1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     MCRegister Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
114   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
115   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
116   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
117   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
118   Alignment = Call->getParamAlign(ArgIdx);
119   ByValType = nullptr;
120   if (IsByVal)
121     ByValType = Call->getParamByValType(ArgIdx);
122   PreallocatedType = nullptr;
123   if (IsPreallocated)
124     PreallocatedType = Call->getParamPreallocatedType(ArgIdx);
125 }
126 
127 /// Generate a libcall taking the given operands as arguments and returning a
128 /// result of type RetVT.
129 std::pair<SDValue, SDValue>
130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
131                             ArrayRef<SDValue> Ops,
132                             MakeLibCallOptions CallOptions,
133                             const SDLoc &dl,
134                             SDValue InChain) const {
135   if (!InChain)
136     InChain = DAG.getEntryNode();
137 
138   TargetLowering::ArgListTy Args;
139   Args.reserve(Ops.size());
140 
141   TargetLowering::ArgListEntry Entry;
142   for (unsigned i = 0; i < Ops.size(); ++i) {
143     SDValue NewOp = Ops[i];
144     Entry.Node = NewOp;
145     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
146     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
147                                                  CallOptions.IsSExt);
148     Entry.IsZExt = !Entry.IsSExt;
149 
150     if (CallOptions.IsSoften &&
151         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
152       Entry.IsSExt = Entry.IsZExt = false;
153     }
154     Args.push_back(Entry);
155   }
156 
157   if (LC == RTLIB::UNKNOWN_LIBCALL)
158     report_fatal_error("Unsupported library call operation!");
159   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
160                                          getPointerTy(DAG.getDataLayout()));
161 
162   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
163   TargetLowering::CallLoweringInfo CLI(DAG);
164   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
165   bool zeroExtend = !signExtend;
166 
167   if (CallOptions.IsSoften &&
168       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
169     signExtend = zeroExtend = false;
170   }
171 
172   CLI.setDebugLoc(dl)
173       .setChain(InChain)
174       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
175       .setNoReturn(CallOptions.DoesNotReturn)
176       .setDiscardResult(!CallOptions.IsReturnValueUsed)
177       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
178       .setSExtResult(signExtend)
179       .setZExtResult(zeroExtend);
180   return LowerCallTo(CLI);
181 }
182 
183 bool TargetLowering::findOptimalMemOpLowering(
184     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
185     unsigned SrcAS, const AttributeList &FuncAttributes) const {
186   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
187     return false;
188 
189   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
190 
191   if (VT == MVT::Other) {
192     // Use the largest integer type whose alignment constraints are satisfied.
193     // We only need to check DstAlign here as SrcAlign is always greater or
194     // equal to DstAlign (or zero).
195     VT = MVT::i64;
196     if (Op.isFixedDstAlign())
197       while (
198           Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
199           !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
200         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
201     assert(VT.isInteger());
202 
203     // Find the largest legal integer type.
204     MVT LVT = MVT::i64;
205     while (!isTypeLegal(LVT))
206       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
207     assert(LVT.isInteger());
208 
209     // If the type we've chosen is larger than the largest legal integer type
210     // then use that instead.
211     if (VT.bitsGT(LVT))
212       VT = LVT;
213   }
214 
215   unsigned NumMemOps = 0;
216   uint64_t Size = Op.size();
217   while (Size) {
218     unsigned VTSize = VT.getSizeInBits() / 8;
219     while (VTSize > Size) {
220       // For now, only use non-vector load / store's for the left-over pieces.
221       EVT NewVT = VT;
222       unsigned NewVTSize;
223 
224       bool Found = false;
225       if (VT.isVector() || VT.isFloatingPoint()) {
226         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
227         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
228             isSafeMemOpType(NewVT.getSimpleVT()))
229           Found = true;
230         else if (NewVT == MVT::i64 &&
231                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
232                  isSafeMemOpType(MVT::f64)) {
233           // i64 is usually not legal on 32-bit targets, but f64 may be.
234           NewVT = MVT::f64;
235           Found = true;
236         }
237       }
238 
239       if (!Found) {
240         do {
241           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
242           if (NewVT == MVT::i8)
243             break;
244         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
245       }
246       NewVTSize = NewVT.getSizeInBits() / 8;
247 
248       // If the new VT cannot cover all of the remaining bits, then consider
249       // issuing a (or a pair of) unaligned and overlapping load / store.
250       bool Fast;
251       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
252           allowsMisalignedMemoryAccesses(
253               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 1,
254               MachineMemOperand::MONone, &Fast) &&
255           Fast)
256         VTSize = Size;
257       else {
258         VT = NewVT;
259         VTSize = NewVTSize;
260       }
261     }
262 
263     if (++NumMemOps > Limit)
264       return false;
265 
266     MemOps.push_back(VT);
267     Size -= VTSize;
268   }
269 
270   return true;
271 }
272 
273 /// Soften the operands of a comparison. This code is shared among BR_CC,
274 /// SELECT_CC, and SETCC handlers.
275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
276                                          SDValue &NewLHS, SDValue &NewRHS,
277                                          ISD::CondCode &CCCode,
278                                          const SDLoc &dl, const SDValue OldLHS,
279                                          const SDValue OldRHS) const {
280   SDValue Chain;
281   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
282                              OldRHS, Chain);
283 }
284 
285 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
286                                          SDValue &NewLHS, SDValue &NewRHS,
287                                          ISD::CondCode &CCCode,
288                                          const SDLoc &dl, const SDValue OldLHS,
289                                          const SDValue OldRHS,
290                                          SDValue &Chain,
291                                          bool IsSignaling) const {
292   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
293   // not supporting it. We can update this code when libgcc provides such
294   // functions.
295 
296   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
297          && "Unsupported setcc type!");
298 
299   // Expand into one or more soft-fp libcall(s).
300   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
301   bool ShouldInvertCC = false;
302   switch (CCCode) {
303   case ISD::SETEQ:
304   case ISD::SETOEQ:
305     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
306           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
307           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
308     break;
309   case ISD::SETNE:
310   case ISD::SETUNE:
311     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
312           (VT == MVT::f64) ? RTLIB::UNE_F64 :
313           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
314     break;
315   case ISD::SETGE:
316   case ISD::SETOGE:
317     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
318           (VT == MVT::f64) ? RTLIB::OGE_F64 :
319           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
320     break;
321   case ISD::SETLT:
322   case ISD::SETOLT:
323     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
324           (VT == MVT::f64) ? RTLIB::OLT_F64 :
325           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
326     break;
327   case ISD::SETLE:
328   case ISD::SETOLE:
329     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
330           (VT == MVT::f64) ? RTLIB::OLE_F64 :
331           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
332     break;
333   case ISD::SETGT:
334   case ISD::SETOGT:
335     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
336           (VT == MVT::f64) ? RTLIB::OGT_F64 :
337           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
338     break;
339   case ISD::SETO:
340     ShouldInvertCC = true;
341     LLVM_FALLTHROUGH;
342   case ISD::SETUO:
343     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
344           (VT == MVT::f64) ? RTLIB::UO_F64 :
345           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
346     break;
347   case ISD::SETONE:
348     // SETONE = O && UNE
349     ShouldInvertCC = true;
350     LLVM_FALLTHROUGH;
351   case ISD::SETUEQ:
352     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
353           (VT == MVT::f64) ? RTLIB::UO_F64 :
354           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
355     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
356           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
357           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
358     break;
359   default:
360     // Invert CC for unordered comparisons
361     ShouldInvertCC = true;
362     switch (CCCode) {
363     case ISD::SETULT:
364       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
365             (VT == MVT::f64) ? RTLIB::OGE_F64 :
366             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
367       break;
368     case ISD::SETULE:
369       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
370             (VT == MVT::f64) ? RTLIB::OGT_F64 :
371             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
372       break;
373     case ISD::SETUGT:
374       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
375             (VT == MVT::f64) ? RTLIB::OLE_F64 :
376             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
377       break;
378     case ISD::SETUGE:
379       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
380             (VT == MVT::f64) ? RTLIB::OLT_F64 :
381             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
382       break;
383     default: llvm_unreachable("Do not know how to soften this setcc!");
384     }
385   }
386 
387   // Use the target specific return value for comparions lib calls.
388   EVT RetVT = getCmpLibcallReturnType();
389   SDValue Ops[2] = {NewLHS, NewRHS};
390   TargetLowering::MakeLibCallOptions CallOptions;
391   EVT OpsVT[2] = { OldLHS.getValueType(),
392                    OldRHS.getValueType() };
393   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
394   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
395   NewLHS = Call.first;
396   NewRHS = DAG.getConstant(0, dl, RetVT);
397 
398   CCCode = getCmpLibcallCC(LC1);
399   if (ShouldInvertCC) {
400     assert(RetVT.isInteger());
401     CCCode = getSetCCInverse(CCCode, RetVT);
402   }
403 
404   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
405     // Update Chain.
406     Chain = Call.second;
407   } else {
408     EVT SetCCVT =
409         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
410     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
411     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
412     CCCode = getCmpLibcallCC(LC2);
413     if (ShouldInvertCC)
414       CCCode = getSetCCInverse(CCCode, RetVT);
415     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
416     if (Chain)
417       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
418                           Call2.second);
419     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
420                          Tmp.getValueType(), Tmp, NewLHS);
421     NewRHS = SDValue();
422   }
423 }
424 
425 /// Return the entry encoding for a jump table in the current function. The
426 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
427 unsigned TargetLowering::getJumpTableEncoding() const {
428   // In non-pic modes, just use the address of a block.
429   if (!isPositionIndependent())
430     return MachineJumpTableInfo::EK_BlockAddress;
431 
432   // In PIC mode, if the target supports a GPRel32 directive, use it.
433   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
434     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
435 
436   // Otherwise, use a label difference.
437   return MachineJumpTableInfo::EK_LabelDifference32;
438 }
439 
440 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
441                                                  SelectionDAG &DAG) const {
442   // If our PIC model is GP relative, use the global offset table as the base.
443   unsigned JTEncoding = getJumpTableEncoding();
444 
445   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
446       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
447     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
448 
449   return Table;
450 }
451 
452 /// This returns the relocation base for the given PIC jumptable, the same as
453 /// getPICJumpTableRelocBase, but as an MCExpr.
454 const MCExpr *
455 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
456                                              unsigned JTI,MCContext &Ctx) const{
457   // The normal PIC reloc base is the label at the start of the jump table.
458   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
459 }
460 
461 bool
462 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
463   const TargetMachine &TM = getTargetMachine();
464   const GlobalValue *GV = GA->getGlobal();
465 
466   // If the address is not even local to this DSO we will have to load it from
467   // a got and then add the offset.
468   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
469     return false;
470 
471   // If the code is position independent we will have to add a base register.
472   if (isPositionIndependent())
473     return false;
474 
475   // Otherwise we can do it.
476   return true;
477 }
478 
479 //===----------------------------------------------------------------------===//
480 //  Optimization Methods
481 //===----------------------------------------------------------------------===//
482 
483 /// If the specified instruction has a constant integer operand and there are
484 /// bits set in that constant that are not demanded, then clear those bits and
485 /// return true.
486 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
487                                             const APInt &DemandedBits,
488                                             const APInt &DemandedElts,
489                                             TargetLoweringOpt &TLO) const {
490   SDLoc DL(Op);
491   unsigned Opcode = Op.getOpcode();
492 
493   // Do target-specific constant optimization.
494   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
495     return TLO.New.getNode();
496 
497   // FIXME: ISD::SELECT, ISD::SELECT_CC
498   switch (Opcode) {
499   default:
500     break;
501   case ISD::XOR:
502   case ISD::AND:
503   case ISD::OR: {
504     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
505     if (!Op1C)
506       return false;
507 
508     // If this is a 'not' op, don't touch it because that's a canonical form.
509     const APInt &C = Op1C->getAPIntValue();
510     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
511       return false;
512 
513     if (!C.isSubsetOf(DemandedBits)) {
514       EVT VT = Op.getValueType();
515       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
516       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
517       return TLO.CombineTo(Op, NewOp);
518     }
519 
520     break;
521   }
522   }
523 
524   return false;
525 }
526 
527 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
528                                             const APInt &DemandedBits,
529                                             TargetLoweringOpt &TLO) const {
530   EVT VT = Op.getValueType();
531   APInt DemandedElts = VT.isVector()
532                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
533                            : APInt(1, 1);
534   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
535 }
536 
537 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
538 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
539 /// generalized for targets with other types of implicit widening casts.
540 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
541                                       const APInt &Demanded,
542                                       TargetLoweringOpt &TLO) const {
543   assert(Op.getNumOperands() == 2 &&
544          "ShrinkDemandedOp only supports binary operators!");
545   assert(Op.getNode()->getNumValues() == 1 &&
546          "ShrinkDemandedOp only supports nodes with one result!");
547 
548   SelectionDAG &DAG = TLO.DAG;
549   SDLoc dl(Op);
550 
551   // Early return, as this function cannot handle vector types.
552   if (Op.getValueType().isVector())
553     return false;
554 
555   // Don't do this if the node has another user, which may require the
556   // full value.
557   if (!Op.getNode()->hasOneUse())
558     return false;
559 
560   // Search for the smallest integer type with free casts to and from
561   // Op's type. For expedience, just check power-of-2 integer types.
562   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
563   unsigned DemandedSize = Demanded.getActiveBits();
564   unsigned SmallVTBits = DemandedSize;
565   if (!isPowerOf2_32(SmallVTBits))
566     SmallVTBits = NextPowerOf2(SmallVTBits);
567   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
568     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
569     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
570         TLI.isZExtFree(SmallVT, Op.getValueType())) {
571       // We found a type with free casts.
572       SDValue X = DAG.getNode(
573           Op.getOpcode(), dl, SmallVT,
574           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
575           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
576       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
577       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
578       return TLO.CombineTo(Op, Z);
579     }
580   }
581   return false;
582 }
583 
584 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
585                                           DAGCombinerInfo &DCI) const {
586   SelectionDAG &DAG = DCI.DAG;
587   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
588                         !DCI.isBeforeLegalizeOps());
589   KnownBits Known;
590 
591   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
592   if (Simplified) {
593     DCI.AddToWorklist(Op.getNode());
594     DCI.CommitTargetLoweringOpt(TLO);
595   }
596   return Simplified;
597 }
598 
599 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
600                                           KnownBits &Known,
601                                           TargetLoweringOpt &TLO,
602                                           unsigned Depth,
603                                           bool AssumeSingleUse) const {
604   EVT VT = Op.getValueType();
605 
606   // TODO: We can probably do more work on calculating the known bits and
607   // simplifying the operations for scalable vectors, but for now we just
608   // bail out.
609   if (VT.isScalableVector()) {
610     // Pretend we don't know anything for now.
611     Known = KnownBits(DemandedBits.getBitWidth());
612     return false;
613   }
614 
615   APInt DemandedElts = VT.isVector()
616                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
617                            : APInt(1, 1);
618   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
619                               AssumeSingleUse);
620 }
621 
622 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
623 // TODO: Under what circumstances can we create nodes? Constant folding?
624 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
625     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
626     SelectionDAG &DAG, unsigned Depth) const {
627   // Limit search depth.
628   if (Depth >= SelectionDAG::MaxRecursionDepth)
629     return SDValue();
630 
631   // Ignore UNDEFs.
632   if (Op.isUndef())
633     return SDValue();
634 
635   // Not demanding any bits/elts from Op.
636   if (DemandedBits == 0 || DemandedElts == 0)
637     return DAG.getUNDEF(Op.getValueType());
638 
639   unsigned NumElts = DemandedElts.getBitWidth();
640   unsigned BitWidth = DemandedBits.getBitWidth();
641   KnownBits LHSKnown, RHSKnown;
642   switch (Op.getOpcode()) {
643   case ISD::BITCAST: {
644     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
645     EVT SrcVT = Src.getValueType();
646     EVT DstVT = Op.getValueType();
647     if (SrcVT == DstVT)
648       return Src;
649 
650     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
651     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
652     if (NumSrcEltBits == NumDstEltBits)
653       if (SDValue V = SimplifyMultipleUseDemandedBits(
654               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
655         return DAG.getBitcast(DstVT, V);
656 
657     // TODO - bigendian once we have test coverage.
658     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
659         DAG.getDataLayout().isLittleEndian()) {
660       unsigned Scale = NumDstEltBits / NumSrcEltBits;
661       unsigned NumSrcElts = SrcVT.getVectorNumElements();
662       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
663       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
664       for (unsigned i = 0; i != Scale; ++i) {
665         unsigned Offset = i * NumSrcEltBits;
666         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
667         if (!Sub.isNullValue()) {
668           DemandedSrcBits |= Sub;
669           for (unsigned j = 0; j != NumElts; ++j)
670             if (DemandedElts[j])
671               DemandedSrcElts.setBit((j * Scale) + i);
672         }
673       }
674 
675       if (SDValue V = SimplifyMultipleUseDemandedBits(
676               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
677         return DAG.getBitcast(DstVT, V);
678     }
679 
680     // TODO - bigendian once we have test coverage.
681     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
682         DAG.getDataLayout().isLittleEndian()) {
683       unsigned Scale = NumSrcEltBits / NumDstEltBits;
684       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
685       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
686       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
687       for (unsigned i = 0; i != NumElts; ++i)
688         if (DemandedElts[i]) {
689           unsigned Offset = (i % Scale) * NumDstEltBits;
690           DemandedSrcBits.insertBits(DemandedBits, Offset);
691           DemandedSrcElts.setBit(i / Scale);
692         }
693 
694       if (SDValue V = SimplifyMultipleUseDemandedBits(
695               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
696         return DAG.getBitcast(DstVT, V);
697     }
698 
699     break;
700   }
701   case ISD::AND: {
702     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
703     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
704 
705     // If all of the demanded bits are known 1 on one side, return the other.
706     // These bits cannot contribute to the result of the 'and' in this
707     // context.
708     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
709       return Op.getOperand(0);
710     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
711       return Op.getOperand(1);
712     break;
713   }
714   case ISD::OR: {
715     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
716     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
717 
718     // If all of the demanded bits are known zero on one side, return the
719     // other.  These bits cannot contribute to the result of the 'or' in this
720     // context.
721     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
722       return Op.getOperand(0);
723     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
724       return Op.getOperand(1);
725     break;
726   }
727   case ISD::XOR: {
728     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
729     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
730 
731     // If all of the demanded bits are known zero on one side, return the
732     // other.
733     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
734       return Op.getOperand(0);
735     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
736       return Op.getOperand(1);
737     break;
738   }
739   case ISD::SHL: {
740     // If we are only demanding sign bits then we can use the shift source
741     // directly.
742     if (const APInt *MaxSA =
743             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
744       SDValue Op0 = Op.getOperand(0);
745       unsigned ShAmt = MaxSA->getZExtValue();
746       unsigned NumSignBits =
747           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
748       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
749       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
750         return Op0;
751     }
752     break;
753   }
754   case ISD::SETCC: {
755     SDValue Op0 = Op.getOperand(0);
756     SDValue Op1 = Op.getOperand(1);
757     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
758     // If (1) we only need the sign-bit, (2) the setcc operands are the same
759     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
760     // -1, we may be able to bypass the setcc.
761     if (DemandedBits.isSignMask() &&
762         Op0.getScalarValueSizeInBits() == BitWidth &&
763         getBooleanContents(Op0.getValueType()) ==
764             BooleanContent::ZeroOrNegativeOneBooleanContent) {
765       // If we're testing X < 0, then this compare isn't needed - just use X!
766       // FIXME: We're limiting to integer types here, but this should also work
767       // if we don't care about FP signed-zero. The use of SETLT with FP means
768       // that we don't care about NaNs.
769       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
770           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
771         return Op0;
772     }
773     break;
774   }
775   case ISD::SIGN_EXTEND_INREG: {
776     // If none of the extended bits are demanded, eliminate the sextinreg.
777     SDValue Op0 = Op.getOperand(0);
778     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
779     unsigned ExBits = ExVT.getScalarSizeInBits();
780     if (DemandedBits.getActiveBits() <= ExBits)
781       return Op0;
782     // If the input is already sign extended, just drop the extension.
783     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
784     if (NumSignBits >= (BitWidth - ExBits + 1))
785       return Op0;
786     break;
787   }
788   case ISD::ANY_EXTEND_VECTOR_INREG:
789   case ISD::SIGN_EXTEND_VECTOR_INREG:
790   case ISD::ZERO_EXTEND_VECTOR_INREG: {
791     // If we only want the lowest element and none of extended bits, then we can
792     // return the bitcasted source vector.
793     SDValue Src = Op.getOperand(0);
794     EVT SrcVT = Src.getValueType();
795     EVT DstVT = Op.getValueType();
796     if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
797         DAG.getDataLayout().isLittleEndian() &&
798         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
799       return DAG.getBitcast(DstVT, Src);
800     }
801     break;
802   }
803   case ISD::INSERT_VECTOR_ELT: {
804     // If we don't demand the inserted element, return the base vector.
805     SDValue Vec = Op.getOperand(0);
806     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
807     EVT VecVT = Vec.getValueType();
808     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
809         !DemandedElts[CIdx->getZExtValue()])
810       return Vec;
811     break;
812   }
813   case ISD::INSERT_SUBVECTOR: {
814     // If we don't demand the inserted subvector, return the base vector.
815     SDValue Vec = Op.getOperand(0);
816     SDValue Sub = Op.getOperand(1);
817     uint64_t Idx = Op.getConstantOperandVal(2);
818     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
819     if (DemandedElts.extractBits(NumSubElts, Idx) == 0)
820       return Vec;
821     break;
822   }
823   case ISD::VECTOR_SHUFFLE: {
824     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
825 
826     // If all the demanded elts are from one operand and are inline,
827     // then we can use the operand directly.
828     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
829     for (unsigned i = 0; i != NumElts; ++i) {
830       int M = ShuffleMask[i];
831       if (M < 0 || !DemandedElts[i])
832         continue;
833       AllUndef = false;
834       IdentityLHS &= (M == (int)i);
835       IdentityRHS &= ((M - NumElts) == i);
836     }
837 
838     if (AllUndef)
839       return DAG.getUNDEF(Op.getValueType());
840     if (IdentityLHS)
841       return Op.getOperand(0);
842     if (IdentityRHS)
843       return Op.getOperand(1);
844     break;
845   }
846   default:
847     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
848       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
849               Op, DemandedBits, DemandedElts, DAG, Depth))
850         return V;
851     break;
852   }
853   return SDValue();
854 }
855 
856 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
857     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
858     unsigned Depth) const {
859   EVT VT = Op.getValueType();
860   APInt DemandedElts = VT.isVector()
861                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
862                            : APInt(1, 1);
863   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
864                                          Depth);
865 }
866 
867 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
868     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
869     unsigned Depth) const {
870   APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits());
871   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
872                                          Depth);
873 }
874 
875 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
876 /// result of Op are ever used downstream. If we can use this information to
877 /// simplify Op, create a new simplified DAG node and return true, returning the
878 /// original and new nodes in Old and New. Otherwise, analyze the expression and
879 /// return a mask of Known bits for the expression (used to simplify the
880 /// caller).  The Known bits may only be accurate for those bits in the
881 /// OriginalDemandedBits and OriginalDemandedElts.
882 bool TargetLowering::SimplifyDemandedBits(
883     SDValue Op, const APInt &OriginalDemandedBits,
884     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
885     unsigned Depth, bool AssumeSingleUse) const {
886   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
887   assert(Op.getScalarValueSizeInBits() == BitWidth &&
888          "Mask size mismatches value type size!");
889 
890   // Don't know anything.
891   Known = KnownBits(BitWidth);
892 
893   // TODO: We can probably do more work on calculating the known bits and
894   // simplifying the operations for scalable vectors, but for now we just
895   // bail out.
896   if (Op.getValueType().isScalableVector())
897     return false;
898 
899   unsigned NumElts = OriginalDemandedElts.getBitWidth();
900   assert((!Op.getValueType().isVector() ||
901           NumElts == Op.getValueType().getVectorNumElements()) &&
902          "Unexpected vector size");
903 
904   APInt DemandedBits = OriginalDemandedBits;
905   APInt DemandedElts = OriginalDemandedElts;
906   SDLoc dl(Op);
907   auto &DL = TLO.DAG.getDataLayout();
908 
909   // Undef operand.
910   if (Op.isUndef())
911     return false;
912 
913   if (Op.getOpcode() == ISD::Constant) {
914     // We know all of the bits for a constant!
915     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
916     Known.Zero = ~Known.One;
917     return false;
918   }
919 
920   // Other users may use these bits.
921   EVT VT = Op.getValueType();
922   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
923     if (Depth != 0) {
924       // If not at the root, Just compute the Known bits to
925       // simplify things downstream.
926       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
927       return false;
928     }
929     // If this is the root being simplified, allow it to have multiple uses,
930     // just set the DemandedBits/Elts to all bits.
931     DemandedBits = APInt::getAllOnesValue(BitWidth);
932     DemandedElts = APInt::getAllOnesValue(NumElts);
933   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
934     // Not demanding any bits/elts from Op.
935     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
936   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
937     // Limit search depth.
938     return false;
939   }
940 
941   KnownBits Known2;
942   switch (Op.getOpcode()) {
943   case ISD::TargetConstant:
944     llvm_unreachable("Can't simplify this node");
945   case ISD::SCALAR_TO_VECTOR: {
946     if (!DemandedElts[0])
947       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
948 
949     KnownBits SrcKnown;
950     SDValue Src = Op.getOperand(0);
951     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
952     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
953     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
954       return true;
955 
956     // Upper elements are undef, so only get the knownbits if we just demand
957     // the bottom element.
958     if (DemandedElts == 1)
959       Known = SrcKnown.anyextOrTrunc(BitWidth);
960     break;
961   }
962   case ISD::BUILD_VECTOR:
963     // Collect the known bits that are shared by every demanded element.
964     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
965     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
966     return false; // Don't fall through, will infinitely loop.
967   case ISD::LOAD: {
968     LoadSDNode *LD = cast<LoadSDNode>(Op);
969     if (getTargetConstantFromLoad(LD)) {
970       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
971       return false; // Don't fall through, will infinitely loop.
972     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
973       // If this is a ZEXTLoad and we are looking at the loaded value.
974       EVT MemVT = LD->getMemoryVT();
975       unsigned MemBits = MemVT.getScalarSizeInBits();
976       Known.Zero.setBitsFrom(MemBits);
977       return false; // Don't fall through, will infinitely loop.
978     }
979     break;
980   }
981   case ISD::INSERT_VECTOR_ELT: {
982     SDValue Vec = Op.getOperand(0);
983     SDValue Scl = Op.getOperand(1);
984     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
985     EVT VecVT = Vec.getValueType();
986 
987     // If index isn't constant, assume we need all vector elements AND the
988     // inserted element.
989     APInt DemandedVecElts(DemandedElts);
990     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
991       unsigned Idx = CIdx->getZExtValue();
992       DemandedVecElts.clearBit(Idx);
993 
994       // Inserted element is not required.
995       if (!DemandedElts[Idx])
996         return TLO.CombineTo(Op, Vec);
997     }
998 
999     KnownBits KnownScl;
1000     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1001     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1002     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1003       return true;
1004 
1005     Known = KnownScl.anyextOrTrunc(BitWidth);
1006 
1007     KnownBits KnownVec;
1008     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1009                              Depth + 1))
1010       return true;
1011 
1012     if (!!DemandedVecElts) {
1013       Known.One &= KnownVec.One;
1014       Known.Zero &= KnownVec.Zero;
1015     }
1016 
1017     return false;
1018   }
1019   case ISD::INSERT_SUBVECTOR: {
1020     // Demand any elements from the subvector and the remainder from the src its
1021     // inserted into.
1022     SDValue Src = Op.getOperand(0);
1023     SDValue Sub = Op.getOperand(1);
1024     uint64_t Idx = Op.getConstantOperandVal(2);
1025     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1026     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1027     APInt DemandedSrcElts = DemandedElts;
1028     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
1029 
1030     KnownBits KnownSub, KnownSrc;
1031     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1032                              Depth + 1))
1033       return true;
1034     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1035                              Depth + 1))
1036       return true;
1037 
1038     Known.Zero.setAllBits();
1039     Known.One.setAllBits();
1040     if (!!DemandedSubElts) {
1041       Known.One &= KnownSub.One;
1042       Known.Zero &= KnownSub.Zero;
1043     }
1044     if (!!DemandedSrcElts) {
1045       Known.One &= KnownSrc.One;
1046       Known.Zero &= KnownSrc.Zero;
1047     }
1048 
1049     // Attempt to avoid multi-use src if we don't need anything from it.
1050     if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() ||
1051         !DemandedSrcElts.isAllOnesValue()) {
1052       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1053           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1054       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1055           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1056       if (NewSub || NewSrc) {
1057         NewSub = NewSub ? NewSub : Sub;
1058         NewSrc = NewSrc ? NewSrc : Src;
1059         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1060                                         Op.getOperand(2));
1061         return TLO.CombineTo(Op, NewOp);
1062       }
1063     }
1064     break;
1065   }
1066   case ISD::EXTRACT_SUBVECTOR: {
1067     // Offset the demanded elts by the subvector index.
1068     SDValue Src = Op.getOperand(0);
1069     if (Src.getValueType().isScalableVector())
1070       break;
1071     uint64_t Idx = Op.getConstantOperandVal(1);
1072     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1073     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1074 
1075     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1076                              Depth + 1))
1077       return true;
1078 
1079     // Attempt to avoid multi-use src if we don't need anything from it.
1080     if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) {
1081       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1082           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1083       if (DemandedSrc) {
1084         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1085                                         Op.getOperand(1));
1086         return TLO.CombineTo(Op, NewOp);
1087       }
1088     }
1089     break;
1090   }
1091   case ISD::CONCAT_VECTORS: {
1092     Known.Zero.setAllBits();
1093     Known.One.setAllBits();
1094     EVT SubVT = Op.getOperand(0).getValueType();
1095     unsigned NumSubVecs = Op.getNumOperands();
1096     unsigned NumSubElts = SubVT.getVectorNumElements();
1097     for (unsigned i = 0; i != NumSubVecs; ++i) {
1098       APInt DemandedSubElts =
1099           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1100       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1101                                Known2, TLO, Depth + 1))
1102         return true;
1103       // Known bits are shared by every demanded subvector element.
1104       if (!!DemandedSubElts) {
1105         Known.One &= Known2.One;
1106         Known.Zero &= Known2.Zero;
1107       }
1108     }
1109     break;
1110   }
1111   case ISD::VECTOR_SHUFFLE: {
1112     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1113 
1114     // Collect demanded elements from shuffle operands..
1115     APInt DemandedLHS(NumElts, 0);
1116     APInt DemandedRHS(NumElts, 0);
1117     for (unsigned i = 0; i != NumElts; ++i) {
1118       if (!DemandedElts[i])
1119         continue;
1120       int M = ShuffleMask[i];
1121       if (M < 0) {
1122         // For UNDEF elements, we don't know anything about the common state of
1123         // the shuffle result.
1124         DemandedLHS.clearAllBits();
1125         DemandedRHS.clearAllBits();
1126         break;
1127       }
1128       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1129       if (M < (int)NumElts)
1130         DemandedLHS.setBit(M);
1131       else
1132         DemandedRHS.setBit(M - NumElts);
1133     }
1134 
1135     if (!!DemandedLHS || !!DemandedRHS) {
1136       SDValue Op0 = Op.getOperand(0);
1137       SDValue Op1 = Op.getOperand(1);
1138 
1139       Known.Zero.setAllBits();
1140       Known.One.setAllBits();
1141       if (!!DemandedLHS) {
1142         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1143                                  Depth + 1))
1144           return true;
1145         Known.One &= Known2.One;
1146         Known.Zero &= Known2.Zero;
1147       }
1148       if (!!DemandedRHS) {
1149         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1150                                  Depth + 1))
1151           return true;
1152         Known.One &= Known2.One;
1153         Known.Zero &= Known2.Zero;
1154       }
1155 
1156       // Attempt to avoid multi-use ops if we don't need anything from them.
1157       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1158           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1159       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1160           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1161       if (DemandedOp0 || DemandedOp1) {
1162         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1163         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1164         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1165         return TLO.CombineTo(Op, NewOp);
1166       }
1167     }
1168     break;
1169   }
1170   case ISD::AND: {
1171     SDValue Op0 = Op.getOperand(0);
1172     SDValue Op1 = Op.getOperand(1);
1173 
1174     // If the RHS is a constant, check to see if the LHS would be zero without
1175     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1176     // simplify the LHS, here we're using information from the LHS to simplify
1177     // the RHS.
1178     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1179       // Do not increment Depth here; that can cause an infinite loop.
1180       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1181       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1182       if ((LHSKnown.Zero & DemandedBits) ==
1183           (~RHSC->getAPIntValue() & DemandedBits))
1184         return TLO.CombineTo(Op, Op0);
1185 
1186       // If any of the set bits in the RHS are known zero on the LHS, shrink
1187       // the constant.
1188       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1189                                  DemandedElts, TLO))
1190         return true;
1191 
1192       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1193       // constant, but if this 'and' is only clearing bits that were just set by
1194       // the xor, then this 'and' can be eliminated by shrinking the mask of
1195       // the xor. For example, for a 32-bit X:
1196       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1197       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1198           LHSKnown.One == ~RHSC->getAPIntValue()) {
1199         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1200         return TLO.CombineTo(Op, Xor);
1201       }
1202     }
1203 
1204     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1205                              Depth + 1))
1206       return true;
1207     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1208     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1209                              Known2, TLO, Depth + 1))
1210       return true;
1211     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1212 
1213     // Attempt to avoid multi-use ops if we don't need anything from them.
1214     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1215       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1216           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1217       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1218           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1219       if (DemandedOp0 || DemandedOp1) {
1220         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1221         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1222         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1223         return TLO.CombineTo(Op, NewOp);
1224       }
1225     }
1226 
1227     // If all of the demanded bits are known one on one side, return the other.
1228     // These bits cannot contribute to the result of the 'and'.
1229     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1230       return TLO.CombineTo(Op, Op0);
1231     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1232       return TLO.CombineTo(Op, Op1);
1233     // If all of the demanded bits in the inputs are known zeros, return zero.
1234     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1235       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1236     // If the RHS is a constant, see if we can simplify it.
1237     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1238                                TLO))
1239       return true;
1240     // If the operation can be done in a smaller type, do so.
1241     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1242       return true;
1243 
1244     Known &= Known2;
1245     break;
1246   }
1247   case ISD::OR: {
1248     SDValue Op0 = Op.getOperand(0);
1249     SDValue Op1 = Op.getOperand(1);
1250 
1251     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1252                              Depth + 1))
1253       return true;
1254     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1255     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1256                              Known2, TLO, Depth + 1))
1257       return true;
1258     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1259 
1260     // Attempt to avoid multi-use ops if we don't need anything from them.
1261     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1262       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1263           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1264       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1265           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1266       if (DemandedOp0 || DemandedOp1) {
1267         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1268         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1269         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1270         return TLO.CombineTo(Op, NewOp);
1271       }
1272     }
1273 
1274     // If all of the demanded bits are known zero on one side, return the other.
1275     // These bits cannot contribute to the result of the 'or'.
1276     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1277       return TLO.CombineTo(Op, Op0);
1278     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1279       return TLO.CombineTo(Op, Op1);
1280     // If the RHS is a constant, see if we can simplify it.
1281     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1282       return true;
1283     // If the operation can be done in a smaller type, do so.
1284     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1285       return true;
1286 
1287     Known |= Known2;
1288     break;
1289   }
1290   case ISD::XOR: {
1291     SDValue Op0 = Op.getOperand(0);
1292     SDValue Op1 = Op.getOperand(1);
1293 
1294     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1295                              Depth + 1))
1296       return true;
1297     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1298     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1299                              Depth + 1))
1300       return true;
1301     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1302 
1303     // Attempt to avoid multi-use ops if we don't need anything from them.
1304     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1305       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1306           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1307       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1308           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1309       if (DemandedOp0 || DemandedOp1) {
1310         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1311         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1312         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1313         return TLO.CombineTo(Op, NewOp);
1314       }
1315     }
1316 
1317     // If all of the demanded bits are known zero on one side, return the other.
1318     // These bits cannot contribute to the result of the 'xor'.
1319     if (DemandedBits.isSubsetOf(Known.Zero))
1320       return TLO.CombineTo(Op, Op0);
1321     if (DemandedBits.isSubsetOf(Known2.Zero))
1322       return TLO.CombineTo(Op, Op1);
1323     // If the operation can be done in a smaller type, do so.
1324     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1325       return true;
1326 
1327     // If all of the unknown bits are known to be zero on one side or the other
1328     // (but not both) turn this into an *inclusive* or.
1329     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1330     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1331       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1332 
1333     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1334     if (C) {
1335       // If one side is a constant, and all of the known set bits on the other
1336       // side are also set in the constant, turn this into an AND, as we know
1337       // the bits will be cleared.
1338       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1339       // NB: it is okay if more bits are known than are requested
1340       if (C->getAPIntValue() == Known2.One) {
1341         SDValue ANDC =
1342             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1343         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1344       }
1345 
1346       // If the RHS is a constant, see if we can change it. Don't alter a -1
1347       // constant because that's a 'not' op, and that is better for combining
1348       // and codegen.
1349       if (!C->isAllOnesValue() &&
1350           DemandedBits.isSubsetOf(C->getAPIntValue())) {
1351         // We're flipping all demanded bits. Flip the undemanded bits too.
1352         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1353         return TLO.CombineTo(Op, New);
1354       }
1355     }
1356 
1357     // If we can't turn this into a 'not', try to shrink the constant.
1358     if (!C || !C->isAllOnesValue())
1359       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1360         return true;
1361 
1362     Known ^= Known2;
1363     break;
1364   }
1365   case ISD::SELECT:
1366     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1367                              Depth + 1))
1368       return true;
1369     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1370                              Depth + 1))
1371       return true;
1372     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1373     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1374 
1375     // If the operands are constants, see if we can simplify them.
1376     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1377       return true;
1378 
1379     // Only known if known in both the LHS and RHS.
1380     Known.One &= Known2.One;
1381     Known.Zero &= Known2.Zero;
1382     break;
1383   case ISD::SELECT_CC:
1384     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1385                              Depth + 1))
1386       return true;
1387     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1388                              Depth + 1))
1389       return true;
1390     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1391     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1392 
1393     // If the operands are constants, see if we can simplify them.
1394     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1395       return true;
1396 
1397     // Only known if known in both the LHS and RHS.
1398     Known.One &= Known2.One;
1399     Known.Zero &= Known2.Zero;
1400     break;
1401   case ISD::SETCC: {
1402     SDValue Op0 = Op.getOperand(0);
1403     SDValue Op1 = Op.getOperand(1);
1404     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1405     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1406     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1407     // -1, we may be able to bypass the setcc.
1408     if (DemandedBits.isSignMask() &&
1409         Op0.getScalarValueSizeInBits() == BitWidth &&
1410         getBooleanContents(Op0.getValueType()) ==
1411             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1412       // If we're testing X < 0, then this compare isn't needed - just use X!
1413       // FIXME: We're limiting to integer types here, but this should also work
1414       // if we don't care about FP signed-zero. The use of SETLT with FP means
1415       // that we don't care about NaNs.
1416       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1417           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1418         return TLO.CombineTo(Op, Op0);
1419 
1420       // TODO: Should we check for other forms of sign-bit comparisons?
1421       // Examples: X <= -1, X >= 0
1422     }
1423     if (getBooleanContents(Op0.getValueType()) ==
1424             TargetLowering::ZeroOrOneBooleanContent &&
1425         BitWidth > 1)
1426       Known.Zero.setBitsFrom(1);
1427     break;
1428   }
1429   case ISD::SHL: {
1430     SDValue Op0 = Op.getOperand(0);
1431     SDValue Op1 = Op.getOperand(1);
1432     EVT ShiftVT = Op1.getValueType();
1433 
1434     if (const APInt *SA =
1435             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1436       unsigned ShAmt = SA->getZExtValue();
1437       if (ShAmt == 0)
1438         return TLO.CombineTo(Op, Op0);
1439 
1440       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1441       // single shift.  We can do this if the bottom bits (which are shifted
1442       // out) are never demanded.
1443       // TODO - support non-uniform vector amounts.
1444       if (Op0.getOpcode() == ISD::SRL) {
1445         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1446           if (const APInt *SA2 =
1447                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1448             unsigned C1 = SA2->getZExtValue();
1449             unsigned Opc = ISD::SHL;
1450             int Diff = ShAmt - C1;
1451             if (Diff < 0) {
1452               Diff = -Diff;
1453               Opc = ISD::SRL;
1454             }
1455             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1456             return TLO.CombineTo(
1457                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1458           }
1459         }
1460       }
1461 
1462       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1463       // are not demanded. This will likely allow the anyext to be folded away.
1464       // TODO - support non-uniform vector amounts.
1465       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1466         SDValue InnerOp = Op0.getOperand(0);
1467         EVT InnerVT = InnerOp.getValueType();
1468         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1469         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1470             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1471           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1472           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1473             ShTy = InnerVT;
1474           SDValue NarrowShl =
1475               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1476                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1477           return TLO.CombineTo(
1478               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1479         }
1480 
1481         // Repeat the SHL optimization above in cases where an extension
1482         // intervenes: (shl (anyext (shr x, c1)), c2) to
1483         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1484         // aren't demanded (as above) and that the shifted upper c1 bits of
1485         // x aren't demanded.
1486         // TODO - support non-uniform vector amounts.
1487         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1488             InnerOp.hasOneUse()) {
1489           if (const APInt *SA2 =
1490                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1491             unsigned InnerShAmt = SA2->getZExtValue();
1492             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1493                 DemandedBits.getActiveBits() <=
1494                     (InnerBits - InnerShAmt + ShAmt) &&
1495                 DemandedBits.countTrailingZeros() >= ShAmt) {
1496               SDValue NewSA =
1497                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1498               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1499                                                InnerOp.getOperand(0));
1500               return TLO.CombineTo(
1501                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1502             }
1503           }
1504         }
1505       }
1506 
1507       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1508       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1509                                Depth + 1))
1510         return true;
1511       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1512       Known.Zero <<= ShAmt;
1513       Known.One <<= ShAmt;
1514       // low bits known zero.
1515       Known.Zero.setLowBits(ShAmt);
1516 
1517       // Try shrinking the operation as long as the shift amount will still be
1518       // in range.
1519       if ((ShAmt < DemandedBits.getActiveBits()) &&
1520           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1521         return true;
1522     }
1523 
1524     // If we are only demanding sign bits then we can use the shift source
1525     // directly.
1526     if (const APInt *MaxSA =
1527             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1528       unsigned ShAmt = MaxSA->getZExtValue();
1529       unsigned NumSignBits =
1530           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1531       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1532       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1533         return TLO.CombineTo(Op, Op0);
1534     }
1535     break;
1536   }
1537   case ISD::SRL: {
1538     SDValue Op0 = Op.getOperand(0);
1539     SDValue Op1 = Op.getOperand(1);
1540     EVT ShiftVT = Op1.getValueType();
1541 
1542     if (const APInt *SA =
1543             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1544       unsigned ShAmt = SA->getZExtValue();
1545       if (ShAmt == 0)
1546         return TLO.CombineTo(Op, Op0);
1547 
1548       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1549       // single shift.  We can do this if the top bits (which are shifted out)
1550       // are never demanded.
1551       // TODO - support non-uniform vector amounts.
1552       if (Op0.getOpcode() == ISD::SHL) {
1553         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1554           if (const APInt *SA2 =
1555                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1556             unsigned C1 = SA2->getZExtValue();
1557             unsigned Opc = ISD::SRL;
1558             int Diff = ShAmt - C1;
1559             if (Diff < 0) {
1560               Diff = -Diff;
1561               Opc = ISD::SHL;
1562             }
1563             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1564             return TLO.CombineTo(
1565                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1566           }
1567         }
1568       }
1569 
1570       APInt InDemandedMask = (DemandedBits << ShAmt);
1571 
1572       // If the shift is exact, then it does demand the low bits (and knows that
1573       // they are zero).
1574       if (Op->getFlags().hasExact())
1575         InDemandedMask.setLowBits(ShAmt);
1576 
1577       // Compute the new bits that are at the top now.
1578       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1579                                Depth + 1))
1580         return true;
1581       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1582       Known.Zero.lshrInPlace(ShAmt);
1583       Known.One.lshrInPlace(ShAmt);
1584       // High bits known zero.
1585       Known.Zero.setHighBits(ShAmt);
1586     }
1587     break;
1588   }
1589   case ISD::SRA: {
1590     SDValue Op0 = Op.getOperand(0);
1591     SDValue Op1 = Op.getOperand(1);
1592     EVT ShiftVT = Op1.getValueType();
1593 
1594     // If we only want bits that already match the signbit then we don't need
1595     // to shift.
1596     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1597     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1598         NumHiDemandedBits)
1599       return TLO.CombineTo(Op, Op0);
1600 
1601     // If this is an arithmetic shift right and only the low-bit is set, we can
1602     // always convert this into a logical shr, even if the shift amount is
1603     // variable.  The low bit of the shift cannot be an input sign bit unless
1604     // the shift amount is >= the size of the datatype, which is undefined.
1605     if (DemandedBits.isOneValue())
1606       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1607 
1608     if (const APInt *SA =
1609             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1610       unsigned ShAmt = SA->getZExtValue();
1611       if (ShAmt == 0)
1612         return TLO.CombineTo(Op, Op0);
1613 
1614       APInt InDemandedMask = (DemandedBits << ShAmt);
1615 
1616       // If the shift is exact, then it does demand the low bits (and knows that
1617       // they are zero).
1618       if (Op->getFlags().hasExact())
1619         InDemandedMask.setLowBits(ShAmt);
1620 
1621       // If any of the demanded bits are produced by the sign extension, we also
1622       // demand the input sign bit.
1623       if (DemandedBits.countLeadingZeros() < ShAmt)
1624         InDemandedMask.setSignBit();
1625 
1626       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1627                                Depth + 1))
1628         return true;
1629       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1630       Known.Zero.lshrInPlace(ShAmt);
1631       Known.One.lshrInPlace(ShAmt);
1632 
1633       // If the input sign bit is known to be zero, or if none of the top bits
1634       // are demanded, turn this into an unsigned shift right.
1635       if (Known.Zero[BitWidth - ShAmt - 1] ||
1636           DemandedBits.countLeadingZeros() >= ShAmt) {
1637         SDNodeFlags Flags;
1638         Flags.setExact(Op->getFlags().hasExact());
1639         return TLO.CombineTo(
1640             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1641       }
1642 
1643       int Log2 = DemandedBits.exactLogBase2();
1644       if (Log2 >= 0) {
1645         // The bit must come from the sign.
1646         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1647         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1648       }
1649 
1650       if (Known.One[BitWidth - ShAmt - 1])
1651         // New bits are known one.
1652         Known.One.setHighBits(ShAmt);
1653 
1654       // Attempt to avoid multi-use ops if we don't need anything from them.
1655       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1656         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1657             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1658         if (DemandedOp0) {
1659           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1660           return TLO.CombineTo(Op, NewOp);
1661         }
1662       }
1663     }
1664     break;
1665   }
1666   case ISD::FSHL:
1667   case ISD::FSHR: {
1668     SDValue Op0 = Op.getOperand(0);
1669     SDValue Op1 = Op.getOperand(1);
1670     SDValue Op2 = Op.getOperand(2);
1671     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1672 
1673     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1674       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1675 
1676       // For fshl, 0-shift returns the 1st arg.
1677       // For fshr, 0-shift returns the 2nd arg.
1678       if (Amt == 0) {
1679         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1680                                  Known, TLO, Depth + 1))
1681           return true;
1682         break;
1683       }
1684 
1685       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1686       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1687       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1688       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1689       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1690                                Depth + 1))
1691         return true;
1692       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1693                                Depth + 1))
1694         return true;
1695 
1696       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1697       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1698       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1699       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1700       Known.One |= Known2.One;
1701       Known.Zero |= Known2.Zero;
1702     }
1703 
1704     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1705     if (isPowerOf2_32(BitWidth)) {
1706       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1707       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1708                                Known2, TLO, Depth + 1))
1709         return true;
1710     }
1711     break;
1712   }
1713   case ISD::ROTL:
1714   case ISD::ROTR: {
1715     SDValue Op0 = Op.getOperand(0);
1716     SDValue Op1 = Op.getOperand(1);
1717 
1718     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1719     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1720       return TLO.CombineTo(Op, Op0);
1721 
1722     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1723     if (isPowerOf2_32(BitWidth)) {
1724       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1725       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1726                                Depth + 1))
1727         return true;
1728     }
1729     break;
1730   }
1731   case ISD::BITREVERSE: {
1732     SDValue Src = Op.getOperand(0);
1733     APInt DemandedSrcBits = DemandedBits.reverseBits();
1734     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1735                              Depth + 1))
1736       return true;
1737     Known.One = Known2.One.reverseBits();
1738     Known.Zero = Known2.Zero.reverseBits();
1739     break;
1740   }
1741   case ISD::BSWAP: {
1742     SDValue Src = Op.getOperand(0);
1743     APInt DemandedSrcBits = DemandedBits.byteSwap();
1744     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1745                              Depth + 1))
1746       return true;
1747     Known.One = Known2.One.byteSwap();
1748     Known.Zero = Known2.Zero.byteSwap();
1749     break;
1750   }
1751   case ISD::SIGN_EXTEND_INREG: {
1752     SDValue Op0 = Op.getOperand(0);
1753     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1754     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1755 
1756     // If we only care about the highest bit, don't bother shifting right.
1757     if (DemandedBits.isSignMask()) {
1758       unsigned NumSignBits =
1759           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1760       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1761       // However if the input is already sign extended we expect the sign
1762       // extension to be dropped altogether later and do not simplify.
1763       if (!AlreadySignExtended) {
1764         // Compute the correct shift amount type, which must be getShiftAmountTy
1765         // for scalar types after legalization.
1766         EVT ShiftAmtTy = VT;
1767         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1768           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1769 
1770         SDValue ShiftAmt =
1771             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1772         return TLO.CombineTo(Op,
1773                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1774       }
1775     }
1776 
1777     // If none of the extended bits are demanded, eliminate the sextinreg.
1778     if (DemandedBits.getActiveBits() <= ExVTBits)
1779       return TLO.CombineTo(Op, Op0);
1780 
1781     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1782 
1783     // Since the sign extended bits are demanded, we know that the sign
1784     // bit is demanded.
1785     InputDemandedBits.setBit(ExVTBits - 1);
1786 
1787     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1788       return true;
1789     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1790 
1791     // If the sign bit of the input is known set or clear, then we know the
1792     // top bits of the result.
1793 
1794     // If the input sign bit is known zero, convert this into a zero extension.
1795     if (Known.Zero[ExVTBits - 1])
1796       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1797 
1798     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1799     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1800       Known.One.setBitsFrom(ExVTBits);
1801       Known.Zero &= Mask;
1802     } else { // Input sign bit unknown
1803       Known.Zero &= Mask;
1804       Known.One &= Mask;
1805     }
1806     break;
1807   }
1808   case ISD::BUILD_PAIR: {
1809     EVT HalfVT = Op.getOperand(0).getValueType();
1810     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1811 
1812     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1813     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1814 
1815     KnownBits KnownLo, KnownHi;
1816 
1817     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1818       return true;
1819 
1820     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1821       return true;
1822 
1823     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1824                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1825 
1826     Known.One = KnownLo.One.zext(BitWidth) |
1827                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1828     break;
1829   }
1830   case ISD::ZERO_EXTEND:
1831   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1832     SDValue Src = Op.getOperand(0);
1833     EVT SrcVT = Src.getValueType();
1834     unsigned InBits = SrcVT.getScalarSizeInBits();
1835     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1836     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1837 
1838     // If none of the top bits are demanded, convert this into an any_extend.
1839     if (DemandedBits.getActiveBits() <= InBits) {
1840       // If we only need the non-extended bits of the bottom element
1841       // then we can just bitcast to the result.
1842       if (IsVecInReg && DemandedElts == 1 &&
1843           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1844           TLO.DAG.getDataLayout().isLittleEndian())
1845         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1846 
1847       unsigned Opc =
1848           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1849       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1850         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1851     }
1852 
1853     APInt InDemandedBits = DemandedBits.trunc(InBits);
1854     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1855     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1856                              Depth + 1))
1857       return true;
1858     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1859     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1860     Known = Known.zext(BitWidth);
1861 
1862     // Attempt to avoid multi-use ops if we don't need anything from them.
1863     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1864             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1865       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1866     break;
1867   }
1868   case ISD::SIGN_EXTEND:
1869   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1870     SDValue Src = Op.getOperand(0);
1871     EVT SrcVT = Src.getValueType();
1872     unsigned InBits = SrcVT.getScalarSizeInBits();
1873     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1874     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1875 
1876     // If none of the top bits are demanded, convert this into an any_extend.
1877     if (DemandedBits.getActiveBits() <= InBits) {
1878       // If we only need the non-extended bits of the bottom element
1879       // then we can just bitcast to the result.
1880       if (IsVecInReg && DemandedElts == 1 &&
1881           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1882           TLO.DAG.getDataLayout().isLittleEndian())
1883         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1884 
1885       unsigned Opc =
1886           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1887       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1888         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1889     }
1890 
1891     APInt InDemandedBits = DemandedBits.trunc(InBits);
1892     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1893 
1894     // Since some of the sign extended bits are demanded, we know that the sign
1895     // bit is demanded.
1896     InDemandedBits.setBit(InBits - 1);
1897 
1898     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1899                              Depth + 1))
1900       return true;
1901     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1902     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1903 
1904     // If the sign bit is known one, the top bits match.
1905     Known = Known.sext(BitWidth);
1906 
1907     // If the sign bit is known zero, convert this to a zero extend.
1908     if (Known.isNonNegative()) {
1909       unsigned Opc =
1910           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1911       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1912         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1913     }
1914 
1915     // Attempt to avoid multi-use ops if we don't need anything from them.
1916     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1917             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1918       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1919     break;
1920   }
1921   case ISD::ANY_EXTEND:
1922   case ISD::ANY_EXTEND_VECTOR_INREG: {
1923     SDValue Src = Op.getOperand(0);
1924     EVT SrcVT = Src.getValueType();
1925     unsigned InBits = SrcVT.getScalarSizeInBits();
1926     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1927     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1928 
1929     // If we only need the bottom element then we can just bitcast.
1930     // TODO: Handle ANY_EXTEND?
1931     if (IsVecInReg && DemandedElts == 1 &&
1932         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1933         TLO.DAG.getDataLayout().isLittleEndian())
1934       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1935 
1936     APInt InDemandedBits = DemandedBits.trunc(InBits);
1937     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1938     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1939                              Depth + 1))
1940       return true;
1941     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1942     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1943     Known = Known.anyext(BitWidth);
1944 
1945     // Attempt to avoid multi-use ops if we don't need anything from them.
1946     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1947             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1948       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1949     break;
1950   }
1951   case ISD::TRUNCATE: {
1952     SDValue Src = Op.getOperand(0);
1953 
1954     // Simplify the input, using demanded bit information, and compute the known
1955     // zero/one bits live out.
1956     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1957     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1958     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1959       return true;
1960     Known = Known.trunc(BitWidth);
1961 
1962     // Attempt to avoid multi-use ops if we don't need anything from them.
1963     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1964             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1965       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1966 
1967     // If the input is only used by this truncate, see if we can shrink it based
1968     // on the known demanded bits.
1969     if (Src.getNode()->hasOneUse()) {
1970       switch (Src.getOpcode()) {
1971       default:
1972         break;
1973       case ISD::SRL:
1974         // Shrink SRL by a constant if none of the high bits shifted in are
1975         // demanded.
1976         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1977           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1978           // undesirable.
1979           break;
1980 
1981         SDValue ShAmt = Src.getOperand(1);
1982         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
1983         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
1984           break;
1985         uint64_t ShVal = ShAmtC->getZExtValue();
1986 
1987         APInt HighBits =
1988             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1989         HighBits.lshrInPlace(ShVal);
1990         HighBits = HighBits.trunc(BitWidth);
1991 
1992         if (!(HighBits & DemandedBits)) {
1993           // None of the shifted in bits are needed.  Add a truncate of the
1994           // shift input, then shift it.
1995           if (TLO.LegalTypes())
1996             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1997           SDValue NewTrunc =
1998               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1999           return TLO.CombineTo(
2000               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
2001         }
2002         break;
2003       }
2004     }
2005 
2006     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2007     break;
2008   }
2009   case ISD::AssertZext: {
2010     // AssertZext demands all of the high bits, plus any of the low bits
2011     // demanded by its users.
2012     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2013     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2014     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2015                              TLO, Depth + 1))
2016       return true;
2017     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2018 
2019     Known.Zero |= ~InMask;
2020     break;
2021   }
2022   case ISD::EXTRACT_VECTOR_ELT: {
2023     SDValue Src = Op.getOperand(0);
2024     SDValue Idx = Op.getOperand(1);
2025     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2026     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2027 
2028     // Demand the bits from every vector element without a constant index.
2029     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
2030     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2031       if (CIdx->getAPIntValue().ult(NumSrcElts))
2032         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2033 
2034     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2035     // anything about the extended bits.
2036     APInt DemandedSrcBits = DemandedBits;
2037     if (BitWidth > EltBitWidth)
2038       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2039 
2040     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2041                              Depth + 1))
2042       return true;
2043 
2044     // Attempt to avoid multi-use ops if we don't need anything from them.
2045     if (!DemandedSrcBits.isAllOnesValue() ||
2046         !DemandedSrcElts.isAllOnesValue()) {
2047       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2048               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2049         SDValue NewOp =
2050             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2051         return TLO.CombineTo(Op, NewOp);
2052       }
2053     }
2054 
2055     Known = Known2;
2056     if (BitWidth > EltBitWidth)
2057       Known = Known.anyext(BitWidth);
2058     break;
2059   }
2060   case ISD::BITCAST: {
2061     SDValue Src = Op.getOperand(0);
2062     EVT SrcVT = Src.getValueType();
2063     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2064 
2065     // If this is an FP->Int bitcast and if the sign bit is the only
2066     // thing demanded, turn this into a FGETSIGN.
2067     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2068         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2069         SrcVT.isFloatingPoint()) {
2070       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2071       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2072       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2073           SrcVT != MVT::f128) {
2074         // Cannot eliminate/lower SHL for f128 yet.
2075         EVT Ty = OpVTLegal ? VT : MVT::i32;
2076         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2077         // place.  We expect the SHL to be eliminated by other optimizations.
2078         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2079         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2080         if (!OpVTLegal && OpVTSizeInBits > 32)
2081           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2082         unsigned ShVal = Op.getValueSizeInBits() - 1;
2083         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2084         return TLO.CombineTo(Op,
2085                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2086       }
2087     }
2088 
2089     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2090     // Demand the elt/bit if any of the original elts/bits are demanded.
2091     // TODO - bigendian once we have test coverage.
2092     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2093         TLO.DAG.getDataLayout().isLittleEndian()) {
2094       unsigned Scale = BitWidth / NumSrcEltBits;
2095       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2096       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2097       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2098       for (unsigned i = 0; i != Scale; ++i) {
2099         unsigned Offset = i * NumSrcEltBits;
2100         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2101         if (!Sub.isNullValue()) {
2102           DemandedSrcBits |= Sub;
2103           for (unsigned j = 0; j != NumElts; ++j)
2104             if (DemandedElts[j])
2105               DemandedSrcElts.setBit((j * Scale) + i);
2106         }
2107       }
2108 
2109       APInt KnownSrcUndef, KnownSrcZero;
2110       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2111                                      KnownSrcZero, TLO, Depth + 1))
2112         return true;
2113 
2114       KnownBits KnownSrcBits;
2115       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2116                                KnownSrcBits, TLO, Depth + 1))
2117         return true;
2118     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2119                TLO.DAG.getDataLayout().isLittleEndian()) {
2120       unsigned Scale = NumSrcEltBits / BitWidth;
2121       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2122       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2123       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2124       for (unsigned i = 0; i != NumElts; ++i)
2125         if (DemandedElts[i]) {
2126           unsigned Offset = (i % Scale) * BitWidth;
2127           DemandedSrcBits.insertBits(DemandedBits, Offset);
2128           DemandedSrcElts.setBit(i / Scale);
2129         }
2130 
2131       if (SrcVT.isVector()) {
2132         APInt KnownSrcUndef, KnownSrcZero;
2133         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2134                                        KnownSrcZero, TLO, Depth + 1))
2135           return true;
2136       }
2137 
2138       KnownBits KnownSrcBits;
2139       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2140                                KnownSrcBits, TLO, Depth + 1))
2141         return true;
2142     }
2143 
2144     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2145     // recursive call where Known may be useful to the caller.
2146     if (Depth > 0) {
2147       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2148       return false;
2149     }
2150     break;
2151   }
2152   case ISD::ADD:
2153   case ISD::MUL:
2154   case ISD::SUB: {
2155     // Add, Sub, and Mul don't demand any bits in positions beyond that
2156     // of the highest bit demanded of them.
2157     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2158     SDNodeFlags Flags = Op.getNode()->getFlags();
2159     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2160     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2161     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2162                              Depth + 1) ||
2163         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2164                              Depth + 1) ||
2165         // See if the operation should be performed at a smaller bit width.
2166         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2167       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2168         // Disable the nsw and nuw flags. We can no longer guarantee that we
2169         // won't wrap after simplification.
2170         Flags.setNoSignedWrap(false);
2171         Flags.setNoUnsignedWrap(false);
2172         SDValue NewOp =
2173             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2174         return TLO.CombineTo(Op, NewOp);
2175       }
2176       return true;
2177     }
2178 
2179     // Attempt to avoid multi-use ops if we don't need anything from them.
2180     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2181       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2182           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2183       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2184           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2185       if (DemandedOp0 || DemandedOp1) {
2186         Flags.setNoSignedWrap(false);
2187         Flags.setNoUnsignedWrap(false);
2188         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2189         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2190         SDValue NewOp =
2191             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2192         return TLO.CombineTo(Op, NewOp);
2193       }
2194     }
2195 
2196     // If we have a constant operand, we may be able to turn it into -1 if we
2197     // do not demand the high bits. This can make the constant smaller to
2198     // encode, allow more general folding, or match specialized instruction
2199     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2200     // is probably not useful (and could be detrimental).
2201     ConstantSDNode *C = isConstOrConstSplat(Op1);
2202     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2203     if (C && !C->isAllOnesValue() && !C->isOne() &&
2204         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2205       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2206       // Disable the nsw and nuw flags. We can no longer guarantee that we
2207       // won't wrap after simplification.
2208       Flags.setNoSignedWrap(false);
2209       Flags.setNoUnsignedWrap(false);
2210       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2211       return TLO.CombineTo(Op, NewOp);
2212     }
2213 
2214     LLVM_FALLTHROUGH;
2215   }
2216   default:
2217     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2218       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2219                                             Known, TLO, Depth))
2220         return true;
2221       break;
2222     }
2223 
2224     // Just use computeKnownBits to compute output bits.
2225     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2226     break;
2227   }
2228 
2229   // If we know the value of all of the demanded bits, return this as a
2230   // constant.
2231   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2232     // Avoid folding to a constant if any OpaqueConstant is involved.
2233     const SDNode *N = Op.getNode();
2234     for (SDNodeIterator I = SDNodeIterator::begin(N),
2235                         E = SDNodeIterator::end(N);
2236          I != E; ++I) {
2237       SDNode *Op = *I;
2238       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2239         if (C->isOpaque())
2240           return false;
2241     }
2242     // TODO: Handle float bits as well.
2243     if (VT.isInteger())
2244       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2245   }
2246 
2247   return false;
2248 }
2249 
2250 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2251                                                 const APInt &DemandedElts,
2252                                                 APInt &KnownUndef,
2253                                                 APInt &KnownZero,
2254                                                 DAGCombinerInfo &DCI) const {
2255   SelectionDAG &DAG = DCI.DAG;
2256   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2257                         !DCI.isBeforeLegalizeOps());
2258 
2259   bool Simplified =
2260       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2261   if (Simplified) {
2262     DCI.AddToWorklist(Op.getNode());
2263     DCI.CommitTargetLoweringOpt(TLO);
2264   }
2265 
2266   return Simplified;
2267 }
2268 
2269 /// Given a vector binary operation and known undefined elements for each input
2270 /// operand, compute whether each element of the output is undefined.
2271 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2272                                          const APInt &UndefOp0,
2273                                          const APInt &UndefOp1) {
2274   EVT VT = BO.getValueType();
2275   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2276          "Vector binop only");
2277 
2278   EVT EltVT = VT.getVectorElementType();
2279   unsigned NumElts = VT.getVectorNumElements();
2280   assert(UndefOp0.getBitWidth() == NumElts &&
2281          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2282 
2283   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2284                                    const APInt &UndefVals) {
2285     if (UndefVals[Index])
2286       return DAG.getUNDEF(EltVT);
2287 
2288     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2289       // Try hard to make sure that the getNode() call is not creating temporary
2290       // nodes. Ignore opaque integers because they do not constant fold.
2291       SDValue Elt = BV->getOperand(Index);
2292       auto *C = dyn_cast<ConstantSDNode>(Elt);
2293       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2294         return Elt;
2295     }
2296 
2297     return SDValue();
2298   };
2299 
2300   APInt KnownUndef = APInt::getNullValue(NumElts);
2301   for (unsigned i = 0; i != NumElts; ++i) {
2302     // If both inputs for this element are either constant or undef and match
2303     // the element type, compute the constant/undef result for this element of
2304     // the vector.
2305     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2306     // not handle FP constants. The code within getNode() should be refactored
2307     // to avoid the danger of creating a bogus temporary node here.
2308     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2309     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2310     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2311       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2312         KnownUndef.setBit(i);
2313   }
2314   return KnownUndef;
2315 }
2316 
2317 bool TargetLowering::SimplifyDemandedVectorElts(
2318     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2319     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2320     bool AssumeSingleUse) const {
2321   EVT VT = Op.getValueType();
2322   unsigned Opcode = Op.getOpcode();
2323   APInt DemandedElts = OriginalDemandedElts;
2324   unsigned NumElts = DemandedElts.getBitWidth();
2325   assert(VT.isVector() && "Expected vector op");
2326 
2327   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2328 
2329   // TODO: For now we assume we know nothing about scalable vectors.
2330   if (VT.isScalableVector())
2331     return false;
2332 
2333   assert(VT.getVectorNumElements() == NumElts &&
2334          "Mask size mismatches value type element count!");
2335 
2336   // Undef operand.
2337   if (Op.isUndef()) {
2338     KnownUndef.setAllBits();
2339     return false;
2340   }
2341 
2342   // If Op has other users, assume that all elements are needed.
2343   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2344     DemandedElts.setAllBits();
2345 
2346   // Not demanding any elements from Op.
2347   if (DemandedElts == 0) {
2348     KnownUndef.setAllBits();
2349     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2350   }
2351 
2352   // Limit search depth.
2353   if (Depth >= SelectionDAG::MaxRecursionDepth)
2354     return false;
2355 
2356   SDLoc DL(Op);
2357   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2358 
2359   // Helper for demanding the specified elements and all the bits of both binary
2360   // operands.
2361   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2362     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2363                                                            TLO.DAG, Depth + 1);
2364     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2365                                                            TLO.DAG, Depth + 1);
2366     if (NewOp0 || NewOp1) {
2367       SDValue NewOp = TLO.DAG.getNode(
2368           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2369       return TLO.CombineTo(Op, NewOp);
2370     }
2371     return false;
2372   };
2373 
2374   switch (Opcode) {
2375   case ISD::SCALAR_TO_VECTOR: {
2376     if (!DemandedElts[0]) {
2377       KnownUndef.setAllBits();
2378       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2379     }
2380     KnownUndef.setHighBits(NumElts - 1);
2381     break;
2382   }
2383   case ISD::BITCAST: {
2384     SDValue Src = Op.getOperand(0);
2385     EVT SrcVT = Src.getValueType();
2386 
2387     // We only handle vectors here.
2388     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2389     if (!SrcVT.isVector())
2390       break;
2391 
2392     // Fast handling of 'identity' bitcasts.
2393     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2394     if (NumSrcElts == NumElts)
2395       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2396                                         KnownZero, TLO, Depth + 1);
2397 
2398     APInt SrcZero, SrcUndef;
2399     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2400 
2401     // Bitcast from 'large element' src vector to 'small element' vector, we
2402     // must demand a source element if any DemandedElt maps to it.
2403     if ((NumElts % NumSrcElts) == 0) {
2404       unsigned Scale = NumElts / NumSrcElts;
2405       for (unsigned i = 0; i != NumElts; ++i)
2406         if (DemandedElts[i])
2407           SrcDemandedElts.setBit(i / Scale);
2408 
2409       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2410                                      TLO, Depth + 1))
2411         return true;
2412 
2413       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2414       // of the large element.
2415       // TODO - bigendian once we have test coverage.
2416       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2417         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2418         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2419         for (unsigned i = 0; i != NumElts; ++i)
2420           if (DemandedElts[i]) {
2421             unsigned Ofs = (i % Scale) * EltSizeInBits;
2422             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2423           }
2424 
2425         KnownBits Known;
2426         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2427                                  TLO, Depth + 1))
2428           return true;
2429       }
2430 
2431       // If the src element is zero/undef then all the output elements will be -
2432       // only demanded elements are guaranteed to be correct.
2433       for (unsigned i = 0; i != NumSrcElts; ++i) {
2434         if (SrcDemandedElts[i]) {
2435           if (SrcZero[i])
2436             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2437           if (SrcUndef[i])
2438             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2439         }
2440       }
2441     }
2442 
2443     // Bitcast from 'small element' src vector to 'large element' vector, we
2444     // demand all smaller source elements covered by the larger demanded element
2445     // of this vector.
2446     if ((NumSrcElts % NumElts) == 0) {
2447       unsigned Scale = NumSrcElts / NumElts;
2448       for (unsigned i = 0; i != NumElts; ++i)
2449         if (DemandedElts[i])
2450           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2451 
2452       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2453                                      TLO, Depth + 1))
2454         return true;
2455 
2456       // If all the src elements covering an output element are zero/undef, then
2457       // the output element will be as well, assuming it was demanded.
2458       for (unsigned i = 0; i != NumElts; ++i) {
2459         if (DemandedElts[i]) {
2460           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2461             KnownZero.setBit(i);
2462           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2463             KnownUndef.setBit(i);
2464         }
2465       }
2466     }
2467     break;
2468   }
2469   case ISD::BUILD_VECTOR: {
2470     // Check all elements and simplify any unused elements with UNDEF.
2471     if (!DemandedElts.isAllOnesValue()) {
2472       // Don't simplify BROADCASTS.
2473       if (llvm::any_of(Op->op_values(),
2474                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2475         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2476         bool Updated = false;
2477         for (unsigned i = 0; i != NumElts; ++i) {
2478           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2479             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2480             KnownUndef.setBit(i);
2481             Updated = true;
2482           }
2483         }
2484         if (Updated)
2485           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2486       }
2487     }
2488     for (unsigned i = 0; i != NumElts; ++i) {
2489       SDValue SrcOp = Op.getOperand(i);
2490       if (SrcOp.isUndef()) {
2491         KnownUndef.setBit(i);
2492       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2493                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2494         KnownZero.setBit(i);
2495       }
2496     }
2497     break;
2498   }
2499   case ISD::CONCAT_VECTORS: {
2500     EVT SubVT = Op.getOperand(0).getValueType();
2501     unsigned NumSubVecs = Op.getNumOperands();
2502     unsigned NumSubElts = SubVT.getVectorNumElements();
2503     for (unsigned i = 0; i != NumSubVecs; ++i) {
2504       SDValue SubOp = Op.getOperand(i);
2505       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2506       APInt SubUndef, SubZero;
2507       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2508                                      Depth + 1))
2509         return true;
2510       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2511       KnownZero.insertBits(SubZero, i * NumSubElts);
2512     }
2513     break;
2514   }
2515   case ISD::INSERT_SUBVECTOR: {
2516     // Demand any elements from the subvector and the remainder from the src its
2517     // inserted into.
2518     SDValue Src = Op.getOperand(0);
2519     SDValue Sub = Op.getOperand(1);
2520     uint64_t Idx = Op.getConstantOperandVal(2);
2521     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2522     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2523     APInt DemandedSrcElts = DemandedElts;
2524     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2525 
2526     APInt SubUndef, SubZero;
2527     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2528                                    Depth + 1))
2529       return true;
2530 
2531     // If none of the src operand elements are demanded, replace it with undef.
2532     if (!DemandedSrcElts && !Src.isUndef())
2533       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2534                                                TLO.DAG.getUNDEF(VT), Sub,
2535                                                Op.getOperand(2)));
2536 
2537     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2538                                    TLO, Depth + 1))
2539       return true;
2540     KnownUndef.insertBits(SubUndef, Idx);
2541     KnownZero.insertBits(SubZero, Idx);
2542 
2543     // Attempt to avoid multi-use ops if we don't need anything from them.
2544     if (!DemandedSrcElts.isAllOnesValue() ||
2545         !DemandedSubElts.isAllOnesValue()) {
2546       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2547           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2548       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2549           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2550       if (NewSrc || NewSub) {
2551         NewSrc = NewSrc ? NewSrc : Src;
2552         NewSub = NewSub ? NewSub : Sub;
2553         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2554                                         NewSub, Op.getOperand(2));
2555         return TLO.CombineTo(Op, NewOp);
2556       }
2557     }
2558     break;
2559   }
2560   case ISD::EXTRACT_SUBVECTOR: {
2561     // Offset the demanded elts by the subvector index.
2562     SDValue Src = Op.getOperand(0);
2563     if (Src.getValueType().isScalableVector())
2564       break;
2565     uint64_t Idx = Op.getConstantOperandVal(1);
2566     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2567     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2568 
2569     APInt SrcUndef, SrcZero;
2570     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2571                                    Depth + 1))
2572       return true;
2573     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2574     KnownZero = SrcZero.extractBits(NumElts, Idx);
2575 
2576     // Attempt to avoid multi-use ops if we don't need anything from them.
2577     if (!DemandedElts.isAllOnesValue()) {
2578       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2579           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2580       if (NewSrc) {
2581         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2582                                         Op.getOperand(1));
2583         return TLO.CombineTo(Op, NewOp);
2584       }
2585     }
2586     break;
2587   }
2588   case ISD::INSERT_VECTOR_ELT: {
2589     SDValue Vec = Op.getOperand(0);
2590     SDValue Scl = Op.getOperand(1);
2591     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2592 
2593     // For a legal, constant insertion index, if we don't need this insertion
2594     // then strip it, else remove it from the demanded elts.
2595     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2596       unsigned Idx = CIdx->getZExtValue();
2597       if (!DemandedElts[Idx])
2598         return TLO.CombineTo(Op, Vec);
2599 
2600       APInt DemandedVecElts(DemandedElts);
2601       DemandedVecElts.clearBit(Idx);
2602       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2603                                      KnownZero, TLO, Depth + 1))
2604         return true;
2605 
2606       KnownUndef.clearBit(Idx);
2607       if (Scl.isUndef())
2608         KnownUndef.setBit(Idx);
2609 
2610       KnownZero.clearBit(Idx);
2611       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2612         KnownZero.setBit(Idx);
2613       break;
2614     }
2615 
2616     APInt VecUndef, VecZero;
2617     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2618                                    Depth + 1))
2619       return true;
2620     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2621     break;
2622   }
2623   case ISD::VSELECT: {
2624     // Try to transform the select condition based on the current demanded
2625     // elements.
2626     // TODO: If a condition element is undef, we can choose from one arm of the
2627     //       select (and if one arm is undef, then we can propagate that to the
2628     //       result).
2629     // TODO - add support for constant vselect masks (see IR version of this).
2630     APInt UnusedUndef, UnusedZero;
2631     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2632                                    UnusedZero, TLO, Depth + 1))
2633       return true;
2634 
2635     // See if we can simplify either vselect operand.
2636     APInt DemandedLHS(DemandedElts);
2637     APInt DemandedRHS(DemandedElts);
2638     APInt UndefLHS, ZeroLHS;
2639     APInt UndefRHS, ZeroRHS;
2640     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2641                                    ZeroLHS, TLO, Depth + 1))
2642       return true;
2643     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2644                                    ZeroRHS, TLO, Depth + 1))
2645       return true;
2646 
2647     KnownUndef = UndefLHS & UndefRHS;
2648     KnownZero = ZeroLHS & ZeroRHS;
2649     break;
2650   }
2651   case ISD::VECTOR_SHUFFLE: {
2652     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2653 
2654     // Collect demanded elements from shuffle operands..
2655     APInt DemandedLHS(NumElts, 0);
2656     APInt DemandedRHS(NumElts, 0);
2657     for (unsigned i = 0; i != NumElts; ++i) {
2658       int M = ShuffleMask[i];
2659       if (M < 0 || !DemandedElts[i])
2660         continue;
2661       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2662       if (M < (int)NumElts)
2663         DemandedLHS.setBit(M);
2664       else
2665         DemandedRHS.setBit(M - NumElts);
2666     }
2667 
2668     // See if we can simplify either shuffle operand.
2669     APInt UndefLHS, ZeroLHS;
2670     APInt UndefRHS, ZeroRHS;
2671     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2672                                    ZeroLHS, TLO, Depth + 1))
2673       return true;
2674     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2675                                    ZeroRHS, TLO, Depth + 1))
2676       return true;
2677 
2678     // Simplify mask using undef elements from LHS/RHS.
2679     bool Updated = false;
2680     bool IdentityLHS = true, IdentityRHS = true;
2681     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2682     for (unsigned i = 0; i != NumElts; ++i) {
2683       int &M = NewMask[i];
2684       if (M < 0)
2685         continue;
2686       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2687           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2688         Updated = true;
2689         M = -1;
2690       }
2691       IdentityLHS &= (M < 0) || (M == (int)i);
2692       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2693     }
2694 
2695     // Update legal shuffle masks based on demanded elements if it won't reduce
2696     // to Identity which can cause premature removal of the shuffle mask.
2697     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2698       SDValue LegalShuffle =
2699           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2700                                   NewMask, TLO.DAG);
2701       if (LegalShuffle)
2702         return TLO.CombineTo(Op, LegalShuffle);
2703     }
2704 
2705     // Propagate undef/zero elements from LHS/RHS.
2706     for (unsigned i = 0; i != NumElts; ++i) {
2707       int M = ShuffleMask[i];
2708       if (M < 0) {
2709         KnownUndef.setBit(i);
2710       } else if (M < (int)NumElts) {
2711         if (UndefLHS[M])
2712           KnownUndef.setBit(i);
2713         if (ZeroLHS[M])
2714           KnownZero.setBit(i);
2715       } else {
2716         if (UndefRHS[M - NumElts])
2717           KnownUndef.setBit(i);
2718         if (ZeroRHS[M - NumElts])
2719           KnownZero.setBit(i);
2720       }
2721     }
2722     break;
2723   }
2724   case ISD::ANY_EXTEND_VECTOR_INREG:
2725   case ISD::SIGN_EXTEND_VECTOR_INREG:
2726   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2727     APInt SrcUndef, SrcZero;
2728     SDValue Src = Op.getOperand(0);
2729     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2730     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2731     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2732                                    Depth + 1))
2733       return true;
2734     KnownZero = SrcZero.zextOrTrunc(NumElts);
2735     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2736 
2737     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2738         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2739         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2740       // aext - if we just need the bottom element then we can bitcast.
2741       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2742     }
2743 
2744     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2745       // zext(undef) upper bits are guaranteed to be zero.
2746       if (DemandedElts.isSubsetOf(KnownUndef))
2747         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2748       KnownUndef.clearAllBits();
2749     }
2750     break;
2751   }
2752 
2753   // TODO: There are more binop opcodes that could be handled here - MIN,
2754   // MAX, saturated math, etc.
2755   case ISD::OR:
2756   case ISD::XOR:
2757   case ISD::ADD:
2758   case ISD::SUB:
2759   case ISD::FADD:
2760   case ISD::FSUB:
2761   case ISD::FMUL:
2762   case ISD::FDIV:
2763   case ISD::FREM: {
2764     SDValue Op0 = Op.getOperand(0);
2765     SDValue Op1 = Op.getOperand(1);
2766 
2767     APInt UndefRHS, ZeroRHS;
2768     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2769                                    Depth + 1))
2770       return true;
2771     APInt UndefLHS, ZeroLHS;
2772     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2773                                    Depth + 1))
2774       return true;
2775 
2776     KnownZero = ZeroLHS & ZeroRHS;
2777     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2778 
2779     // Attempt to avoid multi-use ops if we don't need anything from them.
2780     // TODO - use KnownUndef to relax the demandedelts?
2781     if (!DemandedElts.isAllOnesValue())
2782       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2783         return true;
2784     break;
2785   }
2786   case ISD::SHL:
2787   case ISD::SRL:
2788   case ISD::SRA:
2789   case ISD::ROTL:
2790   case ISD::ROTR: {
2791     SDValue Op0 = Op.getOperand(0);
2792     SDValue Op1 = Op.getOperand(1);
2793 
2794     APInt UndefRHS, ZeroRHS;
2795     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2796                                    Depth + 1))
2797       return true;
2798     APInt UndefLHS, ZeroLHS;
2799     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2800                                    Depth + 1))
2801       return true;
2802 
2803     KnownZero = ZeroLHS;
2804     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2805 
2806     // Attempt to avoid multi-use ops if we don't need anything from them.
2807     // TODO - use KnownUndef to relax the demandedelts?
2808     if (!DemandedElts.isAllOnesValue())
2809       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2810         return true;
2811     break;
2812   }
2813   case ISD::MUL:
2814   case ISD::AND: {
2815     SDValue Op0 = Op.getOperand(0);
2816     SDValue Op1 = Op.getOperand(1);
2817 
2818     APInt SrcUndef, SrcZero;
2819     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2820                                    Depth + 1))
2821       return true;
2822     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2823                                    TLO, Depth + 1))
2824       return true;
2825 
2826     // If either side has a zero element, then the result element is zero, even
2827     // if the other is an UNDEF.
2828     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2829     // and then handle 'and' nodes with the rest of the binop opcodes.
2830     KnownZero |= SrcZero;
2831     KnownUndef &= SrcUndef;
2832     KnownUndef &= ~KnownZero;
2833 
2834     // Attempt to avoid multi-use ops if we don't need anything from them.
2835     // TODO - use KnownUndef to relax the demandedelts?
2836     if (!DemandedElts.isAllOnesValue())
2837       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2838         return true;
2839     break;
2840   }
2841   case ISD::TRUNCATE:
2842   case ISD::SIGN_EXTEND:
2843   case ISD::ZERO_EXTEND:
2844     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2845                                    KnownZero, TLO, Depth + 1))
2846       return true;
2847 
2848     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2849       // zext(undef) upper bits are guaranteed to be zero.
2850       if (DemandedElts.isSubsetOf(KnownUndef))
2851         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2852       KnownUndef.clearAllBits();
2853     }
2854     break;
2855   default: {
2856     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2857       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2858                                                   KnownZero, TLO, Depth))
2859         return true;
2860     } else {
2861       KnownBits Known;
2862       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2863       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2864                                TLO, Depth, AssumeSingleUse))
2865         return true;
2866     }
2867     break;
2868   }
2869   }
2870   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2871 
2872   // Constant fold all undef cases.
2873   // TODO: Handle zero cases as well.
2874   if (DemandedElts.isSubsetOf(KnownUndef))
2875     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2876 
2877   return false;
2878 }
2879 
2880 /// Determine which of the bits specified in Mask are known to be either zero or
2881 /// one and return them in the Known.
2882 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2883                                                    KnownBits &Known,
2884                                                    const APInt &DemandedElts,
2885                                                    const SelectionDAG &DAG,
2886                                                    unsigned Depth) const {
2887   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2888           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2889           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2890           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2891          "Should use MaskedValueIsZero if you don't know whether Op"
2892          " is a target node!");
2893   Known.resetAll();
2894 }
2895 
2896 void TargetLowering::computeKnownBitsForTargetInstr(
2897     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2898     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2899     unsigned Depth) const {
2900   Known.resetAll();
2901 }
2902 
2903 void TargetLowering::computeKnownBitsForFrameIndex(
2904   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
2905   // The low bits are known zero if the pointer is aligned.
2906   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
2907 }
2908 
2909 Align TargetLowering::computeKnownAlignForTargetInstr(
2910   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
2911   unsigned Depth) const {
2912   return Align(1);
2913 }
2914 
2915 /// This method can be implemented by targets that want to expose additional
2916 /// information about sign bits to the DAG Combiner.
2917 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2918                                                          const APInt &,
2919                                                          const SelectionDAG &,
2920                                                          unsigned Depth) const {
2921   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2922           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2923           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2924           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2925          "Should use ComputeNumSignBits if you don't know whether Op"
2926          " is a target node!");
2927   return 1;
2928 }
2929 
2930 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2931   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2932   const MachineRegisterInfo &MRI, unsigned Depth) const {
2933   return 1;
2934 }
2935 
2936 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2937     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2938     TargetLoweringOpt &TLO, unsigned Depth) const {
2939   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2940           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2941           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2942           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2943          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2944          " is a target node!");
2945   return false;
2946 }
2947 
2948 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2949     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2950     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2951   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2952           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2953           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2954           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2955          "Should use SimplifyDemandedBits if you don't know whether Op"
2956          " is a target node!");
2957   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2958   return false;
2959 }
2960 
2961 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2962     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2963     SelectionDAG &DAG, unsigned Depth) const {
2964   assert(
2965       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2966        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2967        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2968        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2969       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2970       " is a target node!");
2971   return SDValue();
2972 }
2973 
2974 SDValue
2975 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2976                                         SDValue N1, MutableArrayRef<int> Mask,
2977                                         SelectionDAG &DAG) const {
2978   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2979   if (!LegalMask) {
2980     std::swap(N0, N1);
2981     ShuffleVectorSDNode::commuteMask(Mask);
2982     LegalMask = isShuffleMaskLegal(Mask, VT);
2983   }
2984 
2985   if (!LegalMask)
2986     return SDValue();
2987 
2988   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2989 }
2990 
2991 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2992   return nullptr;
2993 }
2994 
2995 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2996                                                   const SelectionDAG &DAG,
2997                                                   bool SNaN,
2998                                                   unsigned Depth) const {
2999   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3000           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3001           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3002           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3003          "Should use isKnownNeverNaN if you don't know whether Op"
3004          " is a target node!");
3005   return false;
3006 }
3007 
3008 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3009 // work with truncating build vectors and vectors with elements of less than
3010 // 8 bits.
3011 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3012   if (!N)
3013     return false;
3014 
3015   APInt CVal;
3016   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3017     CVal = CN->getAPIntValue();
3018   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3019     auto *CN = BV->getConstantSplatNode();
3020     if (!CN)
3021       return false;
3022 
3023     // If this is a truncating build vector, truncate the splat value.
3024     // Otherwise, we may fail to match the expected values below.
3025     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3026     CVal = CN->getAPIntValue();
3027     if (BVEltWidth < CVal.getBitWidth())
3028       CVal = CVal.trunc(BVEltWidth);
3029   } else {
3030     return false;
3031   }
3032 
3033   switch (getBooleanContents(N->getValueType(0))) {
3034   case UndefinedBooleanContent:
3035     return CVal[0];
3036   case ZeroOrOneBooleanContent:
3037     return CVal.isOneValue();
3038   case ZeroOrNegativeOneBooleanContent:
3039     return CVal.isAllOnesValue();
3040   }
3041 
3042   llvm_unreachable("Invalid boolean contents");
3043 }
3044 
3045 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3046   if (!N)
3047     return false;
3048 
3049   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3050   if (!CN) {
3051     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3052     if (!BV)
3053       return false;
3054 
3055     // Only interested in constant splats, we don't care about undef
3056     // elements in identifying boolean constants and getConstantSplatNode
3057     // returns NULL if all ops are undef;
3058     CN = BV->getConstantSplatNode();
3059     if (!CN)
3060       return false;
3061   }
3062 
3063   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3064     return !CN->getAPIntValue()[0];
3065 
3066   return CN->isNullValue();
3067 }
3068 
3069 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3070                                        bool SExt) const {
3071   if (VT == MVT::i1)
3072     return N->isOne();
3073 
3074   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3075   switch (Cnt) {
3076   case TargetLowering::ZeroOrOneBooleanContent:
3077     // An extended value of 1 is always true, unless its original type is i1,
3078     // in which case it will be sign extended to -1.
3079     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3080   case TargetLowering::UndefinedBooleanContent:
3081   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3082     return N->isAllOnesValue() && SExt;
3083   }
3084   llvm_unreachable("Unexpected enumeration.");
3085 }
3086 
3087 /// This helper function of SimplifySetCC tries to optimize the comparison when
3088 /// either operand of the SetCC node is a bitwise-and instruction.
3089 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3090                                          ISD::CondCode Cond, const SDLoc &DL,
3091                                          DAGCombinerInfo &DCI) const {
3092   // Match these patterns in any of their permutations:
3093   // (X & Y) == Y
3094   // (X & Y) != Y
3095   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3096     std::swap(N0, N1);
3097 
3098   EVT OpVT = N0.getValueType();
3099   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3100       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3101     return SDValue();
3102 
3103   SDValue X, Y;
3104   if (N0.getOperand(0) == N1) {
3105     X = N0.getOperand(1);
3106     Y = N0.getOperand(0);
3107   } else if (N0.getOperand(1) == N1) {
3108     X = N0.getOperand(0);
3109     Y = N0.getOperand(1);
3110   } else {
3111     return SDValue();
3112   }
3113 
3114   SelectionDAG &DAG = DCI.DAG;
3115   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3116   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3117     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3118     // Note that where Y is variable and is known to have at most one bit set
3119     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3120     // equivalent when Y == 0.
3121     assert(OpVT.isInteger());
3122     Cond = ISD::getSetCCInverse(Cond, OpVT);
3123     if (DCI.isBeforeLegalizeOps() ||
3124         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3125       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3126   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3127     // If the target supports an 'and-not' or 'and-complement' logic operation,
3128     // try to use that to make a comparison operation more efficient.
3129     // But don't do this transform if the mask is a single bit because there are
3130     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3131     // 'rlwinm' on PPC).
3132 
3133     // Bail out if the compare operand that we want to turn into a zero is
3134     // already a zero (otherwise, infinite loop).
3135     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3136     if (YConst && YConst->isNullValue())
3137       return SDValue();
3138 
3139     // Transform this into: ~X & Y == 0.
3140     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3141     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3142     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3143   }
3144 
3145   return SDValue();
3146 }
3147 
3148 /// There are multiple IR patterns that could be checking whether certain
3149 /// truncation of a signed number would be lossy or not. The pattern which is
3150 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3151 /// We are looking for the following pattern: (KeptBits is a constant)
3152 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3153 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3154 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3155 /// We will unfold it into the natural trunc+sext pattern:
3156 ///   ((%x << C) a>> C) dstcond %x
3157 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3158 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3159     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3160     const SDLoc &DL) const {
3161   // We must be comparing with a constant.
3162   ConstantSDNode *C1;
3163   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3164     return SDValue();
3165 
3166   // N0 should be:  add %x, (1 << (KeptBits-1))
3167   if (N0->getOpcode() != ISD::ADD)
3168     return SDValue();
3169 
3170   // And we must be 'add'ing a constant.
3171   ConstantSDNode *C01;
3172   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3173     return SDValue();
3174 
3175   SDValue X = N0->getOperand(0);
3176   EVT XVT = X.getValueType();
3177 
3178   // Validate constants ...
3179 
3180   APInt I1 = C1->getAPIntValue();
3181 
3182   ISD::CondCode NewCond;
3183   if (Cond == ISD::CondCode::SETULT) {
3184     NewCond = ISD::CondCode::SETEQ;
3185   } else if (Cond == ISD::CondCode::SETULE) {
3186     NewCond = ISD::CondCode::SETEQ;
3187     // But need to 'canonicalize' the constant.
3188     I1 += 1;
3189   } else if (Cond == ISD::CondCode::SETUGT) {
3190     NewCond = ISD::CondCode::SETNE;
3191     // But need to 'canonicalize' the constant.
3192     I1 += 1;
3193   } else if (Cond == ISD::CondCode::SETUGE) {
3194     NewCond = ISD::CondCode::SETNE;
3195   } else
3196     return SDValue();
3197 
3198   APInt I01 = C01->getAPIntValue();
3199 
3200   auto checkConstants = [&I1, &I01]() -> bool {
3201     // Both of them must be power-of-two, and the constant from setcc is bigger.
3202     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3203   };
3204 
3205   if (checkConstants()) {
3206     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3207   } else {
3208     // What if we invert constants? (and the target predicate)
3209     I1.negate();
3210     I01.negate();
3211     assert(XVT.isInteger());
3212     NewCond = getSetCCInverse(NewCond, XVT);
3213     if (!checkConstants())
3214       return SDValue();
3215     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3216   }
3217 
3218   // They are power-of-two, so which bit is set?
3219   const unsigned KeptBits = I1.logBase2();
3220   const unsigned KeptBitsMinusOne = I01.logBase2();
3221 
3222   // Magic!
3223   if (KeptBits != (KeptBitsMinusOne + 1))
3224     return SDValue();
3225   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3226 
3227   // We don't want to do this in every single case.
3228   SelectionDAG &DAG = DCI.DAG;
3229   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3230           XVT, KeptBits))
3231     return SDValue();
3232 
3233   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3234   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3235 
3236   // Unfold into:  ((%x << C) a>> C) cond %x
3237   // Where 'cond' will be either 'eq' or 'ne'.
3238   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3239   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3240   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3241   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3242 
3243   return T2;
3244 }
3245 
3246 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3247 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3248     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3249     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3250   assert(isConstOrConstSplat(N1C) &&
3251          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3252          "Should be a comparison with 0.");
3253   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3254          "Valid only for [in]equality comparisons.");
3255 
3256   unsigned NewShiftOpcode;
3257   SDValue X, C, Y;
3258 
3259   SelectionDAG &DAG = DCI.DAG;
3260   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3261 
3262   // Look for '(C l>>/<< Y)'.
3263   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3264     // The shift should be one-use.
3265     if (!V.hasOneUse())
3266       return false;
3267     unsigned OldShiftOpcode = V.getOpcode();
3268     switch (OldShiftOpcode) {
3269     case ISD::SHL:
3270       NewShiftOpcode = ISD::SRL;
3271       break;
3272     case ISD::SRL:
3273       NewShiftOpcode = ISD::SHL;
3274       break;
3275     default:
3276       return false; // must be a logical shift.
3277     }
3278     // We should be shifting a constant.
3279     // FIXME: best to use isConstantOrConstantVector().
3280     C = V.getOperand(0);
3281     ConstantSDNode *CC =
3282         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3283     if (!CC)
3284       return false;
3285     Y = V.getOperand(1);
3286 
3287     ConstantSDNode *XC =
3288         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3289     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3290         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3291   };
3292 
3293   // LHS of comparison should be an one-use 'and'.
3294   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3295     return SDValue();
3296 
3297   X = N0.getOperand(0);
3298   SDValue Mask = N0.getOperand(1);
3299 
3300   // 'and' is commutative!
3301   if (!Match(Mask)) {
3302     std::swap(X, Mask);
3303     if (!Match(Mask))
3304       return SDValue();
3305   }
3306 
3307   EVT VT = X.getValueType();
3308 
3309   // Produce:
3310   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3311   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3312   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3313   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3314   return T2;
3315 }
3316 
3317 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3318 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3319 /// handle the commuted versions of these patterns.
3320 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3321                                            ISD::CondCode Cond, const SDLoc &DL,
3322                                            DAGCombinerInfo &DCI) const {
3323   unsigned BOpcode = N0.getOpcode();
3324   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3325          "Unexpected binop");
3326   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3327 
3328   // (X + Y) == X --> Y == 0
3329   // (X - Y) == X --> Y == 0
3330   // (X ^ Y) == X --> Y == 0
3331   SelectionDAG &DAG = DCI.DAG;
3332   EVT OpVT = N0.getValueType();
3333   SDValue X = N0.getOperand(0);
3334   SDValue Y = N0.getOperand(1);
3335   if (X == N1)
3336     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3337 
3338   if (Y != N1)
3339     return SDValue();
3340 
3341   // (X + Y) == Y --> X == 0
3342   // (X ^ Y) == Y --> X == 0
3343   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3344     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3345 
3346   // The shift would not be valid if the operands are boolean (i1).
3347   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3348     return SDValue();
3349 
3350   // (X - Y) == Y --> X == Y << 1
3351   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3352                                  !DCI.isBeforeLegalize());
3353   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3354   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3355   if (!DCI.isCalledByLegalizer())
3356     DCI.AddToWorklist(YShl1.getNode());
3357   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3358 }
3359 
3360 /// Try to simplify a setcc built with the specified operands and cc. If it is
3361 /// unable to simplify it, return a null SDValue.
3362 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3363                                       ISD::CondCode Cond, bool foldBooleans,
3364                                       DAGCombinerInfo &DCI,
3365                                       const SDLoc &dl) const {
3366   SelectionDAG &DAG = DCI.DAG;
3367   const DataLayout &Layout = DAG.getDataLayout();
3368   EVT OpVT = N0.getValueType();
3369 
3370   // Constant fold or commute setcc.
3371   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3372     return Fold;
3373 
3374   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3375   // TODO: Handle non-splat vector constants. All undef causes trouble.
3376   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3377   if (isConstOrConstSplat(N0) &&
3378       (DCI.isBeforeLegalizeOps() ||
3379        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3380     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3381 
3382   // If we have a subtract with the same 2 non-constant operands as this setcc
3383   // -- but in reverse order -- then try to commute the operands of this setcc
3384   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3385   // instruction on some targets.
3386   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3387       (DCI.isBeforeLegalizeOps() ||
3388        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3389       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3390       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3391     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3392 
3393   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3394     const APInt &C1 = N1C->getAPIntValue();
3395 
3396     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3397     // equality comparison, then we're just comparing whether X itself is
3398     // zero.
3399     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3400         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3401         N0.getOperand(1).getOpcode() == ISD::Constant) {
3402       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3403       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3404           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3405         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3406           // (srl (ctlz x), 5) == 0  -> X != 0
3407           // (srl (ctlz x), 5) != 1  -> X != 0
3408           Cond = ISD::SETNE;
3409         } else {
3410           // (srl (ctlz x), 5) != 0  -> X == 0
3411           // (srl (ctlz x), 5) == 1  -> X == 0
3412           Cond = ISD::SETEQ;
3413         }
3414         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3415         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3416                             Zero, Cond);
3417       }
3418     }
3419 
3420     SDValue CTPOP = N0;
3421     // Look through truncs that don't change the value of a ctpop.
3422     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3423       CTPOP = N0.getOperand(0);
3424 
3425     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3426         (N0 == CTPOP ||
3427          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3428       EVT CTVT = CTPOP.getValueType();
3429       SDValue CTOp = CTPOP.getOperand(0);
3430 
3431       // (ctpop x) u< 2 -> (x & x-1) == 0
3432       // (ctpop x) u> 1 -> (x & x-1) != 0
3433       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3434         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3435         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3436         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3437         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3438         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3439       }
3440 
3441       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3442       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3443           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3444         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3445         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3446         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3447         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3448         assert(CTVT.isInteger());
3449         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3450         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3451         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3452         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3453         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3454         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3455         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3456       }
3457     }
3458 
3459     // (zext x) == C --> x == (trunc C)
3460     // (sext x) == C --> x == (trunc C)
3461     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3462         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3463       unsigned MinBits = N0.getValueSizeInBits();
3464       SDValue PreExt;
3465       bool Signed = false;
3466       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3467         // ZExt
3468         MinBits = N0->getOperand(0).getValueSizeInBits();
3469         PreExt = N0->getOperand(0);
3470       } else if (N0->getOpcode() == ISD::AND) {
3471         // DAGCombine turns costly ZExts into ANDs
3472         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3473           if ((C->getAPIntValue()+1).isPowerOf2()) {
3474             MinBits = C->getAPIntValue().countTrailingOnes();
3475             PreExt = N0->getOperand(0);
3476           }
3477       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3478         // SExt
3479         MinBits = N0->getOperand(0).getValueSizeInBits();
3480         PreExt = N0->getOperand(0);
3481         Signed = true;
3482       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3483         // ZEXTLOAD / SEXTLOAD
3484         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3485           MinBits = LN0->getMemoryVT().getSizeInBits();
3486           PreExt = N0;
3487         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3488           Signed = true;
3489           MinBits = LN0->getMemoryVT().getSizeInBits();
3490           PreExt = N0;
3491         }
3492       }
3493 
3494       // Figure out how many bits we need to preserve this constant.
3495       unsigned ReqdBits = Signed ?
3496         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3497         C1.getActiveBits();
3498 
3499       // Make sure we're not losing bits from the constant.
3500       if (MinBits > 0 &&
3501           MinBits < C1.getBitWidth() &&
3502           MinBits >= ReqdBits) {
3503         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3504         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3505           // Will get folded away.
3506           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3507           if (MinBits == 1 && C1 == 1)
3508             // Invert the condition.
3509             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3510                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3511           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3512           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3513         }
3514 
3515         // If truncating the setcc operands is not desirable, we can still
3516         // simplify the expression in some cases:
3517         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3518         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3519         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3520         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3521         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3522         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3523         SDValue TopSetCC = N0->getOperand(0);
3524         unsigned N0Opc = N0->getOpcode();
3525         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3526         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3527             TopSetCC.getOpcode() == ISD::SETCC &&
3528             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3529             (isConstFalseVal(N1C) ||
3530              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3531 
3532           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3533                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3534 
3535           if (!Inverse)
3536             return TopSetCC;
3537 
3538           ISD::CondCode InvCond = ISD::getSetCCInverse(
3539               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3540               TopSetCC.getOperand(0).getValueType());
3541           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3542                                       TopSetCC.getOperand(1),
3543                                       InvCond);
3544         }
3545       }
3546     }
3547 
3548     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3549     // equality or unsigned, and all 1 bits of the const are in the same
3550     // partial word, see if we can shorten the load.
3551     if (DCI.isBeforeLegalize() &&
3552         !ISD::isSignedIntSetCC(Cond) &&
3553         N0.getOpcode() == ISD::AND && C1 == 0 &&
3554         N0.getNode()->hasOneUse() &&
3555         isa<LoadSDNode>(N0.getOperand(0)) &&
3556         N0.getOperand(0).getNode()->hasOneUse() &&
3557         isa<ConstantSDNode>(N0.getOperand(1))) {
3558       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3559       APInt bestMask;
3560       unsigned bestWidth = 0, bestOffset = 0;
3561       if (Lod->isSimple() && Lod->isUnindexed()) {
3562         unsigned origWidth = N0.getValueSizeInBits();
3563         unsigned maskWidth = origWidth;
3564         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3565         // 8 bits, but have to be careful...
3566         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3567           origWidth = Lod->getMemoryVT().getSizeInBits();
3568         const APInt &Mask = N0.getConstantOperandAPInt(1);
3569         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3570           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3571           for (unsigned offset=0; offset<origWidth/width; offset++) {
3572             if (Mask.isSubsetOf(newMask)) {
3573               if (Layout.isLittleEndian())
3574                 bestOffset = (uint64_t)offset * (width/8);
3575               else
3576                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3577               bestMask = Mask.lshr(offset * (width/8) * 8);
3578               bestWidth = width;
3579               break;
3580             }
3581             newMask <<= width;
3582           }
3583         }
3584       }
3585       if (bestWidth) {
3586         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3587         if (newVT.isRound() &&
3588             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3589           SDValue Ptr = Lod->getBasePtr();
3590           if (bestOffset != 0)
3591             Ptr =
3592                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3593           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3594           SDValue NewLoad = DAG.getLoad(
3595               newVT, dl, Lod->getChain(), Ptr,
3596               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3597           return DAG.getSetCC(dl, VT,
3598                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3599                                       DAG.getConstant(bestMask.trunc(bestWidth),
3600                                                       dl, newVT)),
3601                               DAG.getConstant(0LL, dl, newVT), Cond);
3602         }
3603       }
3604     }
3605 
3606     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3607     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3608       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3609 
3610       // If the comparison constant has bits in the upper part, the
3611       // zero-extended value could never match.
3612       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3613                                               C1.getBitWidth() - InSize))) {
3614         switch (Cond) {
3615         case ISD::SETUGT:
3616         case ISD::SETUGE:
3617         case ISD::SETEQ:
3618           return DAG.getConstant(0, dl, VT);
3619         case ISD::SETULT:
3620         case ISD::SETULE:
3621         case ISD::SETNE:
3622           return DAG.getConstant(1, dl, VT);
3623         case ISD::SETGT:
3624         case ISD::SETGE:
3625           // True if the sign bit of C1 is set.
3626           return DAG.getConstant(C1.isNegative(), dl, VT);
3627         case ISD::SETLT:
3628         case ISD::SETLE:
3629           // True if the sign bit of C1 isn't set.
3630           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3631         default:
3632           break;
3633         }
3634       }
3635 
3636       // Otherwise, we can perform the comparison with the low bits.
3637       switch (Cond) {
3638       case ISD::SETEQ:
3639       case ISD::SETNE:
3640       case ISD::SETUGT:
3641       case ISD::SETUGE:
3642       case ISD::SETULT:
3643       case ISD::SETULE: {
3644         EVT newVT = N0.getOperand(0).getValueType();
3645         if (DCI.isBeforeLegalizeOps() ||
3646             (isOperationLegal(ISD::SETCC, newVT) &&
3647              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3648           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3649           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3650 
3651           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3652                                           NewConst, Cond);
3653           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3654         }
3655         break;
3656       }
3657       default:
3658         break; // todo, be more careful with signed comparisons
3659       }
3660     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3661                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3662       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3663       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3664       EVT ExtDstTy = N0.getValueType();
3665       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3666 
3667       // If the constant doesn't fit into the number of bits for the source of
3668       // the sign extension, it is impossible for both sides to be equal.
3669       if (C1.getMinSignedBits() > ExtSrcTyBits)
3670         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3671 
3672       SDValue ZextOp;
3673       EVT Op0Ty = N0.getOperand(0).getValueType();
3674       if (Op0Ty == ExtSrcTy) {
3675         ZextOp = N0.getOperand(0);
3676       } else {
3677         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3678         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3679                              DAG.getConstant(Imm, dl, Op0Ty));
3680       }
3681       if (!DCI.isCalledByLegalizer())
3682         DCI.AddToWorklist(ZextOp.getNode());
3683       // Otherwise, make this a use of a zext.
3684       return DAG.getSetCC(dl, VT, ZextOp,
3685                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3686                                                               ExtDstTyBits,
3687                                                               ExtSrcTyBits),
3688                                           dl, ExtDstTy),
3689                           Cond);
3690     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3691                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3692       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3693       if (N0.getOpcode() == ISD::SETCC &&
3694           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3695           (N0.getValueType() == MVT::i1 ||
3696            getBooleanContents(N0.getOperand(0).getValueType()) ==
3697                        ZeroOrOneBooleanContent)) {
3698         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3699         if (TrueWhenTrue)
3700           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3701         // Invert the condition.
3702         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3703         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3704         if (DCI.isBeforeLegalizeOps() ||
3705             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3706           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3707       }
3708 
3709       if ((N0.getOpcode() == ISD::XOR ||
3710            (N0.getOpcode() == ISD::AND &&
3711             N0.getOperand(0).getOpcode() == ISD::XOR &&
3712             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3713           isa<ConstantSDNode>(N0.getOperand(1)) &&
3714           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3715         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3716         // can only do this if the top bits are known zero.
3717         unsigned BitWidth = N0.getValueSizeInBits();
3718         if (DAG.MaskedValueIsZero(N0,
3719                                   APInt::getHighBitsSet(BitWidth,
3720                                                         BitWidth-1))) {
3721           // Okay, get the un-inverted input value.
3722           SDValue Val;
3723           if (N0.getOpcode() == ISD::XOR) {
3724             Val = N0.getOperand(0);
3725           } else {
3726             assert(N0.getOpcode() == ISD::AND &&
3727                     N0.getOperand(0).getOpcode() == ISD::XOR);
3728             // ((X^1)&1)^1 -> X & 1
3729             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3730                               N0.getOperand(0).getOperand(0),
3731                               N0.getOperand(1));
3732           }
3733 
3734           return DAG.getSetCC(dl, VT, Val, N1,
3735                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3736         }
3737       } else if (N1C->isOne()) {
3738         SDValue Op0 = N0;
3739         if (Op0.getOpcode() == ISD::TRUNCATE)
3740           Op0 = Op0.getOperand(0);
3741 
3742         if ((Op0.getOpcode() == ISD::XOR) &&
3743             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3744             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3745           SDValue XorLHS = Op0.getOperand(0);
3746           SDValue XorRHS = Op0.getOperand(1);
3747           // Ensure that the input setccs return an i1 type or 0/1 value.
3748           if (Op0.getValueType() == MVT::i1 ||
3749               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3750                       ZeroOrOneBooleanContent &&
3751                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3752                         ZeroOrOneBooleanContent)) {
3753             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3754             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3755             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3756           }
3757         }
3758         if (Op0.getOpcode() == ISD::AND &&
3759             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3760             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3761           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3762           if (Op0.getValueType().bitsGT(VT))
3763             Op0 = DAG.getNode(ISD::AND, dl, VT,
3764                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3765                           DAG.getConstant(1, dl, VT));
3766           else if (Op0.getValueType().bitsLT(VT))
3767             Op0 = DAG.getNode(ISD::AND, dl, VT,
3768                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3769                         DAG.getConstant(1, dl, VT));
3770 
3771           return DAG.getSetCC(dl, VT, Op0,
3772                               DAG.getConstant(0, dl, Op0.getValueType()),
3773                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3774         }
3775         if (Op0.getOpcode() == ISD::AssertZext &&
3776             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3777           return DAG.getSetCC(dl, VT, Op0,
3778                               DAG.getConstant(0, dl, Op0.getValueType()),
3779                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3780       }
3781     }
3782 
3783     // Given:
3784     //   icmp eq/ne (urem %x, %y), 0
3785     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3786     //   icmp eq/ne %x, 0
3787     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3788         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3789       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3790       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3791       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3792         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3793     }
3794 
3795     if (SDValue V =
3796             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3797       return V;
3798   }
3799 
3800   // These simplifications apply to splat vectors as well.
3801   // TODO: Handle more splat vector cases.
3802   if (auto *N1C = isConstOrConstSplat(N1)) {
3803     const APInt &C1 = N1C->getAPIntValue();
3804 
3805     APInt MinVal, MaxVal;
3806     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3807     if (ISD::isSignedIntSetCC(Cond)) {
3808       MinVal = APInt::getSignedMinValue(OperandBitSize);
3809       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3810     } else {
3811       MinVal = APInt::getMinValue(OperandBitSize);
3812       MaxVal = APInt::getMaxValue(OperandBitSize);
3813     }
3814 
3815     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3816     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3817       // X >= MIN --> true
3818       if (C1 == MinVal)
3819         return DAG.getBoolConstant(true, dl, VT, OpVT);
3820 
3821       if (!VT.isVector()) { // TODO: Support this for vectors.
3822         // X >= C0 --> X > (C0 - 1)
3823         APInt C = C1 - 1;
3824         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3825         if ((DCI.isBeforeLegalizeOps() ||
3826              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3827             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3828                                   isLegalICmpImmediate(C.getSExtValue())))) {
3829           return DAG.getSetCC(dl, VT, N0,
3830                               DAG.getConstant(C, dl, N1.getValueType()),
3831                               NewCC);
3832         }
3833       }
3834     }
3835 
3836     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3837       // X <= MAX --> true
3838       if (C1 == MaxVal)
3839         return DAG.getBoolConstant(true, dl, VT, OpVT);
3840 
3841       // X <= C0 --> X < (C0 + 1)
3842       if (!VT.isVector()) { // TODO: Support this for vectors.
3843         APInt C = C1 + 1;
3844         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3845         if ((DCI.isBeforeLegalizeOps() ||
3846              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3847             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3848                                   isLegalICmpImmediate(C.getSExtValue())))) {
3849           return DAG.getSetCC(dl, VT, N0,
3850                               DAG.getConstant(C, dl, N1.getValueType()),
3851                               NewCC);
3852         }
3853       }
3854     }
3855 
3856     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3857       if (C1 == MinVal)
3858         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3859 
3860       // TODO: Support this for vectors after legalize ops.
3861       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3862         // Canonicalize setlt X, Max --> setne X, Max
3863         if (C1 == MaxVal)
3864           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3865 
3866         // If we have setult X, 1, turn it into seteq X, 0
3867         if (C1 == MinVal+1)
3868           return DAG.getSetCC(dl, VT, N0,
3869                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3870                               ISD::SETEQ);
3871       }
3872     }
3873 
3874     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3875       if (C1 == MaxVal)
3876         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3877 
3878       // TODO: Support this for vectors after legalize ops.
3879       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3880         // Canonicalize setgt X, Min --> setne X, Min
3881         if (C1 == MinVal)
3882           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3883 
3884         // If we have setugt X, Max-1, turn it into seteq X, Max
3885         if (C1 == MaxVal-1)
3886           return DAG.getSetCC(dl, VT, N0,
3887                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3888                               ISD::SETEQ);
3889       }
3890     }
3891 
3892     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3893       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3894       if (C1.isNullValue())
3895         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3896                 VT, N0, N1, Cond, DCI, dl))
3897           return CC;
3898     }
3899 
3900     // If we have "setcc X, C0", check to see if we can shrink the immediate
3901     // by changing cc.
3902     // TODO: Support this for vectors after legalize ops.
3903     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3904       // SETUGT X, SINTMAX  -> SETLT X, 0
3905       // SETUGE X, SINTMIN -> SETLT X, 0
3906       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
3907           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
3908         return DAG.getSetCC(dl, VT, N0,
3909                             DAG.getConstant(0, dl, N1.getValueType()),
3910                             ISD::SETLT);
3911 
3912       // SETULT X, SINTMIN  -> SETGT X, -1
3913       // SETULE X, SINTMAX  -> SETGT X, -1
3914       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
3915           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
3916         return DAG.getSetCC(dl, VT, N0,
3917                             DAG.getAllOnesConstant(dl, N1.getValueType()),
3918                             ISD::SETGT);
3919     }
3920   }
3921 
3922   // Back to non-vector simplifications.
3923   // TODO: Can we do these for vector splats?
3924   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3925     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3926     const APInt &C1 = N1C->getAPIntValue();
3927     EVT ShValTy = N0.getValueType();
3928 
3929     // Fold bit comparisons when we can.
3930     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3931         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3932         N0.getOpcode() == ISD::AND) {
3933       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3934         EVT ShiftTy =
3935             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3936         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3937           // Perform the xform if the AND RHS is a single bit.
3938           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3939           if (AndRHS->getAPIntValue().isPowerOf2() &&
3940               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3941             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3942                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3943                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3944           }
3945         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3946           // (X & 8) == 8  -->  (X & 8) >> 3
3947           // Perform the xform if C1 is a single bit.
3948           unsigned ShCt = C1.logBase2();
3949           if (C1.isPowerOf2() &&
3950               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3951             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3952                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3953                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3954           }
3955         }
3956       }
3957     }
3958 
3959     if (C1.getMinSignedBits() <= 64 &&
3960         !isLegalICmpImmediate(C1.getSExtValue())) {
3961       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3962       // (X & -256) == 256 -> (X >> 8) == 1
3963       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3964           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3965         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3966           const APInt &AndRHSC = AndRHS->getAPIntValue();
3967           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3968             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3969             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3970               SDValue Shift =
3971                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3972                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3973               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3974               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3975             }
3976           }
3977         }
3978       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3979                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3980         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3981         // X <  0x100000000 -> (X >> 32) <  1
3982         // X >= 0x100000000 -> (X >> 32) >= 1
3983         // X <= 0x0ffffffff -> (X >> 32) <  1
3984         // X >  0x0ffffffff -> (X >> 32) >= 1
3985         unsigned ShiftBits;
3986         APInt NewC = C1;
3987         ISD::CondCode NewCond = Cond;
3988         if (AdjOne) {
3989           ShiftBits = C1.countTrailingOnes();
3990           NewC = NewC + 1;
3991           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3992         } else {
3993           ShiftBits = C1.countTrailingZeros();
3994         }
3995         NewC.lshrInPlace(ShiftBits);
3996         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3997             isLegalICmpImmediate(NewC.getSExtValue()) &&
3998             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3999           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4000                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4001           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4002           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4003         }
4004       }
4005     }
4006   }
4007 
4008   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4009     auto *CFP = cast<ConstantFPSDNode>(N1);
4010     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4011 
4012     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4013     // constant if knowing that the operand is non-nan is enough.  We prefer to
4014     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4015     // materialize 0.0.
4016     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4017       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4018 
4019     // setcc (fneg x), C -> setcc swap(pred) x, -C
4020     if (N0.getOpcode() == ISD::FNEG) {
4021       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4022       if (DCI.isBeforeLegalizeOps() ||
4023           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4024         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4025         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4026       }
4027     }
4028 
4029     // If the condition is not legal, see if we can find an equivalent one
4030     // which is legal.
4031     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4032       // If the comparison was an awkward floating-point == or != and one of
4033       // the comparison operands is infinity or negative infinity, convert the
4034       // condition to a less-awkward <= or >=.
4035       if (CFP->getValueAPF().isInfinity()) {
4036         bool IsNegInf = CFP->getValueAPF().isNegative();
4037         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4038         switch (Cond) {
4039         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4040         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4041         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4042         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4043         default: break;
4044         }
4045         if (NewCond != ISD::SETCC_INVALID &&
4046             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4047           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4048       }
4049     }
4050   }
4051 
4052   if (N0 == N1) {
4053     // The sext(setcc()) => setcc() optimization relies on the appropriate
4054     // constant being emitted.
4055     assert(!N0.getValueType().isInteger() &&
4056            "Integer types should be handled by FoldSetCC");
4057 
4058     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4059     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4060     if (UOF == 2) // FP operators that are undefined on NaNs.
4061       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4062     if (UOF == unsigned(EqTrue))
4063       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4064     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4065     // if it is not already.
4066     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4067     if (NewCond != Cond &&
4068         (DCI.isBeforeLegalizeOps() ||
4069                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4070       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4071   }
4072 
4073   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4074       N0.getValueType().isInteger()) {
4075     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4076         N0.getOpcode() == ISD::XOR) {
4077       // Simplify (X+Y) == (X+Z) -->  Y == Z
4078       if (N0.getOpcode() == N1.getOpcode()) {
4079         if (N0.getOperand(0) == N1.getOperand(0))
4080           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4081         if (N0.getOperand(1) == N1.getOperand(1))
4082           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4083         if (isCommutativeBinOp(N0.getOpcode())) {
4084           // If X op Y == Y op X, try other combinations.
4085           if (N0.getOperand(0) == N1.getOperand(1))
4086             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4087                                 Cond);
4088           if (N0.getOperand(1) == N1.getOperand(0))
4089             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4090                                 Cond);
4091         }
4092       }
4093 
4094       // If RHS is a legal immediate value for a compare instruction, we need
4095       // to be careful about increasing register pressure needlessly.
4096       bool LegalRHSImm = false;
4097 
4098       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4099         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4100           // Turn (X+C1) == C2 --> X == C2-C1
4101           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4102             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4103                                 DAG.getConstant(RHSC->getAPIntValue()-
4104                                                 LHSR->getAPIntValue(),
4105                                 dl, N0.getValueType()), Cond);
4106           }
4107 
4108           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4109           if (N0.getOpcode() == ISD::XOR)
4110             // If we know that all of the inverted bits are zero, don't bother
4111             // performing the inversion.
4112             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4113               return
4114                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4115                              DAG.getConstant(LHSR->getAPIntValue() ^
4116                                                RHSC->getAPIntValue(),
4117                                              dl, N0.getValueType()),
4118                              Cond);
4119         }
4120 
4121         // Turn (C1-X) == C2 --> X == C1-C2
4122         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4123           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4124             return
4125               DAG.getSetCC(dl, VT, N0.getOperand(1),
4126                            DAG.getConstant(SUBC->getAPIntValue() -
4127                                              RHSC->getAPIntValue(),
4128                                            dl, N0.getValueType()),
4129                            Cond);
4130           }
4131         }
4132 
4133         // Could RHSC fold directly into a compare?
4134         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4135           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4136       }
4137 
4138       // (X+Y) == X --> Y == 0 and similar folds.
4139       // Don't do this if X is an immediate that can fold into a cmp
4140       // instruction and X+Y has other uses. It could be an induction variable
4141       // chain, and the transform would increase register pressure.
4142       if (!LegalRHSImm || N0.hasOneUse())
4143         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4144           return V;
4145     }
4146 
4147     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4148         N1.getOpcode() == ISD::XOR)
4149       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4150         return V;
4151 
4152     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4153       return V;
4154   }
4155 
4156   // Fold remainder of division by a constant.
4157   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4158       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4159     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4160 
4161     // When division is cheap or optimizing for minimum size,
4162     // fall through to DIVREM creation by skipping this fold.
4163     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4164       if (N0.getOpcode() == ISD::UREM) {
4165         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4166           return Folded;
4167       } else if (N0.getOpcode() == ISD::SREM) {
4168         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4169           return Folded;
4170       }
4171     }
4172   }
4173 
4174   // Fold away ALL boolean setcc's.
4175   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4176     SDValue Temp;
4177     switch (Cond) {
4178     default: llvm_unreachable("Unknown integer setcc!");
4179     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4180       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4181       N0 = DAG.getNOT(dl, Temp, OpVT);
4182       if (!DCI.isCalledByLegalizer())
4183         DCI.AddToWorklist(Temp.getNode());
4184       break;
4185     case ISD::SETNE:  // X != Y   -->  (X^Y)
4186       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4187       break;
4188     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4189     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4190       Temp = DAG.getNOT(dl, N0, OpVT);
4191       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4192       if (!DCI.isCalledByLegalizer())
4193         DCI.AddToWorklist(Temp.getNode());
4194       break;
4195     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4196     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4197       Temp = DAG.getNOT(dl, N1, OpVT);
4198       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4199       if (!DCI.isCalledByLegalizer())
4200         DCI.AddToWorklist(Temp.getNode());
4201       break;
4202     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4203     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4204       Temp = DAG.getNOT(dl, N0, OpVT);
4205       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4206       if (!DCI.isCalledByLegalizer())
4207         DCI.AddToWorklist(Temp.getNode());
4208       break;
4209     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4210     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4211       Temp = DAG.getNOT(dl, N1, OpVT);
4212       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4213       break;
4214     }
4215     if (VT.getScalarType() != MVT::i1) {
4216       if (!DCI.isCalledByLegalizer())
4217         DCI.AddToWorklist(N0.getNode());
4218       // FIXME: If running after legalize, we probably can't do this.
4219       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4220       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4221     }
4222     return N0;
4223   }
4224 
4225   // Could not fold it.
4226   return SDValue();
4227 }
4228 
4229 /// Returns true (and the GlobalValue and the offset) if the node is a
4230 /// GlobalAddress + offset.
4231 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4232                                     int64_t &Offset) const {
4233 
4234   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4235 
4236   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4237     GA = GASD->getGlobal();
4238     Offset += GASD->getOffset();
4239     return true;
4240   }
4241 
4242   if (N->getOpcode() == ISD::ADD) {
4243     SDValue N1 = N->getOperand(0);
4244     SDValue N2 = N->getOperand(1);
4245     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4246       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4247         Offset += V->getSExtValue();
4248         return true;
4249       }
4250     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4251       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4252         Offset += V->getSExtValue();
4253         return true;
4254       }
4255     }
4256   }
4257 
4258   return false;
4259 }
4260 
4261 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4262                                           DAGCombinerInfo &DCI) const {
4263   // Default implementation: no optimization.
4264   return SDValue();
4265 }
4266 
4267 //===----------------------------------------------------------------------===//
4268 //  Inline Assembler Implementation Methods
4269 //===----------------------------------------------------------------------===//
4270 
4271 TargetLowering::ConstraintType
4272 TargetLowering::getConstraintType(StringRef Constraint) const {
4273   unsigned S = Constraint.size();
4274 
4275   if (S == 1) {
4276     switch (Constraint[0]) {
4277     default: break;
4278     case 'r':
4279       return C_RegisterClass;
4280     case 'm': // memory
4281     case 'o': // offsetable
4282     case 'V': // not offsetable
4283       return C_Memory;
4284     case 'n': // Simple Integer
4285     case 'E': // Floating Point Constant
4286     case 'F': // Floating Point Constant
4287       return C_Immediate;
4288     case 'i': // Simple Integer or Relocatable Constant
4289     case 's': // Relocatable Constant
4290     case 'p': // Address.
4291     case 'X': // Allow ANY value.
4292     case 'I': // Target registers.
4293     case 'J':
4294     case 'K':
4295     case 'L':
4296     case 'M':
4297     case 'N':
4298     case 'O':
4299     case 'P':
4300     case '<':
4301     case '>':
4302       return C_Other;
4303     }
4304   }
4305 
4306   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4307     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4308       return C_Memory;
4309     return C_Register;
4310   }
4311   return C_Unknown;
4312 }
4313 
4314 /// Try to replace an X constraint, which matches anything, with another that
4315 /// has more specific requirements based on the type of the corresponding
4316 /// operand.
4317 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4318   if (ConstraintVT.isInteger())
4319     return "r";
4320   if (ConstraintVT.isFloatingPoint())
4321     return "f"; // works for many targets
4322   return nullptr;
4323 }
4324 
4325 SDValue TargetLowering::LowerAsmOutputForConstraint(
4326     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4327     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4328   return SDValue();
4329 }
4330 
4331 /// Lower the specified operand into the Ops vector.
4332 /// If it is invalid, don't add anything to Ops.
4333 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4334                                                   std::string &Constraint,
4335                                                   std::vector<SDValue> &Ops,
4336                                                   SelectionDAG &DAG) const {
4337 
4338   if (Constraint.length() > 1) return;
4339 
4340   char ConstraintLetter = Constraint[0];
4341   switch (ConstraintLetter) {
4342   default: break;
4343   case 'X':     // Allows any operand; labels (basic block) use this.
4344     if (Op.getOpcode() == ISD::BasicBlock ||
4345         Op.getOpcode() == ISD::TargetBlockAddress) {
4346       Ops.push_back(Op);
4347       return;
4348     }
4349     LLVM_FALLTHROUGH;
4350   case 'i':    // Simple Integer or Relocatable Constant
4351   case 'n':    // Simple Integer
4352   case 's': {  // Relocatable Constant
4353 
4354     GlobalAddressSDNode *GA;
4355     ConstantSDNode *C;
4356     BlockAddressSDNode *BA;
4357     uint64_t Offset = 0;
4358 
4359     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4360     // etc., since getelementpointer is variadic. We can't use
4361     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4362     // while in this case the GA may be furthest from the root node which is
4363     // likely an ISD::ADD.
4364     while (1) {
4365       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4366         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4367                                                  GA->getValueType(0),
4368                                                  Offset + GA->getOffset()));
4369         return;
4370       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4371                  ConstraintLetter != 's') {
4372         // gcc prints these as sign extended.  Sign extend value to 64 bits
4373         // now; without this it would get ZExt'd later in
4374         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4375         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4376         BooleanContent BCont = getBooleanContents(MVT::i64);
4377         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4378                                       : ISD::SIGN_EXTEND;
4379         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4380                                                     : C->getSExtValue();
4381         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4382                                             SDLoc(C), MVT::i64));
4383         return;
4384       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4385                  ConstraintLetter != 'n') {
4386         Ops.push_back(DAG.getTargetBlockAddress(
4387             BA->getBlockAddress(), BA->getValueType(0),
4388             Offset + BA->getOffset(), BA->getTargetFlags()));
4389         return;
4390       } else {
4391         const unsigned OpCode = Op.getOpcode();
4392         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4393           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4394             Op = Op.getOperand(1);
4395           // Subtraction is not commutative.
4396           else if (OpCode == ISD::ADD &&
4397                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4398             Op = Op.getOperand(0);
4399           else
4400             return;
4401           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4402           continue;
4403         }
4404       }
4405       return;
4406     }
4407     break;
4408   }
4409   }
4410 }
4411 
4412 std::pair<unsigned, const TargetRegisterClass *>
4413 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4414                                              StringRef Constraint,
4415                                              MVT VT) const {
4416   if (Constraint.empty() || Constraint[0] != '{')
4417     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4418   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4419 
4420   // Remove the braces from around the name.
4421   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4422 
4423   std::pair<unsigned, const TargetRegisterClass *> R =
4424       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4425 
4426   // Figure out which register class contains this reg.
4427   for (const TargetRegisterClass *RC : RI->regclasses()) {
4428     // If none of the value types for this register class are valid, we
4429     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4430     if (!isLegalRC(*RI, *RC))
4431       continue;
4432 
4433     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4434          I != E; ++I) {
4435       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4436         std::pair<unsigned, const TargetRegisterClass *> S =
4437             std::make_pair(*I, RC);
4438 
4439         // If this register class has the requested value type, return it,
4440         // otherwise keep searching and return the first class found
4441         // if no other is found which explicitly has the requested type.
4442         if (RI->isTypeLegalForClass(*RC, VT))
4443           return S;
4444         if (!R.second)
4445           R = S;
4446       }
4447     }
4448   }
4449 
4450   return R;
4451 }
4452 
4453 //===----------------------------------------------------------------------===//
4454 // Constraint Selection.
4455 
4456 /// Return true of this is an input operand that is a matching constraint like
4457 /// "4".
4458 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4459   assert(!ConstraintCode.empty() && "No known constraint!");
4460   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4461 }
4462 
4463 /// If this is an input matching constraint, this method returns the output
4464 /// operand it matches.
4465 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4466   assert(!ConstraintCode.empty() && "No known constraint!");
4467   return atoi(ConstraintCode.c_str());
4468 }
4469 
4470 /// Split up the constraint string from the inline assembly value into the
4471 /// specific constraints and their prefixes, and also tie in the associated
4472 /// operand values.
4473 /// If this returns an empty vector, and if the constraint string itself
4474 /// isn't empty, there was an error parsing.
4475 TargetLowering::AsmOperandInfoVector
4476 TargetLowering::ParseConstraints(const DataLayout &DL,
4477                                  const TargetRegisterInfo *TRI,
4478                                  const CallBase &Call) const {
4479   /// Information about all of the constraints.
4480   AsmOperandInfoVector ConstraintOperands;
4481   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4482   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4483 
4484   // Do a prepass over the constraints, canonicalizing them, and building up the
4485   // ConstraintOperands list.
4486   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4487   unsigned ResNo = 0; // ResNo - The result number of the next output.
4488 
4489   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4490     ConstraintOperands.emplace_back(std::move(CI));
4491     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4492 
4493     // Update multiple alternative constraint count.
4494     if (OpInfo.multipleAlternatives.size() > maCount)
4495       maCount = OpInfo.multipleAlternatives.size();
4496 
4497     OpInfo.ConstraintVT = MVT::Other;
4498 
4499     // Compute the value type for each operand.
4500     switch (OpInfo.Type) {
4501     case InlineAsm::isOutput:
4502       // Indirect outputs just consume an argument.
4503       if (OpInfo.isIndirect) {
4504         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4505         break;
4506       }
4507 
4508       // The return value of the call is this value.  As such, there is no
4509       // corresponding argument.
4510       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4511       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4512         OpInfo.ConstraintVT =
4513             getSimpleValueType(DL, STy->getElementType(ResNo));
4514       } else {
4515         assert(ResNo == 0 && "Asm only has one result!");
4516         OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType());
4517       }
4518       ++ResNo;
4519       break;
4520     case InlineAsm::isInput:
4521       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4522       break;
4523     case InlineAsm::isClobber:
4524       // Nothing to do.
4525       break;
4526     }
4527 
4528     if (OpInfo.CallOperandVal) {
4529       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4530       if (OpInfo.isIndirect) {
4531         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4532         if (!PtrTy)
4533           report_fatal_error("Indirect operand for inline asm not a pointer!");
4534         OpTy = PtrTy->getElementType();
4535       }
4536 
4537       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4538       if (StructType *STy = dyn_cast<StructType>(OpTy))
4539         if (STy->getNumElements() == 1)
4540           OpTy = STy->getElementType(0);
4541 
4542       // If OpTy is not a single value, it may be a struct/union that we
4543       // can tile with integers.
4544       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4545         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4546         switch (BitSize) {
4547         default: break;
4548         case 1:
4549         case 8:
4550         case 16:
4551         case 32:
4552         case 64:
4553         case 128:
4554           OpInfo.ConstraintVT =
4555               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4556           break;
4557         }
4558       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4559         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4560         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4561       } else {
4562         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4563       }
4564     }
4565   }
4566 
4567   // If we have multiple alternative constraints, select the best alternative.
4568   if (!ConstraintOperands.empty()) {
4569     if (maCount) {
4570       unsigned bestMAIndex = 0;
4571       int bestWeight = -1;
4572       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4573       int weight = -1;
4574       unsigned maIndex;
4575       // Compute the sums of the weights for each alternative, keeping track
4576       // of the best (highest weight) one so far.
4577       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4578         int weightSum = 0;
4579         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4580              cIndex != eIndex; ++cIndex) {
4581           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4582           if (OpInfo.Type == InlineAsm::isClobber)
4583             continue;
4584 
4585           // If this is an output operand with a matching input operand,
4586           // look up the matching input. If their types mismatch, e.g. one
4587           // is an integer, the other is floating point, or their sizes are
4588           // different, flag it as an maCantMatch.
4589           if (OpInfo.hasMatchingInput()) {
4590             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4591             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4592               if ((OpInfo.ConstraintVT.isInteger() !=
4593                    Input.ConstraintVT.isInteger()) ||
4594                   (OpInfo.ConstraintVT.getSizeInBits() !=
4595                    Input.ConstraintVT.getSizeInBits())) {
4596                 weightSum = -1; // Can't match.
4597                 break;
4598               }
4599             }
4600           }
4601           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4602           if (weight == -1) {
4603             weightSum = -1;
4604             break;
4605           }
4606           weightSum += weight;
4607         }
4608         // Update best.
4609         if (weightSum > bestWeight) {
4610           bestWeight = weightSum;
4611           bestMAIndex = maIndex;
4612         }
4613       }
4614 
4615       // Now select chosen alternative in each constraint.
4616       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4617            cIndex != eIndex; ++cIndex) {
4618         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4619         if (cInfo.Type == InlineAsm::isClobber)
4620           continue;
4621         cInfo.selectAlternative(bestMAIndex);
4622       }
4623     }
4624   }
4625 
4626   // Check and hook up tied operands, choose constraint code to use.
4627   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4628        cIndex != eIndex; ++cIndex) {
4629     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4630 
4631     // If this is an output operand with a matching input operand, look up the
4632     // matching input. If their types mismatch, e.g. one is an integer, the
4633     // other is floating point, or their sizes are different, flag it as an
4634     // error.
4635     if (OpInfo.hasMatchingInput()) {
4636       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4637 
4638       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4639         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4640             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4641                                          OpInfo.ConstraintVT);
4642         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4643             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4644                                          Input.ConstraintVT);
4645         if ((OpInfo.ConstraintVT.isInteger() !=
4646              Input.ConstraintVT.isInteger()) ||
4647             (MatchRC.second != InputRC.second)) {
4648           report_fatal_error("Unsupported asm: input constraint"
4649                              " with a matching output constraint of"
4650                              " incompatible type!");
4651         }
4652       }
4653     }
4654   }
4655 
4656   return ConstraintOperands;
4657 }
4658 
4659 /// Return an integer indicating how general CT is.
4660 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4661   switch (CT) {
4662   case TargetLowering::C_Immediate:
4663   case TargetLowering::C_Other:
4664   case TargetLowering::C_Unknown:
4665     return 0;
4666   case TargetLowering::C_Register:
4667     return 1;
4668   case TargetLowering::C_RegisterClass:
4669     return 2;
4670   case TargetLowering::C_Memory:
4671     return 3;
4672   }
4673   llvm_unreachable("Invalid constraint type");
4674 }
4675 
4676 /// Examine constraint type and operand type and determine a weight value.
4677 /// This object must already have been set up with the operand type
4678 /// and the current alternative constraint selected.
4679 TargetLowering::ConstraintWeight
4680   TargetLowering::getMultipleConstraintMatchWeight(
4681     AsmOperandInfo &info, int maIndex) const {
4682   InlineAsm::ConstraintCodeVector *rCodes;
4683   if (maIndex >= (int)info.multipleAlternatives.size())
4684     rCodes = &info.Codes;
4685   else
4686     rCodes = &info.multipleAlternatives[maIndex].Codes;
4687   ConstraintWeight BestWeight = CW_Invalid;
4688 
4689   // Loop over the options, keeping track of the most general one.
4690   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4691     ConstraintWeight weight =
4692       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4693     if (weight > BestWeight)
4694       BestWeight = weight;
4695   }
4696 
4697   return BestWeight;
4698 }
4699 
4700 /// Examine constraint type and operand type and determine a weight value.
4701 /// This object must already have been set up with the operand type
4702 /// and the current alternative constraint selected.
4703 TargetLowering::ConstraintWeight
4704   TargetLowering::getSingleConstraintMatchWeight(
4705     AsmOperandInfo &info, const char *constraint) const {
4706   ConstraintWeight weight = CW_Invalid;
4707   Value *CallOperandVal = info.CallOperandVal;
4708     // If we don't have a value, we can't do a match,
4709     // but allow it at the lowest weight.
4710   if (!CallOperandVal)
4711     return CW_Default;
4712   // Look at the constraint type.
4713   switch (*constraint) {
4714     case 'i': // immediate integer.
4715     case 'n': // immediate integer with a known value.
4716       if (isa<ConstantInt>(CallOperandVal))
4717         weight = CW_Constant;
4718       break;
4719     case 's': // non-explicit intregal immediate.
4720       if (isa<GlobalValue>(CallOperandVal))
4721         weight = CW_Constant;
4722       break;
4723     case 'E': // immediate float if host format.
4724     case 'F': // immediate float.
4725       if (isa<ConstantFP>(CallOperandVal))
4726         weight = CW_Constant;
4727       break;
4728     case '<': // memory operand with autodecrement.
4729     case '>': // memory operand with autoincrement.
4730     case 'm': // memory operand.
4731     case 'o': // offsettable memory operand
4732     case 'V': // non-offsettable memory operand
4733       weight = CW_Memory;
4734       break;
4735     case 'r': // general register.
4736     case 'g': // general register, memory operand or immediate integer.
4737               // note: Clang converts "g" to "imr".
4738       if (CallOperandVal->getType()->isIntegerTy())
4739         weight = CW_Register;
4740       break;
4741     case 'X': // any operand.
4742   default:
4743     weight = CW_Default;
4744     break;
4745   }
4746   return weight;
4747 }
4748 
4749 /// If there are multiple different constraints that we could pick for this
4750 /// operand (e.g. "imr") try to pick the 'best' one.
4751 /// This is somewhat tricky: constraints fall into four classes:
4752 ///    Other         -> immediates and magic values
4753 ///    Register      -> one specific register
4754 ///    RegisterClass -> a group of regs
4755 ///    Memory        -> memory
4756 /// Ideally, we would pick the most specific constraint possible: if we have
4757 /// something that fits into a register, we would pick it.  The problem here
4758 /// is that if we have something that could either be in a register or in
4759 /// memory that use of the register could cause selection of *other*
4760 /// operands to fail: they might only succeed if we pick memory.  Because of
4761 /// this the heuristic we use is:
4762 ///
4763 ///  1) If there is an 'other' constraint, and if the operand is valid for
4764 ///     that constraint, use it.  This makes us take advantage of 'i'
4765 ///     constraints when available.
4766 ///  2) Otherwise, pick the most general constraint present.  This prefers
4767 ///     'm' over 'r', for example.
4768 ///
4769 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4770                              const TargetLowering &TLI,
4771                              SDValue Op, SelectionDAG *DAG) {
4772   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4773   unsigned BestIdx = 0;
4774   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4775   int BestGenerality = -1;
4776 
4777   // Loop over the options, keeping track of the most general one.
4778   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4779     TargetLowering::ConstraintType CType =
4780       TLI.getConstraintType(OpInfo.Codes[i]);
4781 
4782     // Indirect 'other' or 'immediate' constraints are not allowed.
4783     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4784                                CType == TargetLowering::C_Register ||
4785                                CType == TargetLowering::C_RegisterClass))
4786       continue;
4787 
4788     // If this is an 'other' or 'immediate' constraint, see if the operand is
4789     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4790     // the operand is an integer in the range [0..31] we want to use I (saving a
4791     // load of a register), otherwise we must use 'r'.
4792     if ((CType == TargetLowering::C_Other ||
4793          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4794       assert(OpInfo.Codes[i].size() == 1 &&
4795              "Unhandled multi-letter 'other' constraint");
4796       std::vector<SDValue> ResultOps;
4797       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4798                                        ResultOps, *DAG);
4799       if (!ResultOps.empty()) {
4800         BestType = CType;
4801         BestIdx = i;
4802         break;
4803       }
4804     }
4805 
4806     // Things with matching constraints can only be registers, per gcc
4807     // documentation.  This mainly affects "g" constraints.
4808     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4809       continue;
4810 
4811     // This constraint letter is more general than the previous one, use it.
4812     int Generality = getConstraintGenerality(CType);
4813     if (Generality > BestGenerality) {
4814       BestType = CType;
4815       BestIdx = i;
4816       BestGenerality = Generality;
4817     }
4818   }
4819 
4820   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4821   OpInfo.ConstraintType = BestType;
4822 }
4823 
4824 /// Determines the constraint code and constraint type to use for the specific
4825 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4826 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4827                                             SDValue Op,
4828                                             SelectionDAG *DAG) const {
4829   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4830 
4831   // Single-letter constraints ('r') are very common.
4832   if (OpInfo.Codes.size() == 1) {
4833     OpInfo.ConstraintCode = OpInfo.Codes[0];
4834     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4835   } else {
4836     ChooseConstraint(OpInfo, *this, Op, DAG);
4837   }
4838 
4839   // 'X' matches anything.
4840   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4841     // Labels and constants are handled elsewhere ('X' is the only thing
4842     // that matches labels).  For Functions, the type here is the type of
4843     // the result, which is not what we want to look at; leave them alone.
4844     Value *v = OpInfo.CallOperandVal;
4845     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4846       OpInfo.CallOperandVal = v;
4847       return;
4848     }
4849 
4850     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4851       return;
4852 
4853     // Otherwise, try to resolve it to something we know about by looking at
4854     // the actual operand type.
4855     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4856       OpInfo.ConstraintCode = Repl;
4857       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4858     }
4859   }
4860 }
4861 
4862 /// Given an exact SDIV by a constant, create a multiplication
4863 /// with the multiplicative inverse of the constant.
4864 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4865                               const SDLoc &dl, SelectionDAG &DAG,
4866                               SmallVectorImpl<SDNode *> &Created) {
4867   SDValue Op0 = N->getOperand(0);
4868   SDValue Op1 = N->getOperand(1);
4869   EVT VT = N->getValueType(0);
4870   EVT SVT = VT.getScalarType();
4871   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4872   EVT ShSVT = ShVT.getScalarType();
4873 
4874   bool UseSRA = false;
4875   SmallVector<SDValue, 16> Shifts, Factors;
4876 
4877   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4878     if (C->isNullValue())
4879       return false;
4880     APInt Divisor = C->getAPIntValue();
4881     unsigned Shift = Divisor.countTrailingZeros();
4882     if (Shift) {
4883       Divisor.ashrInPlace(Shift);
4884       UseSRA = true;
4885     }
4886     // Calculate the multiplicative inverse, using Newton's method.
4887     APInt t;
4888     APInt Factor = Divisor;
4889     while ((t = Divisor * Factor) != 1)
4890       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4891     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4892     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4893     return true;
4894   };
4895 
4896   // Collect all magic values from the build vector.
4897   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4898     return SDValue();
4899 
4900   SDValue Shift, Factor;
4901   if (VT.isVector()) {
4902     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4903     Factor = DAG.getBuildVector(VT, dl, Factors);
4904   } else {
4905     Shift = Shifts[0];
4906     Factor = Factors[0];
4907   }
4908 
4909   SDValue Res = Op0;
4910 
4911   // Shift the value upfront if it is even, so the LSB is one.
4912   if (UseSRA) {
4913     // TODO: For UDIV use SRL instead of SRA.
4914     SDNodeFlags Flags;
4915     Flags.setExact(true);
4916     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4917     Created.push_back(Res.getNode());
4918   }
4919 
4920   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4921 }
4922 
4923 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4924                               SelectionDAG &DAG,
4925                               SmallVectorImpl<SDNode *> &Created) const {
4926   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4927   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4928   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4929     return SDValue(N, 0); // Lower SDIV as SDIV
4930   return SDValue();
4931 }
4932 
4933 /// Given an ISD::SDIV node expressing a divide by constant,
4934 /// return a DAG expression to select that will generate the same value by
4935 /// multiplying by a magic number.
4936 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4937 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4938                                   bool IsAfterLegalization,
4939                                   SmallVectorImpl<SDNode *> &Created) const {
4940   SDLoc dl(N);
4941   EVT VT = N->getValueType(0);
4942   EVT SVT = VT.getScalarType();
4943   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4944   EVT ShSVT = ShVT.getScalarType();
4945   unsigned EltBits = VT.getScalarSizeInBits();
4946 
4947   // Check to see if we can do this.
4948   // FIXME: We should be more aggressive here.
4949   if (!isTypeLegal(VT))
4950     return SDValue();
4951 
4952   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4953   if (N->getFlags().hasExact())
4954     return BuildExactSDIV(*this, N, dl, DAG, Created);
4955 
4956   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4957 
4958   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4959     if (C->isNullValue())
4960       return false;
4961 
4962     const APInt &Divisor = C->getAPIntValue();
4963     APInt::ms magics = Divisor.magic();
4964     int NumeratorFactor = 0;
4965     int ShiftMask = -1;
4966 
4967     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4968       // If d is +1/-1, we just multiply the numerator by +1/-1.
4969       NumeratorFactor = Divisor.getSExtValue();
4970       magics.m = 0;
4971       magics.s = 0;
4972       ShiftMask = 0;
4973     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4974       // If d > 0 and m < 0, add the numerator.
4975       NumeratorFactor = 1;
4976     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4977       // If d < 0 and m > 0, subtract the numerator.
4978       NumeratorFactor = -1;
4979     }
4980 
4981     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4982     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4983     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4984     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4985     return true;
4986   };
4987 
4988   SDValue N0 = N->getOperand(0);
4989   SDValue N1 = N->getOperand(1);
4990 
4991   // Collect the shifts / magic values from each element.
4992   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4993     return SDValue();
4994 
4995   SDValue MagicFactor, Factor, Shift, ShiftMask;
4996   if (VT.isVector()) {
4997     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4998     Factor = DAG.getBuildVector(VT, dl, Factors);
4999     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5000     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5001   } else {
5002     MagicFactor = MagicFactors[0];
5003     Factor = Factors[0];
5004     Shift = Shifts[0];
5005     ShiftMask = ShiftMasks[0];
5006   }
5007 
5008   // Multiply the numerator (operand 0) by the magic value.
5009   // FIXME: We should support doing a MUL in a wider type.
5010   SDValue Q;
5011   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
5012                           : isOperationLegalOrCustom(ISD::MULHS, VT))
5013     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
5014   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
5015                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
5016     SDValue LoHi =
5017         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
5018     Q = SDValue(LoHi.getNode(), 1);
5019   } else
5020     return SDValue(); // No mulhs or equivalent.
5021   Created.push_back(Q.getNode());
5022 
5023   // (Optionally) Add/subtract the numerator using Factor.
5024   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5025   Created.push_back(Factor.getNode());
5026   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5027   Created.push_back(Q.getNode());
5028 
5029   // Shift right algebraic by shift value.
5030   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5031   Created.push_back(Q.getNode());
5032 
5033   // Extract the sign bit, mask it and add it to the quotient.
5034   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5035   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5036   Created.push_back(T.getNode());
5037   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5038   Created.push_back(T.getNode());
5039   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5040 }
5041 
5042 /// Given an ISD::UDIV node expressing a divide by constant,
5043 /// return a DAG expression to select that will generate the same value by
5044 /// multiplying by a magic number.
5045 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5046 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5047                                   bool IsAfterLegalization,
5048                                   SmallVectorImpl<SDNode *> &Created) const {
5049   SDLoc dl(N);
5050   EVT VT = N->getValueType(0);
5051   EVT SVT = VT.getScalarType();
5052   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5053   EVT ShSVT = ShVT.getScalarType();
5054   unsigned EltBits = VT.getScalarSizeInBits();
5055 
5056   // Check to see if we can do this.
5057   // FIXME: We should be more aggressive here.
5058   if (!isTypeLegal(VT))
5059     return SDValue();
5060 
5061   bool UseNPQ = false;
5062   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5063 
5064   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5065     if (C->isNullValue())
5066       return false;
5067     // FIXME: We should use a narrower constant when the upper
5068     // bits are known to be zero.
5069     APInt Divisor = C->getAPIntValue();
5070     APInt::mu magics = Divisor.magicu();
5071     unsigned PreShift = 0, PostShift = 0;
5072 
5073     // If the divisor is even, we can avoid using the expensive fixup by
5074     // shifting the divided value upfront.
5075     if (magics.a != 0 && !Divisor[0]) {
5076       PreShift = Divisor.countTrailingZeros();
5077       // Get magic number for the shifted divisor.
5078       magics = Divisor.lshr(PreShift).magicu(PreShift);
5079       assert(magics.a == 0 && "Should use cheap fixup now");
5080     }
5081 
5082     APInt Magic = magics.m;
5083 
5084     unsigned SelNPQ;
5085     if (magics.a == 0 || Divisor.isOneValue()) {
5086       assert(magics.s < Divisor.getBitWidth() &&
5087              "We shouldn't generate an undefined shift!");
5088       PostShift = magics.s;
5089       SelNPQ = false;
5090     } else {
5091       PostShift = magics.s - 1;
5092       SelNPQ = true;
5093     }
5094 
5095     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5096     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5097     NPQFactors.push_back(
5098         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5099                                : APInt::getNullValue(EltBits),
5100                         dl, SVT));
5101     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5102     UseNPQ |= SelNPQ;
5103     return true;
5104   };
5105 
5106   SDValue N0 = N->getOperand(0);
5107   SDValue N1 = N->getOperand(1);
5108 
5109   // Collect the shifts/magic values from each element.
5110   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5111     return SDValue();
5112 
5113   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5114   if (VT.isVector()) {
5115     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5116     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5117     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5118     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5119   } else {
5120     PreShift = PreShifts[0];
5121     MagicFactor = MagicFactors[0];
5122     PostShift = PostShifts[0];
5123   }
5124 
5125   SDValue Q = N0;
5126   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5127   Created.push_back(Q.getNode());
5128 
5129   // FIXME: We should support doing a MUL in a wider type.
5130   auto GetMULHU = [&](SDValue X, SDValue Y) {
5131     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
5132                             : isOperationLegalOrCustom(ISD::MULHU, VT))
5133       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5134     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
5135                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
5136       SDValue LoHi =
5137           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5138       return SDValue(LoHi.getNode(), 1);
5139     }
5140     return SDValue(); // No mulhu or equivalent
5141   };
5142 
5143   // Multiply the numerator (operand 0) by the magic value.
5144   Q = GetMULHU(Q, MagicFactor);
5145   if (!Q)
5146     return SDValue();
5147 
5148   Created.push_back(Q.getNode());
5149 
5150   if (UseNPQ) {
5151     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5152     Created.push_back(NPQ.getNode());
5153 
5154     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5155     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5156     if (VT.isVector())
5157       NPQ = GetMULHU(NPQ, NPQFactor);
5158     else
5159       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5160 
5161     Created.push_back(NPQ.getNode());
5162 
5163     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5164     Created.push_back(Q.getNode());
5165   }
5166 
5167   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5168   Created.push_back(Q.getNode());
5169 
5170   SDValue One = DAG.getConstant(1, dl, VT);
5171   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
5172   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5173 }
5174 
5175 /// If all values in Values that *don't* match the predicate are same 'splat'
5176 /// value, then replace all values with that splat value.
5177 /// Else, if AlternativeReplacement was provided, then replace all values that
5178 /// do match predicate with AlternativeReplacement value.
5179 static void
5180 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5181                           std::function<bool(SDValue)> Predicate,
5182                           SDValue AlternativeReplacement = SDValue()) {
5183   SDValue Replacement;
5184   // Is there a value for which the Predicate does *NOT* match? What is it?
5185   auto SplatValue = llvm::find_if_not(Values, Predicate);
5186   if (SplatValue != Values.end()) {
5187     // Does Values consist only of SplatValue's and values matching Predicate?
5188     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5189           return Value == *SplatValue || Predicate(Value);
5190         })) // Then we shall replace values matching predicate with SplatValue.
5191       Replacement = *SplatValue;
5192   }
5193   if (!Replacement) {
5194     // Oops, we did not find the "baseline" splat value.
5195     if (!AlternativeReplacement)
5196       return; // Nothing to do.
5197     // Let's replace with provided value then.
5198     Replacement = AlternativeReplacement;
5199   }
5200   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5201 }
5202 
5203 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5204 /// where the divisor is constant and the comparison target is zero,
5205 /// return a DAG expression that will generate the same comparison result
5206 /// using only multiplications, additions and shifts/rotations.
5207 /// Ref: "Hacker's Delight" 10-17.
5208 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5209                                         SDValue CompTargetNode,
5210                                         ISD::CondCode Cond,
5211                                         DAGCombinerInfo &DCI,
5212                                         const SDLoc &DL) const {
5213   SmallVector<SDNode *, 5> Built;
5214   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5215                                          DCI, DL, Built)) {
5216     for (SDNode *N : Built)
5217       DCI.AddToWorklist(N);
5218     return Folded;
5219   }
5220 
5221   return SDValue();
5222 }
5223 
5224 SDValue
5225 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5226                                   SDValue CompTargetNode, ISD::CondCode Cond,
5227                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5228                                   SmallVectorImpl<SDNode *> &Created) const {
5229   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5230   // - D must be constant, with D = D0 * 2^K where D0 is odd
5231   // - P is the multiplicative inverse of D0 modulo 2^W
5232   // - Q = floor(((2^W) - 1) / D)
5233   // where W is the width of the common type of N and D.
5234   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5235          "Only applicable for (in)equality comparisons.");
5236 
5237   SelectionDAG &DAG = DCI.DAG;
5238 
5239   EVT VT = REMNode.getValueType();
5240   EVT SVT = VT.getScalarType();
5241   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5242   EVT ShSVT = ShVT.getScalarType();
5243 
5244   // If MUL is unavailable, we cannot proceed in any case.
5245   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5246     return SDValue();
5247 
5248   bool ComparingWithAllZeros = true;
5249   bool AllComparisonsWithNonZerosAreTautological = true;
5250   bool HadTautologicalLanes = false;
5251   bool AllLanesAreTautological = true;
5252   bool HadEvenDivisor = false;
5253   bool AllDivisorsArePowerOfTwo = true;
5254   bool HadTautologicalInvertedLanes = false;
5255   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5256 
5257   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5258     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5259     if (CDiv->isNullValue())
5260       return false;
5261 
5262     const APInt &D = CDiv->getAPIntValue();
5263     const APInt &Cmp = CCmp->getAPIntValue();
5264 
5265     ComparingWithAllZeros &= Cmp.isNullValue();
5266 
5267     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5268     // if C2 is not less than C1, the comparison is always false.
5269     // But we will only be able to produce the comparison that will give the
5270     // opposive tautological answer. So this lane would need to be fixed up.
5271     bool TautologicalInvertedLane = D.ule(Cmp);
5272     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5273 
5274     // If all lanes are tautological (either all divisors are ones, or divisor
5275     // is not greater than the constant we are comparing with),
5276     // we will prefer to avoid the fold.
5277     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5278     HadTautologicalLanes |= TautologicalLane;
5279     AllLanesAreTautological &= TautologicalLane;
5280 
5281     // If we are comparing with non-zero, we need'll need  to subtract said
5282     // comparison value from the LHS. But there is no point in doing that if
5283     // every lane where we are comparing with non-zero is tautological..
5284     if (!Cmp.isNullValue())
5285       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5286 
5287     // Decompose D into D0 * 2^K
5288     unsigned K = D.countTrailingZeros();
5289     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5290     APInt D0 = D.lshr(K);
5291 
5292     // D is even if it has trailing zeros.
5293     HadEvenDivisor |= (K != 0);
5294     // D is a power-of-two if D0 is one.
5295     // If all divisors are power-of-two, we will prefer to avoid the fold.
5296     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5297 
5298     // P = inv(D0, 2^W)
5299     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5300     unsigned W = D.getBitWidth();
5301     APInt P = D0.zext(W + 1)
5302                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5303                   .trunc(W);
5304     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5305     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5306 
5307     // Q = floor((2^W - 1) u/ D)
5308     // R = ((2^W - 1) u% D)
5309     APInt Q, R;
5310     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5311 
5312     // If we are comparing with zero, then that comparison constant is okay,
5313     // else it may need to be one less than that.
5314     if (Cmp.ugt(R))
5315       Q -= 1;
5316 
5317     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5318            "We are expecting that K is always less than all-ones for ShSVT");
5319 
5320     // If the lane is tautological the result can be constant-folded.
5321     if (TautologicalLane) {
5322       // Set P and K amount to a bogus values so we can try to splat them.
5323       P = 0;
5324       K = -1;
5325       // And ensure that comparison constant is tautological,
5326       // it will always compare true/false.
5327       Q = -1;
5328     }
5329 
5330     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5331     KAmts.push_back(
5332         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5333     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5334     return true;
5335   };
5336 
5337   SDValue N = REMNode.getOperand(0);
5338   SDValue D = REMNode.getOperand(1);
5339 
5340   // Collect the values from each element.
5341   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5342     return SDValue();
5343 
5344   // If all lanes are tautological, the result can be constant-folded.
5345   if (AllLanesAreTautological)
5346     return SDValue();
5347 
5348   // If this is a urem by a powers-of-two, avoid the fold since it can be
5349   // best implemented as a bit test.
5350   if (AllDivisorsArePowerOfTwo)
5351     return SDValue();
5352 
5353   SDValue PVal, KVal, QVal;
5354   if (VT.isVector()) {
5355     if (HadTautologicalLanes) {
5356       // Try to turn PAmts into a splat, since we don't care about the values
5357       // that are currently '0'. If we can't, just keep '0'`s.
5358       turnVectorIntoSplatVector(PAmts, isNullConstant);
5359       // Try to turn KAmts into a splat, since we don't care about the values
5360       // that are currently '-1'. If we can't, change them to '0'`s.
5361       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5362                                 DAG.getConstant(0, DL, ShSVT));
5363     }
5364 
5365     PVal = DAG.getBuildVector(VT, DL, PAmts);
5366     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5367     QVal = DAG.getBuildVector(VT, DL, QAmts);
5368   } else {
5369     PVal = PAmts[0];
5370     KVal = KAmts[0];
5371     QVal = QAmts[0];
5372   }
5373 
5374   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5375     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5376       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5377     assert(CompTargetNode.getValueType() == N.getValueType() &&
5378            "Expecting that the types on LHS and RHS of comparisons match.");
5379     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5380   }
5381 
5382   // (mul N, P)
5383   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5384   Created.push_back(Op0.getNode());
5385 
5386   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5387   // divisors as a performance improvement, since rotating by 0 is a no-op.
5388   if (HadEvenDivisor) {
5389     // We need ROTR to do this.
5390     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5391       return SDValue();
5392     SDNodeFlags Flags;
5393     Flags.setExact(true);
5394     // UREM: (rotr (mul N, P), K)
5395     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5396     Created.push_back(Op0.getNode());
5397   }
5398 
5399   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5400   SDValue NewCC =
5401       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5402                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5403   if (!HadTautologicalInvertedLanes)
5404     return NewCC;
5405 
5406   // If any lanes previously compared always-false, the NewCC will give
5407   // always-true result for them, so we need to fixup those lanes.
5408   // Or the other way around for inequality predicate.
5409   assert(VT.isVector() && "Can/should only get here for vectors.");
5410   Created.push_back(NewCC.getNode());
5411 
5412   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5413   // if C2 is not less than C1, the comparison is always false.
5414   // But we have produced the comparison that will give the
5415   // opposive tautological answer. So these lanes would need to be fixed up.
5416   SDValue TautologicalInvertedChannels =
5417       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5418   Created.push_back(TautologicalInvertedChannels.getNode());
5419 
5420   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5421     // If we have a vector select, let's replace the comparison results in the
5422     // affected lanes with the correct tautological result.
5423     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5424                                               DL, SETCCVT, SETCCVT);
5425     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5426                        Replacement, NewCC);
5427   }
5428 
5429   // Else, we can just invert the comparison result in the appropriate lanes.
5430   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5431     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5432                        TautologicalInvertedChannels);
5433 
5434   return SDValue(); // Don't know how to lower.
5435 }
5436 
5437 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5438 /// where the divisor is constant and the comparison target is zero,
5439 /// return a DAG expression that will generate the same comparison result
5440 /// using only multiplications, additions and shifts/rotations.
5441 /// Ref: "Hacker's Delight" 10-17.
5442 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5443                                         SDValue CompTargetNode,
5444                                         ISD::CondCode Cond,
5445                                         DAGCombinerInfo &DCI,
5446                                         const SDLoc &DL) const {
5447   SmallVector<SDNode *, 7> Built;
5448   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5449                                          DCI, DL, Built)) {
5450     assert(Built.size() <= 7 && "Max size prediction failed.");
5451     for (SDNode *N : Built)
5452       DCI.AddToWorklist(N);
5453     return Folded;
5454   }
5455 
5456   return SDValue();
5457 }
5458 
5459 SDValue
5460 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5461                                   SDValue CompTargetNode, ISD::CondCode Cond,
5462                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5463                                   SmallVectorImpl<SDNode *> &Created) const {
5464   // Fold:
5465   //   (seteq/ne (srem N, D), 0)
5466   // To:
5467   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5468   //
5469   // - D must be constant, with D = D0 * 2^K where D0 is odd
5470   // - P is the multiplicative inverse of D0 modulo 2^W
5471   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5472   // - Q = floor((2 * A) / (2^K))
5473   // where W is the width of the common type of N and D.
5474   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5475          "Only applicable for (in)equality comparisons.");
5476 
5477   SelectionDAG &DAG = DCI.DAG;
5478 
5479   EVT VT = REMNode.getValueType();
5480   EVT SVT = VT.getScalarType();
5481   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5482   EVT ShSVT = ShVT.getScalarType();
5483 
5484   // If MUL is unavailable, we cannot proceed in any case.
5485   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5486     return SDValue();
5487 
5488   // TODO: Could support comparing with non-zero too.
5489   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5490   if (!CompTarget || !CompTarget->isNullValue())
5491     return SDValue();
5492 
5493   bool HadIntMinDivisor = false;
5494   bool HadOneDivisor = false;
5495   bool AllDivisorsAreOnes = true;
5496   bool HadEvenDivisor = false;
5497   bool NeedToApplyOffset = false;
5498   bool AllDivisorsArePowerOfTwo = true;
5499   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5500 
5501   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5502     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5503     if (C->isNullValue())
5504       return false;
5505 
5506     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5507 
5508     // WARNING: this fold is only valid for positive divisors!
5509     APInt D = C->getAPIntValue();
5510     if (D.isNegative())
5511       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5512 
5513     HadIntMinDivisor |= D.isMinSignedValue();
5514 
5515     // If all divisors are ones, we will prefer to avoid the fold.
5516     HadOneDivisor |= D.isOneValue();
5517     AllDivisorsAreOnes &= D.isOneValue();
5518 
5519     // Decompose D into D0 * 2^K
5520     unsigned K = D.countTrailingZeros();
5521     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5522     APInt D0 = D.lshr(K);
5523 
5524     if (!D.isMinSignedValue()) {
5525       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5526       // we don't care about this lane in this fold, we'll special-handle it.
5527       HadEvenDivisor |= (K != 0);
5528     }
5529 
5530     // D is a power-of-two if D0 is one. This includes INT_MIN.
5531     // If all divisors are power-of-two, we will prefer to avoid the fold.
5532     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5533 
5534     // P = inv(D0, 2^W)
5535     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5536     unsigned W = D.getBitWidth();
5537     APInt P = D0.zext(W + 1)
5538                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5539                   .trunc(W);
5540     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5541     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5542 
5543     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5544     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5545     A.clearLowBits(K);
5546 
5547     if (!D.isMinSignedValue()) {
5548       // If divisor INT_MIN, then we don't care about this lane in this fold,
5549       // we'll special-handle it.
5550       NeedToApplyOffset |= A != 0;
5551     }
5552 
5553     // Q = floor((2 * A) / (2^K))
5554     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5555 
5556     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5557            "We are expecting that A is always less than all-ones for SVT");
5558     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5559            "We are expecting that K is always less than all-ones for ShSVT");
5560 
5561     // If the divisor is 1 the result can be constant-folded. Likewise, we
5562     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5563     if (D.isOneValue()) {
5564       // Set P, A and K to a bogus values so we can try to splat them.
5565       P = 0;
5566       A = -1;
5567       K = -1;
5568 
5569       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5570       Q = -1;
5571     }
5572 
5573     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5574     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5575     KAmts.push_back(
5576         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5577     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5578     return true;
5579   };
5580 
5581   SDValue N = REMNode.getOperand(0);
5582   SDValue D = REMNode.getOperand(1);
5583 
5584   // Collect the values from each element.
5585   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5586     return SDValue();
5587 
5588   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5589   if (AllDivisorsAreOnes)
5590     return SDValue();
5591 
5592   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5593   // since it can be best implemented as a bit test.
5594   if (AllDivisorsArePowerOfTwo)
5595     return SDValue();
5596 
5597   SDValue PVal, AVal, KVal, QVal;
5598   if (VT.isVector()) {
5599     if (HadOneDivisor) {
5600       // Try to turn PAmts into a splat, since we don't care about the values
5601       // that are currently '0'. If we can't, just keep '0'`s.
5602       turnVectorIntoSplatVector(PAmts, isNullConstant);
5603       // Try to turn AAmts into a splat, since we don't care about the
5604       // values that are currently '-1'. If we can't, change them to '0'`s.
5605       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5606                                 DAG.getConstant(0, DL, SVT));
5607       // Try to turn KAmts into a splat, since we don't care about the values
5608       // that are currently '-1'. If we can't, change them to '0'`s.
5609       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5610                                 DAG.getConstant(0, DL, ShSVT));
5611     }
5612 
5613     PVal = DAG.getBuildVector(VT, DL, PAmts);
5614     AVal = DAG.getBuildVector(VT, DL, AAmts);
5615     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5616     QVal = DAG.getBuildVector(VT, DL, QAmts);
5617   } else {
5618     PVal = PAmts[0];
5619     AVal = AAmts[0];
5620     KVal = KAmts[0];
5621     QVal = QAmts[0];
5622   }
5623 
5624   // (mul N, P)
5625   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5626   Created.push_back(Op0.getNode());
5627 
5628   if (NeedToApplyOffset) {
5629     // We need ADD to do this.
5630     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5631       return SDValue();
5632 
5633     // (add (mul N, P), A)
5634     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5635     Created.push_back(Op0.getNode());
5636   }
5637 
5638   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5639   // divisors as a performance improvement, since rotating by 0 is a no-op.
5640   if (HadEvenDivisor) {
5641     // We need ROTR to do this.
5642     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5643       return SDValue();
5644     SDNodeFlags Flags;
5645     Flags.setExact(true);
5646     // SREM: (rotr (add (mul N, P), A), K)
5647     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5648     Created.push_back(Op0.getNode());
5649   }
5650 
5651   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5652   SDValue Fold =
5653       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5654                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5655 
5656   // If we didn't have lanes with INT_MIN divisor, then we're done.
5657   if (!HadIntMinDivisor)
5658     return Fold;
5659 
5660   // That fold is only valid for positive divisors. Which effectively means,
5661   // it is invalid for INT_MIN divisors. So if we have such a lane,
5662   // we must fix-up results for said lanes.
5663   assert(VT.isVector() && "Can/should only get here for vectors.");
5664 
5665   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5666       !isOperationLegalOrCustom(ISD::AND, VT) ||
5667       !isOperationLegalOrCustom(Cond, VT) ||
5668       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5669     return SDValue();
5670 
5671   Created.push_back(Fold.getNode());
5672 
5673   SDValue IntMin = DAG.getConstant(
5674       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5675   SDValue IntMax = DAG.getConstant(
5676       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5677   SDValue Zero =
5678       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5679 
5680   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5681   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5682   Created.push_back(DivisorIsIntMin.getNode());
5683 
5684   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5685   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5686   Created.push_back(Masked.getNode());
5687   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5688   Created.push_back(MaskedIsZero.getNode());
5689 
5690   // To produce final result we need to blend 2 vectors: 'SetCC' and
5691   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5692   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5693   // constant-folded, select can get lowered to a shuffle with constant mask.
5694   SDValue Blended =
5695       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5696 
5697   return Blended;
5698 }
5699 
5700 bool TargetLowering::
5701 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5702   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5703     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5704                                 "be a constant integer");
5705     return true;
5706   }
5707 
5708   return false;
5709 }
5710 
5711 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5712                                              bool LegalOps, bool OptForSize,
5713                                              NegatibleCost &Cost,
5714                                              unsigned Depth) const {
5715   // fneg is removable even if it has multiple uses.
5716   if (Op.getOpcode() == ISD::FNEG) {
5717     Cost = NegatibleCost::Cheaper;
5718     return Op.getOperand(0);
5719   }
5720 
5721   // Don't recurse exponentially.
5722   if (Depth > SelectionDAG::MaxRecursionDepth)
5723     return SDValue();
5724 
5725   // Pre-increment recursion depth for use in recursive calls.
5726   ++Depth;
5727   const SDNodeFlags Flags = Op->getFlags();
5728   const TargetOptions &Options = DAG.getTarget().Options;
5729   EVT VT = Op.getValueType();
5730   unsigned Opcode = Op.getOpcode();
5731 
5732   // Don't allow anything with multiple uses unless we know it is free.
5733   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
5734     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
5735                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5736     if (!IsFreeExtend)
5737       return SDValue();
5738   }
5739 
5740   SDLoc DL(Op);
5741 
5742   switch (Opcode) {
5743   case ISD::ConstantFP: {
5744     // Don't invert constant FP values after legalization unless the target says
5745     // the negated constant is legal.
5746     bool IsOpLegal =
5747         isOperationLegal(ISD::ConstantFP, VT) ||
5748         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5749                      OptForSize);
5750 
5751     if (LegalOps && !IsOpLegal)
5752       break;
5753 
5754     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5755     V.changeSign();
5756     SDValue CFP = DAG.getConstantFP(V, DL, VT);
5757 
5758     // If we already have the use of the negated floating constant, it is free
5759     // to negate it even it has multiple uses.
5760     if (!Op.hasOneUse() && CFP.use_empty())
5761       break;
5762     Cost = NegatibleCost::Neutral;
5763     return CFP;
5764   }
5765   case ISD::BUILD_VECTOR: {
5766     // Only permit BUILD_VECTOR of constants.
5767     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5768           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5769         }))
5770       break;
5771 
5772     bool IsOpLegal =
5773         (isOperationLegal(ISD::ConstantFP, VT) &&
5774          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
5775         llvm::all_of(Op->op_values(), [&](SDValue N) {
5776           return N.isUndef() ||
5777                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5778                               OptForSize);
5779         });
5780 
5781     if (LegalOps && !IsOpLegal)
5782       break;
5783 
5784     SmallVector<SDValue, 4> Ops;
5785     for (SDValue C : Op->op_values()) {
5786       if (C.isUndef()) {
5787         Ops.push_back(C);
5788         continue;
5789       }
5790       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5791       V.changeSign();
5792       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
5793     }
5794     Cost = NegatibleCost::Neutral;
5795     return DAG.getBuildVector(VT, DL, Ops);
5796   }
5797   case ISD::FADD: {
5798     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5799       break;
5800 
5801     // After operation legalization, it might not be legal to create new FSUBs.
5802     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
5803       break;
5804     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5805 
5806     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
5807     NegatibleCost CostX = NegatibleCost::Expensive;
5808     SDValue NegX =
5809         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5810     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
5811     NegatibleCost CostY = NegatibleCost::Expensive;
5812     SDValue NegY =
5813         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5814 
5815     // Negate the X if its cost is less or equal than Y.
5816     if (NegX && (CostX <= CostY)) {
5817       Cost = CostX;
5818       return DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
5819     }
5820 
5821     // Negate the Y if it is not expensive.
5822     if (NegY) {
5823       Cost = CostY;
5824       return DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
5825     }
5826     break;
5827   }
5828   case ISD::FSUB: {
5829     // We can't turn -(A-B) into B-A when we honor signed zeros.
5830     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5831       break;
5832 
5833     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5834     // fold (fneg (fsub 0, Y)) -> Y
5835     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
5836       if (C->isZero()) {
5837         Cost = NegatibleCost::Cheaper;
5838         return Y;
5839       }
5840 
5841     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
5842     Cost = NegatibleCost::Neutral;
5843     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
5844   }
5845   case ISD::FMUL:
5846   case ISD::FDIV: {
5847     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5848 
5849     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5850     NegatibleCost CostX = NegatibleCost::Expensive;
5851     SDValue NegX =
5852         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5853     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5854     NegatibleCost CostY = NegatibleCost::Expensive;
5855     SDValue NegY =
5856         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5857 
5858     // Negate the X if its cost is less or equal than Y.
5859     if (NegX && (CostX <= CostY)) {
5860       Cost = CostX;
5861       return DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
5862     }
5863 
5864     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5865     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5866       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5867         break;
5868 
5869     // Negate the Y if it is not expensive.
5870     if (NegY) {
5871       Cost = CostY;
5872       return DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
5873     }
5874     break;
5875   }
5876   case ISD::FMA:
5877   case ISD::FMAD: {
5878     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5879       break;
5880 
5881     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
5882     NegatibleCost CostZ = NegatibleCost::Expensive;
5883     SDValue NegZ =
5884         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
5885     // Give up if fail to negate the Z.
5886     if (!NegZ)
5887       break;
5888 
5889     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5890     NegatibleCost CostX = NegatibleCost::Expensive;
5891     SDValue NegX =
5892         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5893     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5894     NegatibleCost CostY = NegatibleCost::Expensive;
5895     SDValue NegY =
5896         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5897 
5898     // Negate the X if its cost is less or equal than Y.
5899     if (NegX && (CostX <= CostY)) {
5900       Cost = std::min(CostX, CostZ);
5901       return DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
5902     }
5903 
5904     // Negate the Y if it is not expensive.
5905     if (NegY) {
5906       Cost = std::min(CostY, CostZ);
5907       return DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
5908     }
5909     break;
5910   }
5911 
5912   case ISD::FP_EXTEND:
5913   case ISD::FSIN:
5914     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5915                                             OptForSize, Cost, Depth))
5916       return DAG.getNode(Opcode, DL, VT, NegV);
5917     break;
5918   case ISD::FP_ROUND:
5919     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5920                                             OptForSize, Cost, Depth))
5921       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
5922     break;
5923   }
5924 
5925   return SDValue();
5926 }
5927 
5928 //===----------------------------------------------------------------------===//
5929 // Legalization Utilities
5930 //===----------------------------------------------------------------------===//
5931 
5932 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
5933                                     SDValue LHS, SDValue RHS,
5934                                     SmallVectorImpl<SDValue> &Result,
5935                                     EVT HiLoVT, SelectionDAG &DAG,
5936                                     MulExpansionKind Kind, SDValue LL,
5937                                     SDValue LH, SDValue RL, SDValue RH) const {
5938   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5939          Opcode == ISD::SMUL_LOHI);
5940 
5941   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5942                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5943   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5944                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5945   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5946                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5947   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5948                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5949 
5950   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5951     return false;
5952 
5953   unsigned OuterBitSize = VT.getScalarSizeInBits();
5954   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5955   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5956   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5957 
5958   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5959   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5960          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5961 
5962   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5963   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5964                           bool Signed) -> bool {
5965     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5966       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5967       Hi = SDValue(Lo.getNode(), 1);
5968       return true;
5969     }
5970     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5971       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5972       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5973       return true;
5974     }
5975     return false;
5976   };
5977 
5978   SDValue Lo, Hi;
5979 
5980   if (!LL.getNode() && !RL.getNode() &&
5981       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5982     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5983     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5984   }
5985 
5986   if (!LL.getNode())
5987     return false;
5988 
5989   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5990   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5991       DAG.MaskedValueIsZero(RHS, HighMask)) {
5992     // The inputs are both zero-extended.
5993     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5994       Result.push_back(Lo);
5995       Result.push_back(Hi);
5996       if (Opcode != ISD::MUL) {
5997         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5998         Result.push_back(Zero);
5999         Result.push_back(Zero);
6000       }
6001       return true;
6002     }
6003   }
6004 
6005   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
6006       RHSSB > InnerBitSize) {
6007     // The input values are both sign-extended.
6008     // TODO non-MUL case?
6009     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6010       Result.push_back(Lo);
6011       Result.push_back(Hi);
6012       return true;
6013     }
6014   }
6015 
6016   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6017   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6018   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6019     // FIXME getShiftAmountTy does not always return a sensible result when VT
6020     // is an illegal type, and so the type may be too small to fit the shift
6021     // amount. Override it with i32. The shift will have to be legalized.
6022     ShiftAmountTy = MVT::i32;
6023   }
6024   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6025 
6026   if (!LH.getNode() && !RH.getNode() &&
6027       isOperationLegalOrCustom(ISD::SRL, VT) &&
6028       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6029     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6030     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6031     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6032     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6033   }
6034 
6035   if (!LH.getNode())
6036     return false;
6037 
6038   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6039     return false;
6040 
6041   Result.push_back(Lo);
6042 
6043   if (Opcode == ISD::MUL) {
6044     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6045     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6046     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6047     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6048     Result.push_back(Hi);
6049     return true;
6050   }
6051 
6052   // Compute the full width result.
6053   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6054     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6055     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6056     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6057     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6058   };
6059 
6060   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6061   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6062     return false;
6063 
6064   // This is effectively the add part of a multiply-add of half-sized operands,
6065   // so it cannot overflow.
6066   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6067 
6068   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6069     return false;
6070 
6071   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6072   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6073 
6074   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6075                   isOperationLegalOrCustom(ISD::ADDE, VT));
6076   if (UseGlue)
6077     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6078                        Merge(Lo, Hi));
6079   else
6080     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6081                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6082 
6083   SDValue Carry = Next.getValue(1);
6084   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6085   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6086 
6087   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6088     return false;
6089 
6090   if (UseGlue)
6091     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6092                      Carry);
6093   else
6094     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6095                      Zero, Carry);
6096 
6097   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6098 
6099   if (Opcode == ISD::SMUL_LOHI) {
6100     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6101                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6102     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6103 
6104     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6105                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6106     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6107   }
6108 
6109   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6110   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6111   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6112   return true;
6113 }
6114 
6115 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6116                                SelectionDAG &DAG, MulExpansionKind Kind,
6117                                SDValue LL, SDValue LH, SDValue RL,
6118                                SDValue RH) const {
6119   SmallVector<SDValue, 2> Result;
6120   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6121                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6122                            DAG, Kind, LL, LH, RL, RH);
6123   if (Ok) {
6124     assert(Result.size() == 2);
6125     Lo = Result[0];
6126     Hi = Result[1];
6127   }
6128   return Ok;
6129 }
6130 
6131 // Check that (every element of) Z is undef or not an exact multiple of BW.
6132 static bool isNonZeroModBitWidth(SDValue Z, unsigned BW) {
6133   return ISD::matchUnaryPredicate(
6134       Z,
6135       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6136       true);
6137 }
6138 
6139 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6140                                        SelectionDAG &DAG) const {
6141   EVT VT = Node->getValueType(0);
6142 
6143   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6144                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6145                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6146                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6147     return false;
6148 
6149   SDValue X = Node->getOperand(0);
6150   SDValue Y = Node->getOperand(1);
6151   SDValue Z = Node->getOperand(2);
6152 
6153   unsigned BW = VT.getScalarSizeInBits();
6154   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6155   SDLoc DL(SDValue(Node, 0));
6156 
6157   EVT ShVT = Z.getValueType();
6158 
6159   SDValue ShX, ShY;
6160   SDValue ShAmt, InvShAmt;
6161   if (isNonZeroModBitWidth(Z, BW)) {
6162     // fshl: X << C | Y >> (BW - C)
6163     // fshr: X << (BW - C) | Y >> C
6164     // where C = Z % BW is not zero
6165     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6166     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6167     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6168     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6169     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6170   } else {
6171     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6172     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6173     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6174     if (isPowerOf2_32(BW)) {
6175       // Z % BW -> Z & (BW - 1)
6176       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6177       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6178       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6179     } else {
6180       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6181       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6182       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6183     }
6184 
6185     SDValue One = DAG.getConstant(1, DL, ShVT);
6186     if (IsFSHL) {
6187       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6188       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6189       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6190     } else {
6191       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6192       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6193       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6194     }
6195   }
6196   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6197   return true;
6198 }
6199 
6200 // TODO: Merge with expandFunnelShift.
6201 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
6202                                SelectionDAG &DAG) const {
6203   EVT VT = Node->getValueType(0);
6204   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6205   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6206   SDValue Op0 = Node->getOperand(0);
6207   SDValue Op1 = Node->getOperand(1);
6208   SDLoc DL(SDValue(Node, 0));
6209 
6210   EVT ShVT = Op1.getValueType();
6211   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6212 
6213   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
6214          "Expecting the type bitwidth to be a power of 2");
6215 
6216   // If a rotate in the other direction is supported, use it.
6217   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6218   if (isOperationLegalOrCustom(RevRot, VT)) {
6219     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6220     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6221     return true;
6222   }
6223 
6224   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6225                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6226                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6227                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6228                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6229     return false;
6230 
6231   // Otherwise,
6232   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and -c, w-1)))
6233   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and -c, w-1)))
6234   //
6235   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6236   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6237   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6238   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6239   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6240   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6241   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
6242                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
6243   return true;
6244 }
6245 
6246 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6247                                       SelectionDAG &DAG) const {
6248   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6249   SDValue Src = Node->getOperand(OpNo);
6250   EVT SrcVT = Src.getValueType();
6251   EVT DstVT = Node->getValueType(0);
6252   SDLoc dl(SDValue(Node, 0));
6253 
6254   // FIXME: Only f32 to i64 conversions are supported.
6255   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6256     return false;
6257 
6258   if (Node->isStrictFPOpcode())
6259     // When a NaN is converted to an integer a trap is allowed. We can't
6260     // use this expansion here because it would eliminate that trap. Other
6261     // traps are also allowed and cannot be eliminated. See
6262     // IEEE 754-2008 sec 5.8.
6263     return false;
6264 
6265   // Expand f32 -> i64 conversion
6266   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6267   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6268   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6269   EVT IntVT = SrcVT.changeTypeToInteger();
6270   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6271 
6272   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6273   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6274   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6275   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6276   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6277   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6278 
6279   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6280 
6281   SDValue ExponentBits = DAG.getNode(
6282       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6283       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6284   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6285 
6286   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6287                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6288                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6289   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6290 
6291   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6292                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6293                           DAG.getConstant(0x00800000, dl, IntVT));
6294 
6295   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6296 
6297   R = DAG.getSelectCC(
6298       dl, Exponent, ExponentLoBit,
6299       DAG.getNode(ISD::SHL, dl, DstVT, R,
6300                   DAG.getZExtOrTrunc(
6301                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6302                       dl, IntShVT)),
6303       DAG.getNode(ISD::SRL, dl, DstVT, R,
6304                   DAG.getZExtOrTrunc(
6305                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6306                       dl, IntShVT)),
6307       ISD::SETGT);
6308 
6309   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6310                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6311 
6312   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6313                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6314   return true;
6315 }
6316 
6317 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6318                                       SDValue &Chain,
6319                                       SelectionDAG &DAG) const {
6320   SDLoc dl(SDValue(Node, 0));
6321   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6322   SDValue Src = Node->getOperand(OpNo);
6323 
6324   EVT SrcVT = Src.getValueType();
6325   EVT DstVT = Node->getValueType(0);
6326   EVT SetCCVT =
6327       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6328   EVT DstSetCCVT =
6329       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6330 
6331   // Only expand vector types if we have the appropriate vector bit operations.
6332   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6333                                                    ISD::FP_TO_SINT;
6334   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6335                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6336     return false;
6337 
6338   // If the maximum float value is smaller then the signed integer range,
6339   // the destination signmask can't be represented by the float, so we can
6340   // just use FP_TO_SINT directly.
6341   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6342   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6343   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6344   if (APFloat::opOverflow &
6345       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6346     if (Node->isStrictFPOpcode()) {
6347       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6348                            { Node->getOperand(0), Src });
6349       Chain = Result.getValue(1);
6350     } else
6351       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6352     return true;
6353   }
6354 
6355   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6356   SDValue Sel;
6357 
6358   if (Node->isStrictFPOpcode()) {
6359     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6360                        Node->getOperand(0), /*IsSignaling*/ true);
6361     Chain = Sel.getValue(1);
6362   } else {
6363     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6364   }
6365 
6366   bool Strict = Node->isStrictFPOpcode() ||
6367                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6368 
6369   if (Strict) {
6370     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6371     // signmask then offset (the result of which should be fully representable).
6372     // Sel = Src < 0x8000000000000000
6373     // FltOfs = select Sel, 0, 0x8000000000000000
6374     // IntOfs = select Sel, 0, 0x8000000000000000
6375     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6376 
6377     // TODO: Should any fast-math-flags be set for the FSUB?
6378     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6379                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6380     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6381     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6382                                    DAG.getConstant(0, dl, DstVT),
6383                                    DAG.getConstant(SignMask, dl, DstVT));
6384     SDValue SInt;
6385     if (Node->isStrictFPOpcode()) {
6386       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6387                                 { Chain, Src, FltOfs });
6388       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6389                          { Val.getValue(1), Val });
6390       Chain = SInt.getValue(1);
6391     } else {
6392       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6393       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6394     }
6395     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6396   } else {
6397     // Expand based on maximum range of FP_TO_SINT:
6398     // True = fp_to_sint(Src)
6399     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6400     // Result = select (Src < 0x8000000000000000), True, False
6401 
6402     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6403     // TODO: Should any fast-math-flags be set for the FSUB?
6404     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6405                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6406     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6407                         DAG.getConstant(SignMask, dl, DstVT));
6408     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6409     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6410   }
6411   return true;
6412 }
6413 
6414 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6415                                       SDValue &Chain,
6416                                       SelectionDAG &DAG) const {
6417   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6418   SDValue Src = Node->getOperand(OpNo);
6419   EVT SrcVT = Src.getValueType();
6420   EVT DstVT = Node->getValueType(0);
6421 
6422   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6423     return false;
6424 
6425   // Only expand vector types if we have the appropriate vector bit operations.
6426   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6427                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6428                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6429                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6430                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6431     return false;
6432 
6433   SDLoc dl(SDValue(Node, 0));
6434   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6435 
6436   // Implementation of unsigned i64 to f64 following the algorithm in
6437   // __floatundidf in compiler_rt. This implementation has the advantage
6438   // of performing rounding correctly, both in the default rounding mode
6439   // and in all alternate rounding modes.
6440   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6441   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6442       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6443   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6444   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6445   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6446 
6447   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6448   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6449   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6450   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6451   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6452   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6453   if (Node->isStrictFPOpcode()) {
6454     SDValue HiSub =
6455         DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6456                     {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6457     Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6458                          {HiSub.getValue(1), LoFlt, HiSub});
6459     Chain = Result.getValue(1);
6460   } else {
6461     SDValue HiSub =
6462         DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6463     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6464   }
6465   return true;
6466 }
6467 
6468 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6469                                               SelectionDAG &DAG) const {
6470   SDLoc dl(Node);
6471   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6472     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6473   EVT VT = Node->getValueType(0);
6474   if (isOperationLegalOrCustom(NewOp, VT)) {
6475     SDValue Quiet0 = Node->getOperand(0);
6476     SDValue Quiet1 = Node->getOperand(1);
6477 
6478     if (!Node->getFlags().hasNoNaNs()) {
6479       // Insert canonicalizes if it's possible we need to quiet to get correct
6480       // sNaN behavior.
6481       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6482         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6483                              Node->getFlags());
6484       }
6485       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6486         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6487                              Node->getFlags());
6488       }
6489     }
6490 
6491     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6492   }
6493 
6494   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6495   // instead if there are no NaNs.
6496   if (Node->getFlags().hasNoNaNs()) {
6497     unsigned IEEE2018Op =
6498         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6499     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6500       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6501                          Node->getOperand(1), Node->getFlags());
6502     }
6503   }
6504 
6505   // If none of the above worked, but there are no NaNs, then expand to
6506   // a compare/select sequence.  This is required for correctness since
6507   // InstCombine might have canonicalized a fcmp+select sequence to a
6508   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6509   // expansion to libcall, we might introduce a link-time dependency
6510   // on libm into a file that originally did not have one.
6511   if (Node->getFlags().hasNoNaNs()) {
6512     ISD::CondCode Pred =
6513         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6514     SDValue Op1 = Node->getOperand(0);
6515     SDValue Op2 = Node->getOperand(1);
6516     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6517     // Copy FMF flags, but always set the no-signed-zeros flag
6518     // as this is implied by the FMINNUM/FMAXNUM semantics.
6519     SDNodeFlags Flags = Node->getFlags();
6520     Flags.setNoSignedZeros(true);
6521     SelCC->setFlags(Flags);
6522     return SelCC;
6523   }
6524 
6525   return SDValue();
6526 }
6527 
6528 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6529                                  SelectionDAG &DAG) const {
6530   SDLoc dl(Node);
6531   EVT VT = Node->getValueType(0);
6532   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6533   SDValue Op = Node->getOperand(0);
6534   unsigned Len = VT.getScalarSizeInBits();
6535   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6536 
6537   // TODO: Add support for irregular type lengths.
6538   if (!(Len <= 128 && Len % 8 == 0))
6539     return false;
6540 
6541   // Only expand vector types if we have the appropriate vector bit operations.
6542   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6543                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6544                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6545                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6546                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6547     return false;
6548 
6549   // This is the "best" algorithm from
6550   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6551   SDValue Mask55 =
6552       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6553   SDValue Mask33 =
6554       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6555   SDValue Mask0F =
6556       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6557   SDValue Mask01 =
6558       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6559 
6560   // v = v - ((v >> 1) & 0x55555555...)
6561   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6562                    DAG.getNode(ISD::AND, dl, VT,
6563                                DAG.getNode(ISD::SRL, dl, VT, Op,
6564                                            DAG.getConstant(1, dl, ShVT)),
6565                                Mask55));
6566   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6567   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6568                    DAG.getNode(ISD::AND, dl, VT,
6569                                DAG.getNode(ISD::SRL, dl, VT, Op,
6570                                            DAG.getConstant(2, dl, ShVT)),
6571                                Mask33));
6572   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6573   Op = DAG.getNode(ISD::AND, dl, VT,
6574                    DAG.getNode(ISD::ADD, dl, VT, Op,
6575                                DAG.getNode(ISD::SRL, dl, VT, Op,
6576                                            DAG.getConstant(4, dl, ShVT))),
6577                    Mask0F);
6578   // v = (v * 0x01010101...) >> (Len - 8)
6579   if (Len > 8)
6580     Op =
6581         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6582                     DAG.getConstant(Len - 8, dl, ShVT));
6583 
6584   Result = Op;
6585   return true;
6586 }
6587 
6588 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6589                                 SelectionDAG &DAG) const {
6590   SDLoc dl(Node);
6591   EVT VT = Node->getValueType(0);
6592   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6593   SDValue Op = Node->getOperand(0);
6594   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6595 
6596   // If the non-ZERO_UNDEF version is supported we can use that instead.
6597   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6598       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6599     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6600     return true;
6601   }
6602 
6603   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6604   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6605     EVT SetCCVT =
6606         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6607     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6608     SDValue Zero = DAG.getConstant(0, dl, VT);
6609     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6610     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6611                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6612     return true;
6613   }
6614 
6615   // Only expand vector types if we have the appropriate vector bit operations.
6616   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6617                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6618                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6619                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6620     return false;
6621 
6622   // for now, we do this:
6623   // x = x | (x >> 1);
6624   // x = x | (x >> 2);
6625   // ...
6626   // x = x | (x >>16);
6627   // x = x | (x >>32); // for 64-bit input
6628   // return popcount(~x);
6629   //
6630   // Ref: "Hacker's Delight" by Henry Warren
6631   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6632     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6633     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6634                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6635   }
6636   Op = DAG.getNOT(dl, Op, VT);
6637   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6638   return true;
6639 }
6640 
6641 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6642                                 SelectionDAG &DAG) const {
6643   SDLoc dl(Node);
6644   EVT VT = Node->getValueType(0);
6645   SDValue Op = Node->getOperand(0);
6646   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6647 
6648   // If the non-ZERO_UNDEF version is supported we can use that instead.
6649   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6650       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6651     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6652     return true;
6653   }
6654 
6655   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6656   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6657     EVT SetCCVT =
6658         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6659     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6660     SDValue Zero = DAG.getConstant(0, dl, VT);
6661     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6662     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6663                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6664     return true;
6665   }
6666 
6667   // Only expand vector types if we have the appropriate vector bit operations.
6668   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6669                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6670                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6671                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6672                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6673                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6674     return false;
6675 
6676   // for now, we use: { return popcount(~x & (x - 1)); }
6677   // unless the target has ctlz but not ctpop, in which case we use:
6678   // { return 32 - nlz(~x & (x-1)); }
6679   // Ref: "Hacker's Delight" by Henry Warren
6680   SDValue Tmp = DAG.getNode(
6681       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6682       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6683 
6684   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6685   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6686     Result =
6687         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6688                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6689     return true;
6690   }
6691 
6692   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6693   return true;
6694 }
6695 
6696 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6697                                SelectionDAG &DAG) const {
6698   SDLoc dl(N);
6699   EVT VT = N->getValueType(0);
6700   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6701   SDValue Op = N->getOperand(0);
6702 
6703   // Only expand vector types if we have the appropriate vector operations.
6704   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6705                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6706                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6707     return false;
6708 
6709   SDValue Shift =
6710       DAG.getNode(ISD::SRA, dl, VT, Op,
6711                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6712   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6713   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6714   return true;
6715 }
6716 
6717 std::pair<SDValue, SDValue>
6718 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6719                                     SelectionDAG &DAG) const {
6720   SDLoc SL(LD);
6721   SDValue Chain = LD->getChain();
6722   SDValue BasePTR = LD->getBasePtr();
6723   EVT SrcVT = LD->getMemoryVT();
6724   EVT DstVT = LD->getValueType(0);
6725   ISD::LoadExtType ExtType = LD->getExtensionType();
6726 
6727   unsigned NumElem = SrcVT.getVectorNumElements();
6728 
6729   EVT SrcEltVT = SrcVT.getScalarType();
6730   EVT DstEltVT = DstVT.getScalarType();
6731 
6732   // A vector must always be stored in memory as-is, i.e. without any padding
6733   // between the elements, since various code depend on it, e.g. in the
6734   // handling of a bitcast of a vector type to int, which may be done with a
6735   // vector store followed by an integer load. A vector that does not have
6736   // elements that are byte-sized must therefore be stored as an integer
6737   // built out of the extracted vector elements.
6738   if (!SrcEltVT.isByteSized()) {
6739     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
6740     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
6741 
6742     unsigned NumSrcBits = SrcVT.getSizeInBits();
6743     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
6744 
6745     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
6746     SDValue SrcEltBitMask = DAG.getConstant(
6747         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
6748 
6749     // Load the whole vector and avoid masking off the top bits as it makes
6750     // the codegen worse.
6751     SDValue Load =
6752         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
6753                        LD->getPointerInfo(), SrcIntVT, LD->getAlignment(),
6754                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6755 
6756     SmallVector<SDValue, 8> Vals;
6757     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6758       unsigned ShiftIntoIdx =
6759           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6760       SDValue ShiftAmount =
6761           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
6762                                      LoadVT, SL, /*LegalTypes=*/false);
6763       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
6764       SDValue Elt =
6765           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
6766       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
6767 
6768       if (ExtType != ISD::NON_EXTLOAD) {
6769         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
6770         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
6771       }
6772 
6773       Vals.push_back(Scalar);
6774     }
6775 
6776     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6777     return std::make_pair(Value, Load.getValue(1));
6778   }
6779 
6780   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6781   assert(SrcEltVT.isByteSized());
6782 
6783   SmallVector<SDValue, 8> Vals;
6784   SmallVector<SDValue, 8> LoadChains;
6785 
6786   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6787     SDValue ScalarLoad =
6788         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6789                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6790                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6791                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6792 
6793     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
6794 
6795     Vals.push_back(ScalarLoad.getValue(0));
6796     LoadChains.push_back(ScalarLoad.getValue(1));
6797   }
6798 
6799   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6800   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6801 
6802   return std::make_pair(Value, NewChain);
6803 }
6804 
6805 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6806                                              SelectionDAG &DAG) const {
6807   SDLoc SL(ST);
6808 
6809   SDValue Chain = ST->getChain();
6810   SDValue BasePtr = ST->getBasePtr();
6811   SDValue Value = ST->getValue();
6812   EVT StVT = ST->getMemoryVT();
6813 
6814   // The type of the data we want to save
6815   EVT RegVT = Value.getValueType();
6816   EVT RegSclVT = RegVT.getScalarType();
6817 
6818   // The type of data as saved in memory.
6819   EVT MemSclVT = StVT.getScalarType();
6820 
6821   unsigned NumElem = StVT.getVectorNumElements();
6822 
6823   // A vector must always be stored in memory as-is, i.e. without any padding
6824   // between the elements, since various code depend on it, e.g. in the
6825   // handling of a bitcast of a vector type to int, which may be done with a
6826   // vector store followed by an integer load. A vector that does not have
6827   // elements that are byte-sized must therefore be stored as an integer
6828   // built out of the extracted vector elements.
6829   if (!MemSclVT.isByteSized()) {
6830     unsigned NumBits = StVT.getSizeInBits();
6831     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6832 
6833     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6834 
6835     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6836       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6837                                 DAG.getVectorIdxConstant(Idx, SL));
6838       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6839       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6840       unsigned ShiftIntoIdx =
6841           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6842       SDValue ShiftAmount =
6843           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6844       SDValue ShiftedElt =
6845           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6846       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6847     }
6848 
6849     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6850                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6851                         ST->getAAInfo());
6852   }
6853 
6854   // Store Stride in bytes
6855   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6856   assert(Stride && "Zero stride!");
6857   // Extract each of the elements from the original vector and save them into
6858   // memory individually.
6859   SmallVector<SDValue, 8> Stores;
6860   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6861     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6862                               DAG.getVectorIdxConstant(Idx, SL));
6863 
6864     SDValue Ptr =
6865         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
6866 
6867     // This scalar TruncStore may be illegal, but we legalize it later.
6868     SDValue Store = DAG.getTruncStore(
6869         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6870         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6871         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6872 
6873     Stores.push_back(Store);
6874   }
6875 
6876   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6877 }
6878 
6879 std::pair<SDValue, SDValue>
6880 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6881   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6882          "unaligned indexed loads not implemented!");
6883   SDValue Chain = LD->getChain();
6884   SDValue Ptr = LD->getBasePtr();
6885   EVT VT = LD->getValueType(0);
6886   EVT LoadedVT = LD->getMemoryVT();
6887   SDLoc dl(LD);
6888   auto &MF = DAG.getMachineFunction();
6889 
6890   if (VT.isFloatingPoint() || VT.isVector()) {
6891     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6892     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6893       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6894           LoadedVT.isVector()) {
6895         // Scalarize the load and let the individual components be handled.
6896         return scalarizeVectorLoad(LD, DAG);
6897       }
6898 
6899       // Expand to a (misaligned) integer load of the same size,
6900       // then bitconvert to floating point or vector.
6901       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6902                                     LD->getMemOperand());
6903       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6904       if (LoadedVT != VT)
6905         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6906                              ISD::ANY_EXTEND, dl, VT, Result);
6907 
6908       return std::make_pair(Result, newLoad.getValue(1));
6909     }
6910 
6911     // Copy the value to a (aligned) stack slot using (unaligned) integer
6912     // loads and stores, then do a (aligned) load from the stack slot.
6913     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6914     unsigned LoadedBytes = LoadedVT.getStoreSize();
6915     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6916     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6917 
6918     // Make sure the stack slot is also aligned for the register type.
6919     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6920     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6921     SmallVector<SDValue, 8> Stores;
6922     SDValue StackPtr = StackBase;
6923     unsigned Offset = 0;
6924 
6925     EVT PtrVT = Ptr.getValueType();
6926     EVT StackPtrVT = StackPtr.getValueType();
6927 
6928     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6929     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6930 
6931     // Do all but one copies using the full register width.
6932     for (unsigned i = 1; i < NumRegs; i++) {
6933       // Load one integer register's worth from the original location.
6934       SDValue Load = DAG.getLoad(
6935           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6936           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6937           LD->getAAInfo());
6938       // Follow the load with a store to the stack slot.  Remember the store.
6939       Stores.push_back(DAG.getStore(
6940           Load.getValue(1), dl, Load, StackPtr,
6941           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6942       // Increment the pointers.
6943       Offset += RegBytes;
6944 
6945       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6946       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6947     }
6948 
6949     // The last copy may be partial.  Do an extending load.
6950     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6951                                   8 * (LoadedBytes - Offset));
6952     SDValue Load =
6953         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6954                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6955                        MinAlign(LD->getAlignment(), Offset),
6956                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6957     // Follow the load with a store to the stack slot.  Remember the store.
6958     // On big-endian machines this requires a truncating store to ensure
6959     // that the bits end up in the right place.
6960     Stores.push_back(DAG.getTruncStore(
6961         Load.getValue(1), dl, Load, StackPtr,
6962         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6963 
6964     // The order of the stores doesn't matter - say it with a TokenFactor.
6965     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6966 
6967     // Finally, perform the original load only redirected to the stack slot.
6968     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6969                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6970                           LoadedVT);
6971 
6972     // Callers expect a MERGE_VALUES node.
6973     return std::make_pair(Load, TF);
6974   }
6975 
6976   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6977          "Unaligned load of unsupported type.");
6978 
6979   // Compute the new VT that is half the size of the old one.  This is an
6980   // integer MVT.
6981   unsigned NumBits = LoadedVT.getSizeInBits();
6982   EVT NewLoadedVT;
6983   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6984   NumBits >>= 1;
6985 
6986   unsigned Alignment = LD->getAlignment();
6987   unsigned IncrementSize = NumBits / 8;
6988   ISD::LoadExtType HiExtType = LD->getExtensionType();
6989 
6990   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6991   if (HiExtType == ISD::NON_EXTLOAD)
6992     HiExtType = ISD::ZEXTLOAD;
6993 
6994   // Load the value in two parts
6995   SDValue Lo, Hi;
6996   if (DAG.getDataLayout().isLittleEndian()) {
6997     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6998                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6999                         LD->getAAInfo());
7000 
7001     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7002     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7003                         LD->getPointerInfo().getWithOffset(IncrementSize),
7004                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
7005                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
7006   } else {
7007     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7008                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7009                         LD->getAAInfo());
7010 
7011     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7012     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7013                         LD->getPointerInfo().getWithOffset(IncrementSize),
7014                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
7015                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
7016   }
7017 
7018   // aggregate the two parts
7019   SDValue ShiftAmount =
7020       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7021                                                     DAG.getDataLayout()));
7022   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7023   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7024 
7025   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7026                              Hi.getValue(1));
7027 
7028   return std::make_pair(Result, TF);
7029 }
7030 
7031 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7032                                              SelectionDAG &DAG) const {
7033   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7034          "unaligned indexed stores not implemented!");
7035   SDValue Chain = ST->getChain();
7036   SDValue Ptr = ST->getBasePtr();
7037   SDValue Val = ST->getValue();
7038   EVT VT = Val.getValueType();
7039   int Alignment = ST->getAlignment();
7040   auto &MF = DAG.getMachineFunction();
7041   EVT StoreMemVT = ST->getMemoryVT();
7042 
7043   SDLoc dl(ST);
7044   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7045     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7046     if (isTypeLegal(intVT)) {
7047       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7048           StoreMemVT.isVector()) {
7049         // Scalarize the store and let the individual components be handled.
7050         SDValue Result = scalarizeVectorStore(ST, DAG);
7051         return Result;
7052       }
7053       // Expand to a bitconvert of the value to the integer type of the
7054       // same size, then a (misaligned) int store.
7055       // FIXME: Does not handle truncating floating point stores!
7056       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7057       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7058                             Alignment, ST->getMemOperand()->getFlags());
7059       return Result;
7060     }
7061     // Do a (aligned) store to a stack slot, then copy from the stack slot
7062     // to the final destination using (unaligned) integer loads and stores.
7063     MVT RegVT = getRegisterType(
7064         *DAG.getContext(),
7065         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7066     EVT PtrVT = Ptr.getValueType();
7067     unsigned StoredBytes = StoreMemVT.getStoreSize();
7068     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7069     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7070 
7071     // Make sure the stack slot is also aligned for the register type.
7072     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7073     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7074 
7075     // Perform the original store, only redirected to the stack slot.
7076     SDValue Store = DAG.getTruncStore(
7077         Chain, dl, Val, StackPtr,
7078         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7079 
7080     EVT StackPtrVT = StackPtr.getValueType();
7081 
7082     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7083     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7084     SmallVector<SDValue, 8> Stores;
7085     unsigned Offset = 0;
7086 
7087     // Do all but one copies using the full register width.
7088     for (unsigned i = 1; i < NumRegs; i++) {
7089       // Load one integer register's worth from the stack slot.
7090       SDValue Load = DAG.getLoad(
7091           RegVT, dl, Store, StackPtr,
7092           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7093       // Store it to the final location.  Remember the store.
7094       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7095                                     ST->getPointerInfo().getWithOffset(Offset),
7096                                     MinAlign(ST->getAlignment(), Offset),
7097                                     ST->getMemOperand()->getFlags()));
7098       // Increment the pointers.
7099       Offset += RegBytes;
7100       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7101       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7102     }
7103 
7104     // The last store may be partial.  Do a truncating store.  On big-endian
7105     // machines this requires an extending load from the stack slot to ensure
7106     // that the bits are in the right place.
7107     EVT LoadMemVT =
7108         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7109 
7110     // Load from the stack slot.
7111     SDValue Load = DAG.getExtLoad(
7112         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7113         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7114 
7115     Stores.push_back(
7116         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7117                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7118                           MinAlign(ST->getAlignment(), Offset),
7119                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7120     // The order of the stores doesn't matter - say it with a TokenFactor.
7121     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7122     return Result;
7123   }
7124 
7125   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7126          "Unaligned store of unknown type.");
7127   // Get the half-size VT
7128   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7129   unsigned NumBits = NewStoredVT.getSizeInBits().getFixedSize();
7130   unsigned IncrementSize = NumBits / 8;
7131 
7132   // Divide the stored value in two parts.
7133   SDValue ShiftAmount = DAG.getConstant(
7134       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7135   SDValue Lo = Val;
7136   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7137 
7138   // Store the two parts
7139   SDValue Store1, Store2;
7140   Store1 = DAG.getTruncStore(Chain, dl,
7141                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7142                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7143                              ST->getMemOperand()->getFlags());
7144 
7145   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7146   Alignment = MinAlign(Alignment, IncrementSize);
7147   Store2 = DAG.getTruncStore(
7148       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7149       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7150       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7151 
7152   SDValue Result =
7153       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7154   return Result;
7155 }
7156 
7157 SDValue
7158 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7159                                        const SDLoc &DL, EVT DataVT,
7160                                        SelectionDAG &DAG,
7161                                        bool IsCompressedMemory) const {
7162   SDValue Increment;
7163   EVT AddrVT = Addr.getValueType();
7164   EVT MaskVT = Mask.getValueType();
7165   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
7166          "Incompatible types of Data and Mask");
7167   if (IsCompressedMemory) {
7168     if (DataVT.isScalableVector())
7169       report_fatal_error(
7170           "Cannot currently handle compressed memory with scalable vectors");
7171     // Incrementing the pointer according to number of '1's in the mask.
7172     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7173     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7174     if (MaskIntVT.getSizeInBits() < 32) {
7175       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7176       MaskIntVT = MVT::i32;
7177     }
7178 
7179     // Count '1's with POPCNT.
7180     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7181     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7182     // Scale is an element size in bytes.
7183     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7184                                     AddrVT);
7185     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7186   } else if (DataVT.isScalableVector()) {
7187     Increment = DAG.getVScale(DL, AddrVT,
7188                               APInt(AddrVT.getSizeInBits().getFixedSize(),
7189                                     DataVT.getStoreSize().getKnownMinSize()));
7190   } else
7191     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7192 
7193   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7194 }
7195 
7196 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7197                                        SDValue Idx,
7198                                        EVT VecVT,
7199                                        const SDLoc &dl) {
7200   if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx))
7201     return Idx;
7202 
7203   EVT IdxVT = Idx.getValueType();
7204   unsigned NElts = VecVT.getVectorMinNumElements();
7205   if (VecVT.isScalableVector()) {
7206     SDValue VS = DAG.getVScale(dl, IdxVT,
7207                                APInt(IdxVT.getSizeInBits().getFixedSize(),
7208                                      NElts));
7209     SDValue Sub = DAG.getNode(ISD::SUB, dl, IdxVT, VS,
7210                               DAG.getConstant(1, dl, IdxVT));
7211 
7212     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7213   } else {
7214     if (isPowerOf2_32(NElts)) {
7215       APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7216                                        Log2_32(NElts));
7217       return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7218                          DAG.getConstant(Imm, dl, IdxVT));
7219     }
7220   }
7221 
7222   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7223                      DAG.getConstant(NElts - 1, dl, IdxVT));
7224 }
7225 
7226 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7227                                                 SDValue VecPtr, EVT VecVT,
7228                                                 SDValue Index) const {
7229   SDLoc dl(Index);
7230   // Make sure the index type is big enough to compute in.
7231   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7232 
7233   EVT EltVT = VecVT.getVectorElementType();
7234 
7235   // Calculate the element offset and add it to the pointer.
7236   unsigned EltSize = EltVT.getSizeInBits().getFixedSize() / 8; // FIXME: should be ABI size.
7237   assert(EltSize * 8 == EltVT.getSizeInBits().getFixedSize() &&
7238          "Converting bits to bytes lost precision");
7239 
7240   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7241 
7242   EVT IdxVT = Index.getValueType();
7243 
7244   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7245                       DAG.getConstant(EltSize, dl, IdxVT));
7246   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7247 }
7248 
7249 //===----------------------------------------------------------------------===//
7250 // Implementation of Emulated TLS Model
7251 //===----------------------------------------------------------------------===//
7252 
7253 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7254                                                 SelectionDAG &DAG) const {
7255   // Access to address of TLS varialbe xyz is lowered to a function call:
7256   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7257   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7258   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7259   SDLoc dl(GA);
7260 
7261   ArgListTy Args;
7262   ArgListEntry Entry;
7263   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7264   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7265   StringRef EmuTlsVarName(NameString);
7266   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7267   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7268   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7269   Entry.Ty = VoidPtrType;
7270   Args.push_back(Entry);
7271 
7272   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7273 
7274   TargetLowering::CallLoweringInfo CLI(DAG);
7275   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7276   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7277   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7278 
7279   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7280   // At last for X86 targets, maybe good for other targets too?
7281   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7282   MFI.setAdjustsStack(true); // Is this only for X86 target?
7283   MFI.setHasCalls(true);
7284 
7285   assert((GA->getOffset() == 0) &&
7286          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7287   return CallResult.first;
7288 }
7289 
7290 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7291                                                 SelectionDAG &DAG) const {
7292   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7293   if (!isCtlzFast())
7294     return SDValue();
7295   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7296   SDLoc dl(Op);
7297   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7298     if (C->isNullValue() && CC == ISD::SETEQ) {
7299       EVT VT = Op.getOperand(0).getValueType();
7300       SDValue Zext = Op.getOperand(0);
7301       if (VT.bitsLT(MVT::i32)) {
7302         VT = MVT::i32;
7303         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7304       }
7305       unsigned Log2b = Log2_32(VT.getSizeInBits());
7306       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7307       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7308                                 DAG.getConstant(Log2b, dl, MVT::i32));
7309       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7310     }
7311   }
7312   return SDValue();
7313 }
7314 
7315 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7316   unsigned Opcode = Node->getOpcode();
7317   SDValue LHS = Node->getOperand(0);
7318   SDValue RHS = Node->getOperand(1);
7319   EVT VT = LHS.getValueType();
7320   SDLoc dl(Node);
7321 
7322   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7323   assert(VT.isInteger() && "Expected operands to be integers");
7324 
7325   // usub.sat(a, b) -> umax(a, b) - b
7326   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7327     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7328     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7329   }
7330 
7331   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7332     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7333     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7334     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7335   }
7336 
7337   unsigned OverflowOp;
7338   switch (Opcode) {
7339   case ISD::SADDSAT:
7340     OverflowOp = ISD::SADDO;
7341     break;
7342   case ISD::UADDSAT:
7343     OverflowOp = ISD::UADDO;
7344     break;
7345   case ISD::SSUBSAT:
7346     OverflowOp = ISD::SSUBO;
7347     break;
7348   case ISD::USUBSAT:
7349     OverflowOp = ISD::USUBO;
7350     break;
7351   default:
7352     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7353                      "addition or subtraction node.");
7354   }
7355 
7356   // FIXME: Should really try to split the vector in case it's legal on a
7357   // subvector.
7358   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7359     return DAG.UnrollVectorOp(Node);
7360 
7361   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7362   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7363   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7364                                LHS, RHS);
7365   SDValue SumDiff = Result.getValue(0);
7366   SDValue Overflow = Result.getValue(1);
7367   SDValue Zero = DAG.getConstant(0, dl, VT);
7368   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7369 
7370   if (Opcode == ISD::UADDSAT) {
7371     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7372       // (LHS + RHS) | OverflowMask
7373       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7374       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7375     }
7376     // Overflow ? 0xffff.... : (LHS + RHS)
7377     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7378   } else if (Opcode == ISD::USUBSAT) {
7379     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7380       // (LHS - RHS) & ~OverflowMask
7381       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7382       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7383       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7384     }
7385     // Overflow ? 0 : (LHS - RHS)
7386     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7387   } else {
7388     // SatMax -> Overflow && SumDiff < 0
7389     // SatMin -> Overflow && SumDiff >= 0
7390     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7391     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7392     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7393     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7394     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7395     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7396     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7397   }
7398 }
7399 
7400 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
7401   unsigned Opcode = Node->getOpcode();
7402   bool IsSigned = Opcode == ISD::SSHLSAT;
7403   SDValue LHS = Node->getOperand(0);
7404   SDValue RHS = Node->getOperand(1);
7405   EVT VT = LHS.getValueType();
7406   SDLoc dl(Node);
7407 
7408   assert((Node->getOpcode() == ISD::SSHLSAT ||
7409           Node->getOpcode() == ISD::USHLSAT) &&
7410           "Expected a SHLSAT opcode");
7411   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7412   assert(VT.isInteger() && "Expected operands to be integers");
7413 
7414   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
7415 
7416   unsigned BW = VT.getScalarSizeInBits();
7417   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
7418   SDValue Orig =
7419       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
7420 
7421   SDValue SatVal;
7422   if (IsSigned) {
7423     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
7424     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
7425     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
7426                              SatMin, SatMax, ISD::SETLT);
7427   } else {
7428     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
7429   }
7430   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
7431 
7432   return Result;
7433 }
7434 
7435 SDValue
7436 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7437   assert((Node->getOpcode() == ISD::SMULFIX ||
7438           Node->getOpcode() == ISD::UMULFIX ||
7439           Node->getOpcode() == ISD::SMULFIXSAT ||
7440           Node->getOpcode() == ISD::UMULFIXSAT) &&
7441          "Expected a fixed point multiplication opcode");
7442 
7443   SDLoc dl(Node);
7444   SDValue LHS = Node->getOperand(0);
7445   SDValue RHS = Node->getOperand(1);
7446   EVT VT = LHS.getValueType();
7447   unsigned Scale = Node->getConstantOperandVal(2);
7448   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7449                      Node->getOpcode() == ISD::UMULFIXSAT);
7450   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7451                  Node->getOpcode() == ISD::SMULFIXSAT);
7452   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7453   unsigned VTSize = VT.getScalarSizeInBits();
7454 
7455   if (!Scale) {
7456     // [us]mul.fix(a, b, 0) -> mul(a, b)
7457     if (!Saturating) {
7458       if (isOperationLegalOrCustom(ISD::MUL, VT))
7459         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7460     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7461       SDValue Result =
7462           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7463       SDValue Product = Result.getValue(0);
7464       SDValue Overflow = Result.getValue(1);
7465       SDValue Zero = DAG.getConstant(0, dl, VT);
7466 
7467       APInt MinVal = APInt::getSignedMinValue(VTSize);
7468       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7469       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7470       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7471       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7472       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7473       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7474     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7475       SDValue Result =
7476           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7477       SDValue Product = Result.getValue(0);
7478       SDValue Overflow = Result.getValue(1);
7479 
7480       APInt MaxVal = APInt::getMaxValue(VTSize);
7481       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7482       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7483     }
7484   }
7485 
7486   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7487          "Expected scale to be less than the number of bits if signed or at "
7488          "most the number of bits if unsigned.");
7489   assert(LHS.getValueType() == RHS.getValueType() &&
7490          "Expected both operands to be the same type");
7491 
7492   // Get the upper and lower bits of the result.
7493   SDValue Lo, Hi;
7494   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7495   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7496   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7497     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7498     Lo = Result.getValue(0);
7499     Hi = Result.getValue(1);
7500   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7501     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7502     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7503   } else if (VT.isVector()) {
7504     return SDValue();
7505   } else {
7506     report_fatal_error("Unable to expand fixed point multiplication.");
7507   }
7508 
7509   if (Scale == VTSize)
7510     // Result is just the top half since we'd be shifting by the width of the
7511     // operand. Overflow impossible so this works for both UMULFIX and
7512     // UMULFIXSAT.
7513     return Hi;
7514 
7515   // The result will need to be shifted right by the scale since both operands
7516   // are scaled. The result is given to us in 2 halves, so we only want part of
7517   // both in the result.
7518   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7519   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7520                                DAG.getConstant(Scale, dl, ShiftTy));
7521   if (!Saturating)
7522     return Result;
7523 
7524   if (!Signed) {
7525     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7526     // widened multiplication) aren't all zeroes.
7527 
7528     // Saturate to max if ((Hi >> Scale) != 0),
7529     // which is the same as if (Hi > ((1 << Scale) - 1))
7530     APInt MaxVal = APInt::getMaxValue(VTSize);
7531     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7532                                       dl, VT);
7533     Result = DAG.getSelectCC(dl, Hi, LowMask,
7534                              DAG.getConstant(MaxVal, dl, VT), Result,
7535                              ISD::SETUGT);
7536 
7537     return Result;
7538   }
7539 
7540   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7541   // widened multiplication) aren't all ones or all zeroes.
7542 
7543   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7544   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7545 
7546   if (Scale == 0) {
7547     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7548                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7549     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7550     // Saturated to SatMin if wide product is negative, and SatMax if wide
7551     // product is positive ...
7552     SDValue Zero = DAG.getConstant(0, dl, VT);
7553     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7554                                                ISD::SETLT);
7555     // ... but only if we overflowed.
7556     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7557   }
7558 
7559   //  We handled Scale==0 above so all the bits to examine is in Hi.
7560 
7561   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7562   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7563   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7564                                     dl, VT);
7565   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7566   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7567   // which is the same as if (HI < (-1 << (Scale - 1))
7568   SDValue HighMask =
7569       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7570                       dl, VT);
7571   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7572   return Result;
7573 }
7574 
7575 SDValue
7576 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7577                                     SDValue LHS, SDValue RHS,
7578                                     unsigned Scale, SelectionDAG &DAG) const {
7579   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
7580           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
7581          "Expected a fixed point division opcode");
7582 
7583   EVT VT = LHS.getValueType();
7584   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
7585   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
7586   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7587 
7588   // If there is enough room in the type to upscale the LHS or downscale the
7589   // RHS before the division, we can perform it in this type without having to
7590   // resize. For signed operations, the LHS headroom is the number of
7591   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7592   // The headroom for the RHS is the number of trailing zeroes.
7593   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7594                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7595   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7596 
7597   // For signed saturating operations, we need to be able to detect true integer
7598   // division overflow; that is, when you have MIN / -EPS. However, this
7599   // is undefined behavior and if we emit divisions that could take such
7600   // values it may cause undesired behavior (arithmetic exceptions on x86, for
7601   // example).
7602   // Avoid this by requiring an extra bit so that we never get this case.
7603   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
7604   // signed saturating division, we need to emit a whopping 32-bit division.
7605   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
7606     return SDValue();
7607 
7608   unsigned LHSShift = std::min(LHSLead, Scale);
7609   unsigned RHSShift = Scale - LHSShift;
7610 
7611   // At this point, we know that if we shift the LHS up by LHSShift and the
7612   // RHS down by RHSShift, we can emit a regular division with a final scaling
7613   // factor of Scale.
7614 
7615   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7616   if (LHSShift)
7617     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7618                       DAG.getConstant(LHSShift, dl, ShiftTy));
7619   if (RHSShift)
7620     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7621                       DAG.getConstant(RHSShift, dl, ShiftTy));
7622 
7623   SDValue Quot;
7624   if (Signed) {
7625     // For signed operations, if the resulting quotient is negative and the
7626     // remainder is nonzero, subtract 1 from the quotient to round towards
7627     // negative infinity.
7628     SDValue Rem;
7629     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7630     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7631     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7632     if (isTypeLegal(VT) &&
7633         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7634       Quot = DAG.getNode(ISD::SDIVREM, dl,
7635                          DAG.getVTList(VT, VT),
7636                          LHS, RHS);
7637       Rem = Quot.getValue(1);
7638       Quot = Quot.getValue(0);
7639     } else {
7640       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7641                          LHS, RHS);
7642       Rem = DAG.getNode(ISD::SREM, dl, VT,
7643                         LHS, RHS);
7644     }
7645     SDValue Zero = DAG.getConstant(0, dl, VT);
7646     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7647     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7648     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7649     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7650     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7651                                DAG.getConstant(1, dl, VT));
7652     Quot = DAG.getSelect(dl, VT,
7653                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7654                          Sub1, Quot);
7655   } else
7656     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7657                        LHS, RHS);
7658 
7659   return Quot;
7660 }
7661 
7662 void TargetLowering::expandUADDSUBO(
7663     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7664   SDLoc dl(Node);
7665   SDValue LHS = Node->getOperand(0);
7666   SDValue RHS = Node->getOperand(1);
7667   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7668 
7669   // If ADD/SUBCARRY is legal, use that instead.
7670   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7671   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7672     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7673     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7674                                     { LHS, RHS, CarryIn });
7675     Result = SDValue(NodeCarry.getNode(), 0);
7676     Overflow = SDValue(NodeCarry.getNode(), 1);
7677     return;
7678   }
7679 
7680   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7681                             LHS.getValueType(), LHS, RHS);
7682 
7683   EVT ResultType = Node->getValueType(1);
7684   EVT SetCCType = getSetCCResultType(
7685       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7686   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7687   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7688   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7689 }
7690 
7691 void TargetLowering::expandSADDSUBO(
7692     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7693   SDLoc dl(Node);
7694   SDValue LHS = Node->getOperand(0);
7695   SDValue RHS = Node->getOperand(1);
7696   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7697 
7698   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7699                             LHS.getValueType(), LHS, RHS);
7700 
7701   EVT ResultType = Node->getValueType(1);
7702   EVT OType = getSetCCResultType(
7703       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7704 
7705   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7706   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7707   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7708     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7709     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7710     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7711     return;
7712   }
7713 
7714   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7715 
7716   // For an addition, the result should be less than one of the operands (LHS)
7717   // if and only if the other operand (RHS) is negative, otherwise there will
7718   // be overflow.
7719   // For a subtraction, the result should be less than one of the operands
7720   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7721   // otherwise there will be overflow.
7722   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7723   SDValue ConditionRHS =
7724       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7725 
7726   Overflow = DAG.getBoolExtOrTrunc(
7727       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7728       ResultType, ResultType);
7729 }
7730 
7731 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7732                                 SDValue &Overflow, SelectionDAG &DAG) const {
7733   SDLoc dl(Node);
7734   EVT VT = Node->getValueType(0);
7735   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7736   SDValue LHS = Node->getOperand(0);
7737   SDValue RHS = Node->getOperand(1);
7738   bool isSigned = Node->getOpcode() == ISD::SMULO;
7739 
7740   // For power-of-two multiplications we can use a simpler shift expansion.
7741   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7742     const APInt &C = RHSC->getAPIntValue();
7743     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7744     if (C.isPowerOf2()) {
7745       // smulo(x, signed_min) is same as umulo(x, signed_min).
7746       bool UseArithShift = isSigned && !C.isMinSignedValue();
7747       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7748       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7749       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7750       Overflow = DAG.getSetCC(dl, SetCCVT,
7751           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7752                       dl, VT, Result, ShiftAmt),
7753           LHS, ISD::SETNE);
7754       return true;
7755     }
7756   }
7757 
7758   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7759   if (VT.isVector())
7760     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7761                               VT.getVectorNumElements());
7762 
7763   SDValue BottomHalf;
7764   SDValue TopHalf;
7765   static const unsigned Ops[2][3] =
7766       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7767         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7768   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7769     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7770     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7771   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7772     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7773                              RHS);
7774     TopHalf = BottomHalf.getValue(1);
7775   } else if (isTypeLegal(WideVT)) {
7776     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7777     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7778     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7779     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7780     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7781         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7782     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7783                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7784   } else {
7785     if (VT.isVector())
7786       return false;
7787 
7788     // We can fall back to a libcall with an illegal type for the MUL if we
7789     // have a libcall big enough.
7790     // Also, we can fall back to a division in some cases, but that's a big
7791     // performance hit in the general case.
7792     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7793     if (WideVT == MVT::i16)
7794       LC = RTLIB::MUL_I16;
7795     else if (WideVT == MVT::i32)
7796       LC = RTLIB::MUL_I32;
7797     else if (WideVT == MVT::i64)
7798       LC = RTLIB::MUL_I64;
7799     else if (WideVT == MVT::i128)
7800       LC = RTLIB::MUL_I128;
7801     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7802 
7803     SDValue HiLHS;
7804     SDValue HiRHS;
7805     if (isSigned) {
7806       // The high part is obtained by SRA'ing all but one of the bits of low
7807       // part.
7808       unsigned LoSize = VT.getSizeInBits();
7809       HiLHS =
7810           DAG.getNode(ISD::SRA, dl, VT, LHS,
7811                       DAG.getConstant(LoSize - 1, dl,
7812                                       getPointerTy(DAG.getDataLayout())));
7813       HiRHS =
7814           DAG.getNode(ISD::SRA, dl, VT, RHS,
7815                       DAG.getConstant(LoSize - 1, dl,
7816                                       getPointerTy(DAG.getDataLayout())));
7817     } else {
7818         HiLHS = DAG.getConstant(0, dl, VT);
7819         HiRHS = DAG.getConstant(0, dl, VT);
7820     }
7821 
7822     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7823     // pre-lowered to the correct types. This all depends upon WideVT not
7824     // being a legal type for the architecture and thus has to be split to
7825     // two arguments.
7826     SDValue Ret;
7827     TargetLowering::MakeLibCallOptions CallOptions;
7828     CallOptions.setSExt(isSigned);
7829     CallOptions.setIsPostTypeLegalization(true);
7830     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7831       // Halves of WideVT are packed into registers in different order
7832       // depending on platform endianness. This is usually handled by
7833       // the C calling convention, but we can't defer to it in
7834       // the legalizer.
7835       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7836       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7837     } else {
7838       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7839       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7840     }
7841     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7842            "Ret value is a collection of constituent nodes holding result.");
7843     if (DAG.getDataLayout().isLittleEndian()) {
7844       // Same as above.
7845       BottomHalf = Ret.getOperand(0);
7846       TopHalf = Ret.getOperand(1);
7847     } else {
7848       BottomHalf = Ret.getOperand(1);
7849       TopHalf = Ret.getOperand(0);
7850     }
7851   }
7852 
7853   Result = BottomHalf;
7854   if (isSigned) {
7855     SDValue ShiftAmt = DAG.getConstant(
7856         VT.getScalarSizeInBits() - 1, dl,
7857         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7858     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7859     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7860   } else {
7861     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7862                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7863   }
7864 
7865   // Truncate the result if SetCC returns a larger type than needed.
7866   EVT RType = Node->getValueType(1);
7867   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7868     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7869 
7870   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7871          "Unexpected result type for S/UMULO legalization");
7872   return true;
7873 }
7874 
7875 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7876   SDLoc dl(Node);
7877   bool NoNaN = Node->getFlags().hasNoNaNs();
7878   unsigned BaseOpcode = 0;
7879   switch (Node->getOpcode()) {
7880   default: llvm_unreachable("Expected VECREDUCE opcode");
7881   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7882   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7883   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7884   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7885   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7886   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7887   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7888   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7889   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7890   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7891   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7892   case ISD::VECREDUCE_FMAX:
7893     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7894     break;
7895   case ISD::VECREDUCE_FMIN:
7896     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7897     break;
7898   }
7899 
7900   SDValue Op = Node->getOperand(0);
7901   EVT VT = Op.getValueType();
7902 
7903   // Try to use a shuffle reduction for power of two vectors.
7904   if (VT.isPow2VectorType()) {
7905     while (VT.getVectorNumElements() > 1) {
7906       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7907       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7908         break;
7909 
7910       SDValue Lo, Hi;
7911       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7912       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7913       VT = HalfVT;
7914     }
7915   }
7916 
7917   EVT EltVT = VT.getVectorElementType();
7918   unsigned NumElts = VT.getVectorNumElements();
7919 
7920   SmallVector<SDValue, 8> Ops;
7921   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7922 
7923   SDValue Res = Ops[0];
7924   for (unsigned i = 1; i < NumElts; i++)
7925     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7926 
7927   // Result type may be wider than element type.
7928   if (EltVT != Node->getValueType(0))
7929     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7930   return Res;
7931 }
7932 
7933 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
7934                                SelectionDAG &DAG) const {
7935   EVT VT = Node->getValueType(0);
7936   SDLoc dl(Node);
7937   bool isSigned = Node->getOpcode() == ISD::SREM;
7938   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
7939   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
7940   SDValue Dividend = Node->getOperand(0);
7941   SDValue Divisor = Node->getOperand(1);
7942   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
7943     SDVTList VTs = DAG.getVTList(VT, VT);
7944     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
7945     return true;
7946   } else if (isOperationLegalOrCustom(DivOpc, VT)) {
7947     // X % Y -> X-X/Y*Y
7948     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
7949     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
7950     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
7951     return true;
7952   }
7953   return false;
7954 }
7955