1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/KnownBits.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetLoweringObjectFile.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include <cctype>
37 using namespace llvm;
38 
39 /// NOTE: The TargetMachine owns TLOF.
40 TargetLowering::TargetLowering(const TargetMachine &tm)
41   : TargetLoweringBase(tm) {}
42 
43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
44   return nullptr;
45 }
46 
47 bool TargetLowering::isPositionIndependent() const {
48   return getTargetMachine().isPositionIndependent();
49 }
50 
51 /// Check whether a given call node is in tail position within its function. If
52 /// so, it sets Chain to the input chain of the tail call.
53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
54                                           SDValue &Chain) const {
55   const Function &F = DAG.getMachineFunction().getFunction();
56 
57   // Conservatively require the attributes of the call to match those of
58   // the return. Ignore noalias because it doesn't affect the call sequence.
59   AttributeList CallerAttrs = F.getAttributes();
60   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
61           .removeAttribute(Attribute::NoAlias)
62           .hasAttributes())
63     return false;
64 
65   // It's not safe to eliminate the sign / zero extension of the return value.
66   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
67       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
68     return false;
69 
70   // Check if the only use is a function return node.
71   return isUsedByReturnOnly(Node, Chain);
72 }
73 
74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
75     const uint32_t *CallerPreservedMask,
76     const SmallVectorImpl<CCValAssign> &ArgLocs,
77     const SmallVectorImpl<SDValue> &OutVals) const {
78   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
79     const CCValAssign &ArgLoc = ArgLocs[I];
80     if (!ArgLoc.isRegLoc())
81       continue;
82     unsigned Reg = ArgLoc.getLocReg();
83     // Only look at callee saved registers.
84     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
85       continue;
86     // Check that we pass the value used for the caller.
87     // (We look for a CopyFromReg reading a virtual register that is used
88     //  for the function live-in value of register Reg)
89     SDValue Value = OutVals[I];
90     if (Value->getOpcode() != ISD::CopyFromReg)
91       return false;
92     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
93     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
94       return false;
95   }
96   return true;
97 }
98 
99 /// \brief Set CallLoweringInfo attribute flags based on a call instruction
100 /// and called function attributes.
101 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS,
102                                                      unsigned ArgIdx) {
103   IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt);
104   IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt);
105   IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg);
106   IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet);
107   IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest);
108   IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal);
109   IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca);
110   IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned);
111   IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
112   IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
113   Alignment  = CS->getParamAlignment(ArgIdx);
114 }
115 
116 /// Generate a libcall taking the given operands as arguments and returning a
117 /// result of type RetVT.
118 std::pair<SDValue, SDValue>
119 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
120                             ArrayRef<SDValue> Ops, bool isSigned,
121                             const SDLoc &dl, bool doesNotReturn,
122                             bool isReturnValueUsed) const {
123   TargetLowering::ArgListTy Args;
124   Args.reserve(Ops.size());
125 
126   TargetLowering::ArgListEntry Entry;
127   for (SDValue Op : Ops) {
128     Entry.Node = Op;
129     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
130     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
131     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
132     Args.push_back(Entry);
133   }
134 
135   if (LC == RTLIB::UNKNOWN_LIBCALL)
136     report_fatal_error("Unsupported library call operation!");
137   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
138                                          getPointerTy(DAG.getDataLayout()));
139 
140   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
141   TargetLowering::CallLoweringInfo CLI(DAG);
142   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
143   CLI.setDebugLoc(dl)
144       .setChain(DAG.getEntryNode())
145       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
146       .setNoReturn(doesNotReturn)
147       .setDiscardResult(!isReturnValueUsed)
148       .setSExtResult(signExtend)
149       .setZExtResult(!signExtend);
150   return LowerCallTo(CLI);
151 }
152 
153 /// Soften the operands of a comparison. This code is shared among BR_CC,
154 /// SELECT_CC, and SETCC handlers.
155 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
156                                          SDValue &NewLHS, SDValue &NewRHS,
157                                          ISD::CondCode &CCCode,
158                                          const SDLoc &dl) const {
159   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
160          && "Unsupported setcc type!");
161 
162   // Expand into one or more soft-fp libcall(s).
163   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
164   bool ShouldInvertCC = false;
165   switch (CCCode) {
166   case ISD::SETEQ:
167   case ISD::SETOEQ:
168     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
169           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
170           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
171     break;
172   case ISD::SETNE:
173   case ISD::SETUNE:
174     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
175           (VT == MVT::f64) ? RTLIB::UNE_F64 :
176           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
177     break;
178   case ISD::SETGE:
179   case ISD::SETOGE:
180     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
181           (VT == MVT::f64) ? RTLIB::OGE_F64 :
182           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
183     break;
184   case ISD::SETLT:
185   case ISD::SETOLT:
186     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
187           (VT == MVT::f64) ? RTLIB::OLT_F64 :
188           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
189     break;
190   case ISD::SETLE:
191   case ISD::SETOLE:
192     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
193           (VT == MVT::f64) ? RTLIB::OLE_F64 :
194           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
195     break;
196   case ISD::SETGT:
197   case ISD::SETOGT:
198     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
199           (VT == MVT::f64) ? RTLIB::OGT_F64 :
200           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
201     break;
202   case ISD::SETUO:
203     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
204           (VT == MVT::f64) ? RTLIB::UO_F64 :
205           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
206     break;
207   case ISD::SETO:
208     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
209           (VT == MVT::f64) ? RTLIB::O_F64 :
210           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
211     break;
212   case ISD::SETONE:
213     // SETONE = SETOLT | SETOGT
214     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
215           (VT == MVT::f64) ? RTLIB::OLT_F64 :
216           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
217     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
218           (VT == MVT::f64) ? RTLIB::OGT_F64 :
219           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
220     break;
221   case ISD::SETUEQ:
222     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
223           (VT == MVT::f64) ? RTLIB::UO_F64 :
224           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
225     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
226           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
227           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
228     break;
229   default:
230     // Invert CC for unordered comparisons
231     ShouldInvertCC = true;
232     switch (CCCode) {
233     case ISD::SETULT:
234       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
235             (VT == MVT::f64) ? RTLIB::OGE_F64 :
236             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
237       break;
238     case ISD::SETULE:
239       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
240             (VT == MVT::f64) ? RTLIB::OGT_F64 :
241             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
242       break;
243     case ISD::SETUGT:
244       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
245             (VT == MVT::f64) ? RTLIB::OLE_F64 :
246             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
247       break;
248     case ISD::SETUGE:
249       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
250             (VT == MVT::f64) ? RTLIB::OLT_F64 :
251             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
252       break;
253     default: llvm_unreachable("Do not know how to soften this setcc!");
254     }
255   }
256 
257   // Use the target specific return value for comparions lib calls.
258   EVT RetVT = getCmpLibcallReturnType();
259   SDValue Ops[2] = {NewLHS, NewRHS};
260   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
261                        dl).first;
262   NewRHS = DAG.getConstant(0, dl, RetVT);
263 
264   CCCode = getCmpLibcallCC(LC1);
265   if (ShouldInvertCC)
266     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
267 
268   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
269     SDValue Tmp = DAG.getNode(
270         ISD::SETCC, dl,
271         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
272         NewLHS, NewRHS, DAG.getCondCode(CCCode));
273     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
274                          dl).first;
275     NewLHS = DAG.getNode(
276         ISD::SETCC, dl,
277         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
278         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
279     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
280     NewRHS = SDValue();
281   }
282 }
283 
284 /// Return the entry encoding for a jump table in the current function. The
285 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
286 unsigned TargetLowering::getJumpTableEncoding() const {
287   // In non-pic modes, just use the address of a block.
288   if (!isPositionIndependent())
289     return MachineJumpTableInfo::EK_BlockAddress;
290 
291   // In PIC mode, if the target supports a GPRel32 directive, use it.
292   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
293     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
294 
295   // Otherwise, use a label difference.
296   return MachineJumpTableInfo::EK_LabelDifference32;
297 }
298 
299 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
300                                                  SelectionDAG &DAG) const {
301   // If our PIC model is GP relative, use the global offset table as the base.
302   unsigned JTEncoding = getJumpTableEncoding();
303 
304   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
305       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
306     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
307 
308   return Table;
309 }
310 
311 /// This returns the relocation base for the given PIC jumptable, the same as
312 /// getPICJumpTableRelocBase, but as an MCExpr.
313 const MCExpr *
314 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
315                                              unsigned JTI,MCContext &Ctx) const{
316   // The normal PIC reloc base is the label at the start of the jump table.
317   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
318 }
319 
320 bool
321 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
322   const TargetMachine &TM = getTargetMachine();
323   const GlobalValue *GV = GA->getGlobal();
324 
325   // If the address is not even local to this DSO we will have to load it from
326   // a got and then add the offset.
327   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
328     return false;
329 
330   // If the code is position independent we will have to add a base register.
331   if (isPositionIndependent())
332     return false;
333 
334   // Otherwise we can do it.
335   return true;
336 }
337 
338 //===----------------------------------------------------------------------===//
339 //  Optimization Methods
340 //===----------------------------------------------------------------------===//
341 
342 /// If the specified instruction has a constant integer operand and there are
343 /// bits set in that constant that are not demanded, then clear those bits and
344 /// return true.
345 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
346                                             TargetLoweringOpt &TLO) const {
347   SelectionDAG &DAG = TLO.DAG;
348   SDLoc DL(Op);
349   unsigned Opcode = Op.getOpcode();
350 
351   // Do target-specific constant optimization.
352   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
353     return TLO.New.getNode();
354 
355   // FIXME: ISD::SELECT, ISD::SELECT_CC
356   switch (Opcode) {
357   default:
358     break;
359   case ISD::XOR:
360   case ISD::AND:
361   case ISD::OR: {
362     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
363     if (!Op1C)
364       return false;
365 
366     // If this is a 'not' op, don't touch it because that's a canonical form.
367     const APInt &C = Op1C->getAPIntValue();
368     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
369       return false;
370 
371     if (!C.isSubsetOf(Demanded)) {
372       EVT VT = Op.getValueType();
373       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
374       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
375       return TLO.CombineTo(Op, NewOp);
376     }
377 
378     break;
379   }
380   }
381 
382   return false;
383 }
384 
385 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
386 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
387 /// generalized for targets with other types of implicit widening casts.
388 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
389                                       const APInt &Demanded,
390                                       TargetLoweringOpt &TLO) const {
391   assert(Op.getNumOperands() == 2 &&
392          "ShrinkDemandedOp only supports binary operators!");
393   assert(Op.getNode()->getNumValues() == 1 &&
394          "ShrinkDemandedOp only supports nodes with one result!");
395 
396   SelectionDAG &DAG = TLO.DAG;
397   SDLoc dl(Op);
398 
399   // Early return, as this function cannot handle vector types.
400   if (Op.getValueType().isVector())
401     return false;
402 
403   // Don't do this if the node has another user, which may require the
404   // full value.
405   if (!Op.getNode()->hasOneUse())
406     return false;
407 
408   // Search for the smallest integer type with free casts to and from
409   // Op's type. For expedience, just check power-of-2 integer types.
410   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
411   unsigned DemandedSize = Demanded.getActiveBits();
412   unsigned SmallVTBits = DemandedSize;
413   if (!isPowerOf2_32(SmallVTBits))
414     SmallVTBits = NextPowerOf2(SmallVTBits);
415   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
416     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
417     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
418         TLI.isZExtFree(SmallVT, Op.getValueType())) {
419       // We found a type with free casts.
420       SDValue X = DAG.getNode(
421           Op.getOpcode(), dl, SmallVT,
422           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
423           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
424       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
425       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
426       return TLO.CombineTo(Op, Z);
427     }
428   }
429   return false;
430 }
431 
432 bool
433 TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx,
434                                      const APInt &Demanded,
435                                      DAGCombinerInfo &DCI,
436                                      TargetLoweringOpt &TLO) const {
437   SDValue Op = User->getOperand(OpIdx);
438   KnownBits Known;
439 
440   if (!SimplifyDemandedBits(Op, Demanded, Known, TLO, 0, true))
441     return false;
442 
443 
444   // Old will not always be the same as Op.  For example:
445   //
446   // Demanded = 0xffffff
447   // Op = i64 truncate (i32 and x, 0xffffff)
448   // In this case simplify demand bits will want to replace the 'and' node
449   // with the value 'x', which will give us:
450   // Old = i32 and x, 0xffffff
451   // New = x
452   if (TLO.Old.hasOneUse()) {
453     // For the one use case, we just commit the change.
454     DCI.CommitTargetLoweringOpt(TLO);
455     return true;
456   }
457 
458   // If Old has more than one use then it must be Op, because the
459   // AssumeSingleUse flag is not propogated to recursive calls of
460   // SimplifyDemanded bits, so the only node with multiple use that
461   // it will attempt to combine will be Op.
462   assert(TLO.Old == Op);
463 
464   SmallVector <SDValue, 4> NewOps;
465   for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
466     if (i == OpIdx) {
467       NewOps.push_back(TLO.New);
468       continue;
469     }
470     NewOps.push_back(User->getOperand(i));
471   }
472   User = TLO.DAG.UpdateNodeOperands(User, NewOps);
473   // Op has less users now, so we may be able to perform additional combines
474   // with it.
475   DCI.AddToWorklist(Op.getNode());
476   // User's operands have been updated, so we may be able to do new combines
477   // with it.
478   DCI.AddToWorklist(User);
479   return true;
480 }
481 
482 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
483                                           DAGCombinerInfo &DCI) const {
484 
485   SelectionDAG &DAG = DCI.DAG;
486   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
487                         !DCI.isBeforeLegalizeOps());
488   KnownBits Known;
489 
490   bool Simplified = SimplifyDemandedBits(Op, DemandedMask, Known, TLO);
491   if (Simplified)
492     DCI.CommitTargetLoweringOpt(TLO);
493   return Simplified;
494 }
495 
496 /// Look at Op. At this point, we know that only the DemandedMask bits of the
497 /// result of Op are ever used downstream. If we can use this information to
498 /// simplify Op, create a new simplified DAG node and return true, returning the
499 /// original and new nodes in Old and New. Otherwise, analyze the expression and
500 /// return a mask of Known bits for the expression (used to simplify the
501 /// caller).  The Known bits may only be accurate for those bits in the
502 /// DemandedMask.
503 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
504                                           const APInt &DemandedMask,
505                                           KnownBits &Known,
506                                           TargetLoweringOpt &TLO,
507                                           unsigned Depth,
508                                           bool AssumeSingleUse) const {
509   unsigned BitWidth = DemandedMask.getBitWidth();
510   assert(Op.getScalarValueSizeInBits() == BitWidth &&
511          "Mask size mismatches value type size!");
512   APInt NewMask = DemandedMask;
513   SDLoc dl(Op);
514   auto &DL = TLO.DAG.getDataLayout();
515 
516   // Don't know anything.
517   Known = KnownBits(BitWidth);
518 
519   if (Op.getOpcode() == ISD::Constant) {
520     // We know all of the bits for a constant!
521     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
522     Known.Zero = ~Known.One;
523     return false;
524   }
525 
526   // Other users may use these bits.
527   EVT VT = Op.getValueType();
528   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
529     if (Depth != 0) {
530       // If not at the root, Just compute the Known bits to
531       // simplify things downstream.
532       TLO.DAG.computeKnownBits(Op, Known, Depth);
533       return false;
534     }
535     // If this is the root being simplified, allow it to have multiple uses,
536     // just set the NewMask to all bits.
537     NewMask = APInt::getAllOnesValue(BitWidth);
538   } else if (DemandedMask == 0) {
539     // Not demanding any bits from Op.
540     if (!Op.isUndef())
541       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
542     return false;
543   } else if (Depth == 6) {        // Limit search depth.
544     return false;
545   }
546 
547   KnownBits Known2, KnownOut;
548   switch (Op.getOpcode()) {
549   case ISD::BUILD_VECTOR:
550     // Collect the known bits that are shared by every constant vector element.
551     Known.Zero.setAllBits(); Known.One.setAllBits();
552     for (SDValue SrcOp : Op->ops()) {
553       if (!isa<ConstantSDNode>(SrcOp)) {
554         // We can only handle all constant values - bail out with no known bits.
555         Known = KnownBits(BitWidth);
556         return false;
557       }
558       Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
559       Known2.Zero = ~Known2.One;
560 
561       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
562       if (Known2.One.getBitWidth() != BitWidth) {
563         assert(Known2.getBitWidth() > BitWidth &&
564                "Expected BUILD_VECTOR implicit truncation");
565         Known2 = Known2.trunc(BitWidth);
566       }
567 
568       // Known bits are the values that are shared by every element.
569       // TODO: support per-element known bits.
570       Known.One &= Known2.One;
571       Known.Zero &= Known2.Zero;
572     }
573     return false;   // Don't fall through, will infinitely loop.
574   case ISD::AND:
575     // If the RHS is a constant, check to see if the LHS would be zero without
576     // using the bits from the RHS.  Below, we use knowledge about the RHS to
577     // simplify the LHS, here we're using information from the LHS to simplify
578     // the RHS.
579     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op.getOperand(1))) {
580       SDValue Op0 = Op.getOperand(0);
581       KnownBits LHSKnown;
582       // Do not increment Depth here; that can cause an infinite loop.
583       TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth);
584       // If the LHS already has zeros where RHSC does, this 'and' is dead.
585       if ((LHSKnown.Zero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
586         return TLO.CombineTo(Op, Op0);
587 
588       // If any of the set bits in the RHS are known zero on the LHS, shrink
589       // the constant.
590       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & NewMask, TLO))
591         return true;
592 
593       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
594       // constant, but if this 'and' is only clearing bits that were just set by
595       // the xor, then this 'and' can be eliminated by shrinking the mask of
596       // the xor. For example, for a 32-bit X:
597       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
598       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
599           LHSKnown.One == ~RHSC->getAPIntValue()) {
600         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0),
601                                       Op.getOperand(1));
602         return TLO.CombineTo(Op, Xor);
603       }
604     }
605 
606     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
607       return true;
608     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
609     if (SimplifyDemandedBits(Op.getOperand(0), ~Known.Zero & NewMask,
610                              Known2, TLO, Depth+1))
611       return true;
612     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
613 
614     // If all of the demanded bits are known one on one side, return the other.
615     // These bits cannot contribute to the result of the 'and'.
616     if (NewMask.isSubsetOf(Known2.Zero | Known.One))
617       return TLO.CombineTo(Op, Op.getOperand(0));
618     if (NewMask.isSubsetOf(Known.Zero | Known2.One))
619       return TLO.CombineTo(Op, Op.getOperand(1));
620     // If all of the demanded bits in the inputs are known zeros, return zero.
621     if (NewMask.isSubsetOf(Known.Zero | Known2.Zero))
622       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
623     // If the RHS is a constant, see if we can simplify it.
624     if (ShrinkDemandedConstant(Op, ~Known2.Zero & NewMask, TLO))
625       return true;
626     // If the operation can be done in a smaller type, do so.
627     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
628       return true;
629 
630     // Output known-1 bits are only known if set in both the LHS & RHS.
631     Known.One &= Known2.One;
632     // Output known-0 are known to be clear if zero in either the LHS | RHS.
633     Known.Zero |= Known2.Zero;
634     break;
635   case ISD::OR:
636     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
637       return true;
638     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
639     if (SimplifyDemandedBits(Op.getOperand(0), ~Known.One & NewMask,
640                              Known2, TLO, Depth+1))
641       return true;
642     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
643 
644     // If all of the demanded bits are known zero on one side, return the other.
645     // These bits cannot contribute to the result of the 'or'.
646     if (NewMask.isSubsetOf(Known2.One | Known.Zero))
647       return TLO.CombineTo(Op, Op.getOperand(0));
648     if (NewMask.isSubsetOf(Known.One | Known2.Zero))
649       return TLO.CombineTo(Op, Op.getOperand(1));
650     // If the RHS is a constant, see if we can simplify it.
651     if (ShrinkDemandedConstant(Op, NewMask, TLO))
652       return true;
653     // If the operation can be done in a smaller type, do so.
654     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
655       return true;
656 
657     // Output known-0 bits are only known if clear in both the LHS & RHS.
658     Known.Zero &= Known2.Zero;
659     // Output known-1 are known to be set if set in either the LHS | RHS.
660     Known.One |= Known2.One;
661     break;
662   case ISD::XOR: {
663     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
664       return true;
665     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
666     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, Known2, TLO, Depth+1))
667       return true;
668     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
669 
670     // If all of the demanded bits are known zero on one side, return the other.
671     // These bits cannot contribute to the result of the 'xor'.
672     if (NewMask.isSubsetOf(Known.Zero))
673       return TLO.CombineTo(Op, Op.getOperand(0));
674     if (NewMask.isSubsetOf(Known2.Zero))
675       return TLO.CombineTo(Op, Op.getOperand(1));
676     // If the operation can be done in a smaller type, do so.
677     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
678       return true;
679 
680     // If all of the unknown bits are known to be zero on one side or the other
681     // (but not both) turn this into an *inclusive* or.
682     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
683     if ((NewMask & ~Known.Zero & ~Known2.Zero) == 0)
684       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT,
685                                                Op.getOperand(0),
686                                                Op.getOperand(1)));
687 
688     // Output known-0 bits are known if clear or set in both the LHS & RHS.
689     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
690     // Output known-1 are known to be set if set in only one of the LHS, RHS.
691     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
692 
693     // If all of the demanded bits on one side are known, and all of the set
694     // bits on that side are also known to be set on the other side, turn this
695     // into an AND, as we know the bits will be cleared.
696     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
697     // NB: it is okay if more bits are known than are requested
698     if (NewMask.isSubsetOf(Known.Zero|Known.One)) { // all known on one side
699       if (Known.One == Known2.One) { // set bits are the same on both sides
700         SDValue ANDC = TLO.DAG.getConstant(~Known.One & NewMask, dl, VT);
701         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
702                                                  Op.getOperand(0), ANDC));
703       }
704     }
705 
706     // If the RHS is a constant, see if we can change it. Don't alter a -1
707     // constant because that's a 'not' op, and that is better for combining and
708     // codegen.
709     ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1));
710     if (C && !C->isAllOnesValue()) {
711       if (NewMask.isSubsetOf(C->getAPIntValue())) {
712         // We're flipping all demanded bits. Flip the undemanded bits too.
713         SDValue New = TLO.DAG.getNOT(dl, Op.getOperand(0), VT);
714         return TLO.CombineTo(Op, New);
715       }
716       // If we can't turn this into a 'not', try to shrink the constant.
717       if (ShrinkDemandedConstant(Op, NewMask, TLO))
718         return true;
719     }
720 
721     Known = std::move(KnownOut);
722     break;
723   }
724   case ISD::SELECT:
725     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known, TLO, Depth+1))
726       return true;
727     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known2, TLO, Depth+1))
728       return true;
729     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
730     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
731 
732     // If the operands are constants, see if we can simplify them.
733     if (ShrinkDemandedConstant(Op, NewMask, TLO))
734       return true;
735 
736     // Only known if known in both the LHS and RHS.
737     Known.One &= Known2.One;
738     Known.Zero &= Known2.Zero;
739     break;
740   case ISD::SELECT_CC:
741     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, Known, TLO, Depth+1))
742       return true;
743     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known2, TLO, Depth+1))
744       return true;
745     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
746     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
747 
748     // If the operands are constants, see if we can simplify them.
749     if (ShrinkDemandedConstant(Op, NewMask, TLO))
750       return true;
751 
752     // Only known if known in both the LHS and RHS.
753     Known.One &= Known2.One;
754     Known.Zero &= Known2.Zero;
755     break;
756   case ISD::SETCC: {
757     SDValue Op0 = Op.getOperand(0);
758     SDValue Op1 = Op.getOperand(1);
759     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
760     // If (1) we only need the sign-bit, (2) the setcc operands are the same
761     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
762     // -1, we may be able to bypass the setcc.
763     if (NewMask.isSignMask() && Op0.getScalarValueSizeInBits() == BitWidth &&
764         getBooleanContents(VT) ==
765             BooleanContent::ZeroOrNegativeOneBooleanContent) {
766       // If we're testing X < 0, then this compare isn't needed - just use X!
767       // FIXME: We're limiting to integer types here, but this should also work
768       // if we don't care about FP signed-zero. The use of SETLT with FP means
769       // that we don't care about NaNs.
770       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
771           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
772         return TLO.CombineTo(Op, Op0);
773 
774       // TODO: Should we check for other forms of sign-bit comparisons?
775       // Examples: X <= -1, X >= 0
776     }
777     if (getBooleanContents(Op0.getValueType()) ==
778             TargetLowering::ZeroOrOneBooleanContent &&
779         BitWidth > 1)
780       Known.Zero.setBitsFrom(1);
781     break;
782   }
783   case ISD::SHL:
784     if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) {
785       SDValue InOp = Op.getOperand(0);
786 
787       // If the shift count is an invalid immediate, don't do anything.
788       if (SA->getAPIntValue().uge(BitWidth))
789         break;
790 
791       unsigned ShAmt = SA->getZExtValue();
792 
793       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
794       // single shift.  We can do this if the bottom bits (which are shifted
795       // out) are never demanded.
796       if (InOp.getOpcode() == ISD::SRL) {
797         if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) {
798           if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
799             if (SA2->getAPIntValue().ult(BitWidth)) {
800               unsigned C1 = SA2->getZExtValue();
801               unsigned Opc = ISD::SHL;
802               int Diff = ShAmt-C1;
803               if (Diff < 0) {
804                 Diff = -Diff;
805                 Opc = ISD::SRL;
806               }
807 
808               SDValue NewSA =
809                 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
810               return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
811                                                        InOp.getOperand(0),
812                                                        NewSA));
813             }
814           }
815         }
816       }
817 
818       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), Known, TLO, Depth+1))
819         return true;
820 
821       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
822       // are not demanded. This will likely allow the anyext to be folded away.
823       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
824         SDValue InnerOp = InOp.getOperand(0);
825         EVT InnerVT = InnerOp.getValueType();
826         unsigned InnerBits = InnerVT.getScalarSizeInBits();
827         if (ShAmt < InnerBits && NewMask.getActiveBits() <= InnerBits &&
828             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
829           EVT ShTy = getShiftAmountTy(InnerVT, DL);
830           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
831             ShTy = InnerVT;
832           SDValue NarrowShl =
833             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
834                             TLO.DAG.getConstant(ShAmt, dl, ShTy));
835           return
836             TLO.CombineTo(Op,
837                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
838         }
839         // Repeat the SHL optimization above in cases where an extension
840         // intervenes: (shl (anyext (shr x, c1)), c2) to
841         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
842         // aren't demanded (as above) and that the shifted upper c1 bits of
843         // x aren't demanded.
844         if (InOp.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
845             InnerOp.hasOneUse()) {
846           if (ConstantSDNode *SA2 = isConstOrConstSplat(InnerOp.getOperand(1))) {
847             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
848             if (InnerShAmt < ShAmt &&
849                 InnerShAmt < InnerBits &&
850                 NewMask.getActiveBits() <= (InnerBits - InnerShAmt + ShAmt) &&
851                 NewMask.countTrailingZeros() >= ShAmt) {
852               SDValue NewSA =
853                 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
854                                     Op.getOperand(1).getValueType());
855               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
856                                                InnerOp.getOperand(0));
857               return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
858                                                        NewExt, NewSA));
859             }
860           }
861         }
862       }
863 
864       Known.Zero <<= ShAmt;
865       Known.One  <<= ShAmt;
866       // low bits known zero.
867       Known.Zero.setLowBits(ShAmt);
868     }
869     break;
870   case ISD::SRL:
871     if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) {
872       SDValue InOp = Op.getOperand(0);
873 
874       // If the shift count is an invalid immediate, don't do anything.
875       if (SA->getAPIntValue().uge(BitWidth))
876         break;
877 
878       unsigned ShAmt = SA->getZExtValue();
879       APInt InDemandedMask = (NewMask << ShAmt);
880 
881       // If the shift is exact, then it does demand the low bits (and knows that
882       // they are zero).
883       if (Op->getFlags().hasExact())
884         InDemandedMask.setLowBits(ShAmt);
885 
886       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
887       // single shift.  We can do this if the top bits (which are shifted out)
888       // are never demanded.
889       if (InOp.getOpcode() == ISD::SHL) {
890         if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) {
891           if (ShAmt &&
892               (NewMask & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
893             if (SA2->getAPIntValue().ult(BitWidth)) {
894               unsigned C1 = SA2->getZExtValue();
895               unsigned Opc = ISD::SRL;
896               int Diff = ShAmt-C1;
897               if (Diff < 0) {
898                 Diff = -Diff;
899                 Opc = ISD::SHL;
900               }
901 
902               SDValue NewSA =
903                 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
904               return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
905                                                        InOp.getOperand(0),
906                                                        NewSA));
907             }
908           }
909         }
910       }
911 
912       // Compute the new bits that are at the top now.
913       if (SimplifyDemandedBits(InOp, InDemandedMask, Known, TLO, Depth+1))
914         return true;
915       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
916       Known.Zero.lshrInPlace(ShAmt);
917       Known.One.lshrInPlace(ShAmt);
918 
919       Known.Zero.setHighBits(ShAmt);  // High bits known zero.
920     }
921     break;
922   case ISD::SRA:
923     // If this is an arithmetic shift right and only the low-bit is set, we can
924     // always convert this into a logical shr, even if the shift amount is
925     // variable.  The low bit of the shift cannot be an input sign bit unless
926     // the shift amount is >= the size of the datatype, which is undefined.
927     if (NewMask.isOneValue())
928       return TLO.CombineTo(Op,
929                            TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
930                                            Op.getOperand(1)));
931 
932     if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) {
933       // If the shift count is an invalid immediate, don't do anything.
934       if (SA->getAPIntValue().uge(BitWidth))
935         break;
936 
937       unsigned ShAmt = SA->getZExtValue();
938       APInt InDemandedMask = (NewMask << ShAmt);
939 
940       // If the shift is exact, then it does demand the low bits (and knows that
941       // they are zero).
942       if (Op->getFlags().hasExact())
943         InDemandedMask.setLowBits(ShAmt);
944 
945       // If any of the demanded bits are produced by the sign extension, we also
946       // demand the input sign bit.
947       if (NewMask.countLeadingZeros() < ShAmt)
948         InDemandedMask.setSignBit();
949 
950       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, Known, TLO,
951                                Depth+1))
952         return true;
953       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
954       Known.Zero.lshrInPlace(ShAmt);
955       Known.One.lshrInPlace(ShAmt);
956 
957       // If the input sign bit is known to be zero, or if none of the top bits
958       // are demanded, turn this into an unsigned shift right.
959       if (Known.Zero[BitWidth - ShAmt - 1] ||
960           NewMask.countLeadingZeros() >= ShAmt) {
961         SDNodeFlags Flags;
962         Flags.setExact(Op->getFlags().hasExact());
963         return TLO.CombineTo(Op,
964                              TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
965                                              Op.getOperand(1), Flags));
966       }
967 
968       int Log2 = NewMask.exactLogBase2();
969       if (Log2 >= 0) {
970         // The bit must come from the sign.
971         SDValue NewSA =
972           TLO.DAG.getConstant(BitWidth - 1 - Log2, dl,
973                               Op.getOperand(1).getValueType());
974         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
975                                                  Op.getOperand(0), NewSA));
976       }
977 
978       if (Known.One[BitWidth - ShAmt - 1])
979         // New bits are known one.
980         Known.One.setHighBits(ShAmt);
981     }
982     break;
983   case ISD::SIGN_EXTEND_INREG: {
984     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
985     unsigned ExVTBits = ExVT.getScalarSizeInBits();
986 
987     // If we only care about the highest bit, don't bother shifting right.
988     if (NewMask.isSignMask()) {
989       SDValue InOp = Op.getOperand(0);
990       bool AlreadySignExtended =
991         TLO.DAG.ComputeNumSignBits(InOp) >= BitWidth-ExVTBits+1;
992       // However if the input is already sign extended we expect the sign
993       // extension to be dropped altogether later and do not simplify.
994       if (!AlreadySignExtended) {
995         // Compute the correct shift amount type, which must be getShiftAmountTy
996         // for scalar types after legalization.
997         EVT ShiftAmtTy = VT;
998         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
999           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1000 
1001         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
1002                                                ShiftAmtTy);
1003         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, InOp,
1004                                                  ShiftAmt));
1005       }
1006     }
1007 
1008     // If none of the extended bits are demanded, eliminate the sextinreg.
1009     if (NewMask.getActiveBits() <= ExVTBits)
1010       return TLO.CombineTo(Op, Op.getOperand(0));
1011 
1012     APInt InputDemandedBits = NewMask.getLoBits(ExVTBits);
1013 
1014     // Since the sign extended bits are demanded, we know that the sign
1015     // bit is demanded.
1016     InputDemandedBits.setBit(ExVTBits - 1);
1017 
1018     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1019                              Known, TLO, Depth+1))
1020       return true;
1021     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1022 
1023     // If the sign bit of the input is known set or clear, then we know the
1024     // top bits of the result.
1025 
1026     // If the input sign bit is known zero, convert this into a zero extension.
1027     if (Known.Zero[ExVTBits - 1])
1028       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(
1029                                    Op.getOperand(0), dl, ExVT.getScalarType()));
1030 
1031     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1032     if (Known.One[ExVTBits - 1]) {    // Input sign bit known set
1033       Known.One.setBitsFrom(ExVTBits);
1034       Known.Zero &= Mask;
1035     } else {                       // Input sign bit unknown
1036       Known.Zero &= Mask;
1037       Known.One &= Mask;
1038     }
1039     break;
1040   }
1041   case ISD::BUILD_PAIR: {
1042     EVT HalfVT = Op.getOperand(0).getValueType();
1043     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1044 
1045     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1046     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1047 
1048     KnownBits KnownLo, KnownHi;
1049 
1050     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1051       return true;
1052 
1053     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1054       return true;
1055 
1056     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1057                 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1058 
1059     Known.One = KnownLo.One.zext(BitWidth) |
1060                KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1061     break;
1062   }
1063   case ISD::ZERO_EXTEND: {
1064     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1065 
1066     // If none of the top bits are demanded, convert this into an any_extend.
1067     if (NewMask.getActiveBits() <= OperandBitWidth)
1068       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1069                                                Op.getOperand(0)));
1070 
1071     APInt InMask = NewMask.trunc(OperandBitWidth);
1072     if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1))
1073       return true;
1074     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1075     Known = Known.zext(BitWidth);
1076     Known.Zero.setBitsFrom(OperandBitWidth);
1077     break;
1078   }
1079   case ISD::SIGN_EXTEND: {
1080     unsigned InBits = Op.getOperand(0).getValueType().getScalarSizeInBits();
1081 
1082     // If none of the top bits are demanded, convert this into an any_extend.
1083     if (NewMask.getActiveBits() <= InBits)
1084       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1085                                               Op.getOperand(0)));
1086 
1087     // Since some of the sign extended bits are demanded, we know that the sign
1088     // bit is demanded.
1089     APInt InDemandedBits = NewMask.trunc(InBits);
1090     InDemandedBits.setBit(InBits - 1);
1091 
1092     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, Known, TLO,
1093                              Depth+1))
1094       return true;
1095     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1096     // If the sign bit is known one, the top bits match.
1097     Known = Known.sext(BitWidth);
1098 
1099     // If the sign bit is known zero, convert this to a zero extend.
1100     if (Known.isNonNegative())
1101       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT,
1102                                                Op.getOperand(0)));
1103     break;
1104   }
1105   case ISD::ANY_EXTEND: {
1106     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1107     APInt InMask = NewMask.trunc(OperandBitWidth);
1108     if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1))
1109       return true;
1110     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1111     Known = Known.zext(BitWidth);
1112     break;
1113   }
1114   case ISD::TRUNCATE: {
1115     // Simplify the input, using demanded bit information, and compute the known
1116     // zero/one bits live out.
1117     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1118     APInt TruncMask = NewMask.zext(OperandBitWidth);
1119     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, Known, TLO, Depth+1))
1120       return true;
1121     Known = Known.trunc(BitWidth);
1122 
1123     // If the input is only used by this truncate, see if we can shrink it based
1124     // on the known demanded bits.
1125     if (Op.getOperand(0).getNode()->hasOneUse()) {
1126       SDValue In = Op.getOperand(0);
1127       switch (In.getOpcode()) {
1128       default: break;
1129       case ISD::SRL:
1130         // Shrink SRL by a constant if none of the high bits shifted in are
1131         // demanded.
1132         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1133           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1134           // undesirable.
1135           break;
1136         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1137         if (!ShAmt)
1138           break;
1139         SDValue Shift = In.getOperand(1);
1140         if (TLO.LegalTypes()) {
1141           uint64_t ShVal = ShAmt->getZExtValue();
1142           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1143         }
1144 
1145         if (ShAmt->getZExtValue() < BitWidth) {
1146           APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1147                                                  OperandBitWidth - BitWidth);
1148           HighBits.lshrInPlace(ShAmt->getZExtValue());
1149           HighBits = HighBits.trunc(BitWidth);
1150 
1151           if (!(HighBits & NewMask)) {
1152             // None of the shifted in bits are needed.  Add a truncate of the
1153             // shift input, then shift it.
1154             SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, VT,
1155                                                In.getOperand(0));
1156             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc,
1157                                                      Shift));
1158           }
1159         }
1160         break;
1161       }
1162     }
1163 
1164     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1165     break;
1166   }
1167   case ISD::AssertZext: {
1168     // AssertZext demands all of the high bits, plus any of the low bits
1169     // demanded by its users.
1170     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1171     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1172     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1173                              Known, TLO, Depth+1))
1174       return true;
1175     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1176 
1177     Known.Zero |= ~InMask;
1178     break;
1179   }
1180   case ISD::BITCAST:
1181     // If this is an FP->Int bitcast and if the sign bit is the only
1182     // thing demanded, turn this into a FGETSIGN.
1183     if (!TLO.LegalOperations() && !VT.isVector() &&
1184         !Op.getOperand(0).getValueType().isVector() &&
1185         NewMask == APInt::getSignMask(Op.getValueSizeInBits()) &&
1186         Op.getOperand(0).getValueType().isFloatingPoint()) {
1187       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1188       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1189       if ((OpVTLegal || i32Legal) && VT.isSimple() &&
1190            Op.getOperand(0).getValueType() != MVT::f128) {
1191         // Cannot eliminate/lower SHL for f128 yet.
1192         EVT Ty = OpVTLegal ? VT : MVT::i32;
1193         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1194         // place.  We expect the SHL to be eliminated by other optimizations.
1195         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1196         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1197         if (!OpVTLegal && OpVTSizeInBits > 32)
1198           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1199         unsigned ShVal = Op.getValueSizeInBits() - 1;
1200         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1201         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1202       }
1203     }
1204     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1205     // recursive call where Known may be useful to the caller.
1206     if (Depth > 0) {
1207       TLO.DAG.computeKnownBits(Op, Known, Depth);
1208       return false;
1209     }
1210     break;
1211   case ISD::ADD:
1212   case ISD::MUL:
1213   case ISD::SUB: {
1214     // Add, Sub, and Mul don't demand any bits in positions beyond that
1215     // of the highest bit demanded of them.
1216     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1217     unsigned NewMaskLZ = NewMask.countLeadingZeros();
1218     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - NewMaskLZ);
1219     if (SimplifyDemandedBits(Op0, LoMask, Known2, TLO, Depth + 1) ||
1220         SimplifyDemandedBits(Op1, LoMask, Known2, TLO, Depth + 1) ||
1221         // See if the operation should be performed at a smaller bit width.
1222         ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) {
1223       SDNodeFlags Flags = Op.getNode()->getFlags();
1224       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1225         // Disable the nsw and nuw flags. We can no longer guarantee that we
1226         // won't wrap after simplification.
1227         Flags.setNoSignedWrap(false);
1228         Flags.setNoUnsignedWrap(false);
1229         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
1230                                         Flags);
1231         return TLO.CombineTo(Op, NewOp);
1232       }
1233       return true;
1234     }
1235 
1236     // If we have a constant operand, we may be able to turn it into -1 if we
1237     // do not demand the high bits. This can make the constant smaller to
1238     // encode, allow more general folding, or match specialized instruction
1239     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1240     // is probably not useful (and could be detrimental).
1241     ConstantSDNode *C = isConstOrConstSplat(Op1);
1242     APInt HighMask = APInt::getHighBitsSet(NewMask.getBitWidth(), NewMaskLZ);
1243     if (C && !C->isAllOnesValue() && !C->isOne() &&
1244         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1245       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1246       // We can't guarantee that the new math op doesn't wrap, so explicitly
1247       // clear those flags to prevent folding with a potential existing node
1248       // that has those flags set.
1249       SDNodeFlags Flags;
1250       Flags.setNoSignedWrap(false);
1251       Flags.setNoUnsignedWrap(false);
1252       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1253       return TLO.CombineTo(Op, NewOp);
1254     }
1255 
1256     LLVM_FALLTHROUGH;
1257   }
1258   default:
1259     // Just use computeKnownBits to compute output bits.
1260     TLO.DAG.computeKnownBits(Op, Known, Depth);
1261     break;
1262   }
1263 
1264   // If we know the value of all of the demanded bits, return this as a
1265   // constant.
1266   if (NewMask.isSubsetOf(Known.Zero|Known.One)) {
1267     // Avoid folding to a constant if any OpaqueConstant is involved.
1268     const SDNode *N = Op.getNode();
1269     for (SDNodeIterator I = SDNodeIterator::begin(N),
1270          E = SDNodeIterator::end(N); I != E; ++I) {
1271       SDNode *Op = *I;
1272       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1273         if (C->isOpaque())
1274           return false;
1275     }
1276     return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
1277   }
1278 
1279   return false;
1280 }
1281 
1282 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
1283                                                 const APInt &DemandedElts,
1284                                                 APInt &KnownUndef,
1285                                                 APInt &KnownZero,
1286                                                 DAGCombinerInfo &DCI) const {
1287   SelectionDAG &DAG = DCI.DAG;
1288   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1289                         !DCI.isBeforeLegalizeOps());
1290 
1291   bool Simplified =
1292       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
1293   if (Simplified)
1294     DCI.CommitTargetLoweringOpt(TLO);
1295   return Simplified;
1296 }
1297 
1298 bool TargetLowering::SimplifyDemandedVectorElts(
1299     SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef,
1300     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
1301     bool AssumeSingleUse) const {
1302   EVT VT = Op.getValueType();
1303   APInt DemandedElts = DemandedEltMask;
1304   unsigned NumElts = DemandedElts.getBitWidth();
1305   assert(VT.isVector() && "Expected vector op");
1306   assert(VT.getVectorNumElements() == NumElts &&
1307          "Mask size mismatches value type element count!");
1308 
1309   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
1310 
1311   // Undef operand.
1312   if (Op.isUndef()) {
1313     KnownUndef.setAllBits();
1314     return false;
1315   }
1316 
1317   // If Op has other users, assume that all elements are needed.
1318   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
1319     DemandedElts.setAllBits();
1320 
1321   // Not demanding any elements from Op.
1322   if (DemandedElts == 0) {
1323     KnownUndef.setAllBits();
1324     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1325   }
1326 
1327   // Limit search depth.
1328   if (Depth >= 6)
1329     return false;
1330 
1331   SDLoc DL(Op);
1332   unsigned EltSizeInBits = VT.getScalarSizeInBits();
1333 
1334   switch (Op.getOpcode()) {
1335   case ISD::SCALAR_TO_VECTOR: {
1336     if (!DemandedElts[0]) {
1337       KnownUndef.setAllBits();
1338       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1339     }
1340     KnownUndef.setHighBits(NumElts - 1);
1341     break;
1342   }
1343   case ISD::BITCAST: {
1344     SDValue Src = Op.getOperand(0);
1345     EVT SrcVT = Src.getValueType();
1346 
1347     // We only handle vectors here.
1348     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
1349     if (!SrcVT.isVector())
1350       break;
1351 
1352     // Fast handling of 'identity' bitcasts.
1353     unsigned NumSrcElts = SrcVT.getVectorNumElements();
1354     if (NumSrcElts == NumElts)
1355       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
1356                                         KnownZero, TLO, Depth + 1);
1357 
1358     APInt SrcZero, SrcUndef;
1359     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
1360 
1361     // Bitcast from 'large element' src vector to 'small element' vector, we
1362     // must demand a source element if any DemandedElt maps to it.
1363     if ((NumElts % NumSrcElts) == 0) {
1364       unsigned Scale = NumElts / NumSrcElts;
1365       for (unsigned i = 0; i != NumElts; ++i)
1366         if (DemandedElts[i])
1367           SrcDemandedElts.setBit(i / Scale);
1368 
1369       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1370                                      TLO, Depth + 1))
1371         return true;
1372 
1373       // If the src element is zero/undef then all the output elements will be -
1374       // only demanded elements are guaranteed to be correct.
1375       for (unsigned i = 0; i != NumSrcElts; ++i) {
1376         if (SrcDemandedElts[i]) {
1377           if (SrcZero[i])
1378             KnownZero.setBits(i * Scale, (i + 1) * Scale);
1379           if (SrcUndef[i])
1380             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
1381         }
1382       }
1383     }
1384 
1385     // Bitcast from 'small element' src vector to 'large element' vector, we
1386     // demand all smaller source elements covered by the larger demanded element
1387     // of this vector.
1388     if ((NumSrcElts % NumElts) == 0) {
1389       unsigned Scale = NumSrcElts / NumElts;
1390       for (unsigned i = 0; i != NumElts; ++i)
1391         if (DemandedElts[i])
1392           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
1393 
1394       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1395                                      TLO, Depth + 1))
1396         return true;
1397 
1398       // If all the src elements covering an output element are zero/undef, then
1399       // the output element will be as well, assuming it was demanded.
1400       for (unsigned i = 0; i != NumElts; ++i) {
1401         if (DemandedElts[i]) {
1402           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
1403             KnownZero.setBit(i);
1404           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
1405             KnownUndef.setBit(i);
1406         }
1407       }
1408     }
1409     break;
1410   }
1411   case ISD::BUILD_VECTOR: {
1412     // Check all elements and simplify any unused elements with UNDEF.
1413     if (!DemandedElts.isAllOnesValue()) {
1414       // Don't simplify BROADCASTS.
1415       if (llvm::any_of(Op->op_values(),
1416                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
1417         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
1418         bool Updated = false;
1419         for (unsigned i = 0; i != NumElts; ++i) {
1420           if (!DemandedElts[i] && !Ops[i].isUndef()) {
1421             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
1422             KnownUndef.setBit(i);
1423             Updated = true;
1424           }
1425         }
1426         if (Updated)
1427           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
1428       }
1429     }
1430     for (unsigned i = 0; i != NumElts; ++i) {
1431       SDValue SrcOp = Op.getOperand(i);
1432       if (SrcOp.isUndef()) {
1433         KnownUndef.setBit(i);
1434       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
1435                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
1436         KnownZero.setBit(i);
1437       }
1438     }
1439     break;
1440   }
1441   case ISD::CONCAT_VECTORS: {
1442     EVT SubVT = Op.getOperand(0).getValueType();
1443     unsigned NumSubVecs = Op.getNumOperands();
1444     unsigned NumSubElts = SubVT.getVectorNumElements();
1445     for (unsigned i = 0; i != NumSubVecs; ++i) {
1446       SDValue SubOp = Op.getOperand(i);
1447       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1448       APInt SubUndef, SubZero;
1449       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
1450                                      Depth + 1))
1451         return true;
1452       KnownUndef.insertBits(SubUndef, i * NumSubElts);
1453       KnownZero.insertBits(SubZero, i * NumSubElts);
1454     }
1455     break;
1456   }
1457   case ISD::INSERT_SUBVECTOR: {
1458     if (!isa<ConstantSDNode>(Op.getOperand(2)))
1459       break;
1460     SDValue Base = Op.getOperand(0);
1461     SDValue Sub = Op.getOperand(1);
1462     EVT SubVT = Sub.getValueType();
1463     unsigned NumSubElts = SubVT.getVectorNumElements();
1464     APInt Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue();
1465     if (Idx.uge(NumElts - NumSubElts))
1466       break;
1467     unsigned SubIdx = Idx.getZExtValue();
1468     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
1469     APInt SubUndef, SubZero;
1470     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
1471                                    Depth + 1))
1472       return true;
1473     APInt BaseElts = DemandedElts;
1474     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
1475     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
1476                                    Depth + 1))
1477       return true;
1478     KnownUndef.insertBits(SubUndef, SubIdx);
1479     KnownZero.insertBits(SubZero, SubIdx);
1480     break;
1481   }
1482   case ISD::INSERT_VECTOR_ELT: {
1483     SDValue Vec = Op.getOperand(0);
1484     SDValue Scl = Op.getOperand(1);
1485     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1486 
1487     // For a legal, constant insertion index, if we don't need this insertion
1488     // then strip it, else remove it from the demanded elts.
1489     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
1490       unsigned Idx = CIdx->getZExtValue();
1491       if (!DemandedElts[Idx])
1492         return TLO.CombineTo(Op, Vec);
1493       DemandedElts.clearBit(Idx);
1494 
1495       if (SimplifyDemandedVectorElts(Vec, DemandedElts, KnownUndef,
1496                                      KnownZero, TLO, Depth + 1))
1497         return true;
1498 
1499       KnownUndef.clearBit(Idx);
1500       if (Scl.isUndef())
1501         KnownUndef.setBit(Idx);
1502 
1503       KnownZero.clearBit(Idx);
1504       if (isNullConstant(Scl) || isNullFPConstant(Scl))
1505         KnownZero.setBit(Idx);
1506       break;
1507     }
1508 
1509     APInt VecUndef, VecZero;
1510     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
1511                                    Depth + 1))
1512       return true;
1513     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
1514     break;
1515   }
1516   case ISD::VSELECT: {
1517     APInt DemandedLHS(DemandedElts);
1518     APInt DemandedRHS(DemandedElts);
1519 
1520     // TODO - add support for constant vselect masks.
1521 
1522     // See if we can simplify either vselect operand.
1523     APInt UndefLHS, ZeroLHS;
1524     APInt UndefRHS, ZeroRHS;
1525     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
1526                                    ZeroLHS, TLO, Depth + 1))
1527       return true;
1528     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
1529                                    ZeroRHS, TLO, Depth + 1))
1530       return true;
1531 
1532     KnownUndef = UndefLHS & UndefRHS;
1533     KnownZero = ZeroLHS & ZeroRHS;
1534     break;
1535   }
1536   case ISD::VECTOR_SHUFFLE: {
1537     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1538 
1539     // Collect demanded elements from shuffle operands..
1540     APInt DemandedLHS(NumElts, 0);
1541     APInt DemandedRHS(NumElts, 0);
1542     for (unsigned i = 0; i != NumElts; ++i) {
1543       int M = ShuffleMask[i];
1544       if (M < 0 || !DemandedElts[i])
1545         continue;
1546       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1547       if (M < (int)NumElts)
1548         DemandedLHS.setBit(M);
1549       else
1550         DemandedRHS.setBit(M - NumElts);
1551     }
1552 
1553     // See if we can simplify either shuffle operand.
1554     APInt UndefLHS, ZeroLHS;
1555     APInt UndefRHS, ZeroRHS;
1556     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
1557                                    ZeroLHS, TLO, Depth + 1))
1558       return true;
1559     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
1560                                    ZeroRHS, TLO, Depth + 1))
1561       return true;
1562 
1563     // Simplify mask using undef elements from LHS/RHS.
1564     bool Updated = false;
1565     bool IdentityLHS = true, IdentityRHS = true;
1566     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
1567     for (unsigned i = 0; i != NumElts; ++i) {
1568       int &M = NewMask[i];
1569       if (M < 0)
1570         continue;
1571       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
1572           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
1573         Updated = true;
1574         M = -1;
1575       }
1576       IdentityLHS &= (M < 0) || (M == (int)i);
1577       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
1578     }
1579 
1580     // Update legal shuffle masks based on demanded elements if it won't reduce
1581     // to Identity which can cause premature removal of the shuffle mask.
1582     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
1583         isShuffleMaskLegal(NewMask, VT))
1584       return TLO.CombineTo(Op,
1585                            TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
1586                                                     Op.getOperand(1), NewMask));
1587 
1588     // Propagate undef/zero elements from LHS/RHS.
1589     for (unsigned i = 0; i != NumElts; ++i) {
1590       int M = ShuffleMask[i];
1591       if (M < 0) {
1592         KnownUndef.setBit(i);
1593       } else if (M < (int)NumElts) {
1594         if (UndefLHS[M])
1595           KnownUndef.setBit(i);
1596         if (ZeroLHS[M])
1597           KnownZero.setBit(i);
1598       } else {
1599         if (UndefRHS[M - NumElts])
1600           KnownUndef.setBit(i);
1601         if (ZeroRHS[M - NumElts])
1602           KnownZero.setBit(i);
1603       }
1604     }
1605     break;
1606   }
1607   case ISD::ADD:
1608   case ISD::SUB: {
1609     APInt SrcUndef, SrcZero;
1610     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
1611                                    SrcZero, TLO, Depth + 1))
1612       return true;
1613     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
1614                                    KnownZero, TLO, Depth + 1))
1615       return true;
1616     KnownZero &= SrcZero;
1617     KnownUndef &= SrcUndef;
1618     break;
1619   }
1620   case ISD::TRUNCATE:
1621     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
1622                                    KnownZero, TLO, Depth + 1))
1623       return true;
1624     break;
1625   default: {
1626     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
1627       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
1628                                                   KnownZero, TLO, Depth))
1629         return true;
1630     break;
1631   }
1632   }
1633 
1634   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
1635   return false;
1636 }
1637 
1638 /// Determine which of the bits specified in Mask are known to be either zero or
1639 /// one and return them in the Known.
1640 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1641                                                    KnownBits &Known,
1642                                                    const APInt &DemandedElts,
1643                                                    const SelectionDAG &DAG,
1644                                                    unsigned Depth) const {
1645   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1646           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1647           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1648           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1649          "Should use MaskedValueIsZero if you don't know whether Op"
1650          " is a target node!");
1651   Known.resetAll();
1652 }
1653 
1654 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
1655                                                    KnownBits &Known,
1656                                                    const APInt &DemandedElts,
1657                                                    const SelectionDAG &DAG,
1658                                                    unsigned Depth) const {
1659   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
1660 
1661   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
1662     // The low bits are known zero if the pointer is aligned.
1663     Known.Zero.setLowBits(Log2_32(Align));
1664   }
1665 }
1666 
1667 /// This method can be implemented by targets that want to expose additional
1668 /// information about sign bits to the DAG Combiner.
1669 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1670                                                          const APInt &,
1671                                                          const SelectionDAG &,
1672                                                          unsigned Depth) const {
1673   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1674           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1675           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1676           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1677          "Should use ComputeNumSignBits if you don't know whether Op"
1678          " is a target node!");
1679   return 1;
1680 }
1681 
1682 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
1683     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
1684     TargetLoweringOpt &TLO, unsigned Depth) const {
1685   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1686           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1687           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1688           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1689          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
1690          " is a target node!");
1691   return false;
1692 }
1693 
1694 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
1695 // work with truncating build vectors and vectors with elements of less than
1696 // 8 bits.
1697 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
1698   if (!N)
1699     return false;
1700 
1701   APInt CVal;
1702   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
1703     CVal = CN->getAPIntValue();
1704   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
1705     auto *CN = BV->getConstantSplatNode();
1706     if (!CN)
1707       return false;
1708 
1709     // If this is a truncating build vector, truncate the splat value.
1710     // Otherwise, we may fail to match the expected values below.
1711     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
1712     CVal = CN->getAPIntValue();
1713     if (BVEltWidth < CVal.getBitWidth())
1714       CVal = CVal.trunc(BVEltWidth);
1715   } else {
1716     return false;
1717   }
1718 
1719   switch (getBooleanContents(N->getValueType(0))) {
1720   case UndefinedBooleanContent:
1721     return CVal[0];
1722   case ZeroOrOneBooleanContent:
1723     return CVal.isOneValue();
1724   case ZeroOrNegativeOneBooleanContent:
1725     return CVal.isAllOnesValue();
1726   }
1727 
1728   llvm_unreachable("Invalid boolean contents");
1729 }
1730 
1731 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
1732   if (!N)
1733     return false;
1734 
1735   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1736   if (!CN) {
1737     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1738     if (!BV)
1739       return false;
1740 
1741     // Only interested in constant splats, we don't care about undef
1742     // elements in identifying boolean constants and getConstantSplatNode
1743     // returns NULL if all ops are undef;
1744     CN = BV->getConstantSplatNode();
1745     if (!CN)
1746       return false;
1747   }
1748 
1749   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
1750     return !CN->getAPIntValue()[0];
1751 
1752   return CN->isNullValue();
1753 }
1754 
1755 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
1756                                        bool SExt) const {
1757   if (VT == MVT::i1)
1758     return N->isOne();
1759 
1760   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
1761   switch (Cnt) {
1762   case TargetLowering::ZeroOrOneBooleanContent:
1763     // An extended value of 1 is always true, unless its original type is i1,
1764     // in which case it will be sign extended to -1.
1765     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
1766   case TargetLowering::UndefinedBooleanContent:
1767   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1768     return N->isAllOnesValue() && SExt;
1769   }
1770   llvm_unreachable("Unexpected enumeration.");
1771 }
1772 
1773 /// This helper function of SimplifySetCC tries to optimize the comparison when
1774 /// either operand of the SetCC node is a bitwise-and instruction.
1775 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
1776                                              ISD::CondCode Cond,
1777                                              DAGCombinerInfo &DCI,
1778                                              const SDLoc &DL) const {
1779   // Match these patterns in any of their permutations:
1780   // (X & Y) == Y
1781   // (X & Y) != Y
1782   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
1783     std::swap(N0, N1);
1784 
1785   EVT OpVT = N0.getValueType();
1786   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
1787       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
1788     return SDValue();
1789 
1790   SDValue X, Y;
1791   if (N0.getOperand(0) == N1) {
1792     X = N0.getOperand(1);
1793     Y = N0.getOperand(0);
1794   } else if (N0.getOperand(1) == N1) {
1795     X = N0.getOperand(0);
1796     Y = N0.getOperand(1);
1797   } else {
1798     return SDValue();
1799   }
1800 
1801   SelectionDAG &DAG = DCI.DAG;
1802   SDValue Zero = DAG.getConstant(0, DL, OpVT);
1803   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
1804     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
1805     // Note that where Y is variable and is known to have at most one bit set
1806     // (for example, if it is Z & 1) we cannot do this; the expressions are not
1807     // equivalent when Y == 0.
1808     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1809     if (DCI.isBeforeLegalizeOps() ||
1810         isCondCodeLegal(Cond, N0.getSimpleValueType()))
1811       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
1812   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
1813     // If the target supports an 'and-not' or 'and-complement' logic operation,
1814     // try to use that to make a comparison operation more efficient.
1815     // But don't do this transform if the mask is a single bit because there are
1816     // more efficient ways to deal with that case (for example, 'bt' on x86 or
1817     // 'rlwinm' on PPC).
1818 
1819     // Bail out if the compare operand that we want to turn into a zero is
1820     // already a zero (otherwise, infinite loop).
1821     auto *YConst = dyn_cast<ConstantSDNode>(Y);
1822     if (YConst && YConst->isNullValue())
1823       return SDValue();
1824 
1825     // Transform this into: ~X & Y == 0.
1826     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
1827     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
1828     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
1829   }
1830 
1831   return SDValue();
1832 }
1833 
1834 /// Try to simplify a setcc built with the specified operands and cc. If it is
1835 /// unable to simplify it, return a null SDValue.
1836 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1837                                       ISD::CondCode Cond, bool foldBooleans,
1838                                       DAGCombinerInfo &DCI,
1839                                       const SDLoc &dl) const {
1840   SelectionDAG &DAG = DCI.DAG;
1841   EVT OpVT = N0.getValueType();
1842 
1843   // These setcc operations always fold.
1844   switch (Cond) {
1845   default: break;
1846   case ISD::SETFALSE:
1847   case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT);
1848   case ISD::SETTRUE:
1849   case ISD::SETTRUE2:  return DAG.getBoolConstant(true, dl, VT, OpVT);
1850   }
1851 
1852   // Ensure that the constant occurs on the RHS and fold constant comparisons.
1853   // TODO: Handle non-splat vector constants. All undef causes trouble.
1854   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
1855   if (isConstOrConstSplat(N0) &&
1856       (DCI.isBeforeLegalizeOps() ||
1857        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
1858     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
1859 
1860   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1861     const APInt &C1 = N1C->getAPIntValue();
1862 
1863     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1864     // equality comparison, then we're just comparing whether X itself is
1865     // zero.
1866     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
1867         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1868         N0.getOperand(1).getOpcode() == ISD::Constant) {
1869       const APInt &ShAmt
1870         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1871       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1872           ShAmt == Log2_32(N0.getValueSizeInBits())) {
1873         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1874           // (srl (ctlz x), 5) == 0  -> X != 0
1875           // (srl (ctlz x), 5) != 1  -> X != 0
1876           Cond = ISD::SETNE;
1877         } else {
1878           // (srl (ctlz x), 5) != 0  -> X == 0
1879           // (srl (ctlz x), 5) == 1  -> X == 0
1880           Cond = ISD::SETEQ;
1881         }
1882         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
1883         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1884                             Zero, Cond);
1885       }
1886     }
1887 
1888     SDValue CTPOP = N0;
1889     // Look through truncs that don't change the value of a ctpop.
1890     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1891       CTPOP = N0.getOperand(0);
1892 
1893     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1894         (N0 == CTPOP ||
1895          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
1896       EVT CTVT = CTPOP.getValueType();
1897       SDValue CTOp = CTPOP.getOperand(0);
1898 
1899       // (ctpop x) u< 2 -> (x & x-1) == 0
1900       // (ctpop x) u> 1 -> (x & x-1) != 0
1901       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1902         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1903                                   DAG.getConstant(1, dl, CTVT));
1904         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1905         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1906         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
1907       }
1908 
1909       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1910     }
1911 
1912     // (zext x) == C --> x == (trunc C)
1913     // (sext x) == C --> x == (trunc C)
1914     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1915         DCI.isBeforeLegalize() && N0->hasOneUse()) {
1916       unsigned MinBits = N0.getValueSizeInBits();
1917       SDValue PreExt;
1918       bool Signed = false;
1919       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1920         // ZExt
1921         MinBits = N0->getOperand(0).getValueSizeInBits();
1922         PreExt = N0->getOperand(0);
1923       } else if (N0->getOpcode() == ISD::AND) {
1924         // DAGCombine turns costly ZExts into ANDs
1925         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1926           if ((C->getAPIntValue()+1).isPowerOf2()) {
1927             MinBits = C->getAPIntValue().countTrailingOnes();
1928             PreExt = N0->getOperand(0);
1929           }
1930       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
1931         // SExt
1932         MinBits = N0->getOperand(0).getValueSizeInBits();
1933         PreExt = N0->getOperand(0);
1934         Signed = true;
1935       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
1936         // ZEXTLOAD / SEXTLOAD
1937         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1938           MinBits = LN0->getMemoryVT().getSizeInBits();
1939           PreExt = N0;
1940         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
1941           Signed = true;
1942           MinBits = LN0->getMemoryVT().getSizeInBits();
1943           PreExt = N0;
1944         }
1945       }
1946 
1947       // Figure out how many bits we need to preserve this constant.
1948       unsigned ReqdBits = Signed ?
1949         C1.getBitWidth() - C1.getNumSignBits() + 1 :
1950         C1.getActiveBits();
1951 
1952       // Make sure we're not losing bits from the constant.
1953       if (MinBits > 0 &&
1954           MinBits < C1.getBitWidth() &&
1955           MinBits >= ReqdBits) {
1956         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1957         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1958           // Will get folded away.
1959           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
1960           if (MinBits == 1 && C1 == 1)
1961             // Invert the condition.
1962             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
1963                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1964           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
1965           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1966         }
1967 
1968         // If truncating the setcc operands is not desirable, we can still
1969         // simplify the expression in some cases:
1970         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
1971         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
1972         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
1973         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
1974         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
1975         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
1976         SDValue TopSetCC = N0->getOperand(0);
1977         unsigned N0Opc = N0->getOpcode();
1978         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
1979         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
1980             TopSetCC.getOpcode() == ISD::SETCC &&
1981             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
1982             (isConstFalseVal(N1C) ||
1983              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
1984 
1985           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
1986                          (!N1C->isNullValue() && Cond == ISD::SETNE);
1987 
1988           if (!Inverse)
1989             return TopSetCC;
1990 
1991           ISD::CondCode InvCond = ISD::getSetCCInverse(
1992               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
1993               TopSetCC.getOperand(0).getValueType().isInteger());
1994           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
1995                                       TopSetCC.getOperand(1),
1996                                       InvCond);
1997         }
1998       }
1999     }
2000 
2001     // If the LHS is '(and load, const)', the RHS is 0, the test is for
2002     // equality or unsigned, and all 1 bits of the const are in the same
2003     // partial word, see if we can shorten the load.
2004     if (DCI.isBeforeLegalize() &&
2005         !ISD::isSignedIntSetCC(Cond) &&
2006         N0.getOpcode() == ISD::AND && C1 == 0 &&
2007         N0.getNode()->hasOneUse() &&
2008         isa<LoadSDNode>(N0.getOperand(0)) &&
2009         N0.getOperand(0).getNode()->hasOneUse() &&
2010         isa<ConstantSDNode>(N0.getOperand(1))) {
2011       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2012       APInt bestMask;
2013       unsigned bestWidth = 0, bestOffset = 0;
2014       if (!Lod->isVolatile() && Lod->isUnindexed()) {
2015         unsigned origWidth = N0.getValueSizeInBits();
2016         unsigned maskWidth = origWidth;
2017         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2018         // 8 bits, but have to be careful...
2019         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2020           origWidth = Lod->getMemoryVT().getSizeInBits();
2021         const APInt &Mask =
2022           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2023         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2024           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2025           for (unsigned offset=0; offset<origWidth/width; offset++) {
2026             if (Mask.isSubsetOf(newMask)) {
2027               if (DAG.getDataLayout().isLittleEndian())
2028                 bestOffset = (uint64_t)offset * (width/8);
2029               else
2030                 bestOffset = (origWidth/width - offset - 1) * (width/8);
2031               bestMask = Mask.lshr(offset * (width/8) * 8);
2032               bestWidth = width;
2033               break;
2034             }
2035             newMask <<= width;
2036           }
2037         }
2038       }
2039       if (bestWidth) {
2040         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2041         if (newVT.isRound()) {
2042           EVT PtrType = Lod->getOperand(1).getValueType();
2043           SDValue Ptr = Lod->getBasePtr();
2044           if (bestOffset != 0)
2045             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2046                               DAG.getConstant(bestOffset, dl, PtrType));
2047           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2048           SDValue NewLoad = DAG.getLoad(
2049               newVT, dl, Lod->getChain(), Ptr,
2050               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
2051           return DAG.getSetCC(dl, VT,
2052                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2053                                       DAG.getConstant(bestMask.trunc(bestWidth),
2054                                                       dl, newVT)),
2055                               DAG.getConstant(0LL, dl, newVT), Cond);
2056         }
2057       }
2058     }
2059 
2060     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2061     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2062       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
2063 
2064       // If the comparison constant has bits in the upper part, the
2065       // zero-extended value could never match.
2066       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2067                                               C1.getBitWidth() - InSize))) {
2068         switch (Cond) {
2069         case ISD::SETUGT:
2070         case ISD::SETUGE:
2071         case ISD::SETEQ:
2072           return DAG.getConstant(0, dl, VT);
2073         case ISD::SETULT:
2074         case ISD::SETULE:
2075         case ISD::SETNE:
2076           return DAG.getConstant(1, dl, VT);
2077         case ISD::SETGT:
2078         case ISD::SETGE:
2079           // True if the sign bit of C1 is set.
2080           return DAG.getConstant(C1.isNegative(), dl, VT);
2081         case ISD::SETLT:
2082         case ISD::SETLE:
2083           // True if the sign bit of C1 isn't set.
2084           return DAG.getConstant(C1.isNonNegative(), dl, VT);
2085         default:
2086           break;
2087         }
2088       }
2089 
2090       // Otherwise, we can perform the comparison with the low bits.
2091       switch (Cond) {
2092       case ISD::SETEQ:
2093       case ISD::SETNE:
2094       case ISD::SETUGT:
2095       case ISD::SETUGE:
2096       case ISD::SETULT:
2097       case ISD::SETULE: {
2098         EVT newVT = N0.getOperand(0).getValueType();
2099         if (DCI.isBeforeLegalizeOps() ||
2100             (isOperationLegal(ISD::SETCC, newVT) &&
2101              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
2102           EVT NewSetCCVT =
2103               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
2104           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
2105 
2106           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
2107                                           NewConst, Cond);
2108           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
2109         }
2110         break;
2111       }
2112       default:
2113         break;   // todo, be more careful with signed comparisons
2114       }
2115     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2116                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2117       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2118       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2119       EVT ExtDstTy = N0.getValueType();
2120       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2121 
2122       // If the constant doesn't fit into the number of bits for the source of
2123       // the sign extension, it is impossible for both sides to be equal.
2124       if (C1.getMinSignedBits() > ExtSrcTyBits)
2125         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
2126 
2127       SDValue ZextOp;
2128       EVT Op0Ty = N0.getOperand(0).getValueType();
2129       if (Op0Ty == ExtSrcTy) {
2130         ZextOp = N0.getOperand(0);
2131       } else {
2132         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2133         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2134                               DAG.getConstant(Imm, dl, Op0Ty));
2135       }
2136       if (!DCI.isCalledByLegalizer())
2137         DCI.AddToWorklist(ZextOp.getNode());
2138       // Otherwise, make this a use of a zext.
2139       return DAG.getSetCC(dl, VT, ZextOp,
2140                           DAG.getConstant(C1 & APInt::getLowBitsSet(
2141                                                               ExtDstTyBits,
2142                                                               ExtSrcTyBits),
2143                                           dl, ExtDstTy),
2144                           Cond);
2145     } else if ((N1C->isNullValue() || N1C->isOne()) &&
2146                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2147       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2148       if (N0.getOpcode() == ISD::SETCC &&
2149           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2150         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
2151         if (TrueWhenTrue)
2152           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2153         // Invert the condition.
2154         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2155         CC = ISD::getSetCCInverse(CC,
2156                                   N0.getOperand(0).getValueType().isInteger());
2157         if (DCI.isBeforeLegalizeOps() ||
2158             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
2159           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2160       }
2161 
2162       if ((N0.getOpcode() == ISD::XOR ||
2163            (N0.getOpcode() == ISD::AND &&
2164             N0.getOperand(0).getOpcode() == ISD::XOR &&
2165             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2166           isa<ConstantSDNode>(N0.getOperand(1)) &&
2167           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
2168         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2169         // can only do this if the top bits are known zero.
2170         unsigned BitWidth = N0.getValueSizeInBits();
2171         if (DAG.MaskedValueIsZero(N0,
2172                                   APInt::getHighBitsSet(BitWidth,
2173                                                         BitWidth-1))) {
2174           // Okay, get the un-inverted input value.
2175           SDValue Val;
2176           if (N0.getOpcode() == ISD::XOR) {
2177             Val = N0.getOperand(0);
2178           } else {
2179             assert(N0.getOpcode() == ISD::AND &&
2180                     N0.getOperand(0).getOpcode() == ISD::XOR);
2181             // ((X^1)&1)^1 -> X & 1
2182             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2183                               N0.getOperand(0).getOperand(0),
2184                               N0.getOperand(1));
2185           }
2186 
2187           return DAG.getSetCC(dl, VT, Val, N1,
2188                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2189         }
2190       } else if (N1C->isOne() &&
2191                  (VT == MVT::i1 ||
2192                   getBooleanContents(N0->getValueType(0)) ==
2193                       ZeroOrOneBooleanContent)) {
2194         SDValue Op0 = N0;
2195         if (Op0.getOpcode() == ISD::TRUNCATE)
2196           Op0 = Op0.getOperand(0);
2197 
2198         if ((Op0.getOpcode() == ISD::XOR) &&
2199             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2200             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2201           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2202           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2203           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2204                               Cond);
2205         }
2206         if (Op0.getOpcode() == ISD::AND &&
2207             isa<ConstantSDNode>(Op0.getOperand(1)) &&
2208             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
2209           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2210           if (Op0.getValueType().bitsGT(VT))
2211             Op0 = DAG.getNode(ISD::AND, dl, VT,
2212                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2213                           DAG.getConstant(1, dl, VT));
2214           else if (Op0.getValueType().bitsLT(VT))
2215             Op0 = DAG.getNode(ISD::AND, dl, VT,
2216                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2217                         DAG.getConstant(1, dl, VT));
2218 
2219           return DAG.getSetCC(dl, VT, Op0,
2220                               DAG.getConstant(0, dl, Op0.getValueType()),
2221                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2222         }
2223         if (Op0.getOpcode() == ISD::AssertZext &&
2224             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
2225           return DAG.getSetCC(dl, VT, Op0,
2226                               DAG.getConstant(0, dl, Op0.getValueType()),
2227                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2228       }
2229     }
2230   }
2231 
2232   // These simplifications apply to splat vectors as well.
2233   // TODO: Handle more splat vector cases.
2234   if (auto *N1C = isConstOrConstSplat(N1)) {
2235     const APInt &C1 = N1C->getAPIntValue();
2236 
2237     APInt MinVal, MaxVal;
2238     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
2239     if (ISD::isSignedIntSetCC(Cond)) {
2240       MinVal = APInt::getSignedMinValue(OperandBitSize);
2241       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2242     } else {
2243       MinVal = APInt::getMinValue(OperandBitSize);
2244       MaxVal = APInt::getMaxValue(OperandBitSize);
2245     }
2246 
2247     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2248     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2249       // X >= MIN --> true
2250       if (C1 == MinVal)
2251         return DAG.getBoolConstant(true, dl, VT, OpVT);
2252 
2253       if (!VT.isVector()) { // TODO: Support this for vectors.
2254         // X >= C0 --> X > (C0 - 1)
2255         APInt C = C1 - 1;
2256         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
2257         if ((DCI.isBeforeLegalizeOps() ||
2258              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2259             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2260                                   isLegalICmpImmediate(C.getSExtValue())))) {
2261           return DAG.getSetCC(dl, VT, N0,
2262                               DAG.getConstant(C, dl, N1.getValueType()),
2263                               NewCC);
2264         }
2265       }
2266     }
2267 
2268     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2269       // X <= MAX --> true
2270       if (C1 == MaxVal)
2271         return DAG.getBoolConstant(true, dl, VT, OpVT);
2272 
2273       // X <= C0 --> X < (C0 + 1)
2274       if (!VT.isVector()) { // TODO: Support this for vectors.
2275         APInt C = C1 + 1;
2276         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
2277         if ((DCI.isBeforeLegalizeOps() ||
2278              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2279             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2280                                   isLegalICmpImmediate(C.getSExtValue())))) {
2281           return DAG.getSetCC(dl, VT, N0,
2282                               DAG.getConstant(C, dl, N1.getValueType()),
2283                               NewCC);
2284         }
2285       }
2286     }
2287 
2288     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
2289       if (C1 == MinVal)
2290         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
2291 
2292       // TODO: Support this for vectors after legalize ops.
2293       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2294         // Canonicalize setlt X, Max --> setne X, Max
2295         if (C1 == MaxVal)
2296           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2297 
2298         // If we have setult X, 1, turn it into seteq X, 0
2299         if (C1 == MinVal+1)
2300           return DAG.getSetCC(dl, VT, N0,
2301                               DAG.getConstant(MinVal, dl, N0.getValueType()),
2302                               ISD::SETEQ);
2303       }
2304     }
2305 
2306     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
2307       if (C1 == MaxVal)
2308         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
2309 
2310       // TODO: Support this for vectors after legalize ops.
2311       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2312         // Canonicalize setgt X, Min --> setne X, Min
2313         if (C1 == MinVal)
2314           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2315 
2316         // If we have setugt X, Max-1, turn it into seteq X, Max
2317         if (C1 == MaxVal-1)
2318           return DAG.getSetCC(dl, VT, N0,
2319                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
2320                               ISD::SETEQ);
2321       }
2322     }
2323 
2324     // If we have "setcc X, C0", check to see if we can shrink the immediate
2325     // by changing cc.
2326     // TODO: Support this for vectors after legalize ops.
2327     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2328       // SETUGT X, SINTMAX  -> SETLT X, 0
2329       if (Cond == ISD::SETUGT &&
2330           C1 == APInt::getSignedMaxValue(OperandBitSize))
2331         return DAG.getSetCC(dl, VT, N0,
2332                             DAG.getConstant(0, dl, N1.getValueType()),
2333                             ISD::SETLT);
2334 
2335       // SETULT X, SINTMIN  -> SETGT X, -1
2336       if (Cond == ISD::SETULT &&
2337           C1 == APInt::getSignedMinValue(OperandBitSize)) {
2338         SDValue ConstMinusOne =
2339             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
2340                             N1.getValueType());
2341         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2342       }
2343     }
2344   }
2345 
2346   // Back to non-vector simplifications.
2347   // TODO: Can we do these for vector splats?
2348   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2349     const APInt &C1 = N1C->getAPIntValue();
2350 
2351     // Fold bit comparisons when we can.
2352     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2353         (VT == N0.getValueType() ||
2354          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2355         N0.getOpcode() == ISD::AND) {
2356       auto &DL = DAG.getDataLayout();
2357       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2358         EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2359                                        !DCI.isBeforeLegalize());
2360         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2361           // Perform the xform if the AND RHS is a single bit.
2362           if (AndRHS->getAPIntValue().isPowerOf2()) {
2363             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2364                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2365                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
2366                                    ShiftTy)));
2367           }
2368         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2369           // (X & 8) == 8  -->  (X & 8) >> 3
2370           // Perform the xform if C1 is a single bit.
2371           if (C1.isPowerOf2()) {
2372             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2373                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2374                                       DAG.getConstant(C1.logBase2(), dl,
2375                                                       ShiftTy)));
2376           }
2377         }
2378       }
2379     }
2380 
2381     if (C1.getMinSignedBits() <= 64 &&
2382         !isLegalICmpImmediate(C1.getSExtValue())) {
2383       // (X & -256) == 256 -> (X >> 8) == 1
2384       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2385           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
2386         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2387           const APInt &AndRHSC = AndRHS->getAPIntValue();
2388           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
2389             unsigned ShiftBits = AndRHSC.countTrailingZeros();
2390             auto &DL = DAG.getDataLayout();
2391             EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2392                                            !DCI.isBeforeLegalize());
2393             EVT CmpTy = N0.getValueType();
2394             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
2395                                         DAG.getConstant(ShiftBits, dl,
2396                                                         ShiftTy));
2397             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
2398             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
2399           }
2400         }
2401       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
2402                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
2403         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
2404         // X <  0x100000000 -> (X >> 32) <  1
2405         // X >= 0x100000000 -> (X >> 32) >= 1
2406         // X <= 0x0ffffffff -> (X >> 32) <  1
2407         // X >  0x0ffffffff -> (X >> 32) >= 1
2408         unsigned ShiftBits;
2409         APInt NewC = C1;
2410         ISD::CondCode NewCond = Cond;
2411         if (AdjOne) {
2412           ShiftBits = C1.countTrailingOnes();
2413           NewC = NewC + 1;
2414           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2415         } else {
2416           ShiftBits = C1.countTrailingZeros();
2417         }
2418         NewC.lshrInPlace(ShiftBits);
2419         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
2420           isLegalICmpImmediate(NewC.getSExtValue())) {
2421           auto &DL = DAG.getDataLayout();
2422           EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2423                                          !DCI.isBeforeLegalize());
2424           EVT CmpTy = N0.getValueType();
2425           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
2426                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
2427           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
2428           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
2429         }
2430       }
2431     }
2432   }
2433 
2434   if (isa<ConstantFPSDNode>(N0.getNode())) {
2435     // Constant fold or commute setcc.
2436     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2437     if (O.getNode()) return O;
2438   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2439     // If the RHS of an FP comparison is a constant, simplify it away in
2440     // some cases.
2441     if (CFP->getValueAPF().isNaN()) {
2442       // If an operand is known to be a nan, we can fold it.
2443       switch (ISD::getUnorderedFlavor(Cond)) {
2444       default: llvm_unreachable("Unknown flavor!");
2445       case 0:  // Known false.
2446         return DAG.getBoolConstant(false, dl, VT, OpVT);
2447       case 1:  // Known true.
2448         return DAG.getBoolConstant(true, dl, VT, OpVT);
2449       case 2:  // Undefined.
2450         return DAG.getUNDEF(VT);
2451       }
2452     }
2453 
2454     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2455     // constant if knowing that the operand is non-nan is enough.  We prefer to
2456     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2457     // materialize 0.0.
2458     if (Cond == ISD::SETO || Cond == ISD::SETUO)
2459       return DAG.getSetCC(dl, VT, N0, N0, Cond);
2460 
2461     // setcc (fneg x), C -> setcc swap(pred) x, -C
2462     if (N0.getOpcode() == ISD::FNEG) {
2463       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
2464       if (DCI.isBeforeLegalizeOps() ||
2465           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
2466         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
2467         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
2468       }
2469     }
2470 
2471     // If the condition is not legal, see if we can find an equivalent one
2472     // which is legal.
2473     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
2474       // If the comparison was an awkward floating-point == or != and one of
2475       // the comparison operands is infinity or negative infinity, convert the
2476       // condition to a less-awkward <= or >=.
2477       if (CFP->getValueAPF().isInfinity()) {
2478         if (CFP->getValueAPF().isNegative()) {
2479           if (Cond == ISD::SETOEQ &&
2480               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2481             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2482           if (Cond == ISD::SETUEQ &&
2483               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2484             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2485           if (Cond == ISD::SETUNE &&
2486               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2487             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2488           if (Cond == ISD::SETONE &&
2489               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2490             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2491         } else {
2492           if (Cond == ISD::SETOEQ &&
2493               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2494             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2495           if (Cond == ISD::SETUEQ &&
2496               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2497             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2498           if (Cond == ISD::SETUNE &&
2499               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2500             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2501           if (Cond == ISD::SETONE &&
2502               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2503             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2504         }
2505       }
2506     }
2507   }
2508 
2509   if (N0 == N1) {
2510     // The sext(setcc()) => setcc() optimization relies on the appropriate
2511     // constant being emitted.
2512 
2513     bool EqTrue = ISD::isTrueWhenEqual(Cond);
2514 
2515     // We can always fold X == X for integer setcc's.
2516     if (N0.getValueType().isInteger())
2517       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2518 
2519     unsigned UOF = ISD::getUnorderedFlavor(Cond);
2520     if (UOF == 2)   // FP operators that are undefined on NaNs.
2521       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2522     if (UOF == unsigned(EqTrue))
2523       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2524     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2525     // if it is not already.
2526     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2527     if (NewCond != Cond &&
2528         (DCI.isBeforeLegalizeOps() ||
2529          isCondCodeLegal(NewCond, N0.getSimpleValueType())))
2530       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2531   }
2532 
2533   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2534       N0.getValueType().isInteger()) {
2535     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2536         N0.getOpcode() == ISD::XOR) {
2537       // Simplify (X+Y) == (X+Z) -->  Y == Z
2538       if (N0.getOpcode() == N1.getOpcode()) {
2539         if (N0.getOperand(0) == N1.getOperand(0))
2540           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2541         if (N0.getOperand(1) == N1.getOperand(1))
2542           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2543         if (isCommutativeBinOp(N0.getOpcode())) {
2544           // If X op Y == Y op X, try other combinations.
2545           if (N0.getOperand(0) == N1.getOperand(1))
2546             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2547                                 Cond);
2548           if (N0.getOperand(1) == N1.getOperand(0))
2549             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2550                                 Cond);
2551         }
2552       }
2553 
2554       // If RHS is a legal immediate value for a compare instruction, we need
2555       // to be careful about increasing register pressure needlessly.
2556       bool LegalRHSImm = false;
2557 
2558       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2559         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2560           // Turn (X+C1) == C2 --> X == C2-C1
2561           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2562             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2563                                 DAG.getConstant(RHSC->getAPIntValue()-
2564                                                 LHSR->getAPIntValue(),
2565                                 dl, N0.getValueType()), Cond);
2566           }
2567 
2568           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2569           if (N0.getOpcode() == ISD::XOR)
2570             // If we know that all of the inverted bits are zero, don't bother
2571             // performing the inversion.
2572             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2573               return
2574                 DAG.getSetCC(dl, VT, N0.getOperand(0),
2575                              DAG.getConstant(LHSR->getAPIntValue() ^
2576                                                RHSC->getAPIntValue(),
2577                                              dl, N0.getValueType()),
2578                              Cond);
2579         }
2580 
2581         // Turn (C1-X) == C2 --> X == C1-C2
2582         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2583           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2584             return
2585               DAG.getSetCC(dl, VT, N0.getOperand(1),
2586                            DAG.getConstant(SUBC->getAPIntValue() -
2587                                              RHSC->getAPIntValue(),
2588                                            dl, N0.getValueType()),
2589                            Cond);
2590           }
2591         }
2592 
2593         // Could RHSC fold directly into a compare?
2594         if (RHSC->getValueType(0).getSizeInBits() <= 64)
2595           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2596       }
2597 
2598       // Simplify (X+Z) == X -->  Z == 0
2599       // Don't do this if X is an immediate that can fold into a cmp
2600       // instruction and X+Z has other uses. It could be an induction variable
2601       // chain, and the transform would increase register pressure.
2602       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2603         if (N0.getOperand(0) == N1)
2604           return DAG.getSetCC(dl, VT, N0.getOperand(1),
2605                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
2606         if (N0.getOperand(1) == N1) {
2607           if (isCommutativeBinOp(N0.getOpcode()))
2608             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2609                                 DAG.getConstant(0, dl, N0.getValueType()),
2610                                 Cond);
2611           if (N0.getNode()->hasOneUse()) {
2612             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2613             auto &DL = DAG.getDataLayout();
2614             // (Z-X) == X  --> Z == X<<1
2615             SDValue SH = DAG.getNode(
2616                 ISD::SHL, dl, N1.getValueType(), N1,
2617                 DAG.getConstant(1, dl,
2618                                 getShiftAmountTy(N1.getValueType(), DL,
2619                                                  !DCI.isBeforeLegalize())));
2620             if (!DCI.isCalledByLegalizer())
2621               DCI.AddToWorklist(SH.getNode());
2622             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2623           }
2624         }
2625       }
2626     }
2627 
2628     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2629         N1.getOpcode() == ISD::XOR) {
2630       // Simplify  X == (X+Z) -->  Z == 0
2631       if (N1.getOperand(0) == N0)
2632         return DAG.getSetCC(dl, VT, N1.getOperand(1),
2633                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
2634       if (N1.getOperand(1) == N0) {
2635         if (isCommutativeBinOp(N1.getOpcode()))
2636           return DAG.getSetCC(dl, VT, N1.getOperand(0),
2637                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
2638         if (N1.getNode()->hasOneUse()) {
2639           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2640           auto &DL = DAG.getDataLayout();
2641           // X == (Z-X)  --> X<<1 == Z
2642           SDValue SH = DAG.getNode(
2643               ISD::SHL, dl, N1.getValueType(), N0,
2644               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL,
2645                                                       !DCI.isBeforeLegalize())));
2646           if (!DCI.isCalledByLegalizer())
2647             DCI.AddToWorklist(SH.getNode());
2648           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2649         }
2650       }
2651     }
2652 
2653     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
2654       return V;
2655   }
2656 
2657   // Fold away ALL boolean setcc's.
2658   SDValue Temp;
2659   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
2660     EVT OpVT = N0.getValueType();
2661     switch (Cond) {
2662     default: llvm_unreachable("Unknown integer setcc!");
2663     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2664       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
2665       N0 = DAG.getNOT(dl, Temp, OpVT);
2666       if (!DCI.isCalledByLegalizer())
2667         DCI.AddToWorklist(Temp.getNode());
2668       break;
2669     case ISD::SETNE:  // X != Y   -->  (X^Y)
2670       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
2671       break;
2672     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2673     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2674       Temp = DAG.getNOT(dl, N0, OpVT);
2675       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
2676       if (!DCI.isCalledByLegalizer())
2677         DCI.AddToWorklist(Temp.getNode());
2678       break;
2679     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2680     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2681       Temp = DAG.getNOT(dl, N1, OpVT);
2682       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
2683       if (!DCI.isCalledByLegalizer())
2684         DCI.AddToWorklist(Temp.getNode());
2685       break;
2686     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2687     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2688       Temp = DAG.getNOT(dl, N0, OpVT);
2689       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
2690       if (!DCI.isCalledByLegalizer())
2691         DCI.AddToWorklist(Temp.getNode());
2692       break;
2693     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2694     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2695       Temp = DAG.getNOT(dl, N1, OpVT);
2696       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
2697       break;
2698     }
2699     if (VT.getScalarType() != MVT::i1) {
2700       if (!DCI.isCalledByLegalizer())
2701         DCI.AddToWorklist(N0.getNode());
2702       // FIXME: If running after legalize, we probably can't do this.
2703       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
2704       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
2705     }
2706     return N0;
2707   }
2708 
2709   // Could not fold it.
2710   return SDValue();
2711 }
2712 
2713 /// Returns true (and the GlobalValue and the offset) if the node is a
2714 /// GlobalAddress + offset.
2715 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2716                                     int64_t &Offset) const {
2717   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
2718     GA = GASD->getGlobal();
2719     Offset += GASD->getOffset();
2720     return true;
2721   }
2722 
2723   if (N->getOpcode() == ISD::ADD) {
2724     SDValue N1 = N->getOperand(0);
2725     SDValue N2 = N->getOperand(1);
2726     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2727       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
2728         Offset += V->getSExtValue();
2729         return true;
2730       }
2731     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2732       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
2733         Offset += V->getSExtValue();
2734         return true;
2735       }
2736     }
2737   }
2738 
2739   return false;
2740 }
2741 
2742 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
2743                                           DAGCombinerInfo &DCI) const {
2744   // Default implementation: no optimization.
2745   return SDValue();
2746 }
2747 
2748 //===----------------------------------------------------------------------===//
2749 //  Inline Assembler Implementation Methods
2750 //===----------------------------------------------------------------------===//
2751 
2752 TargetLowering::ConstraintType
2753 TargetLowering::getConstraintType(StringRef Constraint) const {
2754   unsigned S = Constraint.size();
2755 
2756   if (S == 1) {
2757     switch (Constraint[0]) {
2758     default: break;
2759     case 'r': return C_RegisterClass;
2760     case 'm':    // memory
2761     case 'o':    // offsetable
2762     case 'V':    // not offsetable
2763       return C_Memory;
2764     case 'i':    // Simple Integer or Relocatable Constant
2765     case 'n':    // Simple Integer
2766     case 'E':    // Floating Point Constant
2767     case 'F':    // Floating Point Constant
2768     case 's':    // Relocatable Constant
2769     case 'p':    // Address.
2770     case 'X':    // Allow ANY value.
2771     case 'I':    // Target registers.
2772     case 'J':
2773     case 'K':
2774     case 'L':
2775     case 'M':
2776     case 'N':
2777     case 'O':
2778     case 'P':
2779     case '<':
2780     case '>':
2781       return C_Other;
2782     }
2783   }
2784 
2785   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
2786     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
2787       return C_Memory;
2788     return C_Register;
2789   }
2790   return C_Unknown;
2791 }
2792 
2793 /// Try to replace an X constraint, which matches anything, with another that
2794 /// has more specific requirements based on the type of the corresponding
2795 /// operand.
2796 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2797   if (ConstraintVT.isInteger())
2798     return "r";
2799   if (ConstraintVT.isFloatingPoint())
2800     return "f";      // works for many targets
2801   return nullptr;
2802 }
2803 
2804 /// Lower the specified operand into the Ops vector.
2805 /// If it is invalid, don't add anything to Ops.
2806 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2807                                                   std::string &Constraint,
2808                                                   std::vector<SDValue> &Ops,
2809                                                   SelectionDAG &DAG) const {
2810 
2811   if (Constraint.length() > 1) return;
2812 
2813   char ConstraintLetter = Constraint[0];
2814   switch (ConstraintLetter) {
2815   default: break;
2816   case 'X':     // Allows any operand; labels (basic block) use this.
2817     if (Op.getOpcode() == ISD::BasicBlock) {
2818       Ops.push_back(Op);
2819       return;
2820     }
2821     LLVM_FALLTHROUGH;
2822   case 'i':    // Simple Integer or Relocatable Constant
2823   case 'n':    // Simple Integer
2824   case 's': {  // Relocatable Constant
2825     // These operands are interested in values of the form (GV+C), where C may
2826     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2827     // is possible and fine if either GV or C are missing.
2828     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2829     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2830 
2831     // If we have "(add GV, C)", pull out GV/C
2832     if (Op.getOpcode() == ISD::ADD) {
2833       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2834       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2835       if (!C || !GA) {
2836         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2837         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2838       }
2839       if (!C || !GA) {
2840         C = nullptr;
2841         GA = nullptr;
2842       }
2843     }
2844 
2845     // If we find a valid operand, map to the TargetXXX version so that the
2846     // value itself doesn't get selected.
2847     if (GA) {   // Either &GV   or   &GV+C
2848       if (ConstraintLetter != 'n') {
2849         int64_t Offs = GA->getOffset();
2850         if (C) Offs += C->getZExtValue();
2851         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2852                                                  C ? SDLoc(C) : SDLoc(),
2853                                                  Op.getValueType(), Offs));
2854       }
2855       return;
2856     }
2857     if (C) {   // just C, no GV.
2858       // Simple constants are not allowed for 's'.
2859       if (ConstraintLetter != 's') {
2860         // gcc prints these as sign extended.  Sign extend value to 64 bits
2861         // now; without this it would get ZExt'd later in
2862         // ScheduleDAGSDNodes::EmitNode, which is very generic.
2863         Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
2864                                             SDLoc(C), MVT::i64));
2865       }
2866       return;
2867     }
2868     break;
2869   }
2870   }
2871 }
2872 
2873 std::pair<unsigned, const TargetRegisterClass *>
2874 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
2875                                              StringRef Constraint,
2876                                              MVT VT) const {
2877   if (Constraint.empty() || Constraint[0] != '{')
2878     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
2879   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2880 
2881   // Remove the braces from around the name.
2882   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2883 
2884   std::pair<unsigned, const TargetRegisterClass*> R =
2885     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
2886 
2887   // Figure out which register class contains this reg.
2888   for (const TargetRegisterClass *RC : RI->regclasses()) {
2889     // If none of the value types for this register class are valid, we
2890     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2891     if (!isLegalRC(*RI, *RC))
2892       continue;
2893 
2894     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2895          I != E; ++I) {
2896       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
2897         std::pair<unsigned, const TargetRegisterClass*> S =
2898           std::make_pair(*I, RC);
2899 
2900         // If this register class has the requested value type, return it,
2901         // otherwise keep searching and return the first class found
2902         // if no other is found which explicitly has the requested type.
2903         if (RI->isTypeLegalForClass(*RC, VT))
2904           return S;
2905         if (!R.second)
2906           R = S;
2907       }
2908     }
2909   }
2910 
2911   return R;
2912 }
2913 
2914 //===----------------------------------------------------------------------===//
2915 // Constraint Selection.
2916 
2917 /// Return true of this is an input operand that is a matching constraint like
2918 /// "4".
2919 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2920   assert(!ConstraintCode.empty() && "No known constraint!");
2921   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2922 }
2923 
2924 /// If this is an input matching constraint, this method returns the output
2925 /// operand it matches.
2926 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2927   assert(!ConstraintCode.empty() && "No known constraint!");
2928   return atoi(ConstraintCode.c_str());
2929 }
2930 
2931 /// Split up the constraint string from the inline assembly value into the
2932 /// specific constraints and their prefixes, and also tie in the associated
2933 /// operand values.
2934 /// If this returns an empty vector, and if the constraint string itself
2935 /// isn't empty, there was an error parsing.
2936 TargetLowering::AsmOperandInfoVector
2937 TargetLowering::ParseConstraints(const DataLayout &DL,
2938                                  const TargetRegisterInfo *TRI,
2939                                  ImmutableCallSite CS) const {
2940   /// Information about all of the constraints.
2941   AsmOperandInfoVector ConstraintOperands;
2942   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2943   unsigned maCount = 0; // Largest number of multiple alternative constraints.
2944 
2945   // Do a prepass over the constraints, canonicalizing them, and building up the
2946   // ConstraintOperands list.
2947   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2948   unsigned ResNo = 0;   // ResNo - The result number of the next output.
2949 
2950   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2951     ConstraintOperands.emplace_back(std::move(CI));
2952     AsmOperandInfo &OpInfo = ConstraintOperands.back();
2953 
2954     // Update multiple alternative constraint count.
2955     if (OpInfo.multipleAlternatives.size() > maCount)
2956       maCount = OpInfo.multipleAlternatives.size();
2957 
2958     OpInfo.ConstraintVT = MVT::Other;
2959 
2960     // Compute the value type for each operand.
2961     switch (OpInfo.Type) {
2962     case InlineAsm::isOutput:
2963       // Indirect outputs just consume an argument.
2964       if (OpInfo.isIndirect) {
2965         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2966         break;
2967       }
2968 
2969       // The return value of the call is this value.  As such, there is no
2970       // corresponding argument.
2971       assert(!CS.getType()->isVoidTy() &&
2972              "Bad inline asm!");
2973       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2974         OpInfo.ConstraintVT =
2975             getSimpleValueType(DL, STy->getElementType(ResNo));
2976       } else {
2977         assert(ResNo == 0 && "Asm only has one result!");
2978         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
2979       }
2980       ++ResNo;
2981       break;
2982     case InlineAsm::isInput:
2983       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2984       break;
2985     case InlineAsm::isClobber:
2986       // Nothing to do.
2987       break;
2988     }
2989 
2990     if (OpInfo.CallOperandVal) {
2991       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2992       if (OpInfo.isIndirect) {
2993         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2994         if (!PtrTy)
2995           report_fatal_error("Indirect operand for inline asm not a pointer!");
2996         OpTy = PtrTy->getElementType();
2997       }
2998 
2999       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
3000       if (StructType *STy = dyn_cast<StructType>(OpTy))
3001         if (STy->getNumElements() == 1)
3002           OpTy = STy->getElementType(0);
3003 
3004       // If OpTy is not a single value, it may be a struct/union that we
3005       // can tile with integers.
3006       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
3007         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
3008         switch (BitSize) {
3009         default: break;
3010         case 1:
3011         case 8:
3012         case 16:
3013         case 32:
3014         case 64:
3015         case 128:
3016           OpInfo.ConstraintVT =
3017             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
3018           break;
3019         }
3020       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
3021         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
3022         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
3023       } else {
3024         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
3025       }
3026     }
3027   }
3028 
3029   // If we have multiple alternative constraints, select the best alternative.
3030   if (!ConstraintOperands.empty()) {
3031     if (maCount) {
3032       unsigned bestMAIndex = 0;
3033       int bestWeight = -1;
3034       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
3035       int weight = -1;
3036       unsigned maIndex;
3037       // Compute the sums of the weights for each alternative, keeping track
3038       // of the best (highest weight) one so far.
3039       for (maIndex = 0; maIndex < maCount; ++maIndex) {
3040         int weightSum = 0;
3041         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3042             cIndex != eIndex; ++cIndex) {
3043           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
3044           if (OpInfo.Type == InlineAsm::isClobber)
3045             continue;
3046 
3047           // If this is an output operand with a matching input operand,
3048           // look up the matching input. If their types mismatch, e.g. one
3049           // is an integer, the other is floating point, or their sizes are
3050           // different, flag it as an maCantMatch.
3051           if (OpInfo.hasMatchingInput()) {
3052             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3053             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3054               if ((OpInfo.ConstraintVT.isInteger() !=
3055                    Input.ConstraintVT.isInteger()) ||
3056                   (OpInfo.ConstraintVT.getSizeInBits() !=
3057                    Input.ConstraintVT.getSizeInBits())) {
3058                 weightSum = -1;  // Can't match.
3059                 break;
3060               }
3061             }
3062           }
3063           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
3064           if (weight == -1) {
3065             weightSum = -1;
3066             break;
3067           }
3068           weightSum += weight;
3069         }
3070         // Update best.
3071         if (weightSum > bestWeight) {
3072           bestWeight = weightSum;
3073           bestMAIndex = maIndex;
3074         }
3075       }
3076 
3077       // Now select chosen alternative in each constraint.
3078       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3079           cIndex != eIndex; ++cIndex) {
3080         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
3081         if (cInfo.Type == InlineAsm::isClobber)
3082           continue;
3083         cInfo.selectAlternative(bestMAIndex);
3084       }
3085     }
3086   }
3087 
3088   // Check and hook up tied operands, choose constraint code to use.
3089   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3090       cIndex != eIndex; ++cIndex) {
3091     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
3092 
3093     // If this is an output operand with a matching input operand, look up the
3094     // matching input. If their types mismatch, e.g. one is an integer, the
3095     // other is floating point, or their sizes are different, flag it as an
3096     // error.
3097     if (OpInfo.hasMatchingInput()) {
3098       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3099 
3100       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3101         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
3102             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
3103                                          OpInfo.ConstraintVT);
3104         std::pair<unsigned, const TargetRegisterClass *> InputRC =
3105             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
3106                                          Input.ConstraintVT);
3107         if ((OpInfo.ConstraintVT.isInteger() !=
3108              Input.ConstraintVT.isInteger()) ||
3109             (MatchRC.second != InputRC.second)) {
3110           report_fatal_error("Unsupported asm: input constraint"
3111                              " with a matching output constraint of"
3112                              " incompatible type!");
3113         }
3114       }
3115     }
3116   }
3117 
3118   return ConstraintOperands;
3119 }
3120 
3121 /// Return an integer indicating how general CT is.
3122 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3123   switch (CT) {
3124   case TargetLowering::C_Other:
3125   case TargetLowering::C_Unknown:
3126     return 0;
3127   case TargetLowering::C_Register:
3128     return 1;
3129   case TargetLowering::C_RegisterClass:
3130     return 2;
3131   case TargetLowering::C_Memory:
3132     return 3;
3133   }
3134   llvm_unreachable("Invalid constraint type");
3135 }
3136 
3137 /// Examine constraint type and operand type and determine a weight value.
3138 /// This object must already have been set up with the operand type
3139 /// and the current alternative constraint selected.
3140 TargetLowering::ConstraintWeight
3141   TargetLowering::getMultipleConstraintMatchWeight(
3142     AsmOperandInfo &info, int maIndex) const {
3143   InlineAsm::ConstraintCodeVector *rCodes;
3144   if (maIndex >= (int)info.multipleAlternatives.size())
3145     rCodes = &info.Codes;
3146   else
3147     rCodes = &info.multipleAlternatives[maIndex].Codes;
3148   ConstraintWeight BestWeight = CW_Invalid;
3149 
3150   // Loop over the options, keeping track of the most general one.
3151   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3152     ConstraintWeight weight =
3153       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3154     if (weight > BestWeight)
3155       BestWeight = weight;
3156   }
3157 
3158   return BestWeight;
3159 }
3160 
3161 /// Examine constraint type and operand type and determine a weight value.
3162 /// This object must already have been set up with the operand type
3163 /// and the current alternative constraint selected.
3164 TargetLowering::ConstraintWeight
3165   TargetLowering::getSingleConstraintMatchWeight(
3166     AsmOperandInfo &info, const char *constraint) const {
3167   ConstraintWeight weight = CW_Invalid;
3168   Value *CallOperandVal = info.CallOperandVal;
3169     // If we don't have a value, we can't do a match,
3170     // but allow it at the lowest weight.
3171   if (!CallOperandVal)
3172     return CW_Default;
3173   // Look at the constraint type.
3174   switch (*constraint) {
3175     case 'i': // immediate integer.
3176     case 'n': // immediate integer with a known value.
3177       if (isa<ConstantInt>(CallOperandVal))
3178         weight = CW_Constant;
3179       break;
3180     case 's': // non-explicit intregal immediate.
3181       if (isa<GlobalValue>(CallOperandVal))
3182         weight = CW_Constant;
3183       break;
3184     case 'E': // immediate float if host format.
3185     case 'F': // immediate float.
3186       if (isa<ConstantFP>(CallOperandVal))
3187         weight = CW_Constant;
3188       break;
3189     case '<': // memory operand with autodecrement.
3190     case '>': // memory operand with autoincrement.
3191     case 'm': // memory operand.
3192     case 'o': // offsettable memory operand
3193     case 'V': // non-offsettable memory operand
3194       weight = CW_Memory;
3195       break;
3196     case 'r': // general register.
3197     case 'g': // general register, memory operand or immediate integer.
3198               // note: Clang converts "g" to "imr".
3199       if (CallOperandVal->getType()->isIntegerTy())
3200         weight = CW_Register;
3201       break;
3202     case 'X': // any operand.
3203     default:
3204       weight = CW_Default;
3205       break;
3206   }
3207   return weight;
3208 }
3209 
3210 /// If there are multiple different constraints that we could pick for this
3211 /// operand (e.g. "imr") try to pick the 'best' one.
3212 /// This is somewhat tricky: constraints fall into four classes:
3213 ///    Other         -> immediates and magic values
3214 ///    Register      -> one specific register
3215 ///    RegisterClass -> a group of regs
3216 ///    Memory        -> memory
3217 /// Ideally, we would pick the most specific constraint possible: if we have
3218 /// something that fits into a register, we would pick it.  The problem here
3219 /// is that if we have something that could either be in a register or in
3220 /// memory that use of the register could cause selection of *other*
3221 /// operands to fail: they might only succeed if we pick memory.  Because of
3222 /// this the heuristic we use is:
3223 ///
3224 ///  1) If there is an 'other' constraint, and if the operand is valid for
3225 ///     that constraint, use it.  This makes us take advantage of 'i'
3226 ///     constraints when available.
3227 ///  2) Otherwise, pick the most general constraint present.  This prefers
3228 ///     'm' over 'r', for example.
3229 ///
3230 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3231                              const TargetLowering &TLI,
3232                              SDValue Op, SelectionDAG *DAG) {
3233   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3234   unsigned BestIdx = 0;
3235   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3236   int BestGenerality = -1;
3237 
3238   // Loop over the options, keeping track of the most general one.
3239   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3240     TargetLowering::ConstraintType CType =
3241       TLI.getConstraintType(OpInfo.Codes[i]);
3242 
3243     // If this is an 'other' constraint, see if the operand is valid for it.
3244     // For example, on X86 we might have an 'rI' constraint.  If the operand
3245     // is an integer in the range [0..31] we want to use I (saving a load
3246     // of a register), otherwise we must use 'r'.
3247     if (CType == TargetLowering::C_Other && Op.getNode()) {
3248       assert(OpInfo.Codes[i].size() == 1 &&
3249              "Unhandled multi-letter 'other' constraint");
3250       std::vector<SDValue> ResultOps;
3251       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3252                                        ResultOps, *DAG);
3253       if (!ResultOps.empty()) {
3254         BestType = CType;
3255         BestIdx = i;
3256         break;
3257       }
3258     }
3259 
3260     // Things with matching constraints can only be registers, per gcc
3261     // documentation.  This mainly affects "g" constraints.
3262     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3263       continue;
3264 
3265     // This constraint letter is more general than the previous one, use it.
3266     int Generality = getConstraintGenerality(CType);
3267     if (Generality > BestGenerality) {
3268       BestType = CType;
3269       BestIdx = i;
3270       BestGenerality = Generality;
3271     }
3272   }
3273 
3274   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3275   OpInfo.ConstraintType = BestType;
3276 }
3277 
3278 /// Determines the constraint code and constraint type to use for the specific
3279 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
3280 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3281                                             SDValue Op,
3282                                             SelectionDAG *DAG) const {
3283   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3284 
3285   // Single-letter constraints ('r') are very common.
3286   if (OpInfo.Codes.size() == 1) {
3287     OpInfo.ConstraintCode = OpInfo.Codes[0];
3288     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3289   } else {
3290     ChooseConstraint(OpInfo, *this, Op, DAG);
3291   }
3292 
3293   // 'X' matches anything.
3294   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3295     // Labels and constants are handled elsewhere ('X' is the only thing
3296     // that matches labels).  For Functions, the type here is the type of
3297     // the result, which is not what we want to look at; leave them alone.
3298     Value *v = OpInfo.CallOperandVal;
3299     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3300       OpInfo.CallOperandVal = v;
3301       return;
3302     }
3303 
3304     // Otherwise, try to resolve it to something we know about by looking at
3305     // the actual operand type.
3306     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3307       OpInfo.ConstraintCode = Repl;
3308       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3309     }
3310   }
3311 }
3312 
3313 /// \brief Given an exact SDIV by a constant, create a multiplication
3314 /// with the multiplicative inverse of the constant.
3315 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d,
3316                               const SDLoc &dl, SelectionDAG &DAG,
3317                               std::vector<SDNode *> &Created) {
3318   assert(d != 0 && "Division by zero!");
3319 
3320   // Shift the value upfront if it is even, so the LSB is one.
3321   unsigned ShAmt = d.countTrailingZeros();
3322   if (ShAmt) {
3323     // TODO: For UDIV use SRL instead of SRA.
3324     SDValue Amt =
3325         DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(),
3326                                                         DAG.getDataLayout()));
3327     SDNodeFlags Flags;
3328     Flags.setExact(true);
3329     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, Flags);
3330     Created.push_back(Op1.getNode());
3331     d.ashrInPlace(ShAmt);
3332   }
3333 
3334   // Calculate the multiplicative inverse, using Newton's method.
3335   APInt t, xn = d;
3336   while ((t = d*xn) != 1)
3337     xn *= APInt(d.getBitWidth(), 2) - t;
3338 
3339   SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType());
3340   SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
3341   Created.push_back(Mul.getNode());
3342   return Mul;
3343 }
3344 
3345 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
3346                                       SelectionDAG &DAG,
3347                                       std::vector<SDNode *> *Created) const {
3348   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3349   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3350   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
3351     return SDValue(N,0); // Lower SDIV as SDIV
3352   return SDValue();
3353 }
3354 
3355 /// \brief Given an ISD::SDIV node expressing a divide by constant,
3356 /// return a DAG expression to select that will generate the same value by
3357 /// multiplying by a magic number.
3358 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3359 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
3360                                   SelectionDAG &DAG, bool IsAfterLegalization,
3361                                   std::vector<SDNode *> *Created) const {
3362   assert(Created && "No vector to hold sdiv ops.");
3363 
3364   EVT VT = N->getValueType(0);
3365   SDLoc dl(N);
3366 
3367   // Check to see if we can do this.
3368   // FIXME: We should be more aggressive here.
3369   if (!isTypeLegal(VT))
3370     return SDValue();
3371 
3372   // If the sdiv has an 'exact' bit we can use a simpler lowering.
3373   if (N->getFlags().hasExact())
3374     return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created);
3375 
3376   APInt::ms magics = Divisor.magic();
3377 
3378   // Multiply the numerator (operand 0) by the magic value
3379   // FIXME: We should support doing a MUL in a wider type
3380   SDValue Q;
3381   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
3382                             isOperationLegalOrCustom(ISD::MULHS, VT))
3383     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3384                     DAG.getConstant(magics.m, dl, VT));
3385   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
3386                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3387     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3388                               N->getOperand(0),
3389                               DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
3390   else
3391     return SDValue();       // No mulhs or equvialent
3392   // If d > 0 and m < 0, add the numerator
3393   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
3394     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3395     Created->push_back(Q.getNode());
3396   }
3397   // If d < 0 and m > 0, subtract the numerator.
3398   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
3399     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3400     Created->push_back(Q.getNode());
3401   }
3402   auto &DL = DAG.getDataLayout();
3403   // Shift right algebraic if shift value is nonzero
3404   if (magics.s > 0) {
3405     Q = DAG.getNode(
3406         ISD::SRA, dl, VT, Q,
3407         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
3408     Created->push_back(Q.getNode());
3409   }
3410   // Extract the sign bit and add it to the quotient
3411   SDValue T =
3412       DAG.getNode(ISD::SRL, dl, VT, Q,
3413                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl,
3414                                   getShiftAmountTy(Q.getValueType(), DL)));
3415   Created->push_back(T.getNode());
3416   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3417 }
3418 
3419 /// \brief Given an ISD::UDIV node expressing a divide by constant,
3420 /// return a DAG expression to select that will generate the same value by
3421 /// multiplying by a magic number.
3422 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3423 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
3424                                   SelectionDAG &DAG, bool IsAfterLegalization,
3425                                   std::vector<SDNode *> *Created) const {
3426   assert(Created && "No vector to hold udiv ops.");
3427 
3428   EVT VT = N->getValueType(0);
3429   SDLoc dl(N);
3430   auto &DL = DAG.getDataLayout();
3431 
3432   // Check to see if we can do this.
3433   // FIXME: We should be more aggressive here.
3434   if (!isTypeLegal(VT))
3435     return SDValue();
3436 
3437   // FIXME: We should use a narrower constant when the upper
3438   // bits are known to be zero.
3439   APInt::mu magics = Divisor.magicu();
3440 
3441   SDValue Q = N->getOperand(0);
3442 
3443   // If the divisor is even, we can avoid using the expensive fixup by shifting
3444   // the divided value upfront.
3445   if (magics.a != 0 && !Divisor[0]) {
3446     unsigned Shift = Divisor.countTrailingZeros();
3447     Q = DAG.getNode(
3448         ISD::SRL, dl, VT, Q,
3449         DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL)));
3450     Created->push_back(Q.getNode());
3451 
3452     // Get magic number for the shifted divisor.
3453     magics = Divisor.lshr(Shift).magicu(Shift);
3454     assert(magics.a == 0 && "Should use cheap fixup now");
3455   }
3456 
3457   // Multiply the numerator (operand 0) by the magic value
3458   // FIXME: We should support doing a MUL in a wider type
3459   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
3460                             isOperationLegalOrCustom(ISD::MULHU, VT))
3461     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT));
3462   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
3463                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3464     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3465                             DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
3466   else
3467     return SDValue();       // No mulhu or equivalent
3468 
3469   Created->push_back(Q.getNode());
3470 
3471   if (magics.a == 0) {
3472     assert(magics.s < Divisor.getBitWidth() &&
3473            "We shouldn't generate an undefined shift!");
3474     return DAG.getNode(
3475         ISD::SRL, dl, VT, Q,
3476         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
3477   } else {
3478     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3479     Created->push_back(NPQ.getNode());
3480     NPQ = DAG.getNode(
3481         ISD::SRL, dl, VT, NPQ,
3482         DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL)));
3483     Created->push_back(NPQ.getNode());
3484     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3485     Created->push_back(NPQ.getNode());
3486     return DAG.getNode(
3487         ISD::SRL, dl, VT, NPQ,
3488         DAG.getConstant(magics.s - 1, dl,
3489                         getShiftAmountTy(NPQ.getValueType(), DL)));
3490   }
3491 }
3492 
3493 bool TargetLowering::
3494 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
3495   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
3496     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
3497                                 "be a constant integer");
3498     return true;
3499   }
3500 
3501   return false;
3502 }
3503 
3504 //===----------------------------------------------------------------------===//
3505 // Legalization Utilities
3506 //===----------------------------------------------------------------------===//
3507 
3508 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
3509                                     SDValue LHS, SDValue RHS,
3510                                     SmallVectorImpl<SDValue> &Result,
3511                                     EVT HiLoVT, SelectionDAG &DAG,
3512                                     MulExpansionKind Kind, SDValue LL,
3513                                     SDValue LH, SDValue RL, SDValue RH) const {
3514   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
3515          Opcode == ISD::SMUL_LOHI);
3516 
3517   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
3518                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
3519   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
3520                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
3521   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3522                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
3523   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3524                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
3525 
3526   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
3527     return false;
3528 
3529   unsigned OuterBitSize = VT.getScalarSizeInBits();
3530   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
3531   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
3532   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
3533 
3534   // LL, LH, RL, and RH must be either all NULL or all set to a value.
3535   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
3536          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
3537 
3538   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
3539   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
3540                           bool Signed) -> bool {
3541     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
3542       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
3543       Hi = SDValue(Lo.getNode(), 1);
3544       return true;
3545     }
3546     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
3547       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
3548       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
3549       return true;
3550     }
3551     return false;
3552   };
3553 
3554   SDValue Lo, Hi;
3555 
3556   if (!LL.getNode() && !RL.getNode() &&
3557       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3558     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
3559     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
3560   }
3561 
3562   if (!LL.getNode())
3563     return false;
3564 
3565   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
3566   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
3567       DAG.MaskedValueIsZero(RHS, HighMask)) {
3568     // The inputs are both zero-extended.
3569     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
3570       Result.push_back(Lo);
3571       Result.push_back(Hi);
3572       if (Opcode != ISD::MUL) {
3573         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3574         Result.push_back(Zero);
3575         Result.push_back(Zero);
3576       }
3577       return true;
3578     }
3579   }
3580 
3581   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
3582       RHSSB > InnerBitSize) {
3583     // The input values are both sign-extended.
3584     // TODO non-MUL case?
3585     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
3586       Result.push_back(Lo);
3587       Result.push_back(Hi);
3588       return true;
3589     }
3590   }
3591 
3592   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
3593   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
3594   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
3595     // FIXME getShiftAmountTy does not always return a sensible result when VT
3596     // is an illegal type, and so the type may be too small to fit the shift
3597     // amount. Override it with i32. The shift will have to be legalized.
3598     ShiftAmountTy = MVT::i32;
3599   }
3600   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
3601 
3602   if (!LH.getNode() && !RH.getNode() &&
3603       isOperationLegalOrCustom(ISD::SRL, VT) &&
3604       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3605     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
3606     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
3607     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
3608     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
3609   }
3610 
3611   if (!LH.getNode())
3612     return false;
3613 
3614   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
3615     return false;
3616 
3617   Result.push_back(Lo);
3618 
3619   if (Opcode == ISD::MUL) {
3620     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
3621     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
3622     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
3623     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
3624     Result.push_back(Hi);
3625     return true;
3626   }
3627 
3628   // Compute the full width result.
3629   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
3630     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3631     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3632     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3633     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
3634   };
3635 
3636   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3637   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
3638     return false;
3639 
3640   // This is effectively the add part of a multiply-add of half-sized operands,
3641   // so it cannot overflow.
3642   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3643 
3644   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
3645     return false;
3646 
3647   Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
3648                      Merge(Lo, Hi));
3649 
3650   SDValue Carry = Next.getValue(1);
3651   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3652   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3653 
3654   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
3655     return false;
3656 
3657   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3658   Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
3659                    Carry);
3660   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3661 
3662   if (Opcode == ISD::SMUL_LOHI) {
3663     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3664                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
3665     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
3666 
3667     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3668                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
3669     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
3670   }
3671 
3672   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3673   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3674   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3675   return true;
3676 }
3677 
3678 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
3679                                SelectionDAG &DAG, MulExpansionKind Kind,
3680                                SDValue LL, SDValue LH, SDValue RL,
3681                                SDValue RH) const {
3682   SmallVector<SDValue, 2> Result;
3683   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
3684                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
3685                            DAG, Kind, LL, LH, RL, RH);
3686   if (Ok) {
3687     assert(Result.size() == 2);
3688     Lo = Result[0];
3689     Hi = Result[1];
3690   }
3691   return Ok;
3692 }
3693 
3694 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
3695                                SelectionDAG &DAG) const {
3696   EVT VT = Node->getOperand(0).getValueType();
3697   EVT NVT = Node->getValueType(0);
3698   SDLoc dl(SDValue(Node, 0));
3699 
3700   // FIXME: Only f32 to i64 conversions are supported.
3701   if (VT != MVT::f32 || NVT != MVT::i64)
3702     return false;
3703 
3704   // Expand f32 -> i64 conversion
3705   // This algorithm comes from compiler-rt's implementation of fixsfdi:
3706   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
3707   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
3708                                 VT.getSizeInBits());
3709   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
3710   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
3711   SDValue Bias = DAG.getConstant(127, dl, IntVT);
3712   SDValue SignMask = DAG.getConstant(APInt::getSignMask(VT.getSizeInBits()), dl,
3713                                      IntVT);
3714   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT);
3715   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
3716 
3717   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
3718 
3719   auto &DL = DAG.getDataLayout();
3720   SDValue ExponentBits = DAG.getNode(
3721       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
3722       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL)));
3723   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
3724 
3725   SDValue Sign = DAG.getNode(
3726       ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
3727       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL)));
3728   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
3729 
3730   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
3731       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
3732       DAG.getConstant(0x00800000, dl, IntVT));
3733 
3734   R = DAG.getZExtOrTrunc(R, dl, NVT);
3735 
3736   R = DAG.getSelectCC(
3737       dl, Exponent, ExponentLoBit,
3738       DAG.getNode(ISD::SHL, dl, NVT, R,
3739                   DAG.getZExtOrTrunc(
3740                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
3741                       dl, getShiftAmountTy(IntVT, DL))),
3742       DAG.getNode(ISD::SRL, dl, NVT, R,
3743                   DAG.getZExtOrTrunc(
3744                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
3745                       dl, getShiftAmountTy(IntVT, DL))),
3746       ISD::SETGT);
3747 
3748   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
3749       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
3750       Sign);
3751 
3752   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
3753       DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT);
3754   return true;
3755 }
3756 
3757 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
3758                                             SelectionDAG &DAG) const {
3759   SDLoc SL(LD);
3760   SDValue Chain = LD->getChain();
3761   SDValue BasePTR = LD->getBasePtr();
3762   EVT SrcVT = LD->getMemoryVT();
3763   ISD::LoadExtType ExtType = LD->getExtensionType();
3764 
3765   unsigned NumElem = SrcVT.getVectorNumElements();
3766 
3767   EVT SrcEltVT = SrcVT.getScalarType();
3768   EVT DstEltVT = LD->getValueType(0).getScalarType();
3769 
3770   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
3771   assert(SrcEltVT.isByteSized());
3772 
3773   EVT PtrVT = BasePTR.getValueType();
3774 
3775   SmallVector<SDValue, 8> Vals;
3776   SmallVector<SDValue, 8> LoadChains;
3777 
3778   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3779     SDValue ScalarLoad =
3780         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
3781                        LD->getPointerInfo().getWithOffset(Idx * Stride),
3782                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
3783                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3784 
3785     BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR,
3786                           DAG.getConstant(Stride, SL, PtrVT));
3787 
3788     Vals.push_back(ScalarLoad.getValue(0));
3789     LoadChains.push_back(ScalarLoad.getValue(1));
3790   }
3791 
3792   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
3793   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
3794 
3795   return DAG.getMergeValues({ Value, NewChain }, SL);
3796 }
3797 
3798 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
3799                                              SelectionDAG &DAG) const {
3800   SDLoc SL(ST);
3801 
3802   SDValue Chain = ST->getChain();
3803   SDValue BasePtr = ST->getBasePtr();
3804   SDValue Value = ST->getValue();
3805   EVT StVT = ST->getMemoryVT();
3806 
3807   // The type of the data we want to save
3808   EVT RegVT = Value.getValueType();
3809   EVT RegSclVT = RegVT.getScalarType();
3810 
3811   // The type of data as saved in memory.
3812   EVT MemSclVT = StVT.getScalarType();
3813 
3814   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
3815   unsigned NumElem = StVT.getVectorNumElements();
3816 
3817   // A vector must always be stored in memory as-is, i.e. without any padding
3818   // between the elements, since various code depend on it, e.g. in the
3819   // handling of a bitcast of a vector type to int, which may be done with a
3820   // vector store followed by an integer load. A vector that does not have
3821   // elements that are byte-sized must therefore be stored as an integer
3822   // built out of the extracted vector elements.
3823   if (!MemSclVT.isByteSized()) {
3824     unsigned NumBits = StVT.getSizeInBits();
3825     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
3826 
3827     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
3828 
3829     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3830       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
3831                                 DAG.getConstant(Idx, SL, IdxVT));
3832       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
3833       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
3834       unsigned ShiftIntoIdx =
3835           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
3836       SDValue ShiftAmount =
3837           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
3838       SDValue ShiftedElt =
3839           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
3840       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
3841     }
3842 
3843     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
3844                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
3845                         ST->getAAInfo());
3846   }
3847 
3848   // Store Stride in bytes
3849   unsigned Stride = MemSclVT.getSizeInBits() / 8;
3850   assert (Stride && "Zero stride!");
3851   // Extract each of the elements from the original vector and save them into
3852   // memory individually.
3853   SmallVector<SDValue, 8> Stores;
3854   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3855     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
3856                               DAG.getConstant(Idx, SL, IdxVT));
3857 
3858     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
3859 
3860     // This scalar TruncStore may be illegal, but we legalize it later.
3861     SDValue Store = DAG.getTruncStore(
3862         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
3863         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
3864         ST->getMemOperand()->getFlags(), ST->getAAInfo());
3865 
3866     Stores.push_back(Store);
3867   }
3868 
3869   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
3870 }
3871 
3872 std::pair<SDValue, SDValue>
3873 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
3874   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
3875          "unaligned indexed loads not implemented!");
3876   SDValue Chain = LD->getChain();
3877   SDValue Ptr = LD->getBasePtr();
3878   EVT VT = LD->getValueType(0);
3879   EVT LoadedVT = LD->getMemoryVT();
3880   SDLoc dl(LD);
3881   auto &MF = DAG.getMachineFunction();
3882 
3883   if (VT.isFloatingPoint() || VT.isVector()) {
3884     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
3885     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
3886       if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) {
3887         // Scalarize the load and let the individual components be handled.
3888         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
3889         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
3890       }
3891 
3892       // Expand to a (misaligned) integer load of the same size,
3893       // then bitconvert to floating point or vector.
3894       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
3895                                     LD->getMemOperand());
3896       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
3897       if (LoadedVT != VT)
3898         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
3899                              ISD::ANY_EXTEND, dl, VT, Result);
3900 
3901       return std::make_pair(Result, newLoad.getValue(1));
3902     }
3903 
3904     // Copy the value to a (aligned) stack slot using (unaligned) integer
3905     // loads and stores, then do a (aligned) load from the stack slot.
3906     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
3907     unsigned LoadedBytes = LoadedVT.getStoreSize();
3908     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3909     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
3910 
3911     // Make sure the stack slot is also aligned for the register type.
3912     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
3913     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
3914     SmallVector<SDValue, 8> Stores;
3915     SDValue StackPtr = StackBase;
3916     unsigned Offset = 0;
3917 
3918     EVT PtrVT = Ptr.getValueType();
3919     EVT StackPtrVT = StackPtr.getValueType();
3920 
3921     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3922     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3923 
3924     // Do all but one copies using the full register width.
3925     for (unsigned i = 1; i < NumRegs; i++) {
3926       // Load one integer register's worth from the original location.
3927       SDValue Load = DAG.getLoad(
3928           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
3929           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
3930           LD->getAAInfo());
3931       // Follow the load with a store to the stack slot.  Remember the store.
3932       Stores.push_back(DAG.getStore(
3933           Load.getValue(1), dl, Load, StackPtr,
3934           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
3935       // Increment the pointers.
3936       Offset += RegBytes;
3937 
3938       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
3939       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
3940     }
3941 
3942     // The last copy may be partial.  Do an extending load.
3943     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3944                                   8 * (LoadedBytes - Offset));
3945     SDValue Load =
3946         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
3947                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
3948                        MinAlign(LD->getAlignment(), Offset),
3949                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3950     // Follow the load with a store to the stack slot.  Remember the store.
3951     // On big-endian machines this requires a truncating store to ensure
3952     // that the bits end up in the right place.
3953     Stores.push_back(DAG.getTruncStore(
3954         Load.getValue(1), dl, Load, StackPtr,
3955         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
3956 
3957     // The order of the stores doesn't matter - say it with a TokenFactor.
3958     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3959 
3960     // Finally, perform the original load only redirected to the stack slot.
3961     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
3962                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
3963                           LoadedVT);
3964 
3965     // Callers expect a MERGE_VALUES node.
3966     return std::make_pair(Load, TF);
3967   }
3968 
3969   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
3970          "Unaligned load of unsupported type.");
3971 
3972   // Compute the new VT that is half the size of the old one.  This is an
3973   // integer MVT.
3974   unsigned NumBits = LoadedVT.getSizeInBits();
3975   EVT NewLoadedVT;
3976   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
3977   NumBits >>= 1;
3978 
3979   unsigned Alignment = LD->getAlignment();
3980   unsigned IncrementSize = NumBits / 8;
3981   ISD::LoadExtType HiExtType = LD->getExtensionType();
3982 
3983   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
3984   if (HiExtType == ISD::NON_EXTLOAD)
3985     HiExtType = ISD::ZEXTLOAD;
3986 
3987   // Load the value in two parts
3988   SDValue Lo, Hi;
3989   if (DAG.getDataLayout().isLittleEndian()) {
3990     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3991                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
3992                         LD->getAAInfo());
3993 
3994     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
3995     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
3996                         LD->getPointerInfo().getWithOffset(IncrementSize),
3997                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
3998                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
3999   } else {
4000     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
4001                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
4002                         LD->getAAInfo());
4003 
4004     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
4005     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
4006                         LD->getPointerInfo().getWithOffset(IncrementSize),
4007                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
4008                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
4009   }
4010 
4011   // aggregate the two parts
4012   SDValue ShiftAmount =
4013       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
4014                                                     DAG.getDataLayout()));
4015   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
4016   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
4017 
4018   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
4019                              Hi.getValue(1));
4020 
4021   return std::make_pair(Result, TF);
4022 }
4023 
4024 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
4025                                              SelectionDAG &DAG) const {
4026   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
4027          "unaligned indexed stores not implemented!");
4028   SDValue Chain = ST->getChain();
4029   SDValue Ptr = ST->getBasePtr();
4030   SDValue Val = ST->getValue();
4031   EVT VT = Val.getValueType();
4032   int Alignment = ST->getAlignment();
4033   auto &MF = DAG.getMachineFunction();
4034 
4035   SDLoc dl(ST);
4036   if (ST->getMemoryVT().isFloatingPoint() ||
4037       ST->getMemoryVT().isVector()) {
4038     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
4039     if (isTypeLegal(intVT)) {
4040       if (!isOperationLegalOrCustom(ISD::STORE, intVT)) {
4041         // Scalarize the store and let the individual components be handled.
4042         SDValue Result = scalarizeVectorStore(ST, DAG);
4043 
4044         return Result;
4045       }
4046       // Expand to a bitconvert of the value to the integer type of the
4047       // same size, then a (misaligned) int store.
4048       // FIXME: Does not handle truncating floating point stores!
4049       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
4050       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
4051                             Alignment, ST->getMemOperand()->getFlags());
4052       return Result;
4053     }
4054     // Do a (aligned) store to a stack slot, then copy from the stack slot
4055     // to the final destination using (unaligned) integer loads and stores.
4056     EVT StoredVT = ST->getMemoryVT();
4057     MVT RegVT =
4058       getRegisterType(*DAG.getContext(),
4059                       EVT::getIntegerVT(*DAG.getContext(),
4060                                         StoredVT.getSizeInBits()));
4061     EVT PtrVT = Ptr.getValueType();
4062     unsigned StoredBytes = StoredVT.getStoreSize();
4063     unsigned RegBytes = RegVT.getSizeInBits() / 8;
4064     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
4065 
4066     // Make sure the stack slot is also aligned for the register type.
4067     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
4068     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
4069 
4070     // Perform the original store, only redirected to the stack slot.
4071     SDValue Store = DAG.getTruncStore(
4072         Chain, dl, Val, StackPtr,
4073         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT);
4074 
4075     EVT StackPtrVT = StackPtr.getValueType();
4076 
4077     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
4078     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
4079     SmallVector<SDValue, 8> Stores;
4080     unsigned Offset = 0;
4081 
4082     // Do all but one copies using the full register width.
4083     for (unsigned i = 1; i < NumRegs; i++) {
4084       // Load one integer register's worth from the stack slot.
4085       SDValue Load = DAG.getLoad(
4086           RegVT, dl, Store, StackPtr,
4087           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
4088       // Store it to the final location.  Remember the store.
4089       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
4090                                     ST->getPointerInfo().getWithOffset(Offset),
4091                                     MinAlign(ST->getAlignment(), Offset),
4092                                     ST->getMemOperand()->getFlags()));
4093       // Increment the pointers.
4094       Offset += RegBytes;
4095       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
4096       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
4097     }
4098 
4099     // The last store may be partial.  Do a truncating store.  On big-endian
4100     // machines this requires an extending load from the stack slot to ensure
4101     // that the bits are in the right place.
4102     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
4103                                   8 * (StoredBytes - Offset));
4104 
4105     // Load from the stack slot.
4106     SDValue Load = DAG.getExtLoad(
4107         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
4108         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT);
4109 
4110     Stores.push_back(
4111         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
4112                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
4113                           MinAlign(ST->getAlignment(), Offset),
4114                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
4115     // The order of the stores doesn't matter - say it with a TokenFactor.
4116     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
4117     return Result;
4118   }
4119 
4120   assert(ST->getMemoryVT().isInteger() &&
4121          !ST->getMemoryVT().isVector() &&
4122          "Unaligned store of unknown type.");
4123   // Get the half-size VT
4124   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
4125   int NumBits = NewStoredVT.getSizeInBits();
4126   int IncrementSize = NumBits / 8;
4127 
4128   // Divide the stored value in two parts.
4129   SDValue ShiftAmount =
4130       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
4131                                                     DAG.getDataLayout()));
4132   SDValue Lo = Val;
4133   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
4134 
4135   // Store the two parts
4136   SDValue Store1, Store2;
4137   Store1 = DAG.getTruncStore(Chain, dl,
4138                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
4139                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
4140                              ST->getMemOperand()->getFlags());
4141 
4142   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
4143   Alignment = MinAlign(Alignment, IncrementSize);
4144   Store2 = DAG.getTruncStore(
4145       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
4146       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
4147       ST->getMemOperand()->getFlags(), ST->getAAInfo());
4148 
4149   SDValue Result =
4150     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
4151   return Result;
4152 }
4153 
4154 SDValue
4155 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
4156                                        const SDLoc &DL, EVT DataVT,
4157                                        SelectionDAG &DAG,
4158                                        bool IsCompressedMemory) const {
4159   SDValue Increment;
4160   EVT AddrVT = Addr.getValueType();
4161   EVT MaskVT = Mask.getValueType();
4162   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
4163          "Incompatible types of Data and Mask");
4164   if (IsCompressedMemory) {
4165     // Incrementing the pointer according to number of '1's in the mask.
4166     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
4167     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
4168     if (MaskIntVT.getSizeInBits() < 32) {
4169       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
4170       MaskIntVT = MVT::i32;
4171     }
4172 
4173     // Count '1's with POPCNT.
4174     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
4175     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
4176     // Scale is an element size in bytes.
4177     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
4178                                     AddrVT);
4179     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
4180   } else
4181     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
4182 
4183   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
4184 }
4185 
4186 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
4187                                        SDValue Idx,
4188                                        EVT VecVT,
4189                                        const SDLoc &dl) {
4190   if (isa<ConstantSDNode>(Idx))
4191     return Idx;
4192 
4193   EVT IdxVT = Idx.getValueType();
4194   unsigned NElts = VecVT.getVectorNumElements();
4195   if (isPowerOf2_32(NElts)) {
4196     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
4197                                      Log2_32(NElts));
4198     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
4199                        DAG.getConstant(Imm, dl, IdxVT));
4200   }
4201 
4202   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
4203                      DAG.getConstant(NElts - 1, dl, IdxVT));
4204 }
4205 
4206 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
4207                                                 SDValue VecPtr, EVT VecVT,
4208                                                 SDValue Index) const {
4209   SDLoc dl(Index);
4210   // Make sure the index type is big enough to compute in.
4211   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
4212 
4213   EVT EltVT = VecVT.getVectorElementType();
4214 
4215   // Calculate the element offset and add it to the pointer.
4216   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
4217   assert(EltSize * 8 == EltVT.getSizeInBits() &&
4218          "Converting bits to bytes lost precision");
4219 
4220   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
4221 
4222   EVT IdxVT = Index.getValueType();
4223 
4224   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
4225                       DAG.getConstant(EltSize, dl, IdxVT));
4226   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
4227 }
4228 
4229 //===----------------------------------------------------------------------===//
4230 // Implementation of Emulated TLS Model
4231 //===----------------------------------------------------------------------===//
4232 
4233 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
4234                                                 SelectionDAG &DAG) const {
4235   // Access to address of TLS varialbe xyz is lowered to a function call:
4236   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
4237   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4238   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
4239   SDLoc dl(GA);
4240 
4241   ArgListTy Args;
4242   ArgListEntry Entry;
4243   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
4244   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
4245   StringRef EmuTlsVarName(NameString);
4246   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
4247   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
4248   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
4249   Entry.Ty = VoidPtrType;
4250   Args.push_back(Entry);
4251 
4252   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
4253 
4254   TargetLowering::CallLoweringInfo CLI(DAG);
4255   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
4256   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
4257   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
4258 
4259   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
4260   // At last for X86 targets, maybe good for other targets too?
4261   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
4262   MFI.setAdjustsStack(true);  // Is this only for X86 target?
4263   MFI.setHasCalls(true);
4264 
4265   assert((GA->getOffset() == 0) &&
4266          "Emulated TLS must have zero offset in GlobalAddressSDNode");
4267   return CallResult.first;
4268 }
4269 
4270 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
4271                                                 SelectionDAG &DAG) const {
4272   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
4273   if (!isCtlzFast())
4274     return SDValue();
4275   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
4276   SDLoc dl(Op);
4277   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
4278     if (C->isNullValue() && CC == ISD::SETEQ) {
4279       EVT VT = Op.getOperand(0).getValueType();
4280       SDValue Zext = Op.getOperand(0);
4281       if (VT.bitsLT(MVT::i32)) {
4282         VT = MVT::i32;
4283         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
4284       }
4285       unsigned Log2b = Log2_32(VT.getSizeInBits());
4286       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
4287       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
4288                                 DAG.getConstant(Log2b, dl, MVT::i32));
4289       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
4290     }
4291   }
4292   return SDValue();
4293 }
4294