 4797 } 4798 } 4799 4800 // If we have multiple alternative constraints, select the best alternative. 4801 if (!ConstraintOperands.empty()) { 4802 if (maCount) { 4803 unsigned bestMAIndex = 0; 4804 int bestWeight = -1; 4805 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4806 int weight = -1; 4807 unsigned maIndex; 4808 // Compute the sums of the weights for each alternative, keeping track 4809 // of the best (highest weight) one so far. 4810 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4811 int weightSum = 0; 4812 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4813 cIndex != eIndex; ++cIndex) { 4814 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4815 if (OpInfo.Type == InlineAsm::isClobber) 4816 continue; 4817 4818 // If this is an output operand with a matching input operand, 4819 // look up the matching input. If their types mismatch, e.g. one 4820 // is an integer, the other is floating point, or their sizes are 4821 // different, flag it as an maCantMatch. 4822 if (OpInfo.hasMatchingInput()) { 4823 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4824 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4825 if ((OpInfo.ConstraintVT.isInteger() != 4826 Input.ConstraintVT.isInteger()) || 4827 (OpInfo.ConstraintVT.getSizeInBits() != 4828 Input.ConstraintVT.getSizeInBits())) { 4829 weightSum = -1; // Can't match. 4830 break; 4831 } 4832 } 4833 } 4834 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4835 if (weight == -1) { 4836 weightSum = -1; 4837 break; 4838 } 4839 weightSum += weight; 4840 } 4841 // Update best. 4842 if (weightSum > bestWeight) { 4843 bestWeight = weightSum; 4844 bestMAIndex = maIndex; 4845 } 4846 } 4847 4848 // Now select chosen alternative in each constraint. 4849 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4850 cIndex != eIndex; ++cIndex) { 4851 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4852 if (cInfo.Type == InlineAsm::isClobber) 4853 continue; 4854 cInfo.selectAlternative(bestMAIndex); 4855 } 4856 } 4857 } 4858 4859 // Check and hook up tied operands, choose constraint code to use. 4860 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4861 cIndex != eIndex; ++cIndex) { 4862 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4863 4864 // If this is an output operand with a matching input operand, look up the 4865 // matching input. If their types mismatch, e.g. one is an integer, the 4866 // other is floating point, or their sizes are different, flag it as an 4867 // error. 4868 if (OpInfo.hasMatchingInput()) { 4869 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4870 4871 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4872 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4873 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4874 OpInfo.ConstraintVT); 4875 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4876 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4877 Input.ConstraintVT); 4878 if ((OpInfo.ConstraintVT.isInteger() != 4879 Input.ConstraintVT.isInteger()) || 4880 (MatchRC.second != InputRC.second)) { 4881 report_fatal_error("Unsupported asm: input constraint" 4882 " with a matching output constraint of" 4883 " incompatible type!"); 4884 } 4885 } 4886 } 4887 } 4888 4889 return ConstraintOperands; 4890 } 4891 4892 /// Return an integer indicating how general CT is. 4893 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4894 switch (CT) { 4895 case TargetLowering::C_Immediate: 4896 case TargetLowering::C_Other: 4897 case TargetLowering::C_Unknown: 4898 return 0; 4899 case TargetLowering::C_Register: 4900 return 1; 4901 case TargetLowering::C_RegisterClass: 4902 return 2; 4903 case TargetLowering::C_Memory: 4904 return 3; 4905 } 4906 llvm_unreachable("Invalid constraint type"); 4907 } 4908 4909 /// Examine constraint type and operand type and determine a weight value. 4910 /// This object must already have been set up with the operand type 4911 /// and the current alternative constraint selected. 4912 TargetLowering::ConstraintWeight 4913 TargetLowering::getMultipleConstraintMatchWeight( 4914 AsmOperandInfo &info, int maIndex) const { 4915 InlineAsm::ConstraintCodeVector *rCodes; 4916 if (maIndex >= (int)info.multipleAlternatives.size()) 4917 rCodes = &info.Codes; 4918 else 4919 rCodes = &info.multipleAlternatives[maIndex].Codes; 4920 ConstraintWeight BestWeight = CW_Invalid; 4921 4922 // Loop over the options, keeping track of the most general one. 4923 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4924 ConstraintWeight weight = 4925 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4926 if (weight > BestWeight) 4927 BestWeight = weight; 4928 } 4929 4930 return BestWeight; 4931 } 4932 4933 /// Examine constraint type and operand type and determine a weight value. 4934 /// This object must already have been set up with the operand type 4935 /// and the current alternative constraint selected. 4936 TargetLowering::ConstraintWeight 4937 TargetLowering::getSingleConstraintMatchWeight( 4938 AsmOperandInfo &info, const char *constraint) const { 4939 ConstraintWeight weight = CW_Invalid; 4940 Value *CallOperandVal = info.CallOperandVal; 4941 // If we don't have a value, we can't do a match, 4942 // but allow it at the lowest weight. 4943 if (!CallOperandVal) 4944 return CW_Default; 4945 // Look at the constraint type. 4946 switch (*constraint) { 4947 case 'i': // immediate integer. 4948 case 'n': // immediate integer with a known value. 4949 if (isa<ConstantInt>(CallOperandVal)) 4950 weight = CW_Constant; 4951 break; 4952 case 's': // non-explicit intregal immediate. 4953 if (isa<GlobalValue>(CallOperandVal)) 4954 weight = CW_Constant; 4955 break; 4956 case 'E': // immediate float if host format. 4957 case 'F': // immediate float. 4958 if (isa<ConstantFP>(CallOperandVal)) 4959 weight = CW_Constant; 4960 break; 4961 case '<': // memory operand with autodecrement. 4962 case '>': // memory operand with autoincrement. 4963 case 'm': // memory operand. 4964 case 'o': // offsettable memory operand 4965 case 'V': // non-offsettable memory operand 4966 weight = CW_Memory; 4967 break; 4968 case 'r': // general register. 4969 case 'g': // general register, memory operand or immediate integer. 4970 // note: Clang converts "g" to "imr". 4971 if (CallOperandVal->getType()->isIntegerTy()) 4972 weight = CW_Register; 4973 break; 4974 case 'X': // any operand. 4975 default: 4976 weight = CW_Default; 4977 break; 4978 } 4979 return weight; 4980 } 4981 4982 /// If there are multiple different constraints that we could pick for this 4983 /// operand (e.g. "imr") try to pick the 'best' one. 4984 /// This is somewhat tricky: constraints fall into four classes: 4985 /// Other -> immediates and magic values 4986 /// Register -> one specific register 4987 /// RegisterClass -> a group of regs 4988 /// Memory -> memory 4989 /// Ideally, we would pick the most specific constraint possible: if we have 4990 /// something that fits into a register, we would pick it. The problem here 4991 /// is that if we have something that could either be in a register or in 4992 /// memory that use of the register could cause selection of *other* 4993 /// operands to fail: they might only succeed if we pick memory. Because of 4994 /// this the heuristic we use is: 4995 /// 4996 /// 1) If there is an 'other' constraint, and if the operand is valid for 4997 /// that constraint, use it. This makes us take advantage of 'i' 4998 /// constraints when available. 4999 /// 2) Otherwise, pick the most general constraint present. This prefers 5000 /// 'm' over 'r', for example. 5001 /// 5002 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5003 const TargetLowering &TLI, 5004 SDValue Op, SelectionDAG *DAG) { 5005 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5006 unsigned BestIdx = 0; 5007 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5008 int BestGenerality = -1; 5009 5010 // Loop over the options, keeping track of the most general one. 5011 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5012 TargetLowering::ConstraintType CType = 5013 TLI.getConstraintType(OpInfo.Codes[i]); 5014 5015 // Indirect 'other' or 'immediate' constraints are not allowed. 5016 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5017 CType == TargetLowering::C_Register || 5018 CType == TargetLowering::C_RegisterClass)) 5019 continue; 5020 5021 // If this is an 'other' or 'immediate' constraint, see if the operand is 5022 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5023 // the operand is an integer in the range [0..31] we want to use I (saving a 5024 // load of a register), otherwise we must use 'r'. 5025 if ((CType == TargetLowering::C_Other || 5026 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5027 assert(OpInfo.Codes[i].size() == 1 && 5028 "Unhandled multi-letter 'other' constraint"); 5029 std::vector<SDValue> ResultOps; 5030 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5031 ResultOps, *DAG); 5032 if (!ResultOps.empty()) { 5033 BestType = CType; 5034 BestIdx = i; 5035 break; 5036 } 5037 } 5038 5039 // Things with matching constraints can only be registers, per gcc 5040 // documentation. This mainly affects "g" constraints. 5041 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5042 continue; 5043 5044 // This constraint letter is more general than the previous one, use it. 5045 int Generality = getConstraintGenerality(CType); 5046 if (Generality > BestGenerality) { 5047 BestType = CType; 5048 BestIdx = i; 5049 BestGenerality = Generality; 5050 } 5051 } 5052 5053 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5054 OpInfo.ConstraintType = BestType; 5055 } 5056 5057 /// Determines the constraint code and constraint type to use for the specific 5058 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5059 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5060 SDValue Op, 5061 SelectionDAG *DAG) const { 5062 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5063 5064 // Single-letter constraints ('r') are very common. 5065 if (OpInfo.Codes.size() == 1) { 5066 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5067 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5068 } else { 5069 ChooseConstraint(OpInfo, *this, Op, DAG); 5070 } 5071 5072 // 'X' matches anything. 5073 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5074 // Labels and constants are handled elsewhere ('X' is the only thing 5075 // that matches labels). For Functions, the type here is the type of 5076 // the result, which is not what we want to look at; leave them alone. 5077 Value *v = OpInfo.CallOperandVal; 5078 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 5079 OpInfo.CallOperandVal = v; 5080 return; 5081 } 5082 5083 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 5084 return; 5085 5086 // Otherwise, try to resolve it to something we know about by looking at 5087 // the actual operand type. 5088 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5089 OpInfo.ConstraintCode = Repl; 5090 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5091 } 5092 } 5093 } 5094 5095 /// Given an exact SDIV by a constant, create a multiplication 5096 /// with the multiplicative inverse of the constant. 5097 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5098 const SDLoc &dl, SelectionDAG &DAG, 5099 SmallVectorImpl<SDNode *> &Created) { 5100 SDValue Op0 = N->getOperand(0); 5101 SDValue Op1 = N->getOperand(1); 5102 EVT VT = N->getValueType(0); 5103 EVT SVT = VT.getScalarType(); 5104 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5105 EVT ShSVT = ShVT.getScalarType(); 5106 5107 bool UseSRA = false; 5108 SmallVector<SDValue, 16> Shifts, Factors; 5109 5110 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5111 if (C->isZero()) 5112 return false; 5113 APInt Divisor = C->getAPIntValue(); 5114 unsigned Shift = Divisor.countTrailingZeros(); 5115 if (Shift) { 5116 Divisor.ashrInPlace(Shift); 5117 UseSRA = true; 5118 } 5119 // Calculate the multiplicative inverse, using Newton's method. 5120 APInt t; 5121 APInt Factor = Divisor; 5122 while ((t = Divisor * Factor) != 1) 5123 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5124 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5125 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5126 return true; 5127 }; 5128 5129 // Collect all magic values from the build vector. 5130 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5131 return SDValue(); 5132 5133 SDValue Shift, Factor; 5134 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5135 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5136 Factor = DAG.getBuildVector(VT, dl, Factors); 5137 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5138 assert(Shifts.size() == 1 && Factors.size() == 1 && 5139 "Expected matchUnaryPredicate to return one element for scalable " 5140 "vectors"); 5141 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5142 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5143 } else { 5144 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5145 Shift = Shifts[0]; 5146 Factor = Factors[0]; 5147 } 5148 5149 SDValue Res = Op0; 5150 5151 // Shift the value upfront if it is even, so the LSB is one. 5152 if (UseSRA) { 5153 // TODO: For UDIV use SRL instead of SRA. 5154 SDNodeFlags Flags; 5155 Flags.setExact(true); 5156 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5157 Created.push_back(Res.getNode()); 5158 } 5159 5160 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5161 } 5162 5163 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5164 SelectionDAG &DAG, 5165 SmallVectorImpl<SDNode *> &Created) const { 5166 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5167 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5168 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5169 return SDValue(N, 0); // Lower SDIV as SDIV 5170 return SDValue(); 5171 } 5172 5173 /// Given an ISD::SDIV node expressing a divide by constant, 5174 /// return a DAG expression to select that will generate the same value by 5175 /// multiplying by a magic number. 5176 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5177 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5178 bool IsAfterLegalization, 5179 SmallVectorImpl<SDNode *> &Created) const { 5180 SDLoc dl(N); 5181 EVT VT = N->getValueType(0); 5182 EVT SVT = VT.getScalarType(); 5183 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5184 EVT ShSVT = ShVT.getScalarType(); 5185 unsigned EltBits = VT.getScalarSizeInBits(); 5186 EVT MulVT; 5187 5188 // Check to see if we can do this. 5189 // FIXME: We should be more aggressive here. 5190 if (!isTypeLegal(VT)) { 5191 // Limit this to simple scalars for now. 5192 if (VT.isVector() || !VT.isSimple()) 5193 return SDValue(); 5194 5195 // If this type will be promoted to a large enough type with a legal 5196 // multiply operation, we can go ahead and do this transform. 5197 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5198 return SDValue(); 5199 5200 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5201 if (MulVT.getSizeInBits() < (2 * EltBits) || 5202 !isOperationLegal(ISD::MUL, MulVT)) 5203 return SDValue(); 5204 } 5205 5206 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5207 if (N->getFlags().hasExact()) 5208 return BuildExactSDIV(*this, N, dl, DAG, Created); 5209 5210 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5211 5212 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5213 if (C->isZero()) 5214 return false; 5215 5216 const APInt &Divisor = C->getAPIntValue(); 5217 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5218 int NumeratorFactor = 0; 5219 int ShiftMask = -1; 5220 5221 if (Divisor.isOne() || Divisor.isAllOnes()) { 5222 // If d is +1/-1, we just multiply the numerator by +1/-1. 5223 NumeratorFactor = Divisor.getSExtValue(); 5224 magics.Magic = 0; 5225 magics.ShiftAmount = 0; 5226 ShiftMask = 0; 5227 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5228 // If d > 0 and m < 0, add the numerator. 5229 NumeratorFactor = 1; 5230 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5231 // If d < 0 and m > 0, subtract the numerator. 5232 NumeratorFactor = -1; 5233 } 5234 5235 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5236 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5237 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5238 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5239 return true; 5240 }; 5241 5242 SDValue N0 = N->getOperand(0); 5243 SDValue N1 = N->getOperand(1); 5244 5245 // Collect the shifts / magic values from each element. 5246 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5247 return SDValue(); 5248 5249 SDValue MagicFactor, Factor, Shift, ShiftMask; 5250 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5251 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5252 Factor = DAG.getBuildVector(VT, dl, Factors); 5253 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5254 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5255 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5256 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5257 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5258 "Expected matchUnaryPredicate to return one element for scalable " 5259 "vectors"); 5260 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5261 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5262 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5263 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5264 } else { 5265 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5266 MagicFactor = MagicFactors[0]; 5267 Factor = Factors[0]; 5268 Shift = Shifts[0]; 5269 ShiftMask = ShiftMasks[0]; 5270 } 5271 5272 // Multiply the numerator (operand 0) by the magic value. 5273 // FIXME: We should support doing a MUL in a wider type. 5274 auto GetMULHS = [&](SDValue X, SDValue Y) { 5275 // If the type isn't legal, use a wider mul of the the type calculated 5276 // earlier. 5277 if (!isTypeLegal(VT)) { 5278 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5279 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5280 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5281 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5282 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5283 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5284 } 5285 5286 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5287 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5288 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5289 SDValue LoHi = 5290 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5291 return SDValue(LoHi.getNode(), 1); 5292 } 5293 return SDValue(); 5294 }; 5295 5296 SDValue Q = GetMULHS(N0, MagicFactor); 5297 if (!Q) 5298 return SDValue(); 5299 5300 Created.push_back(Q.getNode()); 5301 5302 // (Optionally) Add/subtract the numerator using Factor. 5303 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5304 Created.push_back(Factor.getNode()); 5305 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5306 Created.push_back(Q.getNode()); 5307 5308 // Shift right algebraic by shift value. 5309 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5310 Created.push_back(Q.getNode()); 5311 5312 // Extract the sign bit, mask it and add it to the quotient. 5313 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5314 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5315 Created.push_back(T.getNode()); 5316 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5317 Created.push_back(T.getNode()); 5318 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5319 } 5320 5321 /// Given an ISD::UDIV node expressing a divide by constant, 5322 /// return a DAG expression to select that will generate the same value by 5323 /// multiplying by a magic number. 5324 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5325 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5326 bool IsAfterLegalization, 5327 SmallVectorImpl<SDNode *> &Created) const { 5328 SDLoc dl(N); 5329 EVT VT = N->getValueType(0); 5330 EVT SVT = VT.getScalarType(); 5331 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5332 EVT ShSVT = ShVT.getScalarType(); 5333 unsigned EltBits = VT.getScalarSizeInBits(); 5334 EVT MulVT; 5335 5336 // Check to see if we can do this. 5337 // FIXME: We should be more aggressive here. 5338 if (!isTypeLegal(VT)) { 5339 // Limit this to simple scalars for now. 5340 if (VT.isVector() || !VT.isSimple()) 5341 return SDValue(); 5342 5343 // If this type will be promoted to a large enough type with a legal 5344 // multiply operation, we can go ahead and do this transform. 5345 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5346 return SDValue(); 5347 5348 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5349 if (MulVT.getSizeInBits() < (2 * EltBits) || 5350 !isOperationLegal(ISD::MUL, MulVT)) 5351 return SDValue(); 5352 } 5353 5354 bool UseNPQ = false; 5355 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5356 5357 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5358 if (C->isZero()) 5359 return false; 5360 // FIXME: We should use a narrower constant when the upper 5361 // bits are known to be zero. 5362 const APInt& Divisor = C->getAPIntValue(); 5363 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5364 unsigned PreShift = 0, PostShift = 0; 5365 5366 // If the divisor is even, we can avoid using the expensive fixup by 5367 // shifting the divided value upfront. 5368 if (magics.IsAdd != 0 && !Divisor[0]) { 5369 PreShift = Divisor.countTrailingZeros(); 5370 // Get magic number for the shifted divisor. 5371 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5372 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5373 } 5374 5375 APInt Magic = magics.Magic; 5376 5377 unsigned SelNPQ; 5378 if (magics.IsAdd == 0 || Divisor.isOne()) { 5379 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5380 "We shouldn't generate an undefined shift!"); 5381 PostShift = magics.ShiftAmount; 5382 SelNPQ = false; 5383 } else { 5384 PostShift = magics.ShiftAmount - 1; 5385 SelNPQ = true; 5386 } 5387 5388 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5389 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5390 NPQFactors.push_back( 5391 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5392 : APInt::getZero(EltBits), 5393 dl, SVT)); 5394 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5395 UseNPQ |= SelNPQ; 5396 return true; 5397 }; 5398 5399 SDValue N0 = N->getOperand(0); 5400 SDValue N1 = N->getOperand(1); 5401 5402 // Collect the shifts/magic values from each element. 5403 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5404 return SDValue(); 5405 5406 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5407 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5408 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5409 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5410 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5411 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5412 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5413 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5414 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5415 "Expected matchUnaryPredicate to return one for scalable vectors"); 5416 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5417 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5418 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5419 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5420 } else { 5421 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5422 PreShift = PreShifts[0]; 5423 MagicFactor = MagicFactors[0]; 5424 PostShift = PostShifts[0]; 5425 } 5426 5427 SDValue Q = N0; 5428 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5429 Created.push_back(Q.getNode()); 5430 5431 // FIXME: We should support doing a MUL in a wider type. 5432 auto GetMULHU = [&](SDValue X, SDValue Y) { 5433 // If the type isn't legal, use a wider mul of the the type calculated 5434 // earlier. 5435 if (!isTypeLegal(VT)) { 5436 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5437 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5438 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5439 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5440 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5441 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5442 } 5443 5444 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5445 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5446 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5447 SDValue LoHi = 5448 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5449 return SDValue(LoHi.getNode(), 1); 5450 } 5451 return SDValue(); // No mulhu or equivalent 5452 }; 5453 5454 // Multiply the numerator (operand 0) by the magic value. 5455 Q = GetMULHU(Q, MagicFactor); 5456 if (!Q) 5457 return SDValue(); 5458 5459 Created.push_back(Q.getNode()); 5460 5461 if (UseNPQ) { 5462 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5463 Created.push_back(NPQ.getNode()); 5464 5465 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5466 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5467 if (VT.isVector()) 5468 NPQ = GetMULHU(NPQ, NPQFactor); 5469 else 5470 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5471 5472 Created.push_back(NPQ.getNode()); 5473 5474 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5475 Created.push_back(Q.getNode()); 5476 } 5477 5478 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5479 Created.push_back(Q.getNode()); 5480 5481 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5482 5483 SDValue One = DAG.getConstant(1, dl, VT); 5484 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5485 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5486 } 5487 5488 /// If all values in Values that *don't* match the predicate are same 'splat' 5489 /// value, then replace all values with that splat value. 5490 /// Else, if AlternativeReplacement was provided, then replace all values that 5491 /// do match predicate with AlternativeReplacement value. 5492 static void 5493 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5494 std::function<bool(SDValue)> Predicate, 5495 SDValue AlternativeReplacement = SDValue()) { 5496 SDValue Replacement; 5497 // Is there a value for which the Predicate does *NOT* match? What is it? 5498 auto SplatValue = llvm::find_if_not(Values, Predicate); 5499 if (SplatValue != Values.end()) { 5500 // Does Values consist only of SplatValue's and values matching Predicate? 5501 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5502 return Value == *SplatValue || Predicate(Value); 5503 })) // Then we shall replace values matching predicate with SplatValue. 5504 Replacement = *SplatValue; 5505 } 5506 if (!Replacement) { 5507 // Oops, we did not find the "baseline" splat value. 5508 if (!AlternativeReplacement) 5509 return; // Nothing to do. 5510 // Let's replace with provided value then. 5511 Replacement = AlternativeReplacement; 5512 } 5513 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5514 } 5515 5516 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5517 /// where the divisor is constant and the comparison target is zero, 5518 /// return a DAG expression that will generate the same comparison result 5519 /// using only multiplications, additions and shifts/rotations. 5520 /// Ref: "Hacker's Delight" 10-17. 5521 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5522 SDValue CompTargetNode, 5523 ISD::CondCode Cond, 5524 DAGCombinerInfo &DCI, 5525 const SDLoc &DL) const { 5526 SmallVector<SDNode *, 5> Built; 5527 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5528 DCI, DL, Built)) { 5529 for (SDNode *N : Built) 5530 DCI.AddToWorklist(N); 5531 return Folded; 5532 } 5533 5534 return SDValue(); 5535 } 5536 5537 SDValue 5538 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5539 SDValue CompTargetNode, ISD::CondCode Cond, 5540 DAGCombinerInfo &DCI, const SDLoc &DL, 5541 SmallVectorImpl<SDNode *> &Created) const { 5542 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5543 // - D must be constant, with D = D0 * 2^K where D0 is odd 5544 // - P is the multiplicative inverse of D0 modulo 2^W 5545 // - Q = floor(((2^W) - 1) / D) 5546 // where W is the width of the common type of N and D. 5547 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5548 "Only applicable for (in)equality comparisons."); 5549 5550 SelectionDAG &DAG = DCI.DAG; 5551 5552 EVT VT = REMNode.getValueType(); 5553 EVT SVT = VT.getScalarType(); 5554 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5555 EVT ShSVT = ShVT.getScalarType(); 5556 5557 // If MUL is unavailable, we cannot proceed in any case. 5558 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5559 return SDValue(); 5560 5561 bool ComparingWithAllZeros = true; 5562 bool AllComparisonsWithNonZerosAreTautological = true; 5563 bool HadTautologicalLanes = false; 5564 bool AllLanesAreTautological = true; 5565 bool HadEvenDivisor = false; 5566 bool AllDivisorsArePowerOfTwo = true; 5567 bool HadTautologicalInvertedLanes = false; 5568 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5569 5570 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5571 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5572 if (CDiv->isZero()) 5573 return false; 5574 5575 const APInt &D = CDiv->getAPIntValue(); 5576 const APInt &Cmp = CCmp->getAPIntValue(); 5577 5578 ComparingWithAllZeros &= Cmp.isZero(); 5579 5580 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5581 // if C2 is not less than C1, the comparison is always false. 5582 // But we will only be able to produce the comparison that will give the 5583 // opposive tautological answer. So this lane would need to be fixed up. 5584 bool TautologicalInvertedLane = D.ule(Cmp); 5585 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5586 5587 // If all lanes are tautological (either all divisors are ones, or divisor 5588 // is not greater than the constant we are comparing with), 5589 // we will prefer to avoid the fold. 5590 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 5591 HadTautologicalLanes |= TautologicalLane; 5592 AllLanesAreTautological &= TautologicalLane; 5593 5594 // If we are comparing with non-zero, we need'll need to subtract said 5595 // comparison value from the LHS. But there is no point in doing that if 5596 // every lane where we are comparing with non-zero is tautological.. 5597 if (!Cmp.isZero()) 5598 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5599 5600 // Decompose D into D0 * 2^K 5601 unsigned K = D.countTrailingZeros(); 5602 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5603 APInt D0 = D.lshr(K); 5604 5605 // D is even if it has trailing zeros. 5606 HadEvenDivisor |= (K != 0); 5607 // D is a power-of-two if D0 is one. 5608 // If all divisors are power-of-two, we will prefer to avoid the fold. 5609 AllDivisorsArePowerOfTwo &= D0.isOne(); 5610 5611 // P = inv(D0, 2^W) 5612 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5613 unsigned W = D.getBitWidth(); 5614 APInt P = D0.zext(W + 1) 5615 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5616 .trunc(W); 5617 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5618 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5619 5620 // Q = floor((2^W - 1) u/ D) 5621 // R = ((2^W - 1) u% D) 5622 APInt Q, R; 5623 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 5624 5625 // If we are comparing with zero, then that comparison constant is okay, 5626 // else it may need to be one less than that. 5627 if (Cmp.ugt(R)) 5628 Q -= 1; 5629 5630 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5631 "We are expecting that K is always less than all-ones for ShSVT"); 5632 5633 // If the lane is tautological the result can be constant-folded. 5634 if (TautologicalLane) { 5635 // Set P and K amount to a bogus values so we can try to splat them. 5636 P = 0; 5637 K = -1; 5638 // And ensure that comparison constant is tautological, 5639 // it will always compare true/false. 5640 Q = -1; 5641 } 5642 5643 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5644 KAmts.push_back( 5645 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5646 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5647 return true; 5648 }; 5649 5650 SDValue N = REMNode.getOperand(0); 5651 SDValue D = REMNode.getOperand(1); 5652 5653 // Collect the values from each element. 5654 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5655 return SDValue(); 5656 5657 // If all lanes are tautological, the result can be constant-folded. 5658 if (AllLanesAreTautological) 5659 return SDValue(); 5660 5661 // If this is a urem by a powers-of-two, avoid the fold since it can be 5662 // best implemented as a bit test. 5663 if (AllDivisorsArePowerOfTwo) 5664 return SDValue(); 5665 5666 SDValue PVal, KVal, QVal; 5667 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5668 if (HadTautologicalLanes) { 5669 // Try to turn PAmts into a splat, since we don't care about the values 5670 // that are currently '0'. If we can't, just keep '0'`s. 5671 turnVectorIntoSplatVector(PAmts, isNullConstant); 5672 // Try to turn KAmts into a splat, since we don't care about the values 5673 // that are currently '-1'. If we can't, change them to '0'`s. 5674 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5675 DAG.getConstant(0, DL, ShSVT)); 5676 } 5677 5678 PVal = DAG.getBuildVector(VT, DL, PAmts); 5679 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5680 QVal = DAG.getBuildVector(VT, DL, QAmts); 5681 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5682 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 5683 "Expected matchBinaryPredicate to return one element for " 5684 "SPLAT_VECTORs"); 5685 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5686 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5687 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5688 } else { 5689 PVal = PAmts[0]; 5690 KVal = KAmts[0]; 5691 QVal = QAmts[0]; 5692 } 5693 5694 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5695 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5696 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5697 assert(CompTargetNode.getValueType() == N.getValueType() && 5698 "Expecting that the types on LHS and RHS of comparisons match."); 5699 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5700 } 5701 5702 // (mul N, P) 5703 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5704 Created.push_back(Op0.getNode()); 5705 5706 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5707 // divisors as a performance improvement, since rotating by 0 is a no-op. 5708 if (HadEvenDivisor) { 5709 // We need ROTR to do this. 5710 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5711 return SDValue(); 5712 // UREM: (rotr (mul N, P), K) 5713 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5714 Created.push_back(Op0.getNode()); 5715 } 5716 5717 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5718 SDValue NewCC = 5719 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5720 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5721 if (!HadTautologicalInvertedLanes) 5722 return NewCC; 5723 5724 // If any lanes previously compared always-false, the NewCC will give 5725 // always-true result for them, so we need to fixup those lanes. 5726 // Or the other way around for inequality predicate. 5727 assert(VT.isVector() && "Can/should only get here for vectors."); 5728 Created.push_back(NewCC.getNode()); 5729 5730 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5731 // if C2 is not less than C1, the comparison is always false. 5732 // But we have produced the comparison that will give the 5733 // opposive tautological answer. So these lanes would need to be fixed up. 5734 SDValue TautologicalInvertedChannels = 5735 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5736 Created.push_back(TautologicalInvertedChannels.getNode()); 5737 5738 // NOTE: we avoid letting illegal types through even if we're before legalize 5739 // ops – legalization has a hard time producing good code for this. 5740 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5741 // If we have a vector select, let's replace the comparison results in the 5742 // affected lanes with the correct tautological result. 5743 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5744 DL, SETCCVT, SETCCVT); 5745 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5746 Replacement, NewCC); 5747 } 5748 5749 // Else, we can just invert the comparison result in the appropriate lanes. 5750 // 5751 // NOTE: see the note above VSELECT above. 5752 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5753 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5754 TautologicalInvertedChannels); 5755 5756 return SDValue(); // Don't know how to lower. 5757 } 5758 5759 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5760 /// where the divisor is constant and the comparison target is zero, 5761 /// return a DAG expression that will generate the same comparison result 5762 /// using only multiplications, additions and shifts/rotations. 5763 /// Ref: "Hacker's Delight" 10-17. 5764 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5765 SDValue CompTargetNode, 5766 ISD::CondCode Cond, 5767 DAGCombinerInfo &DCI, 5768 const SDLoc &DL) const { 5769 SmallVector<SDNode *, 7> Built; 5770 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5771 DCI, DL, Built)) { 5772 assert(Built.size() <= 7 && "Max size prediction failed."); 5773 for (SDNode *N : Built) 5774 DCI.AddToWorklist(N); 5775 return Folded; 5776 } 5777 5778 return SDValue(); 5779 } 5780 5781 SDValue 5782 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5783 SDValue CompTargetNode, ISD::CondCode Cond, 5784 DAGCombinerInfo &DCI, const SDLoc &DL, 5785 SmallVectorImpl<SDNode *> &Created) const { 5786 // Fold: 5787 // (seteq/ne (srem N, D), 0) 5788 // To: 5789 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5790 // 5791 // - D must be constant, with D = D0 * 2^K where D0 is odd 5792 // - P is the multiplicative inverse of D0 modulo 2^W 5793 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5794 // - Q = floor((2 * A) / (2^K)) 5795 // where W is the width of the common type of N and D. 5796 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5797 "Only applicable for (in)equality comparisons."); 5798 5799 SelectionDAG &DAG = DCI.DAG; 5800 5801 EVT VT = REMNode.getValueType(); 5802 EVT SVT = VT.getScalarType(); 5803 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5804 EVT ShSVT = ShVT.getScalarType(); 5805 5806 // If we are after ops legalization, and MUL is unavailable, we can not 5807 // proceed. 5808 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5809 return SDValue(); 5810 5811 // TODO: Could support comparing with non-zero too. 5812 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5813 if (!CompTarget || !CompTarget->isZero()) 5814 return SDValue(); 5815 5816 bool HadIntMinDivisor = false; 5817 bool HadOneDivisor = false; 5818 bool AllDivisorsAreOnes = true; 5819 bool HadEvenDivisor = false; 5820 bool NeedToApplyOffset = false; 5821 bool AllDivisorsArePowerOfTwo = true; 5822 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5823 5824 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5825 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5826 if (C->isZero()) 5827 return false; 5828 5829 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5830 5831 // WARNING: this fold is only valid for positive divisors! 5832 APInt D = C->getAPIntValue(); 5833 if (D.isNegative()) 5834 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5835 5836 HadIntMinDivisor |= D.isMinSignedValue(); 5837 5838 // If all divisors are ones, we will prefer to avoid the fold. 5839 HadOneDivisor |= D.isOne(); 5840 AllDivisorsAreOnes &= D.isOne(); 5841 5842 // Decompose D into D0 * 2^K 5843 unsigned K = D.countTrailingZeros(); 5844 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5845 APInt D0 = D.lshr(K); 5846 5847 if (!D.isMinSignedValue()) { 5848 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5849 // we don't care about this lane in this fold, we'll special-handle it. 5850 HadEvenDivisor |= (K != 0); 5851 } 5852 5853 // D is a power-of-two if D0 is one. This includes INT_MIN. 5854 // If all divisors are power-of-two, we will prefer to avoid the fold. 5855 AllDivisorsArePowerOfTwo &= D0.isOne(); 5856 5857 // P = inv(D0, 2^W) 5858 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5859 unsigned W = D.getBitWidth(); 5860 APInt P = D0.zext(W + 1) 5861 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5862 .trunc(W); 5863 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5864 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5865 5866 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5867 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5868 A.clearLowBits(K); 5869 5870 if (!D.isMinSignedValue()) { 5871 // If divisor INT_MIN, then we don't care about this lane in this fold, 5872 // we'll special-handle it. 5873 NeedToApplyOffset |= A != 0; 5874 } 5875 5876 // Q = floor((2 * A) / (2^K)) 5877 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5878 5879 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 5880 "We are expecting that A is always less than all-ones for SVT"); 5881 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5882 "We are expecting that K is always less than all-ones for ShSVT"); 5883 5884 // If the divisor is 1 the result can be constant-folded. Likewise, we 5885 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5886 if (D.isOne()) { 5887 // Set P, A and K to a bogus values so we can try to splat them. 5888 P = 0; 5889 A = -1; 5890 K = -1; 5891 5892 // x ?% 1 == 0 <--> true <--> x u<= -1 5893 Q = -1; 5894 } 5895 5896 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5897 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5898 KAmts.push_back( 5899 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5900 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5901 return true; 5902 }; 5903 5904 SDValue N = REMNode.getOperand(0); 5905 SDValue D = REMNode.getOperand(1); 5906 5907 // Collect the values from each element. 5908 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5909 return SDValue(); 5910 5911 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5912 if (AllDivisorsAreOnes) 5913 return SDValue(); 5914 5915 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5916 // since it can be best implemented as a bit test. 5917 if (AllDivisorsArePowerOfTwo) 5918 return SDValue(); 5919 5920 SDValue PVal, AVal, KVal, QVal; 5921 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5922 if (HadOneDivisor) { 5923 // Try to turn PAmts into a splat, since we don't care about the values 5924 // that are currently '0'. If we can't, just keep '0'`s. 5925 turnVectorIntoSplatVector(PAmts, isNullConstant); 5926 // Try to turn AAmts into a splat, since we don't care about the 5927 // values that are currently '-1'. If we can't, change them to '0'`s. 5928 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5929 DAG.getConstant(0, DL, SVT)); 5930 // Try to turn KAmts into a splat, since we don't care about the values 5931 // that are currently '-1'. If we can't, change them to '0'`s. 5932 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5933 DAG.getConstant(0, DL, ShSVT)); 5934 } 5935 5936 PVal = DAG.getBuildVector(VT, DL, PAmts); 5937 AVal = DAG.getBuildVector(VT, DL, AAmts); 5938 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5939 QVal = DAG.getBuildVector(VT, DL, QAmts); 5940 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5941 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 5942 QAmts.size() == 1 && 5943 "Expected matchUnaryPredicate to return one element for scalable " 5944 "vectors"); 5945 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5946 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 5947 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5948 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5949 } else { 5950 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 5951 PVal = PAmts[0]; 5952 AVal = AAmts[0]; 5953 KVal = KAmts[0]; 5954 QVal = QAmts[0]; 5955 } 5956 5957 // (mul N, P) 5958 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5959 Created.push_back(Op0.getNode()); 5960 5961 if (NeedToApplyOffset) { 5962 // We need ADD to do this. 5963 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 5964 return SDValue(); 5965 5966 // (add (mul N, P), A) 5967 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5968 Created.push_back(Op0.getNode()); 5969 } 5970 5971 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5972 // divisors as a performance improvement, since rotating by 0 is a no-op. 5973 if (HadEvenDivisor) { 5974 // We need ROTR to do this. 5975 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5976 return SDValue(); 5977 // SREM: (rotr (add (mul N, P), A), K) 5978 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5979 Created.push_back(Op0.getNode()); 5980 } 5981 5982 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5983 SDValue Fold = 5984 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5985 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5986 5987 // If we didn't have lanes with INT_MIN divisor, then we're done. 5988 if (!HadIntMinDivisor) 5989 return Fold; 5990 5991 // That fold is only valid for positive divisors. Which effectively means, 5992 // it is invalid for INT_MIN divisors. So if we have such a lane, 5993 // we must fix-up results for said lanes. 5994 assert(VT.isVector() && "Can/should only get here for vectors."); 5995 5996 // NOTE: we avoid letting illegal types through even if we're before legalize 5997 // ops – legalization has a hard time producing good code for the code that 5998 // follows. 5999 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6000 !isOperationLegalOrCustom(ISD::AND, VT) || 6001 !isOperationLegalOrCustom(Cond, VT) || 6002 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6003 return SDValue(); 6004 6005 Created.push_back(Fold.getNode()); 6006 6007 SDValue IntMin = DAG.getConstant( 6008 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6009 SDValue IntMax = DAG.getConstant( 6010 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6011 SDValue Zero = 6012 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6013 6014 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6015 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6016 Created.push_back(DivisorIsIntMin.getNode()); 6017 6018 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6019 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6020 Created.push_back(Masked.getNode()); 6021 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6022 Created.push_back(MaskedIsZero.getNode()); 6023 6024 // To produce final result we need to blend 2 vectors: 'SetCC' and 6025 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6026 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6027 // constant-folded, select can get lowered to a shuffle with constant mask. 6028 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6029 MaskedIsZero, Fold); 6030 6031 return Blended; 6032 } 6033 6034 bool TargetLowering:: 6035 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6036 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6037 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6038 "be a constant integer"); 6039 return true; 6040 } 6041 6042 return false; 6043 } 6044 6045 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6046 const DenormalMode &Mode) const { 6047 SDLoc DL(Op); 6048 EVT VT = Op.getValueType(); 6049 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6050 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6051 // Testing it with denormal inputs to avoid wrong estimate. 6052 if (Mode.Input == DenormalMode::IEEE) { 6053 // This is specifically a check for the handling of denormal inputs, 6054 // not the result. 6055 6056 // Test = fabs(X) < SmallestNormal 6057 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6058 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6059 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6060 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6061 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6062 } 6063 // Test = X == 0.0 6064 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6065 } 6066 6067 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6068 bool LegalOps, bool OptForSize, 6069 NegatibleCost &Cost, 6070 unsigned Depth) const { 6071 // fneg is removable even if it has multiple uses. 6072 if (Op.getOpcode() == ISD::FNEG) { 6073 Cost = NegatibleCost::Cheaper; 6074 return Op.getOperand(0); 6075 } 6076 6077 // Don't recurse exponentially. 6078 if (Depth > SelectionDAG::MaxRecursionDepth) 6079 return SDValue(); 6080 6081 // Pre-increment recursion depth for use in recursive calls. 6082 ++Depth; 6083 const SDNodeFlags Flags = Op->getFlags(); 6084 const TargetOptions &Options = DAG.getTarget().Options; 6085 EVT VT = Op.getValueType(); 6086 unsigned Opcode = Op.getOpcode(); 6087 6088 // Don't allow anything with multiple uses unless we know it is free. 6089 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6090 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6091 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6092 if (!IsFreeExtend) 6093 return SDValue(); 6094 } 6095 6096 auto RemoveDeadNode = [&](SDValue N) { 6097 if (N && N.getNode()->use_empty()) 6098 DAG.RemoveDeadNode(N.getNode()); 6099 }; 6100 6101 SDLoc DL(Op); 6102 6103 // Because getNegatedExpression can delete nodes we need a handle to keep 6104 // temporary nodes alive in case the recursion manages to create an identical 6105 // node. 6106 std::list<HandleSDNode> Handles; 6107 6108 switch (Opcode) { 6109 case ISD::ConstantFP: { 6110 // Don't invert constant FP values after legalization unless the target says 6111 // the negated constant is legal. 6112 bool IsOpLegal = 6113 isOperationLegal(ISD::ConstantFP, VT) || 6114 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6115 OptForSize); 6116 6117 if (LegalOps && !IsOpLegal) 6118 break; 6119 6120 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6121 V.changeSign(); 6122 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6123 6124 // If we already have the use of the negated floating constant, it is free 6125 // to negate it even it has multiple uses. 6126 if (!Op.hasOneUse() && CFP.use_empty()) 6127 break; 6128 Cost = NegatibleCost::Neutral; 6129 return CFP; 6130 } 6131 case ISD::BUILD_VECTOR: { 6132 // Only permit BUILD_VECTOR of constants. 6133 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6134 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6135 })) 6136 break; 6137 6138 bool IsOpLegal = 6139 (isOperationLegal(ISD::ConstantFP, VT) && 6140 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6141 llvm::all_of(Op->op_values(), [&](SDValue N) { 6142 return N.isUndef() || 6143 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6144 OptForSize); 6145 }); 6146 6147 if (LegalOps && !IsOpLegal) 6148 break; 6149 6150 SmallVector<SDValue, 4> Ops; 6151 for (SDValue C : Op->op_values()) { 6152 if (C.isUndef()) { 6153 Ops.push_back(C); 6154 continue; 6155 } 6156 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6157 V.changeSign(); 6158 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6159 } 6160 Cost = NegatibleCost::Neutral; 6161 return DAG.getBuildVector(VT, DL, Ops); 6162 } 6163 case ISD::FADD: { 6164 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6165 break; 6166 6167 // After operation legalization, it might not be legal to create new FSUBs. 6168 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6169 break; 6170 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6171 6172 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6173 NegatibleCost CostX = NegatibleCost::Expensive; 6174 SDValue NegX = 6175 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6176 // Prevent this node from being deleted by the next call. 6177 if (NegX) 6178 Handles.emplace_back(NegX); 6179 6180 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6181 NegatibleCost CostY = NegatibleCost::Expensive; 6182 SDValue NegY = 6183 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6184 6185 // We're done with the handles. 6186 Handles.clear(); 6187 6188 // Negate the X if its cost is less or equal than Y. 6189 if (NegX && (CostX <= CostY)) { 6190 Cost = CostX; 6191 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6192 if (NegY != N) 6193 RemoveDeadNode(NegY); 6194 return N; 6195 } 6196 6197 // Negate the Y if it is not expensive. 6198 if (NegY) { 6199 Cost = CostY; 6200 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6201 if (NegX != N) 6202 RemoveDeadNode(NegX); 6203 return N; 6204 } 6205 break; 6206 } 6207 case ISD::FSUB: { 6208 // We can't turn -(A-B) into B-A when we honor signed zeros. 6209 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6210 break; 6211 6212 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6213 // fold (fneg (fsub 0, Y)) -> Y 6214 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6215 if (C->isZero()) { 6216 Cost = NegatibleCost::Cheaper; 6217 return Y; 6218 } 6219 6220 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6221 Cost = NegatibleCost::Neutral; 6222 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6223 } 6224 case ISD::FMUL: 6225 case ISD::FDIV: { 6226 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6227 6228 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6229 NegatibleCost CostX = NegatibleCost::Expensive; 6230 SDValue NegX = 6231 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6232 // Prevent this node from being deleted by the next call. 6233 if (NegX) 6234 Handles.emplace_back(NegX); 6235 6236 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6237 NegatibleCost CostY = NegatibleCost::Expensive; 6238 SDValue NegY = 6239 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6240 6241 // We're done with the handles. 6242 Handles.clear(); 6243 6244 // Negate the X if its cost is less or equal than Y. 6245 if (NegX && (CostX <= CostY)) { 6246 Cost = CostX; 6247 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6248 if (NegY != N) 6249 RemoveDeadNode(NegY); 6250 return N; 6251 } 6252 6253 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6254 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6255 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6256 break; 6257 6258 // Negate the Y if it is not expensive. 6259 if (NegY) { 6260 Cost = CostY; 6261 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6262 if (NegX != N) 6263 RemoveDeadNode(NegX); 6264 return N; 6265 } 6266 break; 6267 } 6268 case ISD::FMA: 6269 case ISD::FMAD: { 6270 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6271 break; 6272 6273 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6274 NegatibleCost CostZ = NegatibleCost::Expensive; 6275 SDValue NegZ = 6276 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6277 // Give up if fail to negate the Z. 6278 if (!NegZ) 6279 break; 6280 6281 // Prevent this node from being deleted by the next two calls. 6282 Handles.emplace_back(NegZ); 6283 6284 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6285 NegatibleCost CostX = NegatibleCost::Expensive; 6286 SDValue NegX = 6287 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6288 // Prevent this node from being deleted by the next call. 6289 if (NegX) 6290 Handles.emplace_back(NegX); 6291 6292 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6293 NegatibleCost CostY = NegatibleCost::Expensive; 6294 SDValue NegY = 6295 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6296 6297 // We're done with the handles. 6298 Handles.clear(); 6299 6300 // Negate the X if its cost is less or equal than Y. 6301 if (NegX && (CostX <= CostY)) { 6302 Cost = std::min(CostX, CostZ); 6303 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6304 if (NegY != N) 6305 RemoveDeadNode(NegY); 6306 return N; 6307 } 6308 6309 // Negate the Y if it is not expensive. 6310 if (NegY) { 6311 Cost = std::min(CostY, CostZ); 6312 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6313 if (NegX != N) 6314 RemoveDeadNode(NegX); 6315 return N; 6316 } 6317 break; 6318 } 6319 6320 case ISD::FP_EXTEND: 6321 case ISD::FSIN: 6322 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6323 OptForSize, Cost, Depth)) 6324 return DAG.getNode(Opcode, DL, VT, NegV); 6325 break; 6326 case ISD::FP_ROUND: 6327 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6328 OptForSize, Cost, Depth)) 6329 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6330 break; 6331 } 6332 6333 return SDValue(); 6334 } 6335 6336 //===----------------------------------------------------------------------===// 6337 // Legalization Utilities 6338 //===----------------------------------------------------------------------===// 6339 6340 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6341 SDValue LHS, SDValue RHS, 6342 SmallVectorImpl<SDValue> &Result, 6343 EVT HiLoVT, SelectionDAG &DAG, 6344 MulExpansionKind Kind, SDValue LL, 6345 SDValue LH, SDValue RL, SDValue RH) const { 6346 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6347 Opcode == ISD::SMUL_LOHI); 6348 6349 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6350 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6351 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6352 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6353 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6354 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6355 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6356 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6357 6358 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6359 return false; 6360 6361 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6362 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6363 6364 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6365 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6366 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6367 6368 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6369 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6370 bool Signed) -> bool { 6371 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6372 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6373 Hi = SDValue(Lo.getNode(), 1); 6374 return true; 6375 } 6376 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6377 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6378 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6379 return true; 6380 } 6381 return false; 6382 }; 6383 6384 SDValue Lo, Hi; 6385 6386 if (!LL.getNode() && !RL.getNode() && 6387 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6388 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6389 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6390 } 6391 6392 if (!LL.getNode()) 6393 return false; 6394 6395 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6396 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6397 DAG.MaskedValueIsZero(RHS, HighMask)) { 6398 // The inputs are both zero-extended. 6399 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6400 Result.push_back(Lo); 6401 Result.push_back(Hi); 6402 if (Opcode != ISD::MUL) { 6403 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6404 Result.push_back(Zero); 6405 Result.push_back(Zero); 6406 } 6407 return true; 6408 } 6409 } 6410 6411 if (!VT.isVector() && Opcode == ISD::MUL && 6412 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6413 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6414 // The input values are both sign-extended. 6415 // TODO non-MUL case? 6416 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6417 Result.push_back(Lo); 6418 Result.push_back(Hi); 6419 return true; 6420 } 6421 } 6422 6423 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6424 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6425 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 6426 // FIXME getShiftAmountTy does not always return a sensible result when VT 6427 // is an illegal type, and so the type may be too small to fit the shift 6428 // amount. Override it with i32. The shift will have to be legalized. 6429 ShiftAmountTy = MVT::i32; 6430 } 6431 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6432 6433 if (!LH.getNode() && !RH.getNode() && 6434 isOperationLegalOrCustom(ISD::SRL, VT) && 6435 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6436 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6437 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6438 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6439 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6440 } 6441 6442 if (!LH.getNode()) 6443 return false; 6444 6445 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6446 return false; 6447 6448 Result.push_back(Lo); 6449 6450 if (Opcode == ISD::MUL) { 6451 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6452 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6453 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6454 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6455 Result.push_back(Hi); 6456 return true; 6457 } 6458 6459 // Compute the full width result. 6460 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6461 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6462 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6463 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6464 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6465 }; 6466 6467 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6468 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6469 return false; 6470 6471 // This is effectively the add part of a multiply-add of half-sized operands, 6472 // so it cannot overflow. 6473 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6474 6475 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6476 return false; 6477 6478 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6479 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6480 6481 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6482 isOperationLegalOrCustom(ISD::ADDE, VT)); 6483 if (UseGlue) 6484 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6485 Merge(Lo, Hi)); 6486 else 6487 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6488 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6489 6490 SDValue Carry = Next.getValue(1); 6491 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6492 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6493 6494 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6495 return false; 6496 6497 if (UseGlue) 6498 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6499 Carry); 6500 else 6501 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6502 Zero, Carry); 6503 6504 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6505 6506 if (Opcode == ISD::SMUL_LOHI) { 6507 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6508 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6509 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6510 6511 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6512 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6513 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6514 } 6515 6516 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6517 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6518 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6519 return true; 6520 } 6521 6522 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6523 SelectionDAG &DAG, MulExpansionKind Kind, 6524 SDValue LL, SDValue LH, SDValue RL, 6525 SDValue RH) const { 6526 SmallVector<SDValue, 2> Result; 6527 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6528 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6529 DAG, Kind, LL, LH, RL, RH); 6530 if (Ok) { 6531 assert(Result.size() == 2); 6532 Lo = Result[0]; 6533 Hi = Result[1]; 6534 } 6535 return Ok; 6536 } 6537 6538 // Check that (every element of) Z is undef or not an exact multiple of BW. 6539 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6540 return ISD::matchUnaryPredicate( 6541 Z, 6542 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6543 true); 6544 } 6545 6546 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6547 SelectionDAG &DAG) const { 6548 EVT VT = Node->getValueType(0); 6549 6550 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6551 !isOperationLegalOrCustom(ISD::SRL, VT) || 6552 !isOperationLegalOrCustom(ISD::SUB, VT) || 6553 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6554 return false; 6555 6556 SDValue X = Node->getOperand(0); 6557 SDValue Y = Node->getOperand(1); 6558 SDValue Z = Node->getOperand(2); 6559 6560 unsigned BW = VT.getScalarSizeInBits(); 6561 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6562 SDLoc DL(SDValue(Node, 0)); 6563 6564 EVT ShVT = Z.getValueType(); 6565 6566 // If a funnel shift in the other direction is more supported, use it. 6567 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6568 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6569 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6570 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6571 // fshl X, Y, Z -> fshr X, Y, -Z 6572 // fshr X, Y, Z -> fshl X, Y, -Z 6573 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6574 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6575 } else { 6576 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6577 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6578 SDValue One = DAG.getConstant(1, DL, ShVT); 6579 if (IsFSHL) { 6580 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6581 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6582 } else { 6583 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6584 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6585 } 6586 Z = DAG.getNOT(DL, Z, ShVT); 6587 } 6588 Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6589 return true; 6590 } 6591 6592 SDValue ShX, ShY; 6593 SDValue ShAmt, InvShAmt; 6594 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6595 // fshl: X << C | Y >> (BW - C) 6596 // fshr: X << (BW - C) | Y >> C 6597 // where C = Z % BW is not zero 6598 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6599 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6600 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6601 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6602 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6603 } else { 6604 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6605 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6606 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6607 if (isPowerOf2_32(BW)) { 6608 // Z % BW -> Z & (BW - 1) 6609 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6610 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6611 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6612 } else { 6613 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6614 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6615 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6616 } 6617 6618 SDValue One = DAG.getConstant(1, DL, ShVT); 6619 if (IsFSHL) { 6620 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6621 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6622 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6623 } else { 6624 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6625 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6626 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6627 } 6628 } 6629 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6630 return true; 6631 } 6632 6633 // TODO: Merge with expandFunnelShift. 6634 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6635 SDValue &Result, SelectionDAG &DAG) const { 6636 EVT VT = Node->getValueType(0); 6637 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6638 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6639 SDValue Op0 = Node->getOperand(0); 6640 SDValue Op1 = Node->getOperand(1); 6641 SDLoc DL(SDValue(Node, 0)); 6642 6643 EVT ShVT = Op1.getValueType(); 6644 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6645 6646 // If a rotate in the other direction is supported, use it. 6647 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6648 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6649 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6650 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6651 return true; 6652 } 6653 6654 if (!AllowVectorOps && VT.isVector() && 6655 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6656 !isOperationLegalOrCustom(ISD::SRL, VT) || 6657 !isOperationLegalOrCustom(ISD::SUB, VT) || 6658 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6659 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6660 return false; 6661 6662 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6663 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6664 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6665 SDValue ShVal; 6666 SDValue HsVal; 6667 if (isPowerOf2_32(EltSizeInBits)) { 6668 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6669 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6670 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6671 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6672 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6673 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6674 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6675 } else { 6676 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6677 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6678 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6679 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6680 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6681 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6682 SDValue One = DAG.getConstant(1, DL, ShVT); 6683 HsVal = 6684 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6685 } 6686 Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6687 return true; 6688 } 6689 6690 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6691 SelectionDAG &DAG) const { 6692 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6693 EVT VT = Node->getValueType(0); 6694 unsigned VTBits = VT.getScalarSizeInBits(); 6695 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6696 6697 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6698 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6699 SDValue ShOpLo = Node->getOperand(0); 6700 SDValue ShOpHi = Node->getOperand(1); 6701 SDValue ShAmt = Node->getOperand(2); 6702 EVT ShAmtVT = ShAmt.getValueType(); 6703 EVT ShAmtCCVT = 6704 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6705 SDLoc dl(Node); 6706 6707 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6708 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6709 // away during isel. 6710 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6711 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6712 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6713 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6714 : DAG.getConstant(0, dl, VT); 6715 6716 SDValue Tmp2, Tmp3; 6717 if (IsSHL) { 6718 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6719 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6720 } else { 6721 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6722 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6723 } 6724 6725 // If the shift amount is larger or equal than the width of a part we don't 6726 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 6727 // values for large shift amounts. 6728 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6729 DAG.getConstant(VTBits, dl, ShAmtVT)); 6730 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 6731 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 6732 6733 if (IsSHL) { 6734 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6735 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6736 } else { 6737 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6738 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6739 } 6740 } 6741 6742 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6743 SelectionDAG &DAG) const { 6744 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6745 SDValue Src = Node->getOperand(OpNo); 6746 EVT SrcVT = Src.getValueType(); 6747 EVT DstVT = Node->getValueType(0); 6748 SDLoc dl(SDValue(Node, 0)); 6749 6750 // FIXME: Only f32 to i64 conversions are supported. 6751 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6752 return false; 6753 6754 if (Node->isStrictFPOpcode()) 6755 // When a NaN is converted to an integer a trap is allowed. We can't 6756 // use this expansion here because it would eliminate that trap. Other 6757 // traps are also allowed and cannot be eliminated. See 6758 // IEEE 754-2008 sec 5.8. 6759 return false; 6760 6761 // Expand f32 -> i64 conversion 6762 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6763 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6764 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6765 EVT IntVT = SrcVT.changeTypeToInteger(); 6766 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6767 6768 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6769 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6770 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6771 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6772 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6773 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6774 6775 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6776 6777 SDValue ExponentBits = DAG.getNode( 6778 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6779 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6780 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6781 6782 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6783 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6784 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6785 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6786 6787 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6788 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6789 DAG.getConstant(0x00800000, dl, IntVT)); 6790 6791 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6792 6793 R = DAG.getSelectCC( 6794 dl, Exponent, ExponentLoBit, 6795 DAG.getNode(ISD::SHL, dl, DstVT, R, 6796 DAG.getZExtOrTrunc( 6797 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6798 dl, IntShVT)), 6799 DAG.getNode(ISD::SRL, dl, DstVT, R, 6800 DAG.getZExtOrTrunc( 6801 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6802 dl, IntShVT)), 6803 ISD::SETGT); 6804 6805 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6806 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6807 6808 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6809 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6810 return true; 6811 } 6812 6813 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6814 SDValue &Chain, 6815 SelectionDAG &DAG) const { 6816 SDLoc dl(SDValue(Node, 0)); 6817 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6818 SDValue Src = Node->getOperand(OpNo); 6819 6820 EVT SrcVT = Src.getValueType(); 6821 EVT DstVT = Node->getValueType(0); 6822 EVT SetCCVT = 6823 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6824 EVT DstSetCCVT = 6825 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6826 6827 // Only expand vector types if we have the appropriate vector bit operations. 6828 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6829 ISD::FP_TO_SINT; 6830 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6831 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6832 return false; 6833 6834 // If the maximum float value is smaller then the signed integer range, 6835 // the destination signmask can't be represented by the float, so we can 6836 // just use FP_TO_SINT directly. 6837 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6838 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 6839 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6840 if (APFloat::opOverflow & 6841 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6842 if (Node->isStrictFPOpcode()) { 6843 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6844 { Node->getOperand(0), Src }); 6845 Chain = Result.getValue(1); 6846 } else 6847 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6848 return true; 6849 } 6850 6851 // Don't expand it if there isn't cheap fsub instruction. 6852 if (!isOperationLegalOrCustom( 6853 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6854 return false; 6855 6856 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6857 SDValue Sel; 6858 6859 if (Node->isStrictFPOpcode()) { 6860 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6861 Node->getOperand(0), /*IsSignaling*/ true); 6862 Chain = Sel.getValue(1); 6863 } else { 6864 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6865 } 6866 6867 bool Strict = Node->isStrictFPOpcode() || 6868 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6869 6870 if (Strict) { 6871 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6872 // signmask then offset (the result of which should be fully representable). 6873 // Sel = Src < 0x8000000000000000 6874 // FltOfs = select Sel, 0, 0x8000000000000000 6875 // IntOfs = select Sel, 0, 0x8000000000000000 6876 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6877 6878 // TODO: Should any fast-math-flags be set for the FSUB? 6879 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6880 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6881 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6882 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6883 DAG.getConstant(0, dl, DstVT), 6884 DAG.getConstant(SignMask, dl, DstVT)); 6885 SDValue SInt; 6886 if (Node->isStrictFPOpcode()) { 6887 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6888 { Chain, Src, FltOfs }); 6889 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6890 { Val.getValue(1), Val }); 6891 Chain = SInt.getValue(1); 6892 } else { 6893 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6894 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6895 } 6896 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6897 } else { 6898 // Expand based on maximum range of FP_TO_SINT: 6899 // True = fp_to_sint(Src) 6900 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6901 // Result = select (Src < 0x8000000000000000), True, False 6902 6903 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6904 // TODO: Should any fast-math-flags be set for the FSUB? 6905 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6906 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6907 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6908 DAG.getConstant(SignMask, dl, DstVT)); 6909 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6910 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6911 } 6912 return true; 6913 } 6914 6915 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6916 SDValue &Chain, 6917 SelectionDAG &DAG) const { 6918 // This transform is not correct for converting 0 when rounding mode is set 6919 // to round toward negative infinity which will produce -0.0. So disable under 6920 // strictfp. 6921 if (Node->isStrictFPOpcode()) 6922 return false; 6923 6924 SDValue Src = Node->getOperand(0); 6925 EVT SrcVT = Src.getValueType(); 6926 EVT DstVT = Node->getValueType(0); 6927 6928 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6929 return false; 6930 6931 // Only expand vector types if we have the appropriate vector bit operations. 6932 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6933 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6934 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6935 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6936 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6937 return false; 6938 6939 SDLoc dl(SDValue(Node, 0)); 6940 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6941 6942 // Implementation of unsigned i64 to f64 following the algorithm in 6943 // __floatundidf in compiler_rt. This implementation performs rounding 6944 // correctly in all rounding modes with the exception of converting 0 6945 // when rounding toward negative infinity. In that case the fsub will produce 6946 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 6947 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6948 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6949 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6950 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6951 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6952 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6953 6954 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6955 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6956 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6957 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6958 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6959 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6960 SDValue HiSub = 6961 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6962 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6963 return true; 6964 } 6965 6966 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6967 SelectionDAG &DAG) const { 6968 SDLoc dl(Node); 6969 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6970 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6971 EVT VT = Node->getValueType(0); 6972 6973 if (VT.isScalableVector()) 6974 report_fatal_error( 6975 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 6976 6977 if (isOperationLegalOrCustom(NewOp, VT)) { 6978 SDValue Quiet0 = Node->getOperand(0); 6979 SDValue Quiet1 = Node->getOperand(1); 6980 6981 if (!Node->getFlags().hasNoNaNs()) { 6982 // Insert canonicalizes if it's possible we need to quiet to get correct 6983 // sNaN behavior. 6984 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6985 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6986 Node->getFlags()); 6987 } 6988 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6989 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6990 Node->getFlags()); 6991 } 6992 } 6993 6994 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6995 } 6996 6997 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6998 // instead if there are no NaNs. 6999 if (Node->getFlags().hasNoNaNs()) { 7000 unsigned IEEE2018Op = 7001 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7002 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7003 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7004 Node->getOperand(1), Node->getFlags()); 7005 } 7006 } 7007 7008 // If none of the above worked, but there are no NaNs, then expand to 7009 // a compare/select sequence. This is required for correctness since 7010 // InstCombine might have canonicalized a fcmp+select sequence to a 7011 // FMINNUM/FMAXNUM node. If we were to fall through to the default 7012 // expansion to libcall, we might introduce a link-time dependency 7013 // on libm into a file that originally did not have one. 7014 if (Node->getFlags().hasNoNaNs()) { 7015 ISD::CondCode Pred = 7016 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7017 SDValue Op1 = Node->getOperand(0); 7018 SDValue Op2 = Node->getOperand(1); 7019 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 7020 // Copy FMF flags, but always set the no-signed-zeros flag 7021 // as this is implied by the FMINNUM/FMAXNUM semantics. 7022 SDNodeFlags Flags = Node->getFlags(); 7023 Flags.setNoSignedZeros(true); 7024 SelCC->setFlags(Flags); 7025 return SelCC; 7026 } 7027 7028 return SDValue(); 7029 } 7030 7031 // Only expand vector types if we have the appropriate vector bit operations. 7032 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7033 assert(VT.isVector() && "Expected vector type"); 7034 unsigned Len = VT.getScalarSizeInBits(); 7035 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7036 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7037 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7038 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7039 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7040 } 7041 7042 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7043 SDLoc dl(Node); 7044 EVT VT = Node->getValueType(0); 7045 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7046 SDValue Op = Node->getOperand(0); 7047 unsigned Len = VT.getScalarSizeInBits(); 7048 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7049 7050 // TODO: Add support for irregular type lengths. 7051 if (!(Len <= 128 && Len % 8 == 0)) 7052 return SDValue(); 7053 7054 // Only expand vector types if we have the appropriate vector bit operations. 7055 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7056 return SDValue(); 7057 7058 // This is the "best" algorithm from 7059 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7060 SDValue Mask55 = 7061 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7062 SDValue Mask33 = 7063 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7064 SDValue Mask0F = 7065 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7066 SDValue Mask01 = 7067 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7068 7069 // v = v - ((v >> 1) & 0x55555555...) 7070 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7071 DAG.getNode(ISD::AND, dl, VT, 7072 DAG.getNode(ISD::SRL, dl, VT, Op, 7073 DAG.getConstant(1, dl, ShVT)), 7074 Mask55)); 7075 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7076 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7077 DAG.getNode(ISD::AND, dl, VT, 7078 DAG.getNode(ISD::SRL, dl, VT, Op, 7079 DAG.getConstant(2, dl, ShVT)), 7080 Mask33)); 7081 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7082 Op = DAG.getNode(ISD::AND, dl, VT, 7083 DAG.getNode(ISD::ADD, dl, VT, Op, 7084 DAG.getNode(ISD::SRL, dl, VT, Op, 7085 DAG.getConstant(4, dl, ShVT))), 7086 Mask0F); 7087 // v = (v * 0x01010101...) >> (Len - 8) 7088 if (Len > 8) 7089 Op = 7090 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7091 DAG.getConstant(Len - 8, dl, ShVT)); 7092 7093 return Op; 7094 } 7095 7096 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7097 SDLoc dl(Node); 7098 EVT VT = Node->getValueType(0); 7099 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7100 SDValue Op = Node->getOperand(0); 7101 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7102 7103 // If the non-ZERO_UNDEF version is supported we can use that instead. 7104 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7105 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7106 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7107 7108 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7109 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7110 EVT SetCCVT = 7111 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7112 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7113 SDValue Zero = DAG.getConstant(0, dl, VT); 7114 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7115 return DAG.getSelect(dl, VT, SrcIsZero, 7116 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7117 } 7118 7119 // Only expand vector types if we have the appropriate vector bit operations. 7120 // This includes the operations needed to expand CTPOP if it isn't supported. 7121 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7122 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7123 !canExpandVectorCTPOP(*this, VT)) || 7124 !isOperationLegalOrCustom(ISD::SRL, VT) || 7125 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7126 return SDValue(); 7127 7128 // for now, we do this: 7129 // x = x | (x >> 1); 7130 // x = x | (x >> 2); 7131 // ... 7132 // x = x | (x >>16); 7133 // x = x | (x >>32); // for 64-bit input 7134 // return popcount(~x); 7135 // 7136 // Ref: "Hacker's Delight" by Henry Warren 7137 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7138 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7139 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7140 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7141 } 7142 Op = DAG.getNOT(dl, Op, VT); 7143 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7144 } 7145 7146 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7147 SDLoc dl(Node); 7148 EVT VT = Node->getValueType(0); 7149 SDValue Op = Node->getOperand(0); 7150 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7151 7152 // If the non-ZERO_UNDEF version is supported we can use that instead. 7153 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7154 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7155 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7156 7157 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7158 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7159 EVT SetCCVT = 7160 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7161 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7162 SDValue Zero = DAG.getConstant(0, dl, VT); 7163 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7164 return DAG.getSelect(dl, VT, SrcIsZero, 7165 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7166 } 7167 7168 // Only expand vector types if we have the appropriate vector bit operations. 7169 // This includes the operations needed to expand CTPOP if it isn't supported. 7170 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7171 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7172 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7173 !canExpandVectorCTPOP(*this, VT)) || 7174 !isOperationLegalOrCustom(ISD::SUB, VT) || 7175 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7176 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7177 return SDValue(); 7178 7179 // for now, we use: { return popcount(~x & (x - 1)); } 7180 // unless the target has ctlz but not ctpop, in which case we use: 7181 // { return 32 - nlz(~x & (x-1)); } 7182 // Ref: "Hacker's Delight" by Henry Warren 7183 SDValue Tmp = DAG.getNode( 7184 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7185 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7186 7187 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7188 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7189 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7190 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7191 } 7192 7193 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7194 } 7195 7196 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7197 bool IsNegative) const { 7198 SDLoc dl(N); 7199 EVT VT = N->getValueType(0); 7200 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7201 SDValue Op = N->getOperand(0); 7202 7203 // abs(x) -> smax(x,sub(0,x)) 7204 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7205 isOperationLegal(ISD::SMAX, VT)) { 7206 SDValue Zero = DAG.getConstant(0, dl, VT); 7207 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7208 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7209 } 7210 7211 // abs(x) -> umin(x,sub(0,x)) 7212 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7213 isOperationLegal(ISD::UMIN, VT)) { 7214 SDValue Zero = DAG.getConstant(0, dl, VT); 7215 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7216 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7217 } 7218 7219 // 0 - abs(x) -> smin(x, sub(0,x)) 7220 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7221 isOperationLegal(ISD::SMIN, VT)) { 7222 SDValue Zero = DAG.getConstant(0, dl, VT); 7223 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7224 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7225 } 7226 7227 // Only expand vector types if we have the appropriate vector operations. 7228 if (VT.isVector() && 7229 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7230 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7231 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7232 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7233 return SDValue(); 7234 7235 SDValue Shift = 7236 DAG.getNode(ISD::SRA, dl, VT, Op, 7237 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7238 if (!IsNegative) { 7239 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7240 return DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7241 } 7242 7243 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7244 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7245 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7246 } 7247 7248 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7249 SDLoc dl(N); 7250 EVT VT = N->getValueType(0); 7251 SDValue Op = N->getOperand(0); 7252 7253 if (!VT.isSimple()) 7254 return SDValue(); 7255 7256 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7257 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7258 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7259 default: 7260 return SDValue(); 7261 case MVT::i16: 7262 // Use a rotate by 8. This can be further expanded if necessary. 7263 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7264 case MVT::i32: 7265 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7266 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7267 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7268 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7269 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7270 DAG.getConstant(0xFF0000, dl, VT)); 7271 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7272 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7273 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7274 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7275 case MVT::i64: 7276 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7277 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7278 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7279 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7280 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7281 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7282 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7283 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7284 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7285 DAG.getConstant(255ULL<<48, dl, VT)); 7286 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7287 DAG.getConstant(255ULL<<40, dl, VT)); 7288 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7289 DAG.getConstant(255ULL<<32, dl, VT)); 7290 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7291 DAG.getConstant(255ULL<<24, dl, VT)); 7292 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7293 DAG.getConstant(255ULL<<16, dl, VT)); 7294 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7295 DAG.getConstant(255ULL<<8 , dl, VT)); 7296 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7297 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7298 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7299 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7300 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7301 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7302 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7303 } 7304 } 7305 7306 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7307 SDLoc dl(N); 7308 EVT VT = N->getValueType(0); 7309 SDValue Op = N->getOperand(0); 7310 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7311 unsigned Sz = VT.getScalarSizeInBits(); 7312 7313 SDValue Tmp, Tmp2, Tmp3; 7314 7315 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7316 // and finally the i1 pairs. 7317 // TODO: We can easily support i4/i2 legal types if any target ever does. 7318 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7319 // Create the masks - repeating the pattern every byte. 7320 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7321 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7322 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7323 7324 // BSWAP if the type is wider than a single byte. 7325 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7326 7327 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 7328 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 7329 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 7330 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 7331 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7332 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7333 7334 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 7335 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 7336 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 7337 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 7338 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7339 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7340 7341 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 7342 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 7343 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 7344 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 7345 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7346 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7347 return Tmp; 7348 } 7349 7350 Tmp = DAG.getConstant(0, dl, VT); 7351 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7352 if (I < J) 7353 Tmp2 = 7354 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7355 else 7356 Tmp2 = 7357 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7358 7359 APInt Shift(Sz, 1); 7360 Shift <<= J; 7361 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7362 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7363 } 7364 7365 return Tmp; 7366 } 7367 7368 std::pair<SDValue, SDValue> 7369 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7370 SelectionDAG &DAG) const { 7371 SDLoc SL(LD); 7372 SDValue Chain = LD->getChain(); 7373 SDValue BasePTR = LD->getBasePtr(); 7374 EVT SrcVT = LD->getMemoryVT(); 7375 EVT DstVT = LD->getValueType(0); 7376 ISD::LoadExtType ExtType = LD->getExtensionType(); 7377 7378 if (SrcVT.isScalableVector()) 7379 report_fatal_error("Cannot scalarize scalable vector loads"); 7380 7381 unsigned NumElem = SrcVT.getVectorNumElements(); 7382 7383 EVT SrcEltVT = SrcVT.getScalarType(); 7384 EVT DstEltVT = DstVT.getScalarType(); 7385 7386 // A vector must always be stored in memory as-is, i.e. without any padding 7387 // between the elements, since various code depend on it, e.g. in the 7388 // handling of a bitcast of a vector type to int, which may be done with a 7389 // vector store followed by an integer load. A vector that does not have 7390 // elements that are byte-sized must therefore be stored as an integer 7391 // built out of the extracted vector elements. 7392 if (!SrcEltVT.isByteSized()) { 7393 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7394 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7395 7396 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7397 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7398 7399 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7400 SDValue SrcEltBitMask = DAG.getConstant( 7401 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7402 7403 // Load the whole vector and avoid masking off the top bits as it makes 7404 // the codegen worse. 7405 SDValue Load = 7406 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7407 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7408 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7409 7410 SmallVector<SDValue, 8> Vals; 7411 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7412 unsigned ShiftIntoIdx = 7413 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7414 SDValue ShiftAmount = 7415 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7416 LoadVT, SL, /*LegalTypes=*/false); 7417 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7418 SDValue Elt = 7419 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7420 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7421 7422 if (ExtType != ISD::NON_EXTLOAD) { 7423 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7424 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7425 } 7426 7427 Vals.push_back(Scalar); 7428 } 7429 7430 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7431 return std::make_pair(Value, Load.getValue(1)); 7432 } 7433 7434 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7435 assert(SrcEltVT.isByteSized()); 7436 7437 SmallVector<SDValue, 8> Vals; 7438 SmallVector<SDValue, 8> LoadChains; 7439 7440 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7441 SDValue ScalarLoad = 7442 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7443 LD->getPointerInfo().getWithOffset(Idx * Stride), 7444 SrcEltVT, LD->getOriginalAlign(), 7445 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7446 7447 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7448 7449 Vals.push_back(ScalarLoad.getValue(0)); 7450 LoadChains.push_back(ScalarLoad.getValue(1)); 7451 } 7452 7453 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7454 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7455 7456 return std::make_pair(Value, NewChain); 7457 } 7458 7459 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7460 SelectionDAG &DAG) const { 7461 SDLoc SL(ST); 7462 7463 SDValue Chain = ST->getChain(); 7464 SDValue BasePtr = ST->getBasePtr(); 7465 SDValue Value = ST->getValue(); 7466 EVT StVT = ST->getMemoryVT(); 7467 7468 if (StVT.isScalableVector()) 7469 report_fatal_error("Cannot scalarize scalable vector stores"); 7470 7471 // The type of the data we want to save 7472 EVT RegVT = Value.getValueType(); 7473 EVT RegSclVT = RegVT.getScalarType(); 7474 7475 // The type of data as saved in memory. 7476 EVT MemSclVT = StVT.getScalarType(); 7477 7478 unsigned NumElem = StVT.getVectorNumElements(); 7479 7480 // A vector must always be stored in memory as-is, i.e. without any padding 7481 // between the elements, since various code depend on it, e.g. in the 7482 // handling of a bitcast of a vector type to int, which may be done with a 7483 // vector store followed by an integer load. A vector that does not have 7484 // elements that are byte-sized must therefore be stored as an integer 7485 // built out of the extracted vector elements. 7486 if (!MemSclVT.isByteSized()) { 7487 unsigned NumBits = StVT.getSizeInBits(); 7488 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7489 7490 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7491 7492 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7493 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7494 DAG.getVectorIdxConstant(Idx, SL)); 7495 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7496 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7497 unsigned ShiftIntoIdx = 7498 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7499 SDValue ShiftAmount = 7500 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7501 SDValue ShiftedElt = 7502 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7503 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7504 } 7505 7506 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7507 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7508 ST->getAAInfo()); 7509 } 7510 7511 // Store Stride in bytes 7512 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7513 assert(Stride && "Zero stride!"); 7514 // Extract each of the elements from the original vector and save them into 7515 // memory individually. 7516 SmallVector<SDValue, 8> Stores; 7517 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7518 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7519 DAG.getVectorIdxConstant(Idx, SL)); 7520 7521 SDValue Ptr = 7522 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7523 7524 // This scalar TruncStore may be illegal, but we legalize it later. 7525 SDValue Store = DAG.getTruncStore( 7526 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7527 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7528 ST->getAAInfo()); 7529 7530 Stores.push_back(Store); 7531 } 7532 7533 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7534 } 7535 7536 std::pair<SDValue, SDValue> 7537 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7538 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7539 "unaligned indexed loads not implemented!"); 7540 SDValue Chain = LD->getChain(); 7541 SDValue Ptr = LD->getBasePtr(); 7542 EVT VT = LD->getValueType(0); 7543 EVT LoadedVT = LD->getMemoryVT(); 7544 SDLoc dl(LD); 7545 auto &MF = DAG.getMachineFunction(); 7546 7547 if (VT.isFloatingPoint() || VT.isVector()) { 7548 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7549 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7550 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7551 LoadedVT.isVector()) { 7552 // Scalarize the load and let the individual components be handled. 7553 return scalarizeVectorLoad(LD, DAG); 7554 } 7555 7556 // Expand to a (misaligned) integer load of the same size, 7557 // then bitconvert to floating point or vector. 7558 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7559 LD->getMemOperand()); 7560 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7561 if (LoadedVT != VT) 7562 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7563 ISD::ANY_EXTEND, dl, VT, Result); 7564 7565 return std::make_pair(Result, newLoad.getValue(1)); 7566 } 7567 7568 // Copy the value to a (aligned) stack slot using (unaligned) integer 7569 // loads and stores, then do a (aligned) load from the stack slot. 7570 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7571 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7572 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7573 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7574 7575 // Make sure the stack slot is also aligned for the register type. 7576 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7577 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7578 SmallVector<SDValue, 8> Stores; 7579 SDValue StackPtr = StackBase; 7580 unsigned Offset = 0; 7581 7582 EVT PtrVT = Ptr.getValueType(); 7583 EVT StackPtrVT = StackPtr.getValueType(); 7584 7585 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7586 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7587 7588 // Do all but one copies using the full register width. 7589 for (unsigned i = 1; i < NumRegs; i++) { 7590 // Load one integer register's worth from the original location. 7591 SDValue Load = DAG.getLoad( 7592 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7593 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7594 LD->getAAInfo()); 7595 // Follow the load with a store to the stack slot. Remember the store. 7596 Stores.push_back(DAG.getStore( 7597 Load.getValue(1), dl, Load, StackPtr, 7598 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7599 // Increment the pointers. 7600 Offset += RegBytes; 7601 7602 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7603 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7604 } 7605 7606 // The last copy may be partial. Do an extending load. 7607 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7608 8 * (LoadedBytes - Offset)); 7609 SDValue Load = 7610 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7611 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7612 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7613 LD->getAAInfo()); 7614 // Follow the load with a store to the stack slot. Remember the store. 7615 // On big-endian machines this requires a truncating store to ensure 7616 // that the bits end up in the right place. 7617 Stores.push_back(DAG.getTruncStore( 7618 Load.getValue(1), dl, Load, StackPtr, 7619 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7620 7621 // The order of the stores doesn't matter - say it with a TokenFactor. 7622 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7623 7624 // Finally, perform the original load only redirected to the stack slot. 7625 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7626 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7627 LoadedVT); 7628 7629 // Callers expect a MERGE_VALUES node. 7630 return std::make_pair(Load, TF); 7631 } 7632 7633 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7634 "Unaligned load of unsupported type."); 7635 7636 // Compute the new VT that is half the size of the old one. This is an 7637 // integer MVT. 7638 unsigned NumBits = LoadedVT.getSizeInBits(); 7639 EVT NewLoadedVT; 7640 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7641 NumBits >>= 1; 7642 7643 Align Alignment = LD->getOriginalAlign(); 7644 unsigned IncrementSize = NumBits / 8; 7645 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7646 7647 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7648 if (HiExtType == ISD::NON_EXTLOAD) 7649 HiExtType = ISD::ZEXTLOAD; 7650 7651 // Load the value in two parts 7652 SDValue Lo, Hi; 7653 if (DAG.getDataLayout().isLittleEndian()) { 7654 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7655 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7656 LD->getAAInfo()); 7657 7658 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7659 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7660 LD->getPointerInfo().getWithOffset(IncrementSize), 7661 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7662 LD->getAAInfo()); 7663 } else { 7664 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7665 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7666 LD->getAAInfo()); 7667 7668 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7669 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7670 LD->getPointerInfo().getWithOffset(IncrementSize), 7671 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7672 LD->getAAInfo()); 7673 } 7674 7675 // aggregate the two parts 7676 SDValue ShiftAmount = 7677 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7678 DAG.getDataLayout())); 7679 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7680 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7681 7682 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7683 Hi.getValue(1)); 7684 7685 return std::make_pair(Result, TF); 7686 } 7687 7688 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7689 SelectionDAG &DAG) const { 7690 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7691 "unaligned indexed stores not implemented!"); 7692 SDValue Chain = ST->getChain(); 7693 SDValue Ptr = ST->getBasePtr(); 7694 SDValue Val = ST->getValue(); 7695 EVT VT = Val.getValueType(); 7696 Align Alignment = ST->getOriginalAlign(); 7697 auto &MF = DAG.getMachineFunction(); 7698 EVT StoreMemVT = ST->getMemoryVT(); 7699 7700 SDLoc dl(ST); 7701 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7702 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7703 if (isTypeLegal(intVT)) { 7704 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7705 StoreMemVT.isVector()) { 7706 // Scalarize the store and let the individual components be handled. 7707 SDValue Result = scalarizeVectorStore(ST, DAG); 7708 return Result; 7709 } 7710 // Expand to a bitconvert of the value to the integer type of the 7711 // same size, then a (misaligned) int store. 7712 // FIXME: Does not handle truncating floating point stores! 7713 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7714 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7715 Alignment, ST->getMemOperand()->getFlags()); 7716 return Result; 7717 } 7718 // Do a (aligned) store to a stack slot, then copy from the stack slot 7719 // to the final destination using (unaligned) integer loads and stores. 7720 MVT RegVT = getRegisterType( 7721 *DAG.getContext(), 7722 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7723 EVT PtrVT = Ptr.getValueType(); 7724 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7725 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7726 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7727 7728 // Make sure the stack slot is also aligned for the register type. 7729 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7730 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7731 7732 // Perform the original store, only redirected to the stack slot. 7733 SDValue Store = DAG.getTruncStore( 7734 Chain, dl, Val, StackPtr, 7735 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7736 7737 EVT StackPtrVT = StackPtr.getValueType(); 7738 7739 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7740 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7741 SmallVector<SDValue, 8> Stores; 7742 unsigned Offset = 0; 7743 7744 // Do all but one copies using the full register width. 7745 for (unsigned i = 1; i < NumRegs; i++) { 7746 // Load one integer register's worth from the stack slot. 7747 SDValue Load = DAG.getLoad( 7748 RegVT, dl, Store, StackPtr, 7749 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7750 // Store it to the final location. Remember the store. 7751 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7752 ST->getPointerInfo().getWithOffset(Offset), 7753 ST->getOriginalAlign(), 7754 ST->getMemOperand()->getFlags())); 7755 // Increment the pointers. 7756 Offset += RegBytes; 7757 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7758 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7759 } 7760 7761 // The last store may be partial. Do a truncating store. On big-endian 7762 // machines this requires an extending load from the stack slot to ensure 7763 // that the bits are in the right place. 7764 EVT LoadMemVT = 7765 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7766 7767 // Load from the stack slot. 7768 SDValue Load = DAG.getExtLoad( 7769 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7770 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7771 7772 Stores.push_back( 7773 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7774 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7775 ST->getOriginalAlign(), 7776 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7777 // The order of the stores doesn't matter - say it with a TokenFactor. 7778 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7779 return Result; 7780 } 7781 7782 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7783 "Unaligned store of unknown type."); 7784 // Get the half-size VT 7785 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7786 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7787 unsigned IncrementSize = NumBits / 8; 7788 7789 // Divide the stored value in two parts. 7790 SDValue ShiftAmount = DAG.getConstant( 7791 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7792 SDValue Lo = Val; 7793 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7794 7795 // Store the two parts 7796 SDValue Store1, Store2; 7797 Store1 = DAG.getTruncStore(Chain, dl, 7798 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7799 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7800 ST->getMemOperand()->getFlags()); 7801 7802 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7803 Store2 = DAG.getTruncStore( 7804 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7805 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7806 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7807 7808 SDValue Result = 7809 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7810 return Result; 7811 } 7812 7813 SDValue 7814 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7815 const SDLoc &DL, EVT DataVT, 7816 SelectionDAG &DAG, 7817 bool IsCompressedMemory) const { 7818 SDValue Increment; 7819 EVT AddrVT = Addr.getValueType(); 7820 EVT MaskVT = Mask.getValueType(); 7821 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7822 "Incompatible types of Data and Mask"); 7823 if (IsCompressedMemory) { 7824 if (DataVT.isScalableVector()) 7825 report_fatal_error( 7826 "Cannot currently handle compressed memory with scalable vectors"); 7827 // Incrementing the pointer according to number of '1's in the mask. 7828 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7829 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7830 if (MaskIntVT.getSizeInBits() < 32) { 7831 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7832 MaskIntVT = MVT::i32; 7833 } 7834 7835 // Count '1's with POPCNT. 7836 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7837 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7838 // Scale is an element size in bytes. 7839 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7840 AddrVT); 7841 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7842 } else if (DataVT.isScalableVector()) { 7843 Increment = DAG.getVScale(DL, AddrVT, 7844 APInt(AddrVT.getFixedSizeInBits(), 7845 DataVT.getStoreSize().getKnownMinSize())); 7846 } else 7847 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7848 7849 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7850 } 7851 7852 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 7853 EVT VecVT, const SDLoc &dl, 7854 ElementCount SubEC) { 7855 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 7856 "Cannot index a scalable vector within a fixed-width vector"); 7857 7858 unsigned NElts = VecVT.getVectorMinNumElements(); 7859 unsigned NumSubElts = SubEC.getKnownMinValue(); 7860 EVT IdxVT = Idx.getValueType(); 7861 7862 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 7863 // If this is a constant index and we know the value plus the number of the 7864 // elements in the subvector minus one is less than the minimum number of 7865 // elements then it's safe to return Idx. 7866 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 7867 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 7868 return Idx; 7869 SDValue VS = 7870 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 7871 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 7872 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 7873 DAG.getConstant(NumSubElts, dl, IdxVT)); 7874 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7875 } 7876 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 7877 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 7878 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7879 DAG.getConstant(Imm, dl, IdxVT)); 7880 } 7881 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 7882 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7883 DAG.getConstant(MaxIndex, dl, IdxVT)); 7884 } 7885 7886 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7887 SDValue VecPtr, EVT VecVT, 7888 SDValue Index) const { 7889 return getVectorSubVecPointer( 7890 DAG, VecPtr, VecVT, 7891 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 7892 Index); 7893 } 7894 7895 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 7896 SDValue VecPtr, EVT VecVT, 7897 EVT SubVecVT, 7898 SDValue Index) const { 7899 SDLoc dl(Index); 7900 // Make sure the index type is big enough to compute in. 7901 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7902 7903 EVT EltVT = VecVT.getVectorElementType(); 7904 7905 // Calculate the element offset and add it to the pointer. 7906 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7907 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7908 "Converting bits to bytes lost precision"); 7909 assert(SubVecVT.getVectorElementType() == EltVT && 7910 "Sub-vector must be a vector with matching element type"); 7911 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 7912 SubVecVT.getVectorElementCount()); 7913 7914 EVT IdxVT = Index.getValueType(); 7915 if (SubVecVT.isScalableVector()) 7916 Index = 7917 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7918 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 7919 7920 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7921 DAG.getConstant(EltSize, dl, IdxVT)); 7922 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7923 } 7924 7925 //===----------------------------------------------------------------------===// 7926 // Implementation of Emulated TLS Model 7927 //===----------------------------------------------------------------------===// 7928 7929 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7930 SelectionDAG &DAG) const { 7931 // Access to address of TLS varialbe xyz is lowered to a function call: 7932 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7933 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7934 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7935 SDLoc dl(GA); 7936 7937 ArgListTy Args; 7938 ArgListEntry Entry; 7939 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7940 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7941 StringRef EmuTlsVarName(NameString); 7942 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7943 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7944 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7945 Entry.Ty = VoidPtrType; 7946 Args.push_back(Entry); 7947 7948 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7949 7950 TargetLowering::CallLoweringInfo CLI(DAG); 7951 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7952 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7953 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7954 7955 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7956 // At last for X86 targets, maybe good for other targets too? 7957 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7958 MFI.setAdjustsStack(true); // Is this only for X86 target? 7959 MFI.setHasCalls(true); 7960 7961 assert((GA->getOffset() == 0) && 7962 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7963 return CallResult.first; 7964 } 7965 7966 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7967 SelectionDAG &DAG) const { 7968 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7969 if (!isCtlzFast()) 7970 return SDValue(); 7971 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7972 SDLoc dl(Op); 7973 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7974 if (C->isZero() && CC == ISD::SETEQ) { 7975 EVT VT = Op.getOperand(0).getValueType(); 7976 SDValue Zext = Op.getOperand(0); 7977 if (VT.bitsLT(MVT::i32)) { 7978 VT = MVT::i32; 7979 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7980 } 7981 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7982 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7983 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7984 DAG.getConstant(Log2b, dl, MVT::i32)); 7985 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7986 } 7987 } 7988 return SDValue(); 7989 } 7990 7991 // Convert redundant addressing modes (e.g. scaling is redundant 7992 // when accessing bytes). 7993 ISD::MemIndexType 7994 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 7995 SDValue Offsets) const { 7996 bool IsScaledIndex = 7997 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 7998 bool IsSignedIndex = 7999 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 8000 8001 // Scaling is unimportant for bytes, canonicalize to unscaled. 8002 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) 8003 return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 8004 8005 return IndexType; 8006 } 8007 8008 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8009 SDValue Op0 = Node->getOperand(0); 8010 SDValue Op1 = Node->getOperand(1); 8011 EVT VT = Op0.getValueType(); 8012 unsigned Opcode = Node->getOpcode(); 8013 SDLoc DL(Node); 8014 8015 // umin(x,y) -> sub(x,usubsat(x,y)) 8016 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8017 isOperationLegal(ISD::USUBSAT, VT)) { 8018 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8019 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8020 } 8021 8022 // umax(x,y) -> add(x,usubsat(y,x)) 8023 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8024 isOperationLegal(ISD::USUBSAT, VT)) { 8025 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8026 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8027 } 8028 8029 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8030 ISD::CondCode CC; 8031 switch (Opcode) { 8032 default: llvm_unreachable("How did we get here?"); 8033 case ISD::SMAX: CC = ISD::SETGT; break; 8034 case ISD::SMIN: CC = ISD::SETLT; break; 8035 case ISD::UMAX: CC = ISD::SETUGT; break; 8036 case ISD::UMIN: CC = ISD::SETULT; break; 8037 } 8038 8039 // FIXME: Should really try to split the vector in case it's legal on a 8040 // subvector. 8041 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8042 return DAG.UnrollVectorOp(Node); 8043 8044 SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC); 8045 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8046 } 8047 8048 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8049 unsigned Opcode = Node->getOpcode(); 8050 SDValue LHS = Node->getOperand(0); 8051 SDValue RHS = Node->getOperand(1); 8052 EVT VT = LHS.getValueType(); 8053 SDLoc dl(Node); 8054 8055 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8056 assert(VT.isInteger() && "Expected operands to be integers"); 8057 8058 // usub.sat(a, b) -> umax(a, b) - b 8059 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8060 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8061 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8062 } 8063 8064 // uadd.sat(a, b) -> umin(a, ~b) + b 8065 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8066 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8067 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8068 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8069 } 8070 8071 unsigned OverflowOp; 8072 switch (Opcode) { 8073 case ISD::SADDSAT: 8074 OverflowOp = ISD::SADDO; 8075 break; 8076 case ISD::UADDSAT: 8077 OverflowOp = ISD::UADDO; 8078 break; 8079 case ISD::SSUBSAT: 8080 OverflowOp = ISD::SSUBO; 8081 break; 8082 case ISD::USUBSAT: 8083 OverflowOp = ISD::USUBO; 8084 break; 8085 default: 8086 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8087 "addition or subtraction node."); 8088 } 8089 8090 // FIXME: Should really try to split the vector in case it's legal on a 8091 // subvector. 8092 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8093 return DAG.UnrollVectorOp(Node); 8094 8095 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8096 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8097 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8098 SDValue SumDiff = Result.getValue(0); 8099 SDValue Overflow = Result.getValue(1); 8100 SDValue Zero = DAG.getConstant(0, dl, VT); 8101 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8102 8103 if (Opcode == ISD::UADDSAT) { 8104 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8105 // (LHS + RHS) | OverflowMask 8106 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8107 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8108 } 8109 // Overflow ? 0xffff.... : (LHS + RHS) 8110 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8111 } 8112 8113 if (Opcode == ISD::USUBSAT) { 8114 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8115 // (LHS - RHS) & ~OverflowMask 8116 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8117 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8118 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8119 } 8120 // Overflow ? 0 : (LHS - RHS) 8121 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8122 } 8123 8124 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8125 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8126 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8127 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8128 DAG.getConstant(BitWidth - 1, dl, VT)); 8129 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8130 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8131 } 8132 8133 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8134 unsigned Opcode = Node->getOpcode(); 8135 bool IsSigned = Opcode == ISD::SSHLSAT; 8136 SDValue LHS = Node->getOperand(0); 8137 SDValue RHS = Node->getOperand(1); 8138 EVT VT = LHS.getValueType(); 8139 SDLoc dl(Node); 8140 8141 assert((Node->getOpcode() == ISD::SSHLSAT || 8142 Node->getOpcode() == ISD::USHLSAT) && 8143 "Expected a SHLSAT opcode"); 8144 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8145 assert(VT.isInteger() && "Expected operands to be integers"); 8146 8147 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8148 8149 unsigned BW = VT.getScalarSizeInBits(); 8150 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8151 SDValue Orig = 8152 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8153 8154 SDValue SatVal; 8155 if (IsSigned) { 8156 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8157 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8158 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8159 SatMin, SatMax, ISD::SETLT); 8160 } else { 8161 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8162 } 8163 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8164 8165 return Result; 8166 } 8167 8168 SDValue 8169 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8170 assert((Node->getOpcode() == ISD::SMULFIX || 8171 Node->getOpcode() == ISD::UMULFIX || 8172 Node->getOpcode() == ISD::SMULFIXSAT || 8173 Node->getOpcode() == ISD::UMULFIXSAT) && 8174 "Expected a fixed point multiplication opcode"); 8175 8176 SDLoc dl(Node); 8177 SDValue LHS = Node->getOperand(0); 8178 SDValue RHS = Node->getOperand(1); 8179 EVT VT = LHS.getValueType(); 8180 unsigned Scale = Node->getConstantOperandVal(2); 8181 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8182 Node->getOpcode() == ISD::UMULFIXSAT); 8183 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8184 Node->getOpcode() == ISD::SMULFIXSAT); 8185 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8186 unsigned VTSize = VT.getScalarSizeInBits(); 8187 8188 if (!Scale) { 8189 // [us]mul.fix(a, b, 0) -> mul(a, b) 8190 if (!Saturating) { 8191 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8192 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8193 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8194 SDValue Result = 8195 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8196 SDValue Product = Result.getValue(0); 8197 SDValue Overflow = Result.getValue(1); 8198 SDValue Zero = DAG.getConstant(0, dl, VT); 8199 8200 APInt MinVal = APInt::getSignedMinValue(VTSize); 8201 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8202 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8203 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8204 // Xor the inputs, if resulting sign bit is 0 the product will be 8205 // positive, else negative. 8206 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8207 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8208 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8209 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8210 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8211 SDValue Result = 8212 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8213 SDValue Product = Result.getValue(0); 8214 SDValue Overflow = Result.getValue(1); 8215 8216 APInt MaxVal = APInt::getMaxValue(VTSize); 8217 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8218 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8219 } 8220 } 8221 8222 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8223 "Expected scale to be less than the number of bits if signed or at " 8224 "most the number of bits if unsigned."); 8225 assert(LHS.getValueType() == RHS.getValueType() && 8226 "Expected both operands to be the same type"); 8227 8228 // Get the upper and lower bits of the result. 8229 SDValue Lo, Hi; 8230 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8231 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8232 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8233 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8234 Lo = Result.getValue(0); 8235 Hi = Result.getValue(1); 8236 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8237 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8238 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8239 } else if (VT.isVector()) { 8240 return SDValue(); 8241 } else { 8242 report_fatal_error("Unable to expand fixed point multiplication."); 8243 } 8244 8245 if (Scale == VTSize) 8246 // Result is just the top half since we'd be shifting by the width of the 8247 // operand. Overflow impossible so this works for both UMULFIX and 8248 // UMULFIXSAT. 8249 return Hi; 8250 8251 // The result will need to be shifted right by the scale since both operands 8252 // are scaled. The result is given to us in 2 halves, so we only want part of 8253 // both in the result. 8254 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8255 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8256 DAG.getConstant(Scale, dl, ShiftTy)); 8257 if (!Saturating) 8258 return Result; 8259 8260 if (!Signed) { 8261 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8262 // widened multiplication) aren't all zeroes. 8263 8264 // Saturate to max if ((Hi >> Scale) != 0), 8265 // which is the same as if (Hi > ((1 << Scale) - 1)) 8266 APInt MaxVal = APInt::getMaxValue(VTSize); 8267 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8268 dl, VT); 8269 Result = DAG.getSelectCC(dl, Hi, LowMask, 8270 DAG.getConstant(MaxVal, dl, VT), Result, 8271 ISD::SETUGT); 8272 8273 return Result; 8274 } 8275 8276 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8277 // widened multiplication) aren't all ones or all zeroes. 8278 8279 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8280 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8281 8282 if (Scale == 0) { 8283 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8284 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8285 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8286 // Saturated to SatMin if wide product is negative, and SatMax if wide 8287 // product is positive ... 8288 SDValue Zero = DAG.getConstant(0, dl, VT); 8289 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8290 ISD::SETLT); 8291 // ... but only if we overflowed. 8292 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8293 } 8294 8295 // We handled Scale==0 above so all the bits to examine is in Hi. 8296 8297 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8298 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8299 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8300 dl, VT); 8301 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8302 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8303 // which is the same as if (HI < (-1 << (Scale - 1)) 8304 SDValue HighMask = 8305 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8306 dl, VT); 8307 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8308 return Result; 8309 } 8310 8311 SDValue 8312 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8313 SDValue LHS, SDValue RHS, 8314 unsigned Scale, SelectionDAG &DAG) const { 8315 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8316 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8317 "Expected a fixed point division opcode"); 8318 8319 EVT VT = LHS.getValueType(); 8320 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8321 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8322 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8323 8324 // If there is enough room in the type to upscale the LHS or downscale the 8325 // RHS before the division, we can perform it in this type without having to 8326 // resize. For signed operations, the LHS headroom is the number of 8327 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8328 // The headroom for the RHS is the number of trailing zeroes. 8329 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8330 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8331 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8332 8333 // For signed saturating operations, we need to be able to detect true integer 8334 // division overflow; that is, when you have MIN / -EPS. However, this 8335 // is undefined behavior and if we emit divisions that could take such 8336 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8337 // example). 8338 // Avoid this by requiring an extra bit so that we never get this case. 8339 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8340 // signed saturating division, we need to emit a whopping 32-bit division. 8341 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8342 return SDValue(); 8343 8344 unsigned LHSShift = std::min(LHSLead, Scale); 8345 unsigned RHSShift = Scale - LHSShift; 8346 8347 // At this point, we know that if we shift the LHS up by LHSShift and the 8348 // RHS down by RHSShift, we can emit a regular division with a final scaling 8349 // factor of Scale. 8350 8351 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8352 if (LHSShift) 8353 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8354 DAG.getConstant(LHSShift, dl, ShiftTy)); 8355 if (RHSShift) 8356 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8357 DAG.getConstant(RHSShift, dl, ShiftTy)); 8358 8359 SDValue Quot; 8360 if (Signed) { 8361 // For signed operations, if the resulting quotient is negative and the 8362 // remainder is nonzero, subtract 1 from the quotient to round towards 8363 // negative infinity. 8364 SDValue Rem; 8365 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8366 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8367 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8368 if (isTypeLegal(VT) && 8369 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8370 Quot = DAG.getNode(ISD::SDIVREM, dl, 8371 DAG.getVTList(VT, VT), 8372 LHS, RHS); 8373 Rem = Quot.getValue(1); 8374 Quot = Quot.getValue(0); 8375 } else { 8376 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8377 LHS, RHS); 8378 Rem = DAG.getNode(ISD::SREM, dl, VT, 8379 LHS, RHS); 8380 } 8381 SDValue Zero = DAG.getConstant(0, dl, VT); 8382 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8383 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8384 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8385 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8386 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8387 DAG.getConstant(1, dl, VT)); 8388 Quot = DAG.getSelect(dl, VT, 8389 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8390 Sub1, Quot); 8391 } else 8392 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8393 LHS, RHS); 8394 8395 return Quot; 8396 } 8397 8398 void TargetLowering::expandUADDSUBO( 8399 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8400 SDLoc dl(Node); 8401 SDValue LHS = Node->getOperand(0); 8402 SDValue RHS = Node->getOperand(1); 8403 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8404 8405 // If ADD/SUBCARRY is legal, use that instead. 8406 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8407 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8408 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8409 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8410 { LHS, RHS, CarryIn }); 8411 Result = SDValue(NodeCarry.getNode(), 0); 8412 Overflow = SDValue(NodeCarry.getNode(), 1); 8413 return; 8414 } 8415 8416 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8417 LHS.getValueType(), LHS, RHS); 8418 8419 EVT ResultType = Node->getValueType(1); 8420 EVT SetCCType = getSetCCResultType( 8421 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8422 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8423 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8424 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8425 } 8426 8427 void TargetLowering::expandSADDSUBO( 8428 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8429 SDLoc dl(Node); 8430 SDValue LHS = Node->getOperand(0); 8431 SDValue RHS = Node->getOperand(1); 8432 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8433 8434 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8435 LHS.getValueType(), LHS, RHS); 8436 8437 EVT ResultType = Node->getValueType(1); 8438 EVT OType = getSetCCResultType( 8439 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8440 8441 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8442 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8443 if (isOperationLegal(OpcSat, LHS.getValueType())) { 8444 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8445 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8446 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8447 return; 8448 } 8449 8450 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8451 8452 // For an addition, the result should be less than one of the operands (LHS) 8453 // if and only if the other operand (RHS) is negative, otherwise there will 8454 // be overflow. 8455 // For a subtraction, the result should be less than one of the operands 8456 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8457 // otherwise there will be overflow. 8458 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8459 SDValue ConditionRHS = 8460 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8461 8462 Overflow = DAG.getBoolExtOrTrunc( 8463 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8464 ResultType, ResultType); 8465 } 8466 8467 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8468 SDValue &Overflow, SelectionDAG &DAG) const { 8469 SDLoc dl(Node); 8470 EVT VT = Node->getValueType(0); 8471 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8472 SDValue LHS = Node->getOperand(0); 8473 SDValue RHS = Node->getOperand(1); 8474 bool isSigned = Node->getOpcode() == ISD::SMULO; 8475 8476 // For power-of-two multiplications we can use a simpler shift expansion. 8477 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8478 const APInt &C = RHSC->getAPIntValue(); 8479 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8480 if (C.isPowerOf2()) { 8481 // smulo(x, signed_min) is same as umulo(x, signed_min). 8482 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8483 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8484 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8485 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8486 Overflow = DAG.getSetCC(dl, SetCCVT, 8487 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8488 dl, VT, Result, ShiftAmt), 8489 LHS, ISD::SETNE); 8490 return true; 8491 } 8492 } 8493 8494 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8495 if (VT.isVector()) 8496 WideVT = 8497 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 8498 8499 SDValue BottomHalf; 8500 SDValue TopHalf; 8501 static const unsigned Ops[2][3] = 8502 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8503 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8504 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8505 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8506 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8507 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8508 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8509 RHS); 8510 TopHalf = BottomHalf.getValue(1); 8511 } else if (isTypeLegal(WideVT)) { 8512 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8513 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8514 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8515 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8516 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8517 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8518 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8519 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8520 } else { 8521 if (VT.isVector()) 8522 return false; 8523 8524 // We can fall back to a libcall with an illegal type for the MUL if we 8525 // have a libcall big enough. 8526 // Also, we can fall back to a division in some cases, but that's a big 8527 // performance hit in the general case. 8528 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8529 if (WideVT == MVT::i16) 8530 LC = RTLIB::MUL_I16; 8531 else if (WideVT == MVT::i32) 8532 LC = RTLIB::MUL_I32; 8533 else if (WideVT == MVT::i64) 8534 LC = RTLIB::MUL_I64; 8535 else if (WideVT == MVT::i128) 8536 LC = RTLIB::MUL_I128; 8537 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8538 8539 SDValue HiLHS; 8540 SDValue HiRHS; 8541 if (isSigned) { 8542 // The high part is obtained by SRA'ing all but one of the bits of low 8543 // part. 8544 unsigned LoSize = VT.getFixedSizeInBits(); 8545 HiLHS = 8546 DAG.getNode(ISD::SRA, dl, VT, LHS, 8547 DAG.getConstant(LoSize - 1, dl, 8548 getPointerTy(DAG.getDataLayout()))); 8549 HiRHS = 8550 DAG.getNode(ISD::SRA, dl, VT, RHS, 8551 DAG.getConstant(LoSize - 1, dl, 8552 getPointerTy(DAG.getDataLayout()))); 8553 } else { 8554 HiLHS = DAG.getConstant(0, dl, VT); 8555 HiRHS = DAG.getConstant(0, dl, VT); 8556 } 8557 8558 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8559 // pre-lowered to the correct types. This all depends upon WideVT not 8560 // being a legal type for the architecture and thus has to be split to 8561 // two arguments. 8562 SDValue Ret; 8563 TargetLowering::MakeLibCallOptions CallOptions; 8564 CallOptions.setSExt(isSigned); 8565 CallOptions.setIsPostTypeLegalization(true); 8566 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8567 // Halves of WideVT are packed into registers in different order 8568 // depending on platform endianness. This is usually handled by 8569 // the C calling convention, but we can't defer to it in 8570 // the legalizer. 8571 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8572 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8573 } else { 8574 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8575 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8576 } 8577 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8578 "Ret value is a collection of constituent nodes holding result."); 8579 if (DAG.getDataLayout().isLittleEndian()) { 8580 // Same as above. 8581 BottomHalf = Ret.getOperand(0); 8582 TopHalf = Ret.getOperand(1); 8583 } else { 8584 BottomHalf = Ret.getOperand(1); 8585 TopHalf = Ret.getOperand(0); 8586 } 8587 } 8588 8589 Result = BottomHalf; 8590 if (isSigned) { 8591 SDValue ShiftAmt = DAG.getConstant( 8592 VT.getScalarSizeInBits() - 1, dl, 8593 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8594 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8595 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8596 } else { 8597 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8598 DAG.getConstant(0, dl, VT), ISD::SETNE); 8599 } 8600 8601 // Truncate the result if SetCC returns a larger type than needed. 8602 EVT RType = Node->getValueType(1); 8603 if (RType.bitsLT(Overflow.getValueType())) 8604 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8605 8606 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8607 "Unexpected result type for S/UMULO legalization"); 8608 return true; 8609 } 8610 8611 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8612 SDLoc dl(Node); 8613 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8614 SDValue Op = Node->getOperand(0); 8615 EVT VT = Op.getValueType(); 8616 8617 if (VT.isScalableVector()) 8618 report_fatal_error( 8619 "Expanding reductions for scalable vectors is undefined."); 8620 8621 // Try to use a shuffle reduction for power of two vectors. 8622 if (VT.isPow2VectorType()) { 8623 while (VT.getVectorNumElements() > 1) { 8624 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8625 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8626 break; 8627 8628 SDValue Lo, Hi; 8629 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8630 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8631 VT = HalfVT; 8632 } 8633 } 8634 8635 EVT EltVT = VT.getVectorElementType(); 8636 unsigned NumElts = VT.getVectorNumElements(); 8637 8638 SmallVector<SDValue, 8> Ops; 8639 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8640 8641 SDValue Res = Ops[0]; 8642 for (unsigned i = 1; i < NumElts; i++) 8643 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8644 8645 // Result type may be wider than element type. 8646 if (EltVT != Node->getValueType(0)) 8647 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8648 return Res; 8649 } 8650 8651 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8652 SDLoc dl(Node); 8653 SDValue AccOp = Node->getOperand(0); 8654 SDValue VecOp = Node->getOperand(1); 8655 SDNodeFlags Flags = Node->getFlags(); 8656 8657 EVT VT = VecOp.getValueType(); 8658 EVT EltVT = VT.getVectorElementType(); 8659 8660 if (VT.isScalableVector()) 8661 report_fatal_error( 8662 "Expanding reductions for scalable vectors is undefined."); 8663 8664 unsigned NumElts = VT.getVectorNumElements(); 8665 8666 SmallVector<SDValue, 8> Ops; 8667 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8668 8669 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8670 8671 SDValue Res = AccOp; 8672 for (unsigned i = 0; i < NumElts; i++) 8673 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8674 8675 return Res; 8676 } 8677 8678 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8679 SelectionDAG &DAG) const { 8680 EVT VT = Node->getValueType(0); 8681 SDLoc dl(Node); 8682 bool isSigned = Node->getOpcode() == ISD::SREM; 8683 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8684 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8685 SDValue Dividend = Node->getOperand(0); 8686 SDValue Divisor = Node->getOperand(1); 8687 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8688 SDVTList VTs = DAG.getVTList(VT, VT); 8689 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8690 return true; 8691 } 8692 if (isOperationLegalOrCustom(DivOpc, VT)) { 8693 // X % Y -> X-X/Y*Y 8694 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8695 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8696 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8697 return true; 8698 } 8699 return false; 8700 } 8701 8702 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8703 SelectionDAG &DAG) const { 8704 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8705 SDLoc dl(SDValue(Node, 0)); 8706 SDValue Src = Node->getOperand(0); 8707 8708 // DstVT is the result type, while SatVT is the size to which we saturate 8709 EVT SrcVT = Src.getValueType(); 8710 EVT DstVT = Node->getValueType(0); 8711 8712 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8713 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8714 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8715 assert(SatWidth <= DstWidth && 8716 "Expected saturation width smaller than result width"); 8717 8718 // Determine minimum and maximum integer values and their corresponding 8719 // floating-point values. 8720 APInt MinInt, MaxInt; 8721 if (IsSigned) { 8722 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8723 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8724 } else { 8725 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8726 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8727 } 8728 8729 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8730 // libcall emission cannot handle this. Large result types will fail. 8731 if (SrcVT == MVT::f16) { 8732 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8733 SrcVT = Src.getValueType(); 8734 } 8735 8736 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8737 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8738 8739 APFloat::opStatus MinStatus = 8740 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8741 APFloat::opStatus MaxStatus = 8742 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8743 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8744 !(MaxStatus & APFloat::opStatus::opInexact); 8745 8746 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8747 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8748 8749 // If the integer bounds are exactly representable as floats and min/max are 8750 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8751 // of comparisons and selects. 8752 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8753 isOperationLegal(ISD::FMAXNUM, SrcVT); 8754 if (AreExactFloatBounds && MinMaxLegal) { 8755 SDValue Clamped = Src; 8756 8757 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8758 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8759 // Clamp by MaxFloat from above. NaN cannot occur. 8760 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8761 // Convert clamped value to integer. 8762 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8763 dl, DstVT, Clamped); 8764 8765 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8766 // which will cast to zero. 8767 if (!IsSigned) 8768 return FpToInt; 8769 8770 // Otherwise, select 0 if Src is NaN. 8771 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8772 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8773 ISD::CondCode::SETUO); 8774 } 8775 8776 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8777 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8778 8779 // Result of direct conversion. The assumption here is that the operation is 8780 // non-trapping and it's fine to apply it to an out-of-range value if we 8781 // select it away later. 8782 SDValue FpToInt = 8783 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8784 8785 SDValue Select = FpToInt; 8786 8787 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8788 // MinInt if Src is NaN. 8789 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8790 ISD::CondCode::SETULT); 8791 // If Src OGT MaxFloat, select MaxInt. 8792 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8793 ISD::CondCode::SETOGT); 8794 8795 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8796 // is already zero. 8797 if (!IsSigned) 8798 return Select; 8799 8800 // Otherwise, select 0 if Src is NaN. 8801 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8802 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8803 } 8804 8805 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8806 SelectionDAG &DAG) const { 8807 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8808 assert(Node->getValueType(0).isScalableVector() && 8809 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8810 8811 EVT VT = Node->getValueType(0); 8812 SDValue V1 = Node->getOperand(0); 8813 SDValue V2 = Node->getOperand(1); 8814 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8815 SDLoc DL(Node); 8816 8817 // Expand through memory thusly: 8818 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8819 // Store V1, Ptr 8820 // Store V2, Ptr + sizeof(V1) 8821 // If (Imm < 0) 8822 // TrailingElts = -Imm 8823 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8824 // else 8825 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8826 // Res = Load Ptr 8827 8828 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8829 8830 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8831 VT.getVectorElementCount() * 2); 8832 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8833 EVT PtrVT = StackPtr.getValueType(); 8834 auto &MF = DAG.getMachineFunction(); 8835 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8836 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8837 8838 // Store the lo part of CONCAT_VECTORS(V1, V2) 8839 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8840 // Store the hi part of CONCAT_VECTORS(V1, V2) 8841 SDValue OffsetToV2 = DAG.getVScale( 8842 DL, PtrVT, 8843 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8844 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8845 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8846 8847 if (Imm >= 0) { 8848 // Load back the required element. getVectorElementPointer takes care of 8849 // clamping the index if it's out-of-bounds. 8850 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8851 // Load the spliced result 8852 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8853 MachinePointerInfo::getUnknownStack(MF)); 8854 } 8855 8856 uint64_t TrailingElts = -Imm; 8857 8858 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8859 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8860 SDValue TrailingBytes = 8861 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8862 8863 if (TrailingElts > VT.getVectorMinNumElements()) { 8864 SDValue VLBytes = DAG.getVScale( 8865 DL, PtrVT, 8866 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8867 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8868 } 8869 8870 // Calculate the start address of the spliced result. 8871 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8872 8873 // Load the spliced result 8874 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8875 MachinePointerInfo::getUnknownStack(MF)); 8876 } 8877 8878 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8879 SDValue &LHS, SDValue &RHS, 8880 SDValue &CC, bool &NeedInvert, 8881 const SDLoc &dl, SDValue &Chain, 8882 bool IsSignaling) const { 8883 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8884 MVT OpVT = LHS.getSimpleValueType(); 8885 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8886 NeedInvert = false; 8887 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8888 default: 8889 llvm_unreachable("Unknown condition code action!"); 8890 case TargetLowering::Legal: 8891 // Nothing to do. 8892 break; 8893 case TargetLowering::Expand: { 8894 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8895 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8896 std::swap(LHS, RHS); 8897 CC = DAG.getCondCode(InvCC); 8898 return true; 8899 } 8900 // Swapping operands didn't work. Try inverting the condition. 8901 bool NeedSwap = false; 8902 InvCC = getSetCCInverse(CCCode, OpVT); 8903 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8904 // If inverting the condition is not enough, try swapping operands 8905 // on top of it. 8906 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8907 NeedSwap = true; 8908 } 8909 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8910 CC = DAG.getCondCode(InvCC); 8911 NeedInvert = true; 8912 if (NeedSwap) 8913 std::swap(LHS, RHS); 8914 return true; 8915 } 8916 8917 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8918 unsigned Opc = 0; 8919 switch (CCCode) { 8920 default: 8921 llvm_unreachable("Don't know how to expand this condition!"); 8922 case ISD::SETUO: 8923 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8924 CC1 = ISD::SETUNE; 8925 CC2 = ISD::SETUNE; 8926 Opc = ISD::OR; 8927 break; 8928 } 8929 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8930 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 8931 NeedInvert = true; 8932 LLVM_FALLTHROUGH; 8933 case ISD::SETO: 8934 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8935 "If SETO is expanded, SETOEQ must be legal!"); 8936 CC1 = ISD::SETOEQ; 8937 CC2 = ISD::SETOEQ; 8938 Opc = ISD::AND; 8939 break; 8940 case ISD::SETONE: 8941 case ISD::SETUEQ: 8942 // If the SETUO or SETO CC isn't legal, we might be able to use 8943 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 8944 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 8945 // the operands. 8946 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8947 if (!TLI.isCondCodeLegal(CC2, OpVT) && 8948 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 8949 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 8950 CC1 = ISD::SETOGT; 8951 CC2 = ISD::SETOLT; 8952 Opc = ISD::OR; 8953 NeedInvert = ((unsigned)CCCode & 0x8U); 8954 break; 8955 } 8956 LLVM_FALLTHROUGH; 8957 case ISD::SETOEQ: 8958 case ISD::SETOGT: 8959 case ISD::SETOGE: 8960 case ISD::SETOLT: 8961 case ISD::SETOLE: 8962 case ISD::SETUNE: 8963 case ISD::SETUGT: 8964 case ISD::SETUGE: 8965 case ISD::SETULT: 8966 case ISD::SETULE: 8967 // If we are floating point, assign and break, otherwise fall through. 8968 if (!OpVT.isInteger()) { 8969 // We can use the 4th bit to tell if we are the unordered 8970 // or ordered version of the opcode. 8971 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8972 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 8973 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 8974 break; 8975 } 8976 // Fallthrough if we are unsigned integer. 8977 LLVM_FALLTHROUGH; 8978 case ISD::SETLE: 8979 case ISD::SETGT: 8980 case ISD::SETGE: 8981 case ISD::SETLT: 8982 case ISD::SETNE: 8983 case ISD::SETEQ: 8984 // If all combinations of inverting the condition and swapping operands 8985 // didn't work then we have no means to expand the condition. 8986 llvm_unreachable("Don't know how to expand this condition!"); 8987 } 8988 8989 SDValue SetCC1, SetCC2; 8990 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 8991 // If we aren't the ordered or unorder operation, 8992 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 8993 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 8994 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 8995 } else { 8996 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 8997 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 8998 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 8999 } 9000 if (Chain) 9001 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9002 SetCC2.getValue(1)); 9003 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9004 RHS = SDValue(); 9005 CC = SDValue(); 9006 return true; 9007 } 9008 } 9009 return false; 9010 } 9011