1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/CodeGenCommonISel.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineJumpTableInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore following attributes because they don't affect the 61 // call sequence. 62 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 63 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 64 Attribute::DereferenceableOrNull, Attribute::NoAlias, 65 Attribute::NonNull, Attribute::NoUndef}) 66 CallerAttrs.removeAttribute(Attr); 67 68 if (CallerAttrs.hasAttributes()) 69 return false; 70 71 // It's not safe to eliminate the sign / zero extension of the return value. 72 if (CallerAttrs.contains(Attribute::ZExt) || 73 CallerAttrs.contains(Attribute::SExt)) 74 return false; 75 76 // Check if the only use is a function return node. 77 return isUsedByReturnOnly(Node, Chain); 78 } 79 80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 81 const uint32_t *CallerPreservedMask, 82 const SmallVectorImpl<CCValAssign> &ArgLocs, 83 const SmallVectorImpl<SDValue> &OutVals) const { 84 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 85 const CCValAssign &ArgLoc = ArgLocs[I]; 86 if (!ArgLoc.isRegLoc()) 87 continue; 88 MCRegister Reg = ArgLoc.getLocReg(); 89 // Only look at callee saved registers. 90 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 91 continue; 92 // Check that we pass the value used for the caller. 93 // (We look for a CopyFromReg reading a virtual register that is used 94 // for the function live-in value of register Reg) 95 SDValue Value = OutVals[I]; 96 if (Value->getOpcode() == ISD::AssertZext) 97 Value = Value.getOperand(0); 98 if (Value->getOpcode() != ISD::CopyFromReg) 99 return false; 100 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 101 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 102 return false; 103 } 104 return true; 105 } 106 107 /// Set CallLoweringInfo attribute flags based on a call instruction 108 /// and called function attributes. 109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 110 unsigned ArgIdx) { 111 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 112 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 113 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 114 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 115 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 116 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 117 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 118 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 119 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 120 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 121 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 122 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 123 Alignment = Call->getParamStackAlign(ArgIdx); 124 IndirectType = nullptr; 125 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 126 "multiple ABI attributes?"); 127 if (IsByVal) { 128 IndirectType = Call->getParamByValType(ArgIdx); 129 if (!Alignment) 130 Alignment = Call->getParamAlign(ArgIdx); 131 } 132 if (IsPreallocated) 133 IndirectType = Call->getParamPreallocatedType(ArgIdx); 134 if (IsInAlloca) 135 IndirectType = Call->getParamInAllocaType(ArgIdx); 136 if (IsSRet) 137 IndirectType = Call->getParamStructRetType(ArgIdx); 138 } 139 140 /// Generate a libcall taking the given operands as arguments and returning a 141 /// result of type RetVT. 142 std::pair<SDValue, SDValue> 143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 144 ArrayRef<SDValue> Ops, 145 MakeLibCallOptions CallOptions, 146 const SDLoc &dl, 147 SDValue InChain) const { 148 if (!InChain) 149 InChain = DAG.getEntryNode(); 150 151 TargetLowering::ArgListTy Args; 152 Args.reserve(Ops.size()); 153 154 TargetLowering::ArgListEntry Entry; 155 for (unsigned i = 0; i < Ops.size(); ++i) { 156 SDValue NewOp = Ops[i]; 157 Entry.Node = NewOp; 158 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 159 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 160 CallOptions.IsSExt); 161 Entry.IsZExt = !Entry.IsSExt; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 165 Entry.IsSExt = Entry.IsZExt = false; 166 } 167 Args.push_back(Entry); 168 } 169 170 if (LC == RTLIB::UNKNOWN_LIBCALL) 171 report_fatal_error("Unsupported library call operation!"); 172 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 173 getPointerTy(DAG.getDataLayout())); 174 175 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 176 TargetLowering::CallLoweringInfo CLI(DAG); 177 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 178 bool zeroExtend = !signExtend; 179 180 if (CallOptions.IsSoften && 181 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 182 signExtend = zeroExtend = false; 183 } 184 185 CLI.setDebugLoc(dl) 186 .setChain(InChain) 187 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 188 .setNoReturn(CallOptions.DoesNotReturn) 189 .setDiscardResult(!CallOptions.IsReturnValueUsed) 190 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 191 .setSExtResult(signExtend) 192 .setZExtResult(zeroExtend); 193 return LowerCallTo(CLI); 194 } 195 196 bool TargetLowering::findOptimalMemOpLowering( 197 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 198 unsigned SrcAS, const AttributeList &FuncAttributes) const { 199 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() && 200 Op.getSrcAlign() < Op.getDstAlign()) 201 return false; 202 203 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 204 205 if (VT == MVT::Other) { 206 // Use the largest integer type whose alignment constraints are satisfied. 207 // We only need to check DstAlign here as SrcAlign is always greater or 208 // equal to DstAlign (or zero). 209 VT = MVT::i64; 210 if (Op.isFixedDstAlign()) 211 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 212 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 213 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 214 assert(VT.isInteger()); 215 216 // Find the largest legal integer type. 217 MVT LVT = MVT::i64; 218 while (!isTypeLegal(LVT)) 219 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 220 assert(LVT.isInteger()); 221 222 // If the type we've chosen is larger than the largest legal integer type 223 // then use that instead. 224 if (VT.bitsGT(LVT)) 225 VT = LVT; 226 } 227 228 unsigned NumMemOps = 0; 229 uint64_t Size = Op.size(); 230 while (Size) { 231 unsigned VTSize = VT.getSizeInBits() / 8; 232 while (VTSize > Size) { 233 // For now, only use non-vector load / store's for the left-over pieces. 234 EVT NewVT = VT; 235 unsigned NewVTSize; 236 237 bool Found = false; 238 if (VT.isVector() || VT.isFloatingPoint()) { 239 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 240 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 241 isSafeMemOpType(NewVT.getSimpleVT())) 242 Found = true; 243 else if (NewVT == MVT::i64 && 244 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 245 isSafeMemOpType(MVT::f64)) { 246 // i64 is usually not legal on 32-bit targets, but f64 may be. 247 NewVT = MVT::f64; 248 Found = true; 249 } 250 } 251 252 if (!Found) { 253 do { 254 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 255 if (NewVT == MVT::i8) 256 break; 257 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 258 } 259 NewVTSize = NewVT.getSizeInBits() / 8; 260 261 // If the new VT cannot cover all of the remaining bits, then consider 262 // issuing a (or a pair of) unaligned and overlapping load / store. 263 bool Fast; 264 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 265 allowsMisalignedMemoryAccesses( 266 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 267 MachineMemOperand::MONone, &Fast) && 268 Fast) 269 VTSize = Size; 270 else { 271 VT = NewVT; 272 VTSize = NewVTSize; 273 } 274 } 275 276 if (++NumMemOps > Limit) 277 return false; 278 279 MemOps.push_back(VT); 280 Size -= VTSize; 281 } 282 283 return true; 284 } 285 286 /// Soften the operands of a comparison. This code is shared among BR_CC, 287 /// SELECT_CC, and SETCC handlers. 288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 289 SDValue &NewLHS, SDValue &NewRHS, 290 ISD::CondCode &CCCode, 291 const SDLoc &dl, const SDValue OldLHS, 292 const SDValue OldRHS) const { 293 SDValue Chain; 294 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 295 OldRHS, Chain); 296 } 297 298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 299 SDValue &NewLHS, SDValue &NewRHS, 300 ISD::CondCode &CCCode, 301 const SDLoc &dl, const SDValue OldLHS, 302 const SDValue OldRHS, 303 SDValue &Chain, 304 bool IsSignaling) const { 305 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 306 // not supporting it. We can update this code when libgcc provides such 307 // functions. 308 309 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 310 && "Unsupported setcc type!"); 311 312 // Expand into one or more soft-fp libcall(s). 313 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 314 bool ShouldInvertCC = false; 315 switch (CCCode) { 316 case ISD::SETEQ: 317 case ISD::SETOEQ: 318 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 319 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 320 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 321 break; 322 case ISD::SETNE: 323 case ISD::SETUNE: 324 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 325 (VT == MVT::f64) ? RTLIB::UNE_F64 : 326 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 327 break; 328 case ISD::SETGE: 329 case ISD::SETOGE: 330 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 331 (VT == MVT::f64) ? RTLIB::OGE_F64 : 332 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 333 break; 334 case ISD::SETLT: 335 case ISD::SETOLT: 336 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 337 (VT == MVT::f64) ? RTLIB::OLT_F64 : 338 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 339 break; 340 case ISD::SETLE: 341 case ISD::SETOLE: 342 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 343 (VT == MVT::f64) ? RTLIB::OLE_F64 : 344 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 345 break; 346 case ISD::SETGT: 347 case ISD::SETOGT: 348 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 349 (VT == MVT::f64) ? RTLIB::OGT_F64 : 350 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 351 break; 352 case ISD::SETO: 353 ShouldInvertCC = true; 354 LLVM_FALLTHROUGH; 355 case ISD::SETUO: 356 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 357 (VT == MVT::f64) ? RTLIB::UO_F64 : 358 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 359 break; 360 case ISD::SETONE: 361 // SETONE = O && UNE 362 ShouldInvertCC = true; 363 LLVM_FALLTHROUGH; 364 case ISD::SETUEQ: 365 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 366 (VT == MVT::f64) ? RTLIB::UO_F64 : 367 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 368 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 369 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 370 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 371 break; 372 default: 373 // Invert CC for unordered comparisons 374 ShouldInvertCC = true; 375 switch (CCCode) { 376 case ISD::SETULT: 377 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 378 (VT == MVT::f64) ? RTLIB::OGE_F64 : 379 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 380 break; 381 case ISD::SETULE: 382 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 383 (VT == MVT::f64) ? RTLIB::OGT_F64 : 384 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 385 break; 386 case ISD::SETUGT: 387 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 388 (VT == MVT::f64) ? RTLIB::OLE_F64 : 389 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 390 break; 391 case ISD::SETUGE: 392 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 393 (VT == MVT::f64) ? RTLIB::OLT_F64 : 394 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 395 break; 396 default: llvm_unreachable("Do not know how to soften this setcc!"); 397 } 398 } 399 400 // Use the target specific return value for comparions lib calls. 401 EVT RetVT = getCmpLibcallReturnType(); 402 SDValue Ops[2] = {NewLHS, NewRHS}; 403 TargetLowering::MakeLibCallOptions CallOptions; 404 EVT OpsVT[2] = { OldLHS.getValueType(), 405 OldRHS.getValueType() }; 406 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 407 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 408 NewLHS = Call.first; 409 NewRHS = DAG.getConstant(0, dl, RetVT); 410 411 CCCode = getCmpLibcallCC(LC1); 412 if (ShouldInvertCC) { 413 assert(RetVT.isInteger()); 414 CCCode = getSetCCInverse(CCCode, RetVT); 415 } 416 417 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 418 // Update Chain. 419 Chain = Call.second; 420 } else { 421 EVT SetCCVT = 422 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 423 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 424 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 425 CCCode = getCmpLibcallCC(LC2); 426 if (ShouldInvertCC) 427 CCCode = getSetCCInverse(CCCode, RetVT); 428 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 429 if (Chain) 430 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 431 Call2.second); 432 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 433 Tmp.getValueType(), Tmp, NewLHS); 434 NewRHS = SDValue(); 435 } 436 } 437 438 /// Return the entry encoding for a jump table in the current function. The 439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 440 unsigned TargetLowering::getJumpTableEncoding() const { 441 // In non-pic modes, just use the address of a block. 442 if (!isPositionIndependent()) 443 return MachineJumpTableInfo::EK_BlockAddress; 444 445 // In PIC mode, if the target supports a GPRel32 directive, use it. 446 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 447 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 448 449 // Otherwise, use a label difference. 450 return MachineJumpTableInfo::EK_LabelDifference32; 451 } 452 453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 454 SelectionDAG &DAG) const { 455 // If our PIC model is GP relative, use the global offset table as the base. 456 unsigned JTEncoding = getJumpTableEncoding(); 457 458 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 459 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 460 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 461 462 return Table; 463 } 464 465 /// This returns the relocation base for the given PIC jumptable, the same as 466 /// getPICJumpTableRelocBase, but as an MCExpr. 467 const MCExpr * 468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 469 unsigned JTI,MCContext &Ctx) const{ 470 // The normal PIC reloc base is the label at the start of the jump table. 471 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 472 } 473 474 bool 475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 476 const TargetMachine &TM = getTargetMachine(); 477 const GlobalValue *GV = GA->getGlobal(); 478 479 // If the address is not even local to this DSO we will have to load it from 480 // a got and then add the offset. 481 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 482 return false; 483 484 // If the code is position independent we will have to add a base register. 485 if (isPositionIndependent()) 486 return false; 487 488 // Otherwise we can do it. 489 return true; 490 } 491 492 //===----------------------------------------------------------------------===// 493 // Optimization Methods 494 //===----------------------------------------------------------------------===// 495 496 /// If the specified instruction has a constant integer operand and there are 497 /// bits set in that constant that are not demanded, then clear those bits and 498 /// return true. 499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 500 const APInt &DemandedBits, 501 const APInt &DemandedElts, 502 TargetLoweringOpt &TLO) const { 503 SDLoc DL(Op); 504 unsigned Opcode = Op.getOpcode(); 505 506 // Do target-specific constant optimization. 507 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 508 return TLO.New.getNode(); 509 510 // FIXME: ISD::SELECT, ISD::SELECT_CC 511 switch (Opcode) { 512 default: 513 break; 514 case ISD::XOR: 515 case ISD::AND: 516 case ISD::OR: { 517 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 518 if (!Op1C || Op1C->isOpaque()) 519 return false; 520 521 // If this is a 'not' op, don't touch it because that's a canonical form. 522 const APInt &C = Op1C->getAPIntValue(); 523 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 524 return false; 525 526 if (!C.isSubsetOf(DemandedBits)) { 527 EVT VT = Op.getValueType(); 528 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 529 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 530 return TLO.CombineTo(Op, NewOp); 531 } 532 533 break; 534 } 535 } 536 537 return false; 538 } 539 540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 541 const APInt &DemandedBits, 542 TargetLoweringOpt &TLO) const { 543 EVT VT = Op.getValueType(); 544 APInt DemandedElts = VT.isVector() 545 ? APInt::getAllOnes(VT.getVectorNumElements()) 546 : APInt(1, 1); 547 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 548 } 549 550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 552 /// generalized for targets with other types of implicit widening casts. 553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 554 const APInt &Demanded, 555 TargetLoweringOpt &TLO) const { 556 assert(Op.getNumOperands() == 2 && 557 "ShrinkDemandedOp only supports binary operators!"); 558 assert(Op.getNode()->getNumValues() == 1 && 559 "ShrinkDemandedOp only supports nodes with one result!"); 560 561 SelectionDAG &DAG = TLO.DAG; 562 SDLoc dl(Op); 563 564 // Early return, as this function cannot handle vector types. 565 if (Op.getValueType().isVector()) 566 return false; 567 568 // Don't do this if the node has another user, which may require the 569 // full value. 570 if (!Op.getNode()->hasOneUse()) 571 return false; 572 573 // Search for the smallest integer type with free casts to and from 574 // Op's type. For expedience, just check power-of-2 integer types. 575 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 576 unsigned DemandedSize = Demanded.getActiveBits(); 577 unsigned SmallVTBits = DemandedSize; 578 if (!isPowerOf2_32(SmallVTBits)) 579 SmallVTBits = NextPowerOf2(SmallVTBits); 580 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 581 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 582 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 583 TLI.isZExtFree(SmallVT, Op.getValueType())) { 584 // We found a type with free casts. 585 SDValue X = DAG.getNode( 586 Op.getOpcode(), dl, SmallVT, 587 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 588 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 589 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 590 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 591 return TLO.CombineTo(Op, Z); 592 } 593 } 594 return false; 595 } 596 597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 598 DAGCombinerInfo &DCI) const { 599 SelectionDAG &DAG = DCI.DAG; 600 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 601 !DCI.isBeforeLegalizeOps()); 602 KnownBits Known; 603 604 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 605 if (Simplified) { 606 DCI.AddToWorklist(Op.getNode()); 607 DCI.CommitTargetLoweringOpt(TLO); 608 } 609 return Simplified; 610 } 611 612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 613 const APInt &DemandedElts, 614 DAGCombinerInfo &DCI) const { 615 SelectionDAG &DAG = DCI.DAG; 616 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 617 !DCI.isBeforeLegalizeOps()); 618 KnownBits Known; 619 620 bool Simplified = 621 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 622 if (Simplified) { 623 DCI.AddToWorklist(Op.getNode()); 624 DCI.CommitTargetLoweringOpt(TLO); 625 } 626 return Simplified; 627 } 628 629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 630 KnownBits &Known, 631 TargetLoweringOpt &TLO, 632 unsigned Depth, 633 bool AssumeSingleUse) const { 634 EVT VT = Op.getValueType(); 635 636 // TODO: We can probably do more work on calculating the known bits and 637 // simplifying the operations for scalable vectors, but for now we just 638 // bail out. 639 if (VT.isScalableVector()) { 640 // Pretend we don't know anything for now. 641 Known = KnownBits(DemandedBits.getBitWidth()); 642 return false; 643 } 644 645 APInt DemandedElts = VT.isVector() 646 ? APInt::getAllOnes(VT.getVectorNumElements()) 647 : APInt(1, 1); 648 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 649 AssumeSingleUse); 650 } 651 652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 653 // TODO: Under what circumstances can we create nodes? Constant folding? 654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 655 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 656 SelectionDAG &DAG, unsigned Depth) const { 657 // Limit search depth. 658 if (Depth >= SelectionDAG::MaxRecursionDepth) 659 return SDValue(); 660 661 // Ignore UNDEFs. 662 if (Op.isUndef()) 663 return SDValue(); 664 665 // Not demanding any bits/elts from Op. 666 if (DemandedBits == 0 || DemandedElts == 0) 667 return DAG.getUNDEF(Op.getValueType()); 668 669 bool IsLE = DAG.getDataLayout().isLittleEndian(); 670 unsigned NumElts = DemandedElts.getBitWidth(); 671 unsigned BitWidth = DemandedBits.getBitWidth(); 672 KnownBits LHSKnown, RHSKnown; 673 switch (Op.getOpcode()) { 674 case ISD::BITCAST: { 675 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 676 EVT SrcVT = Src.getValueType(); 677 EVT DstVT = Op.getValueType(); 678 if (SrcVT == DstVT) 679 return Src; 680 681 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 682 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 683 if (NumSrcEltBits == NumDstEltBits) 684 if (SDValue V = SimplifyMultipleUseDemandedBits( 685 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 686 return DAG.getBitcast(DstVT, V); 687 688 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 689 unsigned Scale = NumDstEltBits / NumSrcEltBits; 690 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 691 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 692 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 693 for (unsigned i = 0; i != Scale; ++i) { 694 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 695 unsigned BitOffset = EltOffset * NumSrcEltBits; 696 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 697 if (!Sub.isZero()) { 698 DemandedSrcBits |= Sub; 699 for (unsigned j = 0; j != NumElts; ++j) 700 if (DemandedElts[j]) 701 DemandedSrcElts.setBit((j * Scale) + i); 702 } 703 } 704 705 if (SDValue V = SimplifyMultipleUseDemandedBits( 706 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 707 return DAG.getBitcast(DstVT, V); 708 } 709 710 // TODO - bigendian once we have test coverage. 711 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 712 unsigned Scale = NumSrcEltBits / NumDstEltBits; 713 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 714 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 715 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 716 for (unsigned i = 0; i != NumElts; ++i) 717 if (DemandedElts[i]) { 718 unsigned Offset = (i % Scale) * NumDstEltBits; 719 DemandedSrcBits.insertBits(DemandedBits, Offset); 720 DemandedSrcElts.setBit(i / Scale); 721 } 722 723 if (SDValue V = SimplifyMultipleUseDemandedBits( 724 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 725 return DAG.getBitcast(DstVT, V); 726 } 727 728 break; 729 } 730 case ISD::AND: { 731 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 732 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 733 734 // If all of the demanded bits are known 1 on one side, return the other. 735 // These bits cannot contribute to the result of the 'and' in this 736 // context. 737 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 738 return Op.getOperand(0); 739 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 740 return Op.getOperand(1); 741 break; 742 } 743 case ISD::OR: { 744 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 745 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 746 747 // If all of the demanded bits are known zero on one side, return the 748 // other. These bits cannot contribute to the result of the 'or' in this 749 // context. 750 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 751 return Op.getOperand(0); 752 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 753 return Op.getOperand(1); 754 break; 755 } 756 case ISD::XOR: { 757 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 758 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 759 760 // If all of the demanded bits are known zero on one side, return the 761 // other. 762 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 763 return Op.getOperand(0); 764 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 765 return Op.getOperand(1); 766 break; 767 } 768 case ISD::SHL: { 769 // If we are only demanding sign bits then we can use the shift source 770 // directly. 771 if (const APInt *MaxSA = 772 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 773 SDValue Op0 = Op.getOperand(0); 774 unsigned ShAmt = MaxSA->getZExtValue(); 775 unsigned NumSignBits = 776 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 777 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 778 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 779 return Op0; 780 } 781 break; 782 } 783 case ISD::SETCC: { 784 SDValue Op0 = Op.getOperand(0); 785 SDValue Op1 = Op.getOperand(1); 786 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 787 // If (1) we only need the sign-bit, (2) the setcc operands are the same 788 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 789 // -1, we may be able to bypass the setcc. 790 if (DemandedBits.isSignMask() && 791 Op0.getScalarValueSizeInBits() == BitWidth && 792 getBooleanContents(Op0.getValueType()) == 793 BooleanContent::ZeroOrNegativeOneBooleanContent) { 794 // If we're testing X < 0, then this compare isn't needed - just use X! 795 // FIXME: We're limiting to integer types here, but this should also work 796 // if we don't care about FP signed-zero. The use of SETLT with FP means 797 // that we don't care about NaNs. 798 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 799 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 800 return Op0; 801 } 802 break; 803 } 804 case ISD::SIGN_EXTEND_INREG: { 805 // If none of the extended bits are demanded, eliminate the sextinreg. 806 SDValue Op0 = Op.getOperand(0); 807 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 808 unsigned ExBits = ExVT.getScalarSizeInBits(); 809 if (DemandedBits.getActiveBits() <= ExBits) 810 return Op0; 811 // If the input is already sign extended, just drop the extension. 812 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 813 if (NumSignBits >= (BitWidth - ExBits + 1)) 814 return Op0; 815 break; 816 } 817 case ISD::ANY_EXTEND_VECTOR_INREG: 818 case ISD::SIGN_EXTEND_VECTOR_INREG: 819 case ISD::ZERO_EXTEND_VECTOR_INREG: { 820 // If we only want the lowest element and none of extended bits, then we can 821 // return the bitcasted source vector. 822 SDValue Src = Op.getOperand(0); 823 EVT SrcVT = Src.getValueType(); 824 EVT DstVT = Op.getValueType(); 825 if (IsLE && DemandedElts == 1 && 826 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 827 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 828 return DAG.getBitcast(DstVT, Src); 829 } 830 break; 831 } 832 case ISD::INSERT_VECTOR_ELT: { 833 // If we don't demand the inserted element, return the base vector. 834 SDValue Vec = Op.getOperand(0); 835 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 836 EVT VecVT = Vec.getValueType(); 837 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 838 !DemandedElts[CIdx->getZExtValue()]) 839 return Vec; 840 break; 841 } 842 case ISD::INSERT_SUBVECTOR: { 843 SDValue Vec = Op.getOperand(0); 844 SDValue Sub = Op.getOperand(1); 845 uint64_t Idx = Op.getConstantOperandVal(2); 846 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 847 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 848 // If we don't demand the inserted subvector, return the base vector. 849 if (DemandedSubElts == 0) 850 return Vec; 851 // If this simply widens the lowest subvector, see if we can do it earlier. 852 if (Idx == 0 && Vec.isUndef()) { 853 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 854 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 855 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 856 Op.getOperand(0), NewSub, Op.getOperand(2)); 857 } 858 break; 859 } 860 case ISD::VECTOR_SHUFFLE: { 861 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 862 863 // If all the demanded elts are from one operand and are inline, 864 // then we can use the operand directly. 865 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 866 for (unsigned i = 0; i != NumElts; ++i) { 867 int M = ShuffleMask[i]; 868 if (M < 0 || !DemandedElts[i]) 869 continue; 870 AllUndef = false; 871 IdentityLHS &= (M == (int)i); 872 IdentityRHS &= ((M - NumElts) == i); 873 } 874 875 if (AllUndef) 876 return DAG.getUNDEF(Op.getValueType()); 877 if (IdentityLHS) 878 return Op.getOperand(0); 879 if (IdentityRHS) 880 return Op.getOperand(1); 881 break; 882 } 883 default: 884 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 885 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 886 Op, DemandedBits, DemandedElts, DAG, Depth)) 887 return V; 888 break; 889 } 890 return SDValue(); 891 } 892 893 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 894 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 895 unsigned Depth) const { 896 EVT VT = Op.getValueType(); 897 APInt DemandedElts = VT.isVector() 898 ? APInt::getAllOnes(VT.getVectorNumElements()) 899 : APInt(1, 1); 900 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 901 Depth); 902 } 903 904 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 905 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 906 unsigned Depth) const { 907 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 908 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 909 Depth); 910 } 911 912 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 913 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 914 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG, 915 const TargetLowering &TLI, 916 const APInt &DemandedBits, 917 const APInt &DemandedElts, 918 unsigned Depth) { 919 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 920 "SRL or SRA node is required here!"); 921 // Is the right shift using an immediate value of 1? 922 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 923 if (!N1C || !N1C->isOne()) 924 return SDValue(); 925 926 // We are looking for an avgfloor 927 // add(ext, ext) 928 // or one of these as a avgceil 929 // add(add(ext, ext), 1) 930 // add(add(ext, 1), ext) 931 // add(ext, add(ext, 1)) 932 SDValue Add = Op.getOperand(0); 933 if (Add.getOpcode() != ISD::ADD) 934 return SDValue(); 935 936 SDValue ExtOpA = Add.getOperand(0); 937 SDValue ExtOpB = Add.getOperand(1); 938 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) { 939 ConstantSDNode *ConstOp; 940 if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) && 941 ConstOp->isOne()) { 942 ExtOpA = Op2; 943 ExtOpB = Op3; 944 return true; 945 } 946 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 947 ConstOp->isOne()) { 948 ExtOpA = Op1; 949 ExtOpB = Op3; 950 return true; 951 } 952 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 953 ConstOp->isOne()) { 954 ExtOpA = Op1; 955 ExtOpB = Op2; 956 return true; 957 } 958 return false; 959 }; 960 bool IsCeil = 961 (ExtOpA.getOpcode() == ISD::ADD && 962 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) || 963 (ExtOpB.getOpcode() == ISD::ADD && 964 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA)); 965 966 // If the shift is signed (sra): 967 // - Needs >= 2 sign bit for both operands. 968 // - Needs >= 2 zero bits. 969 // If the shift is unsigned (srl): 970 // - Needs >= 1 zero bit for both operands. 971 // - Needs 1 demanded bit zero and >= 2 sign bits. 972 unsigned ShiftOpc = Op.getOpcode(); 973 bool IsSigned = false; 974 unsigned KnownBits; 975 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 976 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 977 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 978 unsigned NumZeroA = 979 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 980 unsigned NumZeroB = 981 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 982 unsigned NumZero = std::min(NumZeroA, NumZeroB); 983 984 switch (ShiftOpc) { 985 default: 986 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 987 case ISD::SRA: { 988 if (NumZero >= 2 && NumSigned < NumZero) { 989 IsSigned = false; 990 KnownBits = NumZero; 991 break; 992 } 993 if (NumSigned >= 1) { 994 IsSigned = true; 995 KnownBits = NumSigned; 996 break; 997 } 998 return SDValue(); 999 } 1000 case ISD::SRL: { 1001 if (NumZero >= 1 && NumSigned < NumZero) { 1002 IsSigned = false; 1003 KnownBits = NumZero; 1004 break; 1005 } 1006 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1007 IsSigned = true; 1008 KnownBits = NumSigned; 1009 break; 1010 } 1011 return SDValue(); 1012 } 1013 } 1014 1015 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1016 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1017 1018 // Find the smallest power-2 type that is legal for this vector size and 1019 // operation, given the original type size and the number of known sign/zero 1020 // bits. 1021 EVT VT = Op.getValueType(); 1022 unsigned MinWidth = 1023 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1024 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth)); 1025 if (VT.isVector()) 1026 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1027 if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT)) 1028 return SDValue(); 1029 1030 SDLoc DL(Op); 1031 SDValue ResultAVG = 1032 DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA), 1033 DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB)); 1034 return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT, 1035 ResultAVG); 1036 } 1037 1038 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1039 /// result of Op are ever used downstream. If we can use this information to 1040 /// simplify Op, create a new simplified DAG node and return true, returning the 1041 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1042 /// return a mask of Known bits for the expression (used to simplify the 1043 /// caller). The Known bits may only be accurate for those bits in the 1044 /// OriginalDemandedBits and OriginalDemandedElts. 1045 bool TargetLowering::SimplifyDemandedBits( 1046 SDValue Op, const APInt &OriginalDemandedBits, 1047 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1048 unsigned Depth, bool AssumeSingleUse) const { 1049 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1050 assert(Op.getScalarValueSizeInBits() == BitWidth && 1051 "Mask size mismatches value type size!"); 1052 1053 // Don't know anything. 1054 Known = KnownBits(BitWidth); 1055 1056 // TODO: We can probably do more work on calculating the known bits and 1057 // simplifying the operations for scalable vectors, but for now we just 1058 // bail out. 1059 if (Op.getValueType().isScalableVector()) 1060 return false; 1061 1062 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1063 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1064 assert((!Op.getValueType().isVector() || 1065 NumElts == Op.getValueType().getVectorNumElements()) && 1066 "Unexpected vector size"); 1067 1068 APInt DemandedBits = OriginalDemandedBits; 1069 APInt DemandedElts = OriginalDemandedElts; 1070 SDLoc dl(Op); 1071 auto &DL = TLO.DAG.getDataLayout(); 1072 1073 // Undef operand. 1074 if (Op.isUndef()) 1075 return false; 1076 1077 if (Op.getOpcode() == ISD::Constant) { 1078 // We know all of the bits for a constant! 1079 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 1080 return false; 1081 } 1082 1083 if (Op.getOpcode() == ISD::ConstantFP) { 1084 // We know all of the bits for a floating point constant! 1085 Known = KnownBits::makeConstant( 1086 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1087 return false; 1088 } 1089 1090 // Other users may use these bits. 1091 EVT VT = Op.getValueType(); 1092 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 1093 if (Depth != 0) { 1094 // If not at the root, Just compute the Known bits to 1095 // simplify things downstream. 1096 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1097 return false; 1098 } 1099 // If this is the root being simplified, allow it to have multiple uses, 1100 // just set the DemandedBits/Elts to all bits. 1101 DemandedBits = APInt::getAllOnes(BitWidth); 1102 DemandedElts = APInt::getAllOnes(NumElts); 1103 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1104 // Not demanding any bits/elts from Op. 1105 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1106 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1107 // Limit search depth. 1108 return false; 1109 } 1110 1111 KnownBits Known2; 1112 switch (Op.getOpcode()) { 1113 case ISD::TargetConstant: 1114 llvm_unreachable("Can't simplify this node"); 1115 case ISD::SCALAR_TO_VECTOR: { 1116 if (!DemandedElts[0]) 1117 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1118 1119 KnownBits SrcKnown; 1120 SDValue Src = Op.getOperand(0); 1121 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1122 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth); 1123 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1124 return true; 1125 1126 // Upper elements are undef, so only get the knownbits if we just demand 1127 // the bottom element. 1128 if (DemandedElts == 1) 1129 Known = SrcKnown.anyextOrTrunc(BitWidth); 1130 break; 1131 } 1132 case ISD::BUILD_VECTOR: 1133 // Collect the known bits that are shared by every demanded element. 1134 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1135 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1136 return false; // Don't fall through, will infinitely loop. 1137 case ISD::LOAD: { 1138 auto *LD = cast<LoadSDNode>(Op); 1139 if (getTargetConstantFromLoad(LD)) { 1140 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1141 return false; // Don't fall through, will infinitely loop. 1142 } 1143 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1144 // If this is a ZEXTLoad and we are looking at the loaded value. 1145 EVT MemVT = LD->getMemoryVT(); 1146 unsigned MemBits = MemVT.getScalarSizeInBits(); 1147 Known.Zero.setBitsFrom(MemBits); 1148 return false; // Don't fall through, will infinitely loop. 1149 } 1150 break; 1151 } 1152 case ISD::INSERT_VECTOR_ELT: { 1153 SDValue Vec = Op.getOperand(0); 1154 SDValue Scl = Op.getOperand(1); 1155 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1156 EVT VecVT = Vec.getValueType(); 1157 1158 // If index isn't constant, assume we need all vector elements AND the 1159 // inserted element. 1160 APInt DemandedVecElts(DemandedElts); 1161 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1162 unsigned Idx = CIdx->getZExtValue(); 1163 DemandedVecElts.clearBit(Idx); 1164 1165 // Inserted element is not required. 1166 if (!DemandedElts[Idx]) 1167 return TLO.CombineTo(Op, Vec); 1168 } 1169 1170 KnownBits KnownScl; 1171 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1172 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1173 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1174 return true; 1175 1176 Known = KnownScl.anyextOrTrunc(BitWidth); 1177 1178 KnownBits KnownVec; 1179 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1180 Depth + 1)) 1181 return true; 1182 1183 if (!!DemandedVecElts) 1184 Known = KnownBits::commonBits(Known, KnownVec); 1185 1186 return false; 1187 } 1188 case ISD::INSERT_SUBVECTOR: { 1189 // Demand any elements from the subvector and the remainder from the src its 1190 // inserted into. 1191 SDValue Src = Op.getOperand(0); 1192 SDValue Sub = Op.getOperand(1); 1193 uint64_t Idx = Op.getConstantOperandVal(2); 1194 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1195 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1196 APInt DemandedSrcElts = DemandedElts; 1197 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1198 1199 KnownBits KnownSub, KnownSrc; 1200 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1201 Depth + 1)) 1202 return true; 1203 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1204 Depth + 1)) 1205 return true; 1206 1207 Known.Zero.setAllBits(); 1208 Known.One.setAllBits(); 1209 if (!!DemandedSubElts) 1210 Known = KnownBits::commonBits(Known, KnownSub); 1211 if (!!DemandedSrcElts) 1212 Known = KnownBits::commonBits(Known, KnownSrc); 1213 1214 // Attempt to avoid multi-use src if we don't need anything from it. 1215 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1216 !DemandedSrcElts.isAllOnes()) { 1217 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1218 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1219 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1220 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1221 if (NewSub || NewSrc) { 1222 NewSub = NewSub ? NewSub : Sub; 1223 NewSrc = NewSrc ? NewSrc : Src; 1224 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1225 Op.getOperand(2)); 1226 return TLO.CombineTo(Op, NewOp); 1227 } 1228 } 1229 break; 1230 } 1231 case ISD::EXTRACT_SUBVECTOR: { 1232 // Offset the demanded elts by the subvector index. 1233 SDValue Src = Op.getOperand(0); 1234 if (Src.getValueType().isScalableVector()) 1235 break; 1236 uint64_t Idx = Op.getConstantOperandVal(1); 1237 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1238 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 1239 1240 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1241 Depth + 1)) 1242 return true; 1243 1244 // Attempt to avoid multi-use src if we don't need anything from it. 1245 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1246 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1247 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1248 if (DemandedSrc) { 1249 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1250 Op.getOperand(1)); 1251 return TLO.CombineTo(Op, NewOp); 1252 } 1253 } 1254 break; 1255 } 1256 case ISD::CONCAT_VECTORS: { 1257 Known.Zero.setAllBits(); 1258 Known.One.setAllBits(); 1259 EVT SubVT = Op.getOperand(0).getValueType(); 1260 unsigned NumSubVecs = Op.getNumOperands(); 1261 unsigned NumSubElts = SubVT.getVectorNumElements(); 1262 for (unsigned i = 0; i != NumSubVecs; ++i) { 1263 APInt DemandedSubElts = 1264 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1265 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1266 Known2, TLO, Depth + 1)) 1267 return true; 1268 // Known bits are shared by every demanded subvector element. 1269 if (!!DemandedSubElts) 1270 Known = KnownBits::commonBits(Known, Known2); 1271 } 1272 break; 1273 } 1274 case ISD::VECTOR_SHUFFLE: { 1275 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1276 1277 // Collect demanded elements from shuffle operands.. 1278 APInt DemandedLHS(NumElts, 0); 1279 APInt DemandedRHS(NumElts, 0); 1280 for (unsigned i = 0; i != NumElts; ++i) { 1281 if (!DemandedElts[i]) 1282 continue; 1283 int M = ShuffleMask[i]; 1284 if (M < 0) { 1285 // For UNDEF elements, we don't know anything about the common state of 1286 // the shuffle result. 1287 DemandedLHS.clearAllBits(); 1288 DemandedRHS.clearAllBits(); 1289 break; 1290 } 1291 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1292 if (M < (int)NumElts) 1293 DemandedLHS.setBit(M); 1294 else 1295 DemandedRHS.setBit(M - NumElts); 1296 } 1297 1298 if (!!DemandedLHS || !!DemandedRHS) { 1299 SDValue Op0 = Op.getOperand(0); 1300 SDValue Op1 = Op.getOperand(1); 1301 1302 Known.Zero.setAllBits(); 1303 Known.One.setAllBits(); 1304 if (!!DemandedLHS) { 1305 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1306 Depth + 1)) 1307 return true; 1308 Known = KnownBits::commonBits(Known, Known2); 1309 } 1310 if (!!DemandedRHS) { 1311 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1312 Depth + 1)) 1313 return true; 1314 Known = KnownBits::commonBits(Known, Known2); 1315 } 1316 1317 // Attempt to avoid multi-use ops if we don't need anything from them. 1318 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1319 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1320 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1321 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1322 if (DemandedOp0 || DemandedOp1) { 1323 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1324 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1325 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1326 return TLO.CombineTo(Op, NewOp); 1327 } 1328 } 1329 break; 1330 } 1331 case ISD::AND: { 1332 SDValue Op0 = Op.getOperand(0); 1333 SDValue Op1 = Op.getOperand(1); 1334 1335 // If the RHS is a constant, check to see if the LHS would be zero without 1336 // using the bits from the RHS. Below, we use knowledge about the RHS to 1337 // simplify the LHS, here we're using information from the LHS to simplify 1338 // the RHS. 1339 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1340 // Do not increment Depth here; that can cause an infinite loop. 1341 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1342 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1343 if ((LHSKnown.Zero & DemandedBits) == 1344 (~RHSC->getAPIntValue() & DemandedBits)) 1345 return TLO.CombineTo(Op, Op0); 1346 1347 // If any of the set bits in the RHS are known zero on the LHS, shrink 1348 // the constant. 1349 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1350 DemandedElts, TLO)) 1351 return true; 1352 1353 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1354 // constant, but if this 'and' is only clearing bits that were just set by 1355 // the xor, then this 'and' can be eliminated by shrinking the mask of 1356 // the xor. For example, for a 32-bit X: 1357 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1358 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1359 LHSKnown.One == ~RHSC->getAPIntValue()) { 1360 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1361 return TLO.CombineTo(Op, Xor); 1362 } 1363 } 1364 1365 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1366 Depth + 1)) 1367 return true; 1368 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1369 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1370 Known2, TLO, Depth + 1)) 1371 return true; 1372 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1373 1374 // Attempt to avoid multi-use ops if we don't need anything from them. 1375 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1376 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1377 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1378 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1379 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1380 if (DemandedOp0 || DemandedOp1) { 1381 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1382 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1383 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1384 return TLO.CombineTo(Op, NewOp); 1385 } 1386 } 1387 1388 // If all of the demanded bits are known one on one side, return the other. 1389 // These bits cannot contribute to the result of the 'and'. 1390 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1391 return TLO.CombineTo(Op, Op0); 1392 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1393 return TLO.CombineTo(Op, Op1); 1394 // If all of the demanded bits in the inputs are known zeros, return zero. 1395 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1396 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1397 // If the RHS is a constant, see if we can simplify it. 1398 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1399 TLO)) 1400 return true; 1401 // If the operation can be done in a smaller type, do so. 1402 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1403 return true; 1404 1405 Known &= Known2; 1406 break; 1407 } 1408 case ISD::OR: { 1409 SDValue Op0 = Op.getOperand(0); 1410 SDValue Op1 = Op.getOperand(1); 1411 1412 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1413 Depth + 1)) 1414 return true; 1415 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1416 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1417 Known2, TLO, Depth + 1)) 1418 return true; 1419 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1420 1421 // Attempt to avoid multi-use ops if we don't need anything from them. 1422 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1423 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1424 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1425 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1426 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1427 if (DemandedOp0 || DemandedOp1) { 1428 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1429 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1430 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1431 return TLO.CombineTo(Op, NewOp); 1432 } 1433 } 1434 1435 // If all of the demanded bits are known zero on one side, return the other. 1436 // These bits cannot contribute to the result of the 'or'. 1437 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1438 return TLO.CombineTo(Op, Op0); 1439 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1440 return TLO.CombineTo(Op, Op1); 1441 // If the RHS is a constant, see if we can simplify it. 1442 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1443 return true; 1444 // If the operation can be done in a smaller type, do so. 1445 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1446 return true; 1447 1448 Known |= Known2; 1449 break; 1450 } 1451 case ISD::XOR: { 1452 SDValue Op0 = Op.getOperand(0); 1453 SDValue Op1 = Op.getOperand(1); 1454 1455 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1456 Depth + 1)) 1457 return true; 1458 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1459 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1460 Depth + 1)) 1461 return true; 1462 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1463 1464 // Attempt to avoid multi-use ops if we don't need anything from them. 1465 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1466 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1467 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1468 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1469 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1470 if (DemandedOp0 || DemandedOp1) { 1471 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1472 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1473 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1474 return TLO.CombineTo(Op, NewOp); 1475 } 1476 } 1477 1478 // If all of the demanded bits are known zero on one side, return the other. 1479 // These bits cannot contribute to the result of the 'xor'. 1480 if (DemandedBits.isSubsetOf(Known.Zero)) 1481 return TLO.CombineTo(Op, Op0); 1482 if (DemandedBits.isSubsetOf(Known2.Zero)) 1483 return TLO.CombineTo(Op, Op1); 1484 // If the operation can be done in a smaller type, do so. 1485 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1486 return true; 1487 1488 // If all of the unknown bits are known to be zero on one side or the other 1489 // turn this into an *inclusive* or. 1490 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1491 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1492 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1493 1494 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1495 if (C) { 1496 // If one side is a constant, and all of the set bits in the constant are 1497 // also known set on the other side, turn this into an AND, as we know 1498 // the bits will be cleared. 1499 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1500 // NB: it is okay if more bits are known than are requested 1501 if (C->getAPIntValue() == Known2.One) { 1502 SDValue ANDC = 1503 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1504 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1505 } 1506 1507 // If the RHS is a constant, see if we can change it. Don't alter a -1 1508 // constant because that's a 'not' op, and that is better for combining 1509 // and codegen. 1510 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1511 // We're flipping all demanded bits. Flip the undemanded bits too. 1512 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1513 return TLO.CombineTo(Op, New); 1514 } 1515 } 1516 1517 // If we can't turn this into a 'not', try to shrink the constant. 1518 if (!C || !C->isAllOnes()) 1519 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1520 return true; 1521 1522 Known ^= Known2; 1523 break; 1524 } 1525 case ISD::SELECT: 1526 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1527 Depth + 1)) 1528 return true; 1529 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1530 Depth + 1)) 1531 return true; 1532 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1533 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1534 1535 // If the operands are constants, see if we can simplify them. 1536 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1537 return true; 1538 1539 // Only known if known in both the LHS and RHS. 1540 Known = KnownBits::commonBits(Known, Known2); 1541 break; 1542 case ISD::VSELECT: 1543 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1544 Known, TLO, Depth + 1)) 1545 return true; 1546 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1547 Known2, TLO, Depth + 1)) 1548 return true; 1549 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1550 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1551 1552 // Only known if known in both the LHS and RHS. 1553 Known = KnownBits::commonBits(Known, Known2); 1554 break; 1555 case ISD::SELECT_CC: 1556 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1557 Depth + 1)) 1558 return true; 1559 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1560 Depth + 1)) 1561 return true; 1562 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1563 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1564 1565 // If the operands are constants, see if we can simplify them. 1566 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1567 return true; 1568 1569 // Only known if known in both the LHS and RHS. 1570 Known = KnownBits::commonBits(Known, Known2); 1571 break; 1572 case ISD::SETCC: { 1573 SDValue Op0 = Op.getOperand(0); 1574 SDValue Op1 = Op.getOperand(1); 1575 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1576 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1577 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1578 // -1, we may be able to bypass the setcc. 1579 if (DemandedBits.isSignMask() && 1580 Op0.getScalarValueSizeInBits() == BitWidth && 1581 getBooleanContents(Op0.getValueType()) == 1582 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1583 // If we're testing X < 0, then this compare isn't needed - just use X! 1584 // FIXME: We're limiting to integer types here, but this should also work 1585 // if we don't care about FP signed-zero. The use of SETLT with FP means 1586 // that we don't care about NaNs. 1587 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1588 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1589 return TLO.CombineTo(Op, Op0); 1590 1591 // TODO: Should we check for other forms of sign-bit comparisons? 1592 // Examples: X <= -1, X >= 0 1593 } 1594 if (getBooleanContents(Op0.getValueType()) == 1595 TargetLowering::ZeroOrOneBooleanContent && 1596 BitWidth > 1) 1597 Known.Zero.setBitsFrom(1); 1598 break; 1599 } 1600 case ISD::SHL: { 1601 SDValue Op0 = Op.getOperand(0); 1602 SDValue Op1 = Op.getOperand(1); 1603 EVT ShiftVT = Op1.getValueType(); 1604 1605 if (const APInt *SA = 1606 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1607 unsigned ShAmt = SA->getZExtValue(); 1608 if (ShAmt == 0) 1609 return TLO.CombineTo(Op, Op0); 1610 1611 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1612 // single shift. We can do this if the bottom bits (which are shifted 1613 // out) are never demanded. 1614 // TODO - support non-uniform vector amounts. 1615 if (Op0.getOpcode() == ISD::SRL) { 1616 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1617 if (const APInt *SA2 = 1618 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1619 unsigned C1 = SA2->getZExtValue(); 1620 unsigned Opc = ISD::SHL; 1621 int Diff = ShAmt - C1; 1622 if (Diff < 0) { 1623 Diff = -Diff; 1624 Opc = ISD::SRL; 1625 } 1626 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1627 return TLO.CombineTo( 1628 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1629 } 1630 } 1631 } 1632 1633 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1634 // are not demanded. This will likely allow the anyext to be folded away. 1635 // TODO - support non-uniform vector amounts. 1636 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1637 SDValue InnerOp = Op0.getOperand(0); 1638 EVT InnerVT = InnerOp.getValueType(); 1639 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1640 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1641 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1642 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1643 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1644 ShTy = InnerVT; 1645 SDValue NarrowShl = 1646 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1647 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1648 return TLO.CombineTo( 1649 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1650 } 1651 1652 // Repeat the SHL optimization above in cases where an extension 1653 // intervenes: (shl (anyext (shr x, c1)), c2) to 1654 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1655 // aren't demanded (as above) and that the shifted upper c1 bits of 1656 // x aren't demanded. 1657 // TODO - support non-uniform vector amounts. 1658 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1659 InnerOp.hasOneUse()) { 1660 if (const APInt *SA2 = 1661 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1662 unsigned InnerShAmt = SA2->getZExtValue(); 1663 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1664 DemandedBits.getActiveBits() <= 1665 (InnerBits - InnerShAmt + ShAmt) && 1666 DemandedBits.countTrailingZeros() >= ShAmt) { 1667 SDValue NewSA = 1668 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1669 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1670 InnerOp.getOperand(0)); 1671 return TLO.CombineTo( 1672 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1673 } 1674 } 1675 } 1676 } 1677 1678 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1679 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1680 Depth + 1)) 1681 return true; 1682 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1683 Known.Zero <<= ShAmt; 1684 Known.One <<= ShAmt; 1685 // low bits known zero. 1686 Known.Zero.setLowBits(ShAmt); 1687 1688 // Attempt to avoid multi-use ops if we don't need anything from them. 1689 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1690 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1691 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1692 if (DemandedOp0) { 1693 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1); 1694 return TLO.CombineTo(Op, NewOp); 1695 } 1696 } 1697 1698 // Try shrinking the operation as long as the shift amount will still be 1699 // in range. 1700 if ((ShAmt < DemandedBits.getActiveBits()) && 1701 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1702 return true; 1703 } 1704 1705 // If we are only demanding sign bits then we can use the shift source 1706 // directly. 1707 if (const APInt *MaxSA = 1708 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1709 unsigned ShAmt = MaxSA->getZExtValue(); 1710 unsigned NumSignBits = 1711 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1712 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1713 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1714 return TLO.CombineTo(Op, Op0); 1715 } 1716 break; 1717 } 1718 case ISD::SRL: { 1719 SDValue Op0 = Op.getOperand(0); 1720 SDValue Op1 = Op.getOperand(1); 1721 EVT ShiftVT = Op1.getValueType(); 1722 1723 // Try to match AVG patterns. 1724 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1725 DemandedElts, Depth + 1)) 1726 return TLO.CombineTo(Op, AVG); 1727 1728 if (const APInt *SA = 1729 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1730 unsigned ShAmt = SA->getZExtValue(); 1731 if (ShAmt == 0) 1732 return TLO.CombineTo(Op, Op0); 1733 1734 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1735 // single shift. We can do this if the top bits (which are shifted out) 1736 // are never demanded. 1737 // TODO - support non-uniform vector amounts. 1738 if (Op0.getOpcode() == ISD::SHL) { 1739 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1740 if (const APInt *SA2 = 1741 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1742 unsigned C1 = SA2->getZExtValue(); 1743 unsigned Opc = ISD::SRL; 1744 int Diff = ShAmt - C1; 1745 if (Diff < 0) { 1746 Diff = -Diff; 1747 Opc = ISD::SHL; 1748 } 1749 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1750 return TLO.CombineTo( 1751 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1752 } 1753 } 1754 } 1755 1756 APInt InDemandedMask = (DemandedBits << ShAmt); 1757 1758 // If the shift is exact, then it does demand the low bits (and knows that 1759 // they are zero). 1760 if (Op->getFlags().hasExact()) 1761 InDemandedMask.setLowBits(ShAmt); 1762 1763 // Compute the new bits that are at the top now. 1764 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1765 Depth + 1)) 1766 return true; 1767 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1768 Known.Zero.lshrInPlace(ShAmt); 1769 Known.One.lshrInPlace(ShAmt); 1770 // High bits known zero. 1771 Known.Zero.setHighBits(ShAmt); 1772 } 1773 break; 1774 } 1775 case ISD::SRA: { 1776 SDValue Op0 = Op.getOperand(0); 1777 SDValue Op1 = Op.getOperand(1); 1778 EVT ShiftVT = Op1.getValueType(); 1779 1780 // If we only want bits that already match the signbit then we don't need 1781 // to shift. 1782 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1783 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1784 NumHiDemandedBits) 1785 return TLO.CombineTo(Op, Op0); 1786 1787 // If this is an arithmetic shift right and only the low-bit is set, we can 1788 // always convert this into a logical shr, even if the shift amount is 1789 // variable. The low bit of the shift cannot be an input sign bit unless 1790 // the shift amount is >= the size of the datatype, which is undefined. 1791 if (DemandedBits.isOne()) 1792 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1793 1794 // Try to match AVG patterns. 1795 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1796 DemandedElts, Depth + 1)) 1797 return TLO.CombineTo(Op, AVG); 1798 1799 if (const APInt *SA = 1800 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1801 unsigned ShAmt = SA->getZExtValue(); 1802 if (ShAmt == 0) 1803 return TLO.CombineTo(Op, Op0); 1804 1805 APInt InDemandedMask = (DemandedBits << ShAmt); 1806 1807 // If the shift is exact, then it does demand the low bits (and knows that 1808 // they are zero). 1809 if (Op->getFlags().hasExact()) 1810 InDemandedMask.setLowBits(ShAmt); 1811 1812 // If any of the demanded bits are produced by the sign extension, we also 1813 // demand the input sign bit. 1814 if (DemandedBits.countLeadingZeros() < ShAmt) 1815 InDemandedMask.setSignBit(); 1816 1817 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1818 Depth + 1)) 1819 return true; 1820 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1821 Known.Zero.lshrInPlace(ShAmt); 1822 Known.One.lshrInPlace(ShAmt); 1823 1824 // If the input sign bit is known to be zero, or if none of the top bits 1825 // are demanded, turn this into an unsigned shift right. 1826 if (Known.Zero[BitWidth - ShAmt - 1] || 1827 DemandedBits.countLeadingZeros() >= ShAmt) { 1828 SDNodeFlags Flags; 1829 Flags.setExact(Op->getFlags().hasExact()); 1830 return TLO.CombineTo( 1831 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1832 } 1833 1834 int Log2 = DemandedBits.exactLogBase2(); 1835 if (Log2 >= 0) { 1836 // The bit must come from the sign. 1837 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1838 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1839 } 1840 1841 if (Known.One[BitWidth - ShAmt - 1]) 1842 // New bits are known one. 1843 Known.One.setHighBits(ShAmt); 1844 1845 // Attempt to avoid multi-use ops if we don't need anything from them. 1846 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1847 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1848 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1849 if (DemandedOp0) { 1850 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1851 return TLO.CombineTo(Op, NewOp); 1852 } 1853 } 1854 } 1855 break; 1856 } 1857 case ISD::FSHL: 1858 case ISD::FSHR: { 1859 SDValue Op0 = Op.getOperand(0); 1860 SDValue Op1 = Op.getOperand(1); 1861 SDValue Op2 = Op.getOperand(2); 1862 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1863 1864 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1865 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1866 1867 // For fshl, 0-shift returns the 1st arg. 1868 // For fshr, 0-shift returns the 2nd arg. 1869 if (Amt == 0) { 1870 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1871 Known, TLO, Depth + 1)) 1872 return true; 1873 break; 1874 } 1875 1876 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1877 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1878 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1879 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1880 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1881 Depth + 1)) 1882 return true; 1883 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1884 Depth + 1)) 1885 return true; 1886 1887 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1888 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1889 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1890 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1891 Known.One |= Known2.One; 1892 Known.Zero |= Known2.Zero; 1893 1894 // Attempt to avoid multi-use ops if we don't need anything from them. 1895 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() || 1896 !DemandedElts.isAllOnes()) { 1897 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1898 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1); 1899 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1900 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1); 1901 if (DemandedOp0 || DemandedOp1) { 1902 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0; 1903 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1; 1904 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0, 1905 DemandedOp1, Op2); 1906 return TLO.CombineTo(Op, NewOp); 1907 } 1908 } 1909 } 1910 1911 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1912 if (isPowerOf2_32(BitWidth)) { 1913 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1914 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1915 Known2, TLO, Depth + 1)) 1916 return true; 1917 } 1918 break; 1919 } 1920 case ISD::ROTL: 1921 case ISD::ROTR: { 1922 SDValue Op0 = Op.getOperand(0); 1923 SDValue Op1 = Op.getOperand(1); 1924 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1925 1926 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1927 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1928 return TLO.CombineTo(Op, Op0); 1929 1930 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1931 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1932 unsigned RevAmt = BitWidth - Amt; 1933 1934 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 1935 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 1936 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 1937 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1938 Depth + 1)) 1939 return true; 1940 1941 // rot*(x, 0) --> x 1942 if (Amt == 0) 1943 return TLO.CombineTo(Op, Op0); 1944 1945 // See if we don't demand either half of the rotated bits. 1946 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 1947 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 1948 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 1949 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 1950 } 1951 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 1952 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 1953 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 1954 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1955 } 1956 } 1957 1958 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1959 if (isPowerOf2_32(BitWidth)) { 1960 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1961 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1962 Depth + 1)) 1963 return true; 1964 } 1965 break; 1966 } 1967 case ISD::UMIN: { 1968 // Check if one arg is always less than (or equal) to the other arg. 1969 SDValue Op0 = Op.getOperand(0); 1970 SDValue Op1 = Op.getOperand(1); 1971 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1972 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1973 Known = KnownBits::umin(Known0, Known1); 1974 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1975 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1976 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1977 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1978 break; 1979 } 1980 case ISD::UMAX: { 1981 // Check if one arg is always greater than (or equal) to the other arg. 1982 SDValue Op0 = Op.getOperand(0); 1983 SDValue Op1 = Op.getOperand(1); 1984 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1985 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1986 Known = KnownBits::umax(Known0, Known1); 1987 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1988 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1989 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1990 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1991 break; 1992 } 1993 case ISD::BITREVERSE: { 1994 SDValue Src = Op.getOperand(0); 1995 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1996 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1997 Depth + 1)) 1998 return true; 1999 Known.One = Known2.One.reverseBits(); 2000 Known.Zero = Known2.Zero.reverseBits(); 2001 break; 2002 } 2003 case ISD::BSWAP: { 2004 SDValue Src = Op.getOperand(0); 2005 2006 // If the only bits demanded come from one byte of the bswap result, 2007 // just shift the input byte into position to eliminate the bswap. 2008 unsigned NLZ = DemandedBits.countLeadingZeros(); 2009 unsigned NTZ = DemandedBits.countTrailingZeros(); 2010 2011 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 2012 // we need all the bits down to bit 8. Likewise, round NLZ. If we 2013 // have 14 leading zeros, round to 8. 2014 NLZ = alignDown(NLZ, 8); 2015 NTZ = alignDown(NTZ, 8); 2016 // If we need exactly one byte, we can do this transformation. 2017 if (BitWidth - NLZ - NTZ == 8) { 2018 // Replace this with either a left or right shift to get the byte into 2019 // the right place. 2020 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 2021 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 2022 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 2023 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 2024 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 2025 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 2026 return TLO.CombineTo(Op, NewOp); 2027 } 2028 } 2029 2030 APInt DemandedSrcBits = DemandedBits.byteSwap(); 2031 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2032 Depth + 1)) 2033 return true; 2034 Known.One = Known2.One.byteSwap(); 2035 Known.Zero = Known2.Zero.byteSwap(); 2036 break; 2037 } 2038 case ISD::CTPOP: { 2039 // If only 1 bit is demanded, replace with PARITY as long as we're before 2040 // op legalization. 2041 // FIXME: Limit to scalars for now. 2042 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2043 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2044 Op.getOperand(0))); 2045 2046 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2047 break; 2048 } 2049 case ISD::SIGN_EXTEND_INREG: { 2050 SDValue Op0 = Op.getOperand(0); 2051 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2052 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2053 2054 // If we only care about the highest bit, don't bother shifting right. 2055 if (DemandedBits.isSignMask()) { 2056 unsigned MinSignedBits = 2057 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2058 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2059 // However if the input is already sign extended we expect the sign 2060 // extension to be dropped altogether later and do not simplify. 2061 if (!AlreadySignExtended) { 2062 // Compute the correct shift amount type, which must be getShiftAmountTy 2063 // for scalar types after legalization. 2064 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 2065 getShiftAmountTy(VT, DL)); 2066 return TLO.CombineTo(Op, 2067 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2068 } 2069 } 2070 2071 // If none of the extended bits are demanded, eliminate the sextinreg. 2072 if (DemandedBits.getActiveBits() <= ExVTBits) 2073 return TLO.CombineTo(Op, Op0); 2074 2075 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2076 2077 // Since the sign extended bits are demanded, we know that the sign 2078 // bit is demanded. 2079 InputDemandedBits.setBit(ExVTBits - 1); 2080 2081 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO, 2082 Depth + 1)) 2083 return true; 2084 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2085 2086 // If the sign bit of the input is known set or clear, then we know the 2087 // top bits of the result. 2088 2089 // If the input sign bit is known zero, convert this into a zero extension. 2090 if (Known.Zero[ExVTBits - 1]) 2091 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2092 2093 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2094 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2095 Known.One.setBitsFrom(ExVTBits); 2096 Known.Zero &= Mask; 2097 } else { // Input sign bit unknown 2098 Known.Zero &= Mask; 2099 Known.One &= Mask; 2100 } 2101 break; 2102 } 2103 case ISD::BUILD_PAIR: { 2104 EVT HalfVT = Op.getOperand(0).getValueType(); 2105 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2106 2107 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2108 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2109 2110 KnownBits KnownLo, KnownHi; 2111 2112 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2113 return true; 2114 2115 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2116 return true; 2117 2118 Known.Zero = KnownLo.Zero.zext(BitWidth) | 2119 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 2120 2121 Known.One = KnownLo.One.zext(BitWidth) | 2122 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 2123 break; 2124 } 2125 case ISD::ZERO_EXTEND: 2126 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2127 SDValue Src = Op.getOperand(0); 2128 EVT SrcVT = Src.getValueType(); 2129 unsigned InBits = SrcVT.getScalarSizeInBits(); 2130 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2131 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2132 2133 // If none of the top bits are demanded, convert this into an any_extend. 2134 if (DemandedBits.getActiveBits() <= InBits) { 2135 // If we only need the non-extended bits of the bottom element 2136 // then we can just bitcast to the result. 2137 if (IsLE && IsVecInReg && DemandedElts == 1 && 2138 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2139 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2140 2141 unsigned Opc = 2142 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2143 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2144 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2145 } 2146 2147 APInt InDemandedBits = DemandedBits.trunc(InBits); 2148 APInt InDemandedElts = DemandedElts.zext(InElts); 2149 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2150 Depth + 1)) 2151 return true; 2152 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2153 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2154 Known = Known.zext(BitWidth); 2155 2156 // Attempt to avoid multi-use ops if we don't need anything from them. 2157 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2158 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2159 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2160 break; 2161 } 2162 case ISD::SIGN_EXTEND: 2163 case ISD::SIGN_EXTEND_VECTOR_INREG: { 2164 SDValue Src = Op.getOperand(0); 2165 EVT SrcVT = Src.getValueType(); 2166 unsigned InBits = SrcVT.getScalarSizeInBits(); 2167 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2168 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2169 2170 // If none of the top bits are demanded, convert this into an any_extend. 2171 if (DemandedBits.getActiveBits() <= InBits) { 2172 // If we only need the non-extended bits of the bottom element 2173 // then we can just bitcast to the result. 2174 if (IsLE && IsVecInReg && DemandedElts == 1 && 2175 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2176 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2177 2178 unsigned Opc = 2179 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2180 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2181 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2182 } 2183 2184 APInt InDemandedBits = DemandedBits.trunc(InBits); 2185 APInt InDemandedElts = DemandedElts.zext(InElts); 2186 2187 // Since some of the sign extended bits are demanded, we know that the sign 2188 // bit is demanded. 2189 InDemandedBits.setBit(InBits - 1); 2190 2191 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2192 Depth + 1)) 2193 return true; 2194 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2195 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2196 2197 // If the sign bit is known one, the top bits match. 2198 Known = Known.sext(BitWidth); 2199 2200 // If the sign bit is known zero, convert this to a zero extend. 2201 if (Known.isNonNegative()) { 2202 unsigned Opc = 2203 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2204 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2205 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2206 } 2207 2208 // Attempt to avoid multi-use ops if we don't need anything from them. 2209 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2210 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2211 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2212 break; 2213 } 2214 case ISD::ANY_EXTEND: 2215 case ISD::ANY_EXTEND_VECTOR_INREG: { 2216 SDValue Src = Op.getOperand(0); 2217 EVT SrcVT = Src.getValueType(); 2218 unsigned InBits = SrcVT.getScalarSizeInBits(); 2219 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2220 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2221 2222 // If we only need the bottom element then we can just bitcast. 2223 // TODO: Handle ANY_EXTEND? 2224 if (IsLE && IsVecInReg && DemandedElts == 1 && 2225 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2226 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2227 2228 APInt InDemandedBits = DemandedBits.trunc(InBits); 2229 APInt InDemandedElts = DemandedElts.zext(InElts); 2230 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2231 Depth + 1)) 2232 return true; 2233 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2234 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2235 Known = Known.anyext(BitWidth); 2236 2237 // Attempt to avoid multi-use ops if we don't need anything from them. 2238 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2239 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2240 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2241 break; 2242 } 2243 case ISD::TRUNCATE: { 2244 SDValue Src = Op.getOperand(0); 2245 2246 // Simplify the input, using demanded bit information, and compute the known 2247 // zero/one bits live out. 2248 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2249 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2250 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2251 Depth + 1)) 2252 return true; 2253 Known = Known.trunc(BitWidth); 2254 2255 // Attempt to avoid multi-use ops if we don't need anything from them. 2256 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2257 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2258 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2259 2260 // If the input is only used by this truncate, see if we can shrink it based 2261 // on the known demanded bits. 2262 if (Src.getNode()->hasOneUse()) { 2263 switch (Src.getOpcode()) { 2264 default: 2265 break; 2266 case ISD::SRL: 2267 // Shrink SRL by a constant if none of the high bits shifted in are 2268 // demanded. 2269 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2270 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2271 // undesirable. 2272 break; 2273 2274 const APInt *ShAmtC = 2275 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2276 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2277 break; 2278 uint64_t ShVal = ShAmtC->getZExtValue(); 2279 2280 APInt HighBits = 2281 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2282 HighBits.lshrInPlace(ShVal); 2283 HighBits = HighBits.trunc(BitWidth); 2284 2285 if (!(HighBits & DemandedBits)) { 2286 // None of the shifted in bits are needed. Add a truncate of the 2287 // shift input, then shift it. 2288 SDValue NewShAmt = TLO.DAG.getConstant( 2289 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2290 SDValue NewTrunc = 2291 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2292 return TLO.CombineTo( 2293 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2294 } 2295 break; 2296 } 2297 } 2298 2299 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2300 break; 2301 } 2302 case ISD::AssertZext: { 2303 // AssertZext demands all of the high bits, plus any of the low bits 2304 // demanded by its users. 2305 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2306 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2307 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2308 TLO, Depth + 1)) 2309 return true; 2310 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2311 2312 Known.Zero |= ~InMask; 2313 break; 2314 } 2315 case ISD::EXTRACT_VECTOR_ELT: { 2316 SDValue Src = Op.getOperand(0); 2317 SDValue Idx = Op.getOperand(1); 2318 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2319 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2320 2321 if (SrcEltCnt.isScalable()) 2322 return false; 2323 2324 // Demand the bits from every vector element without a constant index. 2325 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2326 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2327 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2328 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2329 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2330 2331 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2332 // anything about the extended bits. 2333 APInt DemandedSrcBits = DemandedBits; 2334 if (BitWidth > EltBitWidth) 2335 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2336 2337 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2338 Depth + 1)) 2339 return true; 2340 2341 // Attempt to avoid multi-use ops if we don't need anything from them. 2342 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2343 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2344 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2345 SDValue NewOp = 2346 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2347 return TLO.CombineTo(Op, NewOp); 2348 } 2349 } 2350 2351 Known = Known2; 2352 if (BitWidth > EltBitWidth) 2353 Known = Known.anyext(BitWidth); 2354 break; 2355 } 2356 case ISD::BITCAST: { 2357 SDValue Src = Op.getOperand(0); 2358 EVT SrcVT = Src.getValueType(); 2359 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2360 2361 // If this is an FP->Int bitcast and if the sign bit is the only 2362 // thing demanded, turn this into a FGETSIGN. 2363 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2364 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2365 SrcVT.isFloatingPoint()) { 2366 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2367 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2368 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2369 SrcVT != MVT::f128) { 2370 // Cannot eliminate/lower SHL for f128 yet. 2371 EVT Ty = OpVTLegal ? VT : MVT::i32; 2372 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2373 // place. We expect the SHL to be eliminated by other optimizations. 2374 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2375 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2376 if (!OpVTLegal && OpVTSizeInBits > 32) 2377 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2378 unsigned ShVal = Op.getValueSizeInBits() - 1; 2379 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2380 return TLO.CombineTo(Op, 2381 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2382 } 2383 } 2384 2385 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2386 // Demand the elt/bit if any of the original elts/bits are demanded. 2387 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2388 unsigned Scale = BitWidth / NumSrcEltBits; 2389 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2390 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2391 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2392 for (unsigned i = 0; i != Scale; ++i) { 2393 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2394 unsigned BitOffset = EltOffset * NumSrcEltBits; 2395 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2396 if (!Sub.isZero()) { 2397 DemandedSrcBits |= Sub; 2398 for (unsigned j = 0; j != NumElts; ++j) 2399 if (DemandedElts[j]) 2400 DemandedSrcElts.setBit((j * Scale) + i); 2401 } 2402 } 2403 2404 APInt KnownSrcUndef, KnownSrcZero; 2405 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2406 KnownSrcZero, TLO, Depth + 1)) 2407 return true; 2408 2409 KnownBits KnownSrcBits; 2410 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2411 KnownSrcBits, TLO, Depth + 1)) 2412 return true; 2413 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2414 // TODO - bigendian once we have test coverage. 2415 unsigned Scale = NumSrcEltBits / BitWidth; 2416 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2417 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2418 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2419 for (unsigned i = 0; i != NumElts; ++i) 2420 if (DemandedElts[i]) { 2421 unsigned Offset = (i % Scale) * BitWidth; 2422 DemandedSrcBits.insertBits(DemandedBits, Offset); 2423 DemandedSrcElts.setBit(i / Scale); 2424 } 2425 2426 if (SrcVT.isVector()) { 2427 APInt KnownSrcUndef, KnownSrcZero; 2428 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2429 KnownSrcZero, TLO, Depth + 1)) 2430 return true; 2431 } 2432 2433 KnownBits KnownSrcBits; 2434 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2435 KnownSrcBits, TLO, Depth + 1)) 2436 return true; 2437 } 2438 2439 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2440 // recursive call where Known may be useful to the caller. 2441 if (Depth > 0) { 2442 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2443 return false; 2444 } 2445 break; 2446 } 2447 case ISD::MUL: 2448 if (DemandedBits.isPowerOf2()) { 2449 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2450 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2451 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2452 unsigned CTZ = DemandedBits.countTrailingZeros(); 2453 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2454 if (C && C->getAPIntValue().countTrailingZeros() == CTZ) { 2455 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2456 SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy); 2457 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2458 return TLO.CombineTo(Op, Shl); 2459 } 2460 } 2461 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2462 // X * X is odd iff X is odd. 2463 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2464 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2465 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2466 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2467 return TLO.CombineTo(Op, And1); 2468 } 2469 LLVM_FALLTHROUGH; 2470 case ISD::ADD: 2471 case ISD::SUB: { 2472 // Add, Sub, and Mul don't demand any bits in positions beyond that 2473 // of the highest bit demanded of them. 2474 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2475 SDNodeFlags Flags = Op.getNode()->getFlags(); 2476 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2477 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2478 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2479 Depth + 1) || 2480 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2481 Depth + 1) || 2482 // See if the operation should be performed at a smaller bit width. 2483 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2484 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2485 // Disable the nsw and nuw flags. We can no longer guarantee that we 2486 // won't wrap after simplification. 2487 Flags.setNoSignedWrap(false); 2488 Flags.setNoUnsignedWrap(false); 2489 SDValue NewOp = 2490 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2491 return TLO.CombineTo(Op, NewOp); 2492 } 2493 return true; 2494 } 2495 2496 // Attempt to avoid multi-use ops if we don't need anything from them. 2497 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2498 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2499 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2500 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2501 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2502 if (DemandedOp0 || DemandedOp1) { 2503 Flags.setNoSignedWrap(false); 2504 Flags.setNoUnsignedWrap(false); 2505 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2506 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2507 SDValue NewOp = 2508 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2509 return TLO.CombineTo(Op, NewOp); 2510 } 2511 } 2512 2513 // If we have a constant operand, we may be able to turn it into -1 if we 2514 // do not demand the high bits. This can make the constant smaller to 2515 // encode, allow more general folding, or match specialized instruction 2516 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2517 // is probably not useful (and could be detrimental). 2518 ConstantSDNode *C = isConstOrConstSplat(Op1); 2519 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2520 if (C && !C->isAllOnes() && !C->isOne() && 2521 (C->getAPIntValue() | HighMask).isAllOnes()) { 2522 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2523 // Disable the nsw and nuw flags. We can no longer guarantee that we 2524 // won't wrap after simplification. 2525 Flags.setNoSignedWrap(false); 2526 Flags.setNoUnsignedWrap(false); 2527 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2528 return TLO.CombineTo(Op, NewOp); 2529 } 2530 2531 // Match a multiply with a disguised negated-power-of-2 and convert to a 2532 // an equivalent shift-left amount. 2533 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2534 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2535 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2536 return 0; 2537 2538 // Don't touch opaque constants. Also, ignore zero and power-of-2 2539 // multiplies. Those will get folded later. 2540 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2541 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2542 !MulC->getAPIntValue().isPowerOf2()) { 2543 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2544 if (UnmaskedC.isNegatedPowerOf2()) 2545 return (-UnmaskedC).logBase2(); 2546 } 2547 return 0; 2548 }; 2549 2550 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) { 2551 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2552 SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy); 2553 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2554 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl); 2555 return TLO.CombineTo(Op, Res); 2556 }; 2557 2558 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2559 if (Op.getOpcode() == ISD::ADD) { 2560 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2561 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2562 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt); 2563 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2564 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2565 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt); 2566 } 2567 if (Op.getOpcode() == ISD::SUB) { 2568 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2569 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2570 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt); 2571 } 2572 } 2573 2574 LLVM_FALLTHROUGH; 2575 } 2576 default: 2577 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2578 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2579 Known, TLO, Depth)) 2580 return true; 2581 break; 2582 } 2583 2584 // Just use computeKnownBits to compute output bits. 2585 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2586 break; 2587 } 2588 2589 // If we know the value of all of the demanded bits, return this as a 2590 // constant. 2591 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2592 // Avoid folding to a constant if any OpaqueConstant is involved. 2593 const SDNode *N = Op.getNode(); 2594 for (SDNode *Op : 2595 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2596 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2597 if (C->isOpaque()) 2598 return false; 2599 } 2600 if (VT.isInteger()) 2601 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2602 if (VT.isFloatingPoint()) 2603 return TLO.CombineTo( 2604 Op, 2605 TLO.DAG.getConstantFP( 2606 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2607 } 2608 2609 return false; 2610 } 2611 2612 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2613 const APInt &DemandedElts, 2614 DAGCombinerInfo &DCI) const { 2615 SelectionDAG &DAG = DCI.DAG; 2616 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2617 !DCI.isBeforeLegalizeOps()); 2618 2619 APInt KnownUndef, KnownZero; 2620 bool Simplified = 2621 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2622 if (Simplified) { 2623 DCI.AddToWorklist(Op.getNode()); 2624 DCI.CommitTargetLoweringOpt(TLO); 2625 } 2626 2627 return Simplified; 2628 } 2629 2630 /// Given a vector binary operation and known undefined elements for each input 2631 /// operand, compute whether each element of the output is undefined. 2632 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2633 const APInt &UndefOp0, 2634 const APInt &UndefOp1) { 2635 EVT VT = BO.getValueType(); 2636 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2637 "Vector binop only"); 2638 2639 EVT EltVT = VT.getVectorElementType(); 2640 unsigned NumElts = VT.getVectorNumElements(); 2641 assert(UndefOp0.getBitWidth() == NumElts && 2642 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2643 2644 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2645 const APInt &UndefVals) { 2646 if (UndefVals[Index]) 2647 return DAG.getUNDEF(EltVT); 2648 2649 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2650 // Try hard to make sure that the getNode() call is not creating temporary 2651 // nodes. Ignore opaque integers because they do not constant fold. 2652 SDValue Elt = BV->getOperand(Index); 2653 auto *C = dyn_cast<ConstantSDNode>(Elt); 2654 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2655 return Elt; 2656 } 2657 2658 return SDValue(); 2659 }; 2660 2661 APInt KnownUndef = APInt::getZero(NumElts); 2662 for (unsigned i = 0; i != NumElts; ++i) { 2663 // If both inputs for this element are either constant or undef and match 2664 // the element type, compute the constant/undef result for this element of 2665 // the vector. 2666 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2667 // not handle FP constants. The code within getNode() should be refactored 2668 // to avoid the danger of creating a bogus temporary node here. 2669 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2670 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2671 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2672 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2673 KnownUndef.setBit(i); 2674 } 2675 return KnownUndef; 2676 } 2677 2678 bool TargetLowering::SimplifyDemandedVectorElts( 2679 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2680 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2681 bool AssumeSingleUse) const { 2682 EVT VT = Op.getValueType(); 2683 unsigned Opcode = Op.getOpcode(); 2684 APInt DemandedElts = OriginalDemandedElts; 2685 unsigned NumElts = DemandedElts.getBitWidth(); 2686 assert(VT.isVector() && "Expected vector op"); 2687 2688 KnownUndef = KnownZero = APInt::getZero(NumElts); 2689 2690 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 2691 if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO)) 2692 return false; 2693 2694 // TODO: For now we assume we know nothing about scalable vectors. 2695 if (VT.isScalableVector()) 2696 return false; 2697 2698 assert(VT.getVectorNumElements() == NumElts && 2699 "Mask size mismatches value type element count!"); 2700 2701 // Undef operand. 2702 if (Op.isUndef()) { 2703 KnownUndef.setAllBits(); 2704 return false; 2705 } 2706 2707 // If Op has other users, assume that all elements are needed. 2708 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2709 DemandedElts.setAllBits(); 2710 2711 // Not demanding any elements from Op. 2712 if (DemandedElts == 0) { 2713 KnownUndef.setAllBits(); 2714 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2715 } 2716 2717 // Limit search depth. 2718 if (Depth >= SelectionDAG::MaxRecursionDepth) 2719 return false; 2720 2721 SDLoc DL(Op); 2722 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2723 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2724 2725 // Helper for demanding the specified elements and all the bits of both binary 2726 // operands. 2727 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2728 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2729 TLO.DAG, Depth + 1); 2730 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2731 TLO.DAG, Depth + 1); 2732 if (NewOp0 || NewOp1) { 2733 SDValue NewOp = TLO.DAG.getNode( 2734 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2735 return TLO.CombineTo(Op, NewOp); 2736 } 2737 return false; 2738 }; 2739 2740 switch (Opcode) { 2741 case ISD::SCALAR_TO_VECTOR: { 2742 if (!DemandedElts[0]) { 2743 KnownUndef.setAllBits(); 2744 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2745 } 2746 SDValue ScalarSrc = Op.getOperand(0); 2747 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2748 SDValue Src = ScalarSrc.getOperand(0); 2749 SDValue Idx = ScalarSrc.getOperand(1); 2750 EVT SrcVT = Src.getValueType(); 2751 2752 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2753 2754 if (SrcEltCnt.isScalable()) 2755 return false; 2756 2757 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2758 if (isNullConstant(Idx)) { 2759 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2760 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2761 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2762 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2763 TLO, Depth + 1)) 2764 return true; 2765 } 2766 } 2767 KnownUndef.setHighBits(NumElts - 1); 2768 break; 2769 } 2770 case ISD::BITCAST: { 2771 SDValue Src = Op.getOperand(0); 2772 EVT SrcVT = Src.getValueType(); 2773 2774 // We only handle vectors here. 2775 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2776 if (!SrcVT.isVector()) 2777 break; 2778 2779 // Fast handling of 'identity' bitcasts. 2780 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2781 if (NumSrcElts == NumElts) 2782 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2783 KnownZero, TLO, Depth + 1); 2784 2785 APInt SrcDemandedElts, SrcZero, SrcUndef; 2786 2787 // Bitcast from 'large element' src vector to 'small element' vector, we 2788 // must demand a source element if any DemandedElt maps to it. 2789 if ((NumElts % NumSrcElts) == 0) { 2790 unsigned Scale = NumElts / NumSrcElts; 2791 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2792 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2793 TLO, Depth + 1)) 2794 return true; 2795 2796 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2797 // of the large element. 2798 // TODO - bigendian once we have test coverage. 2799 if (IsLE) { 2800 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2801 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2802 for (unsigned i = 0; i != NumElts; ++i) 2803 if (DemandedElts[i]) { 2804 unsigned Ofs = (i % Scale) * EltSizeInBits; 2805 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2806 } 2807 2808 KnownBits Known; 2809 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2810 TLO, Depth + 1)) 2811 return true; 2812 2813 // The bitcast has split each wide element into a number of 2814 // narrow subelements. We have just computed the Known bits 2815 // for wide elements. See if element splitting results in 2816 // some subelements being zero. Only for demanded elements! 2817 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { 2818 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits) 2819 .isAllOnes()) 2820 continue; 2821 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { 2822 unsigned Elt = Scale * SrcElt + SubElt; 2823 if (DemandedElts[Elt]) 2824 KnownZero.setBit(Elt); 2825 } 2826 } 2827 } 2828 2829 // If the src element is zero/undef then all the output elements will be - 2830 // only demanded elements are guaranteed to be correct. 2831 for (unsigned i = 0; i != NumSrcElts; ++i) { 2832 if (SrcDemandedElts[i]) { 2833 if (SrcZero[i]) 2834 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2835 if (SrcUndef[i]) 2836 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2837 } 2838 } 2839 } 2840 2841 // Bitcast from 'small element' src vector to 'large element' vector, we 2842 // demand all smaller source elements covered by the larger demanded element 2843 // of this vector. 2844 if ((NumSrcElts % NumElts) == 0) { 2845 unsigned Scale = NumSrcElts / NumElts; 2846 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2847 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2848 TLO, Depth + 1)) 2849 return true; 2850 2851 // If all the src elements covering an output element are zero/undef, then 2852 // the output element will be as well, assuming it was demanded. 2853 for (unsigned i = 0; i != NumElts; ++i) { 2854 if (DemandedElts[i]) { 2855 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2856 KnownZero.setBit(i); 2857 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2858 KnownUndef.setBit(i); 2859 } 2860 } 2861 } 2862 break; 2863 } 2864 case ISD::BUILD_VECTOR: { 2865 // Check all elements and simplify any unused elements with UNDEF. 2866 if (!DemandedElts.isAllOnes()) { 2867 // Don't simplify BROADCASTS. 2868 if (llvm::any_of(Op->op_values(), 2869 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2870 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2871 bool Updated = false; 2872 for (unsigned i = 0; i != NumElts; ++i) { 2873 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2874 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2875 KnownUndef.setBit(i); 2876 Updated = true; 2877 } 2878 } 2879 if (Updated) 2880 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2881 } 2882 } 2883 for (unsigned i = 0; i != NumElts; ++i) { 2884 SDValue SrcOp = Op.getOperand(i); 2885 if (SrcOp.isUndef()) { 2886 KnownUndef.setBit(i); 2887 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2888 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2889 KnownZero.setBit(i); 2890 } 2891 } 2892 break; 2893 } 2894 case ISD::CONCAT_VECTORS: { 2895 EVT SubVT = Op.getOperand(0).getValueType(); 2896 unsigned NumSubVecs = Op.getNumOperands(); 2897 unsigned NumSubElts = SubVT.getVectorNumElements(); 2898 for (unsigned i = 0; i != NumSubVecs; ++i) { 2899 SDValue SubOp = Op.getOperand(i); 2900 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2901 APInt SubUndef, SubZero; 2902 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2903 Depth + 1)) 2904 return true; 2905 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2906 KnownZero.insertBits(SubZero, i * NumSubElts); 2907 } 2908 2909 // Attempt to avoid multi-use ops if we don't need anything from them. 2910 if (!DemandedElts.isAllOnes()) { 2911 bool FoundNewSub = false; 2912 SmallVector<SDValue, 2> DemandedSubOps; 2913 for (unsigned i = 0; i != NumSubVecs; ++i) { 2914 SDValue SubOp = Op.getOperand(i); 2915 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2916 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts( 2917 SubOp, SubElts, TLO.DAG, Depth + 1); 2918 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp); 2919 FoundNewSub = NewSubOp ? true : FoundNewSub; 2920 } 2921 if (FoundNewSub) { 2922 SDValue NewOp = 2923 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps); 2924 return TLO.CombineTo(Op, NewOp); 2925 } 2926 } 2927 break; 2928 } 2929 case ISD::INSERT_SUBVECTOR: { 2930 // Demand any elements from the subvector and the remainder from the src its 2931 // inserted into. 2932 SDValue Src = Op.getOperand(0); 2933 SDValue Sub = Op.getOperand(1); 2934 uint64_t Idx = Op.getConstantOperandVal(2); 2935 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2936 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2937 APInt DemandedSrcElts = DemandedElts; 2938 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2939 2940 APInt SubUndef, SubZero; 2941 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2942 Depth + 1)) 2943 return true; 2944 2945 // If none of the src operand elements are demanded, replace it with undef. 2946 if (!DemandedSrcElts && !Src.isUndef()) 2947 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2948 TLO.DAG.getUNDEF(VT), Sub, 2949 Op.getOperand(2))); 2950 2951 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2952 TLO, Depth + 1)) 2953 return true; 2954 KnownUndef.insertBits(SubUndef, Idx); 2955 KnownZero.insertBits(SubZero, Idx); 2956 2957 // Attempt to avoid multi-use ops if we don't need anything from them. 2958 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2959 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2960 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2961 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2962 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2963 if (NewSrc || NewSub) { 2964 NewSrc = NewSrc ? NewSrc : Src; 2965 NewSub = NewSub ? NewSub : Sub; 2966 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2967 NewSub, Op.getOperand(2)); 2968 return TLO.CombineTo(Op, NewOp); 2969 } 2970 } 2971 break; 2972 } 2973 case ISD::EXTRACT_SUBVECTOR: { 2974 // Offset the demanded elts by the subvector index. 2975 SDValue Src = Op.getOperand(0); 2976 if (Src.getValueType().isScalableVector()) 2977 break; 2978 uint64_t Idx = Op.getConstantOperandVal(1); 2979 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2980 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 2981 2982 APInt SrcUndef, SrcZero; 2983 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2984 Depth + 1)) 2985 return true; 2986 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2987 KnownZero = SrcZero.extractBits(NumElts, Idx); 2988 2989 // Attempt to avoid multi-use ops if we don't need anything from them. 2990 if (!DemandedElts.isAllOnes()) { 2991 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2992 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2993 if (NewSrc) { 2994 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2995 Op.getOperand(1)); 2996 return TLO.CombineTo(Op, NewOp); 2997 } 2998 } 2999 break; 3000 } 3001 case ISD::INSERT_VECTOR_ELT: { 3002 SDValue Vec = Op.getOperand(0); 3003 SDValue Scl = Op.getOperand(1); 3004 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3005 3006 // For a legal, constant insertion index, if we don't need this insertion 3007 // then strip it, else remove it from the demanded elts. 3008 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 3009 unsigned Idx = CIdx->getZExtValue(); 3010 if (!DemandedElts[Idx]) 3011 return TLO.CombineTo(Op, Vec); 3012 3013 APInt DemandedVecElts(DemandedElts); 3014 DemandedVecElts.clearBit(Idx); 3015 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 3016 KnownZero, TLO, Depth + 1)) 3017 return true; 3018 3019 KnownUndef.setBitVal(Idx, Scl.isUndef()); 3020 3021 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 3022 break; 3023 } 3024 3025 APInt VecUndef, VecZero; 3026 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 3027 Depth + 1)) 3028 return true; 3029 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 3030 break; 3031 } 3032 case ISD::VSELECT: { 3033 // Try to transform the select condition based on the current demanded 3034 // elements. 3035 // TODO: If a condition element is undef, we can choose from one arm of the 3036 // select (and if one arm is undef, then we can propagate that to the 3037 // result). 3038 // TODO - add support for constant vselect masks (see IR version of this). 3039 APInt UnusedUndef, UnusedZero; 3040 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 3041 UnusedZero, TLO, Depth + 1)) 3042 return true; 3043 3044 // See if we can simplify either vselect operand. 3045 APInt DemandedLHS(DemandedElts); 3046 APInt DemandedRHS(DemandedElts); 3047 APInt UndefLHS, ZeroLHS; 3048 APInt UndefRHS, ZeroRHS; 3049 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 3050 ZeroLHS, TLO, Depth + 1)) 3051 return true; 3052 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 3053 ZeroRHS, TLO, Depth + 1)) 3054 return true; 3055 3056 KnownUndef = UndefLHS & UndefRHS; 3057 KnownZero = ZeroLHS & ZeroRHS; 3058 break; 3059 } 3060 case ISD::VECTOR_SHUFFLE: { 3061 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 3062 3063 // Collect demanded elements from shuffle operands.. 3064 APInt DemandedLHS(NumElts, 0); 3065 APInt DemandedRHS(NumElts, 0); 3066 for (unsigned i = 0; i != NumElts; ++i) { 3067 int M = ShuffleMask[i]; 3068 if (M < 0 || !DemandedElts[i]) 3069 continue; 3070 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 3071 if (M < (int)NumElts) 3072 DemandedLHS.setBit(M); 3073 else 3074 DemandedRHS.setBit(M - NumElts); 3075 } 3076 3077 // See if we can simplify either shuffle operand. 3078 APInt UndefLHS, ZeroLHS; 3079 APInt UndefRHS, ZeroRHS; 3080 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 3081 ZeroLHS, TLO, Depth + 1)) 3082 return true; 3083 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 3084 ZeroRHS, TLO, Depth + 1)) 3085 return true; 3086 3087 // Simplify mask using undef elements from LHS/RHS. 3088 bool Updated = false; 3089 bool IdentityLHS = true, IdentityRHS = true; 3090 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 3091 for (unsigned i = 0; i != NumElts; ++i) { 3092 int &M = NewMask[i]; 3093 if (M < 0) 3094 continue; 3095 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3096 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3097 Updated = true; 3098 M = -1; 3099 } 3100 IdentityLHS &= (M < 0) || (M == (int)i); 3101 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3102 } 3103 3104 // Update legal shuffle masks based on demanded elements if it won't reduce 3105 // to Identity which can cause premature removal of the shuffle mask. 3106 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3107 SDValue LegalShuffle = 3108 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 3109 NewMask, TLO.DAG); 3110 if (LegalShuffle) 3111 return TLO.CombineTo(Op, LegalShuffle); 3112 } 3113 3114 // Propagate undef/zero elements from LHS/RHS. 3115 for (unsigned i = 0; i != NumElts; ++i) { 3116 int M = ShuffleMask[i]; 3117 if (M < 0) { 3118 KnownUndef.setBit(i); 3119 } else if (M < (int)NumElts) { 3120 if (UndefLHS[M]) 3121 KnownUndef.setBit(i); 3122 if (ZeroLHS[M]) 3123 KnownZero.setBit(i); 3124 } else { 3125 if (UndefRHS[M - NumElts]) 3126 KnownUndef.setBit(i); 3127 if (ZeroRHS[M - NumElts]) 3128 KnownZero.setBit(i); 3129 } 3130 } 3131 break; 3132 } 3133 case ISD::ANY_EXTEND_VECTOR_INREG: 3134 case ISD::SIGN_EXTEND_VECTOR_INREG: 3135 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3136 APInt SrcUndef, SrcZero; 3137 SDValue Src = Op.getOperand(0); 3138 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3139 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 3140 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3141 Depth + 1)) 3142 return true; 3143 KnownZero = SrcZero.zextOrTrunc(NumElts); 3144 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3145 3146 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3147 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3148 DemandedSrcElts == 1) { 3149 // aext - if we just need the bottom element then we can bitcast. 3150 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3151 } 3152 3153 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3154 // zext(undef) upper bits are guaranteed to be zero. 3155 if (DemandedElts.isSubsetOf(KnownUndef)) 3156 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3157 KnownUndef.clearAllBits(); 3158 3159 // zext - if we just need the bottom element then we can mask: 3160 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3161 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3162 Op->isOnlyUserOf(Src.getNode()) && 3163 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3164 SDLoc DL(Op); 3165 EVT SrcVT = Src.getValueType(); 3166 EVT SrcSVT = SrcVT.getScalarType(); 3167 SmallVector<SDValue> MaskElts; 3168 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3169 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3170 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3171 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3172 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3173 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3174 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3175 } 3176 } 3177 } 3178 break; 3179 } 3180 3181 // TODO: There are more binop opcodes that could be handled here - MIN, 3182 // MAX, saturated math, etc. 3183 case ISD::ADD: { 3184 SDValue Op0 = Op.getOperand(0); 3185 SDValue Op1 = Op.getOperand(1); 3186 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3187 APInt UndefLHS, ZeroLHS; 3188 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3189 Depth + 1, /*AssumeSingleUse*/ true)) 3190 return true; 3191 } 3192 LLVM_FALLTHROUGH; 3193 } 3194 case ISD::OR: 3195 case ISD::XOR: 3196 case ISD::SUB: 3197 case ISD::FADD: 3198 case ISD::FSUB: 3199 case ISD::FMUL: 3200 case ISD::FDIV: 3201 case ISD::FREM: { 3202 SDValue Op0 = Op.getOperand(0); 3203 SDValue Op1 = Op.getOperand(1); 3204 3205 APInt UndefRHS, ZeroRHS; 3206 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3207 Depth + 1)) 3208 return true; 3209 APInt UndefLHS, ZeroLHS; 3210 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3211 Depth + 1)) 3212 return true; 3213 3214 KnownZero = ZeroLHS & ZeroRHS; 3215 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3216 3217 // Attempt to avoid multi-use ops if we don't need anything from them. 3218 // TODO - use KnownUndef to relax the demandedelts? 3219 if (!DemandedElts.isAllOnes()) 3220 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3221 return true; 3222 break; 3223 } 3224 case ISD::SHL: 3225 case ISD::SRL: 3226 case ISD::SRA: 3227 case ISD::ROTL: 3228 case ISD::ROTR: { 3229 SDValue Op0 = Op.getOperand(0); 3230 SDValue Op1 = Op.getOperand(1); 3231 3232 APInt UndefRHS, ZeroRHS; 3233 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3234 Depth + 1)) 3235 return true; 3236 APInt UndefLHS, ZeroLHS; 3237 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3238 Depth + 1)) 3239 return true; 3240 3241 KnownZero = ZeroLHS; 3242 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3243 3244 // Attempt to avoid multi-use ops if we don't need anything from them. 3245 // TODO - use KnownUndef to relax the demandedelts? 3246 if (!DemandedElts.isAllOnes()) 3247 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3248 return true; 3249 break; 3250 } 3251 case ISD::MUL: 3252 case ISD::AND: { 3253 SDValue Op0 = Op.getOperand(0); 3254 SDValue Op1 = Op.getOperand(1); 3255 3256 APInt SrcUndef, SrcZero; 3257 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3258 Depth + 1)) 3259 return true; 3260 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 3261 TLO, Depth + 1)) 3262 return true; 3263 3264 // If either side has a zero element, then the result element is zero, even 3265 // if the other is an UNDEF. 3266 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3267 // and then handle 'and' nodes with the rest of the binop opcodes. 3268 KnownZero |= SrcZero; 3269 KnownUndef &= SrcUndef; 3270 KnownUndef &= ~KnownZero; 3271 3272 // Attempt to avoid multi-use ops if we don't need anything from them. 3273 // TODO - use KnownUndef to relax the demandedelts? 3274 if (!DemandedElts.isAllOnes()) 3275 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3276 return true; 3277 break; 3278 } 3279 case ISD::TRUNCATE: 3280 case ISD::SIGN_EXTEND: 3281 case ISD::ZERO_EXTEND: 3282 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3283 KnownZero, TLO, Depth + 1)) 3284 return true; 3285 3286 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3287 // zext(undef) upper bits are guaranteed to be zero. 3288 if (DemandedElts.isSubsetOf(KnownUndef)) 3289 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3290 KnownUndef.clearAllBits(); 3291 } 3292 break; 3293 default: { 3294 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3295 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3296 KnownZero, TLO, Depth)) 3297 return true; 3298 } else { 3299 KnownBits Known; 3300 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3301 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3302 TLO, Depth, AssumeSingleUse)) 3303 return true; 3304 } 3305 break; 3306 } 3307 } 3308 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3309 3310 // Constant fold all undef cases. 3311 // TODO: Handle zero cases as well. 3312 if (DemandedElts.isSubsetOf(KnownUndef)) 3313 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3314 3315 return false; 3316 } 3317 3318 /// Determine which of the bits specified in Mask are known to be either zero or 3319 /// one and return them in the Known. 3320 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3321 KnownBits &Known, 3322 const APInt &DemandedElts, 3323 const SelectionDAG &DAG, 3324 unsigned Depth) const { 3325 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3326 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3327 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3328 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3329 "Should use MaskedValueIsZero if you don't know whether Op" 3330 " is a target node!"); 3331 Known.resetAll(); 3332 } 3333 3334 void TargetLowering::computeKnownBitsForTargetInstr( 3335 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3336 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3337 unsigned Depth) const { 3338 Known.resetAll(); 3339 } 3340 3341 void TargetLowering::computeKnownBitsForFrameIndex( 3342 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3343 // The low bits are known zero if the pointer is aligned. 3344 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3345 } 3346 3347 Align TargetLowering::computeKnownAlignForTargetInstr( 3348 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3349 unsigned Depth) const { 3350 return Align(1); 3351 } 3352 3353 /// This method can be implemented by targets that want to expose additional 3354 /// information about sign bits to the DAG Combiner. 3355 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3356 const APInt &, 3357 const SelectionDAG &, 3358 unsigned Depth) const { 3359 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3360 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3361 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3362 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3363 "Should use ComputeNumSignBits if you don't know whether Op" 3364 " is a target node!"); 3365 return 1; 3366 } 3367 3368 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3369 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3370 const MachineRegisterInfo &MRI, unsigned Depth) const { 3371 return 1; 3372 } 3373 3374 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3375 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3376 TargetLoweringOpt &TLO, unsigned Depth) const { 3377 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3378 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3379 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3380 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3381 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3382 " is a target node!"); 3383 return false; 3384 } 3385 3386 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3387 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3388 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3389 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3390 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3391 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3392 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3393 "Should use SimplifyDemandedBits if you don't know whether Op" 3394 " is a target node!"); 3395 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3396 return false; 3397 } 3398 3399 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3400 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3401 SelectionDAG &DAG, unsigned Depth) const { 3402 assert( 3403 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3404 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3405 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3406 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3407 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3408 " is a target node!"); 3409 return SDValue(); 3410 } 3411 3412 SDValue 3413 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3414 SDValue N1, MutableArrayRef<int> Mask, 3415 SelectionDAG &DAG) const { 3416 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3417 if (!LegalMask) { 3418 std::swap(N0, N1); 3419 ShuffleVectorSDNode::commuteMask(Mask); 3420 LegalMask = isShuffleMaskLegal(Mask, VT); 3421 } 3422 3423 if (!LegalMask) 3424 return SDValue(); 3425 3426 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3427 } 3428 3429 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3430 return nullptr; 3431 } 3432 3433 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3434 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3435 bool PoisonOnly, unsigned Depth) const { 3436 assert( 3437 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3438 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3439 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3440 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3441 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3442 " is a target node!"); 3443 return false; 3444 } 3445 3446 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3447 const SelectionDAG &DAG, 3448 bool SNaN, 3449 unsigned Depth) const { 3450 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3451 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3452 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3453 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3454 "Should use isKnownNeverNaN if you don't know whether Op" 3455 " is a target node!"); 3456 return false; 3457 } 3458 3459 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3460 const APInt &DemandedElts, 3461 APInt &UndefElts, 3462 unsigned Depth) const { 3463 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3464 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3465 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3466 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3467 "Should use isSplatValue if you don't know whether Op" 3468 " is a target node!"); 3469 return false; 3470 } 3471 3472 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3473 // work with truncating build vectors and vectors with elements of less than 3474 // 8 bits. 3475 bool TargetLowering::isConstTrueVal(SDValue N) const { 3476 if (!N) 3477 return false; 3478 3479 unsigned EltWidth; 3480 APInt CVal; 3481 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3482 /*AllowTruncation=*/true)) { 3483 CVal = CN->getAPIntValue(); 3484 EltWidth = N.getValueType().getScalarSizeInBits(); 3485 } else 3486 return false; 3487 3488 // If this is a truncating splat, truncate the splat value. 3489 // Otherwise, we may fail to match the expected values below. 3490 if (EltWidth < CVal.getBitWidth()) 3491 CVal = CVal.trunc(EltWidth); 3492 3493 switch (getBooleanContents(N.getValueType())) { 3494 case UndefinedBooleanContent: 3495 return CVal[0]; 3496 case ZeroOrOneBooleanContent: 3497 return CVal.isOne(); 3498 case ZeroOrNegativeOneBooleanContent: 3499 return CVal.isAllOnes(); 3500 } 3501 3502 llvm_unreachable("Invalid boolean contents"); 3503 } 3504 3505 bool TargetLowering::isConstFalseVal(SDValue N) const { 3506 if (!N) 3507 return false; 3508 3509 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3510 if (!CN) { 3511 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3512 if (!BV) 3513 return false; 3514 3515 // Only interested in constant splats, we don't care about undef 3516 // elements in identifying boolean constants and getConstantSplatNode 3517 // returns NULL if all ops are undef; 3518 CN = BV->getConstantSplatNode(); 3519 if (!CN) 3520 return false; 3521 } 3522 3523 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3524 return !CN->getAPIntValue()[0]; 3525 3526 return CN->isZero(); 3527 } 3528 3529 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3530 bool SExt) const { 3531 if (VT == MVT::i1) 3532 return N->isOne(); 3533 3534 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3535 switch (Cnt) { 3536 case TargetLowering::ZeroOrOneBooleanContent: 3537 // An extended value of 1 is always true, unless its original type is i1, 3538 // in which case it will be sign extended to -1. 3539 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3540 case TargetLowering::UndefinedBooleanContent: 3541 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3542 return N->isAllOnes() && SExt; 3543 } 3544 llvm_unreachable("Unexpected enumeration."); 3545 } 3546 3547 /// This helper function of SimplifySetCC tries to optimize the comparison when 3548 /// either operand of the SetCC node is a bitwise-and instruction. 3549 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3550 ISD::CondCode Cond, const SDLoc &DL, 3551 DAGCombinerInfo &DCI) const { 3552 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3553 std::swap(N0, N1); 3554 3555 SelectionDAG &DAG = DCI.DAG; 3556 EVT OpVT = N0.getValueType(); 3557 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3558 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3559 return SDValue(); 3560 3561 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3562 // iff everything but LSB is known zero: 3563 if (Cond == ISD::SETNE && isNullConstant(N1) && 3564 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3565 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3566 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3567 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3568 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3569 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3570 } 3571 3572 // Match these patterns in any of their permutations: 3573 // (X & Y) == Y 3574 // (X & Y) != Y 3575 SDValue X, Y; 3576 if (N0.getOperand(0) == N1) { 3577 X = N0.getOperand(1); 3578 Y = N0.getOperand(0); 3579 } else if (N0.getOperand(1) == N1) { 3580 X = N0.getOperand(0); 3581 Y = N0.getOperand(1); 3582 } else { 3583 return SDValue(); 3584 } 3585 3586 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3587 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3588 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3589 // Note that where Y is variable and is known to have at most one bit set 3590 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3591 // equivalent when Y == 0. 3592 assert(OpVT.isInteger()); 3593 Cond = ISD::getSetCCInverse(Cond, OpVT); 3594 if (DCI.isBeforeLegalizeOps() || 3595 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3596 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3597 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3598 // If the target supports an 'and-not' or 'and-complement' logic operation, 3599 // try to use that to make a comparison operation more efficient. 3600 // But don't do this transform if the mask is a single bit because there are 3601 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3602 // 'rlwinm' on PPC). 3603 3604 // Bail out if the compare operand that we want to turn into a zero is 3605 // already a zero (otherwise, infinite loop). 3606 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3607 if (YConst && YConst->isZero()) 3608 return SDValue(); 3609 3610 // Transform this into: ~X & Y == 0. 3611 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3612 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3613 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3614 } 3615 3616 return SDValue(); 3617 } 3618 3619 /// There are multiple IR patterns that could be checking whether certain 3620 /// truncation of a signed number would be lossy or not. The pattern which is 3621 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3622 /// We are looking for the following pattern: (KeptBits is a constant) 3623 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3624 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3625 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3626 /// We will unfold it into the natural trunc+sext pattern: 3627 /// ((%x << C) a>> C) dstcond %x 3628 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3629 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3630 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3631 const SDLoc &DL) const { 3632 // We must be comparing with a constant. 3633 ConstantSDNode *C1; 3634 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3635 return SDValue(); 3636 3637 // N0 should be: add %x, (1 << (KeptBits-1)) 3638 if (N0->getOpcode() != ISD::ADD) 3639 return SDValue(); 3640 3641 // And we must be 'add'ing a constant. 3642 ConstantSDNode *C01; 3643 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3644 return SDValue(); 3645 3646 SDValue X = N0->getOperand(0); 3647 EVT XVT = X.getValueType(); 3648 3649 // Validate constants ... 3650 3651 APInt I1 = C1->getAPIntValue(); 3652 3653 ISD::CondCode NewCond; 3654 if (Cond == ISD::CondCode::SETULT) { 3655 NewCond = ISD::CondCode::SETEQ; 3656 } else if (Cond == ISD::CondCode::SETULE) { 3657 NewCond = ISD::CondCode::SETEQ; 3658 // But need to 'canonicalize' the constant. 3659 I1 += 1; 3660 } else if (Cond == ISD::CondCode::SETUGT) { 3661 NewCond = ISD::CondCode::SETNE; 3662 // But need to 'canonicalize' the constant. 3663 I1 += 1; 3664 } else if (Cond == ISD::CondCode::SETUGE) { 3665 NewCond = ISD::CondCode::SETNE; 3666 } else 3667 return SDValue(); 3668 3669 APInt I01 = C01->getAPIntValue(); 3670 3671 auto checkConstants = [&I1, &I01]() -> bool { 3672 // Both of them must be power-of-two, and the constant from setcc is bigger. 3673 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3674 }; 3675 3676 if (checkConstants()) { 3677 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3678 } else { 3679 // What if we invert constants? (and the target predicate) 3680 I1.negate(); 3681 I01.negate(); 3682 assert(XVT.isInteger()); 3683 NewCond = getSetCCInverse(NewCond, XVT); 3684 if (!checkConstants()) 3685 return SDValue(); 3686 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3687 } 3688 3689 // They are power-of-two, so which bit is set? 3690 const unsigned KeptBits = I1.logBase2(); 3691 const unsigned KeptBitsMinusOne = I01.logBase2(); 3692 3693 // Magic! 3694 if (KeptBits != (KeptBitsMinusOne + 1)) 3695 return SDValue(); 3696 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3697 3698 // We don't want to do this in every single case. 3699 SelectionDAG &DAG = DCI.DAG; 3700 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3701 XVT, KeptBits)) 3702 return SDValue(); 3703 3704 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3705 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3706 3707 // Unfold into: ((%x << C) a>> C) cond %x 3708 // Where 'cond' will be either 'eq' or 'ne'. 3709 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3710 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3711 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3712 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3713 3714 return T2; 3715 } 3716 3717 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3718 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3719 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3720 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3721 assert(isConstOrConstSplat(N1C) && 3722 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3723 "Should be a comparison with 0."); 3724 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3725 "Valid only for [in]equality comparisons."); 3726 3727 unsigned NewShiftOpcode; 3728 SDValue X, C, Y; 3729 3730 SelectionDAG &DAG = DCI.DAG; 3731 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3732 3733 // Look for '(C l>>/<< Y)'. 3734 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3735 // The shift should be one-use. 3736 if (!V.hasOneUse()) 3737 return false; 3738 unsigned OldShiftOpcode = V.getOpcode(); 3739 switch (OldShiftOpcode) { 3740 case ISD::SHL: 3741 NewShiftOpcode = ISD::SRL; 3742 break; 3743 case ISD::SRL: 3744 NewShiftOpcode = ISD::SHL; 3745 break; 3746 default: 3747 return false; // must be a logical shift. 3748 } 3749 // We should be shifting a constant. 3750 // FIXME: best to use isConstantOrConstantVector(). 3751 C = V.getOperand(0); 3752 ConstantSDNode *CC = 3753 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3754 if (!CC) 3755 return false; 3756 Y = V.getOperand(1); 3757 3758 ConstantSDNode *XC = 3759 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3760 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3761 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3762 }; 3763 3764 // LHS of comparison should be an one-use 'and'. 3765 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3766 return SDValue(); 3767 3768 X = N0.getOperand(0); 3769 SDValue Mask = N0.getOperand(1); 3770 3771 // 'and' is commutative! 3772 if (!Match(Mask)) { 3773 std::swap(X, Mask); 3774 if (!Match(Mask)) 3775 return SDValue(); 3776 } 3777 3778 EVT VT = X.getValueType(); 3779 3780 // Produce: 3781 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3782 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3783 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3784 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3785 return T2; 3786 } 3787 3788 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3789 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3790 /// handle the commuted versions of these patterns. 3791 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3792 ISD::CondCode Cond, const SDLoc &DL, 3793 DAGCombinerInfo &DCI) const { 3794 unsigned BOpcode = N0.getOpcode(); 3795 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3796 "Unexpected binop"); 3797 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3798 3799 // (X + Y) == X --> Y == 0 3800 // (X - Y) == X --> Y == 0 3801 // (X ^ Y) == X --> Y == 0 3802 SelectionDAG &DAG = DCI.DAG; 3803 EVT OpVT = N0.getValueType(); 3804 SDValue X = N0.getOperand(0); 3805 SDValue Y = N0.getOperand(1); 3806 if (X == N1) 3807 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3808 3809 if (Y != N1) 3810 return SDValue(); 3811 3812 // (X + Y) == Y --> X == 0 3813 // (X ^ Y) == Y --> X == 0 3814 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3815 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3816 3817 // The shift would not be valid if the operands are boolean (i1). 3818 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3819 return SDValue(); 3820 3821 // (X - Y) == Y --> X == Y << 1 3822 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3823 !DCI.isBeforeLegalize()); 3824 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3825 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3826 if (!DCI.isCalledByLegalizer()) 3827 DCI.AddToWorklist(YShl1.getNode()); 3828 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3829 } 3830 3831 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3832 SDValue N0, const APInt &C1, 3833 ISD::CondCode Cond, const SDLoc &dl, 3834 SelectionDAG &DAG) { 3835 // Look through truncs that don't change the value of a ctpop. 3836 // FIXME: Add vector support? Need to be careful with setcc result type below. 3837 SDValue CTPOP = N0; 3838 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3839 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3840 CTPOP = N0.getOperand(0); 3841 3842 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3843 return SDValue(); 3844 3845 EVT CTVT = CTPOP.getValueType(); 3846 SDValue CTOp = CTPOP.getOperand(0); 3847 3848 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3849 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3850 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3851 return SDValue(); 3852 3853 // (ctpop x) u< 2 -> (x & x-1) == 0 3854 // (ctpop x) u> 1 -> (x & x-1) != 0 3855 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3856 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3857 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3858 return SDValue(); 3859 if (C1 == 0 && (Cond == ISD::SETULT)) 3860 return SDValue(); // This is handled elsewhere. 3861 3862 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3863 3864 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3865 SDValue Result = CTOp; 3866 for (unsigned i = 0; i < Passes; i++) { 3867 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3868 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3869 } 3870 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3871 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3872 } 3873 3874 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3875 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3876 // For scalars, keep CTPOP if it is legal or custom. 3877 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3878 return SDValue(); 3879 // This is based on X86's custom lowering for CTPOP which produces more 3880 // instructions than the expansion here. 3881 3882 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3883 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3884 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3885 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3886 assert(CTVT.isInteger()); 3887 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3888 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3889 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3890 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3891 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3892 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3893 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3894 } 3895 3896 return SDValue(); 3897 } 3898 3899 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 3900 ISD::CondCode Cond, const SDLoc &dl, 3901 SelectionDAG &DAG) { 3902 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 3903 return SDValue(); 3904 3905 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 3906 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 3907 return SDValue(); 3908 3909 auto getRotateSource = [](SDValue X) { 3910 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 3911 return X.getOperand(0); 3912 return SDValue(); 3913 }; 3914 3915 // Peek through a rotated value compared against 0 or -1: 3916 // (rot X, Y) == 0/-1 --> X == 0/-1 3917 // (rot X, Y) != 0/-1 --> X != 0/-1 3918 if (SDValue R = getRotateSource(N0)) 3919 return DAG.getSetCC(dl, VT, R, N1, Cond); 3920 3921 // Peek through an 'or' of a rotated value compared against 0: 3922 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 3923 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 3924 // 3925 // TODO: Add the 'and' with -1 sibling. 3926 // TODO: Recurse through a series of 'or' ops to find the rotate. 3927 EVT OpVT = N0.getValueType(); 3928 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 3929 if (SDValue R = getRotateSource(N0.getOperand(0))) { 3930 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 3931 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3932 } 3933 if (SDValue R = getRotateSource(N0.getOperand(1))) { 3934 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 3935 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3936 } 3937 } 3938 3939 return SDValue(); 3940 } 3941 3942 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, 3943 ISD::CondCode Cond, const SDLoc &dl, 3944 SelectionDAG &DAG) { 3945 // If we are testing for all-bits-clear, we might be able to do that with 3946 // less shifting since bit-order does not matter. 3947 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 3948 return SDValue(); 3949 3950 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 3951 if (!C1 || !C1->isZero()) 3952 return SDValue(); 3953 3954 if (!N0.hasOneUse() || 3955 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR)) 3956 return SDValue(); 3957 3958 unsigned BitWidth = N0.getScalarValueSizeInBits(); 3959 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2)); 3960 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 3961 return SDValue(); 3962 3963 // Canonicalize fshr as fshl to reduce pattern-matching. 3964 unsigned ShAmt = ShAmtC->getZExtValue(); 3965 if (N0.getOpcode() == ISD::FSHR) 3966 ShAmt = BitWidth - ShAmt; 3967 3968 // Match an 'or' with a specific operand 'Other' in either commuted variant. 3969 SDValue X, Y; 3970 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) { 3971 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse()) 3972 return false; 3973 if (Or.getOperand(0) == Other) { 3974 X = Or.getOperand(0); 3975 Y = Or.getOperand(1); 3976 return true; 3977 } 3978 if (Or.getOperand(1) == Other) { 3979 X = Or.getOperand(1); 3980 Y = Or.getOperand(0); 3981 return true; 3982 } 3983 return false; 3984 }; 3985 3986 EVT OpVT = N0.getValueType(); 3987 EVT ShAmtVT = N0.getOperand(2).getValueType(); 3988 SDValue F0 = N0.getOperand(0); 3989 SDValue F1 = N0.getOperand(1); 3990 if (matchOr(F0, F1)) { 3991 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0 3992 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT); 3993 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt); 3994 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 3995 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3996 } 3997 if (matchOr(F1, F0)) { 3998 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0 3999 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT); 4000 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt); 4001 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4002 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4003 } 4004 4005 return SDValue(); 4006 } 4007 4008 /// Try to simplify a setcc built with the specified operands and cc. If it is 4009 /// unable to simplify it, return a null SDValue. 4010 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 4011 ISD::CondCode Cond, bool foldBooleans, 4012 DAGCombinerInfo &DCI, 4013 const SDLoc &dl) const { 4014 SelectionDAG &DAG = DCI.DAG; 4015 const DataLayout &Layout = DAG.getDataLayout(); 4016 EVT OpVT = N0.getValueType(); 4017 4018 // Constant fold or commute setcc. 4019 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 4020 return Fold; 4021 4022 bool N0ConstOrSplat = 4023 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4024 bool N1ConstOrSplat = 4025 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4026 4027 // Ensure that the constant occurs on the RHS and fold constant comparisons. 4028 // TODO: Handle non-splat vector constants. All undef causes trouble. 4029 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 4030 // infinite loop here when we encounter one. 4031 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 4032 if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) && 4033 (DCI.isBeforeLegalizeOps() || 4034 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 4035 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4036 4037 // If we have a subtract with the same 2 non-constant operands as this setcc 4038 // -- but in reverse order -- then try to commute the operands of this setcc 4039 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 4040 // instruction on some targets. 4041 if (!N0ConstOrSplat && !N1ConstOrSplat && 4042 (DCI.isBeforeLegalizeOps() || 4043 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 4044 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 4045 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 4046 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4047 4048 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 4049 return V; 4050 4051 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG)) 4052 return V; 4053 4054 if (auto *N1C = isConstOrConstSplat(N1)) { 4055 const APInt &C1 = N1C->getAPIntValue(); 4056 4057 // Optimize some CTPOP cases. 4058 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 4059 return V; 4060 4061 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 4062 // equality comparison, then we're just comparing whether X itself is 4063 // zero. 4064 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 4065 N0.getOperand(0).getOpcode() == ISD::CTLZ && 4066 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 4067 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 4068 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4069 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 4070 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 4071 // (srl (ctlz x), 5) == 0 -> X != 0 4072 // (srl (ctlz x), 5) != 1 -> X != 0 4073 Cond = ISD::SETNE; 4074 } else { 4075 // (srl (ctlz x), 5) != 0 -> X == 0 4076 // (srl (ctlz x), 5) == 1 -> X == 0 4077 Cond = ISD::SETEQ; 4078 } 4079 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 4080 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 4081 Cond); 4082 } 4083 } 4084 } 4085 } 4086 4087 // FIXME: Support vectors. 4088 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4089 const APInt &C1 = N1C->getAPIntValue(); 4090 4091 // (zext x) == C --> x == (trunc C) 4092 // (sext x) == C --> x == (trunc C) 4093 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4094 DCI.isBeforeLegalize() && N0->hasOneUse()) { 4095 unsigned MinBits = N0.getValueSizeInBits(); 4096 SDValue PreExt; 4097 bool Signed = false; 4098 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 4099 // ZExt 4100 MinBits = N0->getOperand(0).getValueSizeInBits(); 4101 PreExt = N0->getOperand(0); 4102 } else if (N0->getOpcode() == ISD::AND) { 4103 // DAGCombine turns costly ZExts into ANDs 4104 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 4105 if ((C->getAPIntValue()+1).isPowerOf2()) { 4106 MinBits = C->getAPIntValue().countTrailingOnes(); 4107 PreExt = N0->getOperand(0); 4108 } 4109 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 4110 // SExt 4111 MinBits = N0->getOperand(0).getValueSizeInBits(); 4112 PreExt = N0->getOperand(0); 4113 Signed = true; 4114 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 4115 // ZEXTLOAD / SEXTLOAD 4116 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 4117 MinBits = LN0->getMemoryVT().getSizeInBits(); 4118 PreExt = N0; 4119 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 4120 Signed = true; 4121 MinBits = LN0->getMemoryVT().getSizeInBits(); 4122 PreExt = N0; 4123 } 4124 } 4125 4126 // Figure out how many bits we need to preserve this constant. 4127 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 4128 4129 // Make sure we're not losing bits from the constant. 4130 if (MinBits > 0 && 4131 MinBits < C1.getBitWidth() && 4132 MinBits >= ReqdBits) { 4133 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 4134 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 4135 // Will get folded away. 4136 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 4137 if (MinBits == 1 && C1 == 1) 4138 // Invert the condition. 4139 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 4140 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4141 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 4142 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 4143 } 4144 4145 // If truncating the setcc operands is not desirable, we can still 4146 // simplify the expression in some cases: 4147 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 4148 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 4149 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 4150 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 4151 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 4152 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 4153 SDValue TopSetCC = N0->getOperand(0); 4154 unsigned N0Opc = N0->getOpcode(); 4155 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4156 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4157 TopSetCC.getOpcode() == ISD::SETCC && 4158 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4159 (isConstFalseVal(N1) || 4160 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4161 4162 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4163 (!N1C->isZero() && Cond == ISD::SETNE); 4164 4165 if (!Inverse) 4166 return TopSetCC; 4167 4168 ISD::CondCode InvCond = ISD::getSetCCInverse( 4169 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4170 TopSetCC.getOperand(0).getValueType()); 4171 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4172 TopSetCC.getOperand(1), 4173 InvCond); 4174 } 4175 } 4176 } 4177 4178 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4179 // equality or unsigned, and all 1 bits of the const are in the same 4180 // partial word, see if we can shorten the load. 4181 if (DCI.isBeforeLegalize() && 4182 !ISD::isSignedIntSetCC(Cond) && 4183 N0.getOpcode() == ISD::AND && C1 == 0 && 4184 N0.getNode()->hasOneUse() && 4185 isa<LoadSDNode>(N0.getOperand(0)) && 4186 N0.getOperand(0).getNode()->hasOneUse() && 4187 isa<ConstantSDNode>(N0.getOperand(1))) { 4188 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4189 APInt bestMask; 4190 unsigned bestWidth = 0, bestOffset = 0; 4191 if (Lod->isSimple() && Lod->isUnindexed()) { 4192 unsigned origWidth = N0.getValueSizeInBits(); 4193 unsigned maskWidth = origWidth; 4194 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4195 // 8 bits, but have to be careful... 4196 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4197 origWidth = Lod->getMemoryVT().getSizeInBits(); 4198 const APInt &Mask = N0.getConstantOperandAPInt(1); 4199 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 4200 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4201 for (unsigned offset=0; offset<origWidth/width; offset++) { 4202 if (Mask.isSubsetOf(newMask)) { 4203 if (Layout.isLittleEndian()) 4204 bestOffset = (uint64_t)offset * (width/8); 4205 else 4206 bestOffset = (origWidth/width - offset - 1) * (width/8); 4207 bestMask = Mask.lshr(offset * (width/8) * 8); 4208 bestWidth = width; 4209 break; 4210 } 4211 newMask <<= width; 4212 } 4213 } 4214 } 4215 if (bestWidth) { 4216 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4217 if (newVT.isRound() && 4218 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 4219 SDValue Ptr = Lod->getBasePtr(); 4220 if (bestOffset != 0) 4221 Ptr = 4222 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 4223 SDValue NewLoad = 4224 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4225 Lod->getPointerInfo().getWithOffset(bestOffset), 4226 Lod->getOriginalAlign()); 4227 return DAG.getSetCC(dl, VT, 4228 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4229 DAG.getConstant(bestMask.trunc(bestWidth), 4230 dl, newVT)), 4231 DAG.getConstant(0LL, dl, newVT), Cond); 4232 } 4233 } 4234 } 4235 4236 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4237 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4238 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4239 4240 // If the comparison constant has bits in the upper part, the 4241 // zero-extended value could never match. 4242 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4243 C1.getBitWidth() - InSize))) { 4244 switch (Cond) { 4245 case ISD::SETUGT: 4246 case ISD::SETUGE: 4247 case ISD::SETEQ: 4248 return DAG.getConstant(0, dl, VT); 4249 case ISD::SETULT: 4250 case ISD::SETULE: 4251 case ISD::SETNE: 4252 return DAG.getConstant(1, dl, VT); 4253 case ISD::SETGT: 4254 case ISD::SETGE: 4255 // True if the sign bit of C1 is set. 4256 return DAG.getConstant(C1.isNegative(), dl, VT); 4257 case ISD::SETLT: 4258 case ISD::SETLE: 4259 // True if the sign bit of C1 isn't set. 4260 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4261 default: 4262 break; 4263 } 4264 } 4265 4266 // Otherwise, we can perform the comparison with the low bits. 4267 switch (Cond) { 4268 case ISD::SETEQ: 4269 case ISD::SETNE: 4270 case ISD::SETUGT: 4271 case ISD::SETUGE: 4272 case ISD::SETULT: 4273 case ISD::SETULE: { 4274 EVT newVT = N0.getOperand(0).getValueType(); 4275 if (DCI.isBeforeLegalizeOps() || 4276 (isOperationLegal(ISD::SETCC, newVT) && 4277 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 4278 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4279 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4280 4281 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4282 NewConst, Cond); 4283 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4284 } 4285 break; 4286 } 4287 default: 4288 break; // todo, be more careful with signed comparisons 4289 } 4290 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4291 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4292 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4293 OpVT)) { 4294 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4295 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4296 EVT ExtDstTy = N0.getValueType(); 4297 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4298 4299 // If the constant doesn't fit into the number of bits for the source of 4300 // the sign extension, it is impossible for both sides to be equal. 4301 if (C1.getMinSignedBits() > ExtSrcTyBits) 4302 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4303 4304 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4305 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4306 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4307 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4308 DAG.getConstant(Imm, dl, ExtDstTy)); 4309 if (!DCI.isCalledByLegalizer()) 4310 DCI.AddToWorklist(ZextOp.getNode()); 4311 // Otherwise, make this a use of a zext. 4312 return DAG.getSetCC(dl, VT, ZextOp, 4313 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4314 } else if ((N1C->isZero() || N1C->isOne()) && 4315 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4316 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 4317 if (N0.getOpcode() == ISD::SETCC && 4318 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4319 (N0.getValueType() == MVT::i1 || 4320 getBooleanContents(N0.getOperand(0).getValueType()) == 4321 ZeroOrOneBooleanContent)) { 4322 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4323 if (TrueWhenTrue) 4324 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4325 // Invert the condition. 4326 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4327 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4328 if (DCI.isBeforeLegalizeOps() || 4329 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4330 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4331 } 4332 4333 if ((N0.getOpcode() == ISD::XOR || 4334 (N0.getOpcode() == ISD::AND && 4335 N0.getOperand(0).getOpcode() == ISD::XOR && 4336 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4337 isOneConstant(N0.getOperand(1))) { 4338 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4339 // can only do this if the top bits are known zero. 4340 unsigned BitWidth = N0.getValueSizeInBits(); 4341 if (DAG.MaskedValueIsZero(N0, 4342 APInt::getHighBitsSet(BitWidth, 4343 BitWidth-1))) { 4344 // Okay, get the un-inverted input value. 4345 SDValue Val; 4346 if (N0.getOpcode() == ISD::XOR) { 4347 Val = N0.getOperand(0); 4348 } else { 4349 assert(N0.getOpcode() == ISD::AND && 4350 N0.getOperand(0).getOpcode() == ISD::XOR); 4351 // ((X^1)&1)^1 -> X & 1 4352 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4353 N0.getOperand(0).getOperand(0), 4354 N0.getOperand(1)); 4355 } 4356 4357 return DAG.getSetCC(dl, VT, Val, N1, 4358 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4359 } 4360 } else if (N1C->isOne()) { 4361 SDValue Op0 = N0; 4362 if (Op0.getOpcode() == ISD::TRUNCATE) 4363 Op0 = Op0.getOperand(0); 4364 4365 if ((Op0.getOpcode() == ISD::XOR) && 4366 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4367 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4368 SDValue XorLHS = Op0.getOperand(0); 4369 SDValue XorRHS = Op0.getOperand(1); 4370 // Ensure that the input setccs return an i1 type or 0/1 value. 4371 if (Op0.getValueType() == MVT::i1 || 4372 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4373 ZeroOrOneBooleanContent && 4374 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4375 ZeroOrOneBooleanContent)) { 4376 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4377 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4378 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4379 } 4380 } 4381 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4382 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4383 if (Op0.getValueType().bitsGT(VT)) 4384 Op0 = DAG.getNode(ISD::AND, dl, VT, 4385 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4386 DAG.getConstant(1, dl, VT)); 4387 else if (Op0.getValueType().bitsLT(VT)) 4388 Op0 = DAG.getNode(ISD::AND, dl, VT, 4389 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4390 DAG.getConstant(1, dl, VT)); 4391 4392 return DAG.getSetCC(dl, VT, Op0, 4393 DAG.getConstant(0, dl, Op0.getValueType()), 4394 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4395 } 4396 if (Op0.getOpcode() == ISD::AssertZext && 4397 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4398 return DAG.getSetCC(dl, VT, Op0, 4399 DAG.getConstant(0, dl, Op0.getValueType()), 4400 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4401 } 4402 } 4403 4404 // Given: 4405 // icmp eq/ne (urem %x, %y), 0 4406 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4407 // icmp eq/ne %x, 0 4408 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4409 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4410 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4411 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4412 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4413 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4414 } 4415 4416 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4417 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4418 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4419 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4420 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4421 N1C && N1C->isAllOnes()) { 4422 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4423 DAG.getConstant(0, dl, OpVT), 4424 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4425 } 4426 4427 if (SDValue V = 4428 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4429 return V; 4430 } 4431 4432 // These simplifications apply to splat vectors as well. 4433 // TODO: Handle more splat vector cases. 4434 if (auto *N1C = isConstOrConstSplat(N1)) { 4435 const APInt &C1 = N1C->getAPIntValue(); 4436 4437 APInt MinVal, MaxVal; 4438 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4439 if (ISD::isSignedIntSetCC(Cond)) { 4440 MinVal = APInt::getSignedMinValue(OperandBitSize); 4441 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4442 } else { 4443 MinVal = APInt::getMinValue(OperandBitSize); 4444 MaxVal = APInt::getMaxValue(OperandBitSize); 4445 } 4446 4447 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4448 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4449 // X >= MIN --> true 4450 if (C1 == MinVal) 4451 return DAG.getBoolConstant(true, dl, VT, OpVT); 4452 4453 if (!VT.isVector()) { // TODO: Support this for vectors. 4454 // X >= C0 --> X > (C0 - 1) 4455 APInt C = C1 - 1; 4456 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4457 if ((DCI.isBeforeLegalizeOps() || 4458 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4459 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4460 isLegalICmpImmediate(C.getSExtValue())))) { 4461 return DAG.getSetCC(dl, VT, N0, 4462 DAG.getConstant(C, dl, N1.getValueType()), 4463 NewCC); 4464 } 4465 } 4466 } 4467 4468 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4469 // X <= MAX --> true 4470 if (C1 == MaxVal) 4471 return DAG.getBoolConstant(true, dl, VT, OpVT); 4472 4473 // X <= C0 --> X < (C0 + 1) 4474 if (!VT.isVector()) { // TODO: Support this for vectors. 4475 APInt C = C1 + 1; 4476 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4477 if ((DCI.isBeforeLegalizeOps() || 4478 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4479 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4480 isLegalICmpImmediate(C.getSExtValue())))) { 4481 return DAG.getSetCC(dl, VT, N0, 4482 DAG.getConstant(C, dl, N1.getValueType()), 4483 NewCC); 4484 } 4485 } 4486 } 4487 4488 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4489 if (C1 == MinVal) 4490 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4491 4492 // TODO: Support this for vectors after legalize ops. 4493 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4494 // Canonicalize setlt X, Max --> setne X, Max 4495 if (C1 == MaxVal) 4496 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4497 4498 // If we have setult X, 1, turn it into seteq X, 0 4499 if (C1 == MinVal+1) 4500 return DAG.getSetCC(dl, VT, N0, 4501 DAG.getConstant(MinVal, dl, N0.getValueType()), 4502 ISD::SETEQ); 4503 } 4504 } 4505 4506 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4507 if (C1 == MaxVal) 4508 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4509 4510 // TODO: Support this for vectors after legalize ops. 4511 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4512 // Canonicalize setgt X, Min --> setne X, Min 4513 if (C1 == MinVal) 4514 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4515 4516 // If we have setugt X, Max-1, turn it into seteq X, Max 4517 if (C1 == MaxVal-1) 4518 return DAG.getSetCC(dl, VT, N0, 4519 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4520 ISD::SETEQ); 4521 } 4522 } 4523 4524 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4525 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4526 if (C1.isZero()) 4527 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4528 VT, N0, N1, Cond, DCI, dl)) 4529 return CC; 4530 4531 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4532 // For example, when high 32-bits of i64 X are known clear: 4533 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4534 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4535 bool CmpZero = N1C->getAPIntValue().isZero(); 4536 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4537 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4538 // Match or(lo,shl(hi,bw/2)) pattern. 4539 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4540 unsigned EltBits = V.getScalarValueSizeInBits(); 4541 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4542 return false; 4543 SDValue LHS = V.getOperand(0); 4544 SDValue RHS = V.getOperand(1); 4545 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4546 // Unshifted element must have zero upperbits. 4547 if (RHS.getOpcode() == ISD::SHL && 4548 isa<ConstantSDNode>(RHS.getOperand(1)) && 4549 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4550 DAG.MaskedValueIsZero(LHS, HiBits)) { 4551 Lo = LHS; 4552 Hi = RHS.getOperand(0); 4553 return true; 4554 } 4555 if (LHS.getOpcode() == ISD::SHL && 4556 isa<ConstantSDNode>(LHS.getOperand(1)) && 4557 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4558 DAG.MaskedValueIsZero(RHS, HiBits)) { 4559 Lo = RHS; 4560 Hi = LHS.getOperand(0); 4561 return true; 4562 } 4563 return false; 4564 }; 4565 4566 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4567 unsigned EltBits = N0.getScalarValueSizeInBits(); 4568 unsigned HalfBits = EltBits / 2; 4569 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4570 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4571 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4572 SDValue NewN0 = 4573 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4574 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4575 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4576 }; 4577 4578 SDValue Lo, Hi; 4579 if (IsConcat(N0, Lo, Hi)) 4580 return MergeConcat(Lo, Hi); 4581 4582 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4583 SDValue Lo0, Lo1, Hi0, Hi1; 4584 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4585 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4586 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4587 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4588 } 4589 } 4590 } 4591 } 4592 4593 // If we have "setcc X, C0", check to see if we can shrink the immediate 4594 // by changing cc. 4595 // TODO: Support this for vectors after legalize ops. 4596 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4597 // SETUGT X, SINTMAX -> SETLT X, 0 4598 // SETUGE X, SINTMIN -> SETLT X, 0 4599 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4600 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4601 return DAG.getSetCC(dl, VT, N0, 4602 DAG.getConstant(0, dl, N1.getValueType()), 4603 ISD::SETLT); 4604 4605 // SETULT X, SINTMIN -> SETGT X, -1 4606 // SETULE X, SINTMAX -> SETGT X, -1 4607 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4608 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4609 return DAG.getSetCC(dl, VT, N0, 4610 DAG.getAllOnesConstant(dl, N1.getValueType()), 4611 ISD::SETGT); 4612 } 4613 } 4614 4615 // Back to non-vector simplifications. 4616 // TODO: Can we do these for vector splats? 4617 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4618 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4619 const APInt &C1 = N1C->getAPIntValue(); 4620 EVT ShValTy = N0.getValueType(); 4621 4622 // Fold bit comparisons when we can. This will result in an 4623 // incorrect value when boolean false is negative one, unless 4624 // the bitsize is 1 in which case the false value is the same 4625 // in practice regardless of the representation. 4626 if ((VT.getSizeInBits() == 1 || 4627 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4628 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4629 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4630 N0.getOpcode() == ISD::AND) { 4631 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4632 EVT ShiftTy = 4633 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4634 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4635 // Perform the xform if the AND RHS is a single bit. 4636 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4637 if (AndRHS->getAPIntValue().isPowerOf2() && 4638 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4639 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4640 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4641 DAG.getConstant(ShCt, dl, ShiftTy))); 4642 } 4643 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4644 // (X & 8) == 8 --> (X & 8) >> 3 4645 // Perform the xform if C1 is a single bit. 4646 unsigned ShCt = C1.logBase2(); 4647 if (C1.isPowerOf2() && 4648 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4649 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4650 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4651 DAG.getConstant(ShCt, dl, ShiftTy))); 4652 } 4653 } 4654 } 4655 } 4656 4657 if (C1.getMinSignedBits() <= 64 && 4658 !isLegalICmpImmediate(C1.getSExtValue())) { 4659 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4660 // (X & -256) == 256 -> (X >> 8) == 1 4661 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4662 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4663 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4664 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4665 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4666 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4667 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4668 SDValue Shift = 4669 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4670 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4671 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4672 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4673 } 4674 } 4675 } 4676 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4677 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4678 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4679 // X < 0x100000000 -> (X >> 32) < 1 4680 // X >= 0x100000000 -> (X >> 32) >= 1 4681 // X <= 0x0ffffffff -> (X >> 32) < 1 4682 // X > 0x0ffffffff -> (X >> 32) >= 1 4683 unsigned ShiftBits; 4684 APInt NewC = C1; 4685 ISD::CondCode NewCond = Cond; 4686 if (AdjOne) { 4687 ShiftBits = C1.countTrailingOnes(); 4688 NewC = NewC + 1; 4689 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4690 } else { 4691 ShiftBits = C1.countTrailingZeros(); 4692 } 4693 NewC.lshrInPlace(ShiftBits); 4694 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4695 isLegalICmpImmediate(NewC.getSExtValue()) && 4696 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4697 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4698 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4699 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4700 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4701 } 4702 } 4703 } 4704 } 4705 4706 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4707 auto *CFP = cast<ConstantFPSDNode>(N1); 4708 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4709 4710 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4711 // constant if knowing that the operand is non-nan is enough. We prefer to 4712 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4713 // materialize 0.0. 4714 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4715 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4716 4717 // setcc (fneg x), C -> setcc swap(pred) x, -C 4718 if (N0.getOpcode() == ISD::FNEG) { 4719 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4720 if (DCI.isBeforeLegalizeOps() || 4721 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4722 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4723 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4724 } 4725 } 4726 4727 // If the condition is not legal, see if we can find an equivalent one 4728 // which is legal. 4729 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4730 // If the comparison was an awkward floating-point == or != and one of 4731 // the comparison operands is infinity or negative infinity, convert the 4732 // condition to a less-awkward <= or >=. 4733 if (CFP->getValueAPF().isInfinity()) { 4734 bool IsNegInf = CFP->getValueAPF().isNegative(); 4735 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4736 switch (Cond) { 4737 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4738 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4739 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4740 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4741 default: break; 4742 } 4743 if (NewCond != ISD::SETCC_INVALID && 4744 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4745 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4746 } 4747 } 4748 } 4749 4750 if (N0 == N1) { 4751 // The sext(setcc()) => setcc() optimization relies on the appropriate 4752 // constant being emitted. 4753 assert(!N0.getValueType().isInteger() && 4754 "Integer types should be handled by FoldSetCC"); 4755 4756 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4757 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4758 if (UOF == 2) // FP operators that are undefined on NaNs. 4759 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4760 if (UOF == unsigned(EqTrue)) 4761 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4762 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4763 // if it is not already. 4764 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4765 if (NewCond != Cond && 4766 (DCI.isBeforeLegalizeOps() || 4767 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4768 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4769 } 4770 4771 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4772 N0.getValueType().isInteger()) { 4773 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4774 N0.getOpcode() == ISD::XOR) { 4775 // Simplify (X+Y) == (X+Z) --> Y == Z 4776 if (N0.getOpcode() == N1.getOpcode()) { 4777 if (N0.getOperand(0) == N1.getOperand(0)) 4778 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4779 if (N0.getOperand(1) == N1.getOperand(1)) 4780 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4781 if (isCommutativeBinOp(N0.getOpcode())) { 4782 // If X op Y == Y op X, try other combinations. 4783 if (N0.getOperand(0) == N1.getOperand(1)) 4784 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4785 Cond); 4786 if (N0.getOperand(1) == N1.getOperand(0)) 4787 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4788 Cond); 4789 } 4790 } 4791 4792 // If RHS is a legal immediate value for a compare instruction, we need 4793 // to be careful about increasing register pressure needlessly. 4794 bool LegalRHSImm = false; 4795 4796 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4797 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4798 // Turn (X+C1) == C2 --> X == C2-C1 4799 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) 4800 return DAG.getSetCC( 4801 dl, VT, N0.getOperand(0), 4802 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(), 4803 dl, N0.getValueType()), 4804 Cond); 4805 4806 // Turn (X^C1) == C2 --> X == C1^C2 4807 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) 4808 return DAG.getSetCC( 4809 dl, VT, N0.getOperand(0), 4810 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), 4811 dl, N0.getValueType()), 4812 Cond); 4813 } 4814 4815 // Turn (C1-X) == C2 --> X == C1-C2 4816 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) 4817 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) 4818 return DAG.getSetCC( 4819 dl, VT, N0.getOperand(1), 4820 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), 4821 dl, N0.getValueType()), 4822 Cond); 4823 4824 // Could RHSC fold directly into a compare? 4825 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4826 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4827 } 4828 4829 // (X+Y) == X --> Y == 0 and similar folds. 4830 // Don't do this if X is an immediate that can fold into a cmp 4831 // instruction and X+Y has other uses. It could be an induction variable 4832 // chain, and the transform would increase register pressure. 4833 if (!LegalRHSImm || N0.hasOneUse()) 4834 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4835 return V; 4836 } 4837 4838 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4839 N1.getOpcode() == ISD::XOR) 4840 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4841 return V; 4842 4843 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4844 return V; 4845 } 4846 4847 // Fold remainder of division by a constant. 4848 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4849 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4850 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4851 4852 // When division is cheap or optimizing for minimum size, 4853 // fall through to DIVREM creation by skipping this fold. 4854 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4855 if (N0.getOpcode() == ISD::UREM) { 4856 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4857 return Folded; 4858 } else if (N0.getOpcode() == ISD::SREM) { 4859 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4860 return Folded; 4861 } 4862 } 4863 } 4864 4865 // Fold away ALL boolean setcc's. 4866 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4867 SDValue Temp; 4868 switch (Cond) { 4869 default: llvm_unreachable("Unknown integer setcc!"); 4870 case ISD::SETEQ: // X == Y -> ~(X^Y) 4871 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4872 N0 = DAG.getNOT(dl, Temp, OpVT); 4873 if (!DCI.isCalledByLegalizer()) 4874 DCI.AddToWorklist(Temp.getNode()); 4875 break; 4876 case ISD::SETNE: // X != Y --> (X^Y) 4877 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4878 break; 4879 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4880 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4881 Temp = DAG.getNOT(dl, N0, OpVT); 4882 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4883 if (!DCI.isCalledByLegalizer()) 4884 DCI.AddToWorklist(Temp.getNode()); 4885 break; 4886 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4887 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4888 Temp = DAG.getNOT(dl, N1, OpVT); 4889 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4890 if (!DCI.isCalledByLegalizer()) 4891 DCI.AddToWorklist(Temp.getNode()); 4892 break; 4893 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4894 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4895 Temp = DAG.getNOT(dl, N0, OpVT); 4896 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4897 if (!DCI.isCalledByLegalizer()) 4898 DCI.AddToWorklist(Temp.getNode()); 4899 break; 4900 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4901 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4902 Temp = DAG.getNOT(dl, N1, OpVT); 4903 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4904 break; 4905 } 4906 if (VT.getScalarType() != MVT::i1) { 4907 if (!DCI.isCalledByLegalizer()) 4908 DCI.AddToWorklist(N0.getNode()); 4909 // FIXME: If running after legalize, we probably can't do this. 4910 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4911 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4912 } 4913 return N0; 4914 } 4915 4916 // Could not fold it. 4917 return SDValue(); 4918 } 4919 4920 /// Returns true (and the GlobalValue and the offset) if the node is a 4921 /// GlobalAddress + offset. 4922 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4923 int64_t &Offset) const { 4924 4925 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4926 4927 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4928 GA = GASD->getGlobal(); 4929 Offset += GASD->getOffset(); 4930 return true; 4931 } 4932 4933 if (N->getOpcode() == ISD::ADD) { 4934 SDValue N1 = N->getOperand(0); 4935 SDValue N2 = N->getOperand(1); 4936 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4937 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4938 Offset += V->getSExtValue(); 4939 return true; 4940 } 4941 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4942 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4943 Offset += V->getSExtValue(); 4944 return true; 4945 } 4946 } 4947 } 4948 4949 return false; 4950 } 4951 4952 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4953 DAGCombinerInfo &DCI) const { 4954 // Default implementation: no optimization. 4955 return SDValue(); 4956 } 4957 4958 //===----------------------------------------------------------------------===// 4959 // Inline Assembler Implementation Methods 4960 //===----------------------------------------------------------------------===// 4961 4962 TargetLowering::ConstraintType 4963 TargetLowering::getConstraintType(StringRef Constraint) const { 4964 unsigned S = Constraint.size(); 4965 4966 if (S == 1) { 4967 switch (Constraint[0]) { 4968 default: break; 4969 case 'r': 4970 return C_RegisterClass; 4971 case 'm': // memory 4972 case 'o': // offsetable 4973 case 'V': // not offsetable 4974 return C_Memory; 4975 case 'p': // Address. 4976 return C_Address; 4977 case 'n': // Simple Integer 4978 case 'E': // Floating Point Constant 4979 case 'F': // Floating Point Constant 4980 return C_Immediate; 4981 case 'i': // Simple Integer or Relocatable Constant 4982 case 's': // Relocatable Constant 4983 case 'X': // Allow ANY value. 4984 case 'I': // Target registers. 4985 case 'J': 4986 case 'K': 4987 case 'L': 4988 case 'M': 4989 case 'N': 4990 case 'O': 4991 case 'P': 4992 case '<': 4993 case '>': 4994 return C_Other; 4995 } 4996 } 4997 4998 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4999 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 5000 return C_Memory; 5001 return C_Register; 5002 } 5003 return C_Unknown; 5004 } 5005 5006 /// Try to replace an X constraint, which matches anything, with another that 5007 /// has more specific requirements based on the type of the corresponding 5008 /// operand. 5009 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 5010 if (ConstraintVT.isInteger()) 5011 return "r"; 5012 if (ConstraintVT.isFloatingPoint()) 5013 return "f"; // works for many targets 5014 return nullptr; 5015 } 5016 5017 SDValue TargetLowering::LowerAsmOutputForConstraint( 5018 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 5019 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 5020 return SDValue(); 5021 } 5022 5023 /// Lower the specified operand into the Ops vector. 5024 /// If it is invalid, don't add anything to Ops. 5025 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5026 std::string &Constraint, 5027 std::vector<SDValue> &Ops, 5028 SelectionDAG &DAG) const { 5029 5030 if (Constraint.length() > 1) return; 5031 5032 char ConstraintLetter = Constraint[0]; 5033 switch (ConstraintLetter) { 5034 default: break; 5035 case 'X': // Allows any operand 5036 case 'i': // Simple Integer or Relocatable Constant 5037 case 'n': // Simple Integer 5038 case 's': { // Relocatable Constant 5039 5040 ConstantSDNode *C; 5041 uint64_t Offset = 0; 5042 5043 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 5044 // etc., since getelementpointer is variadic. We can't use 5045 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 5046 // while in this case the GA may be furthest from the root node which is 5047 // likely an ISD::ADD. 5048 while (true) { 5049 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 5050 // gcc prints these as sign extended. Sign extend value to 64 bits 5051 // now; without this it would get ZExt'd later in 5052 // ScheduleDAGSDNodes::EmitNode, which is very generic. 5053 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 5054 BooleanContent BCont = getBooleanContents(MVT::i64); 5055 ISD::NodeType ExtOpc = 5056 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 5057 int64_t ExtVal = 5058 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 5059 Ops.push_back( 5060 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 5061 return; 5062 } 5063 if (ConstraintLetter != 'n') { 5064 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5065 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 5066 GA->getValueType(0), 5067 Offset + GA->getOffset())); 5068 return; 5069 } 5070 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 5071 Ops.push_back(DAG.getTargetBlockAddress( 5072 BA->getBlockAddress(), BA->getValueType(0), 5073 Offset + BA->getOffset(), BA->getTargetFlags())); 5074 return; 5075 } 5076 if (isa<BasicBlockSDNode>(Op)) { 5077 Ops.push_back(Op); 5078 return; 5079 } 5080 } 5081 const unsigned OpCode = Op.getOpcode(); 5082 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 5083 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 5084 Op = Op.getOperand(1); 5085 // Subtraction is not commutative. 5086 else if (OpCode == ISD::ADD && 5087 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 5088 Op = Op.getOperand(0); 5089 else 5090 return; 5091 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 5092 continue; 5093 } 5094 return; 5095 } 5096 break; 5097 } 5098 } 5099 } 5100 5101 std::pair<unsigned, const TargetRegisterClass *> 5102 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 5103 StringRef Constraint, 5104 MVT VT) const { 5105 if (Constraint.empty() || Constraint[0] != '{') 5106 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 5107 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 5108 5109 // Remove the braces from around the name. 5110 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 5111 5112 std::pair<unsigned, const TargetRegisterClass *> R = 5113 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 5114 5115 // Figure out which register class contains this reg. 5116 for (const TargetRegisterClass *RC : RI->regclasses()) { 5117 // If none of the value types for this register class are valid, we 5118 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5119 if (!isLegalRC(*RI, *RC)) 5120 continue; 5121 5122 for (const MCPhysReg &PR : *RC) { 5123 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 5124 std::pair<unsigned, const TargetRegisterClass *> S = 5125 std::make_pair(PR, RC); 5126 5127 // If this register class has the requested value type, return it, 5128 // otherwise keep searching and return the first class found 5129 // if no other is found which explicitly has the requested type. 5130 if (RI->isTypeLegalForClass(*RC, VT)) 5131 return S; 5132 if (!R.second) 5133 R = S; 5134 } 5135 } 5136 } 5137 5138 return R; 5139 } 5140 5141 //===----------------------------------------------------------------------===// 5142 // Constraint Selection. 5143 5144 /// Return true of this is an input operand that is a matching constraint like 5145 /// "4". 5146 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 5147 assert(!ConstraintCode.empty() && "No known constraint!"); 5148 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 5149 } 5150 5151 /// If this is an input matching constraint, this method returns the output 5152 /// operand it matches. 5153 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5154 assert(!ConstraintCode.empty() && "No known constraint!"); 5155 return atoi(ConstraintCode.c_str()); 5156 } 5157 5158 /// Split up the constraint string from the inline assembly value into the 5159 /// specific constraints and their prefixes, and also tie in the associated 5160 /// operand values. 5161 /// If this returns an empty vector, and if the constraint string itself 5162 /// isn't empty, there was an error parsing. 5163 TargetLowering::AsmOperandInfoVector 5164 TargetLowering::ParseConstraints(const DataLayout &DL, 5165 const TargetRegisterInfo *TRI, 5166 const CallBase &Call) const { 5167 /// Information about all of the constraints. 5168 AsmOperandInfoVector ConstraintOperands; 5169 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5170 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5171 5172 // Do a prepass over the constraints, canonicalizing them, and building up the 5173 // ConstraintOperands list. 5174 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5175 unsigned ResNo = 0; // ResNo - The result number of the next output. 5176 5177 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5178 ConstraintOperands.emplace_back(std::move(CI)); 5179 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5180 5181 // Update multiple alternative constraint count. 5182 if (OpInfo.multipleAlternatives.size() > maCount) 5183 maCount = OpInfo.multipleAlternatives.size(); 5184 5185 OpInfo.ConstraintVT = MVT::Other; 5186 5187 // Compute the value type for each operand. 5188 switch (OpInfo.Type) { 5189 case InlineAsm::isOutput: 5190 // Indirect outputs just consume an argument. 5191 if (OpInfo.isIndirect) { 5192 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5193 break; 5194 } 5195 5196 // The return value of the call is this value. As such, there is no 5197 // corresponding argument. 5198 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5199 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 5200 OpInfo.ConstraintVT = 5201 getSimpleValueType(DL, STy->getElementType(ResNo)); 5202 } else { 5203 assert(ResNo == 0 && "Asm only has one result!"); 5204 OpInfo.ConstraintVT = 5205 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5206 } 5207 ++ResNo; 5208 break; 5209 case InlineAsm::isInput: 5210 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5211 break; 5212 case InlineAsm::isClobber: 5213 // Nothing to do. 5214 break; 5215 } 5216 5217 if (OpInfo.CallOperandVal) { 5218 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5219 if (OpInfo.isIndirect) { 5220 OpTy = Call.getParamElementType(ArgNo); 5221 assert(OpTy && "Indirect operand must have elementtype attribute"); 5222 } 5223 5224 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5225 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5226 if (STy->getNumElements() == 1) 5227 OpTy = STy->getElementType(0); 5228 5229 // If OpTy is not a single value, it may be a struct/union that we 5230 // can tile with integers. 5231 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5232 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5233 switch (BitSize) { 5234 default: break; 5235 case 1: 5236 case 8: 5237 case 16: 5238 case 32: 5239 case 64: 5240 case 128: 5241 OpInfo.ConstraintVT = 5242 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 5243 break; 5244 } 5245 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 5246 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 5247 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 5248 } else { 5249 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 5250 } 5251 5252 ArgNo++; 5253 } 5254 } 5255 5256 // If we have multiple alternative constraints, select the best alternative. 5257 if (!ConstraintOperands.empty()) { 5258 if (maCount) { 5259 unsigned bestMAIndex = 0; 5260 int bestWeight = -1; 5261 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5262 int weight = -1; 5263 unsigned maIndex; 5264 // Compute the sums of the weights for each alternative, keeping track 5265 // of the best (highest weight) one so far. 5266 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5267 int weightSum = 0; 5268 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5269 cIndex != eIndex; ++cIndex) { 5270 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5271 if (OpInfo.Type == InlineAsm::isClobber) 5272 continue; 5273 5274 // If this is an output operand with a matching input operand, 5275 // look up the matching input. If their types mismatch, e.g. one 5276 // is an integer, the other is floating point, or their sizes are 5277 // different, flag it as an maCantMatch. 5278 if (OpInfo.hasMatchingInput()) { 5279 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5280 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5281 if ((OpInfo.ConstraintVT.isInteger() != 5282 Input.ConstraintVT.isInteger()) || 5283 (OpInfo.ConstraintVT.getSizeInBits() != 5284 Input.ConstraintVT.getSizeInBits())) { 5285 weightSum = -1; // Can't match. 5286 break; 5287 } 5288 } 5289 } 5290 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5291 if (weight == -1) { 5292 weightSum = -1; 5293 break; 5294 } 5295 weightSum += weight; 5296 } 5297 // Update best. 5298 if (weightSum > bestWeight) { 5299 bestWeight = weightSum; 5300 bestMAIndex = maIndex; 5301 } 5302 } 5303 5304 // Now select chosen alternative in each constraint. 5305 for (AsmOperandInfo &cInfo : ConstraintOperands) 5306 if (cInfo.Type != InlineAsm::isClobber) 5307 cInfo.selectAlternative(bestMAIndex); 5308 } 5309 } 5310 5311 // Check and hook up tied operands, choose constraint code to use. 5312 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5313 cIndex != eIndex; ++cIndex) { 5314 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5315 5316 // If this is an output operand with a matching input operand, look up the 5317 // matching input. If their types mismatch, e.g. one is an integer, the 5318 // other is floating point, or their sizes are different, flag it as an 5319 // error. 5320 if (OpInfo.hasMatchingInput()) { 5321 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5322 5323 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5324 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5325 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5326 OpInfo.ConstraintVT); 5327 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5328 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5329 Input.ConstraintVT); 5330 if ((OpInfo.ConstraintVT.isInteger() != 5331 Input.ConstraintVT.isInteger()) || 5332 (MatchRC.second != InputRC.second)) { 5333 report_fatal_error("Unsupported asm: input constraint" 5334 " with a matching output constraint of" 5335 " incompatible type!"); 5336 } 5337 } 5338 } 5339 } 5340 5341 return ConstraintOperands; 5342 } 5343 5344 /// Return an integer indicating how general CT is. 5345 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 5346 switch (CT) { 5347 case TargetLowering::C_Immediate: 5348 case TargetLowering::C_Other: 5349 case TargetLowering::C_Unknown: 5350 return 0; 5351 case TargetLowering::C_Register: 5352 return 1; 5353 case TargetLowering::C_RegisterClass: 5354 return 2; 5355 case TargetLowering::C_Memory: 5356 case TargetLowering::C_Address: 5357 return 3; 5358 } 5359 llvm_unreachable("Invalid constraint type"); 5360 } 5361 5362 /// Examine constraint type and operand type and determine a weight value. 5363 /// This object must already have been set up with the operand type 5364 /// and the current alternative constraint selected. 5365 TargetLowering::ConstraintWeight 5366 TargetLowering::getMultipleConstraintMatchWeight( 5367 AsmOperandInfo &info, int maIndex) const { 5368 InlineAsm::ConstraintCodeVector *rCodes; 5369 if (maIndex >= (int)info.multipleAlternatives.size()) 5370 rCodes = &info.Codes; 5371 else 5372 rCodes = &info.multipleAlternatives[maIndex].Codes; 5373 ConstraintWeight BestWeight = CW_Invalid; 5374 5375 // Loop over the options, keeping track of the most general one. 5376 for (const std::string &rCode : *rCodes) { 5377 ConstraintWeight weight = 5378 getSingleConstraintMatchWeight(info, rCode.c_str()); 5379 if (weight > BestWeight) 5380 BestWeight = weight; 5381 } 5382 5383 return BestWeight; 5384 } 5385 5386 /// Examine constraint type and operand type and determine a weight value. 5387 /// This object must already have been set up with the operand type 5388 /// and the current alternative constraint selected. 5389 TargetLowering::ConstraintWeight 5390 TargetLowering::getSingleConstraintMatchWeight( 5391 AsmOperandInfo &info, const char *constraint) const { 5392 ConstraintWeight weight = CW_Invalid; 5393 Value *CallOperandVal = info.CallOperandVal; 5394 // If we don't have a value, we can't do a match, 5395 // but allow it at the lowest weight. 5396 if (!CallOperandVal) 5397 return CW_Default; 5398 // Look at the constraint type. 5399 switch (*constraint) { 5400 case 'i': // immediate integer. 5401 case 'n': // immediate integer with a known value. 5402 if (isa<ConstantInt>(CallOperandVal)) 5403 weight = CW_Constant; 5404 break; 5405 case 's': // non-explicit intregal immediate. 5406 if (isa<GlobalValue>(CallOperandVal)) 5407 weight = CW_Constant; 5408 break; 5409 case 'E': // immediate float if host format. 5410 case 'F': // immediate float. 5411 if (isa<ConstantFP>(CallOperandVal)) 5412 weight = CW_Constant; 5413 break; 5414 case '<': // memory operand with autodecrement. 5415 case '>': // memory operand with autoincrement. 5416 case 'm': // memory operand. 5417 case 'o': // offsettable memory operand 5418 case 'V': // non-offsettable memory operand 5419 weight = CW_Memory; 5420 break; 5421 case 'r': // general register. 5422 case 'g': // general register, memory operand or immediate integer. 5423 // note: Clang converts "g" to "imr". 5424 if (CallOperandVal->getType()->isIntegerTy()) 5425 weight = CW_Register; 5426 break; 5427 case 'X': // any operand. 5428 default: 5429 weight = CW_Default; 5430 break; 5431 } 5432 return weight; 5433 } 5434 5435 /// If there are multiple different constraints that we could pick for this 5436 /// operand (e.g. "imr") try to pick the 'best' one. 5437 /// This is somewhat tricky: constraints fall into four classes: 5438 /// Other -> immediates and magic values 5439 /// Register -> one specific register 5440 /// RegisterClass -> a group of regs 5441 /// Memory -> memory 5442 /// Ideally, we would pick the most specific constraint possible: if we have 5443 /// something that fits into a register, we would pick it. The problem here 5444 /// is that if we have something that could either be in a register or in 5445 /// memory that use of the register could cause selection of *other* 5446 /// operands to fail: they might only succeed if we pick memory. Because of 5447 /// this the heuristic we use is: 5448 /// 5449 /// 1) If there is an 'other' constraint, and if the operand is valid for 5450 /// that constraint, use it. This makes us take advantage of 'i' 5451 /// constraints when available. 5452 /// 2) Otherwise, pick the most general constraint present. This prefers 5453 /// 'm' over 'r', for example. 5454 /// 5455 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5456 const TargetLowering &TLI, 5457 SDValue Op, SelectionDAG *DAG) { 5458 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5459 unsigned BestIdx = 0; 5460 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5461 int BestGenerality = -1; 5462 5463 // Loop over the options, keeping track of the most general one. 5464 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5465 TargetLowering::ConstraintType CType = 5466 TLI.getConstraintType(OpInfo.Codes[i]); 5467 5468 // Indirect 'other' or 'immediate' constraints are not allowed. 5469 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5470 CType == TargetLowering::C_Register || 5471 CType == TargetLowering::C_RegisterClass)) 5472 continue; 5473 5474 // If this is an 'other' or 'immediate' constraint, see if the operand is 5475 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5476 // the operand is an integer in the range [0..31] we want to use I (saving a 5477 // load of a register), otherwise we must use 'r'. 5478 if ((CType == TargetLowering::C_Other || 5479 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5480 assert(OpInfo.Codes[i].size() == 1 && 5481 "Unhandled multi-letter 'other' constraint"); 5482 std::vector<SDValue> ResultOps; 5483 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5484 ResultOps, *DAG); 5485 if (!ResultOps.empty()) { 5486 BestType = CType; 5487 BestIdx = i; 5488 break; 5489 } 5490 } 5491 5492 // Things with matching constraints can only be registers, per gcc 5493 // documentation. This mainly affects "g" constraints. 5494 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5495 continue; 5496 5497 // This constraint letter is more general than the previous one, use it. 5498 int Generality = getConstraintGenerality(CType); 5499 if (Generality > BestGenerality) { 5500 BestType = CType; 5501 BestIdx = i; 5502 BestGenerality = Generality; 5503 } 5504 } 5505 5506 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5507 OpInfo.ConstraintType = BestType; 5508 } 5509 5510 /// Determines the constraint code and constraint type to use for the specific 5511 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5512 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5513 SDValue Op, 5514 SelectionDAG *DAG) const { 5515 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5516 5517 // Single-letter constraints ('r') are very common. 5518 if (OpInfo.Codes.size() == 1) { 5519 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5520 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5521 } else { 5522 ChooseConstraint(OpInfo, *this, Op, DAG); 5523 } 5524 5525 // 'X' matches anything. 5526 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5527 // Constants are handled elsewhere. For Functions, the type here is the 5528 // type of the result, which is not what we want to look at; leave them 5529 // alone. 5530 Value *v = OpInfo.CallOperandVal; 5531 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5532 return; 5533 } 5534 5535 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5536 OpInfo.ConstraintCode = "i"; 5537 return; 5538 } 5539 5540 // Otherwise, try to resolve it to something we know about by looking at 5541 // the actual operand type. 5542 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5543 OpInfo.ConstraintCode = Repl; 5544 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5545 } 5546 } 5547 } 5548 5549 /// Given an exact SDIV by a constant, create a multiplication 5550 /// with the multiplicative inverse of the constant. 5551 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5552 const SDLoc &dl, SelectionDAG &DAG, 5553 SmallVectorImpl<SDNode *> &Created) { 5554 SDValue Op0 = N->getOperand(0); 5555 SDValue Op1 = N->getOperand(1); 5556 EVT VT = N->getValueType(0); 5557 EVT SVT = VT.getScalarType(); 5558 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5559 EVT ShSVT = ShVT.getScalarType(); 5560 5561 bool UseSRA = false; 5562 SmallVector<SDValue, 16> Shifts, Factors; 5563 5564 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5565 if (C->isZero()) 5566 return false; 5567 APInt Divisor = C->getAPIntValue(); 5568 unsigned Shift = Divisor.countTrailingZeros(); 5569 if (Shift) { 5570 Divisor.ashrInPlace(Shift); 5571 UseSRA = true; 5572 } 5573 // Calculate the multiplicative inverse, using Newton's method. 5574 APInt t; 5575 APInt Factor = Divisor; 5576 while ((t = Divisor * Factor) != 1) 5577 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5578 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5579 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5580 return true; 5581 }; 5582 5583 // Collect all magic values from the build vector. 5584 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5585 return SDValue(); 5586 5587 SDValue Shift, Factor; 5588 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5589 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5590 Factor = DAG.getBuildVector(VT, dl, Factors); 5591 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5592 assert(Shifts.size() == 1 && Factors.size() == 1 && 5593 "Expected matchUnaryPredicate to return one element for scalable " 5594 "vectors"); 5595 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5596 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5597 } else { 5598 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5599 Shift = Shifts[0]; 5600 Factor = Factors[0]; 5601 } 5602 5603 SDValue Res = Op0; 5604 5605 // Shift the value upfront if it is even, so the LSB is one. 5606 if (UseSRA) { 5607 // TODO: For UDIV use SRL instead of SRA. 5608 SDNodeFlags Flags; 5609 Flags.setExact(true); 5610 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5611 Created.push_back(Res.getNode()); 5612 } 5613 5614 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5615 } 5616 5617 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5618 SelectionDAG &DAG, 5619 SmallVectorImpl<SDNode *> &Created) const { 5620 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5621 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5622 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5623 return SDValue(N, 0); // Lower SDIV as SDIV 5624 return SDValue(); 5625 } 5626 5627 SDValue 5628 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, 5629 SelectionDAG &DAG, 5630 SmallVectorImpl<SDNode *> &Created) const { 5631 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5632 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5633 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5634 return SDValue(N, 0); // Lower SREM as SREM 5635 return SDValue(); 5636 } 5637 5638 /// Given an ISD::SDIV node expressing a divide by constant, 5639 /// return a DAG expression to select that will generate the same value by 5640 /// multiplying by a magic number. 5641 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5642 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5643 bool IsAfterLegalization, 5644 SmallVectorImpl<SDNode *> &Created) const { 5645 SDLoc dl(N); 5646 EVT VT = N->getValueType(0); 5647 EVT SVT = VT.getScalarType(); 5648 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5649 EVT ShSVT = ShVT.getScalarType(); 5650 unsigned EltBits = VT.getScalarSizeInBits(); 5651 EVT MulVT; 5652 5653 // Check to see if we can do this. 5654 // FIXME: We should be more aggressive here. 5655 if (!isTypeLegal(VT)) { 5656 // Limit this to simple scalars for now. 5657 if (VT.isVector() || !VT.isSimple()) 5658 return SDValue(); 5659 5660 // If this type will be promoted to a large enough type with a legal 5661 // multiply operation, we can go ahead and do this transform. 5662 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5663 return SDValue(); 5664 5665 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5666 if (MulVT.getSizeInBits() < (2 * EltBits) || 5667 !isOperationLegal(ISD::MUL, MulVT)) 5668 return SDValue(); 5669 } 5670 5671 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5672 if (N->getFlags().hasExact()) 5673 return BuildExactSDIV(*this, N, dl, DAG, Created); 5674 5675 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5676 5677 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5678 if (C->isZero()) 5679 return false; 5680 5681 const APInt &Divisor = C->getAPIntValue(); 5682 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5683 int NumeratorFactor = 0; 5684 int ShiftMask = -1; 5685 5686 if (Divisor.isOne() || Divisor.isAllOnes()) { 5687 // If d is +1/-1, we just multiply the numerator by +1/-1. 5688 NumeratorFactor = Divisor.getSExtValue(); 5689 magics.Magic = 0; 5690 magics.ShiftAmount = 0; 5691 ShiftMask = 0; 5692 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5693 // If d > 0 and m < 0, add the numerator. 5694 NumeratorFactor = 1; 5695 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5696 // If d < 0 and m > 0, subtract the numerator. 5697 NumeratorFactor = -1; 5698 } 5699 5700 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5701 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5702 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5703 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5704 return true; 5705 }; 5706 5707 SDValue N0 = N->getOperand(0); 5708 SDValue N1 = N->getOperand(1); 5709 5710 // Collect the shifts / magic values from each element. 5711 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5712 return SDValue(); 5713 5714 SDValue MagicFactor, Factor, Shift, ShiftMask; 5715 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5716 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5717 Factor = DAG.getBuildVector(VT, dl, Factors); 5718 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5719 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5720 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5721 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5722 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5723 "Expected matchUnaryPredicate to return one element for scalable " 5724 "vectors"); 5725 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5726 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5727 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5728 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5729 } else { 5730 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5731 MagicFactor = MagicFactors[0]; 5732 Factor = Factors[0]; 5733 Shift = Shifts[0]; 5734 ShiftMask = ShiftMasks[0]; 5735 } 5736 5737 // Multiply the numerator (operand 0) by the magic value. 5738 // FIXME: We should support doing a MUL in a wider type. 5739 auto GetMULHS = [&](SDValue X, SDValue Y) { 5740 // If the type isn't legal, use a wider mul of the the type calculated 5741 // earlier. 5742 if (!isTypeLegal(VT)) { 5743 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5744 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5745 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5746 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5747 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5748 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5749 } 5750 5751 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5752 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5753 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5754 SDValue LoHi = 5755 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5756 return SDValue(LoHi.getNode(), 1); 5757 } 5758 return SDValue(); 5759 }; 5760 5761 SDValue Q = GetMULHS(N0, MagicFactor); 5762 if (!Q) 5763 return SDValue(); 5764 5765 Created.push_back(Q.getNode()); 5766 5767 // (Optionally) Add/subtract the numerator using Factor. 5768 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5769 Created.push_back(Factor.getNode()); 5770 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5771 Created.push_back(Q.getNode()); 5772 5773 // Shift right algebraic by shift value. 5774 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5775 Created.push_back(Q.getNode()); 5776 5777 // Extract the sign bit, mask it and add it to the quotient. 5778 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5779 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5780 Created.push_back(T.getNode()); 5781 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5782 Created.push_back(T.getNode()); 5783 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5784 } 5785 5786 /// Given an ISD::UDIV node expressing a divide by constant, 5787 /// return a DAG expression to select that will generate the same value by 5788 /// multiplying by a magic number. 5789 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5790 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5791 bool IsAfterLegalization, 5792 SmallVectorImpl<SDNode *> &Created) const { 5793 SDLoc dl(N); 5794 EVT VT = N->getValueType(0); 5795 EVT SVT = VT.getScalarType(); 5796 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5797 EVT ShSVT = ShVT.getScalarType(); 5798 unsigned EltBits = VT.getScalarSizeInBits(); 5799 EVT MulVT; 5800 5801 // Check to see if we can do this. 5802 // FIXME: We should be more aggressive here. 5803 if (!isTypeLegal(VT)) { 5804 // Limit this to simple scalars for now. 5805 if (VT.isVector() || !VT.isSimple()) 5806 return SDValue(); 5807 5808 // If this type will be promoted to a large enough type with a legal 5809 // multiply operation, we can go ahead and do this transform. 5810 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5811 return SDValue(); 5812 5813 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5814 if (MulVT.getSizeInBits() < (2 * EltBits) || 5815 !isOperationLegal(ISD::MUL, MulVT)) 5816 return SDValue(); 5817 } 5818 5819 bool UseNPQ = false; 5820 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5821 5822 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5823 if (C->isZero()) 5824 return false; 5825 // FIXME: We should use a narrower constant when the upper 5826 // bits are known to be zero. 5827 const APInt& Divisor = C->getAPIntValue(); 5828 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5829 unsigned PreShift = 0, PostShift = 0; 5830 5831 // If the divisor is even, we can avoid using the expensive fixup by 5832 // shifting the divided value upfront. 5833 if (magics.IsAdd != 0 && !Divisor[0]) { 5834 PreShift = Divisor.countTrailingZeros(); 5835 // Get magic number for the shifted divisor. 5836 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5837 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5838 } 5839 5840 APInt Magic = magics.Magic; 5841 5842 unsigned SelNPQ; 5843 if (magics.IsAdd == 0 || Divisor.isOne()) { 5844 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5845 "We shouldn't generate an undefined shift!"); 5846 PostShift = magics.ShiftAmount; 5847 SelNPQ = false; 5848 } else { 5849 PostShift = magics.ShiftAmount - 1; 5850 SelNPQ = true; 5851 } 5852 5853 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5854 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5855 NPQFactors.push_back( 5856 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5857 : APInt::getZero(EltBits), 5858 dl, SVT)); 5859 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5860 UseNPQ |= SelNPQ; 5861 return true; 5862 }; 5863 5864 SDValue N0 = N->getOperand(0); 5865 SDValue N1 = N->getOperand(1); 5866 5867 // Collect the shifts/magic values from each element. 5868 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5869 return SDValue(); 5870 5871 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5872 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5873 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5874 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5875 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5876 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5877 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5878 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5879 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5880 "Expected matchUnaryPredicate to return one for scalable vectors"); 5881 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5882 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5883 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5884 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5885 } else { 5886 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5887 PreShift = PreShifts[0]; 5888 MagicFactor = MagicFactors[0]; 5889 PostShift = PostShifts[0]; 5890 } 5891 5892 SDValue Q = N0; 5893 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5894 Created.push_back(Q.getNode()); 5895 5896 // FIXME: We should support doing a MUL in a wider type. 5897 auto GetMULHU = [&](SDValue X, SDValue Y) { 5898 // If the type isn't legal, use a wider mul of the the type calculated 5899 // earlier. 5900 if (!isTypeLegal(VT)) { 5901 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5902 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5903 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5904 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5905 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5906 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5907 } 5908 5909 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5910 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5911 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5912 SDValue LoHi = 5913 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5914 return SDValue(LoHi.getNode(), 1); 5915 } 5916 return SDValue(); // No mulhu or equivalent 5917 }; 5918 5919 // Multiply the numerator (operand 0) by the magic value. 5920 Q = GetMULHU(Q, MagicFactor); 5921 if (!Q) 5922 return SDValue(); 5923 5924 Created.push_back(Q.getNode()); 5925 5926 if (UseNPQ) { 5927 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5928 Created.push_back(NPQ.getNode()); 5929 5930 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5931 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5932 if (VT.isVector()) 5933 NPQ = GetMULHU(NPQ, NPQFactor); 5934 else 5935 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5936 5937 Created.push_back(NPQ.getNode()); 5938 5939 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5940 Created.push_back(Q.getNode()); 5941 } 5942 5943 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5944 Created.push_back(Q.getNode()); 5945 5946 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5947 5948 SDValue One = DAG.getConstant(1, dl, VT); 5949 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5950 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5951 } 5952 5953 /// If all values in Values that *don't* match the predicate are same 'splat' 5954 /// value, then replace all values with that splat value. 5955 /// Else, if AlternativeReplacement was provided, then replace all values that 5956 /// do match predicate with AlternativeReplacement value. 5957 static void 5958 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5959 std::function<bool(SDValue)> Predicate, 5960 SDValue AlternativeReplacement = SDValue()) { 5961 SDValue Replacement; 5962 // Is there a value for which the Predicate does *NOT* match? What is it? 5963 auto SplatValue = llvm::find_if_not(Values, Predicate); 5964 if (SplatValue != Values.end()) { 5965 // Does Values consist only of SplatValue's and values matching Predicate? 5966 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5967 return Value == *SplatValue || Predicate(Value); 5968 })) // Then we shall replace values matching predicate with SplatValue. 5969 Replacement = *SplatValue; 5970 } 5971 if (!Replacement) { 5972 // Oops, we did not find the "baseline" splat value. 5973 if (!AlternativeReplacement) 5974 return; // Nothing to do. 5975 // Let's replace with provided value then. 5976 Replacement = AlternativeReplacement; 5977 } 5978 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5979 } 5980 5981 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5982 /// where the divisor is constant and the comparison target is zero, 5983 /// return a DAG expression that will generate the same comparison result 5984 /// using only multiplications, additions and shifts/rotations. 5985 /// Ref: "Hacker's Delight" 10-17. 5986 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5987 SDValue CompTargetNode, 5988 ISD::CondCode Cond, 5989 DAGCombinerInfo &DCI, 5990 const SDLoc &DL) const { 5991 SmallVector<SDNode *, 5> Built; 5992 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5993 DCI, DL, Built)) { 5994 for (SDNode *N : Built) 5995 DCI.AddToWorklist(N); 5996 return Folded; 5997 } 5998 5999 return SDValue(); 6000 } 6001 6002 SDValue 6003 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 6004 SDValue CompTargetNode, ISD::CondCode Cond, 6005 DAGCombinerInfo &DCI, const SDLoc &DL, 6006 SmallVectorImpl<SDNode *> &Created) const { 6007 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 6008 // - D must be constant, with D = D0 * 2^K where D0 is odd 6009 // - P is the multiplicative inverse of D0 modulo 2^W 6010 // - Q = floor(((2^W) - 1) / D) 6011 // where W is the width of the common type of N and D. 6012 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6013 "Only applicable for (in)equality comparisons."); 6014 6015 SelectionDAG &DAG = DCI.DAG; 6016 6017 EVT VT = REMNode.getValueType(); 6018 EVT SVT = VT.getScalarType(); 6019 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6020 EVT ShSVT = ShVT.getScalarType(); 6021 6022 // If MUL is unavailable, we cannot proceed in any case. 6023 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6024 return SDValue(); 6025 6026 bool ComparingWithAllZeros = true; 6027 bool AllComparisonsWithNonZerosAreTautological = true; 6028 bool HadTautologicalLanes = false; 6029 bool AllLanesAreTautological = true; 6030 bool HadEvenDivisor = false; 6031 bool AllDivisorsArePowerOfTwo = true; 6032 bool HadTautologicalInvertedLanes = false; 6033 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 6034 6035 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 6036 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6037 if (CDiv->isZero()) 6038 return false; 6039 6040 const APInt &D = CDiv->getAPIntValue(); 6041 const APInt &Cmp = CCmp->getAPIntValue(); 6042 6043 ComparingWithAllZeros &= Cmp.isZero(); 6044 6045 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6046 // if C2 is not less than C1, the comparison is always false. 6047 // But we will only be able to produce the comparison that will give the 6048 // opposive tautological answer. So this lane would need to be fixed up. 6049 bool TautologicalInvertedLane = D.ule(Cmp); 6050 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 6051 6052 // If all lanes are tautological (either all divisors are ones, or divisor 6053 // is not greater than the constant we are comparing with), 6054 // we will prefer to avoid the fold. 6055 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 6056 HadTautologicalLanes |= TautologicalLane; 6057 AllLanesAreTautological &= TautologicalLane; 6058 6059 // If we are comparing with non-zero, we need'll need to subtract said 6060 // comparison value from the LHS. But there is no point in doing that if 6061 // every lane where we are comparing with non-zero is tautological.. 6062 if (!Cmp.isZero()) 6063 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 6064 6065 // Decompose D into D0 * 2^K 6066 unsigned K = D.countTrailingZeros(); 6067 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6068 APInt D0 = D.lshr(K); 6069 6070 // D is even if it has trailing zeros. 6071 HadEvenDivisor |= (K != 0); 6072 // D is a power-of-two if D0 is one. 6073 // If all divisors are power-of-two, we will prefer to avoid the fold. 6074 AllDivisorsArePowerOfTwo &= D0.isOne(); 6075 6076 // P = inv(D0, 2^W) 6077 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6078 unsigned W = D.getBitWidth(); 6079 APInt P = D0.zext(W + 1) 6080 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6081 .trunc(W); 6082 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6083 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6084 6085 // Q = floor((2^W - 1) u/ D) 6086 // R = ((2^W - 1) u% D) 6087 APInt Q, R; 6088 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 6089 6090 // If we are comparing with zero, then that comparison constant is okay, 6091 // else it may need to be one less than that. 6092 if (Cmp.ugt(R)) 6093 Q -= 1; 6094 6095 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6096 "We are expecting that K is always less than all-ones for ShSVT"); 6097 6098 // If the lane is tautological the result can be constant-folded. 6099 if (TautologicalLane) { 6100 // Set P and K amount to a bogus values so we can try to splat them. 6101 P = 0; 6102 K = -1; 6103 // And ensure that comparison constant is tautological, 6104 // it will always compare true/false. 6105 Q = -1; 6106 } 6107 6108 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6109 KAmts.push_back( 6110 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6111 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6112 return true; 6113 }; 6114 6115 SDValue N = REMNode.getOperand(0); 6116 SDValue D = REMNode.getOperand(1); 6117 6118 // Collect the values from each element. 6119 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 6120 return SDValue(); 6121 6122 // If all lanes are tautological, the result can be constant-folded. 6123 if (AllLanesAreTautological) 6124 return SDValue(); 6125 6126 // If this is a urem by a powers-of-two, avoid the fold since it can be 6127 // best implemented as a bit test. 6128 if (AllDivisorsArePowerOfTwo) 6129 return SDValue(); 6130 6131 SDValue PVal, KVal, QVal; 6132 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6133 if (HadTautologicalLanes) { 6134 // Try to turn PAmts into a splat, since we don't care about the values 6135 // that are currently '0'. If we can't, just keep '0'`s. 6136 turnVectorIntoSplatVector(PAmts, isNullConstant); 6137 // Try to turn KAmts into a splat, since we don't care about the values 6138 // that are currently '-1'. If we can't, change them to '0'`s. 6139 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6140 DAG.getConstant(0, DL, ShSVT)); 6141 } 6142 6143 PVal = DAG.getBuildVector(VT, DL, PAmts); 6144 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6145 QVal = DAG.getBuildVector(VT, DL, QAmts); 6146 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6147 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 6148 "Expected matchBinaryPredicate to return one element for " 6149 "SPLAT_VECTORs"); 6150 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6151 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6152 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6153 } else { 6154 PVal = PAmts[0]; 6155 KVal = KAmts[0]; 6156 QVal = QAmts[0]; 6157 } 6158 6159 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 6160 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 6161 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 6162 assert(CompTargetNode.getValueType() == N.getValueType() && 6163 "Expecting that the types on LHS and RHS of comparisons match."); 6164 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6165 } 6166 6167 // (mul N, P) 6168 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6169 Created.push_back(Op0.getNode()); 6170 6171 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6172 // divisors as a performance improvement, since rotating by 0 is a no-op. 6173 if (HadEvenDivisor) { 6174 // We need ROTR to do this. 6175 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6176 return SDValue(); 6177 // UREM: (rotr (mul N, P), K) 6178 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6179 Created.push_back(Op0.getNode()); 6180 } 6181 6182 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6183 SDValue NewCC = 6184 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6185 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6186 if (!HadTautologicalInvertedLanes) 6187 return NewCC; 6188 6189 // If any lanes previously compared always-false, the NewCC will give 6190 // always-true result for them, so we need to fixup those lanes. 6191 // Or the other way around for inequality predicate. 6192 assert(VT.isVector() && "Can/should only get here for vectors."); 6193 Created.push_back(NewCC.getNode()); 6194 6195 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6196 // if C2 is not less than C1, the comparison is always false. 6197 // But we have produced the comparison that will give the 6198 // opposive tautological answer. So these lanes would need to be fixed up. 6199 SDValue TautologicalInvertedChannels = 6200 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6201 Created.push_back(TautologicalInvertedChannels.getNode()); 6202 6203 // NOTE: we avoid letting illegal types through even if we're before legalize 6204 // ops – legalization has a hard time producing good code for this. 6205 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6206 // If we have a vector select, let's replace the comparison results in the 6207 // affected lanes with the correct tautological result. 6208 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6209 DL, SETCCVT, SETCCVT); 6210 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6211 Replacement, NewCC); 6212 } 6213 6214 // Else, we can just invert the comparison result in the appropriate lanes. 6215 // 6216 // NOTE: see the note above VSELECT above. 6217 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6218 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6219 TautologicalInvertedChannels); 6220 6221 return SDValue(); // Don't know how to lower. 6222 } 6223 6224 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6225 /// where the divisor is constant and the comparison target is zero, 6226 /// return a DAG expression that will generate the same comparison result 6227 /// using only multiplications, additions and shifts/rotations. 6228 /// Ref: "Hacker's Delight" 10-17. 6229 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6230 SDValue CompTargetNode, 6231 ISD::CondCode Cond, 6232 DAGCombinerInfo &DCI, 6233 const SDLoc &DL) const { 6234 SmallVector<SDNode *, 7> Built; 6235 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6236 DCI, DL, Built)) { 6237 assert(Built.size() <= 7 && "Max size prediction failed."); 6238 for (SDNode *N : Built) 6239 DCI.AddToWorklist(N); 6240 return Folded; 6241 } 6242 6243 return SDValue(); 6244 } 6245 6246 SDValue 6247 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6248 SDValue CompTargetNode, ISD::CondCode Cond, 6249 DAGCombinerInfo &DCI, const SDLoc &DL, 6250 SmallVectorImpl<SDNode *> &Created) const { 6251 // Fold: 6252 // (seteq/ne (srem N, D), 0) 6253 // To: 6254 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6255 // 6256 // - D must be constant, with D = D0 * 2^K where D0 is odd 6257 // - P is the multiplicative inverse of D0 modulo 2^W 6258 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6259 // - Q = floor((2 * A) / (2^K)) 6260 // where W is the width of the common type of N and D. 6261 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6262 "Only applicable for (in)equality comparisons."); 6263 6264 SelectionDAG &DAG = DCI.DAG; 6265 6266 EVT VT = REMNode.getValueType(); 6267 EVT SVT = VT.getScalarType(); 6268 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6269 EVT ShSVT = ShVT.getScalarType(); 6270 6271 // If we are after ops legalization, and MUL is unavailable, we can not 6272 // proceed. 6273 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6274 return SDValue(); 6275 6276 // TODO: Could support comparing with non-zero too. 6277 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 6278 if (!CompTarget || !CompTarget->isZero()) 6279 return SDValue(); 6280 6281 bool HadIntMinDivisor = false; 6282 bool HadOneDivisor = false; 6283 bool AllDivisorsAreOnes = true; 6284 bool HadEvenDivisor = false; 6285 bool NeedToApplyOffset = false; 6286 bool AllDivisorsArePowerOfTwo = true; 6287 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 6288 6289 auto BuildSREMPattern = [&](ConstantSDNode *C) { 6290 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6291 if (C->isZero()) 6292 return false; 6293 6294 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 6295 6296 // WARNING: this fold is only valid for positive divisors! 6297 APInt D = C->getAPIntValue(); 6298 if (D.isNegative()) 6299 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 6300 6301 HadIntMinDivisor |= D.isMinSignedValue(); 6302 6303 // If all divisors are ones, we will prefer to avoid the fold. 6304 HadOneDivisor |= D.isOne(); 6305 AllDivisorsAreOnes &= D.isOne(); 6306 6307 // Decompose D into D0 * 2^K 6308 unsigned K = D.countTrailingZeros(); 6309 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6310 APInt D0 = D.lshr(K); 6311 6312 if (!D.isMinSignedValue()) { 6313 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 6314 // we don't care about this lane in this fold, we'll special-handle it. 6315 HadEvenDivisor |= (K != 0); 6316 } 6317 6318 // D is a power-of-two if D0 is one. This includes INT_MIN. 6319 // If all divisors are power-of-two, we will prefer to avoid the fold. 6320 AllDivisorsArePowerOfTwo &= D0.isOne(); 6321 6322 // P = inv(D0, 2^W) 6323 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6324 unsigned W = D.getBitWidth(); 6325 APInt P = D0.zext(W + 1) 6326 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6327 .trunc(W); 6328 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6329 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6330 6331 // A = floor((2^(W - 1) - 1) / D0) & -2^K 6332 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 6333 A.clearLowBits(K); 6334 6335 if (!D.isMinSignedValue()) { 6336 // If divisor INT_MIN, then we don't care about this lane in this fold, 6337 // we'll special-handle it. 6338 NeedToApplyOffset |= A != 0; 6339 } 6340 6341 // Q = floor((2 * A) / (2^K)) 6342 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 6343 6344 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 6345 "We are expecting that A is always less than all-ones for SVT"); 6346 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6347 "We are expecting that K is always less than all-ones for ShSVT"); 6348 6349 // If the divisor is 1 the result can be constant-folded. Likewise, we 6350 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 6351 if (D.isOne()) { 6352 // Set P, A and K to a bogus values so we can try to splat them. 6353 P = 0; 6354 A = -1; 6355 K = -1; 6356 6357 // x ?% 1 == 0 <--> true <--> x u<= -1 6358 Q = -1; 6359 } 6360 6361 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6362 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 6363 KAmts.push_back( 6364 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6365 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6366 return true; 6367 }; 6368 6369 SDValue N = REMNode.getOperand(0); 6370 SDValue D = REMNode.getOperand(1); 6371 6372 // Collect the values from each element. 6373 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 6374 return SDValue(); 6375 6376 // If this is a srem by a one, avoid the fold since it can be constant-folded. 6377 if (AllDivisorsAreOnes) 6378 return SDValue(); 6379 6380 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 6381 // since it can be best implemented as a bit test. 6382 if (AllDivisorsArePowerOfTwo) 6383 return SDValue(); 6384 6385 SDValue PVal, AVal, KVal, QVal; 6386 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6387 if (HadOneDivisor) { 6388 // Try to turn PAmts into a splat, since we don't care about the values 6389 // that are currently '0'. If we can't, just keep '0'`s. 6390 turnVectorIntoSplatVector(PAmts, isNullConstant); 6391 // Try to turn AAmts into a splat, since we don't care about the 6392 // values that are currently '-1'. If we can't, change them to '0'`s. 6393 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 6394 DAG.getConstant(0, DL, SVT)); 6395 // Try to turn KAmts into a splat, since we don't care about the values 6396 // that are currently '-1'. If we can't, change them to '0'`s. 6397 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6398 DAG.getConstant(0, DL, ShSVT)); 6399 } 6400 6401 PVal = DAG.getBuildVector(VT, DL, PAmts); 6402 AVal = DAG.getBuildVector(VT, DL, AAmts); 6403 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6404 QVal = DAG.getBuildVector(VT, DL, QAmts); 6405 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6406 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6407 QAmts.size() == 1 && 6408 "Expected matchUnaryPredicate to return one element for scalable " 6409 "vectors"); 6410 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6411 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6412 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6413 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6414 } else { 6415 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6416 PVal = PAmts[0]; 6417 AVal = AAmts[0]; 6418 KVal = KAmts[0]; 6419 QVal = QAmts[0]; 6420 } 6421 6422 // (mul N, P) 6423 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6424 Created.push_back(Op0.getNode()); 6425 6426 if (NeedToApplyOffset) { 6427 // We need ADD to do this. 6428 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6429 return SDValue(); 6430 6431 // (add (mul N, P), A) 6432 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6433 Created.push_back(Op0.getNode()); 6434 } 6435 6436 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6437 // divisors as a performance improvement, since rotating by 0 is a no-op. 6438 if (HadEvenDivisor) { 6439 // We need ROTR to do this. 6440 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6441 return SDValue(); 6442 // SREM: (rotr (add (mul N, P), A), K) 6443 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6444 Created.push_back(Op0.getNode()); 6445 } 6446 6447 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6448 SDValue Fold = 6449 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6450 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6451 6452 // If we didn't have lanes with INT_MIN divisor, then we're done. 6453 if (!HadIntMinDivisor) 6454 return Fold; 6455 6456 // That fold is only valid for positive divisors. Which effectively means, 6457 // it is invalid for INT_MIN divisors. So if we have such a lane, 6458 // we must fix-up results for said lanes. 6459 assert(VT.isVector() && "Can/should only get here for vectors."); 6460 6461 // NOTE: we avoid letting illegal types through even if we're before legalize 6462 // ops – legalization has a hard time producing good code for the code that 6463 // follows. 6464 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6465 !isOperationLegalOrCustom(ISD::AND, VT) || 6466 !isOperationLegalOrCustom(Cond, VT) || 6467 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6468 return SDValue(); 6469 6470 Created.push_back(Fold.getNode()); 6471 6472 SDValue IntMin = DAG.getConstant( 6473 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6474 SDValue IntMax = DAG.getConstant( 6475 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6476 SDValue Zero = 6477 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6478 6479 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6480 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6481 Created.push_back(DivisorIsIntMin.getNode()); 6482 6483 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6484 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6485 Created.push_back(Masked.getNode()); 6486 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6487 Created.push_back(MaskedIsZero.getNode()); 6488 6489 // To produce final result we need to blend 2 vectors: 'SetCC' and 6490 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6491 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6492 // constant-folded, select can get lowered to a shuffle with constant mask. 6493 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6494 MaskedIsZero, Fold); 6495 6496 return Blended; 6497 } 6498 6499 bool TargetLowering:: 6500 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6501 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6502 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6503 "be a constant integer"); 6504 return true; 6505 } 6506 6507 return false; 6508 } 6509 6510 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6511 const DenormalMode &Mode) const { 6512 SDLoc DL(Op); 6513 EVT VT = Op.getValueType(); 6514 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6515 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6516 // Testing it with denormal inputs to avoid wrong estimate. 6517 if (Mode.Input == DenormalMode::IEEE) { 6518 // This is specifically a check for the handling of denormal inputs, 6519 // not the result. 6520 6521 // Test = fabs(X) < SmallestNormal 6522 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6523 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6524 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6525 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6526 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6527 } 6528 // Test = X == 0.0 6529 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6530 } 6531 6532 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6533 bool LegalOps, bool OptForSize, 6534 NegatibleCost &Cost, 6535 unsigned Depth) const { 6536 // fneg is removable even if it has multiple uses. 6537 if (Op.getOpcode() == ISD::FNEG) { 6538 Cost = NegatibleCost::Cheaper; 6539 return Op.getOperand(0); 6540 } 6541 6542 // Don't recurse exponentially. 6543 if (Depth > SelectionDAG::MaxRecursionDepth) 6544 return SDValue(); 6545 6546 // Pre-increment recursion depth for use in recursive calls. 6547 ++Depth; 6548 const SDNodeFlags Flags = Op->getFlags(); 6549 const TargetOptions &Options = DAG.getTarget().Options; 6550 EVT VT = Op.getValueType(); 6551 unsigned Opcode = Op.getOpcode(); 6552 6553 // Don't allow anything with multiple uses unless we know it is free. 6554 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6555 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6556 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6557 if (!IsFreeExtend) 6558 return SDValue(); 6559 } 6560 6561 auto RemoveDeadNode = [&](SDValue N) { 6562 if (N && N.getNode()->use_empty()) 6563 DAG.RemoveDeadNode(N.getNode()); 6564 }; 6565 6566 SDLoc DL(Op); 6567 6568 // Because getNegatedExpression can delete nodes we need a handle to keep 6569 // temporary nodes alive in case the recursion manages to create an identical 6570 // node. 6571 std::list<HandleSDNode> Handles; 6572 6573 switch (Opcode) { 6574 case ISD::ConstantFP: { 6575 // Don't invert constant FP values after legalization unless the target says 6576 // the negated constant is legal. 6577 bool IsOpLegal = 6578 isOperationLegal(ISD::ConstantFP, VT) || 6579 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6580 OptForSize); 6581 6582 if (LegalOps && !IsOpLegal) 6583 break; 6584 6585 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6586 V.changeSign(); 6587 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6588 6589 // If we already have the use of the negated floating constant, it is free 6590 // to negate it even it has multiple uses. 6591 if (!Op.hasOneUse() && CFP.use_empty()) 6592 break; 6593 Cost = NegatibleCost::Neutral; 6594 return CFP; 6595 } 6596 case ISD::BUILD_VECTOR: { 6597 // Only permit BUILD_VECTOR of constants. 6598 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6599 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6600 })) 6601 break; 6602 6603 bool IsOpLegal = 6604 (isOperationLegal(ISD::ConstantFP, VT) && 6605 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6606 llvm::all_of(Op->op_values(), [&](SDValue N) { 6607 return N.isUndef() || 6608 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6609 OptForSize); 6610 }); 6611 6612 if (LegalOps && !IsOpLegal) 6613 break; 6614 6615 SmallVector<SDValue, 4> Ops; 6616 for (SDValue C : Op->op_values()) { 6617 if (C.isUndef()) { 6618 Ops.push_back(C); 6619 continue; 6620 } 6621 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6622 V.changeSign(); 6623 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6624 } 6625 Cost = NegatibleCost::Neutral; 6626 return DAG.getBuildVector(VT, DL, Ops); 6627 } 6628 case ISD::FADD: { 6629 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6630 break; 6631 6632 // After operation legalization, it might not be legal to create new FSUBs. 6633 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6634 break; 6635 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6636 6637 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6638 NegatibleCost CostX = NegatibleCost::Expensive; 6639 SDValue NegX = 6640 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6641 // Prevent this node from being deleted by the next call. 6642 if (NegX) 6643 Handles.emplace_back(NegX); 6644 6645 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6646 NegatibleCost CostY = NegatibleCost::Expensive; 6647 SDValue NegY = 6648 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6649 6650 // We're done with the handles. 6651 Handles.clear(); 6652 6653 // Negate the X if its cost is less or equal than Y. 6654 if (NegX && (CostX <= CostY)) { 6655 Cost = CostX; 6656 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6657 if (NegY != N) 6658 RemoveDeadNode(NegY); 6659 return N; 6660 } 6661 6662 // Negate the Y if it is not expensive. 6663 if (NegY) { 6664 Cost = CostY; 6665 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6666 if (NegX != N) 6667 RemoveDeadNode(NegX); 6668 return N; 6669 } 6670 break; 6671 } 6672 case ISD::FSUB: { 6673 // We can't turn -(A-B) into B-A when we honor signed zeros. 6674 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6675 break; 6676 6677 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6678 // fold (fneg (fsub 0, Y)) -> Y 6679 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6680 if (C->isZero()) { 6681 Cost = NegatibleCost::Cheaper; 6682 return Y; 6683 } 6684 6685 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6686 Cost = NegatibleCost::Neutral; 6687 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6688 } 6689 case ISD::FMUL: 6690 case ISD::FDIV: { 6691 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6692 6693 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6694 NegatibleCost CostX = NegatibleCost::Expensive; 6695 SDValue NegX = 6696 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6697 // Prevent this node from being deleted by the next call. 6698 if (NegX) 6699 Handles.emplace_back(NegX); 6700 6701 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6702 NegatibleCost CostY = NegatibleCost::Expensive; 6703 SDValue NegY = 6704 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6705 6706 // We're done with the handles. 6707 Handles.clear(); 6708 6709 // Negate the X if its cost is less or equal than Y. 6710 if (NegX && (CostX <= CostY)) { 6711 Cost = CostX; 6712 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6713 if (NegY != N) 6714 RemoveDeadNode(NegY); 6715 return N; 6716 } 6717 6718 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6719 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6720 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6721 break; 6722 6723 // Negate the Y if it is not expensive. 6724 if (NegY) { 6725 Cost = CostY; 6726 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6727 if (NegX != N) 6728 RemoveDeadNode(NegX); 6729 return N; 6730 } 6731 break; 6732 } 6733 case ISD::FMA: 6734 case ISD::FMAD: { 6735 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6736 break; 6737 6738 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6739 NegatibleCost CostZ = NegatibleCost::Expensive; 6740 SDValue NegZ = 6741 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6742 // Give up if fail to negate the Z. 6743 if (!NegZ) 6744 break; 6745 6746 // Prevent this node from being deleted by the next two calls. 6747 Handles.emplace_back(NegZ); 6748 6749 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6750 NegatibleCost CostX = NegatibleCost::Expensive; 6751 SDValue NegX = 6752 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6753 // Prevent this node from being deleted by the next call. 6754 if (NegX) 6755 Handles.emplace_back(NegX); 6756 6757 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6758 NegatibleCost CostY = NegatibleCost::Expensive; 6759 SDValue NegY = 6760 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6761 6762 // We're done with the handles. 6763 Handles.clear(); 6764 6765 // Negate the X if its cost is less or equal than Y. 6766 if (NegX && (CostX <= CostY)) { 6767 Cost = std::min(CostX, CostZ); 6768 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6769 if (NegY != N) 6770 RemoveDeadNode(NegY); 6771 return N; 6772 } 6773 6774 // Negate the Y if it is not expensive. 6775 if (NegY) { 6776 Cost = std::min(CostY, CostZ); 6777 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6778 if (NegX != N) 6779 RemoveDeadNode(NegX); 6780 return N; 6781 } 6782 break; 6783 } 6784 6785 case ISD::FP_EXTEND: 6786 case ISD::FSIN: 6787 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6788 OptForSize, Cost, Depth)) 6789 return DAG.getNode(Opcode, DL, VT, NegV); 6790 break; 6791 case ISD::FP_ROUND: 6792 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6793 OptForSize, Cost, Depth)) 6794 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6795 break; 6796 } 6797 6798 return SDValue(); 6799 } 6800 6801 //===----------------------------------------------------------------------===// 6802 // Legalization Utilities 6803 //===----------------------------------------------------------------------===// 6804 6805 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6806 SDValue LHS, SDValue RHS, 6807 SmallVectorImpl<SDValue> &Result, 6808 EVT HiLoVT, SelectionDAG &DAG, 6809 MulExpansionKind Kind, SDValue LL, 6810 SDValue LH, SDValue RL, SDValue RH) const { 6811 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6812 Opcode == ISD::SMUL_LOHI); 6813 6814 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6815 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6816 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6817 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6818 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6819 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6820 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6821 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6822 6823 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6824 return false; 6825 6826 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6827 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6828 6829 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6830 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6831 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6832 6833 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6834 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6835 bool Signed) -> bool { 6836 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6837 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6838 Hi = SDValue(Lo.getNode(), 1); 6839 return true; 6840 } 6841 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6842 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6843 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6844 return true; 6845 } 6846 return false; 6847 }; 6848 6849 SDValue Lo, Hi; 6850 6851 if (!LL.getNode() && !RL.getNode() && 6852 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6853 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6854 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6855 } 6856 6857 if (!LL.getNode()) 6858 return false; 6859 6860 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6861 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6862 DAG.MaskedValueIsZero(RHS, HighMask)) { 6863 // The inputs are both zero-extended. 6864 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6865 Result.push_back(Lo); 6866 Result.push_back(Hi); 6867 if (Opcode != ISD::MUL) { 6868 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6869 Result.push_back(Zero); 6870 Result.push_back(Zero); 6871 } 6872 return true; 6873 } 6874 } 6875 6876 if (!VT.isVector() && Opcode == ISD::MUL && 6877 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6878 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6879 // The input values are both sign-extended. 6880 // TODO non-MUL case? 6881 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6882 Result.push_back(Lo); 6883 Result.push_back(Hi); 6884 return true; 6885 } 6886 } 6887 6888 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6889 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6890 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6891 6892 if (!LH.getNode() && !RH.getNode() && 6893 isOperationLegalOrCustom(ISD::SRL, VT) && 6894 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6895 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6896 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6897 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6898 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6899 } 6900 6901 if (!LH.getNode()) 6902 return false; 6903 6904 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6905 return false; 6906 6907 Result.push_back(Lo); 6908 6909 if (Opcode == ISD::MUL) { 6910 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6911 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6912 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6913 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6914 Result.push_back(Hi); 6915 return true; 6916 } 6917 6918 // Compute the full width result. 6919 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6920 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6921 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6922 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6923 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6924 }; 6925 6926 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6927 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6928 return false; 6929 6930 // This is effectively the add part of a multiply-add of half-sized operands, 6931 // so it cannot overflow. 6932 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6933 6934 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6935 return false; 6936 6937 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6938 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6939 6940 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6941 isOperationLegalOrCustom(ISD::ADDE, VT)); 6942 if (UseGlue) 6943 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6944 Merge(Lo, Hi)); 6945 else 6946 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6947 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6948 6949 SDValue Carry = Next.getValue(1); 6950 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6951 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6952 6953 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6954 return false; 6955 6956 if (UseGlue) 6957 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6958 Carry); 6959 else 6960 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6961 Zero, Carry); 6962 6963 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6964 6965 if (Opcode == ISD::SMUL_LOHI) { 6966 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6967 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6968 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6969 6970 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6971 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6972 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6973 } 6974 6975 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6976 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6977 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6978 return true; 6979 } 6980 6981 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6982 SelectionDAG &DAG, MulExpansionKind Kind, 6983 SDValue LL, SDValue LH, SDValue RL, 6984 SDValue RH) const { 6985 SmallVector<SDValue, 2> Result; 6986 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6987 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6988 DAG, Kind, LL, LH, RL, RH); 6989 if (Ok) { 6990 assert(Result.size() == 2); 6991 Lo = Result[0]; 6992 Hi = Result[1]; 6993 } 6994 return Ok; 6995 } 6996 6997 // Check that (every element of) Z is undef or not an exact multiple of BW. 6998 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6999 return ISD::matchUnaryPredicate( 7000 Z, 7001 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 7002 true); 7003 } 7004 7005 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 7006 SelectionDAG &DAG) const { 7007 EVT VT = Node->getValueType(0); 7008 7009 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 7010 !isOperationLegalOrCustom(ISD::SRL, VT) || 7011 !isOperationLegalOrCustom(ISD::SUB, VT) || 7012 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7013 return SDValue(); 7014 7015 SDValue X = Node->getOperand(0); 7016 SDValue Y = Node->getOperand(1); 7017 SDValue Z = Node->getOperand(2); 7018 7019 unsigned BW = VT.getScalarSizeInBits(); 7020 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 7021 SDLoc DL(SDValue(Node, 0)); 7022 7023 EVT ShVT = Z.getValueType(); 7024 7025 // If a funnel shift in the other direction is more supported, use it. 7026 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 7027 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7028 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 7029 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7030 // fshl X, Y, Z -> fshr X, Y, -Z 7031 // fshr X, Y, Z -> fshl X, Y, -Z 7032 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7033 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 7034 } else { 7035 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 7036 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 7037 SDValue One = DAG.getConstant(1, DL, ShVT); 7038 if (IsFSHL) { 7039 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7040 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 7041 } else { 7042 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7043 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 7044 } 7045 Z = DAG.getNOT(DL, Z, ShVT); 7046 } 7047 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 7048 } 7049 7050 SDValue ShX, ShY; 7051 SDValue ShAmt, InvShAmt; 7052 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7053 // fshl: X << C | Y >> (BW - C) 7054 // fshr: X << (BW - C) | Y >> C 7055 // where C = Z % BW is not zero 7056 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7057 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7058 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 7059 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 7060 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 7061 } else { 7062 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7063 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7064 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 7065 if (isPowerOf2_32(BW)) { 7066 // Z % BW -> Z & (BW - 1) 7067 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 7068 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 7069 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 7070 } else { 7071 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7072 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7073 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 7074 } 7075 7076 SDValue One = DAG.getConstant(1, DL, ShVT); 7077 if (IsFSHL) { 7078 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 7079 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 7080 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 7081 } else { 7082 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 7083 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 7084 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 7085 } 7086 } 7087 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 7088 } 7089 7090 // TODO: Merge with expandFunnelShift. 7091 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 7092 SelectionDAG &DAG) const { 7093 EVT VT = Node->getValueType(0); 7094 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 7095 bool IsLeft = Node->getOpcode() == ISD::ROTL; 7096 SDValue Op0 = Node->getOperand(0); 7097 SDValue Op1 = Node->getOperand(1); 7098 SDLoc DL(SDValue(Node, 0)); 7099 7100 EVT ShVT = Op1.getValueType(); 7101 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7102 7103 // If a rotate in the other direction is more supported, use it. 7104 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 7105 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7106 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 7107 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7108 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 7109 } 7110 7111 if (!AllowVectorOps && VT.isVector() && 7112 (!isOperationLegalOrCustom(ISD::SHL, VT) || 7113 !isOperationLegalOrCustom(ISD::SRL, VT) || 7114 !isOperationLegalOrCustom(ISD::SUB, VT) || 7115 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 7116 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 7117 return SDValue(); 7118 7119 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 7120 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 7121 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 7122 SDValue ShVal; 7123 SDValue HsVal; 7124 if (isPowerOf2_32(EltSizeInBits)) { 7125 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 7126 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 7127 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7128 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 7129 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7130 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 7131 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 7132 } else { 7133 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 7134 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 7135 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 7136 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 7137 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7138 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 7139 SDValue One = DAG.getConstant(1, DL, ShVT); 7140 HsVal = 7141 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 7142 } 7143 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 7144 } 7145 7146 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 7147 SelectionDAG &DAG) const { 7148 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 7149 EVT VT = Node->getValueType(0); 7150 unsigned VTBits = VT.getScalarSizeInBits(); 7151 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 7152 7153 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 7154 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 7155 SDValue ShOpLo = Node->getOperand(0); 7156 SDValue ShOpHi = Node->getOperand(1); 7157 SDValue ShAmt = Node->getOperand(2); 7158 EVT ShAmtVT = ShAmt.getValueType(); 7159 EVT ShAmtCCVT = 7160 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 7161 SDLoc dl(Node); 7162 7163 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 7164 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 7165 // away during isel. 7166 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7167 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 7168 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 7169 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 7170 : DAG.getConstant(0, dl, VT); 7171 7172 SDValue Tmp2, Tmp3; 7173 if (IsSHL) { 7174 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 7175 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 7176 } else { 7177 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 7178 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 7179 } 7180 7181 // If the shift amount is larger or equal than the width of a part we don't 7182 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 7183 // values for large shift amounts. 7184 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7185 DAG.getConstant(VTBits, dl, ShAmtVT)); 7186 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 7187 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 7188 7189 if (IsSHL) { 7190 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7191 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7192 } else { 7193 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7194 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7195 } 7196 } 7197 7198 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 7199 SelectionDAG &DAG) const { 7200 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7201 SDValue Src = Node->getOperand(OpNo); 7202 EVT SrcVT = Src.getValueType(); 7203 EVT DstVT = Node->getValueType(0); 7204 SDLoc dl(SDValue(Node, 0)); 7205 7206 // FIXME: Only f32 to i64 conversions are supported. 7207 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 7208 return false; 7209 7210 if (Node->isStrictFPOpcode()) 7211 // When a NaN is converted to an integer a trap is allowed. We can't 7212 // use this expansion here because it would eliminate that trap. Other 7213 // traps are also allowed and cannot be eliminated. See 7214 // IEEE 754-2008 sec 5.8. 7215 return false; 7216 7217 // Expand f32 -> i64 conversion 7218 // This algorithm comes from compiler-rt's implementation of fixsfdi: 7219 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 7220 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 7221 EVT IntVT = SrcVT.changeTypeToInteger(); 7222 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 7223 7224 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 7225 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 7226 SDValue Bias = DAG.getConstant(127, dl, IntVT); 7227 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 7228 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 7229 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 7230 7231 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 7232 7233 SDValue ExponentBits = DAG.getNode( 7234 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 7235 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 7236 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 7237 7238 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 7239 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 7240 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 7241 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 7242 7243 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 7244 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 7245 DAG.getConstant(0x00800000, dl, IntVT)); 7246 7247 R = DAG.getZExtOrTrunc(R, dl, DstVT); 7248 7249 R = DAG.getSelectCC( 7250 dl, Exponent, ExponentLoBit, 7251 DAG.getNode(ISD::SHL, dl, DstVT, R, 7252 DAG.getZExtOrTrunc( 7253 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 7254 dl, IntShVT)), 7255 DAG.getNode(ISD::SRL, dl, DstVT, R, 7256 DAG.getZExtOrTrunc( 7257 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 7258 dl, IntShVT)), 7259 ISD::SETGT); 7260 7261 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 7262 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 7263 7264 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 7265 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 7266 return true; 7267 } 7268 7269 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 7270 SDValue &Chain, 7271 SelectionDAG &DAG) const { 7272 SDLoc dl(SDValue(Node, 0)); 7273 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7274 SDValue Src = Node->getOperand(OpNo); 7275 7276 EVT SrcVT = Src.getValueType(); 7277 EVT DstVT = Node->getValueType(0); 7278 EVT SetCCVT = 7279 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 7280 EVT DstSetCCVT = 7281 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 7282 7283 // Only expand vector types if we have the appropriate vector bit operations. 7284 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 7285 ISD::FP_TO_SINT; 7286 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 7287 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 7288 return false; 7289 7290 // If the maximum float value is smaller then the signed integer range, 7291 // the destination signmask can't be represented by the float, so we can 7292 // just use FP_TO_SINT directly. 7293 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 7294 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 7295 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 7296 if (APFloat::opOverflow & 7297 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 7298 if (Node->isStrictFPOpcode()) { 7299 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7300 { Node->getOperand(0), Src }); 7301 Chain = Result.getValue(1); 7302 } else 7303 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7304 return true; 7305 } 7306 7307 // Don't expand it if there isn't cheap fsub instruction. 7308 if (!isOperationLegalOrCustom( 7309 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 7310 return false; 7311 7312 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 7313 SDValue Sel; 7314 7315 if (Node->isStrictFPOpcode()) { 7316 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 7317 Node->getOperand(0), /*IsSignaling*/ true); 7318 Chain = Sel.getValue(1); 7319 } else { 7320 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 7321 } 7322 7323 bool Strict = Node->isStrictFPOpcode() || 7324 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 7325 7326 if (Strict) { 7327 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 7328 // signmask then offset (the result of which should be fully representable). 7329 // Sel = Src < 0x8000000000000000 7330 // FltOfs = select Sel, 0, 0x8000000000000000 7331 // IntOfs = select Sel, 0, 0x8000000000000000 7332 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 7333 7334 // TODO: Should any fast-math-flags be set for the FSUB? 7335 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 7336 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 7337 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7338 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 7339 DAG.getConstant(0, dl, DstVT), 7340 DAG.getConstant(SignMask, dl, DstVT)); 7341 SDValue SInt; 7342 if (Node->isStrictFPOpcode()) { 7343 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 7344 { Chain, Src, FltOfs }); 7345 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7346 { Val.getValue(1), Val }); 7347 Chain = SInt.getValue(1); 7348 } else { 7349 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 7350 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 7351 } 7352 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 7353 } else { 7354 // Expand based on maximum range of FP_TO_SINT: 7355 // True = fp_to_sint(Src) 7356 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 7357 // Result = select (Src < 0x8000000000000000), True, False 7358 7359 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7360 // TODO: Should any fast-math-flags be set for the FSUB? 7361 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 7362 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 7363 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 7364 DAG.getConstant(SignMask, dl, DstVT)); 7365 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7366 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 7367 } 7368 return true; 7369 } 7370 7371 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 7372 SDValue &Chain, 7373 SelectionDAG &DAG) const { 7374 // This transform is not correct for converting 0 when rounding mode is set 7375 // to round toward negative infinity which will produce -0.0. So disable under 7376 // strictfp. 7377 if (Node->isStrictFPOpcode()) 7378 return false; 7379 7380 SDValue Src = Node->getOperand(0); 7381 EVT SrcVT = Src.getValueType(); 7382 EVT DstVT = Node->getValueType(0); 7383 7384 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 7385 return false; 7386 7387 // Only expand vector types if we have the appropriate vector bit operations. 7388 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 7389 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 7390 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 7391 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 7392 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 7393 return false; 7394 7395 SDLoc dl(SDValue(Node, 0)); 7396 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 7397 7398 // Implementation of unsigned i64 to f64 following the algorithm in 7399 // __floatundidf in compiler_rt. This implementation performs rounding 7400 // correctly in all rounding modes with the exception of converting 0 7401 // when rounding toward negative infinity. In that case the fsub will produce 7402 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 7403 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7404 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7405 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7406 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7407 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7408 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7409 7410 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7411 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7412 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7413 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7414 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7415 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7416 SDValue HiSub = 7417 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7418 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7419 return true; 7420 } 7421 7422 SDValue 7423 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, 7424 SelectionDAG &DAG) const { 7425 unsigned Opcode = Node->getOpcode(); 7426 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || 7427 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && 7428 "Wrong opcode"); 7429 7430 if (Node->getFlags().hasNoNaNs()) { 7431 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7432 SDValue Op1 = Node->getOperand(0); 7433 SDValue Op2 = Node->getOperand(1); 7434 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); 7435 // Copy FMF flags, but always set the no-signed-zeros flag 7436 // as this is implied by the FMINNUM/FMAXNUM semantics. 7437 SDNodeFlags Flags = Node->getFlags(); 7438 Flags.setNoSignedZeros(true); 7439 SelCC->setFlags(Flags); 7440 return SelCC; 7441 } 7442 7443 return SDValue(); 7444 } 7445 7446 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7447 SelectionDAG &DAG) const { 7448 SDLoc dl(Node); 7449 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7450 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7451 EVT VT = Node->getValueType(0); 7452 7453 if (VT.isScalableVector()) 7454 report_fatal_error( 7455 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7456 7457 if (isOperationLegalOrCustom(NewOp, VT)) { 7458 SDValue Quiet0 = Node->getOperand(0); 7459 SDValue Quiet1 = Node->getOperand(1); 7460 7461 if (!Node->getFlags().hasNoNaNs()) { 7462 // Insert canonicalizes if it's possible we need to quiet to get correct 7463 // sNaN behavior. 7464 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7465 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7466 Node->getFlags()); 7467 } 7468 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7469 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7470 Node->getFlags()); 7471 } 7472 } 7473 7474 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7475 } 7476 7477 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7478 // instead if there are no NaNs. 7479 if (Node->getFlags().hasNoNaNs()) { 7480 unsigned IEEE2018Op = 7481 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7482 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7483 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7484 Node->getOperand(1), Node->getFlags()); 7485 } 7486 } 7487 7488 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) 7489 return SelCC; 7490 7491 return SDValue(); 7492 } 7493 7494 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op, 7495 unsigned Test, SDNodeFlags Flags, 7496 const SDLoc &DL, 7497 SelectionDAG &DAG) const { 7498 EVT OperandVT = Op.getValueType(); 7499 assert(OperandVT.isFloatingPoint()); 7500 7501 // Degenerated cases. 7502 if (Test == 0) 7503 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT); 7504 if ((Test & fcAllFlags) == fcAllFlags) 7505 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT); 7506 7507 // PPC double double is a pair of doubles, of which the higher part determines 7508 // the value class. 7509 if (OperandVT == MVT::ppcf128) { 7510 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op, 7511 DAG.getConstant(1, DL, MVT::i32)); 7512 OperandVT = MVT::f64; 7513 } 7514 7515 // Some checks may be represented as inversion of simpler check, for example 7516 // "inf|normal|subnormal|zero" => !"nan". 7517 bool IsInverted = false; 7518 if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) { 7519 IsInverted = true; 7520 Test = InvertedCheck; 7521 } 7522 7523 // Floating-point type properties. 7524 EVT ScalarFloatVT = OperandVT.getScalarType(); 7525 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext()); 7526 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics(); 7527 bool IsF80 = (ScalarFloatVT == MVT::f80); 7528 7529 // Some checks can be implemented using float comparisons, if floating point 7530 // exceptions are ignored. 7531 if (Flags.hasNoFPExcept() && 7532 isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) { 7533 if (Test == fcZero) 7534 return DAG.getSetCC(DL, ResultVT, Op, 7535 DAG.getConstantFP(0.0, DL, OperandVT), 7536 IsInverted ? ISD::SETUNE : ISD::SETOEQ); 7537 if (Test == fcNan) 7538 return DAG.getSetCC(DL, ResultVT, Op, Op, 7539 IsInverted ? ISD::SETO : ISD::SETUO); 7540 } 7541 7542 // In the general case use integer operations. 7543 unsigned BitSize = OperandVT.getScalarSizeInBits(); 7544 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize); 7545 if (OperandVT.isVector()) 7546 IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT, 7547 OperandVT.getVectorElementCount()); 7548 SDValue OpAsInt = DAG.getBitcast(IntVT, Op); 7549 7550 // Various masks. 7551 APInt SignBit = APInt::getSignMask(BitSize); 7552 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. 7553 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. 7554 const unsigned ExplicitIntBitInF80 = 63; 7555 APInt ExpMask = Inf; 7556 if (IsF80) 7557 ExpMask.clearBit(ExplicitIntBitInF80); 7558 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; 7559 APInt QNaNBitMask = 7560 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); 7561 APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits()); 7562 7563 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT); 7564 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT); 7565 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT); 7566 SDValue ZeroV = DAG.getConstant(0, DL, IntVT); 7567 SDValue InfV = DAG.getConstant(Inf, DL, IntVT); 7568 SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT); 7569 7570 SDValue Res; 7571 const auto appendResult = [&](SDValue PartialRes) { 7572 if (PartialRes) { 7573 if (Res) 7574 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes); 7575 else 7576 Res = PartialRes; 7577 } 7578 }; 7579 7580 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set. 7581 const auto getIntBitIsSet = [&]() -> SDValue { 7582 if (!IntBitIsSetV) { 7583 APInt IntBitMask(BitSize, 0); 7584 IntBitMask.setBit(ExplicitIntBitInF80); 7585 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT); 7586 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV); 7587 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE); 7588 } 7589 return IntBitIsSetV; 7590 }; 7591 7592 // Split the value into sign bit and absolute value. 7593 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV); 7594 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt, 7595 DAG.getConstant(0.0, DL, IntVT), ISD::SETLT); 7596 7597 // Tests that involve more than one class should be processed first. 7598 SDValue PartialRes; 7599 7600 if (IsF80) 7601 ; // Detect finite numbers of f80 by checking individual classes because 7602 // they have different settings of the explicit integer bit. 7603 else if ((Test & fcFinite) == fcFinite) { 7604 // finite(V) ==> abs(V) < exp_mask 7605 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 7606 Test &= ~fcFinite; 7607 } else if ((Test & fcFinite) == fcPosFinite) { 7608 // finite(V) && V > 0 ==> V < exp_mask 7609 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT); 7610 Test &= ~fcPosFinite; 7611 } else if ((Test & fcFinite) == fcNegFinite) { 7612 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1 7613 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 7614 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7615 Test &= ~fcNegFinite; 7616 } 7617 appendResult(PartialRes); 7618 7619 // Check for individual classes. 7620 7621 if (unsigned PartialCheck = Test & fcZero) { 7622 if (PartialCheck == fcPosZero) 7623 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ); 7624 else if (PartialCheck == fcZero) 7625 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ); 7626 else // ISD::fcNegZero 7627 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ); 7628 appendResult(PartialRes); 7629 } 7630 7631 if (unsigned PartialCheck = Test & fcInf) { 7632 if (PartialCheck == fcPosInf) 7633 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ); 7634 else if (PartialCheck == fcInf) 7635 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ); 7636 else { // ISD::fcNegInf 7637 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); 7638 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT); 7639 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ); 7640 } 7641 appendResult(PartialRes); 7642 } 7643 7644 if (unsigned PartialCheck = Test & fcNan) { 7645 APInt InfWithQnanBit = Inf | QNaNBitMask; 7646 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT); 7647 if (PartialCheck == fcNan) { 7648 // isnan(V) ==> abs(V) > int(inf) 7649 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 7650 if (IsF80) { 7651 // Recognize unsupported values as NaNs for compatibility with glibc. 7652 // In them (exp(V)==0) == int_bit. 7653 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV); 7654 SDValue ExpIsZero = 7655 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 7656 SDValue IsPseudo = 7657 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ); 7658 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo); 7659 } 7660 } else if (PartialCheck == fcQNan) { 7661 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit) 7662 PartialRes = 7663 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE); 7664 } else { // ISD::fcSNan 7665 // issignaling(V) ==> abs(V) > unsigned(Inf) && 7666 // abs(V) < (unsigned(Inf) | quiet_bit) 7667 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 7668 SDValue IsNotQnan = 7669 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT); 7670 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan); 7671 } 7672 appendResult(PartialRes); 7673 } 7674 7675 if (unsigned PartialCheck = Test & fcSubnormal) { 7676 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set) 7677 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set) 7678 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV; 7679 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT); 7680 SDValue VMinusOneV = 7681 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT)); 7682 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT); 7683 if (PartialCheck == fcNegSubnormal) 7684 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7685 appendResult(PartialRes); 7686 } 7687 7688 if (unsigned PartialCheck = Test & fcNormal) { 7689 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1)) 7690 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); 7691 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT); 7692 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV); 7693 APInt ExpLimit = ExpMask - ExpLSB; 7694 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT); 7695 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT); 7696 if (PartialCheck == fcNegNormal) 7697 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7698 else if (PartialCheck == fcPosNormal) { 7699 SDValue PosSignV = 7700 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask); 7701 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV); 7702 } 7703 if (IsF80) 7704 PartialRes = 7705 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet()); 7706 appendResult(PartialRes); 7707 } 7708 7709 if (!Res) 7710 return DAG.getConstant(IsInverted, DL, ResultVT); 7711 if (IsInverted) 7712 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask); 7713 return Res; 7714 } 7715 7716 // Only expand vector types if we have the appropriate vector bit operations. 7717 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7718 assert(VT.isVector() && "Expected vector type"); 7719 unsigned Len = VT.getScalarSizeInBits(); 7720 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7721 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7722 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7723 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7724 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7725 } 7726 7727 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7728 SDLoc dl(Node); 7729 EVT VT = Node->getValueType(0); 7730 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7731 SDValue Op = Node->getOperand(0); 7732 unsigned Len = VT.getScalarSizeInBits(); 7733 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7734 7735 // TODO: Add support for irregular type lengths. 7736 if (!(Len <= 128 && Len % 8 == 0)) 7737 return SDValue(); 7738 7739 // Only expand vector types if we have the appropriate vector bit operations. 7740 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7741 return SDValue(); 7742 7743 // This is the "best" algorithm from 7744 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7745 SDValue Mask55 = 7746 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7747 SDValue Mask33 = 7748 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7749 SDValue Mask0F = 7750 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7751 7752 // v = v - ((v >> 1) & 0x55555555...) 7753 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7754 DAG.getNode(ISD::AND, dl, VT, 7755 DAG.getNode(ISD::SRL, dl, VT, Op, 7756 DAG.getConstant(1, dl, ShVT)), 7757 Mask55)); 7758 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7759 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7760 DAG.getNode(ISD::AND, dl, VT, 7761 DAG.getNode(ISD::SRL, dl, VT, Op, 7762 DAG.getConstant(2, dl, ShVT)), 7763 Mask33)); 7764 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7765 Op = DAG.getNode(ISD::AND, dl, VT, 7766 DAG.getNode(ISD::ADD, dl, VT, Op, 7767 DAG.getNode(ISD::SRL, dl, VT, Op, 7768 DAG.getConstant(4, dl, ShVT))), 7769 Mask0F); 7770 7771 if (Len <= 8) 7772 return Op; 7773 7774 // Avoid the multiply if we only have 2 bytes to add. 7775 // TODO: Only doing this for scalars because vectors weren't as obviously 7776 // improved. 7777 if (Len == 16 && !VT.isVector()) { 7778 // v = (v + (v >> 8)) & 0x00FF; 7779 return DAG.getNode(ISD::AND, dl, VT, 7780 DAG.getNode(ISD::ADD, dl, VT, Op, 7781 DAG.getNode(ISD::SRL, dl, VT, Op, 7782 DAG.getConstant(8, dl, ShVT))), 7783 DAG.getConstant(0xFF, dl, VT)); 7784 } 7785 7786 // v = (v * 0x01010101...) >> (Len - 8) 7787 SDValue Mask01 = 7788 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7789 return DAG.getNode(ISD::SRL, dl, VT, 7790 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7791 DAG.getConstant(Len - 8, dl, ShVT)); 7792 } 7793 7794 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7795 SDLoc dl(Node); 7796 EVT VT = Node->getValueType(0); 7797 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7798 SDValue Op = Node->getOperand(0); 7799 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7800 7801 // If the non-ZERO_UNDEF version is supported we can use that instead. 7802 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7803 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7804 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7805 7806 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7807 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7808 EVT SetCCVT = 7809 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7810 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7811 SDValue Zero = DAG.getConstant(0, dl, VT); 7812 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7813 return DAG.getSelect(dl, VT, SrcIsZero, 7814 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7815 } 7816 7817 // Only expand vector types if we have the appropriate vector bit operations. 7818 // This includes the operations needed to expand CTPOP if it isn't supported. 7819 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7820 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7821 !canExpandVectorCTPOP(*this, VT)) || 7822 !isOperationLegalOrCustom(ISD::SRL, VT) || 7823 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7824 return SDValue(); 7825 7826 // for now, we do this: 7827 // x = x | (x >> 1); 7828 // x = x | (x >> 2); 7829 // ... 7830 // x = x | (x >>16); 7831 // x = x | (x >>32); // for 64-bit input 7832 // return popcount(~x); 7833 // 7834 // Ref: "Hacker's Delight" by Henry Warren 7835 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7836 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7837 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7838 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7839 } 7840 Op = DAG.getNOT(dl, Op, VT); 7841 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7842 } 7843 7844 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7845 SDLoc dl(Node); 7846 EVT VT = Node->getValueType(0); 7847 SDValue Op = Node->getOperand(0); 7848 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7849 7850 // If the non-ZERO_UNDEF version is supported we can use that instead. 7851 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7852 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7853 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7854 7855 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7856 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7857 EVT SetCCVT = 7858 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7859 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7860 SDValue Zero = DAG.getConstant(0, dl, VT); 7861 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7862 return DAG.getSelect(dl, VT, SrcIsZero, 7863 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7864 } 7865 7866 // Only expand vector types if we have the appropriate vector bit operations. 7867 // This includes the operations needed to expand CTPOP if it isn't supported. 7868 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7869 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7870 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7871 !canExpandVectorCTPOP(*this, VT)) || 7872 !isOperationLegalOrCustom(ISD::SUB, VT) || 7873 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7874 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7875 return SDValue(); 7876 7877 // for now, we use: { return popcount(~x & (x - 1)); } 7878 // unless the target has ctlz but not ctpop, in which case we use: 7879 // { return 32 - nlz(~x & (x-1)); } 7880 // Ref: "Hacker's Delight" by Henry Warren 7881 SDValue Tmp = DAG.getNode( 7882 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7883 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7884 7885 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7886 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7887 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7888 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7889 } 7890 7891 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7892 } 7893 7894 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7895 bool IsNegative) const { 7896 SDLoc dl(N); 7897 EVT VT = N->getValueType(0); 7898 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7899 SDValue Op = N->getOperand(0); 7900 7901 // abs(x) -> smax(x,sub(0,x)) 7902 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7903 isOperationLegal(ISD::SMAX, VT)) { 7904 SDValue Zero = DAG.getConstant(0, dl, VT); 7905 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7906 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7907 } 7908 7909 // abs(x) -> umin(x,sub(0,x)) 7910 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7911 isOperationLegal(ISD::UMIN, VT)) { 7912 SDValue Zero = DAG.getConstant(0, dl, VT); 7913 Op = DAG.getFreeze(Op); 7914 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7915 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7916 } 7917 7918 // 0 - abs(x) -> smin(x, sub(0,x)) 7919 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7920 isOperationLegal(ISD::SMIN, VT)) { 7921 Op = DAG.getFreeze(Op); 7922 SDValue Zero = DAG.getConstant(0, dl, VT); 7923 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7924 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7925 } 7926 7927 // Only expand vector types if we have the appropriate vector operations. 7928 if (VT.isVector() && 7929 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7930 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7931 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7932 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7933 return SDValue(); 7934 7935 Op = DAG.getFreeze(Op); 7936 SDValue Shift = 7937 DAG.getNode(ISD::SRA, dl, VT, Op, 7938 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7939 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7940 7941 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 7942 if (!IsNegative) 7943 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 7944 7945 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7946 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7947 } 7948 7949 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7950 SDLoc dl(N); 7951 EVT VT = N->getValueType(0); 7952 SDValue Op = N->getOperand(0); 7953 7954 if (!VT.isSimple()) 7955 return SDValue(); 7956 7957 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7958 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7959 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7960 default: 7961 return SDValue(); 7962 case MVT::i16: 7963 // Use a rotate by 8. This can be further expanded if necessary. 7964 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7965 case MVT::i32: 7966 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7967 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7968 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7969 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7970 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7971 DAG.getConstant(0xFF0000, dl, VT)); 7972 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7973 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7974 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7975 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7976 case MVT::i64: 7977 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7978 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7979 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7980 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7981 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7982 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7983 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7984 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7985 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7986 DAG.getConstant(255ULL<<48, dl, VT)); 7987 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7988 DAG.getConstant(255ULL<<40, dl, VT)); 7989 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7990 DAG.getConstant(255ULL<<32, dl, VT)); 7991 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7992 DAG.getConstant(255ULL<<24, dl, VT)); 7993 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7994 DAG.getConstant(255ULL<<16, dl, VT)); 7995 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7996 DAG.getConstant(255ULL<<8 , dl, VT)); 7997 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7998 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7999 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 8000 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 8001 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 8002 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 8003 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 8004 } 8005 } 8006 8007 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 8008 SDLoc dl(N); 8009 EVT VT = N->getValueType(0); 8010 SDValue Op = N->getOperand(0); 8011 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8012 unsigned Sz = VT.getScalarSizeInBits(); 8013 8014 SDValue Tmp, Tmp2, Tmp3; 8015 8016 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 8017 // and finally the i1 pairs. 8018 // TODO: We can easily support i4/i2 legal types if any target ever does. 8019 if (Sz >= 8 && isPowerOf2_32(Sz)) { 8020 // Create the masks - repeating the pattern every byte. 8021 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 8022 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 8023 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 8024 8025 // BSWAP if the type is wider than a single byte. 8026 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 8027 8028 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 8029 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 8030 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 8031 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 8032 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 8033 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8034 8035 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 8036 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 8037 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 8038 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 8039 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 8040 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8041 8042 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 8043 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 8044 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 8045 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 8046 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 8047 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8048 return Tmp; 8049 } 8050 8051 Tmp = DAG.getConstant(0, dl, VT); 8052 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 8053 if (I < J) 8054 Tmp2 = 8055 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 8056 else 8057 Tmp2 = 8058 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 8059 8060 APInt Shift(Sz, 1); 8061 Shift <<= J; 8062 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 8063 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 8064 } 8065 8066 return Tmp; 8067 } 8068 8069 std::pair<SDValue, SDValue> 8070 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 8071 SelectionDAG &DAG) const { 8072 SDLoc SL(LD); 8073 SDValue Chain = LD->getChain(); 8074 SDValue BasePTR = LD->getBasePtr(); 8075 EVT SrcVT = LD->getMemoryVT(); 8076 EVT DstVT = LD->getValueType(0); 8077 ISD::LoadExtType ExtType = LD->getExtensionType(); 8078 8079 if (SrcVT.isScalableVector()) 8080 report_fatal_error("Cannot scalarize scalable vector loads"); 8081 8082 unsigned NumElem = SrcVT.getVectorNumElements(); 8083 8084 EVT SrcEltVT = SrcVT.getScalarType(); 8085 EVT DstEltVT = DstVT.getScalarType(); 8086 8087 // A vector must always be stored in memory as-is, i.e. without any padding 8088 // between the elements, since various code depend on it, e.g. in the 8089 // handling of a bitcast of a vector type to int, which may be done with a 8090 // vector store followed by an integer load. A vector that does not have 8091 // elements that are byte-sized must therefore be stored as an integer 8092 // built out of the extracted vector elements. 8093 if (!SrcEltVT.isByteSized()) { 8094 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 8095 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 8096 8097 unsigned NumSrcBits = SrcVT.getSizeInBits(); 8098 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 8099 8100 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 8101 SDValue SrcEltBitMask = DAG.getConstant( 8102 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 8103 8104 // Load the whole vector and avoid masking off the top bits as it makes 8105 // the codegen worse. 8106 SDValue Load = 8107 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 8108 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 8109 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 8110 8111 SmallVector<SDValue, 8> Vals; 8112 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8113 unsigned ShiftIntoIdx = 8114 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 8115 SDValue ShiftAmount = 8116 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 8117 LoadVT, SL, /*LegalTypes=*/false); 8118 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 8119 SDValue Elt = 8120 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 8121 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 8122 8123 if (ExtType != ISD::NON_EXTLOAD) { 8124 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 8125 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 8126 } 8127 8128 Vals.push_back(Scalar); 8129 } 8130 8131 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 8132 return std::make_pair(Value, Load.getValue(1)); 8133 } 8134 8135 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 8136 assert(SrcEltVT.isByteSized()); 8137 8138 SmallVector<SDValue, 8> Vals; 8139 SmallVector<SDValue, 8> LoadChains; 8140 8141 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8142 SDValue ScalarLoad = 8143 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 8144 LD->getPointerInfo().getWithOffset(Idx * Stride), 8145 SrcEltVT, LD->getOriginalAlign(), 8146 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 8147 8148 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 8149 8150 Vals.push_back(ScalarLoad.getValue(0)); 8151 LoadChains.push_back(ScalarLoad.getValue(1)); 8152 } 8153 8154 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 8155 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 8156 8157 return std::make_pair(Value, NewChain); 8158 } 8159 8160 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 8161 SelectionDAG &DAG) const { 8162 SDLoc SL(ST); 8163 8164 SDValue Chain = ST->getChain(); 8165 SDValue BasePtr = ST->getBasePtr(); 8166 SDValue Value = ST->getValue(); 8167 EVT StVT = ST->getMemoryVT(); 8168 8169 if (StVT.isScalableVector()) 8170 report_fatal_error("Cannot scalarize scalable vector stores"); 8171 8172 // The type of the data we want to save 8173 EVT RegVT = Value.getValueType(); 8174 EVT RegSclVT = RegVT.getScalarType(); 8175 8176 // The type of data as saved in memory. 8177 EVT MemSclVT = StVT.getScalarType(); 8178 8179 unsigned NumElem = StVT.getVectorNumElements(); 8180 8181 // A vector must always be stored in memory as-is, i.e. without any padding 8182 // between the elements, since various code depend on it, e.g. in the 8183 // handling of a bitcast of a vector type to int, which may be done with a 8184 // vector store followed by an integer load. A vector that does not have 8185 // elements that are byte-sized must therefore be stored as an integer 8186 // built out of the extracted vector elements. 8187 if (!MemSclVT.isByteSized()) { 8188 unsigned NumBits = StVT.getSizeInBits(); 8189 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 8190 8191 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 8192 8193 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8194 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 8195 DAG.getVectorIdxConstant(Idx, SL)); 8196 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 8197 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 8198 unsigned ShiftIntoIdx = 8199 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 8200 SDValue ShiftAmount = 8201 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 8202 SDValue ShiftedElt = 8203 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 8204 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 8205 } 8206 8207 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 8208 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 8209 ST->getAAInfo()); 8210 } 8211 8212 // Store Stride in bytes 8213 unsigned Stride = MemSclVT.getSizeInBits() / 8; 8214 assert(Stride && "Zero stride!"); 8215 // Extract each of the elements from the original vector and save them into 8216 // memory individually. 8217 SmallVector<SDValue, 8> Stores; 8218 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8219 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 8220 DAG.getVectorIdxConstant(Idx, SL)); 8221 8222 SDValue Ptr = 8223 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 8224 8225 // This scalar TruncStore may be illegal, but we legalize it later. 8226 SDValue Store = DAG.getTruncStore( 8227 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 8228 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 8229 ST->getAAInfo()); 8230 8231 Stores.push_back(Store); 8232 } 8233 8234 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 8235 } 8236 8237 std::pair<SDValue, SDValue> 8238 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 8239 assert(LD->getAddressingMode() == ISD::UNINDEXED && 8240 "unaligned indexed loads not implemented!"); 8241 SDValue Chain = LD->getChain(); 8242 SDValue Ptr = LD->getBasePtr(); 8243 EVT VT = LD->getValueType(0); 8244 EVT LoadedVT = LD->getMemoryVT(); 8245 SDLoc dl(LD); 8246 auto &MF = DAG.getMachineFunction(); 8247 8248 if (VT.isFloatingPoint() || VT.isVector()) { 8249 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 8250 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 8251 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 8252 LoadedVT.isVector()) { 8253 // Scalarize the load and let the individual components be handled. 8254 return scalarizeVectorLoad(LD, DAG); 8255 } 8256 8257 // Expand to a (misaligned) integer load of the same size, 8258 // then bitconvert to floating point or vector. 8259 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 8260 LD->getMemOperand()); 8261 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 8262 if (LoadedVT != VT) 8263 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 8264 ISD::ANY_EXTEND, dl, VT, Result); 8265 8266 return std::make_pair(Result, newLoad.getValue(1)); 8267 } 8268 8269 // Copy the value to a (aligned) stack slot using (unaligned) integer 8270 // loads and stores, then do a (aligned) load from the stack slot. 8271 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 8272 unsigned LoadedBytes = LoadedVT.getStoreSize(); 8273 unsigned RegBytes = RegVT.getSizeInBits() / 8; 8274 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 8275 8276 // Make sure the stack slot is also aligned for the register type. 8277 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 8278 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 8279 SmallVector<SDValue, 8> Stores; 8280 SDValue StackPtr = StackBase; 8281 unsigned Offset = 0; 8282 8283 EVT PtrVT = Ptr.getValueType(); 8284 EVT StackPtrVT = StackPtr.getValueType(); 8285 8286 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 8287 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 8288 8289 // Do all but one copies using the full register width. 8290 for (unsigned i = 1; i < NumRegs; i++) { 8291 // Load one integer register's worth from the original location. 8292 SDValue Load = DAG.getLoad( 8293 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 8294 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 8295 LD->getAAInfo()); 8296 // Follow the load with a store to the stack slot. Remember the store. 8297 Stores.push_back(DAG.getStore( 8298 Load.getValue(1), dl, Load, StackPtr, 8299 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 8300 // Increment the pointers. 8301 Offset += RegBytes; 8302 8303 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 8304 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 8305 } 8306 8307 // The last copy may be partial. Do an extending load. 8308 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8309 8 * (LoadedBytes - Offset)); 8310 SDValue Load = 8311 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 8312 LD->getPointerInfo().getWithOffset(Offset), MemVT, 8313 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 8314 LD->getAAInfo()); 8315 // Follow the load with a store to the stack slot. Remember the store. 8316 // On big-endian machines this requires a truncating store to ensure 8317 // that the bits end up in the right place. 8318 Stores.push_back(DAG.getTruncStore( 8319 Load.getValue(1), dl, Load, StackPtr, 8320 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 8321 8322 // The order of the stores doesn't matter - say it with a TokenFactor. 8323 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8324 8325 // Finally, perform the original load only redirected to the stack slot. 8326 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 8327 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 8328 LoadedVT); 8329 8330 // Callers expect a MERGE_VALUES node. 8331 return std::make_pair(Load, TF); 8332 } 8333 8334 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 8335 "Unaligned load of unsupported type."); 8336 8337 // Compute the new VT that is half the size of the old one. This is an 8338 // integer MVT. 8339 unsigned NumBits = LoadedVT.getSizeInBits(); 8340 EVT NewLoadedVT; 8341 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 8342 NumBits >>= 1; 8343 8344 Align Alignment = LD->getOriginalAlign(); 8345 unsigned IncrementSize = NumBits / 8; 8346 ISD::LoadExtType HiExtType = LD->getExtensionType(); 8347 8348 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 8349 if (HiExtType == ISD::NON_EXTLOAD) 8350 HiExtType = ISD::ZEXTLOAD; 8351 8352 // Load the value in two parts 8353 SDValue Lo, Hi; 8354 if (DAG.getDataLayout().isLittleEndian()) { 8355 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 8356 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8357 LD->getAAInfo()); 8358 8359 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8360 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 8361 LD->getPointerInfo().getWithOffset(IncrementSize), 8362 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8363 LD->getAAInfo()); 8364 } else { 8365 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 8366 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8367 LD->getAAInfo()); 8368 8369 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8370 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 8371 LD->getPointerInfo().getWithOffset(IncrementSize), 8372 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8373 LD->getAAInfo()); 8374 } 8375 8376 // aggregate the two parts 8377 SDValue ShiftAmount = 8378 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 8379 DAG.getDataLayout())); 8380 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 8381 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 8382 8383 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 8384 Hi.getValue(1)); 8385 8386 return std::make_pair(Result, TF); 8387 } 8388 8389 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 8390 SelectionDAG &DAG) const { 8391 assert(ST->getAddressingMode() == ISD::UNINDEXED && 8392 "unaligned indexed stores not implemented!"); 8393 SDValue Chain = ST->getChain(); 8394 SDValue Ptr = ST->getBasePtr(); 8395 SDValue Val = ST->getValue(); 8396 EVT VT = Val.getValueType(); 8397 Align Alignment = ST->getOriginalAlign(); 8398 auto &MF = DAG.getMachineFunction(); 8399 EVT StoreMemVT = ST->getMemoryVT(); 8400 8401 SDLoc dl(ST); 8402 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 8403 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 8404 if (isTypeLegal(intVT)) { 8405 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 8406 StoreMemVT.isVector()) { 8407 // Scalarize the store and let the individual components be handled. 8408 SDValue Result = scalarizeVectorStore(ST, DAG); 8409 return Result; 8410 } 8411 // Expand to a bitconvert of the value to the integer type of the 8412 // same size, then a (misaligned) int store. 8413 // FIXME: Does not handle truncating floating point stores! 8414 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 8415 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 8416 Alignment, ST->getMemOperand()->getFlags()); 8417 return Result; 8418 } 8419 // Do a (aligned) store to a stack slot, then copy from the stack slot 8420 // to the final destination using (unaligned) integer loads and stores. 8421 MVT RegVT = getRegisterType( 8422 *DAG.getContext(), 8423 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 8424 EVT PtrVT = Ptr.getValueType(); 8425 unsigned StoredBytes = StoreMemVT.getStoreSize(); 8426 unsigned RegBytes = RegVT.getSizeInBits() / 8; 8427 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 8428 8429 // Make sure the stack slot is also aligned for the register type. 8430 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 8431 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8432 8433 // Perform the original store, only redirected to the stack slot. 8434 SDValue Store = DAG.getTruncStore( 8435 Chain, dl, Val, StackPtr, 8436 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 8437 8438 EVT StackPtrVT = StackPtr.getValueType(); 8439 8440 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 8441 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 8442 SmallVector<SDValue, 8> Stores; 8443 unsigned Offset = 0; 8444 8445 // Do all but one copies using the full register width. 8446 for (unsigned i = 1; i < NumRegs; i++) { 8447 // Load one integer register's worth from the stack slot. 8448 SDValue Load = DAG.getLoad( 8449 RegVT, dl, Store, StackPtr, 8450 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 8451 // Store it to the final location. Remember the store. 8452 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 8453 ST->getPointerInfo().getWithOffset(Offset), 8454 ST->getOriginalAlign(), 8455 ST->getMemOperand()->getFlags())); 8456 // Increment the pointers. 8457 Offset += RegBytes; 8458 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 8459 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 8460 } 8461 8462 // The last store may be partial. Do a truncating store. On big-endian 8463 // machines this requires an extending load from the stack slot to ensure 8464 // that the bits are in the right place. 8465 EVT LoadMemVT = 8466 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 8467 8468 // Load from the stack slot. 8469 SDValue Load = DAG.getExtLoad( 8470 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 8471 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 8472 8473 Stores.push_back( 8474 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 8475 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 8476 ST->getOriginalAlign(), 8477 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 8478 // The order of the stores doesn't matter - say it with a TokenFactor. 8479 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8480 return Result; 8481 } 8482 8483 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 8484 "Unaligned store of unknown type."); 8485 // Get the half-size VT 8486 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 8487 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 8488 unsigned IncrementSize = NumBits / 8; 8489 8490 // Divide the stored value in two parts. 8491 SDValue ShiftAmount = DAG.getConstant( 8492 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 8493 SDValue Lo = Val; 8494 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 8495 8496 // Store the two parts 8497 SDValue Store1, Store2; 8498 Store1 = DAG.getTruncStore(Chain, dl, 8499 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 8500 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 8501 ST->getMemOperand()->getFlags()); 8502 8503 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8504 Store2 = DAG.getTruncStore( 8505 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 8506 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 8507 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 8508 8509 SDValue Result = 8510 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 8511 return Result; 8512 } 8513 8514 SDValue 8515 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 8516 const SDLoc &DL, EVT DataVT, 8517 SelectionDAG &DAG, 8518 bool IsCompressedMemory) const { 8519 SDValue Increment; 8520 EVT AddrVT = Addr.getValueType(); 8521 EVT MaskVT = Mask.getValueType(); 8522 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 8523 "Incompatible types of Data and Mask"); 8524 if (IsCompressedMemory) { 8525 if (DataVT.isScalableVector()) 8526 report_fatal_error( 8527 "Cannot currently handle compressed memory with scalable vectors"); 8528 // Incrementing the pointer according to number of '1's in the mask. 8529 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 8530 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 8531 if (MaskIntVT.getSizeInBits() < 32) { 8532 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 8533 MaskIntVT = MVT::i32; 8534 } 8535 8536 // Count '1's with POPCNT. 8537 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 8538 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 8539 // Scale is an element size in bytes. 8540 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 8541 AddrVT); 8542 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 8543 } else if (DataVT.isScalableVector()) { 8544 Increment = DAG.getVScale(DL, AddrVT, 8545 APInt(AddrVT.getFixedSizeInBits(), 8546 DataVT.getStoreSize().getKnownMinSize())); 8547 } else 8548 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 8549 8550 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 8551 } 8552 8553 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 8554 EVT VecVT, const SDLoc &dl, 8555 ElementCount SubEC) { 8556 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 8557 "Cannot index a scalable vector within a fixed-width vector"); 8558 8559 unsigned NElts = VecVT.getVectorMinNumElements(); 8560 unsigned NumSubElts = SubEC.getKnownMinValue(); 8561 EVT IdxVT = Idx.getValueType(); 8562 8563 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 8564 // If this is a constant index and we know the value plus the number of the 8565 // elements in the subvector minus one is less than the minimum number of 8566 // elements then it's safe to return Idx. 8567 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 8568 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 8569 return Idx; 8570 SDValue VS = 8571 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 8572 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 8573 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 8574 DAG.getConstant(NumSubElts, dl, IdxVT)); 8575 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 8576 } 8577 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 8578 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 8579 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 8580 DAG.getConstant(Imm, dl, IdxVT)); 8581 } 8582 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 8583 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 8584 DAG.getConstant(MaxIndex, dl, IdxVT)); 8585 } 8586 8587 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 8588 SDValue VecPtr, EVT VecVT, 8589 SDValue Index) const { 8590 return getVectorSubVecPointer( 8591 DAG, VecPtr, VecVT, 8592 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 8593 Index); 8594 } 8595 8596 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 8597 SDValue VecPtr, EVT VecVT, 8598 EVT SubVecVT, 8599 SDValue Index) const { 8600 SDLoc dl(Index); 8601 // Make sure the index type is big enough to compute in. 8602 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 8603 8604 EVT EltVT = VecVT.getVectorElementType(); 8605 8606 // Calculate the element offset and add it to the pointer. 8607 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 8608 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 8609 "Converting bits to bytes lost precision"); 8610 assert(SubVecVT.getVectorElementType() == EltVT && 8611 "Sub-vector must be a vector with matching element type"); 8612 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 8613 SubVecVT.getVectorElementCount()); 8614 8615 EVT IdxVT = Index.getValueType(); 8616 if (SubVecVT.isScalableVector()) 8617 Index = 8618 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8619 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 8620 8621 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8622 DAG.getConstant(EltSize, dl, IdxVT)); 8623 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 8624 } 8625 8626 //===----------------------------------------------------------------------===// 8627 // Implementation of Emulated TLS Model 8628 //===----------------------------------------------------------------------===// 8629 8630 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 8631 SelectionDAG &DAG) const { 8632 // Access to address of TLS varialbe xyz is lowered to a function call: 8633 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 8634 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8635 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 8636 SDLoc dl(GA); 8637 8638 ArgListTy Args; 8639 ArgListEntry Entry; 8640 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 8641 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 8642 StringRef EmuTlsVarName(NameString); 8643 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 8644 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 8645 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 8646 Entry.Ty = VoidPtrType; 8647 Args.push_back(Entry); 8648 8649 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 8650 8651 TargetLowering::CallLoweringInfo CLI(DAG); 8652 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 8653 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 8654 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 8655 8656 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 8657 // At last for X86 targets, maybe good for other targets too? 8658 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8659 MFI.setAdjustsStack(true); // Is this only for X86 target? 8660 MFI.setHasCalls(true); 8661 8662 assert((GA->getOffset() == 0) && 8663 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 8664 return CallResult.first; 8665 } 8666 8667 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 8668 SelectionDAG &DAG) const { 8669 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 8670 if (!isCtlzFast()) 8671 return SDValue(); 8672 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8673 SDLoc dl(Op); 8674 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8675 if (C->isZero() && CC == ISD::SETEQ) { 8676 EVT VT = Op.getOperand(0).getValueType(); 8677 SDValue Zext = Op.getOperand(0); 8678 if (VT.bitsLT(MVT::i32)) { 8679 VT = MVT::i32; 8680 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8681 } 8682 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8683 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8684 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8685 DAG.getConstant(Log2b, dl, MVT::i32)); 8686 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8687 } 8688 } 8689 return SDValue(); 8690 } 8691 8692 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8693 SDValue Op0 = Node->getOperand(0); 8694 SDValue Op1 = Node->getOperand(1); 8695 EVT VT = Op0.getValueType(); 8696 unsigned Opcode = Node->getOpcode(); 8697 SDLoc DL(Node); 8698 8699 // umin(x,y) -> sub(x,usubsat(x,y)) 8700 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8701 isOperationLegal(ISD::USUBSAT, VT)) { 8702 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8703 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8704 } 8705 8706 // umax(x,y) -> add(x,usubsat(y,x)) 8707 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8708 isOperationLegal(ISD::USUBSAT, VT)) { 8709 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8710 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8711 } 8712 8713 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8714 ISD::CondCode CC; 8715 switch (Opcode) { 8716 default: llvm_unreachable("How did we get here?"); 8717 case ISD::SMAX: CC = ISD::SETGT; break; 8718 case ISD::SMIN: CC = ISD::SETLT; break; 8719 case ISD::UMAX: CC = ISD::SETUGT; break; 8720 case ISD::UMIN: CC = ISD::SETULT; break; 8721 } 8722 8723 // FIXME: Should really try to split the vector in case it's legal on a 8724 // subvector. 8725 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8726 return DAG.UnrollVectorOp(Node); 8727 8728 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8729 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8730 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8731 } 8732 8733 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8734 unsigned Opcode = Node->getOpcode(); 8735 SDValue LHS = Node->getOperand(0); 8736 SDValue RHS = Node->getOperand(1); 8737 EVT VT = LHS.getValueType(); 8738 SDLoc dl(Node); 8739 8740 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8741 assert(VT.isInteger() && "Expected operands to be integers"); 8742 8743 // usub.sat(a, b) -> umax(a, b) - b 8744 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8745 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8746 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8747 } 8748 8749 // uadd.sat(a, b) -> umin(a, ~b) + b 8750 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8751 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8752 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8753 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8754 } 8755 8756 unsigned OverflowOp; 8757 switch (Opcode) { 8758 case ISD::SADDSAT: 8759 OverflowOp = ISD::SADDO; 8760 break; 8761 case ISD::UADDSAT: 8762 OverflowOp = ISD::UADDO; 8763 break; 8764 case ISD::SSUBSAT: 8765 OverflowOp = ISD::SSUBO; 8766 break; 8767 case ISD::USUBSAT: 8768 OverflowOp = ISD::USUBO; 8769 break; 8770 default: 8771 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8772 "addition or subtraction node."); 8773 } 8774 8775 // FIXME: Should really try to split the vector in case it's legal on a 8776 // subvector. 8777 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8778 return DAG.UnrollVectorOp(Node); 8779 8780 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8781 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8782 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8783 SDValue SumDiff = Result.getValue(0); 8784 SDValue Overflow = Result.getValue(1); 8785 SDValue Zero = DAG.getConstant(0, dl, VT); 8786 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8787 8788 if (Opcode == ISD::UADDSAT) { 8789 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8790 // (LHS + RHS) | OverflowMask 8791 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8792 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8793 } 8794 // Overflow ? 0xffff.... : (LHS + RHS) 8795 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8796 } 8797 8798 if (Opcode == ISD::USUBSAT) { 8799 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8800 // (LHS - RHS) & ~OverflowMask 8801 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8802 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8803 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8804 } 8805 // Overflow ? 0 : (LHS - RHS) 8806 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8807 } 8808 8809 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8810 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8811 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8812 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8813 DAG.getConstant(BitWidth - 1, dl, VT)); 8814 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8815 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8816 } 8817 8818 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8819 unsigned Opcode = Node->getOpcode(); 8820 bool IsSigned = Opcode == ISD::SSHLSAT; 8821 SDValue LHS = Node->getOperand(0); 8822 SDValue RHS = Node->getOperand(1); 8823 EVT VT = LHS.getValueType(); 8824 SDLoc dl(Node); 8825 8826 assert((Node->getOpcode() == ISD::SSHLSAT || 8827 Node->getOpcode() == ISD::USHLSAT) && 8828 "Expected a SHLSAT opcode"); 8829 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8830 assert(VT.isInteger() && "Expected operands to be integers"); 8831 8832 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8833 8834 unsigned BW = VT.getScalarSizeInBits(); 8835 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8836 SDValue Orig = 8837 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8838 8839 SDValue SatVal; 8840 if (IsSigned) { 8841 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8842 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8843 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8844 SatMin, SatMax, ISD::SETLT); 8845 } else { 8846 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8847 } 8848 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8849 8850 return Result; 8851 } 8852 8853 SDValue 8854 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8855 assert((Node->getOpcode() == ISD::SMULFIX || 8856 Node->getOpcode() == ISD::UMULFIX || 8857 Node->getOpcode() == ISD::SMULFIXSAT || 8858 Node->getOpcode() == ISD::UMULFIXSAT) && 8859 "Expected a fixed point multiplication opcode"); 8860 8861 SDLoc dl(Node); 8862 SDValue LHS = Node->getOperand(0); 8863 SDValue RHS = Node->getOperand(1); 8864 EVT VT = LHS.getValueType(); 8865 unsigned Scale = Node->getConstantOperandVal(2); 8866 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8867 Node->getOpcode() == ISD::UMULFIXSAT); 8868 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8869 Node->getOpcode() == ISD::SMULFIXSAT); 8870 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8871 unsigned VTSize = VT.getScalarSizeInBits(); 8872 8873 if (!Scale) { 8874 // [us]mul.fix(a, b, 0) -> mul(a, b) 8875 if (!Saturating) { 8876 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8877 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8878 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8879 SDValue Result = 8880 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8881 SDValue Product = Result.getValue(0); 8882 SDValue Overflow = Result.getValue(1); 8883 SDValue Zero = DAG.getConstant(0, dl, VT); 8884 8885 APInt MinVal = APInt::getSignedMinValue(VTSize); 8886 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8887 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8888 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8889 // Xor the inputs, if resulting sign bit is 0 the product will be 8890 // positive, else negative. 8891 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8892 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8893 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8894 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8895 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8896 SDValue Result = 8897 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8898 SDValue Product = Result.getValue(0); 8899 SDValue Overflow = Result.getValue(1); 8900 8901 APInt MaxVal = APInt::getMaxValue(VTSize); 8902 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8903 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8904 } 8905 } 8906 8907 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8908 "Expected scale to be less than the number of bits if signed or at " 8909 "most the number of bits if unsigned."); 8910 assert(LHS.getValueType() == RHS.getValueType() && 8911 "Expected both operands to be the same type"); 8912 8913 // Get the upper and lower bits of the result. 8914 SDValue Lo, Hi; 8915 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8916 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8917 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8918 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8919 Lo = Result.getValue(0); 8920 Hi = Result.getValue(1); 8921 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8922 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8923 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8924 } else if (VT.isVector()) { 8925 return SDValue(); 8926 } else { 8927 report_fatal_error("Unable to expand fixed point multiplication."); 8928 } 8929 8930 if (Scale == VTSize) 8931 // Result is just the top half since we'd be shifting by the width of the 8932 // operand. Overflow impossible so this works for both UMULFIX and 8933 // UMULFIXSAT. 8934 return Hi; 8935 8936 // The result will need to be shifted right by the scale since both operands 8937 // are scaled. The result is given to us in 2 halves, so we only want part of 8938 // both in the result. 8939 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8940 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8941 DAG.getConstant(Scale, dl, ShiftTy)); 8942 if (!Saturating) 8943 return Result; 8944 8945 if (!Signed) { 8946 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8947 // widened multiplication) aren't all zeroes. 8948 8949 // Saturate to max if ((Hi >> Scale) != 0), 8950 // which is the same as if (Hi > ((1 << Scale) - 1)) 8951 APInt MaxVal = APInt::getMaxValue(VTSize); 8952 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8953 dl, VT); 8954 Result = DAG.getSelectCC(dl, Hi, LowMask, 8955 DAG.getConstant(MaxVal, dl, VT), Result, 8956 ISD::SETUGT); 8957 8958 return Result; 8959 } 8960 8961 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8962 // widened multiplication) aren't all ones or all zeroes. 8963 8964 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8965 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8966 8967 if (Scale == 0) { 8968 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8969 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8970 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8971 // Saturated to SatMin if wide product is negative, and SatMax if wide 8972 // product is positive ... 8973 SDValue Zero = DAG.getConstant(0, dl, VT); 8974 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8975 ISD::SETLT); 8976 // ... but only if we overflowed. 8977 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8978 } 8979 8980 // We handled Scale==0 above so all the bits to examine is in Hi. 8981 8982 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8983 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8984 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8985 dl, VT); 8986 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8987 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8988 // which is the same as if (HI < (-1 << (Scale - 1)) 8989 SDValue HighMask = 8990 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8991 dl, VT); 8992 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8993 return Result; 8994 } 8995 8996 SDValue 8997 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8998 SDValue LHS, SDValue RHS, 8999 unsigned Scale, SelectionDAG &DAG) const { 9000 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 9001 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 9002 "Expected a fixed point division opcode"); 9003 9004 EVT VT = LHS.getValueType(); 9005 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 9006 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 9007 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9008 9009 // If there is enough room in the type to upscale the LHS or downscale the 9010 // RHS before the division, we can perform it in this type without having to 9011 // resize. For signed operations, the LHS headroom is the number of 9012 // redundant sign bits, and for unsigned ones it is the number of zeroes. 9013 // The headroom for the RHS is the number of trailing zeroes. 9014 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 9015 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 9016 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 9017 9018 // For signed saturating operations, we need to be able to detect true integer 9019 // division overflow; that is, when you have MIN / -EPS. However, this 9020 // is undefined behavior and if we emit divisions that could take such 9021 // values it may cause undesired behavior (arithmetic exceptions on x86, for 9022 // example). 9023 // Avoid this by requiring an extra bit so that we never get this case. 9024 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 9025 // signed saturating division, we need to emit a whopping 32-bit division. 9026 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 9027 return SDValue(); 9028 9029 unsigned LHSShift = std::min(LHSLead, Scale); 9030 unsigned RHSShift = Scale - LHSShift; 9031 9032 // At this point, we know that if we shift the LHS up by LHSShift and the 9033 // RHS down by RHSShift, we can emit a regular division with a final scaling 9034 // factor of Scale. 9035 9036 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9037 if (LHSShift) 9038 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 9039 DAG.getConstant(LHSShift, dl, ShiftTy)); 9040 if (RHSShift) 9041 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 9042 DAG.getConstant(RHSShift, dl, ShiftTy)); 9043 9044 SDValue Quot; 9045 if (Signed) { 9046 // For signed operations, if the resulting quotient is negative and the 9047 // remainder is nonzero, subtract 1 from the quotient to round towards 9048 // negative infinity. 9049 SDValue Rem; 9050 // FIXME: Ideally we would always produce an SDIVREM here, but if the 9051 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 9052 // we couldn't just form a libcall, but the type legalizer doesn't do it. 9053 if (isTypeLegal(VT) && 9054 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 9055 Quot = DAG.getNode(ISD::SDIVREM, dl, 9056 DAG.getVTList(VT, VT), 9057 LHS, RHS); 9058 Rem = Quot.getValue(1); 9059 Quot = Quot.getValue(0); 9060 } else { 9061 Quot = DAG.getNode(ISD::SDIV, dl, VT, 9062 LHS, RHS); 9063 Rem = DAG.getNode(ISD::SREM, dl, VT, 9064 LHS, RHS); 9065 } 9066 SDValue Zero = DAG.getConstant(0, dl, VT); 9067 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 9068 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 9069 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 9070 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 9071 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 9072 DAG.getConstant(1, dl, VT)); 9073 Quot = DAG.getSelect(dl, VT, 9074 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 9075 Sub1, Quot); 9076 } else 9077 Quot = DAG.getNode(ISD::UDIV, dl, VT, 9078 LHS, RHS); 9079 9080 return Quot; 9081 } 9082 9083 void TargetLowering::expandUADDSUBO( 9084 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 9085 SDLoc dl(Node); 9086 SDValue LHS = Node->getOperand(0); 9087 SDValue RHS = Node->getOperand(1); 9088 bool IsAdd = Node->getOpcode() == ISD::UADDO; 9089 9090 // If ADD/SUBCARRY is legal, use that instead. 9091 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 9092 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 9093 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 9094 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 9095 { LHS, RHS, CarryIn }); 9096 Result = SDValue(NodeCarry.getNode(), 0); 9097 Overflow = SDValue(NodeCarry.getNode(), 1); 9098 return; 9099 } 9100 9101 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 9102 LHS.getValueType(), LHS, RHS); 9103 9104 EVT ResultType = Node->getValueType(1); 9105 EVT SetCCType = getSetCCResultType( 9106 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 9107 SDValue SetCC; 9108 if (IsAdd && isOneConstant(RHS)) { 9109 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces 9110 // the live range of X. We assume comparing with 0 is cheap. 9111 // The general case (X + C) < C is not necessarily beneficial. Although we 9112 // reduce the live range of X, we may introduce the materialization of 9113 // constant C. 9114 SetCC = 9115 DAG.getSetCC(dl, SetCCType, Result, 9116 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ); 9117 } else { 9118 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 9119 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 9120 } 9121 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 9122 } 9123 9124 void TargetLowering::expandSADDSUBO( 9125 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 9126 SDLoc dl(Node); 9127 SDValue LHS = Node->getOperand(0); 9128 SDValue RHS = Node->getOperand(1); 9129 bool IsAdd = Node->getOpcode() == ISD::SADDO; 9130 9131 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 9132 LHS.getValueType(), LHS, RHS); 9133 9134 EVT ResultType = Node->getValueType(1); 9135 EVT OType = getSetCCResultType( 9136 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 9137 9138 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 9139 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 9140 if (isOperationLegal(OpcSat, LHS.getValueType())) { 9141 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 9142 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 9143 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 9144 return; 9145 } 9146 9147 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 9148 9149 // For an addition, the result should be less than one of the operands (LHS) 9150 // if and only if the other operand (RHS) is negative, otherwise there will 9151 // be overflow. 9152 // For a subtraction, the result should be less than one of the operands 9153 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 9154 // otherwise there will be overflow. 9155 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 9156 SDValue ConditionRHS = 9157 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 9158 9159 Overflow = DAG.getBoolExtOrTrunc( 9160 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 9161 ResultType, ResultType); 9162 } 9163 9164 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 9165 SDValue &Overflow, SelectionDAG &DAG) const { 9166 SDLoc dl(Node); 9167 EVT VT = Node->getValueType(0); 9168 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9169 SDValue LHS = Node->getOperand(0); 9170 SDValue RHS = Node->getOperand(1); 9171 bool isSigned = Node->getOpcode() == ISD::SMULO; 9172 9173 // For power-of-two multiplications we can use a simpler shift expansion. 9174 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 9175 const APInt &C = RHSC->getAPIntValue(); 9176 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 9177 if (C.isPowerOf2()) { 9178 // smulo(x, signed_min) is same as umulo(x, signed_min). 9179 bool UseArithShift = isSigned && !C.isMinSignedValue(); 9180 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9181 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 9182 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 9183 Overflow = DAG.getSetCC(dl, SetCCVT, 9184 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 9185 dl, VT, Result, ShiftAmt), 9186 LHS, ISD::SETNE); 9187 return true; 9188 } 9189 } 9190 9191 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 9192 if (VT.isVector()) 9193 WideVT = 9194 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 9195 9196 SDValue BottomHalf; 9197 SDValue TopHalf; 9198 static const unsigned Ops[2][3] = 9199 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 9200 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 9201 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 9202 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 9203 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 9204 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 9205 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 9206 RHS); 9207 TopHalf = BottomHalf.getValue(1); 9208 } else if (isTypeLegal(WideVT)) { 9209 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 9210 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 9211 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 9212 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 9213 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 9214 getShiftAmountTy(WideVT, DAG.getDataLayout())); 9215 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 9216 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 9217 } else { 9218 if (VT.isVector()) 9219 return false; 9220 9221 // We can fall back to a libcall with an illegal type for the MUL if we 9222 // have a libcall big enough. 9223 // Also, we can fall back to a division in some cases, but that's a big 9224 // performance hit in the general case. 9225 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 9226 if (WideVT == MVT::i16) 9227 LC = RTLIB::MUL_I16; 9228 else if (WideVT == MVT::i32) 9229 LC = RTLIB::MUL_I32; 9230 else if (WideVT == MVT::i64) 9231 LC = RTLIB::MUL_I64; 9232 else if (WideVT == MVT::i128) 9233 LC = RTLIB::MUL_I128; 9234 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 9235 9236 SDValue HiLHS; 9237 SDValue HiRHS; 9238 if (isSigned) { 9239 // The high part is obtained by SRA'ing all but one of the bits of low 9240 // part. 9241 unsigned LoSize = VT.getFixedSizeInBits(); 9242 HiLHS = 9243 DAG.getNode(ISD::SRA, dl, VT, LHS, 9244 DAG.getConstant(LoSize - 1, dl, 9245 getPointerTy(DAG.getDataLayout()))); 9246 HiRHS = 9247 DAG.getNode(ISD::SRA, dl, VT, RHS, 9248 DAG.getConstant(LoSize - 1, dl, 9249 getPointerTy(DAG.getDataLayout()))); 9250 } else { 9251 HiLHS = DAG.getConstant(0, dl, VT); 9252 HiRHS = DAG.getConstant(0, dl, VT); 9253 } 9254 9255 // Here we're passing the 2 arguments explicitly as 4 arguments that are 9256 // pre-lowered to the correct types. This all depends upon WideVT not 9257 // being a legal type for the architecture and thus has to be split to 9258 // two arguments. 9259 SDValue Ret; 9260 TargetLowering::MakeLibCallOptions CallOptions; 9261 CallOptions.setSExt(isSigned); 9262 CallOptions.setIsPostTypeLegalization(true); 9263 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 9264 // Halves of WideVT are packed into registers in different order 9265 // depending on platform endianness. This is usually handled by 9266 // the C calling convention, but we can't defer to it in 9267 // the legalizer. 9268 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 9269 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 9270 } else { 9271 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 9272 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 9273 } 9274 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 9275 "Ret value is a collection of constituent nodes holding result."); 9276 if (DAG.getDataLayout().isLittleEndian()) { 9277 // Same as above. 9278 BottomHalf = Ret.getOperand(0); 9279 TopHalf = Ret.getOperand(1); 9280 } else { 9281 BottomHalf = Ret.getOperand(1); 9282 TopHalf = Ret.getOperand(0); 9283 } 9284 } 9285 9286 Result = BottomHalf; 9287 if (isSigned) { 9288 SDValue ShiftAmt = DAG.getConstant( 9289 VT.getScalarSizeInBits() - 1, dl, 9290 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 9291 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 9292 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 9293 } else { 9294 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 9295 DAG.getConstant(0, dl, VT), ISD::SETNE); 9296 } 9297 9298 // Truncate the result if SetCC returns a larger type than needed. 9299 EVT RType = Node->getValueType(1); 9300 if (RType.bitsLT(Overflow.getValueType())) 9301 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 9302 9303 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 9304 "Unexpected result type for S/UMULO legalization"); 9305 return true; 9306 } 9307 9308 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 9309 SDLoc dl(Node); 9310 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 9311 SDValue Op = Node->getOperand(0); 9312 EVT VT = Op.getValueType(); 9313 9314 if (VT.isScalableVector()) 9315 report_fatal_error( 9316 "Expanding reductions for scalable vectors is undefined."); 9317 9318 // Try to use a shuffle reduction for power of two vectors. 9319 if (VT.isPow2VectorType()) { 9320 while (VT.getVectorNumElements() > 1) { 9321 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 9322 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 9323 break; 9324 9325 SDValue Lo, Hi; 9326 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 9327 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 9328 VT = HalfVT; 9329 } 9330 } 9331 9332 EVT EltVT = VT.getVectorElementType(); 9333 unsigned NumElts = VT.getVectorNumElements(); 9334 9335 SmallVector<SDValue, 8> Ops; 9336 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 9337 9338 SDValue Res = Ops[0]; 9339 for (unsigned i = 1; i < NumElts; i++) 9340 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 9341 9342 // Result type may be wider than element type. 9343 if (EltVT != Node->getValueType(0)) 9344 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 9345 return Res; 9346 } 9347 9348 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 9349 SDLoc dl(Node); 9350 SDValue AccOp = Node->getOperand(0); 9351 SDValue VecOp = Node->getOperand(1); 9352 SDNodeFlags Flags = Node->getFlags(); 9353 9354 EVT VT = VecOp.getValueType(); 9355 EVT EltVT = VT.getVectorElementType(); 9356 9357 if (VT.isScalableVector()) 9358 report_fatal_error( 9359 "Expanding reductions for scalable vectors is undefined."); 9360 9361 unsigned NumElts = VT.getVectorNumElements(); 9362 9363 SmallVector<SDValue, 8> Ops; 9364 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 9365 9366 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 9367 9368 SDValue Res = AccOp; 9369 for (unsigned i = 0; i < NumElts; i++) 9370 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 9371 9372 return Res; 9373 } 9374 9375 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 9376 SelectionDAG &DAG) const { 9377 EVT VT = Node->getValueType(0); 9378 SDLoc dl(Node); 9379 bool isSigned = Node->getOpcode() == ISD::SREM; 9380 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 9381 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 9382 SDValue Dividend = Node->getOperand(0); 9383 SDValue Divisor = Node->getOperand(1); 9384 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 9385 SDVTList VTs = DAG.getVTList(VT, VT); 9386 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 9387 return true; 9388 } 9389 if (isOperationLegalOrCustom(DivOpc, VT)) { 9390 // X % Y -> X-X/Y*Y 9391 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 9392 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 9393 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 9394 return true; 9395 } 9396 return false; 9397 } 9398 9399 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 9400 SelectionDAG &DAG) const { 9401 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 9402 SDLoc dl(SDValue(Node, 0)); 9403 SDValue Src = Node->getOperand(0); 9404 9405 // DstVT is the result type, while SatVT is the size to which we saturate 9406 EVT SrcVT = Src.getValueType(); 9407 EVT DstVT = Node->getValueType(0); 9408 9409 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 9410 unsigned SatWidth = SatVT.getScalarSizeInBits(); 9411 unsigned DstWidth = DstVT.getScalarSizeInBits(); 9412 assert(SatWidth <= DstWidth && 9413 "Expected saturation width smaller than result width"); 9414 9415 // Determine minimum and maximum integer values and their corresponding 9416 // floating-point values. 9417 APInt MinInt, MaxInt; 9418 if (IsSigned) { 9419 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth); 9420 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth); 9421 } else { 9422 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth); 9423 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth); 9424 } 9425 9426 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 9427 // libcall emission cannot handle this. Large result types will fail. 9428 if (SrcVT == MVT::f16) { 9429 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 9430 SrcVT = Src.getValueType(); 9431 } 9432 9433 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9434 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9435 9436 APFloat::opStatus MinStatus = 9437 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 9438 APFloat::opStatus MaxStatus = 9439 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 9440 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 9441 !(MaxStatus & APFloat::opStatus::opInexact); 9442 9443 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 9444 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 9445 9446 // If the integer bounds are exactly representable as floats and min/max are 9447 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 9448 // of comparisons and selects. 9449 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 9450 isOperationLegal(ISD::FMAXNUM, SrcVT); 9451 if (AreExactFloatBounds && MinMaxLegal) { 9452 SDValue Clamped = Src; 9453 9454 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 9455 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 9456 // Clamp by MaxFloat from above. NaN cannot occur. 9457 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 9458 // Convert clamped value to integer. 9459 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 9460 dl, DstVT, Clamped); 9461 9462 // In the unsigned case we're done, because we mapped NaN to MinFloat, 9463 // which will cast to zero. 9464 if (!IsSigned) 9465 return FpToInt; 9466 9467 // Otherwise, select 0 if Src is NaN. 9468 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9469 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 9470 ISD::CondCode::SETUO); 9471 } 9472 9473 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 9474 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 9475 9476 // Result of direct conversion. The assumption here is that the operation is 9477 // non-trapping and it's fine to apply it to an out-of-range value if we 9478 // select it away later. 9479 SDValue FpToInt = 9480 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 9481 9482 SDValue Select = FpToInt; 9483 9484 // If Src ULT MinFloat, select MinInt. In particular, this also selects 9485 // MinInt if Src is NaN. 9486 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 9487 ISD::CondCode::SETULT); 9488 // If Src OGT MaxFloat, select MaxInt. 9489 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 9490 ISD::CondCode::SETOGT); 9491 9492 // In the unsigned case we are done, because we mapped NaN to MinInt, which 9493 // is already zero. 9494 if (!IsSigned) 9495 return Select; 9496 9497 // Otherwise, select 0 if Src is NaN. 9498 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9499 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 9500 } 9501 9502 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 9503 SelectionDAG &DAG) const { 9504 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 9505 assert(Node->getValueType(0).isScalableVector() && 9506 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 9507 9508 EVT VT = Node->getValueType(0); 9509 SDValue V1 = Node->getOperand(0); 9510 SDValue V2 = Node->getOperand(1); 9511 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 9512 SDLoc DL(Node); 9513 9514 // Expand through memory thusly: 9515 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 9516 // Store V1, Ptr 9517 // Store V2, Ptr + sizeof(V1) 9518 // If (Imm < 0) 9519 // TrailingElts = -Imm 9520 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 9521 // else 9522 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 9523 // Res = Load Ptr 9524 9525 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 9526 9527 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 9528 VT.getVectorElementCount() * 2); 9529 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 9530 EVT PtrVT = StackPtr.getValueType(); 9531 auto &MF = DAG.getMachineFunction(); 9532 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 9533 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 9534 9535 // Store the lo part of CONCAT_VECTORS(V1, V2) 9536 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 9537 // Store the hi part of CONCAT_VECTORS(V1, V2) 9538 SDValue OffsetToV2 = DAG.getVScale( 9539 DL, PtrVT, 9540 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9541 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 9542 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 9543 9544 if (Imm >= 0) { 9545 // Load back the required element. getVectorElementPointer takes care of 9546 // clamping the index if it's out-of-bounds. 9547 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 9548 // Load the spliced result 9549 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 9550 MachinePointerInfo::getUnknownStack(MF)); 9551 } 9552 9553 uint64_t TrailingElts = -Imm; 9554 9555 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 9556 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 9557 SDValue TrailingBytes = 9558 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 9559 9560 if (TrailingElts > VT.getVectorMinNumElements()) { 9561 SDValue VLBytes = DAG.getVScale( 9562 DL, PtrVT, 9563 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9564 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 9565 } 9566 9567 // Calculate the start address of the spliced result. 9568 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 9569 9570 // Load the spliced result 9571 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 9572 MachinePointerInfo::getUnknownStack(MF)); 9573 } 9574 9575 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 9576 SDValue &LHS, SDValue &RHS, 9577 SDValue &CC, SDValue Mask, 9578 SDValue EVL, bool &NeedInvert, 9579 const SDLoc &dl, SDValue &Chain, 9580 bool IsSignaling) const { 9581 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9582 MVT OpVT = LHS.getSimpleValueType(); 9583 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 9584 NeedInvert = false; 9585 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset"); 9586 bool IsNonVP = !EVL; 9587 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 9588 default: 9589 llvm_unreachable("Unknown condition code action!"); 9590 case TargetLowering::Legal: 9591 // Nothing to do. 9592 break; 9593 case TargetLowering::Expand: { 9594 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 9595 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9596 std::swap(LHS, RHS); 9597 CC = DAG.getCondCode(InvCC); 9598 return true; 9599 } 9600 // Swapping operands didn't work. Try inverting the condition. 9601 bool NeedSwap = false; 9602 InvCC = getSetCCInverse(CCCode, OpVT); 9603 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9604 // If inverting the condition is not enough, try swapping operands 9605 // on top of it. 9606 InvCC = ISD::getSetCCSwappedOperands(InvCC); 9607 NeedSwap = true; 9608 } 9609 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9610 CC = DAG.getCondCode(InvCC); 9611 NeedInvert = true; 9612 if (NeedSwap) 9613 std::swap(LHS, RHS); 9614 return true; 9615 } 9616 9617 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 9618 unsigned Opc = 0; 9619 switch (CCCode) { 9620 default: 9621 llvm_unreachable("Don't know how to expand this condition!"); 9622 case ISD::SETUO: 9623 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 9624 CC1 = ISD::SETUNE; 9625 CC2 = ISD::SETUNE; 9626 Opc = ISD::OR; 9627 break; 9628 } 9629 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9630 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 9631 NeedInvert = true; 9632 LLVM_FALLTHROUGH; 9633 case ISD::SETO: 9634 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9635 "If SETO is expanded, SETOEQ must be legal!"); 9636 CC1 = ISD::SETOEQ; 9637 CC2 = ISD::SETOEQ; 9638 Opc = ISD::AND; 9639 break; 9640 case ISD::SETONE: 9641 case ISD::SETUEQ: 9642 // If the SETUO or SETO CC isn't legal, we might be able to use 9643 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 9644 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 9645 // the operands. 9646 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9647 if (!TLI.isCondCodeLegal(CC2, OpVT) && 9648 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 9649 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 9650 CC1 = ISD::SETOGT; 9651 CC2 = ISD::SETOLT; 9652 Opc = ISD::OR; 9653 NeedInvert = ((unsigned)CCCode & 0x8U); 9654 break; 9655 } 9656 LLVM_FALLTHROUGH; 9657 case ISD::SETOEQ: 9658 case ISD::SETOGT: 9659 case ISD::SETOGE: 9660 case ISD::SETOLT: 9661 case ISD::SETOLE: 9662 case ISD::SETUNE: 9663 case ISD::SETUGT: 9664 case ISD::SETUGE: 9665 case ISD::SETULT: 9666 case ISD::SETULE: 9667 // If we are floating point, assign and break, otherwise fall through. 9668 if (!OpVT.isInteger()) { 9669 // We can use the 4th bit to tell if we are the unordered 9670 // or ordered version of the opcode. 9671 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9672 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9673 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9674 break; 9675 } 9676 // Fallthrough if we are unsigned integer. 9677 LLVM_FALLTHROUGH; 9678 case ISD::SETLE: 9679 case ISD::SETGT: 9680 case ISD::SETGE: 9681 case ISD::SETLT: 9682 case ISD::SETNE: 9683 case ISD::SETEQ: 9684 // If all combinations of inverting the condition and swapping operands 9685 // didn't work then we have no means to expand the condition. 9686 llvm_unreachable("Don't know how to expand this condition!"); 9687 } 9688 9689 SDValue SetCC1, SetCC2; 9690 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9691 // If we aren't the ordered or unorder operation, 9692 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9693 if (IsNonVP) { 9694 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9695 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9696 } else { 9697 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL); 9698 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL); 9699 } 9700 } else { 9701 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9702 if (IsNonVP) { 9703 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9704 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9705 } else { 9706 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL); 9707 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL); 9708 } 9709 } 9710 if (Chain) 9711 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9712 SetCC2.getValue(1)); 9713 if (IsNonVP) 9714 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9715 else { 9716 // Transform the binary opcode to the VP equivalent. 9717 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode"); 9718 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; 9719 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL); 9720 } 9721 RHS = SDValue(); 9722 CC = SDValue(); 9723 return true; 9724 } 9725 } 9726 return false; 9727 } 9728