1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetLoweringObjectFile.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 /// Check whether a given call node is in tail position within its function. If 47 /// so, it sets Chain to the input chain of the tail call. 48 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 49 SDValue &Chain) const { 50 const Function *F = DAG.getMachineFunction().getFunction(); 51 52 // Conservatively require the attributes of the call to match those of 53 // the return. Ignore noalias because it doesn't affect the call sequence. 54 AttributeSet CallerAttrs = F->getAttributes(); 55 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 56 .removeAttribute(Attribute::NoAlias).hasAttributes()) 57 return false; 58 59 // It's not safe to eliminate the sign / zero extension of the return value. 60 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 61 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 62 return false; 63 64 // Check if the only use is a function return node. 65 return isUsedByReturnOnly(Node, Chain); 66 } 67 68 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 69 /// and called function attributes. 70 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, 71 unsigned AttrIdx) { 72 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 73 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 74 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 75 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 76 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 77 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 78 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 79 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 80 Alignment = CS->getParamAlignment(AttrIdx); 81 } 82 83 /// Generate a libcall taking the given operands as arguments and returning a 84 /// result of type RetVT. 85 std::pair<SDValue, SDValue> 86 TargetLowering::makeLibCall(SelectionDAG &DAG, 87 RTLIB::Libcall LC, EVT RetVT, 88 const SDValue *Ops, unsigned NumOps, 89 bool isSigned, SDLoc dl, 90 bool doesNotReturn, 91 bool isReturnValueUsed) const { 92 TargetLowering::ArgListTy Args; 93 Args.reserve(NumOps); 94 95 TargetLowering::ArgListEntry Entry; 96 for (unsigned i = 0; i != NumOps; ++i) { 97 Entry.Node = Ops[i]; 98 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 99 Entry.isSExt = shouldSignExtendTypeInLibCall(Ops[i].getValueType(), isSigned); 100 Entry.isZExt = !shouldSignExtendTypeInLibCall(Ops[i].getValueType(), isSigned); 101 Args.push_back(Entry); 102 } 103 if (LC == RTLIB::UNKNOWN_LIBCALL) 104 report_fatal_error("Unsupported library call operation!"); 105 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy()); 106 107 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 108 TargetLowering::CallLoweringInfo CLI(DAG); 109 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 110 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 111 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) 112 .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed) 113 .setSExtResult(signExtend).setZExtResult(!signExtend); 114 return LowerCallTo(CLI); 115 } 116 117 118 /// SoftenSetCCOperands - Soften the operands of a comparison. This code is 119 /// shared among BR_CC, SELECT_CC, and SETCC handlers. 120 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 121 SDValue &NewLHS, SDValue &NewRHS, 122 ISD::CondCode &CCCode, 123 SDLoc dl) const { 124 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 125 && "Unsupported setcc type!"); 126 127 // Expand into one or more soft-fp libcall(s). 128 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 129 switch (CCCode) { 130 case ISD::SETEQ: 131 case ISD::SETOEQ: 132 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 133 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 134 break; 135 case ISD::SETNE: 136 case ISD::SETUNE: 137 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 138 (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128; 139 break; 140 case ISD::SETGE: 141 case ISD::SETOGE: 142 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 143 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 144 break; 145 case ISD::SETLT: 146 case ISD::SETOLT: 147 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 148 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 149 break; 150 case ISD::SETLE: 151 case ISD::SETOLE: 152 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 153 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 154 break; 155 case ISD::SETGT: 156 case ISD::SETOGT: 157 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 158 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 159 break; 160 case ISD::SETUO: 161 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 162 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 163 break; 164 case ISD::SETO: 165 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 166 (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128; 167 break; 168 default: 169 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 170 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 171 switch (CCCode) { 172 case ISD::SETONE: 173 // SETONE = SETOLT | SETOGT 174 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 175 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 176 // Fallthrough 177 case ISD::SETUGT: 178 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 179 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 180 break; 181 case ISD::SETUGE: 182 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 183 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 184 break; 185 case ISD::SETULT: 186 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 187 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 188 break; 189 case ISD::SETULE: 190 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 191 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 192 break; 193 case ISD::SETUEQ: 194 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 195 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 196 break; 197 default: llvm_unreachable("Do not know how to soften this setcc!"); 198 } 199 } 200 201 // Use the target specific return value for comparions lib calls. 202 EVT RetVT = getCmpLibcallReturnType(); 203 SDValue Ops[2] = { NewLHS, NewRHS }; 204 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/, 205 dl).first; 206 NewRHS = DAG.getConstant(0, dl, RetVT); 207 CCCode = getCmpLibcallCC(LC1); 208 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 209 SDValue Tmp = DAG.getNode(ISD::SETCC, dl, 210 getSetCCResultType(*DAG.getContext(), RetVT), 211 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 212 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/, 213 dl).first; 214 NewLHS = DAG.getNode(ISD::SETCC, dl, 215 getSetCCResultType(*DAG.getContext(), RetVT), NewLHS, 216 NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 217 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 218 NewRHS = SDValue(); 219 } 220 } 221 222 /// getJumpTableEncoding - Return the entry encoding for a jump table in the 223 /// current function. The returned value is a member of the 224 /// MachineJumpTableInfo::JTEntryKind enum. 225 unsigned TargetLowering::getJumpTableEncoding() const { 226 // In non-pic modes, just use the address of a block. 227 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 228 return MachineJumpTableInfo::EK_BlockAddress; 229 230 // In PIC mode, if the target supports a GPRel32 directive, use it. 231 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 232 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 233 234 // Otherwise, use a label difference. 235 return MachineJumpTableInfo::EK_LabelDifference32; 236 } 237 238 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 239 SelectionDAG &DAG) const { 240 // If our PIC model is GP relative, use the global offset table as the base. 241 unsigned JTEncoding = getJumpTableEncoding(); 242 243 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 244 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 245 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0)); 246 247 return Table; 248 } 249 250 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the 251 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an 252 /// MCExpr. 253 const MCExpr * 254 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 255 unsigned JTI,MCContext &Ctx) const{ 256 // The normal PIC reloc base is the label at the start of the jump table. 257 return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx); 258 } 259 260 bool 261 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 262 // Assume that everything is safe in static mode. 263 if (getTargetMachine().getRelocationModel() == Reloc::Static) 264 return true; 265 266 // In dynamic-no-pic mode, assume that known defined values are safe. 267 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && 268 GA && 269 !GA->getGlobal()->isDeclaration() && 270 !GA->getGlobal()->isWeakForLinker()) 271 return true; 272 273 // Otherwise assume nothing is safe. 274 return false; 275 } 276 277 //===----------------------------------------------------------------------===// 278 // Optimization Methods 279 //===----------------------------------------------------------------------===// 280 281 /// ShrinkDemandedConstant - Check to see if the specified operand of the 282 /// specified instruction is a constant integer. If so, check to see if there 283 /// are any bits set in the constant that are not demanded. If so, shrink the 284 /// constant and return true. 285 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 286 const APInt &Demanded) { 287 SDLoc dl(Op); 288 289 // FIXME: ISD::SELECT, ISD::SELECT_CC 290 switch (Op.getOpcode()) { 291 default: break; 292 case ISD::XOR: 293 case ISD::AND: 294 case ISD::OR: { 295 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 296 if (!C) return false; 297 298 if (Op.getOpcode() == ISD::XOR && 299 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 300 return false; 301 302 // if we can expand it to have all bits set, do it 303 if (C->getAPIntValue().intersects(~Demanded)) { 304 EVT VT = Op.getValueType(); 305 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 306 DAG.getConstant(Demanded & 307 C->getAPIntValue(), 308 dl, VT)); 309 return CombineTo(Op, New); 310 } 311 312 break; 313 } 314 } 315 316 return false; 317 } 318 319 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the 320 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening 321 /// cast, but it could be generalized for targets with other types of 322 /// implicit widening casts. 323 bool 324 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 325 unsigned BitWidth, 326 const APInt &Demanded, 327 SDLoc dl) { 328 assert(Op.getNumOperands() == 2 && 329 "ShrinkDemandedOp only supports binary operators!"); 330 assert(Op.getNode()->getNumValues() == 1 && 331 "ShrinkDemandedOp only supports nodes with one result!"); 332 333 // Early return, as this function cannot handle vector types. 334 if (Op.getValueType().isVector()) 335 return false; 336 337 // Don't do this if the node has another user, which may require the 338 // full value. 339 if (!Op.getNode()->hasOneUse()) 340 return false; 341 342 // Search for the smallest integer type with free casts to and from 343 // Op's type. For expedience, just check power-of-2 integer types. 344 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 345 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 346 unsigned SmallVTBits = DemandedSize; 347 if (!isPowerOf2_32(SmallVTBits)) 348 SmallVTBits = NextPowerOf2(SmallVTBits); 349 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 350 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 351 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 352 TLI.isZExtFree(SmallVT, Op.getValueType())) { 353 // We found a type with free casts. 354 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 355 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 356 Op.getNode()->getOperand(0)), 357 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 358 Op.getNode()->getOperand(1))); 359 bool NeedZext = DemandedSize > SmallVTBits; 360 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 361 dl, Op.getValueType(), X); 362 return CombineTo(Op, Z); 363 } 364 } 365 return false; 366 } 367 368 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the 369 /// DemandedMask bits of the result of Op are ever used downstream. If we can 370 /// use this information to simplify Op, create a new simplified DAG node and 371 /// return true, returning the original and new nodes in Old and New. Otherwise, 372 /// analyze the expression and return a mask of KnownOne and KnownZero bits for 373 /// the expression (used to simplify the caller). The KnownZero/One bits may 374 /// only be accurate for those bits in the DemandedMask. 375 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 376 const APInt &DemandedMask, 377 APInt &KnownZero, 378 APInt &KnownOne, 379 TargetLoweringOpt &TLO, 380 unsigned Depth) const { 381 unsigned BitWidth = DemandedMask.getBitWidth(); 382 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && 383 "Mask size mismatches value type size!"); 384 APInt NewMask = DemandedMask; 385 SDLoc dl(Op); 386 387 // Don't know anything. 388 KnownZero = KnownOne = APInt(BitWidth, 0); 389 390 // Other users may use these bits. 391 if (!Op.getNode()->hasOneUse()) { 392 if (Depth != 0) { 393 // If not at the root, Just compute the KnownZero/KnownOne bits to 394 // simplify things downstream. 395 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 396 return false; 397 } 398 // If this is the root being simplified, allow it to have multiple uses, 399 // just set the NewMask to all bits. 400 NewMask = APInt::getAllOnesValue(BitWidth); 401 } else if (DemandedMask == 0) { 402 // Not demanding any bits from Op. 403 if (Op.getOpcode() != ISD::UNDEF) 404 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 405 return false; 406 } else if (Depth == 6) { // Limit search depth. 407 return false; 408 } 409 410 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 411 switch (Op.getOpcode()) { 412 case ISD::Constant: 413 // We know all of the bits for a constant! 414 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 415 KnownZero = ~KnownOne; 416 return false; // Don't fall through, will infinitely loop. 417 case ISD::AND: 418 // If the RHS is a constant, check to see if the LHS would be zero without 419 // using the bits from the RHS. Below, we use knowledge about the RHS to 420 // simplify the LHS, here we're using information from the LHS to simplify 421 // the RHS. 422 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 423 APInt LHSZero, LHSOne; 424 // Do not increment Depth here; that can cause an infinite loop. 425 TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 426 // If the LHS already has zeros where RHSC does, this and is dead. 427 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 428 return TLO.CombineTo(Op, Op.getOperand(0)); 429 // If any of the set bits in the RHS are known zero on the LHS, shrink 430 // the constant. 431 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 432 return true; 433 } 434 435 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 436 KnownOne, TLO, Depth+1)) 437 return true; 438 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 439 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 440 KnownZero2, KnownOne2, TLO, Depth+1)) 441 return true; 442 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 443 444 // If all of the demanded bits are known one on one side, return the other. 445 // These bits cannot contribute to the result of the 'and'. 446 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 447 return TLO.CombineTo(Op, Op.getOperand(0)); 448 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 449 return TLO.CombineTo(Op, Op.getOperand(1)); 450 // If all of the demanded bits in the inputs are known zeros, return zero. 451 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 452 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); 453 // If the RHS is a constant, see if we can simplify it. 454 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 455 return true; 456 // If the operation can be done in a smaller type, do so. 457 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 458 return true; 459 460 // Output known-1 bits are only known if set in both the LHS & RHS. 461 KnownOne &= KnownOne2; 462 // Output known-0 are known to be clear if zero in either the LHS | RHS. 463 KnownZero |= KnownZero2; 464 break; 465 case ISD::OR: 466 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 467 KnownOne, TLO, Depth+1)) 468 return true; 469 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 470 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 471 KnownZero2, KnownOne2, TLO, Depth+1)) 472 return true; 473 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 474 475 // If all of the demanded bits are known zero on one side, return the other. 476 // These bits cannot contribute to the result of the 'or'. 477 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 478 return TLO.CombineTo(Op, Op.getOperand(0)); 479 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 480 return TLO.CombineTo(Op, Op.getOperand(1)); 481 // If all of the potentially set bits on one side are known to be set on 482 // the other side, just use the 'other' side. 483 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 484 return TLO.CombineTo(Op, Op.getOperand(0)); 485 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 486 return TLO.CombineTo(Op, Op.getOperand(1)); 487 // If the RHS is a constant, see if we can simplify it. 488 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 489 return true; 490 // If the operation can be done in a smaller type, do so. 491 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 492 return true; 493 494 // Output known-0 bits are only known if clear in both the LHS & RHS. 495 KnownZero &= KnownZero2; 496 // Output known-1 are known to be set if set in either the LHS | RHS. 497 KnownOne |= KnownOne2; 498 break; 499 case ISD::XOR: 500 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 501 KnownOne, TLO, Depth+1)) 502 return true; 503 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 504 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 505 KnownOne2, TLO, Depth+1)) 506 return true; 507 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 508 509 // If all of the demanded bits are known zero on one side, return the other. 510 // These bits cannot contribute to the result of the 'xor'. 511 if ((KnownZero & NewMask) == NewMask) 512 return TLO.CombineTo(Op, Op.getOperand(0)); 513 if ((KnownZero2 & NewMask) == NewMask) 514 return TLO.CombineTo(Op, Op.getOperand(1)); 515 // If the operation can be done in a smaller type, do so. 516 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 517 return true; 518 519 // If all of the unknown bits are known to be zero on one side or the other 520 // (but not both) turn this into an *inclusive* or. 521 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 522 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 523 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 524 Op.getOperand(0), 525 Op.getOperand(1))); 526 527 // Output known-0 bits are known if clear or set in both the LHS & RHS. 528 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 529 // Output known-1 are known to be set if set in only one of the LHS, RHS. 530 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 531 532 // If all of the demanded bits on one side are known, and all of the set 533 // bits on that side are also known to be set on the other side, turn this 534 // into an AND, as we know the bits will be cleared. 535 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 536 // NB: it is okay if more bits are known than are requested 537 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 538 if (KnownOne == KnownOne2) { // set bits are the same on both sides 539 EVT VT = Op.getValueType(); 540 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT); 541 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 542 Op.getOperand(0), ANDC)); 543 } 544 } 545 546 // If the RHS is a constant, see if we can simplify it. 547 // for XOR, we prefer to force bits to 1 if they will make a -1. 548 // if we can't force bits, try to shrink constant 549 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 550 APInt Expanded = C->getAPIntValue() | (~NewMask); 551 // if we can expand it to have all bits set, do it 552 if (Expanded.isAllOnesValue()) { 553 if (Expanded != C->getAPIntValue()) { 554 EVT VT = Op.getValueType(); 555 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 556 TLO.DAG.getConstant(Expanded, dl, VT)); 557 return TLO.CombineTo(Op, New); 558 } 559 // if it already has all the bits set, nothing to change 560 // but don't shrink either! 561 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 562 return true; 563 } 564 } 565 566 KnownZero = KnownZeroOut; 567 KnownOne = KnownOneOut; 568 break; 569 case ISD::SELECT: 570 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 571 KnownOne, TLO, Depth+1)) 572 return true; 573 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 574 KnownOne2, TLO, Depth+1)) 575 return true; 576 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 577 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 578 579 // If the operands are constants, see if we can simplify them. 580 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 581 return true; 582 583 // Only known if known in both the LHS and RHS. 584 KnownOne &= KnownOne2; 585 KnownZero &= KnownZero2; 586 break; 587 case ISD::SELECT_CC: 588 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 589 KnownOne, TLO, Depth+1)) 590 return true; 591 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 592 KnownOne2, TLO, Depth+1)) 593 return true; 594 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 595 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 596 597 // If the operands are constants, see if we can simplify them. 598 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 599 return true; 600 601 // Only known if known in both the LHS and RHS. 602 KnownOne &= KnownOne2; 603 KnownZero &= KnownZero2; 604 break; 605 case ISD::SHL: 606 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 607 unsigned ShAmt = SA->getZExtValue(); 608 SDValue InOp = Op.getOperand(0); 609 610 // If the shift count is an invalid immediate, don't do anything. 611 if (ShAmt >= BitWidth) 612 break; 613 614 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 615 // single shift. We can do this if the bottom bits (which are shifted 616 // out) are never demanded. 617 if (InOp.getOpcode() == ISD::SRL && 618 isa<ConstantSDNode>(InOp.getOperand(1))) { 619 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 620 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 621 unsigned Opc = ISD::SHL; 622 int Diff = ShAmt-C1; 623 if (Diff < 0) { 624 Diff = -Diff; 625 Opc = ISD::SRL; 626 } 627 628 SDValue NewSA = 629 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 630 EVT VT = Op.getValueType(); 631 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 632 InOp.getOperand(0), NewSA)); 633 } 634 } 635 636 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 637 KnownZero, KnownOne, TLO, Depth+1)) 638 return true; 639 640 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 641 // are not demanded. This will likely allow the anyext to be folded away. 642 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 643 SDValue InnerOp = InOp.getNode()->getOperand(0); 644 EVT InnerVT = InnerOp.getValueType(); 645 unsigned InnerBits = InnerVT.getSizeInBits(); 646 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 647 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 648 EVT ShTy = getShiftAmountTy(InnerVT); 649 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 650 ShTy = InnerVT; 651 SDValue NarrowShl = 652 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 653 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 654 return 655 TLO.CombineTo(Op, 656 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 657 NarrowShl)); 658 } 659 // Repeat the SHL optimization above in cases where an extension 660 // intervenes: (shl (anyext (shr x, c1)), c2) to 661 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 662 // aren't demanded (as above) and that the shifted upper c1 bits of 663 // x aren't demanded. 664 if (InOp.hasOneUse() && 665 InnerOp.getOpcode() == ISD::SRL && 666 InnerOp.hasOneUse() && 667 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 668 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 669 ->getZExtValue(); 670 if (InnerShAmt < ShAmt && 671 InnerShAmt < InnerBits && 672 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 673 NewMask.trunc(ShAmt) == 0) { 674 SDValue NewSA = 675 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 676 Op.getOperand(1).getValueType()); 677 EVT VT = Op.getValueType(); 678 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 679 InnerOp.getOperand(0)); 680 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 681 NewExt, NewSA)); 682 } 683 } 684 } 685 686 KnownZero <<= SA->getZExtValue(); 687 KnownOne <<= SA->getZExtValue(); 688 // low bits known zero. 689 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 690 } 691 break; 692 case ISD::SRL: 693 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 694 EVT VT = Op.getValueType(); 695 unsigned ShAmt = SA->getZExtValue(); 696 unsigned VTSize = VT.getSizeInBits(); 697 SDValue InOp = Op.getOperand(0); 698 699 // If the shift count is an invalid immediate, don't do anything. 700 if (ShAmt >= BitWidth) 701 break; 702 703 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 704 // single shift. We can do this if the top bits (which are shifted out) 705 // are never demanded. 706 if (InOp.getOpcode() == ISD::SHL && 707 isa<ConstantSDNode>(InOp.getOperand(1))) { 708 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 709 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 710 unsigned Opc = ISD::SRL; 711 int Diff = ShAmt-C1; 712 if (Diff < 0) { 713 Diff = -Diff; 714 Opc = ISD::SHL; 715 } 716 717 SDValue NewSA = 718 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 719 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 720 InOp.getOperand(0), NewSA)); 721 } 722 } 723 724 // Compute the new bits that are at the top now. 725 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt), 726 KnownZero, KnownOne, TLO, Depth+1)) 727 return true; 728 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 729 KnownZero = KnownZero.lshr(ShAmt); 730 KnownOne = KnownOne.lshr(ShAmt); 731 732 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 733 KnownZero |= HighBits; // High bits known zero. 734 } 735 break; 736 case ISD::SRA: 737 // If this is an arithmetic shift right and only the low-bit is set, we can 738 // always convert this into a logical shr, even if the shift amount is 739 // variable. The low bit of the shift cannot be an input sign bit unless 740 // the shift amount is >= the size of the datatype, which is undefined. 741 if (NewMask == 1) 742 return TLO.CombineTo(Op, 743 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 744 Op.getOperand(0), Op.getOperand(1))); 745 746 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 747 EVT VT = Op.getValueType(); 748 unsigned ShAmt = SA->getZExtValue(); 749 750 // If the shift count is an invalid immediate, don't do anything. 751 if (ShAmt >= BitWidth) 752 break; 753 754 APInt InDemandedMask = (NewMask << ShAmt); 755 756 // If any of the demanded bits are produced by the sign extension, we also 757 // demand the input sign bit. 758 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 759 if (HighBits.intersects(NewMask)) 760 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); 761 762 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 763 KnownZero, KnownOne, TLO, Depth+1)) 764 return true; 765 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 766 KnownZero = KnownZero.lshr(ShAmt); 767 KnownOne = KnownOne.lshr(ShAmt); 768 769 // Handle the sign bit, adjusted to where it is now in the mask. 770 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 771 772 // If the input sign bit is known to be zero, or if none of the top bits 773 // are demanded, turn this into an unsigned shift right. 774 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) 775 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 776 Op.getOperand(0), 777 Op.getOperand(1))); 778 779 int Log2 = NewMask.exactLogBase2(); 780 if (Log2 >= 0) { 781 // The bit must come from the sign. 782 SDValue NewSA = 783 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 784 Op.getOperand(1).getValueType()); 785 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 786 Op.getOperand(0), NewSA)); 787 } 788 789 if (KnownOne.intersects(SignBit)) 790 // New bits are known one. 791 KnownOne |= HighBits; 792 } 793 break; 794 case ISD::SIGN_EXTEND_INREG: { 795 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 796 797 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 798 // If we only care about the highest bit, don't bother shifting right. 799 if (MsbMask == NewMask) { 800 unsigned ShAmt = ExVT.getScalarType().getSizeInBits(); 801 SDValue InOp = Op.getOperand(0); 802 unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits(); 803 bool AlreadySignExtended = 804 TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1; 805 // However if the input is already sign extended we expect the sign 806 // extension to be dropped altogether later and do not simplify. 807 if (!AlreadySignExtended) { 808 // Compute the correct shift amount type, which must be getShiftAmountTy 809 // for scalar types after legalization. 810 EVT ShiftAmtTy = Op.getValueType(); 811 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 812 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy); 813 814 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl, 815 ShiftAmtTy); 816 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 817 Op.getValueType(), InOp, 818 ShiftAmt)); 819 } 820 } 821 822 // Sign extension. Compute the demanded bits in the result that are not 823 // present in the input. 824 APInt NewBits = 825 APInt::getHighBitsSet(BitWidth, 826 BitWidth - ExVT.getScalarType().getSizeInBits()); 827 828 // If none of the extended bits are demanded, eliminate the sextinreg. 829 if ((NewBits & NewMask) == 0) 830 return TLO.CombineTo(Op, Op.getOperand(0)); 831 832 APInt InSignBit = 833 APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth); 834 APInt InputDemandedBits = 835 APInt::getLowBitsSet(BitWidth, 836 ExVT.getScalarType().getSizeInBits()) & 837 NewMask; 838 839 // Since the sign extended bits are demanded, we know that the sign 840 // bit is demanded. 841 InputDemandedBits |= InSignBit; 842 843 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 844 KnownZero, KnownOne, TLO, Depth+1)) 845 return true; 846 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 847 848 // If the sign bit of the input is known set or clear, then we know the 849 // top bits of the result. 850 851 // If the input sign bit is known zero, convert this into a zero extension. 852 if (KnownZero.intersects(InSignBit)) 853 return TLO.CombineTo(Op, 854 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT)); 855 856 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 857 KnownOne |= NewBits; 858 KnownZero &= ~NewBits; 859 } else { // Input sign bit unknown 860 KnownZero &= ~NewBits; 861 KnownOne &= ~NewBits; 862 } 863 break; 864 } 865 case ISD::BUILD_PAIR: { 866 EVT HalfVT = Op.getOperand(0).getValueType(); 867 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 868 869 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 870 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 871 872 APInt KnownZeroLo, KnownOneLo; 873 APInt KnownZeroHi, KnownOneHi; 874 875 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, 876 KnownOneLo, TLO, Depth + 1)) 877 return true; 878 879 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, 880 KnownOneHi, TLO, Depth + 1)) 881 return true; 882 883 KnownZero = KnownZeroLo.zext(BitWidth) | 884 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); 885 886 KnownOne = KnownOneLo.zext(BitWidth) | 887 KnownOneHi.zext(BitWidth).shl(HalfBitWidth); 888 break; 889 } 890 case ISD::ZERO_EXTEND: { 891 unsigned OperandBitWidth = 892 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 893 APInt InMask = NewMask.trunc(OperandBitWidth); 894 895 // If none of the top bits are demanded, convert this into an any_extend. 896 APInt NewBits = 897 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 898 if (!NewBits.intersects(NewMask)) 899 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 900 Op.getValueType(), 901 Op.getOperand(0))); 902 903 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 904 KnownZero, KnownOne, TLO, Depth+1)) 905 return true; 906 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 907 KnownZero = KnownZero.zext(BitWidth); 908 KnownOne = KnownOne.zext(BitWidth); 909 KnownZero |= NewBits; 910 break; 911 } 912 case ISD::SIGN_EXTEND: { 913 EVT InVT = Op.getOperand(0).getValueType(); 914 unsigned InBits = InVT.getScalarType().getSizeInBits(); 915 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 916 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 917 APInt NewBits = ~InMask & NewMask; 918 919 // If none of the top bits are demanded, convert this into an any_extend. 920 if (NewBits == 0) 921 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 922 Op.getValueType(), 923 Op.getOperand(0))); 924 925 // Since some of the sign extended bits are demanded, we know that the sign 926 // bit is demanded. 927 APInt InDemandedBits = InMask & NewMask; 928 InDemandedBits |= InSignBit; 929 InDemandedBits = InDemandedBits.trunc(InBits); 930 931 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 932 KnownOne, TLO, Depth+1)) 933 return true; 934 KnownZero = KnownZero.zext(BitWidth); 935 KnownOne = KnownOne.zext(BitWidth); 936 937 // If the sign bit is known zero, convert this to a zero extend. 938 if (KnownZero.intersects(InSignBit)) 939 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 940 Op.getValueType(), 941 Op.getOperand(0))); 942 943 // If the sign bit is known one, the top bits match. 944 if (KnownOne.intersects(InSignBit)) { 945 KnownOne |= NewBits; 946 assert((KnownZero & NewBits) == 0); 947 } else { // Otherwise, top bits aren't known. 948 assert((KnownOne & NewBits) == 0); 949 assert((KnownZero & NewBits) == 0); 950 } 951 break; 952 } 953 case ISD::ANY_EXTEND: { 954 unsigned OperandBitWidth = 955 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 956 APInt InMask = NewMask.trunc(OperandBitWidth); 957 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 958 KnownZero, KnownOne, TLO, Depth+1)) 959 return true; 960 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 961 KnownZero = KnownZero.zext(BitWidth); 962 KnownOne = KnownOne.zext(BitWidth); 963 break; 964 } 965 case ISD::TRUNCATE: { 966 // Simplify the input, using demanded bit information, and compute the known 967 // zero/one bits live out. 968 unsigned OperandBitWidth = 969 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 970 APInt TruncMask = NewMask.zext(OperandBitWidth); 971 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 972 KnownZero, KnownOne, TLO, Depth+1)) 973 return true; 974 KnownZero = KnownZero.trunc(BitWidth); 975 KnownOne = KnownOne.trunc(BitWidth); 976 977 // If the input is only used by this truncate, see if we can shrink it based 978 // on the known demanded bits. 979 if (Op.getOperand(0).getNode()->hasOneUse()) { 980 SDValue In = Op.getOperand(0); 981 switch (In.getOpcode()) { 982 default: break; 983 case ISD::SRL: 984 // Shrink SRL by a constant if none of the high bits shifted in are 985 // demanded. 986 if (TLO.LegalTypes() && 987 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 988 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 989 // undesirable. 990 break; 991 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 992 if (!ShAmt) 993 break; 994 SDValue Shift = In.getOperand(1); 995 if (TLO.LegalTypes()) { 996 uint64_t ShVal = ShAmt->getZExtValue(); 997 Shift = 998 TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(Op.getValueType())); 999 } 1000 1001 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1002 OperandBitWidth - BitWidth); 1003 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 1004 1005 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 1006 // None of the shifted in bits are needed. Add a truncate of the 1007 // shift input, then shift it. 1008 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1009 Op.getValueType(), 1010 In.getOperand(0)); 1011 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1012 Op.getValueType(), 1013 NewTrunc, 1014 Shift)); 1015 } 1016 break; 1017 } 1018 } 1019 1020 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1021 break; 1022 } 1023 case ISD::AssertZext: { 1024 // AssertZext demands all of the high bits, plus any of the low bits 1025 // demanded by its users. 1026 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1027 APInt InMask = APInt::getLowBitsSet(BitWidth, 1028 VT.getSizeInBits()); 1029 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1030 KnownZero, KnownOne, TLO, Depth+1)) 1031 return true; 1032 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1033 1034 KnownZero |= ~InMask & NewMask; 1035 break; 1036 } 1037 case ISD::BITCAST: 1038 // If this is an FP->Int bitcast and if the sign bit is the only 1039 // thing demanded, turn this into a FGETSIGN. 1040 if (!TLO.LegalOperations() && 1041 !Op.getValueType().isVector() && 1042 !Op.getOperand(0).getValueType().isVector() && 1043 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && 1044 Op.getOperand(0).getValueType().isFloatingPoint()) { 1045 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1046 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1047 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) { 1048 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1049 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1050 // place. We expect the SHL to be eliminated by other optimizations. 1051 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1052 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); 1053 if (!OpVTLegal && OpVTSizeInBits > 32) 1054 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1055 unsigned ShVal = Op.getValueType().getSizeInBits()-1; 1056 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType()); 1057 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1058 Op.getValueType(), 1059 Sign, ShAmt)); 1060 } 1061 } 1062 break; 1063 case ISD::ADD: 1064 case ISD::MUL: 1065 case ISD::SUB: { 1066 // Add, Sub, and Mul don't demand any bits in positions beyond that 1067 // of the highest bit demanded of them. 1068 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1069 BitWidth - NewMask.countLeadingZeros()); 1070 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1071 KnownOne2, TLO, Depth+1)) 1072 return true; 1073 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1074 KnownOne2, TLO, Depth+1)) 1075 return true; 1076 // See if the operation should be performed at a smaller bit width. 1077 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1078 return true; 1079 } 1080 // FALL THROUGH 1081 default: 1082 // Just use computeKnownBits to compute output bits. 1083 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 1084 break; 1085 } 1086 1087 // If we know the value of all of the demanded bits, return this as a 1088 // constant. 1089 if ((NewMask & (KnownZero|KnownOne)) == NewMask) 1090 return TLO.CombineTo(Op, 1091 TLO.DAG.getConstant(KnownOne, dl, Op.getValueType())); 1092 1093 return false; 1094 } 1095 1096 /// computeKnownBitsForTargetNode - Determine which of the bits specified 1097 /// in Mask are known to be either zero or one and return them in the 1098 /// KnownZero/KnownOne bitsets. 1099 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1100 APInt &KnownZero, 1101 APInt &KnownOne, 1102 const SelectionDAG &DAG, 1103 unsigned Depth) const { 1104 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1105 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1106 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1107 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1108 "Should use MaskedValueIsZero if you don't know whether Op" 1109 " is a target node!"); 1110 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1111 } 1112 1113 /// ComputeNumSignBitsForTargetNode - This method can be implemented by 1114 /// targets that want to expose additional information about sign bits to the 1115 /// DAG Combiner. 1116 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1117 const SelectionDAG &, 1118 unsigned Depth) const { 1119 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1120 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1121 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1122 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1123 "Should use ComputeNumSignBits if you don't know whether Op" 1124 " is a target node!"); 1125 return 1; 1126 } 1127 1128 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly 1129 /// one bit set. This differs from computeKnownBits in that it doesn't need to 1130 /// determine which bit is set. 1131 /// 1132 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { 1133 // A left-shift of a constant one will have exactly one bit set, because 1134 // shifting the bit off the end is undefined. 1135 if (Val.getOpcode() == ISD::SHL) 1136 if (ConstantSDNode *C = 1137 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1138 if (C->getAPIntValue() == 1) 1139 return true; 1140 1141 // Similarly, a right-shift of a constant sign-bit will have exactly 1142 // one bit set. 1143 if (Val.getOpcode() == ISD::SRL) 1144 if (ConstantSDNode *C = 1145 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1146 if (C->getAPIntValue().isSignBit()) 1147 return true; 1148 1149 // More could be done here, though the above checks are enough 1150 // to handle some common cases. 1151 1152 // Fall back to computeKnownBits to catch other known cases. 1153 EVT OpVT = Val.getValueType(); 1154 unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); 1155 APInt KnownZero, KnownOne; 1156 DAG.computeKnownBits(Val, KnownZero, KnownOne); 1157 return (KnownZero.countPopulation() == BitWidth - 1) && 1158 (KnownOne.countPopulation() == 1); 1159 } 1160 1161 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1162 if (!N) 1163 return false; 1164 1165 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1166 if (!CN) { 1167 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1168 if (!BV) 1169 return false; 1170 1171 BitVector UndefElements; 1172 CN = BV->getConstantSplatNode(&UndefElements); 1173 // Only interested in constant splats, and we don't try to handle undef 1174 // elements in identifying boolean constants. 1175 if (!CN || UndefElements.none()) 1176 return false; 1177 } 1178 1179 switch (getBooleanContents(N->getValueType(0))) { 1180 case UndefinedBooleanContent: 1181 return CN->getAPIntValue()[0]; 1182 case ZeroOrOneBooleanContent: 1183 return CN->isOne(); 1184 case ZeroOrNegativeOneBooleanContent: 1185 return CN->isAllOnesValue(); 1186 } 1187 1188 llvm_unreachable("Invalid boolean contents"); 1189 } 1190 1191 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1192 if (!N) 1193 return false; 1194 1195 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1196 if (!CN) { 1197 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1198 if (!BV) 1199 return false; 1200 1201 BitVector UndefElements; 1202 CN = BV->getConstantSplatNode(&UndefElements); 1203 // Only interested in constant splats, and we don't try to handle undef 1204 // elements in identifying boolean constants. 1205 if (!CN || UndefElements.none()) 1206 return false; 1207 } 1208 1209 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1210 return !CN->getAPIntValue()[0]; 1211 1212 return CN->isNullValue(); 1213 } 1214 1215 /// SimplifySetCC - Try to simplify a setcc built with the specified operands 1216 /// and cc. If it is unable to simplify it, return a null SDValue. 1217 SDValue 1218 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1219 ISD::CondCode Cond, bool foldBooleans, 1220 DAGCombinerInfo &DCI, SDLoc dl) const { 1221 SelectionDAG &DAG = DCI.DAG; 1222 1223 // These setcc operations always fold. 1224 switch (Cond) { 1225 default: break; 1226 case ISD::SETFALSE: 1227 case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT); 1228 case ISD::SETTRUE: 1229 case ISD::SETTRUE2: { 1230 TargetLowering::BooleanContent Cnt = 1231 getBooleanContents(N0->getValueType(0)); 1232 return DAG.getConstant( 1233 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1234 VT); 1235 } 1236 } 1237 1238 // Ensure that the constant occurs on the RHS, and fold constant 1239 // comparisons. 1240 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1241 if (isa<ConstantSDNode>(N0.getNode()) && 1242 (DCI.isBeforeLegalizeOps() || 1243 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1244 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1245 1246 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1247 const APInt &C1 = N1C->getAPIntValue(); 1248 1249 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1250 // equality comparison, then we're just comparing whether X itself is 1251 // zero. 1252 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1253 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1254 N0.getOperand(1).getOpcode() == ISD::Constant) { 1255 const APInt &ShAmt 1256 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1257 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1258 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { 1259 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1260 // (srl (ctlz x), 5) == 0 -> X != 0 1261 // (srl (ctlz x), 5) != 1 -> X != 0 1262 Cond = ISD::SETNE; 1263 } else { 1264 // (srl (ctlz x), 5) != 0 -> X == 0 1265 // (srl (ctlz x), 5) == 1 -> X == 0 1266 Cond = ISD::SETEQ; 1267 } 1268 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1269 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1270 Zero, Cond); 1271 } 1272 } 1273 1274 SDValue CTPOP = N0; 1275 // Look through truncs that don't change the value of a ctpop. 1276 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1277 CTPOP = N0.getOperand(0); 1278 1279 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1280 (N0 == CTPOP || N0.getValueType().getSizeInBits() > 1281 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { 1282 EVT CTVT = CTPOP.getValueType(); 1283 SDValue CTOp = CTPOP.getOperand(0); 1284 1285 // (ctpop x) u< 2 -> (x & x-1) == 0 1286 // (ctpop x) u> 1 -> (x & x-1) != 0 1287 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1288 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1289 DAG.getConstant(1, dl, CTVT)); 1290 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1291 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1292 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 1293 } 1294 1295 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1296 } 1297 1298 // (zext x) == C --> x == (trunc C) 1299 // (sext x) == C --> x == (trunc C) 1300 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1301 DCI.isBeforeLegalize() && N0->hasOneUse()) { 1302 unsigned MinBits = N0.getValueSizeInBits(); 1303 SDValue PreExt; 1304 bool Signed = false; 1305 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1306 // ZExt 1307 MinBits = N0->getOperand(0).getValueSizeInBits(); 1308 PreExt = N0->getOperand(0); 1309 } else if (N0->getOpcode() == ISD::AND) { 1310 // DAGCombine turns costly ZExts into ANDs 1311 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1312 if ((C->getAPIntValue()+1).isPowerOf2()) { 1313 MinBits = C->getAPIntValue().countTrailingOnes(); 1314 PreExt = N0->getOperand(0); 1315 } 1316 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 1317 // SExt 1318 MinBits = N0->getOperand(0).getValueSizeInBits(); 1319 PreExt = N0->getOperand(0); 1320 Signed = true; 1321 } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) { 1322 // ZEXTLOAD / SEXTLOAD 1323 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1324 MinBits = LN0->getMemoryVT().getSizeInBits(); 1325 PreExt = N0; 1326 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 1327 Signed = true; 1328 MinBits = LN0->getMemoryVT().getSizeInBits(); 1329 PreExt = N0; 1330 } 1331 } 1332 1333 // Figure out how many bits we need to preserve this constant. 1334 unsigned ReqdBits = Signed ? 1335 C1.getBitWidth() - C1.getNumSignBits() + 1 : 1336 C1.getActiveBits(); 1337 1338 // Make sure we're not losing bits from the constant. 1339 if (MinBits > 0 && 1340 MinBits < C1.getBitWidth() && 1341 MinBits >= ReqdBits) { 1342 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1343 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1344 // Will get folded away. 1345 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 1346 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 1347 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1348 } 1349 } 1350 } 1351 1352 // If the LHS is '(and load, const)', the RHS is 0, 1353 // the test is for equality or unsigned, and all 1 bits of the const are 1354 // in the same partial word, see if we can shorten the load. 1355 if (DCI.isBeforeLegalize() && 1356 !ISD::isSignedIntSetCC(Cond) && 1357 N0.getOpcode() == ISD::AND && C1 == 0 && 1358 N0.getNode()->hasOneUse() && 1359 isa<LoadSDNode>(N0.getOperand(0)) && 1360 N0.getOperand(0).getNode()->hasOneUse() && 1361 isa<ConstantSDNode>(N0.getOperand(1))) { 1362 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1363 APInt bestMask; 1364 unsigned bestWidth = 0, bestOffset = 0; 1365 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1366 unsigned origWidth = N0.getValueType().getSizeInBits(); 1367 unsigned maskWidth = origWidth; 1368 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1369 // 8 bits, but have to be careful... 1370 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1371 origWidth = Lod->getMemoryVT().getSizeInBits(); 1372 const APInt &Mask = 1373 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1374 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1375 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1376 for (unsigned offset=0; offset<origWidth/width; offset++) { 1377 if ((newMask & Mask) == Mask) { 1378 if (!getDataLayout()->isLittleEndian()) 1379 bestOffset = (origWidth/width - offset - 1) * (width/8); 1380 else 1381 bestOffset = (uint64_t)offset * (width/8); 1382 bestMask = Mask.lshr(offset * (width/8) * 8); 1383 bestWidth = width; 1384 break; 1385 } 1386 newMask = newMask << width; 1387 } 1388 } 1389 } 1390 if (bestWidth) { 1391 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1392 if (newVT.isRound()) { 1393 EVT PtrType = Lod->getOperand(1).getValueType(); 1394 SDValue Ptr = Lod->getBasePtr(); 1395 if (bestOffset != 0) 1396 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1397 DAG.getConstant(bestOffset, dl, PtrType)); 1398 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1399 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 1400 Lod->getPointerInfo().getWithOffset(bestOffset), 1401 false, false, false, NewAlign); 1402 return DAG.getSetCC(dl, VT, 1403 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1404 DAG.getConstant(bestMask.trunc(bestWidth), 1405 dl, newVT)), 1406 DAG.getConstant(0LL, dl, newVT), Cond); 1407 } 1408 } 1409 } 1410 1411 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1412 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1413 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); 1414 1415 // If the comparison constant has bits in the upper part, the 1416 // zero-extended value could never match. 1417 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1418 C1.getBitWidth() - InSize))) { 1419 switch (Cond) { 1420 case ISD::SETUGT: 1421 case ISD::SETUGE: 1422 case ISD::SETEQ: return DAG.getConstant(0, dl, VT); 1423 case ISD::SETULT: 1424 case ISD::SETULE: 1425 case ISD::SETNE: return DAG.getConstant(1, dl, VT); 1426 case ISD::SETGT: 1427 case ISD::SETGE: 1428 // True if the sign bit of C1 is set. 1429 return DAG.getConstant(C1.isNegative(), dl, VT); 1430 case ISD::SETLT: 1431 case ISD::SETLE: 1432 // True if the sign bit of C1 isn't set. 1433 return DAG.getConstant(C1.isNonNegative(), dl, VT); 1434 default: 1435 break; 1436 } 1437 } 1438 1439 // Otherwise, we can perform the comparison with the low bits. 1440 switch (Cond) { 1441 case ISD::SETEQ: 1442 case ISD::SETNE: 1443 case ISD::SETUGT: 1444 case ISD::SETUGE: 1445 case ISD::SETULT: 1446 case ISD::SETULE: { 1447 EVT newVT = N0.getOperand(0).getValueType(); 1448 if (DCI.isBeforeLegalizeOps() || 1449 (isOperationLegal(ISD::SETCC, newVT) && 1450 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1451 EVT NewSetCCVT = getSetCCResultType(*DAG.getContext(), newVT); 1452 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 1453 1454 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1455 NewConst, Cond); 1456 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 1457 } 1458 break; 1459 } 1460 default: 1461 break; // todo, be more careful with signed comparisons 1462 } 1463 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1464 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1465 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1466 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1467 EVT ExtDstTy = N0.getValueType(); 1468 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1469 1470 // If the constant doesn't fit into the number of bits for the source of 1471 // the sign extension, it is impossible for both sides to be equal. 1472 if (C1.getMinSignedBits() > ExtSrcTyBits) 1473 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 1474 1475 SDValue ZextOp; 1476 EVT Op0Ty = N0.getOperand(0).getValueType(); 1477 if (Op0Ty == ExtSrcTy) { 1478 ZextOp = N0.getOperand(0); 1479 } else { 1480 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1481 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1482 DAG.getConstant(Imm, dl, Op0Ty)); 1483 } 1484 if (!DCI.isCalledByLegalizer()) 1485 DCI.AddToWorklist(ZextOp.getNode()); 1486 // Otherwise, make this a use of a zext. 1487 return DAG.getSetCC(dl, VT, ZextOp, 1488 DAG.getConstant(C1 & APInt::getLowBitsSet( 1489 ExtDstTyBits, 1490 ExtSrcTyBits), 1491 dl, ExtDstTy), 1492 Cond); 1493 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1494 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1495 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1496 if (N0.getOpcode() == ISD::SETCC && 1497 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1498 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1499 if (TrueWhenTrue) 1500 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1501 // Invert the condition. 1502 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1503 CC = ISD::getSetCCInverse(CC, 1504 N0.getOperand(0).getValueType().isInteger()); 1505 if (DCI.isBeforeLegalizeOps() || 1506 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1507 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1508 } 1509 1510 if ((N0.getOpcode() == ISD::XOR || 1511 (N0.getOpcode() == ISD::AND && 1512 N0.getOperand(0).getOpcode() == ISD::XOR && 1513 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1514 isa<ConstantSDNode>(N0.getOperand(1)) && 1515 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1516 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1517 // can only do this if the top bits are known zero. 1518 unsigned BitWidth = N0.getValueSizeInBits(); 1519 if (DAG.MaskedValueIsZero(N0, 1520 APInt::getHighBitsSet(BitWidth, 1521 BitWidth-1))) { 1522 // Okay, get the un-inverted input value. 1523 SDValue Val; 1524 if (N0.getOpcode() == ISD::XOR) 1525 Val = N0.getOperand(0); 1526 else { 1527 assert(N0.getOpcode() == ISD::AND && 1528 N0.getOperand(0).getOpcode() == ISD::XOR); 1529 // ((X^1)&1)^1 -> X & 1 1530 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1531 N0.getOperand(0).getOperand(0), 1532 N0.getOperand(1)); 1533 } 1534 1535 return DAG.getSetCC(dl, VT, Val, N1, 1536 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1537 } 1538 } else if (N1C->getAPIntValue() == 1 && 1539 (VT == MVT::i1 || 1540 getBooleanContents(N0->getValueType(0)) == 1541 ZeroOrOneBooleanContent)) { 1542 SDValue Op0 = N0; 1543 if (Op0.getOpcode() == ISD::TRUNCATE) 1544 Op0 = Op0.getOperand(0); 1545 1546 if ((Op0.getOpcode() == ISD::XOR) && 1547 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1548 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1549 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1550 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1551 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1552 Cond); 1553 } 1554 if (Op0.getOpcode() == ISD::AND && 1555 isa<ConstantSDNode>(Op0.getOperand(1)) && 1556 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1557 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1558 if (Op0.getValueType().bitsGT(VT)) 1559 Op0 = DAG.getNode(ISD::AND, dl, VT, 1560 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1561 DAG.getConstant(1, dl, VT)); 1562 else if (Op0.getValueType().bitsLT(VT)) 1563 Op0 = DAG.getNode(ISD::AND, dl, VT, 1564 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1565 DAG.getConstant(1, dl, VT)); 1566 1567 return DAG.getSetCC(dl, VT, Op0, 1568 DAG.getConstant(0, dl, Op0.getValueType()), 1569 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1570 } 1571 if (Op0.getOpcode() == ISD::AssertZext && 1572 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1573 return DAG.getSetCC(dl, VT, Op0, 1574 DAG.getConstant(0, dl, Op0.getValueType()), 1575 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1576 } 1577 } 1578 1579 APInt MinVal, MaxVal; 1580 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1581 if (ISD::isSignedIntSetCC(Cond)) { 1582 MinVal = APInt::getSignedMinValue(OperandBitSize); 1583 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1584 } else { 1585 MinVal = APInt::getMinValue(OperandBitSize); 1586 MaxVal = APInt::getMaxValue(OperandBitSize); 1587 } 1588 1589 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1590 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1591 if (C1 == MinVal) return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1592 // X >= C0 --> X > (C0 - 1) 1593 APInt C = C1 - 1; 1594 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1595 if ((DCI.isBeforeLegalizeOps() || 1596 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1597 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1598 isLegalICmpImmediate(C.getSExtValue())))) { 1599 return DAG.getSetCC(dl, VT, N0, 1600 DAG.getConstant(C, dl, N1.getValueType()), 1601 NewCC); 1602 } 1603 } 1604 1605 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1606 if (C1 == MaxVal) return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1607 // X <= C0 --> X < (C0 + 1) 1608 APInt C = C1 + 1; 1609 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1610 if ((DCI.isBeforeLegalizeOps() || 1611 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1612 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1613 isLegalICmpImmediate(C.getSExtValue())))) { 1614 return DAG.getSetCC(dl, VT, N0, 1615 DAG.getConstant(C, dl, N1.getValueType()), 1616 NewCC); 1617 } 1618 } 1619 1620 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1621 return DAG.getConstant(0, dl, VT); // X < MIN --> false 1622 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1623 return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1624 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1625 return DAG.getConstant(0, dl, VT); // X > MAX --> false 1626 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1627 return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1628 1629 // Canonicalize setgt X, Min --> setne X, Min 1630 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1631 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1632 // Canonicalize setlt X, Max --> setne X, Max 1633 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1634 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1635 1636 // If we have setult X, 1, turn it into seteq X, 0 1637 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1638 return DAG.getSetCC(dl, VT, N0, 1639 DAG.getConstant(MinVal, dl, N0.getValueType()), 1640 ISD::SETEQ); 1641 // If we have setugt X, Max-1, turn it into seteq X, Max 1642 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1643 return DAG.getSetCC(dl, VT, N0, 1644 DAG.getConstant(MaxVal, dl, N0.getValueType()), 1645 ISD::SETEQ); 1646 1647 // If we have "setcc X, C0", check to see if we can shrink the immediate 1648 // by changing cc. 1649 1650 // SETUGT X, SINTMAX -> SETLT X, 0 1651 if (Cond == ISD::SETUGT && 1652 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1653 return DAG.getSetCC(dl, VT, N0, 1654 DAG.getConstant(0, dl, N1.getValueType()), 1655 ISD::SETLT); 1656 1657 // SETULT X, SINTMIN -> SETGT X, -1 1658 if (Cond == ISD::SETULT && 1659 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1660 SDValue ConstMinusOne = 1661 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 1662 N1.getValueType()); 1663 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1664 } 1665 1666 // Fold bit comparisons when we can. 1667 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1668 (VT == N0.getValueType() || 1669 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1670 N0.getOpcode() == ISD::AND) 1671 if (ConstantSDNode *AndRHS = 1672 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1673 EVT ShiftTy = DCI.isBeforeLegalize() ? 1674 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1675 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1676 // Perform the xform if the AND RHS is a single bit. 1677 if (AndRHS->getAPIntValue().isPowerOf2()) { 1678 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1679 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1680 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 1681 ShiftTy))); 1682 } 1683 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1684 // (X & 8) == 8 --> (X & 8) >> 3 1685 // Perform the xform if C1 is a single bit. 1686 if (C1.isPowerOf2()) { 1687 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1688 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1689 DAG.getConstant(C1.logBase2(), dl, 1690 ShiftTy))); 1691 } 1692 } 1693 } 1694 1695 if (C1.getMinSignedBits() <= 64 && 1696 !isLegalICmpImmediate(C1.getSExtValue())) { 1697 // (X & -256) == 256 -> (X >> 8) == 1 1698 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1699 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1700 if (ConstantSDNode *AndRHS = 1701 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1702 const APInt &AndRHSC = AndRHS->getAPIntValue(); 1703 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 1704 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 1705 EVT ShiftTy = DCI.isBeforeLegalize() ? 1706 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1707 EVT CmpTy = N0.getValueType(); 1708 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 1709 DAG.getConstant(ShiftBits, dl, 1710 ShiftTy)); 1711 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 1712 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 1713 } 1714 } 1715 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 1716 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 1717 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 1718 // X < 0x100000000 -> (X >> 32) < 1 1719 // X >= 0x100000000 -> (X >> 32) >= 1 1720 // X <= 0x0ffffffff -> (X >> 32) < 1 1721 // X > 0x0ffffffff -> (X >> 32) >= 1 1722 unsigned ShiftBits; 1723 APInt NewC = C1; 1724 ISD::CondCode NewCond = Cond; 1725 if (AdjOne) { 1726 ShiftBits = C1.countTrailingOnes(); 1727 NewC = NewC + 1; 1728 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 1729 } else { 1730 ShiftBits = C1.countTrailingZeros(); 1731 } 1732 NewC = NewC.lshr(ShiftBits); 1733 if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) { 1734 EVT ShiftTy = DCI.isBeforeLegalize() ? 1735 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1736 EVT CmpTy = N0.getValueType(); 1737 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 1738 DAG.getConstant(ShiftBits, dl, ShiftTy)); 1739 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 1740 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 1741 } 1742 } 1743 } 1744 } 1745 1746 if (isa<ConstantFPSDNode>(N0.getNode())) { 1747 // Constant fold or commute setcc. 1748 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 1749 if (O.getNode()) return O; 1750 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 1751 // If the RHS of an FP comparison is a constant, simplify it away in 1752 // some cases. 1753 if (CFP->getValueAPF().isNaN()) { 1754 // If an operand is known to be a nan, we can fold it. 1755 switch (ISD::getUnorderedFlavor(Cond)) { 1756 default: llvm_unreachable("Unknown flavor!"); 1757 case 0: // Known false. 1758 return DAG.getConstant(0, dl, VT); 1759 case 1: // Known true. 1760 return DAG.getConstant(1, dl, VT); 1761 case 2: // Undefined. 1762 return DAG.getUNDEF(VT); 1763 } 1764 } 1765 1766 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 1767 // constant if knowing that the operand is non-nan is enough. We prefer to 1768 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 1769 // materialize 0.0. 1770 if (Cond == ISD::SETO || Cond == ISD::SETUO) 1771 return DAG.getSetCC(dl, VT, N0, N0, Cond); 1772 1773 // If the condition is not legal, see if we can find an equivalent one 1774 // which is legal. 1775 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1776 // If the comparison was an awkward floating-point == or != and one of 1777 // the comparison operands is infinity or negative infinity, convert the 1778 // condition to a less-awkward <= or >=. 1779 if (CFP->getValueAPF().isInfinity()) { 1780 if (CFP->getValueAPF().isNegative()) { 1781 if (Cond == ISD::SETOEQ && 1782 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1783 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 1784 if (Cond == ISD::SETUEQ && 1785 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1786 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 1787 if (Cond == ISD::SETUNE && 1788 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1789 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 1790 if (Cond == ISD::SETONE && 1791 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1792 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 1793 } else { 1794 if (Cond == ISD::SETOEQ && 1795 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1796 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 1797 if (Cond == ISD::SETUEQ && 1798 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1799 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 1800 if (Cond == ISD::SETUNE && 1801 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1802 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 1803 if (Cond == ISD::SETONE && 1804 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1805 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 1806 } 1807 } 1808 } 1809 } 1810 1811 if (N0 == N1) { 1812 // The sext(setcc()) => setcc() optimization relies on the appropriate 1813 // constant being emitted. 1814 uint64_t EqVal = 0; 1815 switch (getBooleanContents(N0.getValueType())) { 1816 case UndefinedBooleanContent: 1817 case ZeroOrOneBooleanContent: 1818 EqVal = ISD::isTrueWhenEqual(Cond); 1819 break; 1820 case ZeroOrNegativeOneBooleanContent: 1821 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 1822 break; 1823 } 1824 1825 // We can always fold X == X for integer setcc's. 1826 if (N0.getValueType().isInteger()) { 1827 return DAG.getConstant(EqVal, dl, VT); 1828 } 1829 unsigned UOF = ISD::getUnorderedFlavor(Cond); 1830 if (UOF == 2) // FP operators that are undefined on NaNs. 1831 return DAG.getConstant(EqVal, dl, VT); 1832 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 1833 return DAG.getConstant(EqVal, dl, VT); 1834 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 1835 // if it is not already. 1836 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 1837 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 1838 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 1839 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 1840 } 1841 1842 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1843 N0.getValueType().isInteger()) { 1844 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 1845 N0.getOpcode() == ISD::XOR) { 1846 // Simplify (X+Y) == (X+Z) --> Y == Z 1847 if (N0.getOpcode() == N1.getOpcode()) { 1848 if (N0.getOperand(0) == N1.getOperand(0)) 1849 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 1850 if (N0.getOperand(1) == N1.getOperand(1)) 1851 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 1852 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 1853 // If X op Y == Y op X, try other combinations. 1854 if (N0.getOperand(0) == N1.getOperand(1)) 1855 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 1856 Cond); 1857 if (N0.getOperand(1) == N1.getOperand(0)) 1858 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 1859 Cond); 1860 } 1861 } 1862 1863 // If RHS is a legal immediate value for a compare instruction, we need 1864 // to be careful about increasing register pressure needlessly. 1865 bool LegalRHSImm = false; 1866 1867 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { 1868 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1869 // Turn (X+C1) == C2 --> X == C2-C1 1870 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 1871 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1872 DAG.getConstant(RHSC->getAPIntValue()- 1873 LHSR->getAPIntValue(), 1874 dl, N0.getValueType()), Cond); 1875 } 1876 1877 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 1878 if (N0.getOpcode() == ISD::XOR) 1879 // If we know that all of the inverted bits are zero, don't bother 1880 // performing the inversion. 1881 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 1882 return 1883 DAG.getSetCC(dl, VT, N0.getOperand(0), 1884 DAG.getConstant(LHSR->getAPIntValue() ^ 1885 RHSC->getAPIntValue(), 1886 dl, N0.getValueType()), 1887 Cond); 1888 } 1889 1890 // Turn (C1-X) == C2 --> X == C1-C2 1891 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 1892 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 1893 return 1894 DAG.getSetCC(dl, VT, N0.getOperand(1), 1895 DAG.getConstant(SUBC->getAPIntValue() - 1896 RHSC->getAPIntValue(), 1897 dl, N0.getValueType()), 1898 Cond); 1899 } 1900 } 1901 1902 // Could RHSC fold directly into a compare? 1903 if (RHSC->getValueType(0).getSizeInBits() <= 64) 1904 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 1905 } 1906 1907 // Simplify (X+Z) == X --> Z == 0 1908 // Don't do this if X is an immediate that can fold into a cmp 1909 // instruction and X+Z has other uses. It could be an induction variable 1910 // chain, and the transform would increase register pressure. 1911 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 1912 if (N0.getOperand(0) == N1) 1913 return DAG.getSetCC(dl, VT, N0.getOperand(1), 1914 DAG.getConstant(0, dl, N0.getValueType()), Cond); 1915 if (N0.getOperand(1) == N1) { 1916 if (DAG.isCommutativeBinOp(N0.getOpcode())) 1917 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1918 DAG.getConstant(0, dl, N0.getValueType()), 1919 Cond); 1920 if (N0.getNode()->hasOneUse()) { 1921 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 1922 // (Z-X) == X --> Z == X<<1 1923 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1, 1924 DAG.getConstant(1, dl, 1925 getShiftAmountTy(N1.getValueType()))); 1926 if (!DCI.isCalledByLegalizer()) 1927 DCI.AddToWorklist(SH.getNode()); 1928 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 1929 } 1930 } 1931 } 1932 } 1933 1934 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 1935 N1.getOpcode() == ISD::XOR) { 1936 // Simplify X == (X+Z) --> Z == 0 1937 if (N1.getOperand(0) == N0) 1938 return DAG.getSetCC(dl, VT, N1.getOperand(1), 1939 DAG.getConstant(0, dl, N1.getValueType()), Cond); 1940 if (N1.getOperand(1) == N0) { 1941 if (DAG.isCommutativeBinOp(N1.getOpcode())) 1942 return DAG.getSetCC(dl, VT, N1.getOperand(0), 1943 DAG.getConstant(0, dl, N1.getValueType()), Cond); 1944 if (N1.getNode()->hasOneUse()) { 1945 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 1946 // X == (Z-X) --> X<<1 == Z 1947 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, 1948 DAG.getConstant(1, dl, 1949 getShiftAmountTy(N0.getValueType()))); 1950 if (!DCI.isCalledByLegalizer()) 1951 DCI.AddToWorklist(SH.getNode()); 1952 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 1953 } 1954 } 1955 } 1956 1957 // Simplify x&y == y to x&y != 0 if y has exactly one bit set. 1958 // Note that where y is variable and is known to have at most 1959 // one bit set (for example, if it is z&1) we cannot do this; 1960 // the expressions are not equivalent when y==0. 1961 if (N0.getOpcode() == ISD::AND) 1962 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { 1963 if (ValueHasExactlyOneBitSet(N1, DAG)) { 1964 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1965 if (DCI.isBeforeLegalizeOps() || 1966 isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1967 SDValue Zero = DAG.getConstant(0, dl, N1.getValueType()); 1968 return DAG.getSetCC(dl, VT, N0, Zero, Cond); 1969 } 1970 } 1971 } 1972 if (N1.getOpcode() == ISD::AND) 1973 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { 1974 if (ValueHasExactlyOneBitSet(N0, DAG)) { 1975 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1976 if (DCI.isBeforeLegalizeOps() || 1977 isCondCodeLegal(Cond, N1.getSimpleValueType())) { 1978 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1979 return DAG.getSetCC(dl, VT, N1, Zero, Cond); 1980 } 1981 } 1982 } 1983 } 1984 1985 // Fold away ALL boolean setcc's. 1986 SDValue Temp; 1987 if (N0.getValueType() == MVT::i1 && foldBooleans) { 1988 switch (Cond) { 1989 default: llvm_unreachable("Unknown integer setcc!"); 1990 case ISD::SETEQ: // X == Y -> ~(X^Y) 1991 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 1992 N0 = DAG.getNOT(dl, Temp, MVT::i1); 1993 if (!DCI.isCalledByLegalizer()) 1994 DCI.AddToWorklist(Temp.getNode()); 1995 break; 1996 case ISD::SETNE: // X != Y --> (X^Y) 1997 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 1998 break; 1999 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2000 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2001 Temp = DAG.getNOT(dl, N0, MVT::i1); 2002 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 2003 if (!DCI.isCalledByLegalizer()) 2004 DCI.AddToWorklist(Temp.getNode()); 2005 break; 2006 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2007 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2008 Temp = DAG.getNOT(dl, N1, MVT::i1); 2009 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 2010 if (!DCI.isCalledByLegalizer()) 2011 DCI.AddToWorklist(Temp.getNode()); 2012 break; 2013 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2014 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2015 Temp = DAG.getNOT(dl, N0, MVT::i1); 2016 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2017 if (!DCI.isCalledByLegalizer()) 2018 DCI.AddToWorklist(Temp.getNode()); 2019 break; 2020 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2021 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2022 Temp = DAG.getNOT(dl, N1, MVT::i1); 2023 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2024 break; 2025 } 2026 if (VT != MVT::i1) { 2027 if (!DCI.isCalledByLegalizer()) 2028 DCI.AddToWorklist(N0.getNode()); 2029 // FIXME: If running after legalize, we probably can't do this. 2030 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2031 } 2032 return N0; 2033 } 2034 2035 // Could not fold it. 2036 return SDValue(); 2037 } 2038 2039 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the 2040 /// node is a GlobalAddress + offset. 2041 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2042 int64_t &Offset) const { 2043 if (isa<GlobalAddressSDNode>(N)) { 2044 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N); 2045 GA = GASD->getGlobal(); 2046 Offset += GASD->getOffset(); 2047 return true; 2048 } 2049 2050 if (N->getOpcode() == ISD::ADD) { 2051 SDValue N1 = N->getOperand(0); 2052 SDValue N2 = N->getOperand(1); 2053 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2054 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2); 2055 if (V) { 2056 Offset += V->getSExtValue(); 2057 return true; 2058 } 2059 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2060 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1); 2061 if (V) { 2062 Offset += V->getSExtValue(); 2063 return true; 2064 } 2065 } 2066 } 2067 2068 return false; 2069 } 2070 2071 2072 SDValue TargetLowering:: 2073 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { 2074 // Default implementation: no optimization. 2075 return SDValue(); 2076 } 2077 2078 //===----------------------------------------------------------------------===// 2079 // Inline Assembler Implementation Methods 2080 //===----------------------------------------------------------------------===// 2081 2082 2083 TargetLowering::ConstraintType 2084 TargetLowering::getConstraintType(const std::string &Constraint) const { 2085 unsigned S = Constraint.size(); 2086 2087 if (S == 1) { 2088 switch (Constraint[0]) { 2089 default: break; 2090 case 'r': return C_RegisterClass; 2091 case 'm': // memory 2092 case 'o': // offsetable 2093 case 'V': // not offsetable 2094 return C_Memory; 2095 case 'i': // Simple Integer or Relocatable Constant 2096 case 'n': // Simple Integer 2097 case 'E': // Floating Point Constant 2098 case 'F': // Floating Point Constant 2099 case 's': // Relocatable Constant 2100 case 'p': // Address. 2101 case 'X': // Allow ANY value. 2102 case 'I': // Target registers. 2103 case 'J': 2104 case 'K': 2105 case 'L': 2106 case 'M': 2107 case 'N': 2108 case 'O': 2109 case 'P': 2110 case '<': 2111 case '>': 2112 return C_Other; 2113 } 2114 } 2115 2116 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2117 if (S == 8 && !Constraint.compare(1, 6, "memory", 6)) // "{memory}" 2118 return C_Memory; 2119 return C_Register; 2120 } 2121 return C_Unknown; 2122 } 2123 2124 /// LowerXConstraint - try to replace an X constraint, which matches anything, 2125 /// with another that has more specific requirements based on the type of the 2126 /// corresponding operand. 2127 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2128 if (ConstraintVT.isInteger()) 2129 return "r"; 2130 if (ConstraintVT.isFloatingPoint()) 2131 return "f"; // works for many targets 2132 return nullptr; 2133 } 2134 2135 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 2136 /// vector. If it is invalid, don't add anything to Ops. 2137 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2138 std::string &Constraint, 2139 std::vector<SDValue> &Ops, 2140 SelectionDAG &DAG) const { 2141 2142 if (Constraint.length() > 1) return; 2143 2144 char ConstraintLetter = Constraint[0]; 2145 switch (ConstraintLetter) { 2146 default: break; 2147 case 'X': // Allows any operand; labels (basic block) use this. 2148 if (Op.getOpcode() == ISD::BasicBlock) { 2149 Ops.push_back(Op); 2150 return; 2151 } 2152 // fall through 2153 case 'i': // Simple Integer or Relocatable Constant 2154 case 'n': // Simple Integer 2155 case 's': { // Relocatable Constant 2156 // These operands are interested in values of the form (GV+C), where C may 2157 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2158 // is possible and fine if either GV or C are missing. 2159 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2160 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2161 2162 // If we have "(add GV, C)", pull out GV/C 2163 if (Op.getOpcode() == ISD::ADD) { 2164 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2165 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2166 if (!C || !GA) { 2167 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2168 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2169 } 2170 if (!C || !GA) 2171 C = nullptr, GA = nullptr; 2172 } 2173 2174 // If we find a valid operand, map to the TargetXXX version so that the 2175 // value itself doesn't get selected. 2176 if (GA) { // Either &GV or &GV+C 2177 if (ConstraintLetter != 'n') { 2178 int64_t Offs = GA->getOffset(); 2179 if (C) Offs += C->getZExtValue(); 2180 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2181 C ? SDLoc(C) : SDLoc(), 2182 Op.getValueType(), Offs)); 2183 return; 2184 } 2185 } 2186 if (C) { // just C, no GV. 2187 // Simple constants are not allowed for 's'. 2188 if (ConstraintLetter != 's') { 2189 // gcc prints these as sign extended. Sign extend value to 64 bits 2190 // now; without this it would get ZExt'd later in 2191 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2192 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2193 SDLoc(C), MVT::i64)); 2194 return; 2195 } 2196 } 2197 break; 2198 } 2199 } 2200 } 2201 2202 std::pair<unsigned, const TargetRegisterClass *> 2203 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2204 const std::string &Constraint, 2205 MVT VT) const { 2206 if (Constraint.empty() || Constraint[0] != '{') 2207 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2208 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2209 2210 // Remove the braces from around the name. 2211 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2212 2213 std::pair<unsigned, const TargetRegisterClass*> R = 2214 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2215 2216 // Figure out which register class contains this reg. 2217 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2218 E = RI->regclass_end(); RCI != E; ++RCI) { 2219 const TargetRegisterClass *RC = *RCI; 2220 2221 // If none of the value types for this register class are valid, we 2222 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2223 if (!isLegalRC(RC)) 2224 continue; 2225 2226 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2227 I != E; ++I) { 2228 if (RegName.equals_lower(RI->getName(*I))) { 2229 std::pair<unsigned, const TargetRegisterClass*> S = 2230 std::make_pair(*I, RC); 2231 2232 // If this register class has the requested value type, return it, 2233 // otherwise keep searching and return the first class found 2234 // if no other is found which explicitly has the requested type. 2235 if (RC->hasType(VT)) 2236 return S; 2237 else if (!R.second) 2238 R = S; 2239 } 2240 } 2241 } 2242 2243 return R; 2244 } 2245 2246 //===----------------------------------------------------------------------===// 2247 // Constraint Selection. 2248 2249 /// isMatchingInputConstraint - Return true of this is an input operand that is 2250 /// a matching constraint like "4". 2251 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2252 assert(!ConstraintCode.empty() && "No known constraint!"); 2253 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2254 } 2255 2256 /// getMatchedOperand - If this is an input matching constraint, this method 2257 /// returns the output operand it matches. 2258 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2259 assert(!ConstraintCode.empty() && "No known constraint!"); 2260 return atoi(ConstraintCode.c_str()); 2261 } 2262 2263 2264 /// ParseConstraints - Split up the constraint string from the inline 2265 /// assembly value into the specific constraints and their prefixes, 2266 /// and also tie in the associated operand values. 2267 /// If this returns an empty vector, and if the constraint string itself 2268 /// isn't empty, there was an error parsing. 2269 TargetLowering::AsmOperandInfoVector 2270 TargetLowering::ParseConstraints(const TargetRegisterInfo *TRI, 2271 ImmutableCallSite CS) const { 2272 /// ConstraintOperands - Information about all of the constraints. 2273 AsmOperandInfoVector ConstraintOperands; 2274 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2275 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2276 2277 // Do a prepass over the constraints, canonicalizing them, and building up the 2278 // ConstraintOperands list. 2279 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2280 unsigned ResNo = 0; // ResNo - The result number of the next output. 2281 2282 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2283 ConstraintOperands.emplace_back(std::move(CI)); 2284 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2285 2286 // Update multiple alternative constraint count. 2287 if (OpInfo.multipleAlternatives.size() > maCount) 2288 maCount = OpInfo.multipleAlternatives.size(); 2289 2290 OpInfo.ConstraintVT = MVT::Other; 2291 2292 // Compute the value type for each operand. 2293 switch (OpInfo.Type) { 2294 case InlineAsm::isOutput: 2295 // Indirect outputs just consume an argument. 2296 if (OpInfo.isIndirect) { 2297 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2298 break; 2299 } 2300 2301 // The return value of the call is this value. As such, there is no 2302 // corresponding argument. 2303 assert(!CS.getType()->isVoidTy() && 2304 "Bad inline asm!"); 2305 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2306 OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo)); 2307 } else { 2308 assert(ResNo == 0 && "Asm only has one result!"); 2309 OpInfo.ConstraintVT = getSimpleValueType(CS.getType()); 2310 } 2311 ++ResNo; 2312 break; 2313 case InlineAsm::isInput: 2314 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2315 break; 2316 case InlineAsm::isClobber: 2317 // Nothing to do. 2318 break; 2319 } 2320 2321 if (OpInfo.CallOperandVal) { 2322 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2323 if (OpInfo.isIndirect) { 2324 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2325 if (!PtrTy) 2326 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2327 OpTy = PtrTy->getElementType(); 2328 } 2329 2330 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2331 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2332 if (STy->getNumElements() == 1) 2333 OpTy = STy->getElementType(0); 2334 2335 // If OpTy is not a single value, it may be a struct/union that we 2336 // can tile with integers. 2337 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2338 unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy); 2339 switch (BitSize) { 2340 default: break; 2341 case 1: 2342 case 8: 2343 case 16: 2344 case 32: 2345 case 64: 2346 case 128: 2347 OpInfo.ConstraintVT = 2348 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2349 break; 2350 } 2351 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2352 unsigned PtrSize 2353 = getDataLayout()->getPointerSizeInBits(PT->getAddressSpace()); 2354 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2355 } else { 2356 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2357 } 2358 } 2359 } 2360 2361 // If we have multiple alternative constraints, select the best alternative. 2362 if (!ConstraintOperands.empty()) { 2363 if (maCount) { 2364 unsigned bestMAIndex = 0; 2365 int bestWeight = -1; 2366 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2367 int weight = -1; 2368 unsigned maIndex; 2369 // Compute the sums of the weights for each alternative, keeping track 2370 // of the best (highest weight) one so far. 2371 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2372 int weightSum = 0; 2373 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2374 cIndex != eIndex; ++cIndex) { 2375 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2376 if (OpInfo.Type == InlineAsm::isClobber) 2377 continue; 2378 2379 // If this is an output operand with a matching input operand, 2380 // look up the matching input. If their types mismatch, e.g. one 2381 // is an integer, the other is floating point, or their sizes are 2382 // different, flag it as an maCantMatch. 2383 if (OpInfo.hasMatchingInput()) { 2384 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2385 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2386 if ((OpInfo.ConstraintVT.isInteger() != 2387 Input.ConstraintVT.isInteger()) || 2388 (OpInfo.ConstraintVT.getSizeInBits() != 2389 Input.ConstraintVT.getSizeInBits())) { 2390 weightSum = -1; // Can't match. 2391 break; 2392 } 2393 } 2394 } 2395 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2396 if (weight == -1) { 2397 weightSum = -1; 2398 break; 2399 } 2400 weightSum += weight; 2401 } 2402 // Update best. 2403 if (weightSum > bestWeight) { 2404 bestWeight = weightSum; 2405 bestMAIndex = maIndex; 2406 } 2407 } 2408 2409 // Now select chosen alternative in each constraint. 2410 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2411 cIndex != eIndex; ++cIndex) { 2412 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2413 if (cInfo.Type == InlineAsm::isClobber) 2414 continue; 2415 cInfo.selectAlternative(bestMAIndex); 2416 } 2417 } 2418 } 2419 2420 // Check and hook up tied operands, choose constraint code to use. 2421 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2422 cIndex != eIndex; ++cIndex) { 2423 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2424 2425 // If this is an output operand with a matching input operand, look up the 2426 // matching input. If their types mismatch, e.g. one is an integer, the 2427 // other is floating point, or their sizes are different, flag it as an 2428 // error. 2429 if (OpInfo.hasMatchingInput()) { 2430 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2431 2432 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2433 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 2434 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 2435 OpInfo.ConstraintVT); 2436 std::pair<unsigned, const TargetRegisterClass *> InputRC = 2437 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 2438 Input.ConstraintVT); 2439 if ((OpInfo.ConstraintVT.isInteger() != 2440 Input.ConstraintVT.isInteger()) || 2441 (MatchRC.second != InputRC.second)) { 2442 report_fatal_error("Unsupported asm: input constraint" 2443 " with a matching output constraint of" 2444 " incompatible type!"); 2445 } 2446 } 2447 2448 } 2449 } 2450 2451 return ConstraintOperands; 2452 } 2453 2454 2455 /// getConstraintGenerality - Return an integer indicating how general CT 2456 /// is. 2457 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2458 switch (CT) { 2459 case TargetLowering::C_Other: 2460 case TargetLowering::C_Unknown: 2461 return 0; 2462 case TargetLowering::C_Register: 2463 return 1; 2464 case TargetLowering::C_RegisterClass: 2465 return 2; 2466 case TargetLowering::C_Memory: 2467 return 3; 2468 } 2469 llvm_unreachable("Invalid constraint type"); 2470 } 2471 2472 /// Examine constraint type and operand type and determine a weight value. 2473 /// This object must already have been set up with the operand type 2474 /// and the current alternative constraint selected. 2475 TargetLowering::ConstraintWeight 2476 TargetLowering::getMultipleConstraintMatchWeight( 2477 AsmOperandInfo &info, int maIndex) const { 2478 InlineAsm::ConstraintCodeVector *rCodes; 2479 if (maIndex >= (int)info.multipleAlternatives.size()) 2480 rCodes = &info.Codes; 2481 else 2482 rCodes = &info.multipleAlternatives[maIndex].Codes; 2483 ConstraintWeight BestWeight = CW_Invalid; 2484 2485 // Loop over the options, keeping track of the most general one. 2486 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2487 ConstraintWeight weight = 2488 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2489 if (weight > BestWeight) 2490 BestWeight = weight; 2491 } 2492 2493 return BestWeight; 2494 } 2495 2496 /// Examine constraint type and operand type and determine a weight value. 2497 /// This object must already have been set up with the operand type 2498 /// and the current alternative constraint selected. 2499 TargetLowering::ConstraintWeight 2500 TargetLowering::getSingleConstraintMatchWeight( 2501 AsmOperandInfo &info, const char *constraint) const { 2502 ConstraintWeight weight = CW_Invalid; 2503 Value *CallOperandVal = info.CallOperandVal; 2504 // If we don't have a value, we can't do a match, 2505 // but allow it at the lowest weight. 2506 if (!CallOperandVal) 2507 return CW_Default; 2508 // Look at the constraint type. 2509 switch (*constraint) { 2510 case 'i': // immediate integer. 2511 case 'n': // immediate integer with a known value. 2512 if (isa<ConstantInt>(CallOperandVal)) 2513 weight = CW_Constant; 2514 break; 2515 case 's': // non-explicit intregal immediate. 2516 if (isa<GlobalValue>(CallOperandVal)) 2517 weight = CW_Constant; 2518 break; 2519 case 'E': // immediate float if host format. 2520 case 'F': // immediate float. 2521 if (isa<ConstantFP>(CallOperandVal)) 2522 weight = CW_Constant; 2523 break; 2524 case '<': // memory operand with autodecrement. 2525 case '>': // memory operand with autoincrement. 2526 case 'm': // memory operand. 2527 case 'o': // offsettable memory operand 2528 case 'V': // non-offsettable memory operand 2529 weight = CW_Memory; 2530 break; 2531 case 'r': // general register. 2532 case 'g': // general register, memory operand or immediate integer. 2533 // note: Clang converts "g" to "imr". 2534 if (CallOperandVal->getType()->isIntegerTy()) 2535 weight = CW_Register; 2536 break; 2537 case 'X': // any operand. 2538 default: 2539 weight = CW_Default; 2540 break; 2541 } 2542 return weight; 2543 } 2544 2545 /// ChooseConstraint - If there are multiple different constraints that we 2546 /// could pick for this operand (e.g. "imr") try to pick the 'best' one. 2547 /// This is somewhat tricky: constraints fall into four classes: 2548 /// Other -> immediates and magic values 2549 /// Register -> one specific register 2550 /// RegisterClass -> a group of regs 2551 /// Memory -> memory 2552 /// Ideally, we would pick the most specific constraint possible: if we have 2553 /// something that fits into a register, we would pick it. The problem here 2554 /// is that if we have something that could either be in a register or in 2555 /// memory that use of the register could cause selection of *other* 2556 /// operands to fail: they might only succeed if we pick memory. Because of 2557 /// this the heuristic we use is: 2558 /// 2559 /// 1) If there is an 'other' constraint, and if the operand is valid for 2560 /// that constraint, use it. This makes us take advantage of 'i' 2561 /// constraints when available. 2562 /// 2) Otherwise, pick the most general constraint present. This prefers 2563 /// 'm' over 'r', for example. 2564 /// 2565 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2566 const TargetLowering &TLI, 2567 SDValue Op, SelectionDAG *DAG) { 2568 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2569 unsigned BestIdx = 0; 2570 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2571 int BestGenerality = -1; 2572 2573 // Loop over the options, keeping track of the most general one. 2574 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2575 TargetLowering::ConstraintType CType = 2576 TLI.getConstraintType(OpInfo.Codes[i]); 2577 2578 // If this is an 'other' constraint, see if the operand is valid for it. 2579 // For example, on X86 we might have an 'rI' constraint. If the operand 2580 // is an integer in the range [0..31] we want to use I (saving a load 2581 // of a register), otherwise we must use 'r'. 2582 if (CType == TargetLowering::C_Other && Op.getNode()) { 2583 assert(OpInfo.Codes[i].size() == 1 && 2584 "Unhandled multi-letter 'other' constraint"); 2585 std::vector<SDValue> ResultOps; 2586 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2587 ResultOps, *DAG); 2588 if (!ResultOps.empty()) { 2589 BestType = CType; 2590 BestIdx = i; 2591 break; 2592 } 2593 } 2594 2595 // Things with matching constraints can only be registers, per gcc 2596 // documentation. This mainly affects "g" constraints. 2597 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2598 continue; 2599 2600 // This constraint letter is more general than the previous one, use it. 2601 int Generality = getConstraintGenerality(CType); 2602 if (Generality > BestGenerality) { 2603 BestType = CType; 2604 BestIdx = i; 2605 BestGenerality = Generality; 2606 } 2607 } 2608 2609 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2610 OpInfo.ConstraintType = BestType; 2611 } 2612 2613 /// ComputeConstraintToUse - Determines the constraint code and constraint 2614 /// type to use for the specific AsmOperandInfo, setting 2615 /// OpInfo.ConstraintCode and OpInfo.ConstraintType. 2616 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2617 SDValue Op, 2618 SelectionDAG *DAG) const { 2619 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2620 2621 // Single-letter constraints ('r') are very common. 2622 if (OpInfo.Codes.size() == 1) { 2623 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2624 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2625 } else { 2626 ChooseConstraint(OpInfo, *this, Op, DAG); 2627 } 2628 2629 // 'X' matches anything. 2630 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2631 // Labels and constants are handled elsewhere ('X' is the only thing 2632 // that matches labels). For Functions, the type here is the type of 2633 // the result, which is not what we want to look at; leave them alone. 2634 Value *v = OpInfo.CallOperandVal; 2635 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2636 OpInfo.CallOperandVal = v; 2637 return; 2638 } 2639 2640 // Otherwise, try to resolve it to something we know about by looking at 2641 // the actual operand type. 2642 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2643 OpInfo.ConstraintCode = Repl; 2644 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2645 } 2646 } 2647 } 2648 2649 /// \brief Given an exact SDIV by a constant, create a multiplication 2650 /// with the multiplicative inverse of the constant. 2651 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl, 2652 SelectionDAG &DAG) const { 2653 ConstantSDNode *C = cast<ConstantSDNode>(Op2); 2654 APInt d = C->getAPIntValue(); 2655 assert(d != 0 && "Division by zero!"); 2656 2657 // Shift the value upfront if it is even, so the LSB is one. 2658 unsigned ShAmt = d.countTrailingZeros(); 2659 if (ShAmt) { 2660 // TODO: For UDIV use SRL instead of SRA. 2661 SDValue Amt = 2662 DAG.getConstant(ShAmt, dl, getShiftAmountTy(Op1.getValueType())); 2663 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, false, false, 2664 true); 2665 d = d.ashr(ShAmt); 2666 } 2667 2668 // Calculate the multiplicative inverse, using Newton's method. 2669 APInt t, xn = d; 2670 while ((t = d*xn) != 1) 2671 xn *= APInt(d.getBitWidth(), 2) - t; 2672 2673 Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); 2674 return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2675 } 2676 2677 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2678 /// return a DAG expression to select that will generate the same value by 2679 /// multiplying by a magic number. 2680 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2681 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2682 SelectionDAG &DAG, bool IsAfterLegalization, 2683 std::vector<SDNode *> *Created) const { 2684 assert(Created && "No vector to hold sdiv ops."); 2685 2686 EVT VT = N->getValueType(0); 2687 SDLoc dl(N); 2688 2689 // Check to see if we can do this. 2690 // FIXME: We should be more aggressive here. 2691 if (!isTypeLegal(VT)) 2692 return SDValue(); 2693 2694 APInt::ms magics = Divisor.magic(); 2695 2696 // Multiply the numerator (operand 0) by the magic value 2697 // FIXME: We should support doing a MUL in a wider type 2698 SDValue Q; 2699 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2700 isOperationLegalOrCustom(ISD::MULHS, VT)) 2701 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 2702 DAG.getConstant(magics.m, dl, VT)); 2703 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 2704 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 2705 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 2706 N->getOperand(0), 2707 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2708 else 2709 return SDValue(); // No mulhs or equvialent 2710 // If d > 0 and m < 0, add the numerator 2711 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 2712 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 2713 Created->push_back(Q.getNode()); 2714 } 2715 // If d < 0 and m > 0, subtract the numerator. 2716 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 2717 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 2718 Created->push_back(Q.getNode()); 2719 } 2720 // Shift right algebraic if shift value is nonzero 2721 if (magics.s > 0) { 2722 Q = DAG.getNode(ISD::SRA, dl, VT, Q, 2723 DAG.getConstant(magics.s, dl, 2724 getShiftAmountTy(Q.getValueType()))); 2725 Created->push_back(Q.getNode()); 2726 } 2727 // Extract the sign bit and add it to the quotient 2728 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, 2729 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, 2730 getShiftAmountTy(Q.getValueType()))); 2731 Created->push_back(T.getNode()); 2732 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 2733 } 2734 2735 /// \brief Given an ISD::UDIV node expressing a divide by constant, 2736 /// return a DAG expression to select that will generate the same value by 2737 /// multiplying by a magic number. 2738 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2739 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 2740 SelectionDAG &DAG, bool IsAfterLegalization, 2741 std::vector<SDNode *> *Created) const { 2742 assert(Created && "No vector to hold udiv ops."); 2743 2744 EVT VT = N->getValueType(0); 2745 SDLoc dl(N); 2746 2747 // Check to see if we can do this. 2748 // FIXME: We should be more aggressive here. 2749 if (!isTypeLegal(VT)) 2750 return SDValue(); 2751 2752 // FIXME: We should use a narrower constant when the upper 2753 // bits are known to be zero. 2754 APInt::mu magics = Divisor.magicu(); 2755 2756 SDValue Q = N->getOperand(0); 2757 2758 // If the divisor is even, we can avoid using the expensive fixup by shifting 2759 // the divided value upfront. 2760 if (magics.a != 0 && !Divisor[0]) { 2761 unsigned Shift = Divisor.countTrailingZeros(); 2762 Q = DAG.getNode(ISD::SRL, dl, VT, Q, 2763 DAG.getConstant(Shift, dl, 2764 getShiftAmountTy(Q.getValueType()))); 2765 Created->push_back(Q.getNode()); 2766 2767 // Get magic number for the shifted divisor. 2768 magics = Divisor.lshr(Shift).magicu(Shift); 2769 assert(magics.a == 0 && "Should use cheap fixup now"); 2770 } 2771 2772 // Multiply the numerator (operand 0) by the magic value 2773 // FIXME: We should support doing a MUL in a wider type 2774 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 2775 isOperationLegalOrCustom(ISD::MULHU, VT)) 2776 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); 2777 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 2778 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 2779 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 2780 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2781 else 2782 return SDValue(); // No mulhu or equvialent 2783 2784 Created->push_back(Q.getNode()); 2785 2786 if (magics.a == 0) { 2787 assert(magics.s < Divisor.getBitWidth() && 2788 "We shouldn't generate an undefined shift!"); 2789 return DAG.getNode(ISD::SRL, dl, VT, Q, 2790 DAG.getConstant(magics.s, dl, 2791 getShiftAmountTy(Q.getValueType()))); 2792 } else { 2793 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 2794 Created->push_back(NPQ.getNode()); 2795 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, 2796 DAG.getConstant(1, dl, 2797 getShiftAmountTy(NPQ.getValueType()))); 2798 Created->push_back(NPQ.getNode()); 2799 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 2800 Created->push_back(NPQ.getNode()); 2801 return DAG.getNode(ISD::SRL, dl, VT, NPQ, 2802 DAG.getConstant(magics.s - 1, dl, 2803 getShiftAmountTy(NPQ.getValueType()))); 2804 } 2805 } 2806 2807 bool TargetLowering:: 2808 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 2809 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 2810 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 2811 "be a constant integer"); 2812 return true; 2813 } 2814 2815 return false; 2816 } 2817 2818 //===----------------------------------------------------------------------===// 2819 // Legalization Utilities 2820 //===----------------------------------------------------------------------===// 2821 2822 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 2823 SelectionDAG &DAG, SDValue LL, SDValue LH, 2824 SDValue RL, SDValue RH) const { 2825 EVT VT = N->getValueType(0); 2826 SDLoc dl(N); 2827 2828 bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 2829 bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 2830 bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 2831 bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 2832 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 2833 unsigned OuterBitSize = VT.getSizeInBits(); 2834 unsigned InnerBitSize = HiLoVT.getSizeInBits(); 2835 unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); 2836 unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); 2837 2838 // LL, LH, RL, and RH must be either all NULL or all set to a value. 2839 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 2840 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 2841 2842 if (!LL.getNode() && !RL.getNode() && 2843 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 2844 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0)); 2845 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1)); 2846 } 2847 2848 if (!LL.getNode()) 2849 return false; 2850 2851 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 2852 if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) && 2853 DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) { 2854 // The inputs are both zero-extended. 2855 if (HasUMUL_LOHI) { 2856 // We can emit a umul_lohi. 2857 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 2858 RL); 2859 Hi = SDValue(Lo.getNode(), 1); 2860 return true; 2861 } 2862 if (HasMULHU) { 2863 // We can emit a mulhu+mul. 2864 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2865 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 2866 return true; 2867 } 2868 } 2869 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 2870 // The input values are both sign-extended. 2871 if (HasSMUL_LOHI) { 2872 // We can emit a smul_lohi. 2873 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 2874 RL); 2875 Hi = SDValue(Lo.getNode(), 1); 2876 return true; 2877 } 2878 if (HasMULHS) { 2879 // We can emit a mulhs+mul. 2880 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2881 Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL); 2882 return true; 2883 } 2884 } 2885 2886 if (!LH.getNode() && !RH.getNode() && 2887 isOperationLegalOrCustom(ISD::SRL, VT) && 2888 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 2889 unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits(); 2890 SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT)); 2891 LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift); 2892 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 2893 RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift); 2894 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 2895 } 2896 2897 if (!LH.getNode()) 2898 return false; 2899 2900 if (HasUMUL_LOHI) { 2901 // Lo,Hi = umul LHS, RHS. 2902 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, 2903 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 2904 Lo = UMulLOHI; 2905 Hi = UMulLOHI.getValue(1); 2906 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 2907 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 2908 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 2909 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 2910 return true; 2911 } 2912 if (HasMULHU) { 2913 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2914 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 2915 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 2916 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 2917 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 2918 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 2919 return true; 2920 } 2921 } 2922 return false; 2923 } 2924 2925 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 2926 SelectionDAG &DAG) const { 2927 EVT VT = Node->getOperand(0).getValueType(); 2928 EVT NVT = Node->getValueType(0); 2929 SDLoc dl(SDValue(Node, 0)); 2930 2931 // FIXME: Only f32 to i64 conversions are supported. 2932 if (VT != MVT::f32 || NVT != MVT::i64) 2933 return false; 2934 2935 // Expand f32 -> i64 conversion 2936 // This algorithm comes from compiler-rt's implementation of fixsfdi: 2937 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 2938 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 2939 VT.getSizeInBits()); 2940 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 2941 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 2942 SDValue Bias = DAG.getConstant(127, dl, IntVT); 2943 SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl, 2944 IntVT); 2945 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 2946 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 2947 2948 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 2949 2950 SDValue ExponentBits = DAG.getNode(ISD::SRL, dl, IntVT, 2951 DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 2952 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT))); 2953 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 2954 2955 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 2956 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 2957 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT))); 2958 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 2959 2960 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 2961 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 2962 DAG.getConstant(0x00800000, dl, IntVT)); 2963 2964 R = DAG.getZExtOrTrunc(R, dl, NVT); 2965 2966 2967 R = DAG.getSelectCC(dl, Exponent, ExponentLoBit, 2968 DAG.getNode(ISD::SHL, dl, NVT, R, 2969 DAG.getZExtOrTrunc( 2970 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 2971 dl, getShiftAmountTy(IntVT))), 2972 DAG.getNode(ISD::SRL, dl, NVT, R, 2973 DAG.getZExtOrTrunc( 2974 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 2975 dl, getShiftAmountTy(IntVT))), 2976 ISD::SETGT); 2977 2978 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 2979 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 2980 Sign); 2981 2982 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 2983 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 2984 return true; 2985 } 2986