1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 Register Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 114 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 115 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 116 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 117 Alignment = Call->getParamAlignment(ArgIdx); 118 ByValType = nullptr; 119 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 120 ByValType = Call->getParamByValType(ArgIdx); 121 } 122 123 /// Generate a libcall taking the given operands as arguments and returning a 124 /// result of type RetVT. 125 std::pair<SDValue, SDValue> 126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 127 ArrayRef<SDValue> Ops, 128 MakeLibCallOptions CallOptions, 129 const SDLoc &dl, 130 SDValue InChain) const { 131 if (!InChain) 132 InChain = DAG.getEntryNode(); 133 134 TargetLowering::ArgListTy Args; 135 Args.reserve(Ops.size()); 136 137 TargetLowering::ArgListEntry Entry; 138 for (unsigned i = 0; i < Ops.size(); ++i) { 139 SDValue NewOp = Ops[i]; 140 Entry.Node = NewOp; 141 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 142 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 143 CallOptions.IsSExt); 144 Entry.IsZExt = !Entry.IsSExt; 145 146 if (CallOptions.IsSoften && 147 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 148 Entry.IsSExt = Entry.IsZExt = false; 149 } 150 Args.push_back(Entry); 151 } 152 153 if (LC == RTLIB::UNKNOWN_LIBCALL) 154 report_fatal_error("Unsupported library call operation!"); 155 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 156 getPointerTy(DAG.getDataLayout())); 157 158 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 159 TargetLowering::CallLoweringInfo CLI(DAG); 160 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 161 bool zeroExtend = !signExtend; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 165 signExtend = zeroExtend = false; 166 } 167 168 CLI.setDebugLoc(dl) 169 .setChain(InChain) 170 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 171 .setNoReturn(CallOptions.DoesNotReturn) 172 .setDiscardResult(!CallOptions.IsReturnValueUsed) 173 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 174 .setSExtResult(signExtend) 175 .setZExtResult(zeroExtend); 176 return LowerCallTo(CLI); 177 } 178 179 bool 180 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps, 181 unsigned Limit, uint64_t Size, 182 unsigned DstAlign, unsigned SrcAlign, 183 bool IsMemset, 184 bool ZeroMemset, 185 bool MemcpyStrSrc, 186 bool AllowOverlap, 187 unsigned DstAS, unsigned SrcAS, 188 const AttributeList &FuncAttributes) const { 189 // If 'SrcAlign' is zero, that means the memory operation does not need to 190 // load the value, i.e. memset or memcpy from constant string. Otherwise, 191 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 192 // is the specified alignment of the memory operation. If it is zero, that 193 // means it's possible to change the alignment of the destination. 194 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 195 // not need to be loaded. 196 if (!(SrcAlign == 0 || SrcAlign >= DstAlign)) 197 return false; 198 199 EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign, 200 IsMemset, ZeroMemset, MemcpyStrSrc, 201 FuncAttributes); 202 203 if (VT == MVT::Other) { 204 // Use the largest integer type whose alignment constraints are satisfied. 205 // We only need to check DstAlign here as SrcAlign is always greater or 206 // equal to DstAlign (or zero). 207 VT = MVT::i64; 208 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 209 !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 210 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 211 assert(VT.isInteger()); 212 213 // Find the largest legal integer type. 214 MVT LVT = MVT::i64; 215 while (!isTypeLegal(LVT)) 216 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 217 assert(LVT.isInteger()); 218 219 // If the type we've chosen is larger than the largest legal integer type 220 // then use that instead. 221 if (VT.bitsGT(LVT)) 222 VT = LVT; 223 } 224 225 unsigned NumMemOps = 0; 226 while (Size != 0) { 227 unsigned VTSize = VT.getSizeInBits() / 8; 228 while (VTSize > Size) { 229 // For now, only use non-vector load / store's for the left-over pieces. 230 EVT NewVT = VT; 231 unsigned NewVTSize; 232 233 bool Found = false; 234 if (VT.isVector() || VT.isFloatingPoint()) { 235 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 236 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 237 isSafeMemOpType(NewVT.getSimpleVT())) 238 Found = true; 239 else if (NewVT == MVT::i64 && 240 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 241 isSafeMemOpType(MVT::f64)) { 242 // i64 is usually not legal on 32-bit targets, but f64 may be. 243 NewVT = MVT::f64; 244 Found = true; 245 } 246 } 247 248 if (!Found) { 249 do { 250 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 251 if (NewVT == MVT::i8) 252 break; 253 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 254 } 255 NewVTSize = NewVT.getSizeInBits() / 8; 256 257 // If the new VT cannot cover all of the remaining bits, then consider 258 // issuing a (or a pair of) unaligned and overlapping load / store. 259 bool Fast; 260 if (NumMemOps && AllowOverlap && NewVTSize < Size && 261 allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, 262 MachineMemOperand::MONone, &Fast) && 263 Fast) 264 VTSize = Size; 265 else { 266 VT = NewVT; 267 VTSize = NewVTSize; 268 } 269 } 270 271 if (++NumMemOps > Limit) 272 return false; 273 274 MemOps.push_back(VT); 275 Size -= VTSize; 276 } 277 278 return true; 279 } 280 281 /// Soften the operands of a comparison. This code is shared among BR_CC, 282 /// SELECT_CC, and SETCC handlers. 283 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 284 SDValue &NewLHS, SDValue &NewRHS, 285 ISD::CondCode &CCCode, 286 const SDLoc &dl, const SDValue OldLHS, 287 const SDValue OldRHS) const { 288 SDValue Chain; 289 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 290 OldRHS, Chain); 291 } 292 293 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 294 SDValue &NewLHS, SDValue &NewRHS, 295 ISD::CondCode &CCCode, 296 const SDLoc &dl, const SDValue OldLHS, 297 const SDValue OldRHS, 298 SDValue &Chain, 299 bool IsSignaling) const { 300 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 301 // not supporting it. We can update this code when libgcc provides such 302 // functions. 303 304 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 305 && "Unsupported setcc type!"); 306 307 // Expand into one or more soft-fp libcall(s). 308 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 309 bool ShouldInvertCC = false; 310 switch (CCCode) { 311 case ISD::SETEQ: 312 case ISD::SETOEQ: 313 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 314 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 315 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 316 break; 317 case ISD::SETNE: 318 case ISD::SETUNE: 319 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 320 (VT == MVT::f64) ? RTLIB::UNE_F64 : 321 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 322 break; 323 case ISD::SETGE: 324 case ISD::SETOGE: 325 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 326 (VT == MVT::f64) ? RTLIB::OGE_F64 : 327 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 328 break; 329 case ISD::SETLT: 330 case ISD::SETOLT: 331 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 332 (VT == MVT::f64) ? RTLIB::OLT_F64 : 333 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 334 break; 335 case ISD::SETLE: 336 case ISD::SETOLE: 337 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 338 (VT == MVT::f64) ? RTLIB::OLE_F64 : 339 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 340 break; 341 case ISD::SETGT: 342 case ISD::SETOGT: 343 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 344 (VT == MVT::f64) ? RTLIB::OGT_F64 : 345 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 346 break; 347 case ISD::SETUO: 348 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 349 (VT == MVT::f64) ? RTLIB::UO_F64 : 350 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 351 break; 352 case ISD::SETO: 353 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 354 (VT == MVT::f64) ? RTLIB::O_F64 : 355 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 356 break; 357 case ISD::SETONE: 358 // SETONE = SETOLT | SETOGT 359 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 360 (VT == MVT::f64) ? RTLIB::OLT_F64 : 361 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 362 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 363 (VT == MVT::f64) ? RTLIB::OGT_F64 : 364 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 365 break; 366 case ISD::SETUEQ: 367 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 368 (VT == MVT::f64) ? RTLIB::UO_F64 : 369 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 370 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 371 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 372 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 373 break; 374 default: 375 // Invert CC for unordered comparisons 376 ShouldInvertCC = true; 377 switch (CCCode) { 378 case ISD::SETULT: 379 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 380 (VT == MVT::f64) ? RTLIB::OGE_F64 : 381 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 382 break; 383 case ISD::SETULE: 384 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 385 (VT == MVT::f64) ? RTLIB::OGT_F64 : 386 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 387 break; 388 case ISD::SETUGT: 389 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 390 (VT == MVT::f64) ? RTLIB::OLE_F64 : 391 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 392 break; 393 case ISD::SETUGE: 394 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 395 (VT == MVT::f64) ? RTLIB::OLT_F64 : 396 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 397 break; 398 default: llvm_unreachable("Do not know how to soften this setcc!"); 399 } 400 } 401 402 // Use the target specific return value for comparions lib calls. 403 EVT RetVT = getCmpLibcallReturnType(); 404 SDValue Ops[2] = {NewLHS, NewRHS}; 405 TargetLowering::MakeLibCallOptions CallOptions; 406 EVT OpsVT[2] = { OldLHS.getValueType(), 407 OldRHS.getValueType() }; 408 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 409 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 410 NewLHS = Call.first; 411 NewRHS = DAG.getConstant(0, dl, RetVT); 412 413 CCCode = getCmpLibcallCC(LC1); 414 if (ShouldInvertCC) { 415 assert(RetVT.isInteger()); 416 CCCode = getSetCCInverse(CCCode, RetVT); 417 } 418 419 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 420 // Update Chain. 421 Chain = Call.second; 422 } else { 423 SDValue Tmp = DAG.getNode( 424 ISD::SETCC, dl, 425 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 426 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 427 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 428 NewLHS = DAG.getNode( 429 ISD::SETCC, dl, 430 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 431 Call2.first, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 432 if (Chain) 433 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 434 Call2.second); 435 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 436 NewRHS = SDValue(); 437 } 438 } 439 440 /// Return the entry encoding for a jump table in the current function. The 441 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 442 unsigned TargetLowering::getJumpTableEncoding() const { 443 // In non-pic modes, just use the address of a block. 444 if (!isPositionIndependent()) 445 return MachineJumpTableInfo::EK_BlockAddress; 446 447 // In PIC mode, if the target supports a GPRel32 directive, use it. 448 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 449 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 450 451 // Otherwise, use a label difference. 452 return MachineJumpTableInfo::EK_LabelDifference32; 453 } 454 455 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 456 SelectionDAG &DAG) const { 457 // If our PIC model is GP relative, use the global offset table as the base. 458 unsigned JTEncoding = getJumpTableEncoding(); 459 460 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 461 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 462 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 463 464 return Table; 465 } 466 467 /// This returns the relocation base for the given PIC jumptable, the same as 468 /// getPICJumpTableRelocBase, but as an MCExpr. 469 const MCExpr * 470 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 471 unsigned JTI,MCContext &Ctx) const{ 472 // The normal PIC reloc base is the label at the start of the jump table. 473 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 474 } 475 476 bool 477 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 478 const TargetMachine &TM = getTargetMachine(); 479 const GlobalValue *GV = GA->getGlobal(); 480 481 // If the address is not even local to this DSO we will have to load it from 482 // a got and then add the offset. 483 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 484 return false; 485 486 // If the code is position independent we will have to add a base register. 487 if (isPositionIndependent()) 488 return false; 489 490 // Otherwise we can do it. 491 return true; 492 } 493 494 //===----------------------------------------------------------------------===// 495 // Optimization Methods 496 //===----------------------------------------------------------------------===// 497 498 /// If the specified instruction has a constant integer operand and there are 499 /// bits set in that constant that are not demanded, then clear those bits and 500 /// return true. 501 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 502 TargetLoweringOpt &TLO) const { 503 SDLoc DL(Op); 504 unsigned Opcode = Op.getOpcode(); 505 506 // Do target-specific constant optimization. 507 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 508 return TLO.New.getNode(); 509 510 // FIXME: ISD::SELECT, ISD::SELECT_CC 511 switch (Opcode) { 512 default: 513 break; 514 case ISD::XOR: 515 case ISD::AND: 516 case ISD::OR: { 517 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 518 if (!Op1C) 519 return false; 520 521 // If this is a 'not' op, don't touch it because that's a canonical form. 522 const APInt &C = Op1C->getAPIntValue(); 523 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 524 return false; 525 526 if (!C.isSubsetOf(Demanded)) { 527 EVT VT = Op.getValueType(); 528 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 529 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 530 return TLO.CombineTo(Op, NewOp); 531 } 532 533 break; 534 } 535 } 536 537 return false; 538 } 539 540 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 541 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 542 /// generalized for targets with other types of implicit widening casts. 543 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 544 const APInt &Demanded, 545 TargetLoweringOpt &TLO) const { 546 assert(Op.getNumOperands() == 2 && 547 "ShrinkDemandedOp only supports binary operators!"); 548 assert(Op.getNode()->getNumValues() == 1 && 549 "ShrinkDemandedOp only supports nodes with one result!"); 550 551 SelectionDAG &DAG = TLO.DAG; 552 SDLoc dl(Op); 553 554 // Early return, as this function cannot handle vector types. 555 if (Op.getValueType().isVector()) 556 return false; 557 558 // Don't do this if the node has another user, which may require the 559 // full value. 560 if (!Op.getNode()->hasOneUse()) 561 return false; 562 563 // Search for the smallest integer type with free casts to and from 564 // Op's type. For expedience, just check power-of-2 integer types. 565 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 566 unsigned DemandedSize = Demanded.getActiveBits(); 567 unsigned SmallVTBits = DemandedSize; 568 if (!isPowerOf2_32(SmallVTBits)) 569 SmallVTBits = NextPowerOf2(SmallVTBits); 570 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 571 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 572 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 573 TLI.isZExtFree(SmallVT, Op.getValueType())) { 574 // We found a type with free casts. 575 SDValue X = DAG.getNode( 576 Op.getOpcode(), dl, SmallVT, 577 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 578 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 579 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 580 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 581 return TLO.CombineTo(Op, Z); 582 } 583 } 584 return false; 585 } 586 587 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 588 DAGCombinerInfo &DCI) const { 589 SelectionDAG &DAG = DCI.DAG; 590 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 591 !DCI.isBeforeLegalizeOps()); 592 KnownBits Known; 593 594 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 595 if (Simplified) { 596 DCI.AddToWorklist(Op.getNode()); 597 DCI.CommitTargetLoweringOpt(TLO); 598 } 599 return Simplified; 600 } 601 602 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 603 KnownBits &Known, 604 TargetLoweringOpt &TLO, 605 unsigned Depth, 606 bool AssumeSingleUse) const { 607 EVT VT = Op.getValueType(); 608 APInt DemandedElts = VT.isVector() 609 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 610 : APInt(1, 1); 611 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 612 AssumeSingleUse); 613 } 614 615 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 616 // TODO: Under what circumstances can we create nodes? Constant folding? 617 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 618 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 619 SelectionDAG &DAG, unsigned Depth) const { 620 // Limit search depth. 621 if (Depth >= SelectionDAG::MaxRecursionDepth) 622 return SDValue(); 623 624 // Ignore UNDEFs. 625 if (Op.isUndef()) 626 return SDValue(); 627 628 // Not demanding any bits/elts from Op. 629 if (DemandedBits == 0 || DemandedElts == 0) 630 return DAG.getUNDEF(Op.getValueType()); 631 632 unsigned NumElts = DemandedElts.getBitWidth(); 633 KnownBits LHSKnown, RHSKnown; 634 switch (Op.getOpcode()) { 635 case ISD::BITCAST: { 636 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 637 EVT SrcVT = Src.getValueType(); 638 EVT DstVT = Op.getValueType(); 639 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 640 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 641 642 if (NumSrcEltBits == NumDstEltBits) 643 if (SDValue V = SimplifyMultipleUseDemandedBits( 644 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 645 return DAG.getBitcast(DstVT, V); 646 647 // TODO - bigendian once we have test coverage. 648 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 649 DAG.getDataLayout().isLittleEndian()) { 650 unsigned Scale = NumDstEltBits / NumSrcEltBits; 651 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 652 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 653 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 654 for (unsigned i = 0; i != Scale; ++i) { 655 unsigned Offset = i * NumSrcEltBits; 656 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 657 if (!Sub.isNullValue()) { 658 DemandedSrcBits |= Sub; 659 for (unsigned j = 0; j != NumElts; ++j) 660 if (DemandedElts[j]) 661 DemandedSrcElts.setBit((j * Scale) + i); 662 } 663 } 664 665 if (SDValue V = SimplifyMultipleUseDemandedBits( 666 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 667 return DAG.getBitcast(DstVT, V); 668 } 669 670 // TODO - bigendian once we have test coverage. 671 if ((NumSrcEltBits % NumDstEltBits) == 0 && 672 DAG.getDataLayout().isLittleEndian()) { 673 unsigned Scale = NumSrcEltBits / NumDstEltBits; 674 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 675 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 676 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 677 for (unsigned i = 0; i != NumElts; ++i) 678 if (DemandedElts[i]) { 679 unsigned Offset = (i % Scale) * NumDstEltBits; 680 DemandedSrcBits.insertBits(DemandedBits, Offset); 681 DemandedSrcElts.setBit(i / Scale); 682 } 683 684 if (SDValue V = SimplifyMultipleUseDemandedBits( 685 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 686 return DAG.getBitcast(DstVT, V); 687 } 688 689 break; 690 } 691 case ISD::AND: { 692 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 693 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 694 695 // If all of the demanded bits are known 1 on one side, return the other. 696 // These bits cannot contribute to the result of the 'and' in this 697 // context. 698 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 699 return Op.getOperand(0); 700 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 701 return Op.getOperand(1); 702 break; 703 } 704 case ISD::OR: { 705 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 706 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 707 708 // If all of the demanded bits are known zero on one side, return the 709 // other. These bits cannot contribute to the result of the 'or' in this 710 // context. 711 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 712 return Op.getOperand(0); 713 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 714 return Op.getOperand(1); 715 break; 716 } 717 case ISD::XOR: { 718 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 719 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 720 721 // If all of the demanded bits are known zero on one side, return the 722 // other. 723 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 724 return Op.getOperand(0); 725 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 726 return Op.getOperand(1); 727 break; 728 } 729 case ISD::SIGN_EXTEND_INREG: { 730 // If none of the extended bits are demanded, eliminate the sextinreg. 731 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 732 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 733 return Op.getOperand(0); 734 break; 735 } 736 case ISD::INSERT_VECTOR_ELT: { 737 // If we don't demand the inserted element, return the base vector. 738 SDValue Vec = Op.getOperand(0); 739 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 740 EVT VecVT = Vec.getValueType(); 741 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 742 !DemandedElts[CIdx->getZExtValue()]) 743 return Vec; 744 break; 745 } 746 case ISD::VECTOR_SHUFFLE: { 747 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 748 749 // If all the demanded elts are from one operand and are inline, 750 // then we can use the operand directly. 751 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 752 for (unsigned i = 0; i != NumElts; ++i) { 753 int M = ShuffleMask[i]; 754 if (M < 0 || !DemandedElts[i]) 755 continue; 756 AllUndef = false; 757 IdentityLHS &= (M == (int)i); 758 IdentityRHS &= ((M - NumElts) == i); 759 } 760 761 if (AllUndef) 762 return DAG.getUNDEF(Op.getValueType()); 763 if (IdentityLHS) 764 return Op.getOperand(0); 765 if (IdentityRHS) 766 return Op.getOperand(1); 767 break; 768 } 769 default: 770 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 771 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 772 Op, DemandedBits, DemandedElts, DAG, Depth)) 773 return V; 774 break; 775 } 776 return SDValue(); 777 } 778 779 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 780 /// result of Op are ever used downstream. If we can use this information to 781 /// simplify Op, create a new simplified DAG node and return true, returning the 782 /// original and new nodes in Old and New. Otherwise, analyze the expression and 783 /// return a mask of Known bits for the expression (used to simplify the 784 /// caller). The Known bits may only be accurate for those bits in the 785 /// OriginalDemandedBits and OriginalDemandedElts. 786 bool TargetLowering::SimplifyDemandedBits( 787 SDValue Op, const APInt &OriginalDemandedBits, 788 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 789 unsigned Depth, bool AssumeSingleUse) const { 790 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 791 assert(Op.getScalarValueSizeInBits() == BitWidth && 792 "Mask size mismatches value type size!"); 793 794 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 795 assert((!Op.getValueType().isVector() || 796 NumElts == Op.getValueType().getVectorNumElements()) && 797 "Unexpected vector size"); 798 799 APInt DemandedBits = OriginalDemandedBits; 800 APInt DemandedElts = OriginalDemandedElts; 801 SDLoc dl(Op); 802 auto &DL = TLO.DAG.getDataLayout(); 803 804 // Don't know anything. 805 Known = KnownBits(BitWidth); 806 807 // Undef operand. 808 if (Op.isUndef()) 809 return false; 810 811 if (Op.getOpcode() == ISD::Constant) { 812 // We know all of the bits for a constant! 813 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 814 Known.Zero = ~Known.One; 815 return false; 816 } 817 818 // Other users may use these bits. 819 EVT VT = Op.getValueType(); 820 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 821 if (Depth != 0) { 822 // If not at the root, Just compute the Known bits to 823 // simplify things downstream. 824 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 825 return false; 826 } 827 // If this is the root being simplified, allow it to have multiple uses, 828 // just set the DemandedBits/Elts to all bits. 829 DemandedBits = APInt::getAllOnesValue(BitWidth); 830 DemandedElts = APInt::getAllOnesValue(NumElts); 831 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 832 // Not demanding any bits/elts from Op. 833 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 834 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 835 // Limit search depth. 836 return false; 837 } 838 839 KnownBits Known2, KnownOut; 840 switch (Op.getOpcode()) { 841 case ISD::TargetConstant: 842 llvm_unreachable("Can't simplify this node"); 843 case ISD::SCALAR_TO_VECTOR: { 844 if (!DemandedElts[0]) 845 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 846 847 KnownBits SrcKnown; 848 SDValue Src = Op.getOperand(0); 849 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 850 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 851 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 852 return true; 853 Known = SrcKnown.zextOrTrunc(BitWidth, false); 854 break; 855 } 856 case ISD::BUILD_VECTOR: 857 // Collect the known bits that are shared by every demanded element. 858 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 859 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 860 return false; // Don't fall through, will infinitely loop. 861 case ISD::LOAD: { 862 LoadSDNode *LD = cast<LoadSDNode>(Op); 863 if (getTargetConstantFromLoad(LD)) { 864 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 865 return false; // Don't fall through, will infinitely loop. 866 } 867 break; 868 } 869 case ISD::INSERT_VECTOR_ELT: { 870 SDValue Vec = Op.getOperand(0); 871 SDValue Scl = Op.getOperand(1); 872 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 873 EVT VecVT = Vec.getValueType(); 874 875 // If index isn't constant, assume we need all vector elements AND the 876 // inserted element. 877 APInt DemandedVecElts(DemandedElts); 878 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 879 unsigned Idx = CIdx->getZExtValue(); 880 DemandedVecElts.clearBit(Idx); 881 882 // Inserted element is not required. 883 if (!DemandedElts[Idx]) 884 return TLO.CombineTo(Op, Vec); 885 } 886 887 KnownBits KnownScl; 888 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 889 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 890 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 891 return true; 892 893 Known = KnownScl.zextOrTrunc(BitWidth, false); 894 895 KnownBits KnownVec; 896 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 897 Depth + 1)) 898 return true; 899 900 if (!!DemandedVecElts) { 901 Known.One &= KnownVec.One; 902 Known.Zero &= KnownVec.Zero; 903 } 904 905 return false; 906 } 907 case ISD::INSERT_SUBVECTOR: { 908 SDValue Base = Op.getOperand(0); 909 SDValue Sub = Op.getOperand(1); 910 EVT SubVT = Sub.getValueType(); 911 unsigned NumSubElts = SubVT.getVectorNumElements(); 912 913 // If index isn't constant, assume we need the original demanded base 914 // elements and ALL the inserted subvector elements. 915 APInt BaseElts = DemandedElts; 916 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 917 if (isa<ConstantSDNode>(Op.getOperand(2))) { 918 const APInt &Idx = Op.getConstantOperandAPInt(2); 919 if (Idx.ule(NumElts - NumSubElts)) { 920 unsigned SubIdx = Idx.getZExtValue(); 921 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 922 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 923 } 924 } 925 926 KnownBits KnownSub, KnownBase; 927 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 928 Depth + 1)) 929 return true; 930 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 931 Depth + 1)) 932 return true; 933 934 Known.Zero.setAllBits(); 935 Known.One.setAllBits(); 936 if (!!SubElts) { 937 Known.One &= KnownSub.One; 938 Known.Zero &= KnownSub.Zero; 939 } 940 if (!!BaseElts) { 941 Known.One &= KnownBase.One; 942 Known.Zero &= KnownBase.Zero; 943 } 944 break; 945 } 946 case ISD::EXTRACT_SUBVECTOR: { 947 // If index isn't constant, assume we need all the source vector elements. 948 SDValue Src = Op.getOperand(0); 949 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 950 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 951 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts); 952 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 953 // Offset the demanded elts by the subvector index. 954 uint64_t Idx = SubIdx->getZExtValue(); 955 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 956 } 957 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1)) 958 return true; 959 break; 960 } 961 case ISD::CONCAT_VECTORS: { 962 Known.Zero.setAllBits(); 963 Known.One.setAllBits(); 964 EVT SubVT = Op.getOperand(0).getValueType(); 965 unsigned NumSubVecs = Op.getNumOperands(); 966 unsigned NumSubElts = SubVT.getVectorNumElements(); 967 for (unsigned i = 0; i != NumSubVecs; ++i) { 968 APInt DemandedSubElts = 969 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 970 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 971 Known2, TLO, Depth + 1)) 972 return true; 973 // Known bits are shared by every demanded subvector element. 974 if (!!DemandedSubElts) { 975 Known.One &= Known2.One; 976 Known.Zero &= Known2.Zero; 977 } 978 } 979 break; 980 } 981 case ISD::VECTOR_SHUFFLE: { 982 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 983 984 // Collect demanded elements from shuffle operands.. 985 APInt DemandedLHS(NumElts, 0); 986 APInt DemandedRHS(NumElts, 0); 987 for (unsigned i = 0; i != NumElts; ++i) { 988 if (!DemandedElts[i]) 989 continue; 990 int M = ShuffleMask[i]; 991 if (M < 0) { 992 // For UNDEF elements, we don't know anything about the common state of 993 // the shuffle result. 994 DemandedLHS.clearAllBits(); 995 DemandedRHS.clearAllBits(); 996 break; 997 } 998 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 999 if (M < (int)NumElts) 1000 DemandedLHS.setBit(M); 1001 else 1002 DemandedRHS.setBit(M - NumElts); 1003 } 1004 1005 if (!!DemandedLHS || !!DemandedRHS) { 1006 SDValue Op0 = Op.getOperand(0); 1007 SDValue Op1 = Op.getOperand(1); 1008 1009 Known.Zero.setAllBits(); 1010 Known.One.setAllBits(); 1011 if (!!DemandedLHS) { 1012 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1013 Depth + 1)) 1014 return true; 1015 Known.One &= Known2.One; 1016 Known.Zero &= Known2.Zero; 1017 } 1018 if (!!DemandedRHS) { 1019 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1020 Depth + 1)) 1021 return true; 1022 Known.One &= Known2.One; 1023 Known.Zero &= Known2.Zero; 1024 } 1025 1026 // Attempt to avoid multi-use ops if we don't need anything from them. 1027 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1028 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1029 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1030 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1031 if (DemandedOp0 || DemandedOp1) { 1032 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1033 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1034 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1035 return TLO.CombineTo(Op, NewOp); 1036 } 1037 } 1038 break; 1039 } 1040 case ISD::AND: { 1041 SDValue Op0 = Op.getOperand(0); 1042 SDValue Op1 = Op.getOperand(1); 1043 1044 // If the RHS is a constant, check to see if the LHS would be zero without 1045 // using the bits from the RHS. Below, we use knowledge about the RHS to 1046 // simplify the LHS, here we're using information from the LHS to simplify 1047 // the RHS. 1048 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1049 // Do not increment Depth here; that can cause an infinite loop. 1050 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1051 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1052 if ((LHSKnown.Zero & DemandedBits) == 1053 (~RHSC->getAPIntValue() & DemandedBits)) 1054 return TLO.CombineTo(Op, Op0); 1055 1056 // If any of the set bits in the RHS are known zero on the LHS, shrink 1057 // the constant. 1058 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1059 return true; 1060 1061 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1062 // constant, but if this 'and' is only clearing bits that were just set by 1063 // the xor, then this 'and' can be eliminated by shrinking the mask of 1064 // the xor. For example, for a 32-bit X: 1065 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1066 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1067 LHSKnown.One == ~RHSC->getAPIntValue()) { 1068 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1069 return TLO.CombineTo(Op, Xor); 1070 } 1071 } 1072 1073 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1074 Depth + 1)) 1075 return true; 1076 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1077 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1078 Known2, TLO, Depth + 1)) 1079 return true; 1080 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1081 1082 // Attempt to avoid multi-use ops if we don't need anything from them. 1083 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1084 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1085 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1086 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1087 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1088 if (DemandedOp0 || DemandedOp1) { 1089 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1090 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1091 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1092 return TLO.CombineTo(Op, NewOp); 1093 } 1094 } 1095 1096 // If all of the demanded bits are known one on one side, return the other. 1097 // These bits cannot contribute to the result of the 'and'. 1098 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1099 return TLO.CombineTo(Op, Op0); 1100 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1101 return TLO.CombineTo(Op, Op1); 1102 // If all of the demanded bits in the inputs are known zeros, return zero. 1103 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1104 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1105 // If the RHS is a constant, see if we can simplify it. 1106 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1107 return true; 1108 // If the operation can be done in a smaller type, do so. 1109 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1110 return true; 1111 1112 // Output known-1 bits are only known if set in both the LHS & RHS. 1113 Known.One &= Known2.One; 1114 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1115 Known.Zero |= Known2.Zero; 1116 break; 1117 } 1118 case ISD::OR: { 1119 SDValue Op0 = Op.getOperand(0); 1120 SDValue Op1 = Op.getOperand(1); 1121 1122 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1123 Depth + 1)) 1124 return true; 1125 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1126 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1127 Known2, TLO, Depth + 1)) 1128 return true; 1129 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1130 1131 // Attempt to avoid multi-use ops if we don't need anything from them. 1132 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1133 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1134 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1135 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1136 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1137 if (DemandedOp0 || DemandedOp1) { 1138 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1139 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1140 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1141 return TLO.CombineTo(Op, NewOp); 1142 } 1143 } 1144 1145 // If all of the demanded bits are known zero on one side, return the other. 1146 // These bits cannot contribute to the result of the 'or'. 1147 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1148 return TLO.CombineTo(Op, Op0); 1149 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1150 return TLO.CombineTo(Op, Op1); 1151 // If the RHS is a constant, see if we can simplify it. 1152 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1153 return true; 1154 // If the operation can be done in a smaller type, do so. 1155 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1156 return true; 1157 1158 // Output known-0 bits are only known if clear in both the LHS & RHS. 1159 Known.Zero &= Known2.Zero; 1160 // Output known-1 are known to be set if set in either the LHS | RHS. 1161 Known.One |= Known2.One; 1162 break; 1163 } 1164 case ISD::XOR: { 1165 SDValue Op0 = Op.getOperand(0); 1166 SDValue Op1 = Op.getOperand(1); 1167 1168 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1169 Depth + 1)) 1170 return true; 1171 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1172 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1173 Depth + 1)) 1174 return true; 1175 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1176 1177 // Attempt to avoid multi-use ops if we don't need anything from them. 1178 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1179 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1180 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1181 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1182 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1183 if (DemandedOp0 || DemandedOp1) { 1184 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1185 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1186 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1187 return TLO.CombineTo(Op, NewOp); 1188 } 1189 } 1190 1191 // If all of the demanded bits are known zero on one side, return the other. 1192 // These bits cannot contribute to the result of the 'xor'. 1193 if (DemandedBits.isSubsetOf(Known.Zero)) 1194 return TLO.CombineTo(Op, Op0); 1195 if (DemandedBits.isSubsetOf(Known2.Zero)) 1196 return TLO.CombineTo(Op, Op1); 1197 // If the operation can be done in a smaller type, do so. 1198 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1199 return true; 1200 1201 // If all of the unknown bits are known to be zero on one side or the other 1202 // (but not both) turn this into an *inclusive* or. 1203 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1204 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1205 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1206 1207 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1208 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1209 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1210 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1211 1212 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1213 // If one side is a constant, and all of the known set bits on the other 1214 // side are also set in the constant, turn this into an AND, as we know 1215 // the bits will be cleared. 1216 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1217 // NB: it is okay if more bits are known than are requested 1218 if (C->getAPIntValue() == Known2.One) { 1219 SDValue ANDC = 1220 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1221 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1222 } 1223 1224 // If the RHS is a constant, see if we can change it. Don't alter a -1 1225 // constant because that's a 'not' op, and that is better for combining 1226 // and codegen. 1227 if (!C->isAllOnesValue()) { 1228 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1229 // We're flipping all demanded bits. Flip the undemanded bits too. 1230 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1231 return TLO.CombineTo(Op, New); 1232 } 1233 // If we can't turn this into a 'not', try to shrink the constant. 1234 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1235 return true; 1236 } 1237 } 1238 1239 Known = std::move(KnownOut); 1240 break; 1241 } 1242 case ISD::SELECT: 1243 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1244 Depth + 1)) 1245 return true; 1246 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1247 Depth + 1)) 1248 return true; 1249 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1250 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1251 1252 // If the operands are constants, see if we can simplify them. 1253 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1254 return true; 1255 1256 // Only known if known in both the LHS and RHS. 1257 Known.One &= Known2.One; 1258 Known.Zero &= Known2.Zero; 1259 break; 1260 case ISD::SELECT_CC: 1261 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1262 Depth + 1)) 1263 return true; 1264 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1265 Depth + 1)) 1266 return true; 1267 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1268 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1269 1270 // If the operands are constants, see if we can simplify them. 1271 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1272 return true; 1273 1274 // Only known if known in both the LHS and RHS. 1275 Known.One &= Known2.One; 1276 Known.Zero &= Known2.Zero; 1277 break; 1278 case ISD::SETCC: { 1279 SDValue Op0 = Op.getOperand(0); 1280 SDValue Op1 = Op.getOperand(1); 1281 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1282 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1283 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1284 // -1, we may be able to bypass the setcc. 1285 if (DemandedBits.isSignMask() && 1286 Op0.getScalarValueSizeInBits() == BitWidth && 1287 getBooleanContents(Op0.getValueType()) == 1288 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1289 // If we're testing X < 0, then this compare isn't needed - just use X! 1290 // FIXME: We're limiting to integer types here, but this should also work 1291 // if we don't care about FP signed-zero. The use of SETLT with FP means 1292 // that we don't care about NaNs. 1293 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1294 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1295 return TLO.CombineTo(Op, Op0); 1296 1297 // TODO: Should we check for other forms of sign-bit comparisons? 1298 // Examples: X <= -1, X >= 0 1299 } 1300 if (getBooleanContents(Op0.getValueType()) == 1301 TargetLowering::ZeroOrOneBooleanContent && 1302 BitWidth > 1) 1303 Known.Zero.setBitsFrom(1); 1304 break; 1305 } 1306 case ISD::SHL: { 1307 SDValue Op0 = Op.getOperand(0); 1308 SDValue Op1 = Op.getOperand(1); 1309 1310 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1311 // If the shift count is an invalid immediate, don't do anything. 1312 if (SA->getAPIntValue().uge(BitWidth)) 1313 break; 1314 1315 unsigned ShAmt = SA->getZExtValue(); 1316 if (ShAmt == 0) 1317 return TLO.CombineTo(Op, Op0); 1318 1319 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1320 // single shift. We can do this if the bottom bits (which are shifted 1321 // out) are never demanded. 1322 // TODO - support non-uniform vector amounts. 1323 if (Op0.getOpcode() == ISD::SRL) { 1324 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1325 if (ConstantSDNode *SA2 = 1326 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1327 if (SA2->getAPIntValue().ult(BitWidth)) { 1328 unsigned C1 = SA2->getZExtValue(); 1329 unsigned Opc = ISD::SHL; 1330 int Diff = ShAmt - C1; 1331 if (Diff < 0) { 1332 Diff = -Diff; 1333 Opc = ISD::SRL; 1334 } 1335 1336 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 1337 return TLO.CombineTo( 1338 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1339 } 1340 } 1341 } 1342 } 1343 1344 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, 1345 Known, TLO, Depth + 1)) 1346 return true; 1347 1348 // Try shrinking the operation as long as the shift amount will still be 1349 // in range. 1350 if ((ShAmt < DemandedBits.getActiveBits()) && 1351 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1352 return true; 1353 1354 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1355 // are not demanded. This will likely allow the anyext to be folded away. 1356 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1357 SDValue InnerOp = Op0.getOperand(0); 1358 EVT InnerVT = InnerOp.getValueType(); 1359 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1360 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1361 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1362 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1363 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1364 ShTy = InnerVT; 1365 SDValue NarrowShl = 1366 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1367 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1368 return TLO.CombineTo( 1369 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1370 } 1371 // Repeat the SHL optimization above in cases where an extension 1372 // intervenes: (shl (anyext (shr x, c1)), c2) to 1373 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1374 // aren't demanded (as above) and that the shifted upper c1 bits of 1375 // x aren't demanded. 1376 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1377 InnerOp.hasOneUse()) { 1378 if (ConstantSDNode *SA2 = 1379 isConstOrConstSplat(InnerOp.getOperand(1))) { 1380 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1381 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1382 DemandedBits.getActiveBits() <= 1383 (InnerBits - InnerShAmt + ShAmt) && 1384 DemandedBits.countTrailingZeros() >= ShAmt) { 1385 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 1386 Op1.getValueType()); 1387 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1388 InnerOp.getOperand(0)); 1389 return TLO.CombineTo( 1390 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1391 } 1392 } 1393 } 1394 } 1395 1396 Known.Zero <<= ShAmt; 1397 Known.One <<= ShAmt; 1398 // low bits known zero. 1399 Known.Zero.setLowBits(ShAmt); 1400 } 1401 break; 1402 } 1403 case ISD::SRL: { 1404 SDValue Op0 = Op.getOperand(0); 1405 SDValue Op1 = Op.getOperand(1); 1406 1407 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1408 // If the shift count is an invalid immediate, don't do anything. 1409 if (SA->getAPIntValue().uge(BitWidth)) 1410 break; 1411 1412 unsigned ShAmt = SA->getZExtValue(); 1413 if (ShAmt == 0) 1414 return TLO.CombineTo(Op, Op0); 1415 1416 EVT ShiftVT = Op1.getValueType(); 1417 APInt InDemandedMask = (DemandedBits << ShAmt); 1418 1419 // If the shift is exact, then it does demand the low bits (and knows that 1420 // they are zero). 1421 if (Op->getFlags().hasExact()) 1422 InDemandedMask.setLowBits(ShAmt); 1423 1424 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1425 // single shift. We can do this if the top bits (which are shifted out) 1426 // are never demanded. 1427 // TODO - support non-uniform vector amounts. 1428 if (Op0.getOpcode() == ISD::SHL) { 1429 if (ConstantSDNode *SA2 = 1430 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1431 if (!DemandedBits.intersects( 1432 APInt::getHighBitsSet(BitWidth, ShAmt))) { 1433 if (SA2->getAPIntValue().ult(BitWidth)) { 1434 unsigned C1 = SA2->getZExtValue(); 1435 unsigned Opc = ISD::SRL; 1436 int Diff = ShAmt - C1; 1437 if (Diff < 0) { 1438 Diff = -Diff; 1439 Opc = ISD::SHL; 1440 } 1441 1442 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1443 return TLO.CombineTo( 1444 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1445 } 1446 } 1447 } 1448 } 1449 1450 // Compute the new bits that are at the top now. 1451 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1452 Depth + 1)) 1453 return true; 1454 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1455 Known.Zero.lshrInPlace(ShAmt); 1456 Known.One.lshrInPlace(ShAmt); 1457 1458 Known.Zero.setHighBits(ShAmt); // High bits known zero. 1459 } 1460 break; 1461 } 1462 case ISD::SRA: { 1463 SDValue Op0 = Op.getOperand(0); 1464 SDValue Op1 = Op.getOperand(1); 1465 1466 // If this is an arithmetic shift right and only the low-bit is set, we can 1467 // always convert this into a logical shr, even if the shift amount is 1468 // variable. The low bit of the shift cannot be an input sign bit unless 1469 // the shift amount is >= the size of the datatype, which is undefined. 1470 if (DemandedBits.isOneValue()) 1471 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1472 1473 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1474 // If the shift count is an invalid immediate, don't do anything. 1475 if (SA->getAPIntValue().uge(BitWidth)) 1476 break; 1477 1478 unsigned ShAmt = SA->getZExtValue(); 1479 if (ShAmt == 0) 1480 return TLO.CombineTo(Op, Op0); 1481 1482 APInt InDemandedMask = (DemandedBits << ShAmt); 1483 1484 // If the shift is exact, then it does demand the low bits (and knows that 1485 // they are zero). 1486 if (Op->getFlags().hasExact()) 1487 InDemandedMask.setLowBits(ShAmt); 1488 1489 // If any of the demanded bits are produced by the sign extension, we also 1490 // demand the input sign bit. 1491 if (DemandedBits.countLeadingZeros() < ShAmt) 1492 InDemandedMask.setSignBit(); 1493 1494 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1495 Depth + 1)) 1496 return true; 1497 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1498 Known.Zero.lshrInPlace(ShAmt); 1499 Known.One.lshrInPlace(ShAmt); 1500 1501 // If the input sign bit is known to be zero, or if none of the top bits 1502 // are demanded, turn this into an unsigned shift right. 1503 if (Known.Zero[BitWidth - ShAmt - 1] || 1504 DemandedBits.countLeadingZeros() >= ShAmt) { 1505 SDNodeFlags Flags; 1506 Flags.setExact(Op->getFlags().hasExact()); 1507 return TLO.CombineTo( 1508 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1509 } 1510 1511 int Log2 = DemandedBits.exactLogBase2(); 1512 if (Log2 >= 0) { 1513 // The bit must come from the sign. 1514 SDValue NewSA = 1515 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1516 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1517 } 1518 1519 if (Known.One[BitWidth - ShAmt - 1]) 1520 // New bits are known one. 1521 Known.One.setHighBits(ShAmt); 1522 } 1523 break; 1524 } 1525 case ISD::FSHL: 1526 case ISD::FSHR: { 1527 SDValue Op0 = Op.getOperand(0); 1528 SDValue Op1 = Op.getOperand(1); 1529 SDValue Op2 = Op.getOperand(2); 1530 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1531 1532 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1533 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1534 1535 // For fshl, 0-shift returns the 1st arg. 1536 // For fshr, 0-shift returns the 2nd arg. 1537 if (Amt == 0) { 1538 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1539 Known, TLO, Depth + 1)) 1540 return true; 1541 break; 1542 } 1543 1544 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1545 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1546 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1547 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1548 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1549 Depth + 1)) 1550 return true; 1551 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1552 Depth + 1)) 1553 return true; 1554 1555 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1556 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1557 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1558 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1559 Known.One |= Known2.One; 1560 Known.Zero |= Known2.Zero; 1561 } 1562 break; 1563 } 1564 case ISD::BITREVERSE: { 1565 SDValue Src = Op.getOperand(0); 1566 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1567 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1568 Depth + 1)) 1569 return true; 1570 Known.One = Known2.One.reverseBits(); 1571 Known.Zero = Known2.Zero.reverseBits(); 1572 break; 1573 } 1574 case ISD::BSWAP: { 1575 SDValue Src = Op.getOperand(0); 1576 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1577 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1578 Depth + 1)) 1579 return true; 1580 Known.One = Known2.One.byteSwap(); 1581 Known.Zero = Known2.Zero.byteSwap(); 1582 break; 1583 } 1584 case ISD::SIGN_EXTEND_INREG: { 1585 SDValue Op0 = Op.getOperand(0); 1586 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1587 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1588 1589 // If we only care about the highest bit, don't bother shifting right. 1590 if (DemandedBits.isSignMask()) { 1591 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0); 1592 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1593 // However if the input is already sign extended we expect the sign 1594 // extension to be dropped altogether later and do not simplify. 1595 if (!AlreadySignExtended) { 1596 // Compute the correct shift amount type, which must be getShiftAmountTy 1597 // for scalar types after legalization. 1598 EVT ShiftAmtTy = VT; 1599 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1600 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1601 1602 SDValue ShiftAmt = 1603 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1604 return TLO.CombineTo(Op, 1605 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1606 } 1607 } 1608 1609 // If none of the extended bits are demanded, eliminate the sextinreg. 1610 if (DemandedBits.getActiveBits() <= ExVTBits) 1611 return TLO.CombineTo(Op, Op0); 1612 1613 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1614 1615 // Since the sign extended bits are demanded, we know that the sign 1616 // bit is demanded. 1617 InputDemandedBits.setBit(ExVTBits - 1); 1618 1619 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1620 return true; 1621 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1622 1623 // If the sign bit of the input is known set or clear, then we know the 1624 // top bits of the result. 1625 1626 // If the input sign bit is known zero, convert this into a zero extension. 1627 if (Known.Zero[ExVTBits - 1]) 1628 return TLO.CombineTo( 1629 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1630 1631 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1632 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1633 Known.One.setBitsFrom(ExVTBits); 1634 Known.Zero &= Mask; 1635 } else { // Input sign bit unknown 1636 Known.Zero &= Mask; 1637 Known.One &= Mask; 1638 } 1639 break; 1640 } 1641 case ISD::BUILD_PAIR: { 1642 EVT HalfVT = Op.getOperand(0).getValueType(); 1643 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1644 1645 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1646 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1647 1648 KnownBits KnownLo, KnownHi; 1649 1650 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1651 return true; 1652 1653 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1654 return true; 1655 1656 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1657 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1658 1659 Known.One = KnownLo.One.zext(BitWidth) | 1660 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1661 break; 1662 } 1663 case ISD::ZERO_EXTEND: 1664 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1665 SDValue Src = Op.getOperand(0); 1666 EVT SrcVT = Src.getValueType(); 1667 unsigned InBits = SrcVT.getScalarSizeInBits(); 1668 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1669 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1670 1671 // If none of the top bits are demanded, convert this into an any_extend. 1672 if (DemandedBits.getActiveBits() <= InBits) { 1673 // If we only need the non-extended bits of the bottom element 1674 // then we can just bitcast to the result. 1675 if (IsVecInReg && DemandedElts == 1 && 1676 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1677 TLO.DAG.getDataLayout().isLittleEndian()) 1678 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1679 1680 unsigned Opc = 1681 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1682 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1683 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1684 } 1685 1686 APInt InDemandedBits = DemandedBits.trunc(InBits); 1687 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1688 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1689 Depth + 1)) 1690 return true; 1691 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1692 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1693 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 1694 break; 1695 } 1696 case ISD::SIGN_EXTEND: 1697 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1698 SDValue Src = Op.getOperand(0); 1699 EVT SrcVT = Src.getValueType(); 1700 unsigned InBits = SrcVT.getScalarSizeInBits(); 1701 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1702 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1703 1704 // If none of the top bits are demanded, convert this into an any_extend. 1705 if (DemandedBits.getActiveBits() <= InBits) { 1706 // If we only need the non-extended bits of the bottom element 1707 // then we can just bitcast to the result. 1708 if (IsVecInReg && DemandedElts == 1 && 1709 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1710 TLO.DAG.getDataLayout().isLittleEndian()) 1711 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1712 1713 unsigned Opc = 1714 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1715 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1716 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1717 } 1718 1719 APInt InDemandedBits = DemandedBits.trunc(InBits); 1720 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1721 1722 // Since some of the sign extended bits are demanded, we know that the sign 1723 // bit is demanded. 1724 InDemandedBits.setBit(InBits - 1); 1725 1726 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1727 Depth + 1)) 1728 return true; 1729 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1730 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1731 1732 // If the sign bit is known one, the top bits match. 1733 Known = Known.sext(BitWidth); 1734 1735 // If the sign bit is known zero, convert this to a zero extend. 1736 if (Known.isNonNegative()) { 1737 unsigned Opc = 1738 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1739 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1740 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1741 } 1742 break; 1743 } 1744 case ISD::ANY_EXTEND: 1745 case ISD::ANY_EXTEND_VECTOR_INREG: { 1746 SDValue Src = Op.getOperand(0); 1747 EVT SrcVT = Src.getValueType(); 1748 unsigned InBits = SrcVT.getScalarSizeInBits(); 1749 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1750 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1751 1752 // If we only need the bottom element then we can just bitcast. 1753 // TODO: Handle ANY_EXTEND? 1754 if (IsVecInReg && DemandedElts == 1 && 1755 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1756 TLO.DAG.getDataLayout().isLittleEndian()) 1757 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1758 1759 APInt InDemandedBits = DemandedBits.trunc(InBits); 1760 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1761 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1762 Depth + 1)) 1763 return true; 1764 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1765 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1766 Known = Known.zext(BitWidth, false /* => any extend */); 1767 break; 1768 } 1769 case ISD::TRUNCATE: { 1770 SDValue Src = Op.getOperand(0); 1771 1772 // Simplify the input, using demanded bit information, and compute the known 1773 // zero/one bits live out. 1774 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1775 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1776 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1777 return true; 1778 Known = Known.trunc(BitWidth); 1779 1780 // Attempt to avoid multi-use ops if we don't need anything from them. 1781 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1782 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1783 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1784 1785 // If the input is only used by this truncate, see if we can shrink it based 1786 // on the known demanded bits. 1787 if (Src.getNode()->hasOneUse()) { 1788 switch (Src.getOpcode()) { 1789 default: 1790 break; 1791 case ISD::SRL: 1792 // Shrink SRL by a constant if none of the high bits shifted in are 1793 // demanded. 1794 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1795 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1796 // undesirable. 1797 break; 1798 1799 SDValue ShAmt = Src.getOperand(1); 1800 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1801 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1802 break; 1803 uint64_t ShVal = ShAmtC->getZExtValue(); 1804 1805 APInt HighBits = 1806 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1807 HighBits.lshrInPlace(ShVal); 1808 HighBits = HighBits.trunc(BitWidth); 1809 1810 if (!(HighBits & DemandedBits)) { 1811 // None of the shifted in bits are needed. Add a truncate of the 1812 // shift input, then shift it. 1813 if (TLO.LegalTypes()) 1814 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1815 SDValue NewTrunc = 1816 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1817 return TLO.CombineTo( 1818 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 1819 } 1820 break; 1821 } 1822 } 1823 1824 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1825 break; 1826 } 1827 case ISD::AssertZext: { 1828 // AssertZext demands all of the high bits, plus any of the low bits 1829 // demanded by its users. 1830 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1831 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1832 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1833 TLO, Depth + 1)) 1834 return true; 1835 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1836 1837 Known.Zero |= ~InMask; 1838 break; 1839 } 1840 case ISD::EXTRACT_VECTOR_ELT: { 1841 SDValue Src = Op.getOperand(0); 1842 SDValue Idx = Op.getOperand(1); 1843 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1844 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1845 1846 // Demand the bits from every vector element without a constant index. 1847 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1848 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1849 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1850 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1851 1852 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1853 // anything about the extended bits. 1854 APInt DemandedSrcBits = DemandedBits; 1855 if (BitWidth > EltBitWidth) 1856 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1857 1858 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1859 Depth + 1)) 1860 return true; 1861 1862 // Attempt to avoid multi-use ops if we don't need anything from them. 1863 if (!DemandedSrcBits.isAllOnesValue() || 1864 !DemandedSrcElts.isAllOnesValue()) { 1865 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1866 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 1867 SDValue NewOp = 1868 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 1869 return TLO.CombineTo(Op, NewOp); 1870 } 1871 } 1872 1873 Known = Known2; 1874 if (BitWidth > EltBitWidth) 1875 Known = Known.zext(BitWidth, false /* => any extend */); 1876 break; 1877 } 1878 case ISD::BITCAST: { 1879 SDValue Src = Op.getOperand(0); 1880 EVT SrcVT = Src.getValueType(); 1881 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1882 1883 // If this is an FP->Int bitcast and if the sign bit is the only 1884 // thing demanded, turn this into a FGETSIGN. 1885 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1886 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1887 SrcVT.isFloatingPoint()) { 1888 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1889 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1890 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1891 SrcVT != MVT::f128) { 1892 // Cannot eliminate/lower SHL for f128 yet. 1893 EVT Ty = OpVTLegal ? VT : MVT::i32; 1894 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1895 // place. We expect the SHL to be eliminated by other optimizations. 1896 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1897 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1898 if (!OpVTLegal && OpVTSizeInBits > 32) 1899 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1900 unsigned ShVal = Op.getValueSizeInBits() - 1; 1901 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1902 return TLO.CombineTo(Op, 1903 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1904 } 1905 } 1906 1907 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1908 // Demand the elt/bit if any of the original elts/bits are demanded. 1909 // TODO - bigendian once we have test coverage. 1910 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 1911 TLO.DAG.getDataLayout().isLittleEndian()) { 1912 unsigned Scale = BitWidth / NumSrcEltBits; 1913 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1914 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1915 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1916 for (unsigned i = 0; i != Scale; ++i) { 1917 unsigned Offset = i * NumSrcEltBits; 1918 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1919 if (!Sub.isNullValue()) { 1920 DemandedSrcBits |= Sub; 1921 for (unsigned j = 0; j != NumElts; ++j) 1922 if (DemandedElts[j]) 1923 DemandedSrcElts.setBit((j * Scale) + i); 1924 } 1925 } 1926 1927 APInt KnownSrcUndef, KnownSrcZero; 1928 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1929 KnownSrcZero, TLO, Depth + 1)) 1930 return true; 1931 1932 KnownBits KnownSrcBits; 1933 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1934 KnownSrcBits, TLO, Depth + 1)) 1935 return true; 1936 } else if ((NumSrcEltBits % BitWidth) == 0 && 1937 TLO.DAG.getDataLayout().isLittleEndian()) { 1938 unsigned Scale = NumSrcEltBits / BitWidth; 1939 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1940 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1941 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1942 for (unsigned i = 0; i != NumElts; ++i) 1943 if (DemandedElts[i]) { 1944 unsigned Offset = (i % Scale) * BitWidth; 1945 DemandedSrcBits.insertBits(DemandedBits, Offset); 1946 DemandedSrcElts.setBit(i / Scale); 1947 } 1948 1949 if (SrcVT.isVector()) { 1950 APInt KnownSrcUndef, KnownSrcZero; 1951 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1952 KnownSrcZero, TLO, Depth + 1)) 1953 return true; 1954 } 1955 1956 KnownBits KnownSrcBits; 1957 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1958 KnownSrcBits, TLO, Depth + 1)) 1959 return true; 1960 } 1961 1962 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1963 // recursive call where Known may be useful to the caller. 1964 if (Depth > 0) { 1965 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1966 return false; 1967 } 1968 break; 1969 } 1970 case ISD::ADD: 1971 case ISD::MUL: 1972 case ISD::SUB: { 1973 // Add, Sub, and Mul don't demand any bits in positions beyond that 1974 // of the highest bit demanded of them. 1975 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1976 SDNodeFlags Flags = Op.getNode()->getFlags(); 1977 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1978 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1979 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 1980 Depth + 1) || 1981 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 1982 Depth + 1) || 1983 // See if the operation should be performed at a smaller bit width. 1984 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1985 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1986 // Disable the nsw and nuw flags. We can no longer guarantee that we 1987 // won't wrap after simplification. 1988 Flags.setNoSignedWrap(false); 1989 Flags.setNoUnsignedWrap(false); 1990 SDValue NewOp = 1991 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1992 return TLO.CombineTo(Op, NewOp); 1993 } 1994 return true; 1995 } 1996 1997 // Attempt to avoid multi-use ops if we don't need anything from them. 1998 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1999 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2000 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2001 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2002 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2003 if (DemandedOp0 || DemandedOp1) { 2004 Flags.setNoSignedWrap(false); 2005 Flags.setNoUnsignedWrap(false); 2006 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2007 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2008 SDValue NewOp = 2009 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2010 return TLO.CombineTo(Op, NewOp); 2011 } 2012 } 2013 2014 // If we have a constant operand, we may be able to turn it into -1 if we 2015 // do not demand the high bits. This can make the constant smaller to 2016 // encode, allow more general folding, or match specialized instruction 2017 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2018 // is probably not useful (and could be detrimental). 2019 ConstantSDNode *C = isConstOrConstSplat(Op1); 2020 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2021 if (C && !C->isAllOnesValue() && !C->isOne() && 2022 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2023 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2024 // Disable the nsw and nuw flags. We can no longer guarantee that we 2025 // won't wrap after simplification. 2026 Flags.setNoSignedWrap(false); 2027 Flags.setNoUnsignedWrap(false); 2028 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2029 return TLO.CombineTo(Op, NewOp); 2030 } 2031 2032 LLVM_FALLTHROUGH; 2033 } 2034 default: 2035 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2036 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2037 Known, TLO, Depth)) 2038 return true; 2039 break; 2040 } 2041 2042 // Just use computeKnownBits to compute output bits. 2043 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2044 break; 2045 } 2046 2047 // If we know the value of all of the demanded bits, return this as a 2048 // constant. 2049 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2050 // Avoid folding to a constant if any OpaqueConstant is involved. 2051 const SDNode *N = Op.getNode(); 2052 for (SDNodeIterator I = SDNodeIterator::begin(N), 2053 E = SDNodeIterator::end(N); 2054 I != E; ++I) { 2055 SDNode *Op = *I; 2056 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2057 if (C->isOpaque()) 2058 return false; 2059 } 2060 // TODO: Handle float bits as well. 2061 if (VT.isInteger()) 2062 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2063 } 2064 2065 return false; 2066 } 2067 2068 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2069 const APInt &DemandedElts, 2070 APInt &KnownUndef, 2071 APInt &KnownZero, 2072 DAGCombinerInfo &DCI) const { 2073 SelectionDAG &DAG = DCI.DAG; 2074 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2075 !DCI.isBeforeLegalizeOps()); 2076 2077 bool Simplified = 2078 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2079 if (Simplified) { 2080 DCI.AddToWorklist(Op.getNode()); 2081 DCI.CommitTargetLoweringOpt(TLO); 2082 } 2083 2084 return Simplified; 2085 } 2086 2087 /// Given a vector binary operation and known undefined elements for each input 2088 /// operand, compute whether each element of the output is undefined. 2089 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2090 const APInt &UndefOp0, 2091 const APInt &UndefOp1) { 2092 EVT VT = BO.getValueType(); 2093 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2094 "Vector binop only"); 2095 2096 EVT EltVT = VT.getVectorElementType(); 2097 unsigned NumElts = VT.getVectorNumElements(); 2098 assert(UndefOp0.getBitWidth() == NumElts && 2099 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2100 2101 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2102 const APInt &UndefVals) { 2103 if (UndefVals[Index]) 2104 return DAG.getUNDEF(EltVT); 2105 2106 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2107 // Try hard to make sure that the getNode() call is not creating temporary 2108 // nodes. Ignore opaque integers because they do not constant fold. 2109 SDValue Elt = BV->getOperand(Index); 2110 auto *C = dyn_cast<ConstantSDNode>(Elt); 2111 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2112 return Elt; 2113 } 2114 2115 return SDValue(); 2116 }; 2117 2118 APInt KnownUndef = APInt::getNullValue(NumElts); 2119 for (unsigned i = 0; i != NumElts; ++i) { 2120 // If both inputs for this element are either constant or undef and match 2121 // the element type, compute the constant/undef result for this element of 2122 // the vector. 2123 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2124 // not handle FP constants. The code within getNode() should be refactored 2125 // to avoid the danger of creating a bogus temporary node here. 2126 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2127 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2128 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2129 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2130 KnownUndef.setBit(i); 2131 } 2132 return KnownUndef; 2133 } 2134 2135 bool TargetLowering::SimplifyDemandedVectorElts( 2136 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2137 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2138 bool AssumeSingleUse) const { 2139 EVT VT = Op.getValueType(); 2140 APInt DemandedElts = OriginalDemandedElts; 2141 unsigned NumElts = DemandedElts.getBitWidth(); 2142 assert(VT.isVector() && "Expected vector op"); 2143 assert(VT.getVectorNumElements() == NumElts && 2144 "Mask size mismatches value type element count!"); 2145 2146 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2147 2148 // Undef operand. 2149 if (Op.isUndef()) { 2150 KnownUndef.setAllBits(); 2151 return false; 2152 } 2153 2154 // If Op has other users, assume that all elements are needed. 2155 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2156 DemandedElts.setAllBits(); 2157 2158 // Not demanding any elements from Op. 2159 if (DemandedElts == 0) { 2160 KnownUndef.setAllBits(); 2161 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2162 } 2163 2164 // Limit search depth. 2165 if (Depth >= SelectionDAG::MaxRecursionDepth) 2166 return false; 2167 2168 SDLoc DL(Op); 2169 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2170 2171 switch (Op.getOpcode()) { 2172 case ISD::SCALAR_TO_VECTOR: { 2173 if (!DemandedElts[0]) { 2174 KnownUndef.setAllBits(); 2175 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2176 } 2177 KnownUndef.setHighBits(NumElts - 1); 2178 break; 2179 } 2180 case ISD::BITCAST: { 2181 SDValue Src = Op.getOperand(0); 2182 EVT SrcVT = Src.getValueType(); 2183 2184 // We only handle vectors here. 2185 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2186 if (!SrcVT.isVector()) 2187 break; 2188 2189 // Fast handling of 'identity' bitcasts. 2190 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2191 if (NumSrcElts == NumElts) 2192 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2193 KnownZero, TLO, Depth + 1); 2194 2195 APInt SrcZero, SrcUndef; 2196 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2197 2198 // Bitcast from 'large element' src vector to 'small element' vector, we 2199 // must demand a source element if any DemandedElt maps to it. 2200 if ((NumElts % NumSrcElts) == 0) { 2201 unsigned Scale = NumElts / NumSrcElts; 2202 for (unsigned i = 0; i != NumElts; ++i) 2203 if (DemandedElts[i]) 2204 SrcDemandedElts.setBit(i / Scale); 2205 2206 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2207 TLO, Depth + 1)) 2208 return true; 2209 2210 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2211 // of the large element. 2212 // TODO - bigendian once we have test coverage. 2213 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2214 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2215 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2216 for (unsigned i = 0; i != NumElts; ++i) 2217 if (DemandedElts[i]) { 2218 unsigned Ofs = (i % Scale) * EltSizeInBits; 2219 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2220 } 2221 2222 KnownBits Known; 2223 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 2224 return true; 2225 } 2226 2227 // If the src element is zero/undef then all the output elements will be - 2228 // only demanded elements are guaranteed to be correct. 2229 for (unsigned i = 0; i != NumSrcElts; ++i) { 2230 if (SrcDemandedElts[i]) { 2231 if (SrcZero[i]) 2232 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2233 if (SrcUndef[i]) 2234 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2235 } 2236 } 2237 } 2238 2239 // Bitcast from 'small element' src vector to 'large element' vector, we 2240 // demand all smaller source elements covered by the larger demanded element 2241 // of this vector. 2242 if ((NumSrcElts % NumElts) == 0) { 2243 unsigned Scale = NumSrcElts / NumElts; 2244 for (unsigned i = 0; i != NumElts; ++i) 2245 if (DemandedElts[i]) 2246 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2247 2248 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2249 TLO, Depth + 1)) 2250 return true; 2251 2252 // If all the src elements covering an output element are zero/undef, then 2253 // the output element will be as well, assuming it was demanded. 2254 for (unsigned i = 0; i != NumElts; ++i) { 2255 if (DemandedElts[i]) { 2256 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2257 KnownZero.setBit(i); 2258 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2259 KnownUndef.setBit(i); 2260 } 2261 } 2262 } 2263 break; 2264 } 2265 case ISD::BUILD_VECTOR: { 2266 // Check all elements and simplify any unused elements with UNDEF. 2267 if (!DemandedElts.isAllOnesValue()) { 2268 // Don't simplify BROADCASTS. 2269 if (llvm::any_of(Op->op_values(), 2270 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2271 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2272 bool Updated = false; 2273 for (unsigned i = 0; i != NumElts; ++i) { 2274 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2275 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2276 KnownUndef.setBit(i); 2277 Updated = true; 2278 } 2279 } 2280 if (Updated) 2281 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2282 } 2283 } 2284 for (unsigned i = 0; i != NumElts; ++i) { 2285 SDValue SrcOp = Op.getOperand(i); 2286 if (SrcOp.isUndef()) { 2287 KnownUndef.setBit(i); 2288 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2289 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2290 KnownZero.setBit(i); 2291 } 2292 } 2293 break; 2294 } 2295 case ISD::CONCAT_VECTORS: { 2296 EVT SubVT = Op.getOperand(0).getValueType(); 2297 unsigned NumSubVecs = Op.getNumOperands(); 2298 unsigned NumSubElts = SubVT.getVectorNumElements(); 2299 for (unsigned i = 0; i != NumSubVecs; ++i) { 2300 SDValue SubOp = Op.getOperand(i); 2301 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2302 APInt SubUndef, SubZero; 2303 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2304 Depth + 1)) 2305 return true; 2306 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2307 KnownZero.insertBits(SubZero, i * NumSubElts); 2308 } 2309 break; 2310 } 2311 case ISD::INSERT_SUBVECTOR: { 2312 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2313 break; 2314 SDValue Base = Op.getOperand(0); 2315 SDValue Sub = Op.getOperand(1); 2316 EVT SubVT = Sub.getValueType(); 2317 unsigned NumSubElts = SubVT.getVectorNumElements(); 2318 const APInt &Idx = Op.getConstantOperandAPInt(2); 2319 if (Idx.ugt(NumElts - NumSubElts)) 2320 break; 2321 unsigned SubIdx = Idx.getZExtValue(); 2322 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2323 APInt SubUndef, SubZero; 2324 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2325 Depth + 1)) 2326 return true; 2327 APInt BaseElts = DemandedElts; 2328 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2329 2330 // If none of the base operand elements are demanded, replace it with undef. 2331 if (!BaseElts && !Base.isUndef()) 2332 return TLO.CombineTo(Op, 2333 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2334 TLO.DAG.getUNDEF(VT), 2335 Op.getOperand(1), 2336 Op.getOperand(2))); 2337 2338 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2339 Depth + 1)) 2340 return true; 2341 KnownUndef.insertBits(SubUndef, SubIdx); 2342 KnownZero.insertBits(SubZero, SubIdx); 2343 break; 2344 } 2345 case ISD::EXTRACT_SUBVECTOR: { 2346 SDValue Src = Op.getOperand(0); 2347 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2348 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2349 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2350 // Offset the demanded elts by the subvector index. 2351 uint64_t Idx = SubIdx->getZExtValue(); 2352 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2353 APInt SrcUndef, SrcZero; 2354 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2355 Depth + 1)) 2356 return true; 2357 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2358 KnownZero = SrcZero.extractBits(NumElts, Idx); 2359 } 2360 break; 2361 } 2362 case ISD::INSERT_VECTOR_ELT: { 2363 SDValue Vec = Op.getOperand(0); 2364 SDValue Scl = Op.getOperand(1); 2365 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2366 2367 // For a legal, constant insertion index, if we don't need this insertion 2368 // then strip it, else remove it from the demanded elts. 2369 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2370 unsigned Idx = CIdx->getZExtValue(); 2371 if (!DemandedElts[Idx]) 2372 return TLO.CombineTo(Op, Vec); 2373 2374 APInt DemandedVecElts(DemandedElts); 2375 DemandedVecElts.clearBit(Idx); 2376 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2377 KnownZero, TLO, Depth + 1)) 2378 return true; 2379 2380 KnownUndef.clearBit(Idx); 2381 if (Scl.isUndef()) 2382 KnownUndef.setBit(Idx); 2383 2384 KnownZero.clearBit(Idx); 2385 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2386 KnownZero.setBit(Idx); 2387 break; 2388 } 2389 2390 APInt VecUndef, VecZero; 2391 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2392 Depth + 1)) 2393 return true; 2394 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2395 break; 2396 } 2397 case ISD::VSELECT: { 2398 // Try to transform the select condition based on the current demanded 2399 // elements. 2400 // TODO: If a condition element is undef, we can choose from one arm of the 2401 // select (and if one arm is undef, then we can propagate that to the 2402 // result). 2403 // TODO - add support for constant vselect masks (see IR version of this). 2404 APInt UnusedUndef, UnusedZero; 2405 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2406 UnusedZero, TLO, Depth + 1)) 2407 return true; 2408 2409 // See if we can simplify either vselect operand. 2410 APInt DemandedLHS(DemandedElts); 2411 APInt DemandedRHS(DemandedElts); 2412 APInt UndefLHS, ZeroLHS; 2413 APInt UndefRHS, ZeroRHS; 2414 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2415 ZeroLHS, TLO, Depth + 1)) 2416 return true; 2417 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2418 ZeroRHS, TLO, Depth + 1)) 2419 return true; 2420 2421 KnownUndef = UndefLHS & UndefRHS; 2422 KnownZero = ZeroLHS & ZeroRHS; 2423 break; 2424 } 2425 case ISD::VECTOR_SHUFFLE: { 2426 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2427 2428 // Collect demanded elements from shuffle operands.. 2429 APInt DemandedLHS(NumElts, 0); 2430 APInt DemandedRHS(NumElts, 0); 2431 for (unsigned i = 0; i != NumElts; ++i) { 2432 int M = ShuffleMask[i]; 2433 if (M < 0 || !DemandedElts[i]) 2434 continue; 2435 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2436 if (M < (int)NumElts) 2437 DemandedLHS.setBit(M); 2438 else 2439 DemandedRHS.setBit(M - NumElts); 2440 } 2441 2442 // See if we can simplify either shuffle operand. 2443 APInt UndefLHS, ZeroLHS; 2444 APInt UndefRHS, ZeroRHS; 2445 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2446 ZeroLHS, TLO, Depth + 1)) 2447 return true; 2448 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2449 ZeroRHS, TLO, Depth + 1)) 2450 return true; 2451 2452 // Simplify mask using undef elements from LHS/RHS. 2453 bool Updated = false; 2454 bool IdentityLHS = true, IdentityRHS = true; 2455 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2456 for (unsigned i = 0; i != NumElts; ++i) { 2457 int &M = NewMask[i]; 2458 if (M < 0) 2459 continue; 2460 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2461 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2462 Updated = true; 2463 M = -1; 2464 } 2465 IdentityLHS &= (M < 0) || (M == (int)i); 2466 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2467 } 2468 2469 // Update legal shuffle masks based on demanded elements if it won't reduce 2470 // to Identity which can cause premature removal of the shuffle mask. 2471 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2472 SDValue LegalShuffle = 2473 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2474 NewMask, TLO.DAG); 2475 if (LegalShuffle) 2476 return TLO.CombineTo(Op, LegalShuffle); 2477 } 2478 2479 // Propagate undef/zero elements from LHS/RHS. 2480 for (unsigned i = 0; i != NumElts; ++i) { 2481 int M = ShuffleMask[i]; 2482 if (M < 0) { 2483 KnownUndef.setBit(i); 2484 } else if (M < (int)NumElts) { 2485 if (UndefLHS[M]) 2486 KnownUndef.setBit(i); 2487 if (ZeroLHS[M]) 2488 KnownZero.setBit(i); 2489 } else { 2490 if (UndefRHS[M - NumElts]) 2491 KnownUndef.setBit(i); 2492 if (ZeroRHS[M - NumElts]) 2493 KnownZero.setBit(i); 2494 } 2495 } 2496 break; 2497 } 2498 case ISD::ANY_EXTEND_VECTOR_INREG: 2499 case ISD::SIGN_EXTEND_VECTOR_INREG: 2500 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2501 APInt SrcUndef, SrcZero; 2502 SDValue Src = Op.getOperand(0); 2503 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2504 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2505 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2506 Depth + 1)) 2507 return true; 2508 KnownZero = SrcZero.zextOrTrunc(NumElts); 2509 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2510 2511 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2512 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2513 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2514 // aext - if we just need the bottom element then we can bitcast. 2515 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2516 } 2517 2518 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2519 // zext(undef) upper bits are guaranteed to be zero. 2520 if (DemandedElts.isSubsetOf(KnownUndef)) 2521 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2522 KnownUndef.clearAllBits(); 2523 } 2524 break; 2525 } 2526 2527 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2528 // MAX, saturated math, etc. 2529 case ISD::OR: 2530 case ISD::XOR: 2531 case ISD::ADD: 2532 case ISD::SUB: 2533 case ISD::FADD: 2534 case ISD::FSUB: 2535 case ISD::FMUL: 2536 case ISD::FDIV: 2537 case ISD::FREM: { 2538 APInt UndefRHS, ZeroRHS; 2539 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2540 ZeroRHS, TLO, Depth + 1)) 2541 return true; 2542 APInt UndefLHS, ZeroLHS; 2543 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2544 ZeroLHS, TLO, Depth + 1)) 2545 return true; 2546 2547 KnownZero = ZeroLHS & ZeroRHS; 2548 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2549 break; 2550 } 2551 case ISD::SHL: 2552 case ISD::SRL: 2553 case ISD::SRA: 2554 case ISD::ROTL: 2555 case ISD::ROTR: { 2556 APInt UndefRHS, ZeroRHS; 2557 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2558 ZeroRHS, TLO, Depth + 1)) 2559 return true; 2560 APInt UndefLHS, ZeroLHS; 2561 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2562 ZeroLHS, TLO, Depth + 1)) 2563 return true; 2564 2565 KnownZero = ZeroLHS; 2566 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2567 break; 2568 } 2569 case ISD::MUL: 2570 case ISD::AND: { 2571 APInt SrcUndef, SrcZero; 2572 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2573 SrcZero, TLO, Depth + 1)) 2574 return true; 2575 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2576 KnownZero, TLO, Depth + 1)) 2577 return true; 2578 2579 // If either side has a zero element, then the result element is zero, even 2580 // if the other is an UNDEF. 2581 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2582 // and then handle 'and' nodes with the rest of the binop opcodes. 2583 KnownZero |= SrcZero; 2584 KnownUndef &= SrcUndef; 2585 KnownUndef &= ~KnownZero; 2586 break; 2587 } 2588 case ISD::TRUNCATE: 2589 case ISD::SIGN_EXTEND: 2590 case ISD::ZERO_EXTEND: 2591 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2592 KnownZero, TLO, Depth + 1)) 2593 return true; 2594 2595 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2596 // zext(undef) upper bits are guaranteed to be zero. 2597 if (DemandedElts.isSubsetOf(KnownUndef)) 2598 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2599 KnownUndef.clearAllBits(); 2600 } 2601 break; 2602 default: { 2603 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2604 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2605 KnownZero, TLO, Depth)) 2606 return true; 2607 } else { 2608 KnownBits Known; 2609 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2610 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2611 TLO, Depth, AssumeSingleUse)) 2612 return true; 2613 } 2614 break; 2615 } 2616 } 2617 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2618 2619 // Constant fold all undef cases. 2620 // TODO: Handle zero cases as well. 2621 if (DemandedElts.isSubsetOf(KnownUndef)) 2622 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2623 2624 return false; 2625 } 2626 2627 /// Determine which of the bits specified in Mask are known to be either zero or 2628 /// one and return them in the Known. 2629 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2630 KnownBits &Known, 2631 const APInt &DemandedElts, 2632 const SelectionDAG &DAG, 2633 unsigned Depth) const { 2634 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2635 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2636 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2637 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2638 "Should use MaskedValueIsZero if you don't know whether Op" 2639 " is a target node!"); 2640 Known.resetAll(); 2641 } 2642 2643 void TargetLowering::computeKnownBitsForTargetInstr( 2644 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2645 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2646 unsigned Depth) const { 2647 Known.resetAll(); 2648 } 2649 2650 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2651 KnownBits &Known, 2652 const APInt &DemandedElts, 2653 const SelectionDAG &DAG, 2654 unsigned Depth) const { 2655 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2656 2657 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2658 // The low bits are known zero if the pointer is aligned. 2659 Known.Zero.setLowBits(Log2_32(Align)); 2660 } 2661 } 2662 2663 /// This method can be implemented by targets that want to expose additional 2664 /// information about sign bits to the DAG Combiner. 2665 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2666 const APInt &, 2667 const SelectionDAG &, 2668 unsigned Depth) const { 2669 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2670 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2671 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2672 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2673 "Should use ComputeNumSignBits if you don't know whether Op" 2674 " is a target node!"); 2675 return 1; 2676 } 2677 2678 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2679 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2680 TargetLoweringOpt &TLO, unsigned Depth) const { 2681 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2682 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2683 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2684 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2685 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2686 " is a target node!"); 2687 return false; 2688 } 2689 2690 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2691 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2692 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2693 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2694 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2695 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2696 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2697 "Should use SimplifyDemandedBits if you don't know whether Op" 2698 " is a target node!"); 2699 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2700 return false; 2701 } 2702 2703 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2704 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2705 SelectionDAG &DAG, unsigned Depth) const { 2706 assert( 2707 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2708 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2709 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2710 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2711 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2712 " is a target node!"); 2713 return SDValue(); 2714 } 2715 2716 SDValue 2717 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2718 SDValue N1, MutableArrayRef<int> Mask, 2719 SelectionDAG &DAG) const { 2720 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2721 if (!LegalMask) { 2722 std::swap(N0, N1); 2723 ShuffleVectorSDNode::commuteMask(Mask); 2724 LegalMask = isShuffleMaskLegal(Mask, VT); 2725 } 2726 2727 if (!LegalMask) 2728 return SDValue(); 2729 2730 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2731 } 2732 2733 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2734 return nullptr; 2735 } 2736 2737 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2738 const SelectionDAG &DAG, 2739 bool SNaN, 2740 unsigned Depth) const { 2741 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2742 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2743 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2744 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2745 "Should use isKnownNeverNaN if you don't know whether Op" 2746 " is a target node!"); 2747 return false; 2748 } 2749 2750 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2751 // work with truncating build vectors and vectors with elements of less than 2752 // 8 bits. 2753 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2754 if (!N) 2755 return false; 2756 2757 APInt CVal; 2758 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2759 CVal = CN->getAPIntValue(); 2760 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2761 auto *CN = BV->getConstantSplatNode(); 2762 if (!CN) 2763 return false; 2764 2765 // If this is a truncating build vector, truncate the splat value. 2766 // Otherwise, we may fail to match the expected values below. 2767 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2768 CVal = CN->getAPIntValue(); 2769 if (BVEltWidth < CVal.getBitWidth()) 2770 CVal = CVal.trunc(BVEltWidth); 2771 } else { 2772 return false; 2773 } 2774 2775 switch (getBooleanContents(N->getValueType(0))) { 2776 case UndefinedBooleanContent: 2777 return CVal[0]; 2778 case ZeroOrOneBooleanContent: 2779 return CVal.isOneValue(); 2780 case ZeroOrNegativeOneBooleanContent: 2781 return CVal.isAllOnesValue(); 2782 } 2783 2784 llvm_unreachable("Invalid boolean contents"); 2785 } 2786 2787 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2788 if (!N) 2789 return false; 2790 2791 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2792 if (!CN) { 2793 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2794 if (!BV) 2795 return false; 2796 2797 // Only interested in constant splats, we don't care about undef 2798 // elements in identifying boolean constants and getConstantSplatNode 2799 // returns NULL if all ops are undef; 2800 CN = BV->getConstantSplatNode(); 2801 if (!CN) 2802 return false; 2803 } 2804 2805 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2806 return !CN->getAPIntValue()[0]; 2807 2808 return CN->isNullValue(); 2809 } 2810 2811 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2812 bool SExt) const { 2813 if (VT == MVT::i1) 2814 return N->isOne(); 2815 2816 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2817 switch (Cnt) { 2818 case TargetLowering::ZeroOrOneBooleanContent: 2819 // An extended value of 1 is always true, unless its original type is i1, 2820 // in which case it will be sign extended to -1. 2821 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2822 case TargetLowering::UndefinedBooleanContent: 2823 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2824 return N->isAllOnesValue() && SExt; 2825 } 2826 llvm_unreachable("Unexpected enumeration."); 2827 } 2828 2829 /// This helper function of SimplifySetCC tries to optimize the comparison when 2830 /// either operand of the SetCC node is a bitwise-and instruction. 2831 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2832 ISD::CondCode Cond, const SDLoc &DL, 2833 DAGCombinerInfo &DCI) const { 2834 // Match these patterns in any of their permutations: 2835 // (X & Y) == Y 2836 // (X & Y) != Y 2837 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2838 std::swap(N0, N1); 2839 2840 EVT OpVT = N0.getValueType(); 2841 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2842 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2843 return SDValue(); 2844 2845 SDValue X, Y; 2846 if (N0.getOperand(0) == N1) { 2847 X = N0.getOperand(1); 2848 Y = N0.getOperand(0); 2849 } else if (N0.getOperand(1) == N1) { 2850 X = N0.getOperand(0); 2851 Y = N0.getOperand(1); 2852 } else { 2853 return SDValue(); 2854 } 2855 2856 SelectionDAG &DAG = DCI.DAG; 2857 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2858 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2859 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2860 // Note that where Y is variable and is known to have at most one bit set 2861 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2862 // equivalent when Y == 0. 2863 assert(OpVT.isInteger()); 2864 Cond = ISD::getSetCCInverse(Cond, OpVT); 2865 if (DCI.isBeforeLegalizeOps() || 2866 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2867 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2868 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2869 // If the target supports an 'and-not' or 'and-complement' logic operation, 2870 // try to use that to make a comparison operation more efficient. 2871 // But don't do this transform if the mask is a single bit because there are 2872 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2873 // 'rlwinm' on PPC). 2874 2875 // Bail out if the compare operand that we want to turn into a zero is 2876 // already a zero (otherwise, infinite loop). 2877 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2878 if (YConst && YConst->isNullValue()) 2879 return SDValue(); 2880 2881 // Transform this into: ~X & Y == 0. 2882 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2883 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2884 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2885 } 2886 2887 return SDValue(); 2888 } 2889 2890 /// There are multiple IR patterns that could be checking whether certain 2891 /// truncation of a signed number would be lossy or not. The pattern which is 2892 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2893 /// We are looking for the following pattern: (KeptBits is a constant) 2894 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2895 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2896 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2897 /// We will unfold it into the natural trunc+sext pattern: 2898 /// ((%x << C) a>> C) dstcond %x 2899 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2900 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2901 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2902 const SDLoc &DL) const { 2903 // We must be comparing with a constant. 2904 ConstantSDNode *C1; 2905 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2906 return SDValue(); 2907 2908 // N0 should be: add %x, (1 << (KeptBits-1)) 2909 if (N0->getOpcode() != ISD::ADD) 2910 return SDValue(); 2911 2912 // And we must be 'add'ing a constant. 2913 ConstantSDNode *C01; 2914 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2915 return SDValue(); 2916 2917 SDValue X = N0->getOperand(0); 2918 EVT XVT = X.getValueType(); 2919 2920 // Validate constants ... 2921 2922 APInt I1 = C1->getAPIntValue(); 2923 2924 ISD::CondCode NewCond; 2925 if (Cond == ISD::CondCode::SETULT) { 2926 NewCond = ISD::CondCode::SETEQ; 2927 } else if (Cond == ISD::CondCode::SETULE) { 2928 NewCond = ISD::CondCode::SETEQ; 2929 // But need to 'canonicalize' the constant. 2930 I1 += 1; 2931 } else if (Cond == ISD::CondCode::SETUGT) { 2932 NewCond = ISD::CondCode::SETNE; 2933 // But need to 'canonicalize' the constant. 2934 I1 += 1; 2935 } else if (Cond == ISD::CondCode::SETUGE) { 2936 NewCond = ISD::CondCode::SETNE; 2937 } else 2938 return SDValue(); 2939 2940 APInt I01 = C01->getAPIntValue(); 2941 2942 auto checkConstants = [&I1, &I01]() -> bool { 2943 // Both of them must be power-of-two, and the constant from setcc is bigger. 2944 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2945 }; 2946 2947 if (checkConstants()) { 2948 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2949 } else { 2950 // What if we invert constants? (and the target predicate) 2951 I1.negate(); 2952 I01.negate(); 2953 assert(XVT.isInteger()); 2954 NewCond = getSetCCInverse(NewCond, XVT); 2955 if (!checkConstants()) 2956 return SDValue(); 2957 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2958 } 2959 2960 // They are power-of-two, so which bit is set? 2961 const unsigned KeptBits = I1.logBase2(); 2962 const unsigned KeptBitsMinusOne = I01.logBase2(); 2963 2964 // Magic! 2965 if (KeptBits != (KeptBitsMinusOne + 1)) 2966 return SDValue(); 2967 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2968 2969 // We don't want to do this in every single case. 2970 SelectionDAG &DAG = DCI.DAG; 2971 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2972 XVT, KeptBits)) 2973 return SDValue(); 2974 2975 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2976 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2977 2978 // Unfold into: ((%x << C) a>> C) cond %x 2979 // Where 'cond' will be either 'eq' or 'ne'. 2980 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2981 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2982 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2983 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2984 2985 return T2; 2986 } 2987 2988 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 2989 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 2990 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 2991 DAGCombinerInfo &DCI, const SDLoc &DL) const { 2992 assert(isConstOrConstSplat(N1C) && 2993 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 2994 "Should be a comparison with 0."); 2995 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2996 "Valid only for [in]equality comparisons."); 2997 2998 unsigned NewShiftOpcode; 2999 SDValue X, C, Y; 3000 3001 SelectionDAG &DAG = DCI.DAG; 3002 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3003 3004 // Look for '(C l>>/<< Y)'. 3005 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3006 // The shift should be one-use. 3007 if (!V.hasOneUse()) 3008 return false; 3009 unsigned OldShiftOpcode = V.getOpcode(); 3010 switch (OldShiftOpcode) { 3011 case ISD::SHL: 3012 NewShiftOpcode = ISD::SRL; 3013 break; 3014 case ISD::SRL: 3015 NewShiftOpcode = ISD::SHL; 3016 break; 3017 default: 3018 return false; // must be a logical shift. 3019 } 3020 // We should be shifting a constant. 3021 // FIXME: best to use isConstantOrConstantVector(). 3022 C = V.getOperand(0); 3023 ConstantSDNode *CC = 3024 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3025 if (!CC) 3026 return false; 3027 Y = V.getOperand(1); 3028 3029 ConstantSDNode *XC = 3030 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3031 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3032 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3033 }; 3034 3035 // LHS of comparison should be an one-use 'and'. 3036 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3037 return SDValue(); 3038 3039 X = N0.getOperand(0); 3040 SDValue Mask = N0.getOperand(1); 3041 3042 // 'and' is commutative! 3043 if (!Match(Mask)) { 3044 std::swap(X, Mask); 3045 if (!Match(Mask)) 3046 return SDValue(); 3047 } 3048 3049 EVT VT = X.getValueType(); 3050 3051 // Produce: 3052 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3053 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3054 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3055 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3056 return T2; 3057 } 3058 3059 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3060 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3061 /// handle the commuted versions of these patterns. 3062 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3063 ISD::CondCode Cond, const SDLoc &DL, 3064 DAGCombinerInfo &DCI) const { 3065 unsigned BOpcode = N0.getOpcode(); 3066 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3067 "Unexpected binop"); 3068 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3069 3070 // (X + Y) == X --> Y == 0 3071 // (X - Y) == X --> Y == 0 3072 // (X ^ Y) == X --> Y == 0 3073 SelectionDAG &DAG = DCI.DAG; 3074 EVT OpVT = N0.getValueType(); 3075 SDValue X = N0.getOperand(0); 3076 SDValue Y = N0.getOperand(1); 3077 if (X == N1) 3078 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3079 3080 if (Y != N1) 3081 return SDValue(); 3082 3083 // (X + Y) == Y --> X == 0 3084 // (X ^ Y) == Y --> X == 0 3085 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3086 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3087 3088 // The shift would not be valid if the operands are boolean (i1). 3089 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3090 return SDValue(); 3091 3092 // (X - Y) == Y --> X == Y << 1 3093 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3094 !DCI.isBeforeLegalize()); 3095 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3096 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3097 if (!DCI.isCalledByLegalizer()) 3098 DCI.AddToWorklist(YShl1.getNode()); 3099 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3100 } 3101 3102 /// Try to simplify a setcc built with the specified operands and cc. If it is 3103 /// unable to simplify it, return a null SDValue. 3104 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3105 ISD::CondCode Cond, bool foldBooleans, 3106 DAGCombinerInfo &DCI, 3107 const SDLoc &dl) const { 3108 SelectionDAG &DAG = DCI.DAG; 3109 const DataLayout &Layout = DAG.getDataLayout(); 3110 EVT OpVT = N0.getValueType(); 3111 3112 // Constant fold or commute setcc. 3113 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3114 return Fold; 3115 3116 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3117 // TODO: Handle non-splat vector constants. All undef causes trouble. 3118 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3119 if (isConstOrConstSplat(N0) && 3120 (DCI.isBeforeLegalizeOps() || 3121 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3122 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3123 3124 // If we have a subtract with the same 2 non-constant operands as this setcc 3125 // -- but in reverse order -- then try to commute the operands of this setcc 3126 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3127 // instruction on some targets. 3128 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3129 (DCI.isBeforeLegalizeOps() || 3130 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3131 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3132 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3133 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3134 3135 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3136 const APInt &C1 = N1C->getAPIntValue(); 3137 3138 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3139 // equality comparison, then we're just comparing whether X itself is 3140 // zero. 3141 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3142 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3143 N0.getOperand(1).getOpcode() == ISD::Constant) { 3144 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3145 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3146 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3147 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3148 // (srl (ctlz x), 5) == 0 -> X != 0 3149 // (srl (ctlz x), 5) != 1 -> X != 0 3150 Cond = ISD::SETNE; 3151 } else { 3152 // (srl (ctlz x), 5) != 0 -> X == 0 3153 // (srl (ctlz x), 5) == 1 -> X == 0 3154 Cond = ISD::SETEQ; 3155 } 3156 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3157 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3158 Zero, Cond); 3159 } 3160 } 3161 3162 SDValue CTPOP = N0; 3163 // Look through truncs that don't change the value of a ctpop. 3164 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3165 CTPOP = N0.getOperand(0); 3166 3167 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3168 (N0 == CTPOP || 3169 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3170 EVT CTVT = CTPOP.getValueType(); 3171 SDValue CTOp = CTPOP.getOperand(0); 3172 3173 // (ctpop x) u< 2 -> (x & x-1) == 0 3174 // (ctpop x) u> 1 -> (x & x-1) != 0 3175 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3176 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3177 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3178 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3179 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3180 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3181 } 3182 3183 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3184 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3185 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3186 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3187 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3188 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3189 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3190 assert(CTVT.isInteger()); 3191 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3192 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3193 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3194 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3195 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3196 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3197 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3198 } 3199 } 3200 3201 // (zext x) == C --> x == (trunc C) 3202 // (sext x) == C --> x == (trunc C) 3203 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3204 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3205 unsigned MinBits = N0.getValueSizeInBits(); 3206 SDValue PreExt; 3207 bool Signed = false; 3208 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3209 // ZExt 3210 MinBits = N0->getOperand(0).getValueSizeInBits(); 3211 PreExt = N0->getOperand(0); 3212 } else if (N0->getOpcode() == ISD::AND) { 3213 // DAGCombine turns costly ZExts into ANDs 3214 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3215 if ((C->getAPIntValue()+1).isPowerOf2()) { 3216 MinBits = C->getAPIntValue().countTrailingOnes(); 3217 PreExt = N0->getOperand(0); 3218 } 3219 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3220 // SExt 3221 MinBits = N0->getOperand(0).getValueSizeInBits(); 3222 PreExt = N0->getOperand(0); 3223 Signed = true; 3224 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3225 // ZEXTLOAD / SEXTLOAD 3226 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3227 MinBits = LN0->getMemoryVT().getSizeInBits(); 3228 PreExt = N0; 3229 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3230 Signed = true; 3231 MinBits = LN0->getMemoryVT().getSizeInBits(); 3232 PreExt = N0; 3233 } 3234 } 3235 3236 // Figure out how many bits we need to preserve this constant. 3237 unsigned ReqdBits = Signed ? 3238 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3239 C1.getActiveBits(); 3240 3241 // Make sure we're not losing bits from the constant. 3242 if (MinBits > 0 && 3243 MinBits < C1.getBitWidth() && 3244 MinBits >= ReqdBits) { 3245 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3246 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3247 // Will get folded away. 3248 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3249 if (MinBits == 1 && C1 == 1) 3250 // Invert the condition. 3251 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3252 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3253 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3254 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3255 } 3256 3257 // If truncating the setcc operands is not desirable, we can still 3258 // simplify the expression in some cases: 3259 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3260 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3261 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3262 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3263 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3264 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3265 SDValue TopSetCC = N0->getOperand(0); 3266 unsigned N0Opc = N0->getOpcode(); 3267 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3268 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3269 TopSetCC.getOpcode() == ISD::SETCC && 3270 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3271 (isConstFalseVal(N1C) || 3272 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3273 3274 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3275 (!N1C->isNullValue() && Cond == ISD::SETNE); 3276 3277 if (!Inverse) 3278 return TopSetCC; 3279 3280 ISD::CondCode InvCond = ISD::getSetCCInverse( 3281 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3282 TopSetCC.getOperand(0).getValueType()); 3283 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3284 TopSetCC.getOperand(1), 3285 InvCond); 3286 } 3287 } 3288 } 3289 3290 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3291 // equality or unsigned, and all 1 bits of the const are in the same 3292 // partial word, see if we can shorten the load. 3293 if (DCI.isBeforeLegalize() && 3294 !ISD::isSignedIntSetCC(Cond) && 3295 N0.getOpcode() == ISD::AND && C1 == 0 && 3296 N0.getNode()->hasOneUse() && 3297 isa<LoadSDNode>(N0.getOperand(0)) && 3298 N0.getOperand(0).getNode()->hasOneUse() && 3299 isa<ConstantSDNode>(N0.getOperand(1))) { 3300 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3301 APInt bestMask; 3302 unsigned bestWidth = 0, bestOffset = 0; 3303 if (Lod->isSimple() && Lod->isUnindexed()) { 3304 unsigned origWidth = N0.getValueSizeInBits(); 3305 unsigned maskWidth = origWidth; 3306 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3307 // 8 bits, but have to be careful... 3308 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3309 origWidth = Lod->getMemoryVT().getSizeInBits(); 3310 const APInt &Mask = N0.getConstantOperandAPInt(1); 3311 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3312 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3313 for (unsigned offset=0; offset<origWidth/width; offset++) { 3314 if (Mask.isSubsetOf(newMask)) { 3315 if (Layout.isLittleEndian()) 3316 bestOffset = (uint64_t)offset * (width/8); 3317 else 3318 bestOffset = (origWidth/width - offset - 1) * (width/8); 3319 bestMask = Mask.lshr(offset * (width/8) * 8); 3320 bestWidth = width; 3321 break; 3322 } 3323 newMask <<= width; 3324 } 3325 } 3326 } 3327 if (bestWidth) { 3328 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3329 if (newVT.isRound() && 3330 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3331 SDValue Ptr = Lod->getBasePtr(); 3332 if (bestOffset != 0) 3333 Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); 3334 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3335 SDValue NewLoad = DAG.getLoad( 3336 newVT, dl, Lod->getChain(), Ptr, 3337 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3338 return DAG.getSetCC(dl, VT, 3339 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3340 DAG.getConstant(bestMask.trunc(bestWidth), 3341 dl, newVT)), 3342 DAG.getConstant(0LL, dl, newVT), Cond); 3343 } 3344 } 3345 } 3346 3347 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3348 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3349 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3350 3351 // If the comparison constant has bits in the upper part, the 3352 // zero-extended value could never match. 3353 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3354 C1.getBitWidth() - InSize))) { 3355 switch (Cond) { 3356 case ISD::SETUGT: 3357 case ISD::SETUGE: 3358 case ISD::SETEQ: 3359 return DAG.getConstant(0, dl, VT); 3360 case ISD::SETULT: 3361 case ISD::SETULE: 3362 case ISD::SETNE: 3363 return DAG.getConstant(1, dl, VT); 3364 case ISD::SETGT: 3365 case ISD::SETGE: 3366 // True if the sign bit of C1 is set. 3367 return DAG.getConstant(C1.isNegative(), dl, VT); 3368 case ISD::SETLT: 3369 case ISD::SETLE: 3370 // True if the sign bit of C1 isn't set. 3371 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3372 default: 3373 break; 3374 } 3375 } 3376 3377 // Otherwise, we can perform the comparison with the low bits. 3378 switch (Cond) { 3379 case ISD::SETEQ: 3380 case ISD::SETNE: 3381 case ISD::SETUGT: 3382 case ISD::SETUGE: 3383 case ISD::SETULT: 3384 case ISD::SETULE: { 3385 EVT newVT = N0.getOperand(0).getValueType(); 3386 if (DCI.isBeforeLegalizeOps() || 3387 (isOperationLegal(ISD::SETCC, newVT) && 3388 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3389 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3390 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3391 3392 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3393 NewConst, Cond); 3394 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3395 } 3396 break; 3397 } 3398 default: 3399 break; // todo, be more careful with signed comparisons 3400 } 3401 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3402 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3403 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3404 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3405 EVT ExtDstTy = N0.getValueType(); 3406 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3407 3408 // If the constant doesn't fit into the number of bits for the source of 3409 // the sign extension, it is impossible for both sides to be equal. 3410 if (C1.getMinSignedBits() > ExtSrcTyBits) 3411 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3412 3413 SDValue ZextOp; 3414 EVT Op0Ty = N0.getOperand(0).getValueType(); 3415 if (Op0Ty == ExtSrcTy) { 3416 ZextOp = N0.getOperand(0); 3417 } else { 3418 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3419 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3420 DAG.getConstant(Imm, dl, Op0Ty)); 3421 } 3422 if (!DCI.isCalledByLegalizer()) 3423 DCI.AddToWorklist(ZextOp.getNode()); 3424 // Otherwise, make this a use of a zext. 3425 return DAG.getSetCC(dl, VT, ZextOp, 3426 DAG.getConstant(C1 & APInt::getLowBitsSet( 3427 ExtDstTyBits, 3428 ExtSrcTyBits), 3429 dl, ExtDstTy), 3430 Cond); 3431 } else if ((N1C->isNullValue() || N1C->isOne()) && 3432 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3433 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3434 if (N0.getOpcode() == ISD::SETCC && 3435 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3436 (N0.getValueType() == MVT::i1 || 3437 getBooleanContents(N0.getOperand(0).getValueType()) == 3438 ZeroOrOneBooleanContent)) { 3439 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3440 if (TrueWhenTrue) 3441 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3442 // Invert the condition. 3443 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3444 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3445 if (DCI.isBeforeLegalizeOps() || 3446 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3447 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3448 } 3449 3450 if ((N0.getOpcode() == ISD::XOR || 3451 (N0.getOpcode() == ISD::AND && 3452 N0.getOperand(0).getOpcode() == ISD::XOR && 3453 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3454 isa<ConstantSDNode>(N0.getOperand(1)) && 3455 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3456 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3457 // can only do this if the top bits are known zero. 3458 unsigned BitWidth = N0.getValueSizeInBits(); 3459 if (DAG.MaskedValueIsZero(N0, 3460 APInt::getHighBitsSet(BitWidth, 3461 BitWidth-1))) { 3462 // Okay, get the un-inverted input value. 3463 SDValue Val; 3464 if (N0.getOpcode() == ISD::XOR) { 3465 Val = N0.getOperand(0); 3466 } else { 3467 assert(N0.getOpcode() == ISD::AND && 3468 N0.getOperand(0).getOpcode() == ISD::XOR); 3469 // ((X^1)&1)^1 -> X & 1 3470 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3471 N0.getOperand(0).getOperand(0), 3472 N0.getOperand(1)); 3473 } 3474 3475 return DAG.getSetCC(dl, VT, Val, N1, 3476 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3477 } 3478 } else if (N1C->isOne()) { 3479 SDValue Op0 = N0; 3480 if (Op0.getOpcode() == ISD::TRUNCATE) 3481 Op0 = Op0.getOperand(0); 3482 3483 if ((Op0.getOpcode() == ISD::XOR) && 3484 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3485 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3486 SDValue XorLHS = Op0.getOperand(0); 3487 SDValue XorRHS = Op0.getOperand(1); 3488 // Ensure that the input setccs return an i1 type or 0/1 value. 3489 if (Op0.getValueType() == MVT::i1 || 3490 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3491 ZeroOrOneBooleanContent && 3492 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3493 ZeroOrOneBooleanContent)) { 3494 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3495 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3496 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3497 } 3498 } 3499 if (Op0.getOpcode() == ISD::AND && 3500 isa<ConstantSDNode>(Op0.getOperand(1)) && 3501 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3502 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3503 if (Op0.getValueType().bitsGT(VT)) 3504 Op0 = DAG.getNode(ISD::AND, dl, VT, 3505 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3506 DAG.getConstant(1, dl, VT)); 3507 else if (Op0.getValueType().bitsLT(VT)) 3508 Op0 = DAG.getNode(ISD::AND, dl, VT, 3509 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3510 DAG.getConstant(1, dl, VT)); 3511 3512 return DAG.getSetCC(dl, VT, Op0, 3513 DAG.getConstant(0, dl, Op0.getValueType()), 3514 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3515 } 3516 if (Op0.getOpcode() == ISD::AssertZext && 3517 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3518 return DAG.getSetCC(dl, VT, Op0, 3519 DAG.getConstant(0, dl, Op0.getValueType()), 3520 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3521 } 3522 } 3523 3524 // Given: 3525 // icmp eq/ne (urem %x, %y), 0 3526 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3527 // icmp eq/ne %x, 0 3528 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3529 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3530 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3531 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3532 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3533 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3534 } 3535 3536 if (SDValue V = 3537 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3538 return V; 3539 } 3540 3541 // These simplifications apply to splat vectors as well. 3542 // TODO: Handle more splat vector cases. 3543 if (auto *N1C = isConstOrConstSplat(N1)) { 3544 const APInt &C1 = N1C->getAPIntValue(); 3545 3546 APInt MinVal, MaxVal; 3547 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3548 if (ISD::isSignedIntSetCC(Cond)) { 3549 MinVal = APInt::getSignedMinValue(OperandBitSize); 3550 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3551 } else { 3552 MinVal = APInt::getMinValue(OperandBitSize); 3553 MaxVal = APInt::getMaxValue(OperandBitSize); 3554 } 3555 3556 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3557 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3558 // X >= MIN --> true 3559 if (C1 == MinVal) 3560 return DAG.getBoolConstant(true, dl, VT, OpVT); 3561 3562 if (!VT.isVector()) { // TODO: Support this for vectors. 3563 // X >= C0 --> X > (C0 - 1) 3564 APInt C = C1 - 1; 3565 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3566 if ((DCI.isBeforeLegalizeOps() || 3567 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3568 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3569 isLegalICmpImmediate(C.getSExtValue())))) { 3570 return DAG.getSetCC(dl, VT, N0, 3571 DAG.getConstant(C, dl, N1.getValueType()), 3572 NewCC); 3573 } 3574 } 3575 } 3576 3577 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3578 // X <= MAX --> true 3579 if (C1 == MaxVal) 3580 return DAG.getBoolConstant(true, dl, VT, OpVT); 3581 3582 // X <= C0 --> X < (C0 + 1) 3583 if (!VT.isVector()) { // TODO: Support this for vectors. 3584 APInt C = C1 + 1; 3585 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3586 if ((DCI.isBeforeLegalizeOps() || 3587 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3588 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3589 isLegalICmpImmediate(C.getSExtValue())))) { 3590 return DAG.getSetCC(dl, VT, N0, 3591 DAG.getConstant(C, dl, N1.getValueType()), 3592 NewCC); 3593 } 3594 } 3595 } 3596 3597 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3598 if (C1 == MinVal) 3599 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3600 3601 // TODO: Support this for vectors after legalize ops. 3602 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3603 // Canonicalize setlt X, Max --> setne X, Max 3604 if (C1 == MaxVal) 3605 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3606 3607 // If we have setult X, 1, turn it into seteq X, 0 3608 if (C1 == MinVal+1) 3609 return DAG.getSetCC(dl, VT, N0, 3610 DAG.getConstant(MinVal, dl, N0.getValueType()), 3611 ISD::SETEQ); 3612 } 3613 } 3614 3615 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3616 if (C1 == MaxVal) 3617 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3618 3619 // TODO: Support this for vectors after legalize ops. 3620 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3621 // Canonicalize setgt X, Min --> setne X, Min 3622 if (C1 == MinVal) 3623 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3624 3625 // If we have setugt X, Max-1, turn it into seteq X, Max 3626 if (C1 == MaxVal-1) 3627 return DAG.getSetCC(dl, VT, N0, 3628 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3629 ISD::SETEQ); 3630 } 3631 } 3632 3633 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3634 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3635 if (C1.isNullValue()) 3636 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3637 VT, N0, N1, Cond, DCI, dl)) 3638 return CC; 3639 } 3640 3641 // If we have "setcc X, C0", check to see if we can shrink the immediate 3642 // by changing cc. 3643 // TODO: Support this for vectors after legalize ops. 3644 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3645 // SETUGT X, SINTMAX -> SETLT X, 0 3646 if (Cond == ISD::SETUGT && 3647 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3648 return DAG.getSetCC(dl, VT, N0, 3649 DAG.getConstant(0, dl, N1.getValueType()), 3650 ISD::SETLT); 3651 3652 // SETULT X, SINTMIN -> SETGT X, -1 3653 if (Cond == ISD::SETULT && 3654 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3655 SDValue ConstMinusOne = 3656 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3657 N1.getValueType()); 3658 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3659 } 3660 } 3661 } 3662 3663 // Back to non-vector simplifications. 3664 // TODO: Can we do these for vector splats? 3665 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3666 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3667 const APInt &C1 = N1C->getAPIntValue(); 3668 EVT ShValTy = N0.getValueType(); 3669 3670 // Fold bit comparisons when we can. 3671 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3672 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3673 N0.getOpcode() == ISD::AND) { 3674 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3675 EVT ShiftTy = 3676 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3677 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3678 // Perform the xform if the AND RHS is a single bit. 3679 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3680 if (AndRHS->getAPIntValue().isPowerOf2() && 3681 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3682 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3683 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3684 DAG.getConstant(ShCt, dl, ShiftTy))); 3685 } 3686 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3687 // (X & 8) == 8 --> (X & 8) >> 3 3688 // Perform the xform if C1 is a single bit. 3689 unsigned ShCt = C1.logBase2(); 3690 if (C1.isPowerOf2() && 3691 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3692 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3693 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3694 DAG.getConstant(ShCt, dl, ShiftTy))); 3695 } 3696 } 3697 } 3698 } 3699 3700 if (C1.getMinSignedBits() <= 64 && 3701 !isLegalICmpImmediate(C1.getSExtValue())) { 3702 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3703 // (X & -256) == 256 -> (X >> 8) == 1 3704 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3705 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3706 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3707 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3708 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3709 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3710 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3711 SDValue Shift = 3712 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3713 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3714 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3715 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3716 } 3717 } 3718 } 3719 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3720 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3721 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3722 // X < 0x100000000 -> (X >> 32) < 1 3723 // X >= 0x100000000 -> (X >> 32) >= 1 3724 // X <= 0x0ffffffff -> (X >> 32) < 1 3725 // X > 0x0ffffffff -> (X >> 32) >= 1 3726 unsigned ShiftBits; 3727 APInt NewC = C1; 3728 ISD::CondCode NewCond = Cond; 3729 if (AdjOne) { 3730 ShiftBits = C1.countTrailingOnes(); 3731 NewC = NewC + 1; 3732 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3733 } else { 3734 ShiftBits = C1.countTrailingZeros(); 3735 } 3736 NewC.lshrInPlace(ShiftBits); 3737 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3738 isLegalICmpImmediate(NewC.getSExtValue()) && 3739 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3740 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3741 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3742 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3743 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3744 } 3745 } 3746 } 3747 } 3748 3749 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3750 auto *CFP = cast<ConstantFPSDNode>(N1); 3751 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3752 3753 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3754 // constant if knowing that the operand is non-nan is enough. We prefer to 3755 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3756 // materialize 0.0. 3757 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3758 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3759 3760 // setcc (fneg x), C -> setcc swap(pred) x, -C 3761 if (N0.getOpcode() == ISD::FNEG) { 3762 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3763 if (DCI.isBeforeLegalizeOps() || 3764 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3765 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3766 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3767 } 3768 } 3769 3770 // If the condition is not legal, see if we can find an equivalent one 3771 // which is legal. 3772 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3773 // If the comparison was an awkward floating-point == or != and one of 3774 // the comparison operands is infinity or negative infinity, convert the 3775 // condition to a less-awkward <= or >=. 3776 if (CFP->getValueAPF().isInfinity()) { 3777 if (CFP->getValueAPF().isNegative()) { 3778 if (Cond == ISD::SETOEQ && 3779 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3780 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3781 if (Cond == ISD::SETUEQ && 3782 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3783 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3784 if (Cond == ISD::SETUNE && 3785 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3786 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3787 if (Cond == ISD::SETONE && 3788 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3789 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3790 } else { 3791 if (Cond == ISD::SETOEQ && 3792 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3793 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3794 if (Cond == ISD::SETUEQ && 3795 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3796 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3797 if (Cond == ISD::SETUNE && 3798 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3799 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3800 if (Cond == ISD::SETONE && 3801 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3802 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3803 } 3804 } 3805 } 3806 } 3807 3808 if (N0 == N1) { 3809 // The sext(setcc()) => setcc() optimization relies on the appropriate 3810 // constant being emitted. 3811 assert(!N0.getValueType().isInteger() && 3812 "Integer types should be handled by FoldSetCC"); 3813 3814 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3815 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3816 if (UOF == 2) // FP operators that are undefined on NaNs. 3817 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3818 if (UOF == unsigned(EqTrue)) 3819 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3820 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3821 // if it is not already. 3822 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3823 if (NewCond != Cond && 3824 (DCI.isBeforeLegalizeOps() || 3825 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3826 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3827 } 3828 3829 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3830 N0.getValueType().isInteger()) { 3831 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3832 N0.getOpcode() == ISD::XOR) { 3833 // Simplify (X+Y) == (X+Z) --> Y == Z 3834 if (N0.getOpcode() == N1.getOpcode()) { 3835 if (N0.getOperand(0) == N1.getOperand(0)) 3836 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3837 if (N0.getOperand(1) == N1.getOperand(1)) 3838 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3839 if (isCommutativeBinOp(N0.getOpcode())) { 3840 // If X op Y == Y op X, try other combinations. 3841 if (N0.getOperand(0) == N1.getOperand(1)) 3842 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3843 Cond); 3844 if (N0.getOperand(1) == N1.getOperand(0)) 3845 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3846 Cond); 3847 } 3848 } 3849 3850 // If RHS is a legal immediate value for a compare instruction, we need 3851 // to be careful about increasing register pressure needlessly. 3852 bool LegalRHSImm = false; 3853 3854 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3855 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3856 // Turn (X+C1) == C2 --> X == C2-C1 3857 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3858 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3859 DAG.getConstant(RHSC->getAPIntValue()- 3860 LHSR->getAPIntValue(), 3861 dl, N0.getValueType()), Cond); 3862 } 3863 3864 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3865 if (N0.getOpcode() == ISD::XOR) 3866 // If we know that all of the inverted bits are zero, don't bother 3867 // performing the inversion. 3868 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3869 return 3870 DAG.getSetCC(dl, VT, N0.getOperand(0), 3871 DAG.getConstant(LHSR->getAPIntValue() ^ 3872 RHSC->getAPIntValue(), 3873 dl, N0.getValueType()), 3874 Cond); 3875 } 3876 3877 // Turn (C1-X) == C2 --> X == C1-C2 3878 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3879 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3880 return 3881 DAG.getSetCC(dl, VT, N0.getOperand(1), 3882 DAG.getConstant(SUBC->getAPIntValue() - 3883 RHSC->getAPIntValue(), 3884 dl, N0.getValueType()), 3885 Cond); 3886 } 3887 } 3888 3889 // Could RHSC fold directly into a compare? 3890 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3891 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3892 } 3893 3894 // (X+Y) == X --> Y == 0 and similar folds. 3895 // Don't do this if X is an immediate that can fold into a cmp 3896 // instruction and X+Y has other uses. It could be an induction variable 3897 // chain, and the transform would increase register pressure. 3898 if (!LegalRHSImm || N0.hasOneUse()) 3899 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3900 return V; 3901 } 3902 3903 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3904 N1.getOpcode() == ISD::XOR) 3905 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3906 return V; 3907 3908 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3909 return V; 3910 } 3911 3912 // Fold remainder of division by a constant. 3913 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 3914 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3915 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3916 3917 // When division is cheap or optimizing for minimum size, 3918 // fall through to DIVREM creation by skipping this fold. 3919 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 3920 if (N0.getOpcode() == ISD::UREM) { 3921 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3922 return Folded; 3923 } else if (N0.getOpcode() == ISD::SREM) { 3924 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3925 return Folded; 3926 } 3927 } 3928 } 3929 3930 // Fold away ALL boolean setcc's. 3931 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3932 SDValue Temp; 3933 switch (Cond) { 3934 default: llvm_unreachable("Unknown integer setcc!"); 3935 case ISD::SETEQ: // X == Y -> ~(X^Y) 3936 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3937 N0 = DAG.getNOT(dl, Temp, OpVT); 3938 if (!DCI.isCalledByLegalizer()) 3939 DCI.AddToWorklist(Temp.getNode()); 3940 break; 3941 case ISD::SETNE: // X != Y --> (X^Y) 3942 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3943 break; 3944 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3945 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3946 Temp = DAG.getNOT(dl, N0, OpVT); 3947 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3948 if (!DCI.isCalledByLegalizer()) 3949 DCI.AddToWorklist(Temp.getNode()); 3950 break; 3951 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3952 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3953 Temp = DAG.getNOT(dl, N1, OpVT); 3954 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3955 if (!DCI.isCalledByLegalizer()) 3956 DCI.AddToWorklist(Temp.getNode()); 3957 break; 3958 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3959 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3960 Temp = DAG.getNOT(dl, N0, OpVT); 3961 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3962 if (!DCI.isCalledByLegalizer()) 3963 DCI.AddToWorklist(Temp.getNode()); 3964 break; 3965 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3966 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3967 Temp = DAG.getNOT(dl, N1, OpVT); 3968 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3969 break; 3970 } 3971 if (VT.getScalarType() != MVT::i1) { 3972 if (!DCI.isCalledByLegalizer()) 3973 DCI.AddToWorklist(N0.getNode()); 3974 // FIXME: If running after legalize, we probably can't do this. 3975 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3976 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3977 } 3978 return N0; 3979 } 3980 3981 // Could not fold it. 3982 return SDValue(); 3983 } 3984 3985 /// Returns true (and the GlobalValue and the offset) if the node is a 3986 /// GlobalAddress + offset. 3987 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 3988 int64_t &Offset) const { 3989 3990 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 3991 3992 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 3993 GA = GASD->getGlobal(); 3994 Offset += GASD->getOffset(); 3995 return true; 3996 } 3997 3998 if (N->getOpcode() == ISD::ADD) { 3999 SDValue N1 = N->getOperand(0); 4000 SDValue N2 = N->getOperand(1); 4001 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4002 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4003 Offset += V->getSExtValue(); 4004 return true; 4005 } 4006 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4007 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4008 Offset += V->getSExtValue(); 4009 return true; 4010 } 4011 } 4012 } 4013 4014 return false; 4015 } 4016 4017 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4018 DAGCombinerInfo &DCI) const { 4019 // Default implementation: no optimization. 4020 return SDValue(); 4021 } 4022 4023 //===----------------------------------------------------------------------===// 4024 // Inline Assembler Implementation Methods 4025 //===----------------------------------------------------------------------===// 4026 4027 TargetLowering::ConstraintType 4028 TargetLowering::getConstraintType(StringRef Constraint) const { 4029 unsigned S = Constraint.size(); 4030 4031 if (S == 1) { 4032 switch (Constraint[0]) { 4033 default: break; 4034 case 'r': 4035 return C_RegisterClass; 4036 case 'm': // memory 4037 case 'o': // offsetable 4038 case 'V': // not offsetable 4039 return C_Memory; 4040 case 'n': // Simple Integer 4041 case 'E': // Floating Point Constant 4042 case 'F': // Floating Point Constant 4043 return C_Immediate; 4044 case 'i': // Simple Integer or Relocatable Constant 4045 case 's': // Relocatable Constant 4046 case 'p': // Address. 4047 case 'X': // Allow ANY value. 4048 case 'I': // Target registers. 4049 case 'J': 4050 case 'K': 4051 case 'L': 4052 case 'M': 4053 case 'N': 4054 case 'O': 4055 case 'P': 4056 case '<': 4057 case '>': 4058 return C_Other; 4059 } 4060 } 4061 4062 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4063 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4064 return C_Memory; 4065 return C_Register; 4066 } 4067 return C_Unknown; 4068 } 4069 4070 /// Try to replace an X constraint, which matches anything, with another that 4071 /// has more specific requirements based on the type of the corresponding 4072 /// operand. 4073 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4074 if (ConstraintVT.isInteger()) 4075 return "r"; 4076 if (ConstraintVT.isFloatingPoint()) 4077 return "f"; // works for many targets 4078 return nullptr; 4079 } 4080 4081 SDValue TargetLowering::LowerAsmOutputForConstraint( 4082 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4083 SelectionDAG &DAG) const { 4084 return SDValue(); 4085 } 4086 4087 /// Lower the specified operand into the Ops vector. 4088 /// If it is invalid, don't add anything to Ops. 4089 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4090 std::string &Constraint, 4091 std::vector<SDValue> &Ops, 4092 SelectionDAG &DAG) const { 4093 4094 if (Constraint.length() > 1) return; 4095 4096 char ConstraintLetter = Constraint[0]; 4097 switch (ConstraintLetter) { 4098 default: break; 4099 case 'X': // Allows any operand; labels (basic block) use this. 4100 if (Op.getOpcode() == ISD::BasicBlock || 4101 Op.getOpcode() == ISD::TargetBlockAddress) { 4102 Ops.push_back(Op); 4103 return; 4104 } 4105 LLVM_FALLTHROUGH; 4106 case 'i': // Simple Integer or Relocatable Constant 4107 case 'n': // Simple Integer 4108 case 's': { // Relocatable Constant 4109 4110 GlobalAddressSDNode *GA; 4111 ConstantSDNode *C; 4112 BlockAddressSDNode *BA; 4113 uint64_t Offset = 0; 4114 4115 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4116 // etc., since getelementpointer is variadic. We can't use 4117 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4118 // while in this case the GA may be furthest from the root node which is 4119 // likely an ISD::ADD. 4120 while (1) { 4121 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4122 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4123 GA->getValueType(0), 4124 Offset + GA->getOffset())); 4125 return; 4126 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4127 ConstraintLetter != 's') { 4128 // gcc prints these as sign extended. Sign extend value to 64 bits 4129 // now; without this it would get ZExt'd later in 4130 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4131 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4132 BooleanContent BCont = getBooleanContents(MVT::i64); 4133 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4134 : ISD::SIGN_EXTEND; 4135 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4136 : C->getSExtValue(); 4137 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4138 SDLoc(C), MVT::i64)); 4139 return; 4140 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4141 ConstraintLetter != 'n') { 4142 Ops.push_back(DAG.getTargetBlockAddress( 4143 BA->getBlockAddress(), BA->getValueType(0), 4144 Offset + BA->getOffset(), BA->getTargetFlags())); 4145 return; 4146 } else { 4147 const unsigned OpCode = Op.getOpcode(); 4148 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4149 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4150 Op = Op.getOperand(1); 4151 // Subtraction is not commutative. 4152 else if (OpCode == ISD::ADD && 4153 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4154 Op = Op.getOperand(0); 4155 else 4156 return; 4157 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4158 continue; 4159 } 4160 } 4161 return; 4162 } 4163 break; 4164 } 4165 } 4166 } 4167 4168 std::pair<unsigned, const TargetRegisterClass *> 4169 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4170 StringRef Constraint, 4171 MVT VT) const { 4172 if (Constraint.empty() || Constraint[0] != '{') 4173 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4174 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4175 4176 // Remove the braces from around the name. 4177 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4178 4179 std::pair<unsigned, const TargetRegisterClass *> R = 4180 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4181 4182 // Figure out which register class contains this reg. 4183 for (const TargetRegisterClass *RC : RI->regclasses()) { 4184 // If none of the value types for this register class are valid, we 4185 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4186 if (!isLegalRC(*RI, *RC)) 4187 continue; 4188 4189 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4190 I != E; ++I) { 4191 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4192 std::pair<unsigned, const TargetRegisterClass *> S = 4193 std::make_pair(*I, RC); 4194 4195 // If this register class has the requested value type, return it, 4196 // otherwise keep searching and return the first class found 4197 // if no other is found which explicitly has the requested type. 4198 if (RI->isTypeLegalForClass(*RC, VT)) 4199 return S; 4200 if (!R.second) 4201 R = S; 4202 } 4203 } 4204 } 4205 4206 return R; 4207 } 4208 4209 //===----------------------------------------------------------------------===// 4210 // Constraint Selection. 4211 4212 /// Return true of this is an input operand that is a matching constraint like 4213 /// "4". 4214 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4215 assert(!ConstraintCode.empty() && "No known constraint!"); 4216 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4217 } 4218 4219 /// If this is an input matching constraint, this method returns the output 4220 /// operand it matches. 4221 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4222 assert(!ConstraintCode.empty() && "No known constraint!"); 4223 return atoi(ConstraintCode.c_str()); 4224 } 4225 4226 /// Split up the constraint string from the inline assembly value into the 4227 /// specific constraints and their prefixes, and also tie in the associated 4228 /// operand values. 4229 /// If this returns an empty vector, and if the constraint string itself 4230 /// isn't empty, there was an error parsing. 4231 TargetLowering::AsmOperandInfoVector 4232 TargetLowering::ParseConstraints(const DataLayout &DL, 4233 const TargetRegisterInfo *TRI, 4234 ImmutableCallSite CS) const { 4235 /// Information about all of the constraints. 4236 AsmOperandInfoVector ConstraintOperands; 4237 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4238 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4239 4240 // Do a prepass over the constraints, canonicalizing them, and building up the 4241 // ConstraintOperands list. 4242 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4243 unsigned ResNo = 0; // ResNo - The result number of the next output. 4244 4245 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4246 ConstraintOperands.emplace_back(std::move(CI)); 4247 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4248 4249 // Update multiple alternative constraint count. 4250 if (OpInfo.multipleAlternatives.size() > maCount) 4251 maCount = OpInfo.multipleAlternatives.size(); 4252 4253 OpInfo.ConstraintVT = MVT::Other; 4254 4255 // Compute the value type for each operand. 4256 switch (OpInfo.Type) { 4257 case InlineAsm::isOutput: 4258 // Indirect outputs just consume an argument. 4259 if (OpInfo.isIndirect) { 4260 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4261 break; 4262 } 4263 4264 // The return value of the call is this value. As such, there is no 4265 // corresponding argument. 4266 assert(!CS.getType()->isVoidTy() && 4267 "Bad inline asm!"); 4268 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 4269 OpInfo.ConstraintVT = 4270 getSimpleValueType(DL, STy->getElementType(ResNo)); 4271 } else { 4272 assert(ResNo == 0 && "Asm only has one result!"); 4273 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 4274 } 4275 ++ResNo; 4276 break; 4277 case InlineAsm::isInput: 4278 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4279 break; 4280 case InlineAsm::isClobber: 4281 // Nothing to do. 4282 break; 4283 } 4284 4285 if (OpInfo.CallOperandVal) { 4286 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4287 if (OpInfo.isIndirect) { 4288 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4289 if (!PtrTy) 4290 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4291 OpTy = PtrTy->getElementType(); 4292 } 4293 4294 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4295 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4296 if (STy->getNumElements() == 1) 4297 OpTy = STy->getElementType(0); 4298 4299 // If OpTy is not a single value, it may be a struct/union that we 4300 // can tile with integers. 4301 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4302 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4303 switch (BitSize) { 4304 default: break; 4305 case 1: 4306 case 8: 4307 case 16: 4308 case 32: 4309 case 64: 4310 case 128: 4311 OpInfo.ConstraintVT = 4312 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4313 break; 4314 } 4315 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4316 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4317 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4318 } else { 4319 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4320 } 4321 } 4322 } 4323 4324 // If we have multiple alternative constraints, select the best alternative. 4325 if (!ConstraintOperands.empty()) { 4326 if (maCount) { 4327 unsigned bestMAIndex = 0; 4328 int bestWeight = -1; 4329 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4330 int weight = -1; 4331 unsigned maIndex; 4332 // Compute the sums of the weights for each alternative, keeping track 4333 // of the best (highest weight) one so far. 4334 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4335 int weightSum = 0; 4336 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4337 cIndex != eIndex; ++cIndex) { 4338 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4339 if (OpInfo.Type == InlineAsm::isClobber) 4340 continue; 4341 4342 // If this is an output operand with a matching input operand, 4343 // look up the matching input. If their types mismatch, e.g. one 4344 // is an integer, the other is floating point, or their sizes are 4345 // different, flag it as an maCantMatch. 4346 if (OpInfo.hasMatchingInput()) { 4347 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4348 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4349 if ((OpInfo.ConstraintVT.isInteger() != 4350 Input.ConstraintVT.isInteger()) || 4351 (OpInfo.ConstraintVT.getSizeInBits() != 4352 Input.ConstraintVT.getSizeInBits())) { 4353 weightSum = -1; // Can't match. 4354 break; 4355 } 4356 } 4357 } 4358 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4359 if (weight == -1) { 4360 weightSum = -1; 4361 break; 4362 } 4363 weightSum += weight; 4364 } 4365 // Update best. 4366 if (weightSum > bestWeight) { 4367 bestWeight = weightSum; 4368 bestMAIndex = maIndex; 4369 } 4370 } 4371 4372 // Now select chosen alternative in each constraint. 4373 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4374 cIndex != eIndex; ++cIndex) { 4375 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4376 if (cInfo.Type == InlineAsm::isClobber) 4377 continue; 4378 cInfo.selectAlternative(bestMAIndex); 4379 } 4380 } 4381 } 4382 4383 // Check and hook up tied operands, choose constraint code to use. 4384 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4385 cIndex != eIndex; ++cIndex) { 4386 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4387 4388 // If this is an output operand with a matching input operand, look up the 4389 // matching input. If their types mismatch, e.g. one is an integer, the 4390 // other is floating point, or their sizes are different, flag it as an 4391 // error. 4392 if (OpInfo.hasMatchingInput()) { 4393 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4394 4395 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4396 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4397 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4398 OpInfo.ConstraintVT); 4399 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4400 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4401 Input.ConstraintVT); 4402 if ((OpInfo.ConstraintVT.isInteger() != 4403 Input.ConstraintVT.isInteger()) || 4404 (MatchRC.second != InputRC.second)) { 4405 report_fatal_error("Unsupported asm: input constraint" 4406 " with a matching output constraint of" 4407 " incompatible type!"); 4408 } 4409 } 4410 } 4411 } 4412 4413 return ConstraintOperands; 4414 } 4415 4416 /// Return an integer indicating how general CT is. 4417 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4418 switch (CT) { 4419 case TargetLowering::C_Immediate: 4420 case TargetLowering::C_Other: 4421 case TargetLowering::C_Unknown: 4422 return 0; 4423 case TargetLowering::C_Register: 4424 return 1; 4425 case TargetLowering::C_RegisterClass: 4426 return 2; 4427 case TargetLowering::C_Memory: 4428 return 3; 4429 } 4430 llvm_unreachable("Invalid constraint type"); 4431 } 4432 4433 /// Examine constraint type and operand type and determine a weight value. 4434 /// This object must already have been set up with the operand type 4435 /// and the current alternative constraint selected. 4436 TargetLowering::ConstraintWeight 4437 TargetLowering::getMultipleConstraintMatchWeight( 4438 AsmOperandInfo &info, int maIndex) const { 4439 InlineAsm::ConstraintCodeVector *rCodes; 4440 if (maIndex >= (int)info.multipleAlternatives.size()) 4441 rCodes = &info.Codes; 4442 else 4443 rCodes = &info.multipleAlternatives[maIndex].Codes; 4444 ConstraintWeight BestWeight = CW_Invalid; 4445 4446 // Loop over the options, keeping track of the most general one. 4447 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4448 ConstraintWeight weight = 4449 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4450 if (weight > BestWeight) 4451 BestWeight = weight; 4452 } 4453 4454 return BestWeight; 4455 } 4456 4457 /// Examine constraint type and operand type and determine a weight value. 4458 /// This object must already have been set up with the operand type 4459 /// and the current alternative constraint selected. 4460 TargetLowering::ConstraintWeight 4461 TargetLowering::getSingleConstraintMatchWeight( 4462 AsmOperandInfo &info, const char *constraint) const { 4463 ConstraintWeight weight = CW_Invalid; 4464 Value *CallOperandVal = info.CallOperandVal; 4465 // If we don't have a value, we can't do a match, 4466 // but allow it at the lowest weight. 4467 if (!CallOperandVal) 4468 return CW_Default; 4469 // Look at the constraint type. 4470 switch (*constraint) { 4471 case 'i': // immediate integer. 4472 case 'n': // immediate integer with a known value. 4473 if (isa<ConstantInt>(CallOperandVal)) 4474 weight = CW_Constant; 4475 break; 4476 case 's': // non-explicit intregal immediate. 4477 if (isa<GlobalValue>(CallOperandVal)) 4478 weight = CW_Constant; 4479 break; 4480 case 'E': // immediate float if host format. 4481 case 'F': // immediate float. 4482 if (isa<ConstantFP>(CallOperandVal)) 4483 weight = CW_Constant; 4484 break; 4485 case '<': // memory operand with autodecrement. 4486 case '>': // memory operand with autoincrement. 4487 case 'm': // memory operand. 4488 case 'o': // offsettable memory operand 4489 case 'V': // non-offsettable memory operand 4490 weight = CW_Memory; 4491 break; 4492 case 'r': // general register. 4493 case 'g': // general register, memory operand or immediate integer. 4494 // note: Clang converts "g" to "imr". 4495 if (CallOperandVal->getType()->isIntegerTy()) 4496 weight = CW_Register; 4497 break; 4498 case 'X': // any operand. 4499 default: 4500 weight = CW_Default; 4501 break; 4502 } 4503 return weight; 4504 } 4505 4506 /// If there are multiple different constraints that we could pick for this 4507 /// operand (e.g. "imr") try to pick the 'best' one. 4508 /// This is somewhat tricky: constraints fall into four classes: 4509 /// Other -> immediates and magic values 4510 /// Register -> one specific register 4511 /// RegisterClass -> a group of regs 4512 /// Memory -> memory 4513 /// Ideally, we would pick the most specific constraint possible: if we have 4514 /// something that fits into a register, we would pick it. The problem here 4515 /// is that if we have something that could either be in a register or in 4516 /// memory that use of the register could cause selection of *other* 4517 /// operands to fail: they might only succeed if we pick memory. Because of 4518 /// this the heuristic we use is: 4519 /// 4520 /// 1) If there is an 'other' constraint, and if the operand is valid for 4521 /// that constraint, use it. This makes us take advantage of 'i' 4522 /// constraints when available. 4523 /// 2) Otherwise, pick the most general constraint present. This prefers 4524 /// 'm' over 'r', for example. 4525 /// 4526 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4527 const TargetLowering &TLI, 4528 SDValue Op, SelectionDAG *DAG) { 4529 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4530 unsigned BestIdx = 0; 4531 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4532 int BestGenerality = -1; 4533 4534 // Loop over the options, keeping track of the most general one. 4535 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4536 TargetLowering::ConstraintType CType = 4537 TLI.getConstraintType(OpInfo.Codes[i]); 4538 4539 // Indirect 'other' or 'immediate' constraints are not allowed. 4540 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4541 CType == TargetLowering::C_Register || 4542 CType == TargetLowering::C_RegisterClass)) 4543 continue; 4544 4545 // If this is an 'other' or 'immediate' constraint, see if the operand is 4546 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4547 // the operand is an integer in the range [0..31] we want to use I (saving a 4548 // load of a register), otherwise we must use 'r'. 4549 if ((CType == TargetLowering::C_Other || 4550 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4551 assert(OpInfo.Codes[i].size() == 1 && 4552 "Unhandled multi-letter 'other' constraint"); 4553 std::vector<SDValue> ResultOps; 4554 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4555 ResultOps, *DAG); 4556 if (!ResultOps.empty()) { 4557 BestType = CType; 4558 BestIdx = i; 4559 break; 4560 } 4561 } 4562 4563 // Things with matching constraints can only be registers, per gcc 4564 // documentation. This mainly affects "g" constraints. 4565 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4566 continue; 4567 4568 // This constraint letter is more general than the previous one, use it. 4569 int Generality = getConstraintGenerality(CType); 4570 if (Generality > BestGenerality) { 4571 BestType = CType; 4572 BestIdx = i; 4573 BestGenerality = Generality; 4574 } 4575 } 4576 4577 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4578 OpInfo.ConstraintType = BestType; 4579 } 4580 4581 /// Determines the constraint code and constraint type to use for the specific 4582 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4583 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4584 SDValue Op, 4585 SelectionDAG *DAG) const { 4586 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4587 4588 // Single-letter constraints ('r') are very common. 4589 if (OpInfo.Codes.size() == 1) { 4590 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4591 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4592 } else { 4593 ChooseConstraint(OpInfo, *this, Op, DAG); 4594 } 4595 4596 // 'X' matches anything. 4597 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4598 // Labels and constants are handled elsewhere ('X' is the only thing 4599 // that matches labels). For Functions, the type here is the type of 4600 // the result, which is not what we want to look at; leave them alone. 4601 Value *v = OpInfo.CallOperandVal; 4602 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4603 OpInfo.CallOperandVal = v; 4604 return; 4605 } 4606 4607 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4608 return; 4609 4610 // Otherwise, try to resolve it to something we know about by looking at 4611 // the actual operand type. 4612 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4613 OpInfo.ConstraintCode = Repl; 4614 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4615 } 4616 } 4617 } 4618 4619 /// Given an exact SDIV by a constant, create a multiplication 4620 /// with the multiplicative inverse of the constant. 4621 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4622 const SDLoc &dl, SelectionDAG &DAG, 4623 SmallVectorImpl<SDNode *> &Created) { 4624 SDValue Op0 = N->getOperand(0); 4625 SDValue Op1 = N->getOperand(1); 4626 EVT VT = N->getValueType(0); 4627 EVT SVT = VT.getScalarType(); 4628 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4629 EVT ShSVT = ShVT.getScalarType(); 4630 4631 bool UseSRA = false; 4632 SmallVector<SDValue, 16> Shifts, Factors; 4633 4634 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4635 if (C->isNullValue()) 4636 return false; 4637 APInt Divisor = C->getAPIntValue(); 4638 unsigned Shift = Divisor.countTrailingZeros(); 4639 if (Shift) { 4640 Divisor.ashrInPlace(Shift); 4641 UseSRA = true; 4642 } 4643 // Calculate the multiplicative inverse, using Newton's method. 4644 APInt t; 4645 APInt Factor = Divisor; 4646 while ((t = Divisor * Factor) != 1) 4647 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4648 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4649 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4650 return true; 4651 }; 4652 4653 // Collect all magic values from the build vector. 4654 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4655 return SDValue(); 4656 4657 SDValue Shift, Factor; 4658 if (VT.isVector()) { 4659 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4660 Factor = DAG.getBuildVector(VT, dl, Factors); 4661 } else { 4662 Shift = Shifts[0]; 4663 Factor = Factors[0]; 4664 } 4665 4666 SDValue Res = Op0; 4667 4668 // Shift the value upfront if it is even, so the LSB is one. 4669 if (UseSRA) { 4670 // TODO: For UDIV use SRL instead of SRA. 4671 SDNodeFlags Flags; 4672 Flags.setExact(true); 4673 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4674 Created.push_back(Res.getNode()); 4675 } 4676 4677 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4678 } 4679 4680 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4681 SelectionDAG &DAG, 4682 SmallVectorImpl<SDNode *> &Created) const { 4683 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4684 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4685 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4686 return SDValue(N, 0); // Lower SDIV as SDIV 4687 return SDValue(); 4688 } 4689 4690 /// Given an ISD::SDIV node expressing a divide by constant, 4691 /// return a DAG expression to select that will generate the same value by 4692 /// multiplying by a magic number. 4693 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4694 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4695 bool IsAfterLegalization, 4696 SmallVectorImpl<SDNode *> &Created) const { 4697 SDLoc dl(N); 4698 EVT VT = N->getValueType(0); 4699 EVT SVT = VT.getScalarType(); 4700 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4701 EVT ShSVT = ShVT.getScalarType(); 4702 unsigned EltBits = VT.getScalarSizeInBits(); 4703 4704 // Check to see if we can do this. 4705 // FIXME: We should be more aggressive here. 4706 if (!isTypeLegal(VT)) 4707 return SDValue(); 4708 4709 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4710 if (N->getFlags().hasExact()) 4711 return BuildExactSDIV(*this, N, dl, DAG, Created); 4712 4713 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4714 4715 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4716 if (C->isNullValue()) 4717 return false; 4718 4719 const APInt &Divisor = C->getAPIntValue(); 4720 APInt::ms magics = Divisor.magic(); 4721 int NumeratorFactor = 0; 4722 int ShiftMask = -1; 4723 4724 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4725 // If d is +1/-1, we just multiply the numerator by +1/-1. 4726 NumeratorFactor = Divisor.getSExtValue(); 4727 magics.m = 0; 4728 magics.s = 0; 4729 ShiftMask = 0; 4730 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4731 // If d > 0 and m < 0, add the numerator. 4732 NumeratorFactor = 1; 4733 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4734 // If d < 0 and m > 0, subtract the numerator. 4735 NumeratorFactor = -1; 4736 } 4737 4738 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4739 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4740 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4741 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4742 return true; 4743 }; 4744 4745 SDValue N0 = N->getOperand(0); 4746 SDValue N1 = N->getOperand(1); 4747 4748 // Collect the shifts / magic values from each element. 4749 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4750 return SDValue(); 4751 4752 SDValue MagicFactor, Factor, Shift, ShiftMask; 4753 if (VT.isVector()) { 4754 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4755 Factor = DAG.getBuildVector(VT, dl, Factors); 4756 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4757 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4758 } else { 4759 MagicFactor = MagicFactors[0]; 4760 Factor = Factors[0]; 4761 Shift = Shifts[0]; 4762 ShiftMask = ShiftMasks[0]; 4763 } 4764 4765 // Multiply the numerator (operand 0) by the magic value. 4766 // FIXME: We should support doing a MUL in a wider type. 4767 SDValue Q; 4768 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4769 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4770 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4771 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4772 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4773 SDValue LoHi = 4774 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4775 Q = SDValue(LoHi.getNode(), 1); 4776 } else 4777 return SDValue(); // No mulhs or equivalent. 4778 Created.push_back(Q.getNode()); 4779 4780 // (Optionally) Add/subtract the numerator using Factor. 4781 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4782 Created.push_back(Factor.getNode()); 4783 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4784 Created.push_back(Q.getNode()); 4785 4786 // Shift right algebraic by shift value. 4787 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4788 Created.push_back(Q.getNode()); 4789 4790 // Extract the sign bit, mask it and add it to the quotient. 4791 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4792 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4793 Created.push_back(T.getNode()); 4794 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4795 Created.push_back(T.getNode()); 4796 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4797 } 4798 4799 /// Given an ISD::UDIV node expressing a divide by constant, 4800 /// return a DAG expression to select that will generate the same value by 4801 /// multiplying by a magic number. 4802 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4803 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4804 bool IsAfterLegalization, 4805 SmallVectorImpl<SDNode *> &Created) const { 4806 SDLoc dl(N); 4807 EVT VT = N->getValueType(0); 4808 EVT SVT = VT.getScalarType(); 4809 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4810 EVT ShSVT = ShVT.getScalarType(); 4811 unsigned EltBits = VT.getScalarSizeInBits(); 4812 4813 // Check to see if we can do this. 4814 // FIXME: We should be more aggressive here. 4815 if (!isTypeLegal(VT)) 4816 return SDValue(); 4817 4818 bool UseNPQ = false; 4819 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4820 4821 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4822 if (C->isNullValue()) 4823 return false; 4824 // FIXME: We should use a narrower constant when the upper 4825 // bits are known to be zero. 4826 APInt Divisor = C->getAPIntValue(); 4827 APInt::mu magics = Divisor.magicu(); 4828 unsigned PreShift = 0, PostShift = 0; 4829 4830 // If the divisor is even, we can avoid using the expensive fixup by 4831 // shifting the divided value upfront. 4832 if (magics.a != 0 && !Divisor[0]) { 4833 PreShift = Divisor.countTrailingZeros(); 4834 // Get magic number for the shifted divisor. 4835 magics = Divisor.lshr(PreShift).magicu(PreShift); 4836 assert(magics.a == 0 && "Should use cheap fixup now"); 4837 } 4838 4839 APInt Magic = magics.m; 4840 4841 unsigned SelNPQ; 4842 if (magics.a == 0 || Divisor.isOneValue()) { 4843 assert(magics.s < Divisor.getBitWidth() && 4844 "We shouldn't generate an undefined shift!"); 4845 PostShift = magics.s; 4846 SelNPQ = false; 4847 } else { 4848 PostShift = magics.s - 1; 4849 SelNPQ = true; 4850 } 4851 4852 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4853 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4854 NPQFactors.push_back( 4855 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4856 : APInt::getNullValue(EltBits), 4857 dl, SVT)); 4858 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4859 UseNPQ |= SelNPQ; 4860 return true; 4861 }; 4862 4863 SDValue N0 = N->getOperand(0); 4864 SDValue N1 = N->getOperand(1); 4865 4866 // Collect the shifts/magic values from each element. 4867 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4868 return SDValue(); 4869 4870 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4871 if (VT.isVector()) { 4872 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4873 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4874 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4875 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4876 } else { 4877 PreShift = PreShifts[0]; 4878 MagicFactor = MagicFactors[0]; 4879 PostShift = PostShifts[0]; 4880 } 4881 4882 SDValue Q = N0; 4883 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4884 Created.push_back(Q.getNode()); 4885 4886 // FIXME: We should support doing a MUL in a wider type. 4887 auto GetMULHU = [&](SDValue X, SDValue Y) { 4888 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4889 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4890 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4891 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4892 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4893 SDValue LoHi = 4894 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4895 return SDValue(LoHi.getNode(), 1); 4896 } 4897 return SDValue(); // No mulhu or equivalent 4898 }; 4899 4900 // Multiply the numerator (operand 0) by the magic value. 4901 Q = GetMULHU(Q, MagicFactor); 4902 if (!Q) 4903 return SDValue(); 4904 4905 Created.push_back(Q.getNode()); 4906 4907 if (UseNPQ) { 4908 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4909 Created.push_back(NPQ.getNode()); 4910 4911 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4912 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4913 if (VT.isVector()) 4914 NPQ = GetMULHU(NPQ, NPQFactor); 4915 else 4916 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4917 4918 Created.push_back(NPQ.getNode()); 4919 4920 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4921 Created.push_back(Q.getNode()); 4922 } 4923 4924 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 4925 Created.push_back(Q.getNode()); 4926 4927 SDValue One = DAG.getConstant(1, dl, VT); 4928 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 4929 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4930 } 4931 4932 /// If all values in Values that *don't* match the predicate are same 'splat' 4933 /// value, then replace all values with that splat value. 4934 /// Else, if AlternativeReplacement was provided, then replace all values that 4935 /// do match predicate with AlternativeReplacement value. 4936 static void 4937 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 4938 std::function<bool(SDValue)> Predicate, 4939 SDValue AlternativeReplacement = SDValue()) { 4940 SDValue Replacement; 4941 // Is there a value for which the Predicate does *NOT* match? What is it? 4942 auto SplatValue = llvm::find_if_not(Values, Predicate); 4943 if (SplatValue != Values.end()) { 4944 // Does Values consist only of SplatValue's and values matching Predicate? 4945 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 4946 return Value == *SplatValue || Predicate(Value); 4947 })) // Then we shall replace values matching predicate with SplatValue. 4948 Replacement = *SplatValue; 4949 } 4950 if (!Replacement) { 4951 // Oops, we did not find the "baseline" splat value. 4952 if (!AlternativeReplacement) 4953 return; // Nothing to do. 4954 // Let's replace with provided value then. 4955 Replacement = AlternativeReplacement; 4956 } 4957 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 4958 } 4959 4960 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 4961 /// where the divisor is constant and the comparison target is zero, 4962 /// return a DAG expression that will generate the same comparison result 4963 /// using only multiplications, additions and shifts/rotations. 4964 /// Ref: "Hacker's Delight" 10-17. 4965 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 4966 SDValue CompTargetNode, 4967 ISD::CondCode Cond, 4968 DAGCombinerInfo &DCI, 4969 const SDLoc &DL) const { 4970 SmallVector<SDNode *, 5> Built; 4971 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 4972 DCI, DL, Built)) { 4973 for (SDNode *N : Built) 4974 DCI.AddToWorklist(N); 4975 return Folded; 4976 } 4977 4978 return SDValue(); 4979 } 4980 4981 SDValue 4982 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 4983 SDValue CompTargetNode, ISD::CondCode Cond, 4984 DAGCombinerInfo &DCI, const SDLoc &DL, 4985 SmallVectorImpl<SDNode *> &Created) const { 4986 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 4987 // - D must be constant, with D = D0 * 2^K where D0 is odd 4988 // - P is the multiplicative inverse of D0 modulo 2^W 4989 // - Q = floor(((2^W) - 1) / D) 4990 // where W is the width of the common type of N and D. 4991 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4992 "Only applicable for (in)equality comparisons."); 4993 4994 SelectionDAG &DAG = DCI.DAG; 4995 4996 EVT VT = REMNode.getValueType(); 4997 EVT SVT = VT.getScalarType(); 4998 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4999 EVT ShSVT = ShVT.getScalarType(); 5000 5001 // If MUL is unavailable, we cannot proceed in any case. 5002 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5003 return SDValue(); 5004 5005 bool ComparingWithAllZeros = true; 5006 bool AllComparisonsWithNonZerosAreTautological = true; 5007 bool HadTautologicalLanes = false; 5008 bool AllLanesAreTautological = true; 5009 bool HadEvenDivisor = false; 5010 bool AllDivisorsArePowerOfTwo = true; 5011 bool HadTautologicalInvertedLanes = false; 5012 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5013 5014 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5015 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5016 if (CDiv->isNullValue()) 5017 return false; 5018 5019 const APInt &D = CDiv->getAPIntValue(); 5020 const APInt &Cmp = CCmp->getAPIntValue(); 5021 5022 ComparingWithAllZeros &= Cmp.isNullValue(); 5023 5024 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5025 // if C2 is not less than C1, the comparison is always false. 5026 // But we will only be able to produce the comparison that will give the 5027 // opposive tautological answer. So this lane would need to be fixed up. 5028 bool TautologicalInvertedLane = D.ule(Cmp); 5029 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5030 5031 // If all lanes are tautological (either all divisors are ones, or divisor 5032 // is not greater than the constant we are comparing with), 5033 // we will prefer to avoid the fold. 5034 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5035 HadTautologicalLanes |= TautologicalLane; 5036 AllLanesAreTautological &= TautologicalLane; 5037 5038 // If we are comparing with non-zero, we need'll need to subtract said 5039 // comparison value from the LHS. But there is no point in doing that if 5040 // every lane where we are comparing with non-zero is tautological.. 5041 if (!Cmp.isNullValue()) 5042 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5043 5044 // Decompose D into D0 * 2^K 5045 unsigned K = D.countTrailingZeros(); 5046 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5047 APInt D0 = D.lshr(K); 5048 5049 // D is even if it has trailing zeros. 5050 HadEvenDivisor |= (K != 0); 5051 // D is a power-of-two if D0 is one. 5052 // If all divisors are power-of-two, we will prefer to avoid the fold. 5053 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5054 5055 // P = inv(D0, 2^W) 5056 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5057 unsigned W = D.getBitWidth(); 5058 APInt P = D0.zext(W + 1) 5059 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5060 .trunc(W); 5061 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5062 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5063 5064 // Q = floor((2^W - 1) u/ D) 5065 // R = ((2^W - 1) u% D) 5066 APInt Q, R; 5067 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5068 5069 // If we are comparing with zero, then that comparison constant is okay, 5070 // else it may need to be one less than that. 5071 if (Cmp.ugt(R)) 5072 Q -= 1; 5073 5074 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5075 "We are expecting that K is always less than all-ones for ShSVT"); 5076 5077 // If the lane is tautological the result can be constant-folded. 5078 if (TautologicalLane) { 5079 // Set P and K amount to a bogus values so we can try to splat them. 5080 P = 0; 5081 K = -1; 5082 // And ensure that comparison constant is tautological, 5083 // it will always compare true/false. 5084 Q = -1; 5085 } 5086 5087 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5088 KAmts.push_back( 5089 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5090 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5091 return true; 5092 }; 5093 5094 SDValue N = REMNode.getOperand(0); 5095 SDValue D = REMNode.getOperand(1); 5096 5097 // Collect the values from each element. 5098 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5099 return SDValue(); 5100 5101 // If all lanes are tautological, the result can be constant-folded. 5102 if (AllLanesAreTautological) 5103 return SDValue(); 5104 5105 // If this is a urem by a powers-of-two, avoid the fold since it can be 5106 // best implemented as a bit test. 5107 if (AllDivisorsArePowerOfTwo) 5108 return SDValue(); 5109 5110 SDValue PVal, KVal, QVal; 5111 if (VT.isVector()) { 5112 if (HadTautologicalLanes) { 5113 // Try to turn PAmts into a splat, since we don't care about the values 5114 // that are currently '0'. If we can't, just keep '0'`s. 5115 turnVectorIntoSplatVector(PAmts, isNullConstant); 5116 // Try to turn KAmts into a splat, since we don't care about the values 5117 // that are currently '-1'. If we can't, change them to '0'`s. 5118 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5119 DAG.getConstant(0, DL, ShSVT)); 5120 } 5121 5122 PVal = DAG.getBuildVector(VT, DL, PAmts); 5123 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5124 QVal = DAG.getBuildVector(VT, DL, QAmts); 5125 } else { 5126 PVal = PAmts[0]; 5127 KVal = KAmts[0]; 5128 QVal = QAmts[0]; 5129 } 5130 5131 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5132 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5133 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5134 assert(CompTargetNode.getValueType() == N.getValueType() && 5135 "Expecting that the types on LHS and RHS of comparisons match."); 5136 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5137 } 5138 5139 // (mul N, P) 5140 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5141 Created.push_back(Op0.getNode()); 5142 5143 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5144 // divisors as a performance improvement, since rotating by 0 is a no-op. 5145 if (HadEvenDivisor) { 5146 // We need ROTR to do this. 5147 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5148 return SDValue(); 5149 SDNodeFlags Flags; 5150 Flags.setExact(true); 5151 // UREM: (rotr (mul N, P), K) 5152 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5153 Created.push_back(Op0.getNode()); 5154 } 5155 5156 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5157 SDValue NewCC = 5158 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5159 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5160 if (!HadTautologicalInvertedLanes) 5161 return NewCC; 5162 5163 // If any lanes previously compared always-false, the NewCC will give 5164 // always-true result for them, so we need to fixup those lanes. 5165 // Or the other way around for inequality predicate. 5166 assert(VT.isVector() && "Can/should only get here for vectors."); 5167 Created.push_back(NewCC.getNode()); 5168 5169 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5170 // if C2 is not less than C1, the comparison is always false. 5171 // But we have produced the comparison that will give the 5172 // opposive tautological answer. So these lanes would need to be fixed up. 5173 SDValue TautologicalInvertedChannels = 5174 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5175 Created.push_back(TautologicalInvertedChannels.getNode()); 5176 5177 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5178 // If we have a vector select, let's replace the comparison results in the 5179 // affected lanes with the correct tautological result. 5180 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5181 DL, SETCCVT, SETCCVT); 5182 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5183 Replacement, NewCC); 5184 } 5185 5186 // Else, we can just invert the comparison result in the appropriate lanes. 5187 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5188 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5189 TautologicalInvertedChannels); 5190 5191 return SDValue(); // Don't know how to lower. 5192 } 5193 5194 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5195 /// where the divisor is constant and the comparison target is zero, 5196 /// return a DAG expression that will generate the same comparison result 5197 /// using only multiplications, additions and shifts/rotations. 5198 /// Ref: "Hacker's Delight" 10-17. 5199 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5200 SDValue CompTargetNode, 5201 ISD::CondCode Cond, 5202 DAGCombinerInfo &DCI, 5203 const SDLoc &DL) const { 5204 SmallVector<SDNode *, 7> Built; 5205 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5206 DCI, DL, Built)) { 5207 assert(Built.size() <= 7 && "Max size prediction failed."); 5208 for (SDNode *N : Built) 5209 DCI.AddToWorklist(N); 5210 return Folded; 5211 } 5212 5213 return SDValue(); 5214 } 5215 5216 SDValue 5217 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5218 SDValue CompTargetNode, ISD::CondCode Cond, 5219 DAGCombinerInfo &DCI, const SDLoc &DL, 5220 SmallVectorImpl<SDNode *> &Created) const { 5221 // Fold: 5222 // (seteq/ne (srem N, D), 0) 5223 // To: 5224 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5225 // 5226 // - D must be constant, with D = D0 * 2^K where D0 is odd 5227 // - P is the multiplicative inverse of D0 modulo 2^W 5228 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5229 // - Q = floor((2 * A) / (2^K)) 5230 // where W is the width of the common type of N and D. 5231 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5232 "Only applicable for (in)equality comparisons."); 5233 5234 SelectionDAG &DAG = DCI.DAG; 5235 5236 EVT VT = REMNode.getValueType(); 5237 EVT SVT = VT.getScalarType(); 5238 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5239 EVT ShSVT = ShVT.getScalarType(); 5240 5241 // If MUL is unavailable, we cannot proceed in any case. 5242 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5243 return SDValue(); 5244 5245 // TODO: Could support comparing with non-zero too. 5246 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5247 if (!CompTarget || !CompTarget->isNullValue()) 5248 return SDValue(); 5249 5250 bool HadIntMinDivisor = false; 5251 bool HadOneDivisor = false; 5252 bool AllDivisorsAreOnes = true; 5253 bool HadEvenDivisor = false; 5254 bool NeedToApplyOffset = false; 5255 bool AllDivisorsArePowerOfTwo = true; 5256 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5257 5258 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5259 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5260 if (C->isNullValue()) 5261 return false; 5262 5263 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5264 5265 // WARNING: this fold is only valid for positive divisors! 5266 APInt D = C->getAPIntValue(); 5267 if (D.isNegative()) 5268 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5269 5270 HadIntMinDivisor |= D.isMinSignedValue(); 5271 5272 // If all divisors are ones, we will prefer to avoid the fold. 5273 HadOneDivisor |= D.isOneValue(); 5274 AllDivisorsAreOnes &= D.isOneValue(); 5275 5276 // Decompose D into D0 * 2^K 5277 unsigned K = D.countTrailingZeros(); 5278 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5279 APInt D0 = D.lshr(K); 5280 5281 if (!D.isMinSignedValue()) { 5282 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5283 // we don't care about this lane in this fold, we'll special-handle it. 5284 HadEvenDivisor |= (K != 0); 5285 } 5286 5287 // D is a power-of-two if D0 is one. This includes INT_MIN. 5288 // If all divisors are power-of-two, we will prefer to avoid the fold. 5289 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5290 5291 // P = inv(D0, 2^W) 5292 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5293 unsigned W = D.getBitWidth(); 5294 APInt P = D0.zext(W + 1) 5295 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5296 .trunc(W); 5297 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5298 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5299 5300 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5301 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5302 A.clearLowBits(K); 5303 5304 if (!D.isMinSignedValue()) { 5305 // If divisor INT_MIN, then we don't care about this lane in this fold, 5306 // we'll special-handle it. 5307 NeedToApplyOffset |= A != 0; 5308 } 5309 5310 // Q = floor((2 * A) / (2^K)) 5311 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5312 5313 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5314 "We are expecting that A is always less than all-ones for SVT"); 5315 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5316 "We are expecting that K is always less than all-ones for ShSVT"); 5317 5318 // If the divisor is 1 the result can be constant-folded. Likewise, we 5319 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5320 if (D.isOneValue()) { 5321 // Set P, A and K to a bogus values so we can try to splat them. 5322 P = 0; 5323 A = -1; 5324 K = -1; 5325 5326 // x ?% 1 == 0 <--> true <--> x u<= -1 5327 Q = -1; 5328 } 5329 5330 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5331 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5332 KAmts.push_back( 5333 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5334 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5335 return true; 5336 }; 5337 5338 SDValue N = REMNode.getOperand(0); 5339 SDValue D = REMNode.getOperand(1); 5340 5341 // Collect the values from each element. 5342 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5343 return SDValue(); 5344 5345 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5346 if (AllDivisorsAreOnes) 5347 return SDValue(); 5348 5349 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5350 // since it can be best implemented as a bit test. 5351 if (AllDivisorsArePowerOfTwo) 5352 return SDValue(); 5353 5354 SDValue PVal, AVal, KVal, QVal; 5355 if (VT.isVector()) { 5356 if (HadOneDivisor) { 5357 // Try to turn PAmts into a splat, since we don't care about the values 5358 // that are currently '0'. If we can't, just keep '0'`s. 5359 turnVectorIntoSplatVector(PAmts, isNullConstant); 5360 // Try to turn AAmts into a splat, since we don't care about the 5361 // values that are currently '-1'. If we can't, change them to '0'`s. 5362 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5363 DAG.getConstant(0, DL, SVT)); 5364 // Try to turn KAmts into a splat, since we don't care about the values 5365 // that are currently '-1'. If we can't, change them to '0'`s. 5366 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5367 DAG.getConstant(0, DL, ShSVT)); 5368 } 5369 5370 PVal = DAG.getBuildVector(VT, DL, PAmts); 5371 AVal = DAG.getBuildVector(VT, DL, AAmts); 5372 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5373 QVal = DAG.getBuildVector(VT, DL, QAmts); 5374 } else { 5375 PVal = PAmts[0]; 5376 AVal = AAmts[0]; 5377 KVal = KAmts[0]; 5378 QVal = QAmts[0]; 5379 } 5380 5381 // (mul N, P) 5382 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5383 Created.push_back(Op0.getNode()); 5384 5385 if (NeedToApplyOffset) { 5386 // We need ADD to do this. 5387 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5388 return SDValue(); 5389 5390 // (add (mul N, P), A) 5391 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5392 Created.push_back(Op0.getNode()); 5393 } 5394 5395 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5396 // divisors as a performance improvement, since rotating by 0 is a no-op. 5397 if (HadEvenDivisor) { 5398 // We need ROTR to do this. 5399 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5400 return SDValue(); 5401 SDNodeFlags Flags; 5402 Flags.setExact(true); 5403 // SREM: (rotr (add (mul N, P), A), K) 5404 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5405 Created.push_back(Op0.getNode()); 5406 } 5407 5408 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5409 SDValue Fold = 5410 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5411 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5412 5413 // If we didn't have lanes with INT_MIN divisor, then we're done. 5414 if (!HadIntMinDivisor) 5415 return Fold; 5416 5417 // That fold is only valid for positive divisors. Which effectively means, 5418 // it is invalid for INT_MIN divisors. So if we have such a lane, 5419 // we must fix-up results for said lanes. 5420 assert(VT.isVector() && "Can/should only get here for vectors."); 5421 5422 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5423 !isOperationLegalOrCustom(ISD::AND, VT) || 5424 !isOperationLegalOrCustom(Cond, VT) || 5425 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5426 return SDValue(); 5427 5428 Created.push_back(Fold.getNode()); 5429 5430 SDValue IntMin = DAG.getConstant( 5431 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5432 SDValue IntMax = DAG.getConstant( 5433 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5434 SDValue Zero = 5435 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5436 5437 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5438 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5439 Created.push_back(DivisorIsIntMin.getNode()); 5440 5441 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5442 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5443 Created.push_back(Masked.getNode()); 5444 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5445 Created.push_back(MaskedIsZero.getNode()); 5446 5447 // To produce final result we need to blend 2 vectors: 'SetCC' and 5448 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5449 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5450 // constant-folded, select can get lowered to a shuffle with constant mask. 5451 SDValue Blended = 5452 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5453 5454 return Blended; 5455 } 5456 5457 bool TargetLowering:: 5458 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5459 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5460 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5461 "be a constant integer"); 5462 return true; 5463 } 5464 5465 return false; 5466 } 5467 5468 char TargetLowering::isNegatibleForFree(SDValue Op, SelectionDAG &DAG, 5469 bool LegalOperations, bool ForCodeSize, 5470 unsigned Depth) const { 5471 // fneg is removable even if it has multiple uses. 5472 if (Op.getOpcode() == ISD::FNEG) 5473 return 2; 5474 5475 // Don't allow anything with multiple uses unless we know it is free. 5476 EVT VT = Op.getValueType(); 5477 const SDNodeFlags Flags = Op->getFlags(); 5478 const TargetOptions &Options = DAG.getTarget().Options; 5479 if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND && 5480 isFPExtFree(VT, Op.getOperand(0).getValueType()))) 5481 return 0; 5482 5483 // Don't recurse exponentially. 5484 if (Depth > SelectionDAG::MaxRecursionDepth) 5485 return 0; 5486 5487 switch (Op.getOpcode()) { 5488 case ISD::ConstantFP: { 5489 if (!LegalOperations) 5490 return 1; 5491 5492 // Don't invert constant FP values after legalization unless the target says 5493 // the negated constant is legal. 5494 return isOperationLegal(ISD::ConstantFP, VT) || 5495 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5496 ForCodeSize); 5497 } 5498 case ISD::BUILD_VECTOR: { 5499 // Only permit BUILD_VECTOR of constants. 5500 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5501 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5502 })) 5503 return 0; 5504 if (!LegalOperations) 5505 return 1; 5506 if (isOperationLegal(ISD::ConstantFP, VT) && 5507 isOperationLegal(ISD::BUILD_VECTOR, VT)) 5508 return 1; 5509 return llvm::all_of(Op->op_values(), [&](SDValue N) { 5510 return N.isUndef() || 5511 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5512 ForCodeSize); 5513 }); 5514 } 5515 case ISD::FADD: 5516 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5517 return 0; 5518 5519 // After operation legalization, it might not be legal to create new FSUBs. 5520 if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5521 return 0; 5522 5523 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5524 if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5525 ForCodeSize, Depth + 1)) 5526 return V; 5527 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5528 return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5529 ForCodeSize, Depth + 1); 5530 case ISD::FSUB: 5531 // We can't turn -(A-B) into B-A when we honor signed zeros. 5532 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5533 return 0; 5534 5535 // fold (fneg (fsub A, B)) -> (fsub B, A) 5536 return 1; 5537 5538 case ISD::FMUL: 5539 case ISD::FDIV: 5540 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 5541 if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5542 ForCodeSize, Depth + 1)) 5543 return V; 5544 5545 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5546 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5547 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5548 return 0; 5549 5550 return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5551 ForCodeSize, Depth + 1); 5552 5553 case ISD::FMA: 5554 case ISD::FMAD: { 5555 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5556 return 0; 5557 5558 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5559 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5560 char V2 = isNegatibleForFree(Op.getOperand(2), DAG, LegalOperations, 5561 ForCodeSize, Depth + 1); 5562 if (!V2) 5563 return 0; 5564 5565 // One of Op0/Op1 must be cheaply negatible, then select the cheapest. 5566 char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5567 ForCodeSize, Depth + 1); 5568 char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5569 ForCodeSize, Depth + 1); 5570 char V01 = std::max(V0, V1); 5571 return V01 ? std::max(V01, V2) : 0; 5572 } 5573 5574 case ISD::FP_EXTEND: 5575 case ISD::FP_ROUND: 5576 case ISD::FSIN: 5577 return isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5578 ForCodeSize, Depth + 1); 5579 } 5580 5581 return 0; 5582 } 5583 5584 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5585 bool LegalOperations, 5586 bool ForCodeSize, 5587 unsigned Depth) const { 5588 // fneg is removable even if it has multiple uses. 5589 if (Op.getOpcode() == ISD::FNEG) 5590 return Op.getOperand(0); 5591 5592 assert(Depth <= SelectionDAG::MaxRecursionDepth && 5593 "getNegatedExpression doesn't match isNegatibleForFree"); 5594 const SDNodeFlags Flags = Op->getFlags(); 5595 5596 switch (Op.getOpcode()) { 5597 case ISD::ConstantFP: { 5598 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5599 V.changeSign(); 5600 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 5601 } 5602 case ISD::BUILD_VECTOR: { 5603 SmallVector<SDValue, 4> Ops; 5604 for (SDValue C : Op->op_values()) { 5605 if (C.isUndef()) { 5606 Ops.push_back(C); 5607 continue; 5608 } 5609 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5610 V.changeSign(); 5611 Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType())); 5612 } 5613 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops); 5614 } 5615 case ISD::FADD: 5616 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5617 Flags.hasNoSignedZeros()) && 5618 "Expected NSZ fp-flag"); 5619 5620 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5621 if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5622 Depth + 1)) 5623 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5624 getNegatedExpression(Op.getOperand(0), DAG, 5625 LegalOperations, ForCodeSize, 5626 Depth + 1), 5627 Op.getOperand(1), Flags); 5628 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5629 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5630 getNegatedExpression(Op.getOperand(1), DAG, 5631 LegalOperations, ForCodeSize, 5632 Depth + 1), 5633 Op.getOperand(0), Flags); 5634 case ISD::FSUB: 5635 // fold (fneg (fsub 0, B)) -> B 5636 if (ConstantFPSDNode *N0CFP = 5637 isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true)) 5638 if (N0CFP->isZero()) 5639 return Op.getOperand(1); 5640 5641 // fold (fneg (fsub A, B)) -> (fsub B, A) 5642 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5643 Op.getOperand(1), Op.getOperand(0), Flags); 5644 5645 case ISD::FMUL: 5646 case ISD::FDIV: 5647 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5648 if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5649 Depth + 1)) 5650 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5651 getNegatedExpression(Op.getOperand(0), DAG, 5652 LegalOperations, ForCodeSize, 5653 Depth + 1), 5654 Op.getOperand(1), Flags); 5655 5656 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5657 return DAG.getNode( 5658 Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0), 5659 getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5660 ForCodeSize, Depth + 1), 5661 Flags); 5662 5663 case ISD::FMA: 5664 case ISD::FMAD: { 5665 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5666 Flags.hasNoSignedZeros()) && 5667 "Expected NSZ fp-flag"); 5668 5669 SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations, 5670 ForCodeSize, Depth + 1); 5671 5672 char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5673 ForCodeSize, Depth + 1); 5674 char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5675 ForCodeSize, Depth + 1); 5676 // TODO: This is a hack. It is possible that costs have changed between now 5677 // and the initial calls to isNegatibleForFree(). That is because we 5678 // are rewriting the expression, and that may change the number of 5679 // uses (and therefore the cost) of values. If the negation costs are 5680 // equal, only negate this value if it is a constant. Otherwise, try 5681 // operand 1. A better fix would eliminate uses as a cost factor or 5682 // track the change in uses as we rewrite the expression. 5683 if (V0 > V1 || (V0 == V1 && isa<ConstantFPSDNode>(Op.getOperand(0)))) { 5684 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5685 SDValue Neg0 = getNegatedExpression( 5686 Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1); 5687 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0, 5688 Op.getOperand(1), Neg2, Flags); 5689 } 5690 5691 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5692 SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5693 ForCodeSize, Depth + 1); 5694 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5695 Op.getOperand(0), Neg1, Neg2, Flags); 5696 } 5697 5698 case ISD::FP_EXTEND: 5699 case ISD::FSIN: 5700 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5701 getNegatedExpression(Op.getOperand(0), DAG, 5702 LegalOperations, ForCodeSize, 5703 Depth + 1)); 5704 case ISD::FP_ROUND: 5705 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 5706 getNegatedExpression(Op.getOperand(0), DAG, 5707 LegalOperations, ForCodeSize, 5708 Depth + 1), 5709 Op.getOperand(1)); 5710 } 5711 5712 llvm_unreachable("Unknown code"); 5713 } 5714 5715 //===----------------------------------------------------------------------===// 5716 // Legalization Utilities 5717 //===----------------------------------------------------------------------===// 5718 5719 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5720 SDValue LHS, SDValue RHS, 5721 SmallVectorImpl<SDValue> &Result, 5722 EVT HiLoVT, SelectionDAG &DAG, 5723 MulExpansionKind Kind, SDValue LL, 5724 SDValue LH, SDValue RL, SDValue RH) const { 5725 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5726 Opcode == ISD::SMUL_LOHI); 5727 5728 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5729 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5730 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5731 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5732 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5733 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5734 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5735 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5736 5737 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5738 return false; 5739 5740 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5741 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5742 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5743 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5744 5745 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5746 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5747 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5748 5749 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5750 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5751 bool Signed) -> bool { 5752 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5753 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5754 Hi = SDValue(Lo.getNode(), 1); 5755 return true; 5756 } 5757 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5758 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5759 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5760 return true; 5761 } 5762 return false; 5763 }; 5764 5765 SDValue Lo, Hi; 5766 5767 if (!LL.getNode() && !RL.getNode() && 5768 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5769 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5770 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5771 } 5772 5773 if (!LL.getNode()) 5774 return false; 5775 5776 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5777 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5778 DAG.MaskedValueIsZero(RHS, HighMask)) { 5779 // The inputs are both zero-extended. 5780 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5781 Result.push_back(Lo); 5782 Result.push_back(Hi); 5783 if (Opcode != ISD::MUL) { 5784 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5785 Result.push_back(Zero); 5786 Result.push_back(Zero); 5787 } 5788 return true; 5789 } 5790 } 5791 5792 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5793 RHSSB > InnerBitSize) { 5794 // The input values are both sign-extended. 5795 // TODO non-MUL case? 5796 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5797 Result.push_back(Lo); 5798 Result.push_back(Hi); 5799 return true; 5800 } 5801 } 5802 5803 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5804 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5805 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5806 // FIXME getShiftAmountTy does not always return a sensible result when VT 5807 // is an illegal type, and so the type may be too small to fit the shift 5808 // amount. Override it with i32. The shift will have to be legalized. 5809 ShiftAmountTy = MVT::i32; 5810 } 5811 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5812 5813 if (!LH.getNode() && !RH.getNode() && 5814 isOperationLegalOrCustom(ISD::SRL, VT) && 5815 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5816 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5817 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5818 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5819 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5820 } 5821 5822 if (!LH.getNode()) 5823 return false; 5824 5825 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5826 return false; 5827 5828 Result.push_back(Lo); 5829 5830 if (Opcode == ISD::MUL) { 5831 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5832 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5833 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5834 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5835 Result.push_back(Hi); 5836 return true; 5837 } 5838 5839 // Compute the full width result. 5840 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5841 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5842 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5843 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5844 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5845 }; 5846 5847 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5848 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5849 return false; 5850 5851 // This is effectively the add part of a multiply-add of half-sized operands, 5852 // so it cannot overflow. 5853 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5854 5855 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5856 return false; 5857 5858 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5859 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5860 5861 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5862 isOperationLegalOrCustom(ISD::ADDE, VT)); 5863 if (UseGlue) 5864 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5865 Merge(Lo, Hi)); 5866 else 5867 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5868 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5869 5870 SDValue Carry = Next.getValue(1); 5871 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5872 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5873 5874 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5875 return false; 5876 5877 if (UseGlue) 5878 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5879 Carry); 5880 else 5881 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 5882 Zero, Carry); 5883 5884 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5885 5886 if (Opcode == ISD::SMUL_LOHI) { 5887 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5888 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 5889 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 5890 5891 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5892 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 5893 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 5894 } 5895 5896 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5897 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5898 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5899 return true; 5900 } 5901 5902 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 5903 SelectionDAG &DAG, MulExpansionKind Kind, 5904 SDValue LL, SDValue LH, SDValue RL, 5905 SDValue RH) const { 5906 SmallVector<SDValue, 2> Result; 5907 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 5908 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 5909 DAG, Kind, LL, LH, RL, RH); 5910 if (Ok) { 5911 assert(Result.size() == 2); 5912 Lo = Result[0]; 5913 Hi = Result[1]; 5914 } 5915 return Ok; 5916 } 5917 5918 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 5919 SelectionDAG &DAG) const { 5920 EVT VT = Node->getValueType(0); 5921 5922 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 5923 !isOperationLegalOrCustom(ISD::SRL, VT) || 5924 !isOperationLegalOrCustom(ISD::SUB, VT) || 5925 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 5926 return false; 5927 5928 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5929 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5930 SDValue X = Node->getOperand(0); 5931 SDValue Y = Node->getOperand(1); 5932 SDValue Z = Node->getOperand(2); 5933 5934 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5935 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 5936 SDLoc DL(SDValue(Node, 0)); 5937 5938 EVT ShVT = Z.getValueType(); 5939 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5940 SDValue Zero = DAG.getConstant(0, DL, ShVT); 5941 5942 SDValue ShAmt; 5943 if (isPowerOf2_32(EltSizeInBits)) { 5944 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 5945 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 5946 } else { 5947 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 5948 } 5949 5950 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 5951 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 5952 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 5953 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 5954 5955 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 5956 // and that is undefined. We must compare and select to avoid UB. 5957 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 5958 5959 // For fshl, 0-shift returns the 1st arg (X). 5960 // For fshr, 0-shift returns the 2nd arg (Y). 5961 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 5962 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 5963 return true; 5964 } 5965 5966 // TODO: Merge with expandFunnelShift. 5967 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 5968 SelectionDAG &DAG) const { 5969 EVT VT = Node->getValueType(0); 5970 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5971 bool IsLeft = Node->getOpcode() == ISD::ROTL; 5972 SDValue Op0 = Node->getOperand(0); 5973 SDValue Op1 = Node->getOperand(1); 5974 SDLoc DL(SDValue(Node, 0)); 5975 5976 EVT ShVT = Op1.getValueType(); 5977 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5978 5979 // If a rotate in the other direction is legal, use it. 5980 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 5981 if (isOperationLegal(RevRot, VT)) { 5982 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 5983 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 5984 return true; 5985 } 5986 5987 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 5988 !isOperationLegalOrCustom(ISD::SRL, VT) || 5989 !isOperationLegalOrCustom(ISD::SUB, VT) || 5990 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 5991 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 5992 return false; 5993 5994 // Otherwise, 5995 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 5996 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 5997 // 5998 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 5999 "Expecting the type bitwidth to be a power of 2"); 6000 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6001 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6002 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6003 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6004 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6005 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6006 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 6007 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 6008 return true; 6009 } 6010 6011 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6012 SelectionDAG &DAG) const { 6013 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6014 SDValue Src = Node->getOperand(OpNo); 6015 EVT SrcVT = Src.getValueType(); 6016 EVT DstVT = Node->getValueType(0); 6017 SDLoc dl(SDValue(Node, 0)); 6018 6019 // FIXME: Only f32 to i64 conversions are supported. 6020 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6021 return false; 6022 6023 if (Node->isStrictFPOpcode()) 6024 // When a NaN is converted to an integer a trap is allowed. We can't 6025 // use this expansion here because it would eliminate that trap. Other 6026 // traps are also allowed and cannot be eliminated. See 6027 // IEEE 754-2008 sec 5.8. 6028 return false; 6029 6030 // Expand f32 -> i64 conversion 6031 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6032 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6033 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6034 EVT IntVT = SrcVT.changeTypeToInteger(); 6035 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6036 6037 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6038 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6039 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6040 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6041 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6042 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6043 6044 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6045 6046 SDValue ExponentBits = DAG.getNode( 6047 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6048 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6049 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6050 6051 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6052 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6053 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6054 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6055 6056 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6057 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6058 DAG.getConstant(0x00800000, dl, IntVT)); 6059 6060 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6061 6062 R = DAG.getSelectCC( 6063 dl, Exponent, ExponentLoBit, 6064 DAG.getNode(ISD::SHL, dl, DstVT, R, 6065 DAG.getZExtOrTrunc( 6066 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6067 dl, IntShVT)), 6068 DAG.getNode(ISD::SRL, dl, DstVT, R, 6069 DAG.getZExtOrTrunc( 6070 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6071 dl, IntShVT)), 6072 ISD::SETGT); 6073 6074 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6075 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6076 6077 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6078 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6079 return true; 6080 } 6081 6082 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6083 SDValue &Chain, 6084 SelectionDAG &DAG) const { 6085 SDLoc dl(SDValue(Node, 0)); 6086 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6087 SDValue Src = Node->getOperand(OpNo); 6088 6089 EVT SrcVT = Src.getValueType(); 6090 EVT DstVT = Node->getValueType(0); 6091 EVT SetCCVT = 6092 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6093 EVT DstSetCCVT = 6094 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6095 6096 // Only expand vector types if we have the appropriate vector bit operations. 6097 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6098 ISD::FP_TO_SINT; 6099 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6100 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6101 return false; 6102 6103 // If the maximum float value is smaller then the signed integer range, 6104 // the destination signmask can't be represented by the float, so we can 6105 // just use FP_TO_SINT directly. 6106 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6107 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6108 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6109 if (APFloat::opOverflow & 6110 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6111 if (Node->isStrictFPOpcode()) { 6112 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6113 { Node->getOperand(0), Src }); 6114 Chain = Result.getValue(1); 6115 } else 6116 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6117 return true; 6118 } 6119 6120 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6121 SDValue Sel; 6122 6123 if (Node->isStrictFPOpcode()) 6124 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6125 Node->getOperand(0), /*IsSignaling*/ true); 6126 else 6127 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6128 6129 bool Strict = Node->isStrictFPOpcode() || 6130 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6131 6132 if (Strict) { 6133 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6134 // signmask then offset (the result of which should be fully representable). 6135 // Sel = Src < 0x8000000000000000 6136 // FltOfs = select Sel, 0, 0x8000000000000000 6137 // IntOfs = select Sel, 0, 0x8000000000000000 6138 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6139 6140 // TODO: Should any fast-math-flags be set for the FSUB? 6141 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6142 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6143 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6144 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6145 DAG.getConstant(0, dl, DstVT), 6146 DAG.getConstant(SignMask, dl, DstVT)); 6147 SDValue SInt; 6148 if (Node->isStrictFPOpcode()) { 6149 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6150 { Node->getOperand(0), Src, FltOfs }); 6151 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6152 { Val.getValue(1), Val }); 6153 Chain = SInt.getValue(1); 6154 } else { 6155 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6156 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6157 } 6158 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6159 } else { 6160 // Expand based on maximum range of FP_TO_SINT: 6161 // True = fp_to_sint(Src) 6162 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6163 // Result = select (Src < 0x8000000000000000), True, False 6164 6165 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6166 // TODO: Should any fast-math-flags be set for the FSUB? 6167 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6168 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6169 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6170 DAG.getConstant(SignMask, dl, DstVT)); 6171 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6172 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6173 } 6174 return true; 6175 } 6176 6177 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6178 SDValue &Chain, 6179 SelectionDAG &DAG) const { 6180 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6181 SDValue Src = Node->getOperand(OpNo); 6182 EVT SrcVT = Src.getValueType(); 6183 EVT DstVT = Node->getValueType(0); 6184 6185 if (SrcVT.getScalarType() != MVT::i64) 6186 return false; 6187 6188 SDLoc dl(SDValue(Node, 0)); 6189 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6190 6191 if (DstVT.getScalarType() == MVT::f32) { 6192 // Only expand vector types if we have the appropriate vector bit 6193 // operations. 6194 if (SrcVT.isVector() && 6195 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6196 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6197 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 6198 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6199 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6200 return false; 6201 6202 // For unsigned conversions, convert them to signed conversions using the 6203 // algorithm from the x86_64 __floatundisf in compiler_rt. 6204 6205 // TODO: This really should be implemented using a branch rather than a 6206 // select. We happen to get lucky and machinesink does the right 6207 // thing most of the time. This would be a good candidate for a 6208 // pseudo-op, or, even better, for whole-function isel. 6209 EVT SetCCVT = 6210 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6211 6212 SDValue SignBitTest = DAG.getSetCC( 6213 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 6214 6215 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 6216 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 6217 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 6218 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 6219 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 6220 6221 SDValue Slow, Fast; 6222 if (Node->isStrictFPOpcode()) { 6223 // In strict mode, we must avoid spurious exceptions, and therefore 6224 // must make sure to only emit a single STRICT_SINT_TO_FP. 6225 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Src); 6226 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DstVT, MVT::Other }, 6227 { Node->getOperand(0), InCvt }); 6228 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DstVT, MVT::Other }, 6229 { Fast.getValue(1), Fast, Fast }); 6230 Chain = Slow.getValue(1); 6231 // The STRICT_SINT_TO_FP inherits the exception mode from the 6232 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 6233 // never raise any exception. 6234 SDNodeFlags Flags; 6235 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 6236 Fast->setFlags(Flags); 6237 Flags.setNoFPExcept(true); 6238 Slow->setFlags(Flags); 6239 } else { 6240 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 6241 Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 6242 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 6243 } 6244 6245 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 6246 return true; 6247 } 6248 6249 if (DstVT.getScalarType() == MVT::f64) { 6250 // Only expand vector types if we have the appropriate vector bit 6251 // operations. 6252 if (SrcVT.isVector() && 6253 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6254 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6255 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6256 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6257 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6258 return false; 6259 6260 // Implementation of unsigned i64 to f64 following the algorithm in 6261 // __floatundidf in compiler_rt. This implementation has the advantage 6262 // of performing rounding correctly, both in the default rounding mode 6263 // and in all alternate rounding modes. 6264 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6265 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6266 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6267 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6268 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6269 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6270 6271 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6272 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6273 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6274 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6275 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6276 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6277 if (Node->isStrictFPOpcode()) { 6278 SDValue HiSub = 6279 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6280 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6281 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6282 {HiSub.getValue(1), LoFlt, HiSub}); 6283 Chain = Result.getValue(1); 6284 } else { 6285 SDValue HiSub = 6286 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6287 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6288 } 6289 return true; 6290 } 6291 6292 return false; 6293 } 6294 6295 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6296 SelectionDAG &DAG) const { 6297 SDLoc dl(Node); 6298 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6299 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6300 EVT VT = Node->getValueType(0); 6301 if (isOperationLegalOrCustom(NewOp, VT)) { 6302 SDValue Quiet0 = Node->getOperand(0); 6303 SDValue Quiet1 = Node->getOperand(1); 6304 6305 if (!Node->getFlags().hasNoNaNs()) { 6306 // Insert canonicalizes if it's possible we need to quiet to get correct 6307 // sNaN behavior. 6308 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6309 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6310 Node->getFlags()); 6311 } 6312 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6313 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6314 Node->getFlags()); 6315 } 6316 } 6317 6318 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6319 } 6320 6321 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6322 // instead if there are no NaNs. 6323 if (Node->getFlags().hasNoNaNs()) { 6324 unsigned IEEE2018Op = 6325 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6326 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6327 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6328 Node->getOperand(1), Node->getFlags()); 6329 } 6330 } 6331 6332 // If none of the above worked, but there are no NaNs, then expand to 6333 // a compare/select sequence. This is required for correctness since 6334 // InstCombine might have canonicalized a fcmp+select sequence to a 6335 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6336 // expansion to libcall, we might introduce a link-time dependency 6337 // on libm into a file that originally did not have one. 6338 if (Node->getFlags().hasNoNaNs()) { 6339 ISD::CondCode Pred = 6340 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6341 SDValue Op1 = Node->getOperand(0); 6342 SDValue Op2 = Node->getOperand(1); 6343 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6344 // Copy FMF flags, but always set the no-signed-zeros flag 6345 // as this is implied by the FMINNUM/FMAXNUM semantics. 6346 SDNodeFlags Flags = Node->getFlags(); 6347 Flags.setNoSignedZeros(true); 6348 SelCC->setFlags(Flags); 6349 return SelCC; 6350 } 6351 6352 return SDValue(); 6353 } 6354 6355 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6356 SelectionDAG &DAG) const { 6357 SDLoc dl(Node); 6358 EVT VT = Node->getValueType(0); 6359 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6360 SDValue Op = Node->getOperand(0); 6361 unsigned Len = VT.getScalarSizeInBits(); 6362 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6363 6364 // TODO: Add support for irregular type lengths. 6365 if (!(Len <= 128 && Len % 8 == 0)) 6366 return false; 6367 6368 // Only expand vector types if we have the appropriate vector bit operations. 6369 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6370 !isOperationLegalOrCustom(ISD::SUB, VT) || 6371 !isOperationLegalOrCustom(ISD::SRL, VT) || 6372 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6373 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6374 return false; 6375 6376 // This is the "best" algorithm from 6377 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6378 SDValue Mask55 = 6379 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6380 SDValue Mask33 = 6381 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6382 SDValue Mask0F = 6383 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6384 SDValue Mask01 = 6385 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6386 6387 // v = v - ((v >> 1) & 0x55555555...) 6388 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6389 DAG.getNode(ISD::AND, dl, VT, 6390 DAG.getNode(ISD::SRL, dl, VT, Op, 6391 DAG.getConstant(1, dl, ShVT)), 6392 Mask55)); 6393 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6394 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6395 DAG.getNode(ISD::AND, dl, VT, 6396 DAG.getNode(ISD::SRL, dl, VT, Op, 6397 DAG.getConstant(2, dl, ShVT)), 6398 Mask33)); 6399 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6400 Op = DAG.getNode(ISD::AND, dl, VT, 6401 DAG.getNode(ISD::ADD, dl, VT, Op, 6402 DAG.getNode(ISD::SRL, dl, VT, Op, 6403 DAG.getConstant(4, dl, ShVT))), 6404 Mask0F); 6405 // v = (v * 0x01010101...) >> (Len - 8) 6406 if (Len > 8) 6407 Op = 6408 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6409 DAG.getConstant(Len - 8, dl, ShVT)); 6410 6411 Result = Op; 6412 return true; 6413 } 6414 6415 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6416 SelectionDAG &DAG) const { 6417 SDLoc dl(Node); 6418 EVT VT = Node->getValueType(0); 6419 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6420 SDValue Op = Node->getOperand(0); 6421 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6422 6423 // If the non-ZERO_UNDEF version is supported we can use that instead. 6424 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6425 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6426 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6427 return true; 6428 } 6429 6430 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6431 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6432 EVT SetCCVT = 6433 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6434 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6435 SDValue Zero = DAG.getConstant(0, dl, VT); 6436 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6437 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6438 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6439 return true; 6440 } 6441 6442 // Only expand vector types if we have the appropriate vector bit operations. 6443 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6444 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6445 !isOperationLegalOrCustom(ISD::SRL, VT) || 6446 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6447 return false; 6448 6449 // for now, we do this: 6450 // x = x | (x >> 1); 6451 // x = x | (x >> 2); 6452 // ... 6453 // x = x | (x >>16); 6454 // x = x | (x >>32); // for 64-bit input 6455 // return popcount(~x); 6456 // 6457 // Ref: "Hacker's Delight" by Henry Warren 6458 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6459 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6460 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6461 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6462 } 6463 Op = DAG.getNOT(dl, Op, VT); 6464 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6465 return true; 6466 } 6467 6468 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6469 SelectionDAG &DAG) const { 6470 SDLoc dl(Node); 6471 EVT VT = Node->getValueType(0); 6472 SDValue Op = Node->getOperand(0); 6473 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6474 6475 // If the non-ZERO_UNDEF version is supported we can use that instead. 6476 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6477 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6478 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6479 return true; 6480 } 6481 6482 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6483 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6484 EVT SetCCVT = 6485 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6486 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6487 SDValue Zero = DAG.getConstant(0, dl, VT); 6488 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6489 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6490 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6491 return true; 6492 } 6493 6494 // Only expand vector types if we have the appropriate vector bit operations. 6495 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6496 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6497 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6498 !isOperationLegalOrCustom(ISD::SUB, VT) || 6499 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6500 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6501 return false; 6502 6503 // for now, we use: { return popcount(~x & (x - 1)); } 6504 // unless the target has ctlz but not ctpop, in which case we use: 6505 // { return 32 - nlz(~x & (x-1)); } 6506 // Ref: "Hacker's Delight" by Henry Warren 6507 SDValue Tmp = DAG.getNode( 6508 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6509 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6510 6511 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6512 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6513 Result = 6514 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6515 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6516 return true; 6517 } 6518 6519 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6520 return true; 6521 } 6522 6523 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6524 SelectionDAG &DAG) const { 6525 SDLoc dl(N); 6526 EVT VT = N->getValueType(0); 6527 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6528 SDValue Op = N->getOperand(0); 6529 6530 // Only expand vector types if we have the appropriate vector operations. 6531 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6532 !isOperationLegalOrCustom(ISD::ADD, VT) || 6533 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6534 return false; 6535 6536 SDValue Shift = 6537 DAG.getNode(ISD::SRA, dl, VT, Op, 6538 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6539 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6540 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6541 return true; 6542 } 6543 6544 std::pair<SDValue, SDValue> 6545 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6546 SelectionDAG &DAG) const { 6547 SDLoc SL(LD); 6548 SDValue Chain = LD->getChain(); 6549 SDValue BasePTR = LD->getBasePtr(); 6550 EVT SrcVT = LD->getMemoryVT(); 6551 ISD::LoadExtType ExtType = LD->getExtensionType(); 6552 6553 unsigned NumElem = SrcVT.getVectorNumElements(); 6554 6555 EVT SrcEltVT = SrcVT.getScalarType(); 6556 EVT DstEltVT = LD->getValueType(0).getScalarType(); 6557 6558 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6559 assert(SrcEltVT.isByteSized()); 6560 6561 SmallVector<SDValue, 8> Vals; 6562 SmallVector<SDValue, 8> LoadChains; 6563 6564 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6565 SDValue ScalarLoad = 6566 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6567 LD->getPointerInfo().getWithOffset(Idx * Stride), 6568 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6569 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6570 6571 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6572 6573 Vals.push_back(ScalarLoad.getValue(0)); 6574 LoadChains.push_back(ScalarLoad.getValue(1)); 6575 } 6576 6577 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6578 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 6579 6580 return std::make_pair(Value, NewChain); 6581 } 6582 6583 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6584 SelectionDAG &DAG) const { 6585 SDLoc SL(ST); 6586 6587 SDValue Chain = ST->getChain(); 6588 SDValue BasePtr = ST->getBasePtr(); 6589 SDValue Value = ST->getValue(); 6590 EVT StVT = ST->getMemoryVT(); 6591 6592 // The type of the data we want to save 6593 EVT RegVT = Value.getValueType(); 6594 EVT RegSclVT = RegVT.getScalarType(); 6595 6596 // The type of data as saved in memory. 6597 EVT MemSclVT = StVT.getScalarType(); 6598 6599 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 6600 unsigned NumElem = StVT.getVectorNumElements(); 6601 6602 // A vector must always be stored in memory as-is, i.e. without any padding 6603 // between the elements, since various code depend on it, e.g. in the 6604 // handling of a bitcast of a vector type to int, which may be done with a 6605 // vector store followed by an integer load. A vector that does not have 6606 // elements that are byte-sized must therefore be stored as an integer 6607 // built out of the extracted vector elements. 6608 if (!MemSclVT.isByteSized()) { 6609 unsigned NumBits = StVT.getSizeInBits(); 6610 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6611 6612 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6613 6614 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6615 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6616 DAG.getConstant(Idx, SL, IdxVT)); 6617 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6618 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6619 unsigned ShiftIntoIdx = 6620 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6621 SDValue ShiftAmount = 6622 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6623 SDValue ShiftedElt = 6624 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6625 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6626 } 6627 6628 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6629 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6630 ST->getAAInfo()); 6631 } 6632 6633 // Store Stride in bytes 6634 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6635 assert(Stride && "Zero stride!"); 6636 // Extract each of the elements from the original vector and save them into 6637 // memory individually. 6638 SmallVector<SDValue, 8> Stores; 6639 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6640 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6641 DAG.getConstant(Idx, SL, IdxVT)); 6642 6643 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6644 6645 // This scalar TruncStore may be illegal, but we legalize it later. 6646 SDValue Store = DAG.getTruncStore( 6647 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6648 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6649 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6650 6651 Stores.push_back(Store); 6652 } 6653 6654 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6655 } 6656 6657 std::pair<SDValue, SDValue> 6658 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6659 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6660 "unaligned indexed loads not implemented!"); 6661 SDValue Chain = LD->getChain(); 6662 SDValue Ptr = LD->getBasePtr(); 6663 EVT VT = LD->getValueType(0); 6664 EVT LoadedVT = LD->getMemoryVT(); 6665 SDLoc dl(LD); 6666 auto &MF = DAG.getMachineFunction(); 6667 6668 if (VT.isFloatingPoint() || VT.isVector()) { 6669 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6670 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6671 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6672 LoadedVT.isVector()) { 6673 // Scalarize the load and let the individual components be handled. 6674 return scalarizeVectorLoad(LD, DAG); 6675 } 6676 6677 // Expand to a (misaligned) integer load of the same size, 6678 // then bitconvert to floating point or vector. 6679 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6680 LD->getMemOperand()); 6681 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6682 if (LoadedVT != VT) 6683 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6684 ISD::ANY_EXTEND, dl, VT, Result); 6685 6686 return std::make_pair(Result, newLoad.getValue(1)); 6687 } 6688 6689 // Copy the value to a (aligned) stack slot using (unaligned) integer 6690 // loads and stores, then do a (aligned) load from the stack slot. 6691 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6692 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6693 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6694 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6695 6696 // Make sure the stack slot is also aligned for the register type. 6697 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6698 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6699 SmallVector<SDValue, 8> Stores; 6700 SDValue StackPtr = StackBase; 6701 unsigned Offset = 0; 6702 6703 EVT PtrVT = Ptr.getValueType(); 6704 EVT StackPtrVT = StackPtr.getValueType(); 6705 6706 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6707 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6708 6709 // Do all but one copies using the full register width. 6710 for (unsigned i = 1; i < NumRegs; i++) { 6711 // Load one integer register's worth from the original location. 6712 SDValue Load = DAG.getLoad( 6713 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6714 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6715 LD->getAAInfo()); 6716 // Follow the load with a store to the stack slot. Remember the store. 6717 Stores.push_back(DAG.getStore( 6718 Load.getValue(1), dl, Load, StackPtr, 6719 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6720 // Increment the pointers. 6721 Offset += RegBytes; 6722 6723 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6724 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6725 } 6726 6727 // The last copy may be partial. Do an extending load. 6728 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6729 8 * (LoadedBytes - Offset)); 6730 SDValue Load = 6731 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6732 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6733 MinAlign(LD->getAlignment(), Offset), 6734 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6735 // Follow the load with a store to the stack slot. Remember the store. 6736 // On big-endian machines this requires a truncating store to ensure 6737 // that the bits end up in the right place. 6738 Stores.push_back(DAG.getTruncStore( 6739 Load.getValue(1), dl, Load, StackPtr, 6740 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6741 6742 // The order of the stores doesn't matter - say it with a TokenFactor. 6743 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6744 6745 // Finally, perform the original load only redirected to the stack slot. 6746 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6747 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6748 LoadedVT); 6749 6750 // Callers expect a MERGE_VALUES node. 6751 return std::make_pair(Load, TF); 6752 } 6753 6754 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6755 "Unaligned load of unsupported type."); 6756 6757 // Compute the new VT that is half the size of the old one. This is an 6758 // integer MVT. 6759 unsigned NumBits = LoadedVT.getSizeInBits(); 6760 EVT NewLoadedVT; 6761 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6762 NumBits >>= 1; 6763 6764 unsigned Alignment = LD->getAlignment(); 6765 unsigned IncrementSize = NumBits / 8; 6766 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6767 6768 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6769 if (HiExtType == ISD::NON_EXTLOAD) 6770 HiExtType = ISD::ZEXTLOAD; 6771 6772 // Load the value in two parts 6773 SDValue Lo, Hi; 6774 if (DAG.getDataLayout().isLittleEndian()) { 6775 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6776 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6777 LD->getAAInfo()); 6778 6779 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6780 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6781 LD->getPointerInfo().getWithOffset(IncrementSize), 6782 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6783 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6784 } else { 6785 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6786 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6787 LD->getAAInfo()); 6788 6789 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6790 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6791 LD->getPointerInfo().getWithOffset(IncrementSize), 6792 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6793 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6794 } 6795 6796 // aggregate the two parts 6797 SDValue ShiftAmount = 6798 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6799 DAG.getDataLayout())); 6800 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6801 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6802 6803 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6804 Hi.getValue(1)); 6805 6806 return std::make_pair(Result, TF); 6807 } 6808 6809 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6810 SelectionDAG &DAG) const { 6811 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6812 "unaligned indexed stores not implemented!"); 6813 SDValue Chain = ST->getChain(); 6814 SDValue Ptr = ST->getBasePtr(); 6815 SDValue Val = ST->getValue(); 6816 EVT VT = Val.getValueType(); 6817 int Alignment = ST->getAlignment(); 6818 auto &MF = DAG.getMachineFunction(); 6819 EVT StoreMemVT = ST->getMemoryVT(); 6820 6821 SDLoc dl(ST); 6822 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6823 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6824 if (isTypeLegal(intVT)) { 6825 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6826 StoreMemVT.isVector()) { 6827 // Scalarize the store and let the individual components be handled. 6828 SDValue Result = scalarizeVectorStore(ST, DAG); 6829 return Result; 6830 } 6831 // Expand to a bitconvert of the value to the integer type of the 6832 // same size, then a (misaligned) int store. 6833 // FIXME: Does not handle truncating floating point stores! 6834 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6835 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6836 Alignment, ST->getMemOperand()->getFlags()); 6837 return Result; 6838 } 6839 // Do a (aligned) store to a stack slot, then copy from the stack slot 6840 // to the final destination using (unaligned) integer loads and stores. 6841 MVT RegVT = getRegisterType( 6842 *DAG.getContext(), 6843 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6844 EVT PtrVT = Ptr.getValueType(); 6845 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6846 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6847 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6848 6849 // Make sure the stack slot is also aligned for the register type. 6850 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6851 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6852 6853 // Perform the original store, only redirected to the stack slot. 6854 SDValue Store = DAG.getTruncStore( 6855 Chain, dl, Val, StackPtr, 6856 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6857 6858 EVT StackPtrVT = StackPtr.getValueType(); 6859 6860 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6861 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6862 SmallVector<SDValue, 8> Stores; 6863 unsigned Offset = 0; 6864 6865 // Do all but one copies using the full register width. 6866 for (unsigned i = 1; i < NumRegs; i++) { 6867 // Load one integer register's worth from the stack slot. 6868 SDValue Load = DAG.getLoad( 6869 RegVT, dl, Store, StackPtr, 6870 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6871 // Store it to the final location. Remember the store. 6872 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6873 ST->getPointerInfo().getWithOffset(Offset), 6874 MinAlign(ST->getAlignment(), Offset), 6875 ST->getMemOperand()->getFlags())); 6876 // Increment the pointers. 6877 Offset += RegBytes; 6878 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6879 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6880 } 6881 6882 // The last store may be partial. Do a truncating store. On big-endian 6883 // machines this requires an extending load from the stack slot to ensure 6884 // that the bits are in the right place. 6885 EVT LoadMemVT = 6886 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6887 6888 // Load from the stack slot. 6889 SDValue Load = DAG.getExtLoad( 6890 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6891 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6892 6893 Stores.push_back( 6894 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 6895 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 6896 MinAlign(ST->getAlignment(), Offset), 6897 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 6898 // The order of the stores doesn't matter - say it with a TokenFactor. 6899 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6900 return Result; 6901 } 6902 6903 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 6904 "Unaligned store of unknown type."); 6905 // Get the half-size VT 6906 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 6907 int NumBits = NewStoredVT.getSizeInBits(); 6908 int IncrementSize = NumBits / 8; 6909 6910 // Divide the stored value in two parts. 6911 SDValue ShiftAmount = DAG.getConstant( 6912 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 6913 SDValue Lo = Val; 6914 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 6915 6916 // Store the two parts 6917 SDValue Store1, Store2; 6918 Store1 = DAG.getTruncStore(Chain, dl, 6919 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 6920 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 6921 ST->getMemOperand()->getFlags()); 6922 6923 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6924 Alignment = MinAlign(Alignment, IncrementSize); 6925 Store2 = DAG.getTruncStore( 6926 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 6927 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 6928 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6929 6930 SDValue Result = 6931 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 6932 return Result; 6933 } 6934 6935 SDValue 6936 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 6937 const SDLoc &DL, EVT DataVT, 6938 SelectionDAG &DAG, 6939 bool IsCompressedMemory) const { 6940 SDValue Increment; 6941 EVT AddrVT = Addr.getValueType(); 6942 EVT MaskVT = Mask.getValueType(); 6943 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 6944 "Incompatible types of Data and Mask"); 6945 if (IsCompressedMemory) { 6946 // Incrementing the pointer according to number of '1's in the mask. 6947 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 6948 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 6949 if (MaskIntVT.getSizeInBits() < 32) { 6950 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 6951 MaskIntVT = MVT::i32; 6952 } 6953 6954 // Count '1's with POPCNT. 6955 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 6956 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 6957 // Scale is an element size in bytes. 6958 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 6959 AddrVT); 6960 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 6961 } else 6962 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 6963 6964 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 6965 } 6966 6967 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 6968 SDValue Idx, 6969 EVT VecVT, 6970 const SDLoc &dl) { 6971 if (isa<ConstantSDNode>(Idx)) 6972 return Idx; 6973 6974 EVT IdxVT = Idx.getValueType(); 6975 unsigned NElts = VecVT.getVectorNumElements(); 6976 if (isPowerOf2_32(NElts)) { 6977 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 6978 Log2_32(NElts)); 6979 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 6980 DAG.getConstant(Imm, dl, IdxVT)); 6981 } 6982 6983 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 6984 DAG.getConstant(NElts - 1, dl, IdxVT)); 6985 } 6986 6987 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 6988 SDValue VecPtr, EVT VecVT, 6989 SDValue Index) const { 6990 SDLoc dl(Index); 6991 // Make sure the index type is big enough to compute in. 6992 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 6993 6994 EVT EltVT = VecVT.getVectorElementType(); 6995 6996 // Calculate the element offset and add it to the pointer. 6997 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 6998 assert(EltSize * 8 == EltVT.getSizeInBits() && 6999 "Converting bits to bytes lost precision"); 7000 7001 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7002 7003 EVT IdxVT = Index.getValueType(); 7004 7005 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7006 DAG.getConstant(EltSize, dl, IdxVT)); 7007 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7008 } 7009 7010 //===----------------------------------------------------------------------===// 7011 // Implementation of Emulated TLS Model 7012 //===----------------------------------------------------------------------===// 7013 7014 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7015 SelectionDAG &DAG) const { 7016 // Access to address of TLS varialbe xyz is lowered to a function call: 7017 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7018 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7019 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7020 SDLoc dl(GA); 7021 7022 ArgListTy Args; 7023 ArgListEntry Entry; 7024 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7025 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7026 StringRef EmuTlsVarName(NameString); 7027 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7028 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7029 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7030 Entry.Ty = VoidPtrType; 7031 Args.push_back(Entry); 7032 7033 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7034 7035 TargetLowering::CallLoweringInfo CLI(DAG); 7036 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7037 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7038 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7039 7040 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7041 // At last for X86 targets, maybe good for other targets too? 7042 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7043 MFI.setAdjustsStack(true); // Is this only for X86 target? 7044 MFI.setHasCalls(true); 7045 7046 assert((GA->getOffset() == 0) && 7047 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7048 return CallResult.first; 7049 } 7050 7051 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7052 SelectionDAG &DAG) const { 7053 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7054 if (!isCtlzFast()) 7055 return SDValue(); 7056 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7057 SDLoc dl(Op); 7058 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7059 if (C->isNullValue() && CC == ISD::SETEQ) { 7060 EVT VT = Op.getOperand(0).getValueType(); 7061 SDValue Zext = Op.getOperand(0); 7062 if (VT.bitsLT(MVT::i32)) { 7063 VT = MVT::i32; 7064 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7065 } 7066 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7067 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7068 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7069 DAG.getConstant(Log2b, dl, MVT::i32)); 7070 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7071 } 7072 } 7073 return SDValue(); 7074 } 7075 7076 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7077 unsigned Opcode = Node->getOpcode(); 7078 SDValue LHS = Node->getOperand(0); 7079 SDValue RHS = Node->getOperand(1); 7080 EVT VT = LHS.getValueType(); 7081 SDLoc dl(Node); 7082 7083 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7084 assert(VT.isInteger() && "Expected operands to be integers"); 7085 7086 // usub.sat(a, b) -> umax(a, b) - b 7087 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7088 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7089 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7090 } 7091 7092 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7093 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7094 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7095 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7096 } 7097 7098 unsigned OverflowOp; 7099 switch (Opcode) { 7100 case ISD::SADDSAT: 7101 OverflowOp = ISD::SADDO; 7102 break; 7103 case ISD::UADDSAT: 7104 OverflowOp = ISD::UADDO; 7105 break; 7106 case ISD::SSUBSAT: 7107 OverflowOp = ISD::SSUBO; 7108 break; 7109 case ISD::USUBSAT: 7110 OverflowOp = ISD::USUBO; 7111 break; 7112 default: 7113 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7114 "addition or subtraction node."); 7115 } 7116 7117 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7118 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7119 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7120 LHS, RHS); 7121 SDValue SumDiff = Result.getValue(0); 7122 SDValue Overflow = Result.getValue(1); 7123 SDValue Zero = DAG.getConstant(0, dl, VT); 7124 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7125 7126 if (Opcode == ISD::UADDSAT) { 7127 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7128 // (LHS + RHS) | OverflowMask 7129 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7130 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7131 } 7132 // Overflow ? 0xffff.... : (LHS + RHS) 7133 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7134 } else if (Opcode == ISD::USUBSAT) { 7135 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7136 // (LHS - RHS) & ~OverflowMask 7137 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7138 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7139 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7140 } 7141 // Overflow ? 0 : (LHS - RHS) 7142 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7143 } else { 7144 // SatMax -> Overflow && SumDiff < 0 7145 // SatMin -> Overflow && SumDiff >= 0 7146 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7147 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7148 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7149 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7150 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7151 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7152 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7153 } 7154 } 7155 7156 SDValue 7157 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7158 assert((Node->getOpcode() == ISD::SMULFIX || 7159 Node->getOpcode() == ISD::UMULFIX || 7160 Node->getOpcode() == ISD::SMULFIXSAT || 7161 Node->getOpcode() == ISD::UMULFIXSAT) && 7162 "Expected a fixed point multiplication opcode"); 7163 7164 SDLoc dl(Node); 7165 SDValue LHS = Node->getOperand(0); 7166 SDValue RHS = Node->getOperand(1); 7167 EVT VT = LHS.getValueType(); 7168 unsigned Scale = Node->getConstantOperandVal(2); 7169 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7170 Node->getOpcode() == ISD::UMULFIXSAT); 7171 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7172 Node->getOpcode() == ISD::SMULFIXSAT); 7173 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7174 unsigned VTSize = VT.getScalarSizeInBits(); 7175 7176 if (!Scale) { 7177 // [us]mul.fix(a, b, 0) -> mul(a, b) 7178 if (!Saturating) { 7179 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7180 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7181 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7182 SDValue Result = 7183 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7184 SDValue Product = Result.getValue(0); 7185 SDValue Overflow = Result.getValue(1); 7186 SDValue Zero = DAG.getConstant(0, dl, VT); 7187 7188 APInt MinVal = APInt::getSignedMinValue(VTSize); 7189 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7190 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7191 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7192 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7193 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7194 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7195 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7196 SDValue Result = 7197 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7198 SDValue Product = Result.getValue(0); 7199 SDValue Overflow = Result.getValue(1); 7200 7201 APInt MaxVal = APInt::getMaxValue(VTSize); 7202 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7203 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7204 } 7205 } 7206 7207 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7208 "Expected scale to be less than the number of bits if signed or at " 7209 "most the number of bits if unsigned."); 7210 assert(LHS.getValueType() == RHS.getValueType() && 7211 "Expected both operands to be the same type"); 7212 7213 // Get the upper and lower bits of the result. 7214 SDValue Lo, Hi; 7215 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7216 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7217 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7218 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7219 Lo = Result.getValue(0); 7220 Hi = Result.getValue(1); 7221 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7222 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7223 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7224 } else if (VT.isVector()) { 7225 return SDValue(); 7226 } else { 7227 report_fatal_error("Unable to expand fixed point multiplication."); 7228 } 7229 7230 if (Scale == VTSize) 7231 // Result is just the top half since we'd be shifting by the width of the 7232 // operand. Overflow impossible so this works for both UMULFIX and 7233 // UMULFIXSAT. 7234 return Hi; 7235 7236 // The result will need to be shifted right by the scale since both operands 7237 // are scaled. The result is given to us in 2 halves, so we only want part of 7238 // both in the result. 7239 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7240 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7241 DAG.getConstant(Scale, dl, ShiftTy)); 7242 if (!Saturating) 7243 return Result; 7244 7245 if (!Signed) { 7246 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7247 // widened multiplication) aren't all zeroes. 7248 7249 // Saturate to max if ((Hi >> Scale) != 0), 7250 // which is the same as if (Hi > ((1 << Scale) - 1)) 7251 APInt MaxVal = APInt::getMaxValue(VTSize); 7252 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7253 dl, VT); 7254 Result = DAG.getSelectCC(dl, Hi, LowMask, 7255 DAG.getConstant(MaxVal, dl, VT), Result, 7256 ISD::SETUGT); 7257 7258 return Result; 7259 } 7260 7261 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7262 // widened multiplication) aren't all ones or all zeroes. 7263 7264 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7265 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7266 7267 if (Scale == 0) { 7268 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7269 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7270 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7271 // Saturated to SatMin if wide product is negative, and SatMax if wide 7272 // product is positive ... 7273 SDValue Zero = DAG.getConstant(0, dl, VT); 7274 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7275 ISD::SETLT); 7276 // ... but only if we overflowed. 7277 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7278 } 7279 7280 // We handled Scale==0 above so all the bits to examine is in Hi. 7281 7282 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7283 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7284 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7285 dl, VT); 7286 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7287 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7288 // which is the same as if (HI < (-1 << (Scale - 1)) 7289 SDValue HighMask = 7290 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7291 dl, VT); 7292 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7293 return Result; 7294 } 7295 7296 void TargetLowering::expandUADDSUBO( 7297 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7298 SDLoc dl(Node); 7299 SDValue LHS = Node->getOperand(0); 7300 SDValue RHS = Node->getOperand(1); 7301 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7302 7303 // If ADD/SUBCARRY is legal, use that instead. 7304 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7305 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7306 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7307 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7308 { LHS, RHS, CarryIn }); 7309 Result = SDValue(NodeCarry.getNode(), 0); 7310 Overflow = SDValue(NodeCarry.getNode(), 1); 7311 return; 7312 } 7313 7314 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7315 LHS.getValueType(), LHS, RHS); 7316 7317 EVT ResultType = Node->getValueType(1); 7318 EVT SetCCType = getSetCCResultType( 7319 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7320 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7321 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7322 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7323 } 7324 7325 void TargetLowering::expandSADDSUBO( 7326 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7327 SDLoc dl(Node); 7328 SDValue LHS = Node->getOperand(0); 7329 SDValue RHS = Node->getOperand(1); 7330 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7331 7332 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7333 LHS.getValueType(), LHS, RHS); 7334 7335 EVT ResultType = Node->getValueType(1); 7336 EVT OType = getSetCCResultType( 7337 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7338 7339 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7340 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7341 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7342 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7343 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7344 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7345 return; 7346 } 7347 7348 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7349 7350 // For an addition, the result should be less than one of the operands (LHS) 7351 // if and only if the other operand (RHS) is negative, otherwise there will 7352 // be overflow. 7353 // For a subtraction, the result should be less than one of the operands 7354 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7355 // otherwise there will be overflow. 7356 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7357 SDValue ConditionRHS = 7358 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7359 7360 Overflow = DAG.getBoolExtOrTrunc( 7361 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7362 ResultType, ResultType); 7363 } 7364 7365 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7366 SDValue &Overflow, SelectionDAG &DAG) const { 7367 SDLoc dl(Node); 7368 EVT VT = Node->getValueType(0); 7369 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7370 SDValue LHS = Node->getOperand(0); 7371 SDValue RHS = Node->getOperand(1); 7372 bool isSigned = Node->getOpcode() == ISD::SMULO; 7373 7374 // For power-of-two multiplications we can use a simpler shift expansion. 7375 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7376 const APInt &C = RHSC->getAPIntValue(); 7377 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7378 if (C.isPowerOf2()) { 7379 // smulo(x, signed_min) is same as umulo(x, signed_min). 7380 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7381 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7382 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7383 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7384 Overflow = DAG.getSetCC(dl, SetCCVT, 7385 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7386 dl, VT, Result, ShiftAmt), 7387 LHS, ISD::SETNE); 7388 return true; 7389 } 7390 } 7391 7392 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7393 if (VT.isVector()) 7394 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7395 VT.getVectorNumElements()); 7396 7397 SDValue BottomHalf; 7398 SDValue TopHalf; 7399 static const unsigned Ops[2][3] = 7400 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7401 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7402 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7403 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7404 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7405 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7406 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7407 RHS); 7408 TopHalf = BottomHalf.getValue(1); 7409 } else if (isTypeLegal(WideVT)) { 7410 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7411 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7412 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7413 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7414 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7415 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7416 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7417 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7418 } else { 7419 if (VT.isVector()) 7420 return false; 7421 7422 // We can fall back to a libcall with an illegal type for the MUL if we 7423 // have a libcall big enough. 7424 // Also, we can fall back to a division in some cases, but that's a big 7425 // performance hit in the general case. 7426 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7427 if (WideVT == MVT::i16) 7428 LC = RTLIB::MUL_I16; 7429 else if (WideVT == MVT::i32) 7430 LC = RTLIB::MUL_I32; 7431 else if (WideVT == MVT::i64) 7432 LC = RTLIB::MUL_I64; 7433 else if (WideVT == MVT::i128) 7434 LC = RTLIB::MUL_I128; 7435 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7436 7437 SDValue HiLHS; 7438 SDValue HiRHS; 7439 if (isSigned) { 7440 // The high part is obtained by SRA'ing all but one of the bits of low 7441 // part. 7442 unsigned LoSize = VT.getSizeInBits(); 7443 HiLHS = 7444 DAG.getNode(ISD::SRA, dl, VT, LHS, 7445 DAG.getConstant(LoSize - 1, dl, 7446 getPointerTy(DAG.getDataLayout()))); 7447 HiRHS = 7448 DAG.getNode(ISD::SRA, dl, VT, RHS, 7449 DAG.getConstant(LoSize - 1, dl, 7450 getPointerTy(DAG.getDataLayout()))); 7451 } else { 7452 HiLHS = DAG.getConstant(0, dl, VT); 7453 HiRHS = DAG.getConstant(0, dl, VT); 7454 } 7455 7456 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7457 // pre-lowered to the correct types. This all depends upon WideVT not 7458 // being a legal type for the architecture and thus has to be split to 7459 // two arguments. 7460 SDValue Ret; 7461 TargetLowering::MakeLibCallOptions CallOptions; 7462 CallOptions.setSExt(isSigned); 7463 CallOptions.setIsPostTypeLegalization(true); 7464 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7465 // Halves of WideVT are packed into registers in different order 7466 // depending on platform endianness. This is usually handled by 7467 // the C calling convention, but we can't defer to it in 7468 // the legalizer. 7469 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7470 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7471 } else { 7472 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7473 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7474 } 7475 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7476 "Ret value is a collection of constituent nodes holding result."); 7477 if (DAG.getDataLayout().isLittleEndian()) { 7478 // Same as above. 7479 BottomHalf = Ret.getOperand(0); 7480 TopHalf = Ret.getOperand(1); 7481 } else { 7482 BottomHalf = Ret.getOperand(1); 7483 TopHalf = Ret.getOperand(0); 7484 } 7485 } 7486 7487 Result = BottomHalf; 7488 if (isSigned) { 7489 SDValue ShiftAmt = DAG.getConstant( 7490 VT.getScalarSizeInBits() - 1, dl, 7491 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7492 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7493 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7494 } else { 7495 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7496 DAG.getConstant(0, dl, VT), ISD::SETNE); 7497 } 7498 7499 // Truncate the result if SetCC returns a larger type than needed. 7500 EVT RType = Node->getValueType(1); 7501 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7502 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7503 7504 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7505 "Unexpected result type for S/UMULO legalization"); 7506 return true; 7507 } 7508 7509 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7510 SDLoc dl(Node); 7511 bool NoNaN = Node->getFlags().hasNoNaNs(); 7512 unsigned BaseOpcode = 0; 7513 switch (Node->getOpcode()) { 7514 default: llvm_unreachable("Expected VECREDUCE opcode"); 7515 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7516 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7517 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7518 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7519 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7520 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7521 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7522 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7523 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7524 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7525 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7526 case ISD::VECREDUCE_FMAX: 7527 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7528 break; 7529 case ISD::VECREDUCE_FMIN: 7530 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7531 break; 7532 } 7533 7534 SDValue Op = Node->getOperand(0); 7535 EVT VT = Op.getValueType(); 7536 7537 // Try to use a shuffle reduction for power of two vectors. 7538 if (VT.isPow2VectorType()) { 7539 while (VT.getVectorNumElements() > 1) { 7540 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7541 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7542 break; 7543 7544 SDValue Lo, Hi; 7545 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7546 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7547 VT = HalfVT; 7548 } 7549 } 7550 7551 EVT EltVT = VT.getVectorElementType(); 7552 unsigned NumElts = VT.getVectorNumElements(); 7553 7554 SmallVector<SDValue, 8> Ops; 7555 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7556 7557 SDValue Res = Ops[0]; 7558 for (unsigned i = 1; i < NumElts; i++) 7559 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7560 7561 // Result type may be wider than element type. 7562 if (EltVT != Node->getValueType(0)) 7563 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7564 return Res; 7565 } 7566