1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 Register Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 114 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 115 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 116 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 117 Alignment = Call->getParamAlignment(ArgIdx); 118 ByValType = nullptr; 119 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 120 ByValType = Call->getParamByValType(ArgIdx); 121 } 122 123 /// Generate a libcall taking the given operands as arguments and returning a 124 /// result of type RetVT. 125 std::pair<SDValue, SDValue> 126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 127 ArrayRef<SDValue> Ops, 128 MakeLibCallOptions CallOptions, 129 const SDLoc &dl, 130 SDValue InChain) const { 131 if (!InChain) 132 InChain = DAG.getEntryNode(); 133 134 TargetLowering::ArgListTy Args; 135 Args.reserve(Ops.size()); 136 137 TargetLowering::ArgListEntry Entry; 138 for (unsigned i = 0; i < Ops.size(); ++i) { 139 SDValue NewOp = Ops[i]; 140 Entry.Node = NewOp; 141 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 142 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 143 CallOptions.IsSExt); 144 Entry.IsZExt = !Entry.IsSExt; 145 146 if (CallOptions.IsSoften && 147 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 148 Entry.IsSExt = Entry.IsZExt = false; 149 } 150 Args.push_back(Entry); 151 } 152 153 if (LC == RTLIB::UNKNOWN_LIBCALL) 154 report_fatal_error("Unsupported library call operation!"); 155 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 156 getPointerTy(DAG.getDataLayout())); 157 158 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 159 TargetLowering::CallLoweringInfo CLI(DAG); 160 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 161 bool zeroExtend = !signExtend; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 165 signExtend = zeroExtend = false; 166 } 167 168 CLI.setDebugLoc(dl) 169 .setChain(InChain) 170 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 171 .setNoReturn(CallOptions.DoesNotReturn) 172 .setDiscardResult(!CallOptions.IsReturnValueUsed) 173 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 174 .setSExtResult(signExtend) 175 .setZExtResult(zeroExtend); 176 return LowerCallTo(CLI); 177 } 178 179 bool TargetLowering::findOptimalMemOpLowering( 180 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 181 unsigned SrcAS, const AttributeList &FuncAttributes) const { 182 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 183 return false; 184 185 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 186 187 if (VT == MVT::Other) { 188 // Use the largest integer type whose alignment constraints are satisfied. 189 // We only need to check DstAlign here as SrcAlign is always greater or 190 // equal to DstAlign (or zero). 191 VT = MVT::i64; 192 if (Op.isFixedDstAlign()) 193 while ( 194 Op.getDstAlign() < (VT.getSizeInBits() / 8) && 195 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value())) 196 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 197 assert(VT.isInteger()); 198 199 // Find the largest legal integer type. 200 MVT LVT = MVT::i64; 201 while (!isTypeLegal(LVT)) 202 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 203 assert(LVT.isInteger()); 204 205 // If the type we've chosen is larger than the largest legal integer type 206 // then use that instead. 207 if (VT.bitsGT(LVT)) 208 VT = LVT; 209 } 210 211 unsigned NumMemOps = 0; 212 uint64_t Size = Op.size(); 213 while (Size) { 214 unsigned VTSize = VT.getSizeInBits() / 8; 215 while (VTSize > Size) { 216 // For now, only use non-vector load / store's for the left-over pieces. 217 EVT NewVT = VT; 218 unsigned NewVTSize; 219 220 bool Found = false; 221 if (VT.isVector() || VT.isFloatingPoint()) { 222 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 223 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 224 isSafeMemOpType(NewVT.getSimpleVT())) 225 Found = true; 226 else if (NewVT == MVT::i64 && 227 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 228 isSafeMemOpType(MVT::f64)) { 229 // i64 is usually not legal on 32-bit targets, but f64 may be. 230 NewVT = MVT::f64; 231 Found = true; 232 } 233 } 234 235 if (!Found) { 236 do { 237 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 238 if (NewVT == MVT::i8) 239 break; 240 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 241 } 242 NewVTSize = NewVT.getSizeInBits() / 8; 243 244 // If the new VT cannot cover all of the remaining bits, then consider 245 // issuing a (or a pair of) unaligned and overlapping load / store. 246 bool Fast; 247 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 248 allowsMisalignedMemoryAccesses( 249 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 250 MachineMemOperand::MONone, &Fast) && 251 Fast) 252 VTSize = Size; 253 else { 254 VT = NewVT; 255 VTSize = NewVTSize; 256 } 257 } 258 259 if (++NumMemOps > Limit) 260 return false; 261 262 MemOps.push_back(VT); 263 Size -= VTSize; 264 } 265 266 return true; 267 } 268 269 /// Soften the operands of a comparison. This code is shared among BR_CC, 270 /// SELECT_CC, and SETCC handlers. 271 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 272 SDValue &NewLHS, SDValue &NewRHS, 273 ISD::CondCode &CCCode, 274 const SDLoc &dl, const SDValue OldLHS, 275 const SDValue OldRHS) const { 276 SDValue Chain; 277 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 278 OldRHS, Chain); 279 } 280 281 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 282 SDValue &NewLHS, SDValue &NewRHS, 283 ISD::CondCode &CCCode, 284 const SDLoc &dl, const SDValue OldLHS, 285 const SDValue OldRHS, 286 SDValue &Chain, 287 bool IsSignaling) const { 288 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 289 // not supporting it. We can update this code when libgcc provides such 290 // functions. 291 292 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 293 && "Unsupported setcc type!"); 294 295 // Expand into one or more soft-fp libcall(s). 296 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 297 bool ShouldInvertCC = false; 298 switch (CCCode) { 299 case ISD::SETEQ: 300 case ISD::SETOEQ: 301 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 302 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 303 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 304 break; 305 case ISD::SETNE: 306 case ISD::SETUNE: 307 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 308 (VT == MVT::f64) ? RTLIB::UNE_F64 : 309 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 310 break; 311 case ISD::SETGE: 312 case ISD::SETOGE: 313 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 314 (VT == MVT::f64) ? RTLIB::OGE_F64 : 315 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 316 break; 317 case ISD::SETLT: 318 case ISD::SETOLT: 319 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 320 (VT == MVT::f64) ? RTLIB::OLT_F64 : 321 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 322 break; 323 case ISD::SETLE: 324 case ISD::SETOLE: 325 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 326 (VT == MVT::f64) ? RTLIB::OLE_F64 : 327 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 328 break; 329 case ISD::SETGT: 330 case ISD::SETOGT: 331 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 332 (VT == MVT::f64) ? RTLIB::OGT_F64 : 333 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 334 break; 335 case ISD::SETO: 336 ShouldInvertCC = true; 337 LLVM_FALLTHROUGH; 338 case ISD::SETUO: 339 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 340 (VT == MVT::f64) ? RTLIB::UO_F64 : 341 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 342 break; 343 case ISD::SETONE: 344 // SETONE = O && UNE 345 ShouldInvertCC = true; 346 LLVM_FALLTHROUGH; 347 case ISD::SETUEQ: 348 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 349 (VT == MVT::f64) ? RTLIB::UO_F64 : 350 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 351 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 352 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 353 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 354 break; 355 default: 356 // Invert CC for unordered comparisons 357 ShouldInvertCC = true; 358 switch (CCCode) { 359 case ISD::SETULT: 360 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 361 (VT == MVT::f64) ? RTLIB::OGE_F64 : 362 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 363 break; 364 case ISD::SETULE: 365 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 366 (VT == MVT::f64) ? RTLIB::OGT_F64 : 367 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 368 break; 369 case ISD::SETUGT: 370 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 371 (VT == MVT::f64) ? RTLIB::OLE_F64 : 372 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 373 break; 374 case ISD::SETUGE: 375 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 376 (VT == MVT::f64) ? RTLIB::OLT_F64 : 377 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 378 break; 379 default: llvm_unreachable("Do not know how to soften this setcc!"); 380 } 381 } 382 383 // Use the target specific return value for comparions lib calls. 384 EVT RetVT = getCmpLibcallReturnType(); 385 SDValue Ops[2] = {NewLHS, NewRHS}; 386 TargetLowering::MakeLibCallOptions CallOptions; 387 EVT OpsVT[2] = { OldLHS.getValueType(), 388 OldRHS.getValueType() }; 389 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 390 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 391 NewLHS = Call.first; 392 NewRHS = DAG.getConstant(0, dl, RetVT); 393 394 CCCode = getCmpLibcallCC(LC1); 395 if (ShouldInvertCC) { 396 assert(RetVT.isInteger()); 397 CCCode = getSetCCInverse(CCCode, RetVT); 398 } 399 400 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 401 // Update Chain. 402 Chain = Call.second; 403 } else { 404 EVT SetCCVT = 405 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 406 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 407 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 408 CCCode = getCmpLibcallCC(LC2); 409 if (ShouldInvertCC) 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 412 if (Chain) 413 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 414 Call2.second); 415 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 416 Tmp.getValueType(), Tmp, NewLHS); 417 NewRHS = SDValue(); 418 } 419 } 420 421 /// Return the entry encoding for a jump table in the current function. The 422 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 423 unsigned TargetLowering::getJumpTableEncoding() const { 424 // In non-pic modes, just use the address of a block. 425 if (!isPositionIndependent()) 426 return MachineJumpTableInfo::EK_BlockAddress; 427 428 // In PIC mode, if the target supports a GPRel32 directive, use it. 429 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 430 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 431 432 // Otherwise, use a label difference. 433 return MachineJumpTableInfo::EK_LabelDifference32; 434 } 435 436 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 437 SelectionDAG &DAG) const { 438 // If our PIC model is GP relative, use the global offset table as the base. 439 unsigned JTEncoding = getJumpTableEncoding(); 440 441 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 442 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 443 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 444 445 return Table; 446 } 447 448 /// This returns the relocation base for the given PIC jumptable, the same as 449 /// getPICJumpTableRelocBase, but as an MCExpr. 450 const MCExpr * 451 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 452 unsigned JTI,MCContext &Ctx) const{ 453 // The normal PIC reloc base is the label at the start of the jump table. 454 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 455 } 456 457 bool 458 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 459 const TargetMachine &TM = getTargetMachine(); 460 const GlobalValue *GV = GA->getGlobal(); 461 462 // If the address is not even local to this DSO we will have to load it from 463 // a got and then add the offset. 464 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 465 return false; 466 467 // If the code is position independent we will have to add a base register. 468 if (isPositionIndependent()) 469 return false; 470 471 // Otherwise we can do it. 472 return true; 473 } 474 475 //===----------------------------------------------------------------------===// 476 // Optimization Methods 477 //===----------------------------------------------------------------------===// 478 479 /// If the specified instruction has a constant integer operand and there are 480 /// bits set in that constant that are not demanded, then clear those bits and 481 /// return true. 482 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 483 TargetLoweringOpt &TLO) const { 484 SDLoc DL(Op); 485 unsigned Opcode = Op.getOpcode(); 486 487 // Do target-specific constant optimization. 488 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 489 return TLO.New.getNode(); 490 491 // FIXME: ISD::SELECT, ISD::SELECT_CC 492 switch (Opcode) { 493 default: 494 break; 495 case ISD::XOR: 496 case ISD::AND: 497 case ISD::OR: { 498 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 499 if (!Op1C) 500 return false; 501 502 // If this is a 'not' op, don't touch it because that's a canonical form. 503 const APInt &C = Op1C->getAPIntValue(); 504 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 505 return false; 506 507 if (!C.isSubsetOf(Demanded)) { 508 EVT VT = Op.getValueType(); 509 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 510 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 511 return TLO.CombineTo(Op, NewOp); 512 } 513 514 break; 515 } 516 } 517 518 return false; 519 } 520 521 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 522 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 523 /// generalized for targets with other types of implicit widening casts. 524 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 525 const APInt &Demanded, 526 TargetLoweringOpt &TLO) const { 527 assert(Op.getNumOperands() == 2 && 528 "ShrinkDemandedOp only supports binary operators!"); 529 assert(Op.getNode()->getNumValues() == 1 && 530 "ShrinkDemandedOp only supports nodes with one result!"); 531 532 SelectionDAG &DAG = TLO.DAG; 533 SDLoc dl(Op); 534 535 // Early return, as this function cannot handle vector types. 536 if (Op.getValueType().isVector()) 537 return false; 538 539 // Don't do this if the node has another user, which may require the 540 // full value. 541 if (!Op.getNode()->hasOneUse()) 542 return false; 543 544 // Search for the smallest integer type with free casts to and from 545 // Op's type. For expedience, just check power-of-2 integer types. 546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 547 unsigned DemandedSize = Demanded.getActiveBits(); 548 unsigned SmallVTBits = DemandedSize; 549 if (!isPowerOf2_32(SmallVTBits)) 550 SmallVTBits = NextPowerOf2(SmallVTBits); 551 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 552 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 553 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 554 TLI.isZExtFree(SmallVT, Op.getValueType())) { 555 // We found a type with free casts. 556 SDValue X = DAG.getNode( 557 Op.getOpcode(), dl, SmallVT, 558 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 559 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 560 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 561 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 562 return TLO.CombineTo(Op, Z); 563 } 564 } 565 return false; 566 } 567 568 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 569 DAGCombinerInfo &DCI) const { 570 SelectionDAG &DAG = DCI.DAG; 571 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 572 !DCI.isBeforeLegalizeOps()); 573 KnownBits Known; 574 575 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 576 if (Simplified) { 577 DCI.AddToWorklist(Op.getNode()); 578 DCI.CommitTargetLoweringOpt(TLO); 579 } 580 return Simplified; 581 } 582 583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 584 KnownBits &Known, 585 TargetLoweringOpt &TLO, 586 unsigned Depth, 587 bool AssumeSingleUse) const { 588 EVT VT = Op.getValueType(); 589 APInt DemandedElts = VT.isVector() 590 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 591 : APInt(1, 1); 592 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 593 AssumeSingleUse); 594 } 595 596 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 597 // TODO: Under what circumstances can we create nodes? Constant folding? 598 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 599 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 600 SelectionDAG &DAG, unsigned Depth) const { 601 // Limit search depth. 602 if (Depth >= SelectionDAG::MaxRecursionDepth) 603 return SDValue(); 604 605 // Ignore UNDEFs. 606 if (Op.isUndef()) 607 return SDValue(); 608 609 // Not demanding any bits/elts from Op. 610 if (DemandedBits == 0 || DemandedElts == 0) 611 return DAG.getUNDEF(Op.getValueType()); 612 613 unsigned NumElts = DemandedElts.getBitWidth(); 614 KnownBits LHSKnown, RHSKnown; 615 switch (Op.getOpcode()) { 616 case ISD::BITCAST: { 617 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 618 EVT SrcVT = Src.getValueType(); 619 EVT DstVT = Op.getValueType(); 620 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 621 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 622 623 if (NumSrcEltBits == NumDstEltBits) 624 if (SDValue V = SimplifyMultipleUseDemandedBits( 625 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 626 return DAG.getBitcast(DstVT, V); 627 628 // TODO - bigendian once we have test coverage. 629 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 630 DAG.getDataLayout().isLittleEndian()) { 631 unsigned Scale = NumDstEltBits / NumSrcEltBits; 632 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 633 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 634 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 635 for (unsigned i = 0; i != Scale; ++i) { 636 unsigned Offset = i * NumSrcEltBits; 637 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 638 if (!Sub.isNullValue()) { 639 DemandedSrcBits |= Sub; 640 for (unsigned j = 0; j != NumElts; ++j) 641 if (DemandedElts[j]) 642 DemandedSrcElts.setBit((j * Scale) + i); 643 } 644 } 645 646 if (SDValue V = SimplifyMultipleUseDemandedBits( 647 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 648 return DAG.getBitcast(DstVT, V); 649 } 650 651 // TODO - bigendian once we have test coverage. 652 if ((NumSrcEltBits % NumDstEltBits) == 0 && 653 DAG.getDataLayout().isLittleEndian()) { 654 unsigned Scale = NumSrcEltBits / NumDstEltBits; 655 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 656 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 657 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 658 for (unsigned i = 0; i != NumElts; ++i) 659 if (DemandedElts[i]) { 660 unsigned Offset = (i % Scale) * NumDstEltBits; 661 DemandedSrcBits.insertBits(DemandedBits, Offset); 662 DemandedSrcElts.setBit(i / Scale); 663 } 664 665 if (SDValue V = SimplifyMultipleUseDemandedBits( 666 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 667 return DAG.getBitcast(DstVT, V); 668 } 669 670 break; 671 } 672 case ISD::AND: { 673 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 674 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 675 676 // If all of the demanded bits are known 1 on one side, return the other. 677 // These bits cannot contribute to the result of the 'and' in this 678 // context. 679 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 680 return Op.getOperand(0); 681 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 682 return Op.getOperand(1); 683 break; 684 } 685 case ISD::OR: { 686 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 687 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 688 689 // If all of the demanded bits are known zero on one side, return the 690 // other. These bits cannot contribute to the result of the 'or' in this 691 // context. 692 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 693 return Op.getOperand(0); 694 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 695 return Op.getOperand(1); 696 break; 697 } 698 case ISD::XOR: { 699 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 700 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 701 702 // If all of the demanded bits are known zero on one side, return the 703 // other. 704 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 705 return Op.getOperand(0); 706 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 707 return Op.getOperand(1); 708 break; 709 } 710 case ISD::SETCC: { 711 SDValue Op0 = Op.getOperand(0); 712 SDValue Op1 = Op.getOperand(1); 713 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 714 // If (1) we only need the sign-bit, (2) the setcc operands are the same 715 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 716 // -1, we may be able to bypass the setcc. 717 if (DemandedBits.isSignMask() && 718 Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() && 719 getBooleanContents(Op0.getValueType()) == 720 BooleanContent::ZeroOrNegativeOneBooleanContent) { 721 // If we're testing X < 0, then this compare isn't needed - just use X! 722 // FIXME: We're limiting to integer types here, but this should also work 723 // if we don't care about FP signed-zero. The use of SETLT with FP means 724 // that we don't care about NaNs. 725 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 726 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 727 return Op0; 728 } 729 break; 730 } 731 case ISD::SIGN_EXTEND_INREG: { 732 // If none of the extended bits are demanded, eliminate the sextinreg. 733 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 734 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 735 return Op.getOperand(0); 736 break; 737 } 738 case ISD::INSERT_VECTOR_ELT: { 739 // If we don't demand the inserted element, return the base vector. 740 SDValue Vec = Op.getOperand(0); 741 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 742 EVT VecVT = Vec.getValueType(); 743 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 744 !DemandedElts[CIdx->getZExtValue()]) 745 return Vec; 746 break; 747 } 748 case ISD::INSERT_SUBVECTOR: { 749 // If we don't demand the inserted subvector, return the base vector. 750 SDValue Vec = Op.getOperand(0); 751 SDValue Sub = Op.getOperand(1); 752 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 753 unsigned NumVecElts = Vec.getValueType().getVectorNumElements(); 754 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 755 if (CIdx && CIdx->getAPIntValue().ule(NumVecElts - NumSubElts)) 756 if (DemandedElts.extractBits(NumSubElts, CIdx->getZExtValue()) == 0) 757 return Vec; 758 break; 759 } 760 case ISD::VECTOR_SHUFFLE: { 761 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 762 763 // If all the demanded elts are from one operand and are inline, 764 // then we can use the operand directly. 765 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 766 for (unsigned i = 0; i != NumElts; ++i) { 767 int M = ShuffleMask[i]; 768 if (M < 0 || !DemandedElts[i]) 769 continue; 770 AllUndef = false; 771 IdentityLHS &= (M == (int)i); 772 IdentityRHS &= ((M - NumElts) == i); 773 } 774 775 if (AllUndef) 776 return DAG.getUNDEF(Op.getValueType()); 777 if (IdentityLHS) 778 return Op.getOperand(0); 779 if (IdentityRHS) 780 return Op.getOperand(1); 781 break; 782 } 783 default: 784 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 785 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 786 Op, DemandedBits, DemandedElts, DAG, Depth)) 787 return V; 788 break; 789 } 790 return SDValue(); 791 } 792 793 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 794 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 795 unsigned Depth) const { 796 EVT VT = Op.getValueType(); 797 APInt DemandedElts = VT.isVector() 798 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 799 : APInt(1, 1); 800 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 801 Depth); 802 } 803 804 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 805 /// result of Op are ever used downstream. If we can use this information to 806 /// simplify Op, create a new simplified DAG node and return true, returning the 807 /// original and new nodes in Old and New. Otherwise, analyze the expression and 808 /// return a mask of Known bits for the expression (used to simplify the 809 /// caller). The Known bits may only be accurate for those bits in the 810 /// OriginalDemandedBits and OriginalDemandedElts. 811 bool TargetLowering::SimplifyDemandedBits( 812 SDValue Op, const APInt &OriginalDemandedBits, 813 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 814 unsigned Depth, bool AssumeSingleUse) const { 815 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 816 assert(Op.getScalarValueSizeInBits() == BitWidth && 817 "Mask size mismatches value type size!"); 818 819 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 820 assert((!Op.getValueType().isVector() || 821 NumElts == Op.getValueType().getVectorNumElements()) && 822 "Unexpected vector size"); 823 824 APInt DemandedBits = OriginalDemandedBits; 825 APInt DemandedElts = OriginalDemandedElts; 826 SDLoc dl(Op); 827 auto &DL = TLO.DAG.getDataLayout(); 828 829 // Don't know anything. 830 Known = KnownBits(BitWidth); 831 832 // Undef operand. 833 if (Op.isUndef()) 834 return false; 835 836 if (Op.getOpcode() == ISD::Constant) { 837 // We know all of the bits for a constant! 838 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 839 Known.Zero = ~Known.One; 840 return false; 841 } 842 843 // Other users may use these bits. 844 EVT VT = Op.getValueType(); 845 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 846 if (Depth != 0) { 847 // If not at the root, Just compute the Known bits to 848 // simplify things downstream. 849 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 850 return false; 851 } 852 // If this is the root being simplified, allow it to have multiple uses, 853 // just set the DemandedBits/Elts to all bits. 854 DemandedBits = APInt::getAllOnesValue(BitWidth); 855 DemandedElts = APInt::getAllOnesValue(NumElts); 856 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 857 // Not demanding any bits/elts from Op. 858 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 859 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 860 // Limit search depth. 861 return false; 862 } 863 864 KnownBits Known2, KnownOut; 865 switch (Op.getOpcode()) { 866 case ISD::TargetConstant: 867 llvm_unreachable("Can't simplify this node"); 868 case ISD::SCALAR_TO_VECTOR: { 869 if (!DemandedElts[0]) 870 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 871 872 KnownBits SrcKnown; 873 SDValue Src = Op.getOperand(0); 874 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 875 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 876 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 877 return true; 878 879 // Upper elements are undef, so only get the knownbits if we just demand 880 // the bottom element. 881 if (DemandedElts == 1) 882 Known = SrcKnown.anyextOrTrunc(BitWidth); 883 break; 884 } 885 case ISD::BUILD_VECTOR: 886 // Collect the known bits that are shared by every demanded element. 887 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 888 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 889 return false; // Don't fall through, will infinitely loop. 890 case ISD::LOAD: { 891 LoadSDNode *LD = cast<LoadSDNode>(Op); 892 if (getTargetConstantFromLoad(LD)) { 893 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 894 return false; // Don't fall through, will infinitely loop. 895 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 896 // If this is a ZEXTLoad and we are looking at the loaded value. 897 EVT MemVT = LD->getMemoryVT(); 898 unsigned MemBits = MemVT.getScalarSizeInBits(); 899 Known.Zero.setBitsFrom(MemBits); 900 return false; // Don't fall through, will infinitely loop. 901 } 902 break; 903 } 904 case ISD::INSERT_VECTOR_ELT: { 905 SDValue Vec = Op.getOperand(0); 906 SDValue Scl = Op.getOperand(1); 907 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 908 EVT VecVT = Vec.getValueType(); 909 910 // If index isn't constant, assume we need all vector elements AND the 911 // inserted element. 912 APInt DemandedVecElts(DemandedElts); 913 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 914 unsigned Idx = CIdx->getZExtValue(); 915 DemandedVecElts.clearBit(Idx); 916 917 // Inserted element is not required. 918 if (!DemandedElts[Idx]) 919 return TLO.CombineTo(Op, Vec); 920 } 921 922 KnownBits KnownScl; 923 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 924 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 925 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 926 return true; 927 928 Known = KnownScl.anyextOrTrunc(BitWidth); 929 930 KnownBits KnownVec; 931 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 932 Depth + 1)) 933 return true; 934 935 if (!!DemandedVecElts) { 936 Known.One &= KnownVec.One; 937 Known.Zero &= KnownVec.Zero; 938 } 939 940 return false; 941 } 942 case ISD::INSERT_SUBVECTOR: { 943 SDValue Base = Op.getOperand(0); 944 SDValue Sub = Op.getOperand(1); 945 EVT SubVT = Sub.getValueType(); 946 unsigned NumSubElts = SubVT.getVectorNumElements(); 947 948 // If index isn't constant, assume we need the original demanded base 949 // elements and ALL the inserted subvector elements. 950 APInt BaseElts = DemandedElts; 951 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 952 if (isa<ConstantSDNode>(Op.getOperand(2))) { 953 const APInt &Idx = Op.getConstantOperandAPInt(2); 954 if (Idx.ule(NumElts - NumSubElts)) { 955 unsigned SubIdx = Idx.getZExtValue(); 956 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 957 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 958 } 959 } 960 961 KnownBits KnownSub, KnownBase; 962 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 963 Depth + 1)) 964 return true; 965 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 966 Depth + 1)) 967 return true; 968 969 Known.Zero.setAllBits(); 970 Known.One.setAllBits(); 971 if (!!SubElts) { 972 Known.One &= KnownSub.One; 973 Known.Zero &= KnownSub.Zero; 974 } 975 if (!!BaseElts) { 976 Known.One &= KnownBase.One; 977 Known.Zero &= KnownBase.Zero; 978 } 979 980 // Attempt to avoid multi-use src if we don't need anything from it. 981 if (!DemandedBits.isAllOnesValue() || !SubElts.isAllOnesValue() || 982 !BaseElts.isAllOnesValue()) { 983 SDValue NewSub = SimplifyMultipleUseDemandedBits( 984 Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1); 985 SDValue NewBase = SimplifyMultipleUseDemandedBits( 986 Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1); 987 if (NewSub || NewBase) { 988 NewSub = NewSub ? NewSub : Sub; 989 NewBase = NewBase ? NewBase : Base; 990 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewBase, NewSub, 991 Op.getOperand(2)); 992 return TLO.CombineTo(Op, NewOp); 993 } 994 } 995 break; 996 } 997 case ISD::EXTRACT_SUBVECTOR: { 998 // If index isn't constant, assume we need all the source vector elements. 999 SDValue Src = Op.getOperand(0); 1000 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1001 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1002 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts); 1003 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 1004 // Offset the demanded elts by the subvector index. 1005 uint64_t Idx = SubIdx->getZExtValue(); 1006 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1007 } 1008 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1)) 1009 return true; 1010 1011 // Attempt to avoid multi-use src if we don't need anything from it. 1012 if (!DemandedBits.isAllOnesValue() || !SrcElts.isAllOnesValue()) { 1013 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1014 Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1); 1015 if (DemandedSrc) { 1016 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1017 Op.getOperand(1)); 1018 return TLO.CombineTo(Op, NewOp); 1019 } 1020 } 1021 break; 1022 } 1023 case ISD::CONCAT_VECTORS: { 1024 Known.Zero.setAllBits(); 1025 Known.One.setAllBits(); 1026 EVT SubVT = Op.getOperand(0).getValueType(); 1027 unsigned NumSubVecs = Op.getNumOperands(); 1028 unsigned NumSubElts = SubVT.getVectorNumElements(); 1029 for (unsigned i = 0; i != NumSubVecs; ++i) { 1030 APInt DemandedSubElts = 1031 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1032 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1033 Known2, TLO, Depth + 1)) 1034 return true; 1035 // Known bits are shared by every demanded subvector element. 1036 if (!!DemandedSubElts) { 1037 Known.One &= Known2.One; 1038 Known.Zero &= Known2.Zero; 1039 } 1040 } 1041 break; 1042 } 1043 case ISD::VECTOR_SHUFFLE: { 1044 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1045 1046 // Collect demanded elements from shuffle operands.. 1047 APInt DemandedLHS(NumElts, 0); 1048 APInt DemandedRHS(NumElts, 0); 1049 for (unsigned i = 0; i != NumElts; ++i) { 1050 if (!DemandedElts[i]) 1051 continue; 1052 int M = ShuffleMask[i]; 1053 if (M < 0) { 1054 // For UNDEF elements, we don't know anything about the common state of 1055 // the shuffle result. 1056 DemandedLHS.clearAllBits(); 1057 DemandedRHS.clearAllBits(); 1058 break; 1059 } 1060 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1061 if (M < (int)NumElts) 1062 DemandedLHS.setBit(M); 1063 else 1064 DemandedRHS.setBit(M - NumElts); 1065 } 1066 1067 if (!!DemandedLHS || !!DemandedRHS) { 1068 SDValue Op0 = Op.getOperand(0); 1069 SDValue Op1 = Op.getOperand(1); 1070 1071 Known.Zero.setAllBits(); 1072 Known.One.setAllBits(); 1073 if (!!DemandedLHS) { 1074 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1075 Depth + 1)) 1076 return true; 1077 Known.One &= Known2.One; 1078 Known.Zero &= Known2.Zero; 1079 } 1080 if (!!DemandedRHS) { 1081 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1082 Depth + 1)) 1083 return true; 1084 Known.One &= Known2.One; 1085 Known.Zero &= Known2.Zero; 1086 } 1087 1088 // Attempt to avoid multi-use ops if we don't need anything from them. 1089 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1090 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1091 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1092 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1093 if (DemandedOp0 || DemandedOp1) { 1094 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1095 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1096 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1097 return TLO.CombineTo(Op, NewOp); 1098 } 1099 } 1100 break; 1101 } 1102 case ISD::AND: { 1103 SDValue Op0 = Op.getOperand(0); 1104 SDValue Op1 = Op.getOperand(1); 1105 1106 // If the RHS is a constant, check to see if the LHS would be zero without 1107 // using the bits from the RHS. Below, we use knowledge about the RHS to 1108 // simplify the LHS, here we're using information from the LHS to simplify 1109 // the RHS. 1110 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1111 // Do not increment Depth here; that can cause an infinite loop. 1112 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1113 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1114 if ((LHSKnown.Zero & DemandedBits) == 1115 (~RHSC->getAPIntValue() & DemandedBits)) 1116 return TLO.CombineTo(Op, Op0); 1117 1118 // If any of the set bits in the RHS are known zero on the LHS, shrink 1119 // the constant. 1120 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1121 return true; 1122 1123 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1124 // constant, but if this 'and' is only clearing bits that were just set by 1125 // the xor, then this 'and' can be eliminated by shrinking the mask of 1126 // the xor. For example, for a 32-bit X: 1127 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1128 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1129 LHSKnown.One == ~RHSC->getAPIntValue()) { 1130 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1131 return TLO.CombineTo(Op, Xor); 1132 } 1133 } 1134 1135 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1136 Depth + 1)) 1137 return true; 1138 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1139 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1140 Known2, TLO, Depth + 1)) 1141 return true; 1142 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1143 1144 // Attempt to avoid multi-use ops if we don't need anything from them. 1145 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1146 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1147 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1148 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1149 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1150 if (DemandedOp0 || DemandedOp1) { 1151 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1152 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1153 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1154 return TLO.CombineTo(Op, NewOp); 1155 } 1156 } 1157 1158 // If all of the demanded bits are known one on one side, return the other. 1159 // These bits cannot contribute to the result of the 'and'. 1160 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1161 return TLO.CombineTo(Op, Op0); 1162 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1163 return TLO.CombineTo(Op, Op1); 1164 // If all of the demanded bits in the inputs are known zeros, return zero. 1165 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1166 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1167 // If the RHS is a constant, see if we can simplify it. 1168 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1169 return true; 1170 // If the operation can be done in a smaller type, do so. 1171 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1172 return true; 1173 1174 // Output known-1 bits are only known if set in both the LHS & RHS. 1175 Known.One &= Known2.One; 1176 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1177 Known.Zero |= Known2.Zero; 1178 break; 1179 } 1180 case ISD::OR: { 1181 SDValue Op0 = Op.getOperand(0); 1182 SDValue Op1 = Op.getOperand(1); 1183 1184 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1185 Depth + 1)) 1186 return true; 1187 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1188 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1189 Known2, TLO, Depth + 1)) 1190 return true; 1191 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1192 1193 // Attempt to avoid multi-use ops if we don't need anything from them. 1194 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1195 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1196 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1197 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1198 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1199 if (DemandedOp0 || DemandedOp1) { 1200 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1201 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1202 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1203 return TLO.CombineTo(Op, NewOp); 1204 } 1205 } 1206 1207 // If all of the demanded bits are known zero on one side, return the other. 1208 // These bits cannot contribute to the result of the 'or'. 1209 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1210 return TLO.CombineTo(Op, Op0); 1211 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1212 return TLO.CombineTo(Op, Op1); 1213 // If the RHS is a constant, see if we can simplify it. 1214 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1215 return true; 1216 // If the operation can be done in a smaller type, do so. 1217 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1218 return true; 1219 1220 // Output known-0 bits are only known if clear in both the LHS & RHS. 1221 Known.Zero &= Known2.Zero; 1222 // Output known-1 are known to be set if set in either the LHS | RHS. 1223 Known.One |= Known2.One; 1224 break; 1225 } 1226 case ISD::XOR: { 1227 SDValue Op0 = Op.getOperand(0); 1228 SDValue Op1 = Op.getOperand(1); 1229 1230 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1231 Depth + 1)) 1232 return true; 1233 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1234 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1235 Depth + 1)) 1236 return true; 1237 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1238 1239 // Attempt to avoid multi-use ops if we don't need anything from them. 1240 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1241 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1242 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1243 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1244 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1245 if (DemandedOp0 || DemandedOp1) { 1246 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1247 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1248 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1249 return TLO.CombineTo(Op, NewOp); 1250 } 1251 } 1252 1253 // If all of the demanded bits are known zero on one side, return the other. 1254 // These bits cannot contribute to the result of the 'xor'. 1255 if (DemandedBits.isSubsetOf(Known.Zero)) 1256 return TLO.CombineTo(Op, Op0); 1257 if (DemandedBits.isSubsetOf(Known2.Zero)) 1258 return TLO.CombineTo(Op, Op1); 1259 // If the operation can be done in a smaller type, do so. 1260 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1261 return true; 1262 1263 // If all of the unknown bits are known to be zero on one side or the other 1264 // (but not both) turn this into an *inclusive* or. 1265 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1266 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1267 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1268 1269 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1270 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1271 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1272 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1273 1274 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1275 // If one side is a constant, and all of the known set bits on the other 1276 // side are also set in the constant, turn this into an AND, as we know 1277 // the bits will be cleared. 1278 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1279 // NB: it is okay if more bits are known than are requested 1280 if (C->getAPIntValue() == Known2.One) { 1281 SDValue ANDC = 1282 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1283 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1284 } 1285 1286 // If the RHS is a constant, see if we can change it. Don't alter a -1 1287 // constant because that's a 'not' op, and that is better for combining 1288 // and codegen. 1289 if (!C->isAllOnesValue()) { 1290 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1291 // We're flipping all demanded bits. Flip the undemanded bits too. 1292 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1293 return TLO.CombineTo(Op, New); 1294 } 1295 // If we can't turn this into a 'not', try to shrink the constant. 1296 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1297 return true; 1298 } 1299 } 1300 1301 Known = std::move(KnownOut); 1302 break; 1303 } 1304 case ISD::SELECT: 1305 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1306 Depth + 1)) 1307 return true; 1308 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1309 Depth + 1)) 1310 return true; 1311 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1312 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1313 1314 // If the operands are constants, see if we can simplify them. 1315 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1316 return true; 1317 1318 // Only known if known in both the LHS and RHS. 1319 Known.One &= Known2.One; 1320 Known.Zero &= Known2.Zero; 1321 break; 1322 case ISD::SELECT_CC: 1323 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1324 Depth + 1)) 1325 return true; 1326 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1327 Depth + 1)) 1328 return true; 1329 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1330 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1331 1332 // If the operands are constants, see if we can simplify them. 1333 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1334 return true; 1335 1336 // Only known if known in both the LHS and RHS. 1337 Known.One &= Known2.One; 1338 Known.Zero &= Known2.Zero; 1339 break; 1340 case ISD::SETCC: { 1341 SDValue Op0 = Op.getOperand(0); 1342 SDValue Op1 = Op.getOperand(1); 1343 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1344 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1345 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1346 // -1, we may be able to bypass the setcc. 1347 if (DemandedBits.isSignMask() && 1348 Op0.getScalarValueSizeInBits() == BitWidth && 1349 getBooleanContents(Op0.getValueType()) == 1350 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1351 // If we're testing X < 0, then this compare isn't needed - just use X! 1352 // FIXME: We're limiting to integer types here, but this should also work 1353 // if we don't care about FP signed-zero. The use of SETLT with FP means 1354 // that we don't care about NaNs. 1355 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1356 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1357 return TLO.CombineTo(Op, Op0); 1358 1359 // TODO: Should we check for other forms of sign-bit comparisons? 1360 // Examples: X <= -1, X >= 0 1361 } 1362 if (getBooleanContents(Op0.getValueType()) == 1363 TargetLowering::ZeroOrOneBooleanContent && 1364 BitWidth > 1) 1365 Known.Zero.setBitsFrom(1); 1366 break; 1367 } 1368 case ISD::SHL: { 1369 SDValue Op0 = Op.getOperand(0); 1370 SDValue Op1 = Op.getOperand(1); 1371 EVT ShiftVT = Op1.getValueType(); 1372 1373 if (const APInt *SA = 1374 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1375 unsigned ShAmt = SA->getZExtValue(); 1376 if (ShAmt == 0) 1377 return TLO.CombineTo(Op, Op0); 1378 1379 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1380 // single shift. We can do this if the bottom bits (which are shifted 1381 // out) are never demanded. 1382 // TODO - support non-uniform vector amounts. 1383 if (Op0.getOpcode() == ISD::SRL) { 1384 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1385 if (const APInt *SA2 = 1386 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1387 if (SA2->ult(BitWidth)) { 1388 unsigned C1 = SA2->getZExtValue(); 1389 unsigned Opc = ISD::SHL; 1390 int Diff = ShAmt - C1; 1391 if (Diff < 0) { 1392 Diff = -Diff; 1393 Opc = ISD::SRL; 1394 } 1395 1396 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1397 return TLO.CombineTo( 1398 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1399 } 1400 } 1401 } 1402 } 1403 1404 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1405 // are not demanded. This will likely allow the anyext to be folded away. 1406 // TODO - support non-uniform vector amounts. 1407 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1408 SDValue InnerOp = Op0.getOperand(0); 1409 EVT InnerVT = InnerOp.getValueType(); 1410 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1411 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1412 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1413 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1414 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1415 ShTy = InnerVT; 1416 SDValue NarrowShl = 1417 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1418 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1419 return TLO.CombineTo( 1420 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1421 } 1422 1423 // Repeat the SHL optimization above in cases where an extension 1424 // intervenes: (shl (anyext (shr x, c1)), c2) to 1425 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1426 // aren't demanded (as above) and that the shifted upper c1 bits of 1427 // x aren't demanded. 1428 // TODO - support non-uniform vector amounts. 1429 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1430 InnerOp.hasOneUse()) { 1431 if (const APInt *SA2 = 1432 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1433 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1434 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1435 DemandedBits.getActiveBits() <= 1436 (InnerBits - InnerShAmt + ShAmt) && 1437 DemandedBits.countTrailingZeros() >= ShAmt) { 1438 SDValue NewSA = 1439 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1440 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1441 InnerOp.getOperand(0)); 1442 return TLO.CombineTo( 1443 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1444 } 1445 } 1446 } 1447 } 1448 1449 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1450 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1451 Depth + 1)) 1452 return true; 1453 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1454 Known.Zero <<= ShAmt; 1455 Known.One <<= ShAmt; 1456 // low bits known zero. 1457 Known.Zero.setLowBits(ShAmt); 1458 1459 // Try shrinking the operation as long as the shift amount will still be 1460 // in range. 1461 if ((ShAmt < DemandedBits.getActiveBits()) && 1462 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1463 return true; 1464 } 1465 break; 1466 } 1467 case ISD::SRL: { 1468 SDValue Op0 = Op.getOperand(0); 1469 SDValue Op1 = Op.getOperand(1); 1470 EVT ShiftVT = Op1.getValueType(); 1471 1472 if (const APInt *SA = 1473 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1474 unsigned ShAmt = SA->getZExtValue(); 1475 if (ShAmt == 0) 1476 return TLO.CombineTo(Op, Op0); 1477 1478 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1479 // single shift. We can do this if the top bits (which are shifted out) 1480 // are never demanded. 1481 // TODO - support non-uniform vector amounts. 1482 if (Op0.getOpcode() == ISD::SHL) { 1483 if (const APInt *SA2 = 1484 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1485 if (!DemandedBits.intersects( 1486 APInt::getHighBitsSet(BitWidth, ShAmt))) { 1487 if (SA2->ult(BitWidth)) { 1488 unsigned C1 = SA2->getZExtValue(); 1489 unsigned Opc = ISD::SRL; 1490 int Diff = ShAmt - C1; 1491 if (Diff < 0) { 1492 Diff = -Diff; 1493 Opc = ISD::SHL; 1494 } 1495 1496 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1497 return TLO.CombineTo( 1498 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1499 } 1500 } 1501 } 1502 } 1503 1504 APInt InDemandedMask = (DemandedBits << ShAmt); 1505 1506 // If the shift is exact, then it does demand the low bits (and knows that 1507 // they are zero). 1508 if (Op->getFlags().hasExact()) 1509 InDemandedMask.setLowBits(ShAmt); 1510 1511 // Compute the new bits that are at the top now. 1512 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1513 Depth + 1)) 1514 return true; 1515 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1516 Known.Zero.lshrInPlace(ShAmt); 1517 Known.One.lshrInPlace(ShAmt); 1518 // High bits known zero. 1519 Known.Zero.setHighBits(ShAmt); 1520 } 1521 break; 1522 } 1523 case ISD::SRA: { 1524 SDValue Op0 = Op.getOperand(0); 1525 SDValue Op1 = Op.getOperand(1); 1526 EVT ShiftVT = Op1.getValueType(); 1527 1528 // If we only want bits that already match the signbit then we don't need 1529 // to shift. 1530 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1531 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1532 NumHiDemandedBits) 1533 return TLO.CombineTo(Op, Op0); 1534 1535 // If this is an arithmetic shift right and only the low-bit is set, we can 1536 // always convert this into a logical shr, even if the shift amount is 1537 // variable. The low bit of the shift cannot be an input sign bit unless 1538 // the shift amount is >= the size of the datatype, which is undefined. 1539 if (DemandedBits.isOneValue()) 1540 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1541 1542 if (const APInt *SA = 1543 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1544 unsigned ShAmt = SA->getZExtValue(); 1545 if (ShAmt == 0) 1546 return TLO.CombineTo(Op, Op0); 1547 1548 APInt InDemandedMask = (DemandedBits << ShAmt); 1549 1550 // If the shift is exact, then it does demand the low bits (and knows that 1551 // they are zero). 1552 if (Op->getFlags().hasExact()) 1553 InDemandedMask.setLowBits(ShAmt); 1554 1555 // If any of the demanded bits are produced by the sign extension, we also 1556 // demand the input sign bit. 1557 if (DemandedBits.countLeadingZeros() < ShAmt) 1558 InDemandedMask.setSignBit(); 1559 1560 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1561 Depth + 1)) 1562 return true; 1563 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1564 Known.Zero.lshrInPlace(ShAmt); 1565 Known.One.lshrInPlace(ShAmt); 1566 1567 // If the input sign bit is known to be zero, or if none of the top bits 1568 // are demanded, turn this into an unsigned shift right. 1569 if (Known.Zero[BitWidth - ShAmt - 1] || 1570 DemandedBits.countLeadingZeros() >= ShAmt) { 1571 SDNodeFlags Flags; 1572 Flags.setExact(Op->getFlags().hasExact()); 1573 return TLO.CombineTo( 1574 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1575 } 1576 1577 int Log2 = DemandedBits.exactLogBase2(); 1578 if (Log2 >= 0) { 1579 // The bit must come from the sign. 1580 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1581 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1582 } 1583 1584 if (Known.One[BitWidth - ShAmt - 1]) 1585 // New bits are known one. 1586 Known.One.setHighBits(ShAmt); 1587 1588 // Attempt to avoid multi-use ops if we don't need anything from them. 1589 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1590 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1591 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1592 if (DemandedOp0) { 1593 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1594 return TLO.CombineTo(Op, NewOp); 1595 } 1596 } 1597 } 1598 break; 1599 } 1600 case ISD::FSHL: 1601 case ISD::FSHR: { 1602 SDValue Op0 = Op.getOperand(0); 1603 SDValue Op1 = Op.getOperand(1); 1604 SDValue Op2 = Op.getOperand(2); 1605 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1606 1607 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1608 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1609 1610 // For fshl, 0-shift returns the 1st arg. 1611 // For fshr, 0-shift returns the 2nd arg. 1612 if (Amt == 0) { 1613 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1614 Known, TLO, Depth + 1)) 1615 return true; 1616 break; 1617 } 1618 1619 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1620 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1621 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1622 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1623 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1624 Depth + 1)) 1625 return true; 1626 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1627 Depth + 1)) 1628 return true; 1629 1630 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1631 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1632 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1633 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1634 Known.One |= Known2.One; 1635 Known.Zero |= Known2.Zero; 1636 } 1637 1638 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1639 if (isPowerOf2_32(BitWidth)) { 1640 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1641 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1642 Known2, TLO, Depth + 1)) 1643 return true; 1644 } 1645 break; 1646 } 1647 case ISD::ROTL: 1648 case ISD::ROTR: { 1649 SDValue Op0 = Op.getOperand(0); 1650 SDValue Op1 = Op.getOperand(1); 1651 1652 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1653 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1654 return TLO.CombineTo(Op, Op0); 1655 1656 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1657 if (isPowerOf2_32(BitWidth)) { 1658 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1659 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1660 Depth + 1)) 1661 return true; 1662 } 1663 break; 1664 } 1665 case ISD::BITREVERSE: { 1666 SDValue Src = Op.getOperand(0); 1667 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1668 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1669 Depth + 1)) 1670 return true; 1671 Known.One = Known2.One.reverseBits(); 1672 Known.Zero = Known2.Zero.reverseBits(); 1673 break; 1674 } 1675 case ISD::BSWAP: { 1676 SDValue Src = Op.getOperand(0); 1677 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1678 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1679 Depth + 1)) 1680 return true; 1681 Known.One = Known2.One.byteSwap(); 1682 Known.Zero = Known2.Zero.byteSwap(); 1683 break; 1684 } 1685 case ISD::SIGN_EXTEND_INREG: { 1686 SDValue Op0 = Op.getOperand(0); 1687 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1688 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1689 1690 // If we only care about the highest bit, don't bother shifting right. 1691 if (DemandedBits.isSignMask()) { 1692 unsigned NumSignBits = 1693 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1694 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1695 // However if the input is already sign extended we expect the sign 1696 // extension to be dropped altogether later and do not simplify. 1697 if (!AlreadySignExtended) { 1698 // Compute the correct shift amount type, which must be getShiftAmountTy 1699 // for scalar types after legalization. 1700 EVT ShiftAmtTy = VT; 1701 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1702 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1703 1704 SDValue ShiftAmt = 1705 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1706 return TLO.CombineTo(Op, 1707 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1708 } 1709 } 1710 1711 // If none of the extended bits are demanded, eliminate the sextinreg. 1712 if (DemandedBits.getActiveBits() <= ExVTBits) 1713 return TLO.CombineTo(Op, Op0); 1714 1715 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1716 1717 // Since the sign extended bits are demanded, we know that the sign 1718 // bit is demanded. 1719 InputDemandedBits.setBit(ExVTBits - 1); 1720 1721 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1722 return true; 1723 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1724 1725 // If the sign bit of the input is known set or clear, then we know the 1726 // top bits of the result. 1727 1728 // If the input sign bit is known zero, convert this into a zero extension. 1729 if (Known.Zero[ExVTBits - 1]) 1730 return TLO.CombineTo( 1731 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1732 1733 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1734 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1735 Known.One.setBitsFrom(ExVTBits); 1736 Known.Zero &= Mask; 1737 } else { // Input sign bit unknown 1738 Known.Zero &= Mask; 1739 Known.One &= Mask; 1740 } 1741 break; 1742 } 1743 case ISD::BUILD_PAIR: { 1744 EVT HalfVT = Op.getOperand(0).getValueType(); 1745 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1746 1747 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1748 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1749 1750 KnownBits KnownLo, KnownHi; 1751 1752 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1753 return true; 1754 1755 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1756 return true; 1757 1758 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1759 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1760 1761 Known.One = KnownLo.One.zext(BitWidth) | 1762 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1763 break; 1764 } 1765 case ISD::ZERO_EXTEND: 1766 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1767 SDValue Src = Op.getOperand(0); 1768 EVT SrcVT = Src.getValueType(); 1769 unsigned InBits = SrcVT.getScalarSizeInBits(); 1770 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1771 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1772 1773 // If none of the top bits are demanded, convert this into an any_extend. 1774 if (DemandedBits.getActiveBits() <= InBits) { 1775 // If we only need the non-extended bits of the bottom element 1776 // then we can just bitcast to the result. 1777 if (IsVecInReg && DemandedElts == 1 && 1778 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1779 TLO.DAG.getDataLayout().isLittleEndian()) 1780 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1781 1782 unsigned Opc = 1783 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1784 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1785 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1786 } 1787 1788 APInt InDemandedBits = DemandedBits.trunc(InBits); 1789 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1790 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1791 Depth + 1)) 1792 return true; 1793 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1794 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1795 Known = Known.zext(BitWidth); 1796 break; 1797 } 1798 case ISD::SIGN_EXTEND: 1799 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1800 SDValue Src = Op.getOperand(0); 1801 EVT SrcVT = Src.getValueType(); 1802 unsigned InBits = SrcVT.getScalarSizeInBits(); 1803 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1804 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1805 1806 // If none of the top bits are demanded, convert this into an any_extend. 1807 if (DemandedBits.getActiveBits() <= InBits) { 1808 // If we only need the non-extended bits of the bottom element 1809 // then we can just bitcast to the result. 1810 if (IsVecInReg && DemandedElts == 1 && 1811 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1812 TLO.DAG.getDataLayout().isLittleEndian()) 1813 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1814 1815 unsigned Opc = 1816 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1817 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1818 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1819 } 1820 1821 APInt InDemandedBits = DemandedBits.trunc(InBits); 1822 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1823 1824 // Since some of the sign extended bits are demanded, we know that the sign 1825 // bit is demanded. 1826 InDemandedBits.setBit(InBits - 1); 1827 1828 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1829 Depth + 1)) 1830 return true; 1831 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1832 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1833 1834 // If the sign bit is known one, the top bits match. 1835 Known = Known.sext(BitWidth); 1836 1837 // If the sign bit is known zero, convert this to a zero extend. 1838 if (Known.isNonNegative()) { 1839 unsigned Opc = 1840 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1841 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1842 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1843 } 1844 break; 1845 } 1846 case ISD::ANY_EXTEND: 1847 case ISD::ANY_EXTEND_VECTOR_INREG: { 1848 SDValue Src = Op.getOperand(0); 1849 EVT SrcVT = Src.getValueType(); 1850 unsigned InBits = SrcVT.getScalarSizeInBits(); 1851 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1852 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1853 1854 // If we only need the bottom element then we can just bitcast. 1855 // TODO: Handle ANY_EXTEND? 1856 if (IsVecInReg && DemandedElts == 1 && 1857 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1858 TLO.DAG.getDataLayout().isLittleEndian()) 1859 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1860 1861 APInt InDemandedBits = DemandedBits.trunc(InBits); 1862 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1863 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1864 Depth + 1)) 1865 return true; 1866 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1867 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1868 Known = Known.anyext(BitWidth); 1869 1870 // Attempt to avoid multi-use ops if we don't need anything from them. 1871 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1872 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1873 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1874 break; 1875 } 1876 case ISD::TRUNCATE: { 1877 SDValue Src = Op.getOperand(0); 1878 1879 // Simplify the input, using demanded bit information, and compute the known 1880 // zero/one bits live out. 1881 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1882 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1883 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1884 return true; 1885 Known = Known.trunc(BitWidth); 1886 1887 // Attempt to avoid multi-use ops if we don't need anything from them. 1888 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1889 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1890 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1891 1892 // If the input is only used by this truncate, see if we can shrink it based 1893 // on the known demanded bits. 1894 if (Src.getNode()->hasOneUse()) { 1895 switch (Src.getOpcode()) { 1896 default: 1897 break; 1898 case ISD::SRL: 1899 // Shrink SRL by a constant if none of the high bits shifted in are 1900 // demanded. 1901 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1902 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1903 // undesirable. 1904 break; 1905 1906 SDValue ShAmt = Src.getOperand(1); 1907 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1908 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1909 break; 1910 uint64_t ShVal = ShAmtC->getZExtValue(); 1911 1912 APInt HighBits = 1913 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1914 HighBits.lshrInPlace(ShVal); 1915 HighBits = HighBits.trunc(BitWidth); 1916 1917 if (!(HighBits & DemandedBits)) { 1918 // None of the shifted in bits are needed. Add a truncate of the 1919 // shift input, then shift it. 1920 if (TLO.LegalTypes()) 1921 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1922 SDValue NewTrunc = 1923 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1924 return TLO.CombineTo( 1925 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 1926 } 1927 break; 1928 } 1929 } 1930 1931 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1932 break; 1933 } 1934 case ISD::AssertZext: { 1935 // AssertZext demands all of the high bits, plus any of the low bits 1936 // demanded by its users. 1937 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1938 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1939 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1940 TLO, Depth + 1)) 1941 return true; 1942 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1943 1944 Known.Zero |= ~InMask; 1945 break; 1946 } 1947 case ISD::EXTRACT_VECTOR_ELT: { 1948 SDValue Src = Op.getOperand(0); 1949 SDValue Idx = Op.getOperand(1); 1950 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1951 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1952 1953 // Demand the bits from every vector element without a constant index. 1954 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1955 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1956 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1957 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1958 1959 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1960 // anything about the extended bits. 1961 APInt DemandedSrcBits = DemandedBits; 1962 if (BitWidth > EltBitWidth) 1963 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1964 1965 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1966 Depth + 1)) 1967 return true; 1968 1969 // Attempt to avoid multi-use ops if we don't need anything from them. 1970 if (!DemandedSrcBits.isAllOnesValue() || 1971 !DemandedSrcElts.isAllOnesValue()) { 1972 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1973 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 1974 SDValue NewOp = 1975 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 1976 return TLO.CombineTo(Op, NewOp); 1977 } 1978 } 1979 1980 Known = Known2; 1981 if (BitWidth > EltBitWidth) 1982 Known = Known.anyext(BitWidth); 1983 break; 1984 } 1985 case ISD::BITCAST: { 1986 SDValue Src = Op.getOperand(0); 1987 EVT SrcVT = Src.getValueType(); 1988 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1989 1990 // If this is an FP->Int bitcast and if the sign bit is the only 1991 // thing demanded, turn this into a FGETSIGN. 1992 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1993 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1994 SrcVT.isFloatingPoint()) { 1995 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1996 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1997 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1998 SrcVT != MVT::f128) { 1999 // Cannot eliminate/lower SHL for f128 yet. 2000 EVT Ty = OpVTLegal ? VT : MVT::i32; 2001 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2002 // place. We expect the SHL to be eliminated by other optimizations. 2003 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2004 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2005 if (!OpVTLegal && OpVTSizeInBits > 32) 2006 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2007 unsigned ShVal = Op.getValueSizeInBits() - 1; 2008 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2009 return TLO.CombineTo(Op, 2010 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2011 } 2012 } 2013 2014 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2015 // Demand the elt/bit if any of the original elts/bits are demanded. 2016 // TODO - bigendian once we have test coverage. 2017 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2018 TLO.DAG.getDataLayout().isLittleEndian()) { 2019 unsigned Scale = BitWidth / NumSrcEltBits; 2020 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2021 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2022 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2023 for (unsigned i = 0; i != Scale; ++i) { 2024 unsigned Offset = i * NumSrcEltBits; 2025 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2026 if (!Sub.isNullValue()) { 2027 DemandedSrcBits |= Sub; 2028 for (unsigned j = 0; j != NumElts; ++j) 2029 if (DemandedElts[j]) 2030 DemandedSrcElts.setBit((j * Scale) + i); 2031 } 2032 } 2033 2034 APInt KnownSrcUndef, KnownSrcZero; 2035 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2036 KnownSrcZero, TLO, Depth + 1)) 2037 return true; 2038 2039 KnownBits KnownSrcBits; 2040 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2041 KnownSrcBits, TLO, Depth + 1)) 2042 return true; 2043 } else if ((NumSrcEltBits % BitWidth) == 0 && 2044 TLO.DAG.getDataLayout().isLittleEndian()) { 2045 unsigned Scale = NumSrcEltBits / BitWidth; 2046 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2047 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2048 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2049 for (unsigned i = 0; i != NumElts; ++i) 2050 if (DemandedElts[i]) { 2051 unsigned Offset = (i % Scale) * BitWidth; 2052 DemandedSrcBits.insertBits(DemandedBits, Offset); 2053 DemandedSrcElts.setBit(i / Scale); 2054 } 2055 2056 if (SrcVT.isVector()) { 2057 APInt KnownSrcUndef, KnownSrcZero; 2058 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2059 KnownSrcZero, TLO, Depth + 1)) 2060 return true; 2061 } 2062 2063 KnownBits KnownSrcBits; 2064 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2065 KnownSrcBits, TLO, Depth + 1)) 2066 return true; 2067 } 2068 2069 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2070 // recursive call where Known may be useful to the caller. 2071 if (Depth > 0) { 2072 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2073 return false; 2074 } 2075 break; 2076 } 2077 case ISD::ADD: 2078 case ISD::MUL: 2079 case ISD::SUB: { 2080 // Add, Sub, and Mul don't demand any bits in positions beyond that 2081 // of the highest bit demanded of them. 2082 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2083 SDNodeFlags Flags = Op.getNode()->getFlags(); 2084 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2085 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2086 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2087 Depth + 1) || 2088 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2089 Depth + 1) || 2090 // See if the operation should be performed at a smaller bit width. 2091 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2092 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2093 // Disable the nsw and nuw flags. We can no longer guarantee that we 2094 // won't wrap after simplification. 2095 Flags.setNoSignedWrap(false); 2096 Flags.setNoUnsignedWrap(false); 2097 SDValue NewOp = 2098 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2099 return TLO.CombineTo(Op, NewOp); 2100 } 2101 return true; 2102 } 2103 2104 // Attempt to avoid multi-use ops if we don't need anything from them. 2105 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2106 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2107 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2108 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2109 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2110 if (DemandedOp0 || DemandedOp1) { 2111 Flags.setNoSignedWrap(false); 2112 Flags.setNoUnsignedWrap(false); 2113 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2114 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2115 SDValue NewOp = 2116 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2117 return TLO.CombineTo(Op, NewOp); 2118 } 2119 } 2120 2121 // If we have a constant operand, we may be able to turn it into -1 if we 2122 // do not demand the high bits. This can make the constant smaller to 2123 // encode, allow more general folding, or match specialized instruction 2124 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2125 // is probably not useful (and could be detrimental). 2126 ConstantSDNode *C = isConstOrConstSplat(Op1); 2127 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2128 if (C && !C->isAllOnesValue() && !C->isOne() && 2129 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2130 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2131 // Disable the nsw and nuw flags. We can no longer guarantee that we 2132 // won't wrap after simplification. 2133 Flags.setNoSignedWrap(false); 2134 Flags.setNoUnsignedWrap(false); 2135 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2136 return TLO.CombineTo(Op, NewOp); 2137 } 2138 2139 LLVM_FALLTHROUGH; 2140 } 2141 default: 2142 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2143 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2144 Known, TLO, Depth)) 2145 return true; 2146 break; 2147 } 2148 2149 // Just use computeKnownBits to compute output bits. 2150 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2151 break; 2152 } 2153 2154 // If we know the value of all of the demanded bits, return this as a 2155 // constant. 2156 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2157 // Avoid folding to a constant if any OpaqueConstant is involved. 2158 const SDNode *N = Op.getNode(); 2159 for (SDNodeIterator I = SDNodeIterator::begin(N), 2160 E = SDNodeIterator::end(N); 2161 I != E; ++I) { 2162 SDNode *Op = *I; 2163 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2164 if (C->isOpaque()) 2165 return false; 2166 } 2167 // TODO: Handle float bits as well. 2168 if (VT.isInteger()) 2169 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2170 } 2171 2172 return false; 2173 } 2174 2175 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2176 const APInt &DemandedElts, 2177 APInt &KnownUndef, 2178 APInt &KnownZero, 2179 DAGCombinerInfo &DCI) const { 2180 SelectionDAG &DAG = DCI.DAG; 2181 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2182 !DCI.isBeforeLegalizeOps()); 2183 2184 bool Simplified = 2185 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2186 if (Simplified) { 2187 DCI.AddToWorklist(Op.getNode()); 2188 DCI.CommitTargetLoweringOpt(TLO); 2189 } 2190 2191 return Simplified; 2192 } 2193 2194 /// Given a vector binary operation and known undefined elements for each input 2195 /// operand, compute whether each element of the output is undefined. 2196 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2197 const APInt &UndefOp0, 2198 const APInt &UndefOp1) { 2199 EVT VT = BO.getValueType(); 2200 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2201 "Vector binop only"); 2202 2203 EVT EltVT = VT.getVectorElementType(); 2204 unsigned NumElts = VT.getVectorNumElements(); 2205 assert(UndefOp0.getBitWidth() == NumElts && 2206 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2207 2208 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2209 const APInt &UndefVals) { 2210 if (UndefVals[Index]) 2211 return DAG.getUNDEF(EltVT); 2212 2213 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2214 // Try hard to make sure that the getNode() call is not creating temporary 2215 // nodes. Ignore opaque integers because they do not constant fold. 2216 SDValue Elt = BV->getOperand(Index); 2217 auto *C = dyn_cast<ConstantSDNode>(Elt); 2218 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2219 return Elt; 2220 } 2221 2222 return SDValue(); 2223 }; 2224 2225 APInt KnownUndef = APInt::getNullValue(NumElts); 2226 for (unsigned i = 0; i != NumElts; ++i) { 2227 // If both inputs for this element are either constant or undef and match 2228 // the element type, compute the constant/undef result for this element of 2229 // the vector. 2230 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2231 // not handle FP constants. The code within getNode() should be refactored 2232 // to avoid the danger of creating a bogus temporary node here. 2233 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2234 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2235 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2236 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2237 KnownUndef.setBit(i); 2238 } 2239 return KnownUndef; 2240 } 2241 2242 bool TargetLowering::SimplifyDemandedVectorElts( 2243 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2244 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2245 bool AssumeSingleUse) const { 2246 EVT VT = Op.getValueType(); 2247 APInt DemandedElts = OriginalDemandedElts; 2248 unsigned NumElts = DemandedElts.getBitWidth(); 2249 assert(VT.isVector() && "Expected vector op"); 2250 assert(VT.getVectorNumElements() == NumElts && 2251 "Mask size mismatches value type element count!"); 2252 2253 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2254 2255 // Undef operand. 2256 if (Op.isUndef()) { 2257 KnownUndef.setAllBits(); 2258 return false; 2259 } 2260 2261 // If Op has other users, assume that all elements are needed. 2262 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2263 DemandedElts.setAllBits(); 2264 2265 // Not demanding any elements from Op. 2266 if (DemandedElts == 0) { 2267 KnownUndef.setAllBits(); 2268 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2269 } 2270 2271 // Limit search depth. 2272 if (Depth >= SelectionDAG::MaxRecursionDepth) 2273 return false; 2274 2275 SDLoc DL(Op); 2276 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2277 2278 switch (Op.getOpcode()) { 2279 case ISD::SCALAR_TO_VECTOR: { 2280 if (!DemandedElts[0]) { 2281 KnownUndef.setAllBits(); 2282 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2283 } 2284 KnownUndef.setHighBits(NumElts - 1); 2285 break; 2286 } 2287 case ISD::BITCAST: { 2288 SDValue Src = Op.getOperand(0); 2289 EVT SrcVT = Src.getValueType(); 2290 2291 // We only handle vectors here. 2292 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2293 if (!SrcVT.isVector()) 2294 break; 2295 2296 // Fast handling of 'identity' bitcasts. 2297 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2298 if (NumSrcElts == NumElts) 2299 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2300 KnownZero, TLO, Depth + 1); 2301 2302 APInt SrcZero, SrcUndef; 2303 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2304 2305 // Bitcast from 'large element' src vector to 'small element' vector, we 2306 // must demand a source element if any DemandedElt maps to it. 2307 if ((NumElts % NumSrcElts) == 0) { 2308 unsigned Scale = NumElts / NumSrcElts; 2309 for (unsigned i = 0; i != NumElts; ++i) 2310 if (DemandedElts[i]) 2311 SrcDemandedElts.setBit(i / Scale); 2312 2313 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2314 TLO, Depth + 1)) 2315 return true; 2316 2317 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2318 // of the large element. 2319 // TODO - bigendian once we have test coverage. 2320 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2321 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2322 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2323 for (unsigned i = 0; i != NumElts; ++i) 2324 if (DemandedElts[i]) { 2325 unsigned Ofs = (i % Scale) * EltSizeInBits; 2326 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2327 } 2328 2329 KnownBits Known; 2330 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2331 TLO, Depth + 1)) 2332 return true; 2333 } 2334 2335 // If the src element is zero/undef then all the output elements will be - 2336 // only demanded elements are guaranteed to be correct. 2337 for (unsigned i = 0; i != NumSrcElts; ++i) { 2338 if (SrcDemandedElts[i]) { 2339 if (SrcZero[i]) 2340 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2341 if (SrcUndef[i]) 2342 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2343 } 2344 } 2345 } 2346 2347 // Bitcast from 'small element' src vector to 'large element' vector, we 2348 // demand all smaller source elements covered by the larger demanded element 2349 // of this vector. 2350 if ((NumSrcElts % NumElts) == 0) { 2351 unsigned Scale = NumSrcElts / NumElts; 2352 for (unsigned i = 0; i != NumElts; ++i) 2353 if (DemandedElts[i]) 2354 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2355 2356 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2357 TLO, Depth + 1)) 2358 return true; 2359 2360 // If all the src elements covering an output element are zero/undef, then 2361 // the output element will be as well, assuming it was demanded. 2362 for (unsigned i = 0; i != NumElts; ++i) { 2363 if (DemandedElts[i]) { 2364 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2365 KnownZero.setBit(i); 2366 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2367 KnownUndef.setBit(i); 2368 } 2369 } 2370 } 2371 break; 2372 } 2373 case ISD::BUILD_VECTOR: { 2374 // Check all elements and simplify any unused elements with UNDEF. 2375 if (!DemandedElts.isAllOnesValue()) { 2376 // Don't simplify BROADCASTS. 2377 if (llvm::any_of(Op->op_values(), 2378 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2379 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2380 bool Updated = false; 2381 for (unsigned i = 0; i != NumElts; ++i) { 2382 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2383 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2384 KnownUndef.setBit(i); 2385 Updated = true; 2386 } 2387 } 2388 if (Updated) 2389 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2390 } 2391 } 2392 for (unsigned i = 0; i != NumElts; ++i) { 2393 SDValue SrcOp = Op.getOperand(i); 2394 if (SrcOp.isUndef()) { 2395 KnownUndef.setBit(i); 2396 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2397 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2398 KnownZero.setBit(i); 2399 } 2400 } 2401 break; 2402 } 2403 case ISD::CONCAT_VECTORS: { 2404 EVT SubVT = Op.getOperand(0).getValueType(); 2405 unsigned NumSubVecs = Op.getNumOperands(); 2406 unsigned NumSubElts = SubVT.getVectorNumElements(); 2407 for (unsigned i = 0; i != NumSubVecs; ++i) { 2408 SDValue SubOp = Op.getOperand(i); 2409 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2410 APInt SubUndef, SubZero; 2411 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2412 Depth + 1)) 2413 return true; 2414 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2415 KnownZero.insertBits(SubZero, i * NumSubElts); 2416 } 2417 break; 2418 } 2419 case ISD::INSERT_SUBVECTOR: { 2420 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2421 break; 2422 SDValue Base = Op.getOperand(0); 2423 SDValue Sub = Op.getOperand(1); 2424 EVT SubVT = Sub.getValueType(); 2425 unsigned NumSubElts = SubVT.getVectorNumElements(); 2426 const APInt &Idx = Op.getConstantOperandAPInt(2); 2427 if (Idx.ugt(NumElts - NumSubElts)) 2428 break; 2429 unsigned SubIdx = Idx.getZExtValue(); 2430 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2431 APInt SubUndef, SubZero; 2432 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2433 Depth + 1)) 2434 return true; 2435 APInt BaseElts = DemandedElts; 2436 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2437 2438 // If none of the base operand elements are demanded, replace it with undef. 2439 if (!BaseElts && !Base.isUndef()) 2440 return TLO.CombineTo(Op, 2441 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2442 TLO.DAG.getUNDEF(VT), 2443 Op.getOperand(1), 2444 Op.getOperand(2))); 2445 2446 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2447 Depth + 1)) 2448 return true; 2449 KnownUndef.insertBits(SubUndef, SubIdx); 2450 KnownZero.insertBits(SubZero, SubIdx); 2451 break; 2452 } 2453 case ISD::EXTRACT_SUBVECTOR: { 2454 SDValue Src = Op.getOperand(0); 2455 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2456 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2457 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2458 // Offset the demanded elts by the subvector index. 2459 uint64_t Idx = SubIdx->getZExtValue(); 2460 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2461 APInt SrcUndef, SrcZero; 2462 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2463 Depth + 1)) 2464 return true; 2465 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2466 KnownZero = SrcZero.extractBits(NumElts, Idx); 2467 } 2468 break; 2469 } 2470 case ISD::INSERT_VECTOR_ELT: { 2471 SDValue Vec = Op.getOperand(0); 2472 SDValue Scl = Op.getOperand(1); 2473 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2474 2475 // For a legal, constant insertion index, if we don't need this insertion 2476 // then strip it, else remove it from the demanded elts. 2477 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2478 unsigned Idx = CIdx->getZExtValue(); 2479 if (!DemandedElts[Idx]) 2480 return TLO.CombineTo(Op, Vec); 2481 2482 APInt DemandedVecElts(DemandedElts); 2483 DemandedVecElts.clearBit(Idx); 2484 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2485 KnownZero, TLO, Depth + 1)) 2486 return true; 2487 2488 KnownUndef.clearBit(Idx); 2489 if (Scl.isUndef()) 2490 KnownUndef.setBit(Idx); 2491 2492 KnownZero.clearBit(Idx); 2493 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2494 KnownZero.setBit(Idx); 2495 break; 2496 } 2497 2498 APInt VecUndef, VecZero; 2499 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2500 Depth + 1)) 2501 return true; 2502 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2503 break; 2504 } 2505 case ISD::VSELECT: { 2506 // Try to transform the select condition based on the current demanded 2507 // elements. 2508 // TODO: If a condition element is undef, we can choose from one arm of the 2509 // select (and if one arm is undef, then we can propagate that to the 2510 // result). 2511 // TODO - add support for constant vselect masks (see IR version of this). 2512 APInt UnusedUndef, UnusedZero; 2513 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2514 UnusedZero, TLO, Depth + 1)) 2515 return true; 2516 2517 // See if we can simplify either vselect operand. 2518 APInt DemandedLHS(DemandedElts); 2519 APInt DemandedRHS(DemandedElts); 2520 APInt UndefLHS, ZeroLHS; 2521 APInt UndefRHS, ZeroRHS; 2522 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2523 ZeroLHS, TLO, Depth + 1)) 2524 return true; 2525 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2526 ZeroRHS, TLO, Depth + 1)) 2527 return true; 2528 2529 KnownUndef = UndefLHS & UndefRHS; 2530 KnownZero = ZeroLHS & ZeroRHS; 2531 break; 2532 } 2533 case ISD::VECTOR_SHUFFLE: { 2534 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2535 2536 // Collect demanded elements from shuffle operands.. 2537 APInt DemandedLHS(NumElts, 0); 2538 APInt DemandedRHS(NumElts, 0); 2539 for (unsigned i = 0; i != NumElts; ++i) { 2540 int M = ShuffleMask[i]; 2541 if (M < 0 || !DemandedElts[i]) 2542 continue; 2543 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2544 if (M < (int)NumElts) 2545 DemandedLHS.setBit(M); 2546 else 2547 DemandedRHS.setBit(M - NumElts); 2548 } 2549 2550 // See if we can simplify either shuffle operand. 2551 APInt UndefLHS, ZeroLHS; 2552 APInt UndefRHS, ZeroRHS; 2553 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2554 ZeroLHS, TLO, Depth + 1)) 2555 return true; 2556 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2557 ZeroRHS, TLO, Depth + 1)) 2558 return true; 2559 2560 // Simplify mask using undef elements from LHS/RHS. 2561 bool Updated = false; 2562 bool IdentityLHS = true, IdentityRHS = true; 2563 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2564 for (unsigned i = 0; i != NumElts; ++i) { 2565 int &M = NewMask[i]; 2566 if (M < 0) 2567 continue; 2568 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2569 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2570 Updated = true; 2571 M = -1; 2572 } 2573 IdentityLHS &= (M < 0) || (M == (int)i); 2574 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2575 } 2576 2577 // Update legal shuffle masks based on demanded elements if it won't reduce 2578 // to Identity which can cause premature removal of the shuffle mask. 2579 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2580 SDValue LegalShuffle = 2581 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2582 NewMask, TLO.DAG); 2583 if (LegalShuffle) 2584 return TLO.CombineTo(Op, LegalShuffle); 2585 } 2586 2587 // Propagate undef/zero elements from LHS/RHS. 2588 for (unsigned i = 0; i != NumElts; ++i) { 2589 int M = ShuffleMask[i]; 2590 if (M < 0) { 2591 KnownUndef.setBit(i); 2592 } else if (M < (int)NumElts) { 2593 if (UndefLHS[M]) 2594 KnownUndef.setBit(i); 2595 if (ZeroLHS[M]) 2596 KnownZero.setBit(i); 2597 } else { 2598 if (UndefRHS[M - NumElts]) 2599 KnownUndef.setBit(i); 2600 if (ZeroRHS[M - NumElts]) 2601 KnownZero.setBit(i); 2602 } 2603 } 2604 break; 2605 } 2606 case ISD::ANY_EXTEND_VECTOR_INREG: 2607 case ISD::SIGN_EXTEND_VECTOR_INREG: 2608 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2609 APInt SrcUndef, SrcZero; 2610 SDValue Src = Op.getOperand(0); 2611 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2612 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2613 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2614 Depth + 1)) 2615 return true; 2616 KnownZero = SrcZero.zextOrTrunc(NumElts); 2617 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2618 2619 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2620 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2621 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2622 // aext - if we just need the bottom element then we can bitcast. 2623 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2624 } 2625 2626 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2627 // zext(undef) upper bits are guaranteed to be zero. 2628 if (DemandedElts.isSubsetOf(KnownUndef)) 2629 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2630 KnownUndef.clearAllBits(); 2631 } 2632 break; 2633 } 2634 2635 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2636 // MAX, saturated math, etc. 2637 case ISD::OR: 2638 case ISD::XOR: 2639 case ISD::ADD: 2640 case ISD::SUB: 2641 case ISD::FADD: 2642 case ISD::FSUB: 2643 case ISD::FMUL: 2644 case ISD::FDIV: 2645 case ISD::FREM: { 2646 APInt UndefRHS, ZeroRHS; 2647 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2648 ZeroRHS, TLO, Depth + 1)) 2649 return true; 2650 APInt UndefLHS, ZeroLHS; 2651 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2652 ZeroLHS, TLO, Depth + 1)) 2653 return true; 2654 2655 KnownZero = ZeroLHS & ZeroRHS; 2656 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2657 break; 2658 } 2659 case ISD::SHL: 2660 case ISD::SRL: 2661 case ISD::SRA: 2662 case ISD::ROTL: 2663 case ISD::ROTR: { 2664 APInt UndefRHS, ZeroRHS; 2665 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2666 ZeroRHS, TLO, Depth + 1)) 2667 return true; 2668 APInt UndefLHS, ZeroLHS; 2669 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2670 ZeroLHS, TLO, Depth + 1)) 2671 return true; 2672 2673 KnownZero = ZeroLHS; 2674 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2675 break; 2676 } 2677 case ISD::MUL: 2678 case ISD::AND: { 2679 APInt SrcUndef, SrcZero; 2680 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2681 SrcZero, TLO, Depth + 1)) 2682 return true; 2683 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2684 KnownZero, TLO, Depth + 1)) 2685 return true; 2686 2687 // If either side has a zero element, then the result element is zero, even 2688 // if the other is an UNDEF. 2689 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2690 // and then handle 'and' nodes with the rest of the binop opcodes. 2691 KnownZero |= SrcZero; 2692 KnownUndef &= SrcUndef; 2693 KnownUndef &= ~KnownZero; 2694 break; 2695 } 2696 case ISD::TRUNCATE: 2697 case ISD::SIGN_EXTEND: 2698 case ISD::ZERO_EXTEND: 2699 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2700 KnownZero, TLO, Depth + 1)) 2701 return true; 2702 2703 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2704 // zext(undef) upper bits are guaranteed to be zero. 2705 if (DemandedElts.isSubsetOf(KnownUndef)) 2706 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2707 KnownUndef.clearAllBits(); 2708 } 2709 break; 2710 default: { 2711 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2712 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2713 KnownZero, TLO, Depth)) 2714 return true; 2715 } else { 2716 KnownBits Known; 2717 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2718 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2719 TLO, Depth, AssumeSingleUse)) 2720 return true; 2721 } 2722 break; 2723 } 2724 } 2725 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2726 2727 // Constant fold all undef cases. 2728 // TODO: Handle zero cases as well. 2729 if (DemandedElts.isSubsetOf(KnownUndef)) 2730 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2731 2732 return false; 2733 } 2734 2735 /// Determine which of the bits specified in Mask are known to be either zero or 2736 /// one and return them in the Known. 2737 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2738 KnownBits &Known, 2739 const APInt &DemandedElts, 2740 const SelectionDAG &DAG, 2741 unsigned Depth) const { 2742 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2743 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2744 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2745 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2746 "Should use MaskedValueIsZero if you don't know whether Op" 2747 " is a target node!"); 2748 Known.resetAll(); 2749 } 2750 2751 void TargetLowering::computeKnownBitsForTargetInstr( 2752 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2753 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2754 unsigned Depth) const { 2755 Known.resetAll(); 2756 } 2757 2758 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2759 KnownBits &Known, 2760 const APInt &DemandedElts, 2761 const SelectionDAG &DAG, 2762 unsigned Depth) const { 2763 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2764 2765 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2766 // The low bits are known zero if the pointer is aligned. 2767 Known.Zero.setLowBits(Log2_32(Align)); 2768 } 2769 } 2770 2771 /// This method can be implemented by targets that want to expose additional 2772 /// information about sign bits to the DAG Combiner. 2773 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2774 const APInt &, 2775 const SelectionDAG &, 2776 unsigned Depth) const { 2777 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2778 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2779 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2780 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2781 "Should use ComputeNumSignBits if you don't know whether Op" 2782 " is a target node!"); 2783 return 1; 2784 } 2785 2786 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2787 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2788 TargetLoweringOpt &TLO, unsigned Depth) const { 2789 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2790 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2791 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2792 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2793 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2794 " is a target node!"); 2795 return false; 2796 } 2797 2798 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2799 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2800 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2801 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2802 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2803 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2804 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2805 "Should use SimplifyDemandedBits if you don't know whether Op" 2806 " is a target node!"); 2807 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2808 return false; 2809 } 2810 2811 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2812 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2813 SelectionDAG &DAG, unsigned Depth) const { 2814 assert( 2815 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2816 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2817 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2818 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2819 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2820 " is a target node!"); 2821 return SDValue(); 2822 } 2823 2824 SDValue 2825 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2826 SDValue N1, MutableArrayRef<int> Mask, 2827 SelectionDAG &DAG) const { 2828 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2829 if (!LegalMask) { 2830 std::swap(N0, N1); 2831 ShuffleVectorSDNode::commuteMask(Mask); 2832 LegalMask = isShuffleMaskLegal(Mask, VT); 2833 } 2834 2835 if (!LegalMask) 2836 return SDValue(); 2837 2838 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2839 } 2840 2841 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2842 return nullptr; 2843 } 2844 2845 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2846 const SelectionDAG &DAG, 2847 bool SNaN, 2848 unsigned Depth) const { 2849 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2850 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2851 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2852 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2853 "Should use isKnownNeverNaN if you don't know whether Op" 2854 " is a target node!"); 2855 return false; 2856 } 2857 2858 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2859 // work with truncating build vectors and vectors with elements of less than 2860 // 8 bits. 2861 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2862 if (!N) 2863 return false; 2864 2865 APInt CVal; 2866 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2867 CVal = CN->getAPIntValue(); 2868 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2869 auto *CN = BV->getConstantSplatNode(); 2870 if (!CN) 2871 return false; 2872 2873 // If this is a truncating build vector, truncate the splat value. 2874 // Otherwise, we may fail to match the expected values below. 2875 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2876 CVal = CN->getAPIntValue(); 2877 if (BVEltWidth < CVal.getBitWidth()) 2878 CVal = CVal.trunc(BVEltWidth); 2879 } else { 2880 return false; 2881 } 2882 2883 switch (getBooleanContents(N->getValueType(0))) { 2884 case UndefinedBooleanContent: 2885 return CVal[0]; 2886 case ZeroOrOneBooleanContent: 2887 return CVal.isOneValue(); 2888 case ZeroOrNegativeOneBooleanContent: 2889 return CVal.isAllOnesValue(); 2890 } 2891 2892 llvm_unreachable("Invalid boolean contents"); 2893 } 2894 2895 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2896 if (!N) 2897 return false; 2898 2899 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2900 if (!CN) { 2901 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2902 if (!BV) 2903 return false; 2904 2905 // Only interested in constant splats, we don't care about undef 2906 // elements in identifying boolean constants and getConstantSplatNode 2907 // returns NULL if all ops are undef; 2908 CN = BV->getConstantSplatNode(); 2909 if (!CN) 2910 return false; 2911 } 2912 2913 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2914 return !CN->getAPIntValue()[0]; 2915 2916 return CN->isNullValue(); 2917 } 2918 2919 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2920 bool SExt) const { 2921 if (VT == MVT::i1) 2922 return N->isOne(); 2923 2924 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2925 switch (Cnt) { 2926 case TargetLowering::ZeroOrOneBooleanContent: 2927 // An extended value of 1 is always true, unless its original type is i1, 2928 // in which case it will be sign extended to -1. 2929 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2930 case TargetLowering::UndefinedBooleanContent: 2931 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2932 return N->isAllOnesValue() && SExt; 2933 } 2934 llvm_unreachable("Unexpected enumeration."); 2935 } 2936 2937 /// This helper function of SimplifySetCC tries to optimize the comparison when 2938 /// either operand of the SetCC node is a bitwise-and instruction. 2939 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2940 ISD::CondCode Cond, const SDLoc &DL, 2941 DAGCombinerInfo &DCI) const { 2942 // Match these patterns in any of their permutations: 2943 // (X & Y) == Y 2944 // (X & Y) != Y 2945 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2946 std::swap(N0, N1); 2947 2948 EVT OpVT = N0.getValueType(); 2949 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2950 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2951 return SDValue(); 2952 2953 SDValue X, Y; 2954 if (N0.getOperand(0) == N1) { 2955 X = N0.getOperand(1); 2956 Y = N0.getOperand(0); 2957 } else if (N0.getOperand(1) == N1) { 2958 X = N0.getOperand(0); 2959 Y = N0.getOperand(1); 2960 } else { 2961 return SDValue(); 2962 } 2963 2964 SelectionDAG &DAG = DCI.DAG; 2965 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2966 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2967 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2968 // Note that where Y is variable and is known to have at most one bit set 2969 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2970 // equivalent when Y == 0. 2971 assert(OpVT.isInteger()); 2972 Cond = ISD::getSetCCInverse(Cond, OpVT); 2973 if (DCI.isBeforeLegalizeOps() || 2974 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2975 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2976 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2977 // If the target supports an 'and-not' or 'and-complement' logic operation, 2978 // try to use that to make a comparison operation more efficient. 2979 // But don't do this transform if the mask is a single bit because there are 2980 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2981 // 'rlwinm' on PPC). 2982 2983 // Bail out if the compare operand that we want to turn into a zero is 2984 // already a zero (otherwise, infinite loop). 2985 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2986 if (YConst && YConst->isNullValue()) 2987 return SDValue(); 2988 2989 // Transform this into: ~X & Y == 0. 2990 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2991 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2992 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2993 } 2994 2995 return SDValue(); 2996 } 2997 2998 /// There are multiple IR patterns that could be checking whether certain 2999 /// truncation of a signed number would be lossy or not. The pattern which is 3000 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3001 /// We are looking for the following pattern: (KeptBits is a constant) 3002 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3003 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3004 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3005 /// We will unfold it into the natural trunc+sext pattern: 3006 /// ((%x << C) a>> C) dstcond %x 3007 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3008 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3009 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3010 const SDLoc &DL) const { 3011 // We must be comparing with a constant. 3012 ConstantSDNode *C1; 3013 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3014 return SDValue(); 3015 3016 // N0 should be: add %x, (1 << (KeptBits-1)) 3017 if (N0->getOpcode() != ISD::ADD) 3018 return SDValue(); 3019 3020 // And we must be 'add'ing a constant. 3021 ConstantSDNode *C01; 3022 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3023 return SDValue(); 3024 3025 SDValue X = N0->getOperand(0); 3026 EVT XVT = X.getValueType(); 3027 3028 // Validate constants ... 3029 3030 APInt I1 = C1->getAPIntValue(); 3031 3032 ISD::CondCode NewCond; 3033 if (Cond == ISD::CondCode::SETULT) { 3034 NewCond = ISD::CondCode::SETEQ; 3035 } else if (Cond == ISD::CondCode::SETULE) { 3036 NewCond = ISD::CondCode::SETEQ; 3037 // But need to 'canonicalize' the constant. 3038 I1 += 1; 3039 } else if (Cond == ISD::CondCode::SETUGT) { 3040 NewCond = ISD::CondCode::SETNE; 3041 // But need to 'canonicalize' the constant. 3042 I1 += 1; 3043 } else if (Cond == ISD::CondCode::SETUGE) { 3044 NewCond = ISD::CondCode::SETNE; 3045 } else 3046 return SDValue(); 3047 3048 APInt I01 = C01->getAPIntValue(); 3049 3050 auto checkConstants = [&I1, &I01]() -> bool { 3051 // Both of them must be power-of-two, and the constant from setcc is bigger. 3052 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3053 }; 3054 3055 if (checkConstants()) { 3056 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3057 } else { 3058 // What if we invert constants? (and the target predicate) 3059 I1.negate(); 3060 I01.negate(); 3061 assert(XVT.isInteger()); 3062 NewCond = getSetCCInverse(NewCond, XVT); 3063 if (!checkConstants()) 3064 return SDValue(); 3065 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3066 } 3067 3068 // They are power-of-two, so which bit is set? 3069 const unsigned KeptBits = I1.logBase2(); 3070 const unsigned KeptBitsMinusOne = I01.logBase2(); 3071 3072 // Magic! 3073 if (KeptBits != (KeptBitsMinusOne + 1)) 3074 return SDValue(); 3075 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3076 3077 // We don't want to do this in every single case. 3078 SelectionDAG &DAG = DCI.DAG; 3079 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3080 XVT, KeptBits)) 3081 return SDValue(); 3082 3083 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3084 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3085 3086 // Unfold into: ((%x << C) a>> C) cond %x 3087 // Where 'cond' will be either 'eq' or 'ne'. 3088 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3089 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3090 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3091 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3092 3093 return T2; 3094 } 3095 3096 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3097 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3098 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3099 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3100 assert(isConstOrConstSplat(N1C) && 3101 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3102 "Should be a comparison with 0."); 3103 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3104 "Valid only for [in]equality comparisons."); 3105 3106 unsigned NewShiftOpcode; 3107 SDValue X, C, Y; 3108 3109 SelectionDAG &DAG = DCI.DAG; 3110 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3111 3112 // Look for '(C l>>/<< Y)'. 3113 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3114 // The shift should be one-use. 3115 if (!V.hasOneUse()) 3116 return false; 3117 unsigned OldShiftOpcode = V.getOpcode(); 3118 switch (OldShiftOpcode) { 3119 case ISD::SHL: 3120 NewShiftOpcode = ISD::SRL; 3121 break; 3122 case ISD::SRL: 3123 NewShiftOpcode = ISD::SHL; 3124 break; 3125 default: 3126 return false; // must be a logical shift. 3127 } 3128 // We should be shifting a constant. 3129 // FIXME: best to use isConstantOrConstantVector(). 3130 C = V.getOperand(0); 3131 ConstantSDNode *CC = 3132 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3133 if (!CC) 3134 return false; 3135 Y = V.getOperand(1); 3136 3137 ConstantSDNode *XC = 3138 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3139 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3140 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3141 }; 3142 3143 // LHS of comparison should be an one-use 'and'. 3144 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3145 return SDValue(); 3146 3147 X = N0.getOperand(0); 3148 SDValue Mask = N0.getOperand(1); 3149 3150 // 'and' is commutative! 3151 if (!Match(Mask)) { 3152 std::swap(X, Mask); 3153 if (!Match(Mask)) 3154 return SDValue(); 3155 } 3156 3157 EVT VT = X.getValueType(); 3158 3159 // Produce: 3160 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3161 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3162 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3163 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3164 return T2; 3165 } 3166 3167 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3168 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3169 /// handle the commuted versions of these patterns. 3170 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3171 ISD::CondCode Cond, const SDLoc &DL, 3172 DAGCombinerInfo &DCI) const { 3173 unsigned BOpcode = N0.getOpcode(); 3174 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3175 "Unexpected binop"); 3176 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3177 3178 // (X + Y) == X --> Y == 0 3179 // (X - Y) == X --> Y == 0 3180 // (X ^ Y) == X --> Y == 0 3181 SelectionDAG &DAG = DCI.DAG; 3182 EVT OpVT = N0.getValueType(); 3183 SDValue X = N0.getOperand(0); 3184 SDValue Y = N0.getOperand(1); 3185 if (X == N1) 3186 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3187 3188 if (Y != N1) 3189 return SDValue(); 3190 3191 // (X + Y) == Y --> X == 0 3192 // (X ^ Y) == Y --> X == 0 3193 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3194 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3195 3196 // The shift would not be valid if the operands are boolean (i1). 3197 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3198 return SDValue(); 3199 3200 // (X - Y) == Y --> X == Y << 1 3201 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3202 !DCI.isBeforeLegalize()); 3203 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3204 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3205 if (!DCI.isCalledByLegalizer()) 3206 DCI.AddToWorklist(YShl1.getNode()); 3207 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3208 } 3209 3210 /// Try to simplify a setcc built with the specified operands and cc. If it is 3211 /// unable to simplify it, return a null SDValue. 3212 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3213 ISD::CondCode Cond, bool foldBooleans, 3214 DAGCombinerInfo &DCI, 3215 const SDLoc &dl) const { 3216 SelectionDAG &DAG = DCI.DAG; 3217 const DataLayout &Layout = DAG.getDataLayout(); 3218 EVT OpVT = N0.getValueType(); 3219 3220 // Constant fold or commute setcc. 3221 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3222 return Fold; 3223 3224 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3225 // TODO: Handle non-splat vector constants. All undef causes trouble. 3226 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3227 if (isConstOrConstSplat(N0) && 3228 (DCI.isBeforeLegalizeOps() || 3229 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3230 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3231 3232 // If we have a subtract with the same 2 non-constant operands as this setcc 3233 // -- but in reverse order -- then try to commute the operands of this setcc 3234 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3235 // instruction on some targets. 3236 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3237 (DCI.isBeforeLegalizeOps() || 3238 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3239 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3240 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3241 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3242 3243 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3244 const APInt &C1 = N1C->getAPIntValue(); 3245 3246 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3247 // equality comparison, then we're just comparing whether X itself is 3248 // zero. 3249 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3250 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3251 N0.getOperand(1).getOpcode() == ISD::Constant) { 3252 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3253 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3254 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3255 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3256 // (srl (ctlz x), 5) == 0 -> X != 0 3257 // (srl (ctlz x), 5) != 1 -> X != 0 3258 Cond = ISD::SETNE; 3259 } else { 3260 // (srl (ctlz x), 5) != 0 -> X == 0 3261 // (srl (ctlz x), 5) == 1 -> X == 0 3262 Cond = ISD::SETEQ; 3263 } 3264 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3265 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3266 Zero, Cond); 3267 } 3268 } 3269 3270 SDValue CTPOP = N0; 3271 // Look through truncs that don't change the value of a ctpop. 3272 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3273 CTPOP = N0.getOperand(0); 3274 3275 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3276 (N0 == CTPOP || 3277 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3278 EVT CTVT = CTPOP.getValueType(); 3279 SDValue CTOp = CTPOP.getOperand(0); 3280 3281 // (ctpop x) u< 2 -> (x & x-1) == 0 3282 // (ctpop x) u> 1 -> (x & x-1) != 0 3283 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3284 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3285 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3286 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3287 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3288 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3289 } 3290 3291 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3292 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3293 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3294 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3295 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3296 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3297 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3298 assert(CTVT.isInteger()); 3299 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3300 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3301 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3302 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3303 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3304 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3305 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3306 } 3307 } 3308 3309 // (zext x) == C --> x == (trunc C) 3310 // (sext x) == C --> x == (trunc C) 3311 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3312 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3313 unsigned MinBits = N0.getValueSizeInBits(); 3314 SDValue PreExt; 3315 bool Signed = false; 3316 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3317 // ZExt 3318 MinBits = N0->getOperand(0).getValueSizeInBits(); 3319 PreExt = N0->getOperand(0); 3320 } else if (N0->getOpcode() == ISD::AND) { 3321 // DAGCombine turns costly ZExts into ANDs 3322 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3323 if ((C->getAPIntValue()+1).isPowerOf2()) { 3324 MinBits = C->getAPIntValue().countTrailingOnes(); 3325 PreExt = N0->getOperand(0); 3326 } 3327 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3328 // SExt 3329 MinBits = N0->getOperand(0).getValueSizeInBits(); 3330 PreExt = N0->getOperand(0); 3331 Signed = true; 3332 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3333 // ZEXTLOAD / SEXTLOAD 3334 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3335 MinBits = LN0->getMemoryVT().getSizeInBits(); 3336 PreExt = N0; 3337 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3338 Signed = true; 3339 MinBits = LN0->getMemoryVT().getSizeInBits(); 3340 PreExt = N0; 3341 } 3342 } 3343 3344 // Figure out how many bits we need to preserve this constant. 3345 unsigned ReqdBits = Signed ? 3346 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3347 C1.getActiveBits(); 3348 3349 // Make sure we're not losing bits from the constant. 3350 if (MinBits > 0 && 3351 MinBits < C1.getBitWidth() && 3352 MinBits >= ReqdBits) { 3353 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3354 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3355 // Will get folded away. 3356 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3357 if (MinBits == 1 && C1 == 1) 3358 // Invert the condition. 3359 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3360 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3361 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3362 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3363 } 3364 3365 // If truncating the setcc operands is not desirable, we can still 3366 // simplify the expression in some cases: 3367 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3368 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3369 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3370 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3371 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3372 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3373 SDValue TopSetCC = N0->getOperand(0); 3374 unsigned N0Opc = N0->getOpcode(); 3375 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3376 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3377 TopSetCC.getOpcode() == ISD::SETCC && 3378 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3379 (isConstFalseVal(N1C) || 3380 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3381 3382 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3383 (!N1C->isNullValue() && Cond == ISD::SETNE); 3384 3385 if (!Inverse) 3386 return TopSetCC; 3387 3388 ISD::CondCode InvCond = ISD::getSetCCInverse( 3389 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3390 TopSetCC.getOperand(0).getValueType()); 3391 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3392 TopSetCC.getOperand(1), 3393 InvCond); 3394 } 3395 } 3396 } 3397 3398 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3399 // equality or unsigned, and all 1 bits of the const are in the same 3400 // partial word, see if we can shorten the load. 3401 if (DCI.isBeforeLegalize() && 3402 !ISD::isSignedIntSetCC(Cond) && 3403 N0.getOpcode() == ISD::AND && C1 == 0 && 3404 N0.getNode()->hasOneUse() && 3405 isa<LoadSDNode>(N0.getOperand(0)) && 3406 N0.getOperand(0).getNode()->hasOneUse() && 3407 isa<ConstantSDNode>(N0.getOperand(1))) { 3408 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3409 APInt bestMask; 3410 unsigned bestWidth = 0, bestOffset = 0; 3411 if (Lod->isSimple() && Lod->isUnindexed()) { 3412 unsigned origWidth = N0.getValueSizeInBits(); 3413 unsigned maskWidth = origWidth; 3414 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3415 // 8 bits, but have to be careful... 3416 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3417 origWidth = Lod->getMemoryVT().getSizeInBits(); 3418 const APInt &Mask = N0.getConstantOperandAPInt(1); 3419 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3420 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3421 for (unsigned offset=0; offset<origWidth/width; offset++) { 3422 if (Mask.isSubsetOf(newMask)) { 3423 if (Layout.isLittleEndian()) 3424 bestOffset = (uint64_t)offset * (width/8); 3425 else 3426 bestOffset = (origWidth/width - offset - 1) * (width/8); 3427 bestMask = Mask.lshr(offset * (width/8) * 8); 3428 bestWidth = width; 3429 break; 3430 } 3431 newMask <<= width; 3432 } 3433 } 3434 } 3435 if (bestWidth) { 3436 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3437 if (newVT.isRound() && 3438 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3439 SDValue Ptr = Lod->getBasePtr(); 3440 if (bestOffset != 0) 3441 Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); 3442 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3443 SDValue NewLoad = DAG.getLoad( 3444 newVT, dl, Lod->getChain(), Ptr, 3445 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3446 return DAG.getSetCC(dl, VT, 3447 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3448 DAG.getConstant(bestMask.trunc(bestWidth), 3449 dl, newVT)), 3450 DAG.getConstant(0LL, dl, newVT), Cond); 3451 } 3452 } 3453 } 3454 3455 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3456 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3457 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3458 3459 // If the comparison constant has bits in the upper part, the 3460 // zero-extended value could never match. 3461 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3462 C1.getBitWidth() - InSize))) { 3463 switch (Cond) { 3464 case ISD::SETUGT: 3465 case ISD::SETUGE: 3466 case ISD::SETEQ: 3467 return DAG.getConstant(0, dl, VT); 3468 case ISD::SETULT: 3469 case ISD::SETULE: 3470 case ISD::SETNE: 3471 return DAG.getConstant(1, dl, VT); 3472 case ISD::SETGT: 3473 case ISD::SETGE: 3474 // True if the sign bit of C1 is set. 3475 return DAG.getConstant(C1.isNegative(), dl, VT); 3476 case ISD::SETLT: 3477 case ISD::SETLE: 3478 // True if the sign bit of C1 isn't set. 3479 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3480 default: 3481 break; 3482 } 3483 } 3484 3485 // Otherwise, we can perform the comparison with the low bits. 3486 switch (Cond) { 3487 case ISD::SETEQ: 3488 case ISD::SETNE: 3489 case ISD::SETUGT: 3490 case ISD::SETUGE: 3491 case ISD::SETULT: 3492 case ISD::SETULE: { 3493 EVT newVT = N0.getOperand(0).getValueType(); 3494 if (DCI.isBeforeLegalizeOps() || 3495 (isOperationLegal(ISD::SETCC, newVT) && 3496 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3497 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3498 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3499 3500 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3501 NewConst, Cond); 3502 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3503 } 3504 break; 3505 } 3506 default: 3507 break; // todo, be more careful with signed comparisons 3508 } 3509 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3510 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3511 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3512 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3513 EVT ExtDstTy = N0.getValueType(); 3514 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3515 3516 // If the constant doesn't fit into the number of bits for the source of 3517 // the sign extension, it is impossible for both sides to be equal. 3518 if (C1.getMinSignedBits() > ExtSrcTyBits) 3519 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3520 3521 SDValue ZextOp; 3522 EVT Op0Ty = N0.getOperand(0).getValueType(); 3523 if (Op0Ty == ExtSrcTy) { 3524 ZextOp = N0.getOperand(0); 3525 } else { 3526 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3527 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3528 DAG.getConstant(Imm, dl, Op0Ty)); 3529 } 3530 if (!DCI.isCalledByLegalizer()) 3531 DCI.AddToWorklist(ZextOp.getNode()); 3532 // Otherwise, make this a use of a zext. 3533 return DAG.getSetCC(dl, VT, ZextOp, 3534 DAG.getConstant(C1 & APInt::getLowBitsSet( 3535 ExtDstTyBits, 3536 ExtSrcTyBits), 3537 dl, ExtDstTy), 3538 Cond); 3539 } else if ((N1C->isNullValue() || N1C->isOne()) && 3540 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3541 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3542 if (N0.getOpcode() == ISD::SETCC && 3543 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3544 (N0.getValueType() == MVT::i1 || 3545 getBooleanContents(N0.getOperand(0).getValueType()) == 3546 ZeroOrOneBooleanContent)) { 3547 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3548 if (TrueWhenTrue) 3549 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3550 // Invert the condition. 3551 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3552 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3553 if (DCI.isBeforeLegalizeOps() || 3554 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3555 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3556 } 3557 3558 if ((N0.getOpcode() == ISD::XOR || 3559 (N0.getOpcode() == ISD::AND && 3560 N0.getOperand(0).getOpcode() == ISD::XOR && 3561 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3562 isa<ConstantSDNode>(N0.getOperand(1)) && 3563 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3564 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3565 // can only do this if the top bits are known zero. 3566 unsigned BitWidth = N0.getValueSizeInBits(); 3567 if (DAG.MaskedValueIsZero(N0, 3568 APInt::getHighBitsSet(BitWidth, 3569 BitWidth-1))) { 3570 // Okay, get the un-inverted input value. 3571 SDValue Val; 3572 if (N0.getOpcode() == ISD::XOR) { 3573 Val = N0.getOperand(0); 3574 } else { 3575 assert(N0.getOpcode() == ISD::AND && 3576 N0.getOperand(0).getOpcode() == ISD::XOR); 3577 // ((X^1)&1)^1 -> X & 1 3578 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3579 N0.getOperand(0).getOperand(0), 3580 N0.getOperand(1)); 3581 } 3582 3583 return DAG.getSetCC(dl, VT, Val, N1, 3584 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3585 } 3586 } else if (N1C->isOne()) { 3587 SDValue Op0 = N0; 3588 if (Op0.getOpcode() == ISD::TRUNCATE) 3589 Op0 = Op0.getOperand(0); 3590 3591 if ((Op0.getOpcode() == ISD::XOR) && 3592 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3593 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3594 SDValue XorLHS = Op0.getOperand(0); 3595 SDValue XorRHS = Op0.getOperand(1); 3596 // Ensure that the input setccs return an i1 type or 0/1 value. 3597 if (Op0.getValueType() == MVT::i1 || 3598 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3599 ZeroOrOneBooleanContent && 3600 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3601 ZeroOrOneBooleanContent)) { 3602 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3603 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3604 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3605 } 3606 } 3607 if (Op0.getOpcode() == ISD::AND && 3608 isa<ConstantSDNode>(Op0.getOperand(1)) && 3609 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3610 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3611 if (Op0.getValueType().bitsGT(VT)) 3612 Op0 = DAG.getNode(ISD::AND, dl, VT, 3613 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3614 DAG.getConstant(1, dl, VT)); 3615 else if (Op0.getValueType().bitsLT(VT)) 3616 Op0 = DAG.getNode(ISD::AND, dl, VT, 3617 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3618 DAG.getConstant(1, dl, VT)); 3619 3620 return DAG.getSetCC(dl, VT, Op0, 3621 DAG.getConstant(0, dl, Op0.getValueType()), 3622 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3623 } 3624 if (Op0.getOpcode() == ISD::AssertZext && 3625 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3626 return DAG.getSetCC(dl, VT, Op0, 3627 DAG.getConstant(0, dl, Op0.getValueType()), 3628 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3629 } 3630 } 3631 3632 // Given: 3633 // icmp eq/ne (urem %x, %y), 0 3634 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3635 // icmp eq/ne %x, 0 3636 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3637 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3638 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3639 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3640 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3641 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3642 } 3643 3644 if (SDValue V = 3645 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3646 return V; 3647 } 3648 3649 // These simplifications apply to splat vectors as well. 3650 // TODO: Handle more splat vector cases. 3651 if (auto *N1C = isConstOrConstSplat(N1)) { 3652 const APInt &C1 = N1C->getAPIntValue(); 3653 3654 APInt MinVal, MaxVal; 3655 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3656 if (ISD::isSignedIntSetCC(Cond)) { 3657 MinVal = APInt::getSignedMinValue(OperandBitSize); 3658 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3659 } else { 3660 MinVal = APInt::getMinValue(OperandBitSize); 3661 MaxVal = APInt::getMaxValue(OperandBitSize); 3662 } 3663 3664 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3665 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3666 // X >= MIN --> true 3667 if (C1 == MinVal) 3668 return DAG.getBoolConstant(true, dl, VT, OpVT); 3669 3670 if (!VT.isVector()) { // TODO: Support this for vectors. 3671 // X >= C0 --> X > (C0 - 1) 3672 APInt C = C1 - 1; 3673 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3674 if ((DCI.isBeforeLegalizeOps() || 3675 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3676 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3677 isLegalICmpImmediate(C.getSExtValue())))) { 3678 return DAG.getSetCC(dl, VT, N0, 3679 DAG.getConstant(C, dl, N1.getValueType()), 3680 NewCC); 3681 } 3682 } 3683 } 3684 3685 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3686 // X <= MAX --> true 3687 if (C1 == MaxVal) 3688 return DAG.getBoolConstant(true, dl, VT, OpVT); 3689 3690 // X <= C0 --> X < (C0 + 1) 3691 if (!VT.isVector()) { // TODO: Support this for vectors. 3692 APInt C = C1 + 1; 3693 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3694 if ((DCI.isBeforeLegalizeOps() || 3695 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3696 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3697 isLegalICmpImmediate(C.getSExtValue())))) { 3698 return DAG.getSetCC(dl, VT, N0, 3699 DAG.getConstant(C, dl, N1.getValueType()), 3700 NewCC); 3701 } 3702 } 3703 } 3704 3705 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3706 if (C1 == MinVal) 3707 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3708 3709 // TODO: Support this for vectors after legalize ops. 3710 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3711 // Canonicalize setlt X, Max --> setne X, Max 3712 if (C1 == MaxVal) 3713 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3714 3715 // If we have setult X, 1, turn it into seteq X, 0 3716 if (C1 == MinVal+1) 3717 return DAG.getSetCC(dl, VT, N0, 3718 DAG.getConstant(MinVal, dl, N0.getValueType()), 3719 ISD::SETEQ); 3720 } 3721 } 3722 3723 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3724 if (C1 == MaxVal) 3725 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3726 3727 // TODO: Support this for vectors after legalize ops. 3728 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3729 // Canonicalize setgt X, Min --> setne X, Min 3730 if (C1 == MinVal) 3731 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3732 3733 // If we have setugt X, Max-1, turn it into seteq X, Max 3734 if (C1 == MaxVal-1) 3735 return DAG.getSetCC(dl, VT, N0, 3736 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3737 ISD::SETEQ); 3738 } 3739 } 3740 3741 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3742 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3743 if (C1.isNullValue()) 3744 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3745 VT, N0, N1, Cond, DCI, dl)) 3746 return CC; 3747 } 3748 3749 // If we have "setcc X, C0", check to see if we can shrink the immediate 3750 // by changing cc. 3751 // TODO: Support this for vectors after legalize ops. 3752 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3753 // SETUGT X, SINTMAX -> SETLT X, 0 3754 if (Cond == ISD::SETUGT && 3755 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3756 return DAG.getSetCC(dl, VT, N0, 3757 DAG.getConstant(0, dl, N1.getValueType()), 3758 ISD::SETLT); 3759 3760 // SETULT X, SINTMIN -> SETGT X, -1 3761 if (Cond == ISD::SETULT && 3762 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3763 SDValue ConstMinusOne = 3764 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3765 N1.getValueType()); 3766 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3767 } 3768 } 3769 } 3770 3771 // Back to non-vector simplifications. 3772 // TODO: Can we do these for vector splats? 3773 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3775 const APInt &C1 = N1C->getAPIntValue(); 3776 EVT ShValTy = N0.getValueType(); 3777 3778 // Fold bit comparisons when we can. 3779 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3780 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3781 N0.getOpcode() == ISD::AND) { 3782 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3783 EVT ShiftTy = 3784 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3785 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3786 // Perform the xform if the AND RHS is a single bit. 3787 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3788 if (AndRHS->getAPIntValue().isPowerOf2() && 3789 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3790 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3791 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3792 DAG.getConstant(ShCt, dl, ShiftTy))); 3793 } 3794 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3795 // (X & 8) == 8 --> (X & 8) >> 3 3796 // Perform the xform if C1 is a single bit. 3797 unsigned ShCt = C1.logBase2(); 3798 if (C1.isPowerOf2() && 3799 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3800 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3801 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3802 DAG.getConstant(ShCt, dl, ShiftTy))); 3803 } 3804 } 3805 } 3806 } 3807 3808 if (C1.getMinSignedBits() <= 64 && 3809 !isLegalICmpImmediate(C1.getSExtValue())) { 3810 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3811 // (X & -256) == 256 -> (X >> 8) == 1 3812 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3813 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3814 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3815 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3816 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3817 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3818 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3819 SDValue Shift = 3820 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3821 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3822 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3823 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3824 } 3825 } 3826 } 3827 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3828 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3829 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3830 // X < 0x100000000 -> (X >> 32) < 1 3831 // X >= 0x100000000 -> (X >> 32) >= 1 3832 // X <= 0x0ffffffff -> (X >> 32) < 1 3833 // X > 0x0ffffffff -> (X >> 32) >= 1 3834 unsigned ShiftBits; 3835 APInt NewC = C1; 3836 ISD::CondCode NewCond = Cond; 3837 if (AdjOne) { 3838 ShiftBits = C1.countTrailingOnes(); 3839 NewC = NewC + 1; 3840 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3841 } else { 3842 ShiftBits = C1.countTrailingZeros(); 3843 } 3844 NewC.lshrInPlace(ShiftBits); 3845 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3846 isLegalICmpImmediate(NewC.getSExtValue()) && 3847 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3848 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3849 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3850 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3851 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3852 } 3853 } 3854 } 3855 } 3856 3857 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3858 auto *CFP = cast<ConstantFPSDNode>(N1); 3859 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3860 3861 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3862 // constant if knowing that the operand is non-nan is enough. We prefer to 3863 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3864 // materialize 0.0. 3865 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3866 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3867 3868 // setcc (fneg x), C -> setcc swap(pred) x, -C 3869 if (N0.getOpcode() == ISD::FNEG) { 3870 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3871 if (DCI.isBeforeLegalizeOps() || 3872 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3873 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3874 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3875 } 3876 } 3877 3878 // If the condition is not legal, see if we can find an equivalent one 3879 // which is legal. 3880 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3881 // If the comparison was an awkward floating-point == or != and one of 3882 // the comparison operands is infinity or negative infinity, convert the 3883 // condition to a less-awkward <= or >=. 3884 if (CFP->getValueAPF().isInfinity()) { 3885 bool IsNegInf = CFP->getValueAPF().isNegative(); 3886 ISD::CondCode NewCond = ISD::SETCC_INVALID; 3887 switch (Cond) { 3888 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 3889 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 3890 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 3891 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 3892 default: break; 3893 } 3894 if (NewCond != ISD::SETCC_INVALID && 3895 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 3896 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3897 } 3898 } 3899 } 3900 3901 if (N0 == N1) { 3902 // The sext(setcc()) => setcc() optimization relies on the appropriate 3903 // constant being emitted. 3904 assert(!N0.getValueType().isInteger() && 3905 "Integer types should be handled by FoldSetCC"); 3906 3907 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3908 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3909 if (UOF == 2) // FP operators that are undefined on NaNs. 3910 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3911 if (UOF == unsigned(EqTrue)) 3912 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3913 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3914 // if it is not already. 3915 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3916 if (NewCond != Cond && 3917 (DCI.isBeforeLegalizeOps() || 3918 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3919 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3920 } 3921 3922 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3923 N0.getValueType().isInteger()) { 3924 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3925 N0.getOpcode() == ISD::XOR) { 3926 // Simplify (X+Y) == (X+Z) --> Y == Z 3927 if (N0.getOpcode() == N1.getOpcode()) { 3928 if (N0.getOperand(0) == N1.getOperand(0)) 3929 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3930 if (N0.getOperand(1) == N1.getOperand(1)) 3931 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3932 if (isCommutativeBinOp(N0.getOpcode())) { 3933 // If X op Y == Y op X, try other combinations. 3934 if (N0.getOperand(0) == N1.getOperand(1)) 3935 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3936 Cond); 3937 if (N0.getOperand(1) == N1.getOperand(0)) 3938 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3939 Cond); 3940 } 3941 } 3942 3943 // If RHS is a legal immediate value for a compare instruction, we need 3944 // to be careful about increasing register pressure needlessly. 3945 bool LegalRHSImm = false; 3946 3947 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3948 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3949 // Turn (X+C1) == C2 --> X == C2-C1 3950 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3951 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3952 DAG.getConstant(RHSC->getAPIntValue()- 3953 LHSR->getAPIntValue(), 3954 dl, N0.getValueType()), Cond); 3955 } 3956 3957 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3958 if (N0.getOpcode() == ISD::XOR) 3959 // If we know that all of the inverted bits are zero, don't bother 3960 // performing the inversion. 3961 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3962 return 3963 DAG.getSetCC(dl, VT, N0.getOperand(0), 3964 DAG.getConstant(LHSR->getAPIntValue() ^ 3965 RHSC->getAPIntValue(), 3966 dl, N0.getValueType()), 3967 Cond); 3968 } 3969 3970 // Turn (C1-X) == C2 --> X == C1-C2 3971 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3972 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3973 return 3974 DAG.getSetCC(dl, VT, N0.getOperand(1), 3975 DAG.getConstant(SUBC->getAPIntValue() - 3976 RHSC->getAPIntValue(), 3977 dl, N0.getValueType()), 3978 Cond); 3979 } 3980 } 3981 3982 // Could RHSC fold directly into a compare? 3983 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3984 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3985 } 3986 3987 // (X+Y) == X --> Y == 0 and similar folds. 3988 // Don't do this if X is an immediate that can fold into a cmp 3989 // instruction and X+Y has other uses. It could be an induction variable 3990 // chain, and the transform would increase register pressure. 3991 if (!LegalRHSImm || N0.hasOneUse()) 3992 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3993 return V; 3994 } 3995 3996 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3997 N1.getOpcode() == ISD::XOR) 3998 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3999 return V; 4000 4001 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4002 return V; 4003 } 4004 4005 // Fold remainder of division by a constant. 4006 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4007 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4008 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4009 4010 // When division is cheap or optimizing for minimum size, 4011 // fall through to DIVREM creation by skipping this fold. 4012 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4013 if (N0.getOpcode() == ISD::UREM) { 4014 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4015 return Folded; 4016 } else if (N0.getOpcode() == ISD::SREM) { 4017 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4018 return Folded; 4019 } 4020 } 4021 } 4022 4023 // Fold away ALL boolean setcc's. 4024 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4025 SDValue Temp; 4026 switch (Cond) { 4027 default: llvm_unreachable("Unknown integer setcc!"); 4028 case ISD::SETEQ: // X == Y -> ~(X^Y) 4029 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4030 N0 = DAG.getNOT(dl, Temp, OpVT); 4031 if (!DCI.isCalledByLegalizer()) 4032 DCI.AddToWorklist(Temp.getNode()); 4033 break; 4034 case ISD::SETNE: // X != Y --> (X^Y) 4035 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4036 break; 4037 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4038 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4039 Temp = DAG.getNOT(dl, N0, OpVT); 4040 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4041 if (!DCI.isCalledByLegalizer()) 4042 DCI.AddToWorklist(Temp.getNode()); 4043 break; 4044 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4045 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4046 Temp = DAG.getNOT(dl, N1, OpVT); 4047 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4048 if (!DCI.isCalledByLegalizer()) 4049 DCI.AddToWorklist(Temp.getNode()); 4050 break; 4051 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4052 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4053 Temp = DAG.getNOT(dl, N0, OpVT); 4054 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4055 if (!DCI.isCalledByLegalizer()) 4056 DCI.AddToWorklist(Temp.getNode()); 4057 break; 4058 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4059 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4060 Temp = DAG.getNOT(dl, N1, OpVT); 4061 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4062 break; 4063 } 4064 if (VT.getScalarType() != MVT::i1) { 4065 if (!DCI.isCalledByLegalizer()) 4066 DCI.AddToWorklist(N0.getNode()); 4067 // FIXME: If running after legalize, we probably can't do this. 4068 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4069 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4070 } 4071 return N0; 4072 } 4073 4074 // Could not fold it. 4075 return SDValue(); 4076 } 4077 4078 /// Returns true (and the GlobalValue and the offset) if the node is a 4079 /// GlobalAddress + offset. 4080 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4081 int64_t &Offset) const { 4082 4083 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4084 4085 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4086 GA = GASD->getGlobal(); 4087 Offset += GASD->getOffset(); 4088 return true; 4089 } 4090 4091 if (N->getOpcode() == ISD::ADD) { 4092 SDValue N1 = N->getOperand(0); 4093 SDValue N2 = N->getOperand(1); 4094 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4095 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4096 Offset += V->getSExtValue(); 4097 return true; 4098 } 4099 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4100 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4101 Offset += V->getSExtValue(); 4102 return true; 4103 } 4104 } 4105 } 4106 4107 return false; 4108 } 4109 4110 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4111 DAGCombinerInfo &DCI) const { 4112 // Default implementation: no optimization. 4113 return SDValue(); 4114 } 4115 4116 //===----------------------------------------------------------------------===// 4117 // Inline Assembler Implementation Methods 4118 //===----------------------------------------------------------------------===// 4119 4120 TargetLowering::ConstraintType 4121 TargetLowering::getConstraintType(StringRef Constraint) const { 4122 unsigned S = Constraint.size(); 4123 4124 if (S == 1) { 4125 switch (Constraint[0]) { 4126 default: break; 4127 case 'r': 4128 return C_RegisterClass; 4129 case 'm': // memory 4130 case 'o': // offsetable 4131 case 'V': // not offsetable 4132 return C_Memory; 4133 case 'n': // Simple Integer 4134 case 'E': // Floating Point Constant 4135 case 'F': // Floating Point Constant 4136 return C_Immediate; 4137 case 'i': // Simple Integer or Relocatable Constant 4138 case 's': // Relocatable Constant 4139 case 'p': // Address. 4140 case 'X': // Allow ANY value. 4141 case 'I': // Target registers. 4142 case 'J': 4143 case 'K': 4144 case 'L': 4145 case 'M': 4146 case 'N': 4147 case 'O': 4148 case 'P': 4149 case '<': 4150 case '>': 4151 return C_Other; 4152 } 4153 } 4154 4155 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4156 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4157 return C_Memory; 4158 return C_Register; 4159 } 4160 return C_Unknown; 4161 } 4162 4163 /// Try to replace an X constraint, which matches anything, with another that 4164 /// has more specific requirements based on the type of the corresponding 4165 /// operand. 4166 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4167 if (ConstraintVT.isInteger()) 4168 return "r"; 4169 if (ConstraintVT.isFloatingPoint()) 4170 return "f"; // works for many targets 4171 return nullptr; 4172 } 4173 4174 SDValue TargetLowering::LowerAsmOutputForConstraint( 4175 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4176 SelectionDAG &DAG) const { 4177 return SDValue(); 4178 } 4179 4180 /// Lower the specified operand into the Ops vector. 4181 /// If it is invalid, don't add anything to Ops. 4182 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4183 std::string &Constraint, 4184 std::vector<SDValue> &Ops, 4185 SelectionDAG &DAG) const { 4186 4187 if (Constraint.length() > 1) return; 4188 4189 char ConstraintLetter = Constraint[0]; 4190 switch (ConstraintLetter) { 4191 default: break; 4192 case 'X': // Allows any operand; labels (basic block) use this. 4193 if (Op.getOpcode() == ISD::BasicBlock || 4194 Op.getOpcode() == ISD::TargetBlockAddress) { 4195 Ops.push_back(Op); 4196 return; 4197 } 4198 LLVM_FALLTHROUGH; 4199 case 'i': // Simple Integer or Relocatable Constant 4200 case 'n': // Simple Integer 4201 case 's': { // Relocatable Constant 4202 4203 GlobalAddressSDNode *GA; 4204 ConstantSDNode *C; 4205 BlockAddressSDNode *BA; 4206 uint64_t Offset = 0; 4207 4208 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4209 // etc., since getelementpointer is variadic. We can't use 4210 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4211 // while in this case the GA may be furthest from the root node which is 4212 // likely an ISD::ADD. 4213 while (1) { 4214 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4215 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4216 GA->getValueType(0), 4217 Offset + GA->getOffset())); 4218 return; 4219 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4220 ConstraintLetter != 's') { 4221 // gcc prints these as sign extended. Sign extend value to 64 bits 4222 // now; without this it would get ZExt'd later in 4223 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4224 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4225 BooleanContent BCont = getBooleanContents(MVT::i64); 4226 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4227 : ISD::SIGN_EXTEND; 4228 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4229 : C->getSExtValue(); 4230 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4231 SDLoc(C), MVT::i64)); 4232 return; 4233 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4234 ConstraintLetter != 'n') { 4235 Ops.push_back(DAG.getTargetBlockAddress( 4236 BA->getBlockAddress(), BA->getValueType(0), 4237 Offset + BA->getOffset(), BA->getTargetFlags())); 4238 return; 4239 } else { 4240 const unsigned OpCode = Op.getOpcode(); 4241 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4242 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4243 Op = Op.getOperand(1); 4244 // Subtraction is not commutative. 4245 else if (OpCode == ISD::ADD && 4246 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4247 Op = Op.getOperand(0); 4248 else 4249 return; 4250 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4251 continue; 4252 } 4253 } 4254 return; 4255 } 4256 break; 4257 } 4258 } 4259 } 4260 4261 std::pair<unsigned, const TargetRegisterClass *> 4262 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4263 StringRef Constraint, 4264 MVT VT) const { 4265 if (Constraint.empty() || Constraint[0] != '{') 4266 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4267 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4268 4269 // Remove the braces from around the name. 4270 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4271 4272 std::pair<unsigned, const TargetRegisterClass *> R = 4273 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4274 4275 // Figure out which register class contains this reg. 4276 for (const TargetRegisterClass *RC : RI->regclasses()) { 4277 // If none of the value types for this register class are valid, we 4278 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4279 if (!isLegalRC(*RI, *RC)) 4280 continue; 4281 4282 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4283 I != E; ++I) { 4284 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4285 std::pair<unsigned, const TargetRegisterClass *> S = 4286 std::make_pair(*I, RC); 4287 4288 // If this register class has the requested value type, return it, 4289 // otherwise keep searching and return the first class found 4290 // if no other is found which explicitly has the requested type. 4291 if (RI->isTypeLegalForClass(*RC, VT)) 4292 return S; 4293 if (!R.second) 4294 R = S; 4295 } 4296 } 4297 } 4298 4299 return R; 4300 } 4301 4302 //===----------------------------------------------------------------------===// 4303 // Constraint Selection. 4304 4305 /// Return true of this is an input operand that is a matching constraint like 4306 /// "4". 4307 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4308 assert(!ConstraintCode.empty() && "No known constraint!"); 4309 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4310 } 4311 4312 /// If this is an input matching constraint, this method returns the output 4313 /// operand it matches. 4314 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4315 assert(!ConstraintCode.empty() && "No known constraint!"); 4316 return atoi(ConstraintCode.c_str()); 4317 } 4318 4319 /// Split up the constraint string from the inline assembly value into the 4320 /// specific constraints and their prefixes, and also tie in the associated 4321 /// operand values. 4322 /// If this returns an empty vector, and if the constraint string itself 4323 /// isn't empty, there was an error parsing. 4324 TargetLowering::AsmOperandInfoVector 4325 TargetLowering::ParseConstraints(const DataLayout &DL, 4326 const TargetRegisterInfo *TRI, 4327 ImmutableCallSite CS) const { 4328 /// Information about all of the constraints. 4329 AsmOperandInfoVector ConstraintOperands; 4330 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4331 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4332 4333 // Do a prepass over the constraints, canonicalizing them, and building up the 4334 // ConstraintOperands list. 4335 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4336 unsigned ResNo = 0; // ResNo - The result number of the next output. 4337 4338 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4339 ConstraintOperands.emplace_back(std::move(CI)); 4340 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4341 4342 // Update multiple alternative constraint count. 4343 if (OpInfo.multipleAlternatives.size() > maCount) 4344 maCount = OpInfo.multipleAlternatives.size(); 4345 4346 OpInfo.ConstraintVT = MVT::Other; 4347 4348 // Compute the value type for each operand. 4349 switch (OpInfo.Type) { 4350 case InlineAsm::isOutput: 4351 // Indirect outputs just consume an argument. 4352 if (OpInfo.isIndirect) { 4353 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4354 break; 4355 } 4356 4357 // The return value of the call is this value. As such, there is no 4358 // corresponding argument. 4359 assert(!CS.getType()->isVoidTy() && 4360 "Bad inline asm!"); 4361 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 4362 OpInfo.ConstraintVT = 4363 getSimpleValueType(DL, STy->getElementType(ResNo)); 4364 } else { 4365 assert(ResNo == 0 && "Asm only has one result!"); 4366 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 4367 } 4368 ++ResNo; 4369 break; 4370 case InlineAsm::isInput: 4371 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4372 break; 4373 case InlineAsm::isClobber: 4374 // Nothing to do. 4375 break; 4376 } 4377 4378 if (OpInfo.CallOperandVal) { 4379 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4380 if (OpInfo.isIndirect) { 4381 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4382 if (!PtrTy) 4383 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4384 OpTy = PtrTy->getElementType(); 4385 } 4386 4387 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4388 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4389 if (STy->getNumElements() == 1) 4390 OpTy = STy->getElementType(0); 4391 4392 // If OpTy is not a single value, it may be a struct/union that we 4393 // can tile with integers. 4394 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4395 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4396 switch (BitSize) { 4397 default: break; 4398 case 1: 4399 case 8: 4400 case 16: 4401 case 32: 4402 case 64: 4403 case 128: 4404 OpInfo.ConstraintVT = 4405 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4406 break; 4407 } 4408 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4409 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4410 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4411 } else { 4412 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4413 } 4414 } 4415 } 4416 4417 // If we have multiple alternative constraints, select the best alternative. 4418 if (!ConstraintOperands.empty()) { 4419 if (maCount) { 4420 unsigned bestMAIndex = 0; 4421 int bestWeight = -1; 4422 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4423 int weight = -1; 4424 unsigned maIndex; 4425 // Compute the sums of the weights for each alternative, keeping track 4426 // of the best (highest weight) one so far. 4427 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4428 int weightSum = 0; 4429 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4430 cIndex != eIndex; ++cIndex) { 4431 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4432 if (OpInfo.Type == InlineAsm::isClobber) 4433 continue; 4434 4435 // If this is an output operand with a matching input operand, 4436 // look up the matching input. If their types mismatch, e.g. one 4437 // is an integer, the other is floating point, or their sizes are 4438 // different, flag it as an maCantMatch. 4439 if (OpInfo.hasMatchingInput()) { 4440 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4441 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4442 if ((OpInfo.ConstraintVT.isInteger() != 4443 Input.ConstraintVT.isInteger()) || 4444 (OpInfo.ConstraintVT.getSizeInBits() != 4445 Input.ConstraintVT.getSizeInBits())) { 4446 weightSum = -1; // Can't match. 4447 break; 4448 } 4449 } 4450 } 4451 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4452 if (weight == -1) { 4453 weightSum = -1; 4454 break; 4455 } 4456 weightSum += weight; 4457 } 4458 // Update best. 4459 if (weightSum > bestWeight) { 4460 bestWeight = weightSum; 4461 bestMAIndex = maIndex; 4462 } 4463 } 4464 4465 // Now select chosen alternative in each constraint. 4466 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4467 cIndex != eIndex; ++cIndex) { 4468 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4469 if (cInfo.Type == InlineAsm::isClobber) 4470 continue; 4471 cInfo.selectAlternative(bestMAIndex); 4472 } 4473 } 4474 } 4475 4476 // Check and hook up tied operands, choose constraint code to use. 4477 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4478 cIndex != eIndex; ++cIndex) { 4479 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4480 4481 // If this is an output operand with a matching input operand, look up the 4482 // matching input. If their types mismatch, e.g. one is an integer, the 4483 // other is floating point, or their sizes are different, flag it as an 4484 // error. 4485 if (OpInfo.hasMatchingInput()) { 4486 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4487 4488 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4489 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4490 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4491 OpInfo.ConstraintVT); 4492 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4493 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4494 Input.ConstraintVT); 4495 if ((OpInfo.ConstraintVT.isInteger() != 4496 Input.ConstraintVT.isInteger()) || 4497 (MatchRC.second != InputRC.second)) { 4498 report_fatal_error("Unsupported asm: input constraint" 4499 " with a matching output constraint of" 4500 " incompatible type!"); 4501 } 4502 } 4503 } 4504 } 4505 4506 return ConstraintOperands; 4507 } 4508 4509 /// Return an integer indicating how general CT is. 4510 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4511 switch (CT) { 4512 case TargetLowering::C_Immediate: 4513 case TargetLowering::C_Other: 4514 case TargetLowering::C_Unknown: 4515 return 0; 4516 case TargetLowering::C_Register: 4517 return 1; 4518 case TargetLowering::C_RegisterClass: 4519 return 2; 4520 case TargetLowering::C_Memory: 4521 return 3; 4522 } 4523 llvm_unreachable("Invalid constraint type"); 4524 } 4525 4526 /// Examine constraint type and operand type and determine a weight value. 4527 /// This object must already have been set up with the operand type 4528 /// and the current alternative constraint selected. 4529 TargetLowering::ConstraintWeight 4530 TargetLowering::getMultipleConstraintMatchWeight( 4531 AsmOperandInfo &info, int maIndex) const { 4532 InlineAsm::ConstraintCodeVector *rCodes; 4533 if (maIndex >= (int)info.multipleAlternatives.size()) 4534 rCodes = &info.Codes; 4535 else 4536 rCodes = &info.multipleAlternatives[maIndex].Codes; 4537 ConstraintWeight BestWeight = CW_Invalid; 4538 4539 // Loop over the options, keeping track of the most general one. 4540 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4541 ConstraintWeight weight = 4542 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4543 if (weight > BestWeight) 4544 BestWeight = weight; 4545 } 4546 4547 return BestWeight; 4548 } 4549 4550 /// Examine constraint type and operand type and determine a weight value. 4551 /// This object must already have been set up with the operand type 4552 /// and the current alternative constraint selected. 4553 TargetLowering::ConstraintWeight 4554 TargetLowering::getSingleConstraintMatchWeight( 4555 AsmOperandInfo &info, const char *constraint) const { 4556 ConstraintWeight weight = CW_Invalid; 4557 Value *CallOperandVal = info.CallOperandVal; 4558 // If we don't have a value, we can't do a match, 4559 // but allow it at the lowest weight. 4560 if (!CallOperandVal) 4561 return CW_Default; 4562 // Look at the constraint type. 4563 switch (*constraint) { 4564 case 'i': // immediate integer. 4565 case 'n': // immediate integer with a known value. 4566 if (isa<ConstantInt>(CallOperandVal)) 4567 weight = CW_Constant; 4568 break; 4569 case 's': // non-explicit intregal immediate. 4570 if (isa<GlobalValue>(CallOperandVal)) 4571 weight = CW_Constant; 4572 break; 4573 case 'E': // immediate float if host format. 4574 case 'F': // immediate float. 4575 if (isa<ConstantFP>(CallOperandVal)) 4576 weight = CW_Constant; 4577 break; 4578 case '<': // memory operand with autodecrement. 4579 case '>': // memory operand with autoincrement. 4580 case 'm': // memory operand. 4581 case 'o': // offsettable memory operand 4582 case 'V': // non-offsettable memory operand 4583 weight = CW_Memory; 4584 break; 4585 case 'r': // general register. 4586 case 'g': // general register, memory operand or immediate integer. 4587 // note: Clang converts "g" to "imr". 4588 if (CallOperandVal->getType()->isIntegerTy()) 4589 weight = CW_Register; 4590 break; 4591 case 'X': // any operand. 4592 default: 4593 weight = CW_Default; 4594 break; 4595 } 4596 return weight; 4597 } 4598 4599 /// If there are multiple different constraints that we could pick for this 4600 /// operand (e.g. "imr") try to pick the 'best' one. 4601 /// This is somewhat tricky: constraints fall into four classes: 4602 /// Other -> immediates and magic values 4603 /// Register -> one specific register 4604 /// RegisterClass -> a group of regs 4605 /// Memory -> memory 4606 /// Ideally, we would pick the most specific constraint possible: if we have 4607 /// something that fits into a register, we would pick it. The problem here 4608 /// is that if we have something that could either be in a register or in 4609 /// memory that use of the register could cause selection of *other* 4610 /// operands to fail: they might only succeed if we pick memory. Because of 4611 /// this the heuristic we use is: 4612 /// 4613 /// 1) If there is an 'other' constraint, and if the operand is valid for 4614 /// that constraint, use it. This makes us take advantage of 'i' 4615 /// constraints when available. 4616 /// 2) Otherwise, pick the most general constraint present. This prefers 4617 /// 'm' over 'r', for example. 4618 /// 4619 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4620 const TargetLowering &TLI, 4621 SDValue Op, SelectionDAG *DAG) { 4622 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4623 unsigned BestIdx = 0; 4624 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4625 int BestGenerality = -1; 4626 4627 // Loop over the options, keeping track of the most general one. 4628 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4629 TargetLowering::ConstraintType CType = 4630 TLI.getConstraintType(OpInfo.Codes[i]); 4631 4632 // Indirect 'other' or 'immediate' constraints are not allowed. 4633 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4634 CType == TargetLowering::C_Register || 4635 CType == TargetLowering::C_RegisterClass)) 4636 continue; 4637 4638 // If this is an 'other' or 'immediate' constraint, see if the operand is 4639 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4640 // the operand is an integer in the range [0..31] we want to use I (saving a 4641 // load of a register), otherwise we must use 'r'. 4642 if ((CType == TargetLowering::C_Other || 4643 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4644 assert(OpInfo.Codes[i].size() == 1 && 4645 "Unhandled multi-letter 'other' constraint"); 4646 std::vector<SDValue> ResultOps; 4647 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4648 ResultOps, *DAG); 4649 if (!ResultOps.empty()) { 4650 BestType = CType; 4651 BestIdx = i; 4652 break; 4653 } 4654 } 4655 4656 // Things with matching constraints can only be registers, per gcc 4657 // documentation. This mainly affects "g" constraints. 4658 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4659 continue; 4660 4661 // This constraint letter is more general than the previous one, use it. 4662 int Generality = getConstraintGenerality(CType); 4663 if (Generality > BestGenerality) { 4664 BestType = CType; 4665 BestIdx = i; 4666 BestGenerality = Generality; 4667 } 4668 } 4669 4670 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4671 OpInfo.ConstraintType = BestType; 4672 } 4673 4674 /// Determines the constraint code and constraint type to use for the specific 4675 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4676 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4677 SDValue Op, 4678 SelectionDAG *DAG) const { 4679 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4680 4681 // Single-letter constraints ('r') are very common. 4682 if (OpInfo.Codes.size() == 1) { 4683 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4684 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4685 } else { 4686 ChooseConstraint(OpInfo, *this, Op, DAG); 4687 } 4688 4689 // 'X' matches anything. 4690 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4691 // Labels and constants are handled elsewhere ('X' is the only thing 4692 // that matches labels). For Functions, the type here is the type of 4693 // the result, which is not what we want to look at; leave them alone. 4694 Value *v = OpInfo.CallOperandVal; 4695 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4696 OpInfo.CallOperandVal = v; 4697 return; 4698 } 4699 4700 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4701 return; 4702 4703 // Otherwise, try to resolve it to something we know about by looking at 4704 // the actual operand type. 4705 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4706 OpInfo.ConstraintCode = Repl; 4707 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4708 } 4709 } 4710 } 4711 4712 /// Given an exact SDIV by a constant, create a multiplication 4713 /// with the multiplicative inverse of the constant. 4714 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4715 const SDLoc &dl, SelectionDAG &DAG, 4716 SmallVectorImpl<SDNode *> &Created) { 4717 SDValue Op0 = N->getOperand(0); 4718 SDValue Op1 = N->getOperand(1); 4719 EVT VT = N->getValueType(0); 4720 EVT SVT = VT.getScalarType(); 4721 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4722 EVT ShSVT = ShVT.getScalarType(); 4723 4724 bool UseSRA = false; 4725 SmallVector<SDValue, 16> Shifts, Factors; 4726 4727 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4728 if (C->isNullValue()) 4729 return false; 4730 APInt Divisor = C->getAPIntValue(); 4731 unsigned Shift = Divisor.countTrailingZeros(); 4732 if (Shift) { 4733 Divisor.ashrInPlace(Shift); 4734 UseSRA = true; 4735 } 4736 // Calculate the multiplicative inverse, using Newton's method. 4737 APInt t; 4738 APInt Factor = Divisor; 4739 while ((t = Divisor * Factor) != 1) 4740 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4741 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4742 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4743 return true; 4744 }; 4745 4746 // Collect all magic values from the build vector. 4747 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4748 return SDValue(); 4749 4750 SDValue Shift, Factor; 4751 if (VT.isVector()) { 4752 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4753 Factor = DAG.getBuildVector(VT, dl, Factors); 4754 } else { 4755 Shift = Shifts[0]; 4756 Factor = Factors[0]; 4757 } 4758 4759 SDValue Res = Op0; 4760 4761 // Shift the value upfront if it is even, so the LSB is one. 4762 if (UseSRA) { 4763 // TODO: For UDIV use SRL instead of SRA. 4764 SDNodeFlags Flags; 4765 Flags.setExact(true); 4766 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4767 Created.push_back(Res.getNode()); 4768 } 4769 4770 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4771 } 4772 4773 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4774 SelectionDAG &DAG, 4775 SmallVectorImpl<SDNode *> &Created) const { 4776 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4777 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4778 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4779 return SDValue(N, 0); // Lower SDIV as SDIV 4780 return SDValue(); 4781 } 4782 4783 /// Given an ISD::SDIV node expressing a divide by constant, 4784 /// return a DAG expression to select that will generate the same value by 4785 /// multiplying by a magic number. 4786 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4787 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4788 bool IsAfterLegalization, 4789 SmallVectorImpl<SDNode *> &Created) const { 4790 SDLoc dl(N); 4791 EVT VT = N->getValueType(0); 4792 EVT SVT = VT.getScalarType(); 4793 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4794 EVT ShSVT = ShVT.getScalarType(); 4795 unsigned EltBits = VT.getScalarSizeInBits(); 4796 4797 // Check to see if we can do this. 4798 // FIXME: We should be more aggressive here. 4799 if (!isTypeLegal(VT)) 4800 return SDValue(); 4801 4802 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4803 if (N->getFlags().hasExact()) 4804 return BuildExactSDIV(*this, N, dl, DAG, Created); 4805 4806 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4807 4808 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4809 if (C->isNullValue()) 4810 return false; 4811 4812 const APInt &Divisor = C->getAPIntValue(); 4813 APInt::ms magics = Divisor.magic(); 4814 int NumeratorFactor = 0; 4815 int ShiftMask = -1; 4816 4817 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4818 // If d is +1/-1, we just multiply the numerator by +1/-1. 4819 NumeratorFactor = Divisor.getSExtValue(); 4820 magics.m = 0; 4821 magics.s = 0; 4822 ShiftMask = 0; 4823 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4824 // If d > 0 and m < 0, add the numerator. 4825 NumeratorFactor = 1; 4826 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4827 // If d < 0 and m > 0, subtract the numerator. 4828 NumeratorFactor = -1; 4829 } 4830 4831 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4832 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4833 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4834 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4835 return true; 4836 }; 4837 4838 SDValue N0 = N->getOperand(0); 4839 SDValue N1 = N->getOperand(1); 4840 4841 // Collect the shifts / magic values from each element. 4842 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4843 return SDValue(); 4844 4845 SDValue MagicFactor, Factor, Shift, ShiftMask; 4846 if (VT.isVector()) { 4847 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4848 Factor = DAG.getBuildVector(VT, dl, Factors); 4849 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4850 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4851 } else { 4852 MagicFactor = MagicFactors[0]; 4853 Factor = Factors[0]; 4854 Shift = Shifts[0]; 4855 ShiftMask = ShiftMasks[0]; 4856 } 4857 4858 // Multiply the numerator (operand 0) by the magic value. 4859 // FIXME: We should support doing a MUL in a wider type. 4860 SDValue Q; 4861 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4862 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4863 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4864 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4865 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4866 SDValue LoHi = 4867 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4868 Q = SDValue(LoHi.getNode(), 1); 4869 } else 4870 return SDValue(); // No mulhs or equivalent. 4871 Created.push_back(Q.getNode()); 4872 4873 // (Optionally) Add/subtract the numerator using Factor. 4874 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4875 Created.push_back(Factor.getNode()); 4876 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4877 Created.push_back(Q.getNode()); 4878 4879 // Shift right algebraic by shift value. 4880 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4881 Created.push_back(Q.getNode()); 4882 4883 // Extract the sign bit, mask it and add it to the quotient. 4884 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4885 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4886 Created.push_back(T.getNode()); 4887 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4888 Created.push_back(T.getNode()); 4889 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4890 } 4891 4892 /// Given an ISD::UDIV node expressing a divide by constant, 4893 /// return a DAG expression to select that will generate the same value by 4894 /// multiplying by a magic number. 4895 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4896 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4897 bool IsAfterLegalization, 4898 SmallVectorImpl<SDNode *> &Created) const { 4899 SDLoc dl(N); 4900 EVT VT = N->getValueType(0); 4901 EVT SVT = VT.getScalarType(); 4902 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4903 EVT ShSVT = ShVT.getScalarType(); 4904 unsigned EltBits = VT.getScalarSizeInBits(); 4905 4906 // Check to see if we can do this. 4907 // FIXME: We should be more aggressive here. 4908 if (!isTypeLegal(VT)) 4909 return SDValue(); 4910 4911 bool UseNPQ = false; 4912 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4913 4914 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4915 if (C->isNullValue()) 4916 return false; 4917 // FIXME: We should use a narrower constant when the upper 4918 // bits are known to be zero. 4919 APInt Divisor = C->getAPIntValue(); 4920 APInt::mu magics = Divisor.magicu(); 4921 unsigned PreShift = 0, PostShift = 0; 4922 4923 // If the divisor is even, we can avoid using the expensive fixup by 4924 // shifting the divided value upfront. 4925 if (magics.a != 0 && !Divisor[0]) { 4926 PreShift = Divisor.countTrailingZeros(); 4927 // Get magic number for the shifted divisor. 4928 magics = Divisor.lshr(PreShift).magicu(PreShift); 4929 assert(magics.a == 0 && "Should use cheap fixup now"); 4930 } 4931 4932 APInt Magic = magics.m; 4933 4934 unsigned SelNPQ; 4935 if (magics.a == 0 || Divisor.isOneValue()) { 4936 assert(magics.s < Divisor.getBitWidth() && 4937 "We shouldn't generate an undefined shift!"); 4938 PostShift = magics.s; 4939 SelNPQ = false; 4940 } else { 4941 PostShift = magics.s - 1; 4942 SelNPQ = true; 4943 } 4944 4945 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4946 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4947 NPQFactors.push_back( 4948 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4949 : APInt::getNullValue(EltBits), 4950 dl, SVT)); 4951 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4952 UseNPQ |= SelNPQ; 4953 return true; 4954 }; 4955 4956 SDValue N0 = N->getOperand(0); 4957 SDValue N1 = N->getOperand(1); 4958 4959 // Collect the shifts/magic values from each element. 4960 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4961 return SDValue(); 4962 4963 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4964 if (VT.isVector()) { 4965 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4966 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4967 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4968 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4969 } else { 4970 PreShift = PreShifts[0]; 4971 MagicFactor = MagicFactors[0]; 4972 PostShift = PostShifts[0]; 4973 } 4974 4975 SDValue Q = N0; 4976 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4977 Created.push_back(Q.getNode()); 4978 4979 // FIXME: We should support doing a MUL in a wider type. 4980 auto GetMULHU = [&](SDValue X, SDValue Y) { 4981 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4982 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4983 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4984 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4985 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4986 SDValue LoHi = 4987 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4988 return SDValue(LoHi.getNode(), 1); 4989 } 4990 return SDValue(); // No mulhu or equivalent 4991 }; 4992 4993 // Multiply the numerator (operand 0) by the magic value. 4994 Q = GetMULHU(Q, MagicFactor); 4995 if (!Q) 4996 return SDValue(); 4997 4998 Created.push_back(Q.getNode()); 4999 5000 if (UseNPQ) { 5001 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5002 Created.push_back(NPQ.getNode()); 5003 5004 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5005 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5006 if (VT.isVector()) 5007 NPQ = GetMULHU(NPQ, NPQFactor); 5008 else 5009 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5010 5011 Created.push_back(NPQ.getNode()); 5012 5013 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5014 Created.push_back(Q.getNode()); 5015 } 5016 5017 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5018 Created.push_back(Q.getNode()); 5019 5020 SDValue One = DAG.getConstant(1, dl, VT); 5021 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 5022 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5023 } 5024 5025 /// If all values in Values that *don't* match the predicate are same 'splat' 5026 /// value, then replace all values with that splat value. 5027 /// Else, if AlternativeReplacement was provided, then replace all values that 5028 /// do match predicate with AlternativeReplacement value. 5029 static void 5030 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5031 std::function<bool(SDValue)> Predicate, 5032 SDValue AlternativeReplacement = SDValue()) { 5033 SDValue Replacement; 5034 // Is there a value for which the Predicate does *NOT* match? What is it? 5035 auto SplatValue = llvm::find_if_not(Values, Predicate); 5036 if (SplatValue != Values.end()) { 5037 // Does Values consist only of SplatValue's and values matching Predicate? 5038 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5039 return Value == *SplatValue || Predicate(Value); 5040 })) // Then we shall replace values matching predicate with SplatValue. 5041 Replacement = *SplatValue; 5042 } 5043 if (!Replacement) { 5044 // Oops, we did not find the "baseline" splat value. 5045 if (!AlternativeReplacement) 5046 return; // Nothing to do. 5047 // Let's replace with provided value then. 5048 Replacement = AlternativeReplacement; 5049 } 5050 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5051 } 5052 5053 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5054 /// where the divisor is constant and the comparison target is zero, 5055 /// return a DAG expression that will generate the same comparison result 5056 /// using only multiplications, additions and shifts/rotations. 5057 /// Ref: "Hacker's Delight" 10-17. 5058 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5059 SDValue CompTargetNode, 5060 ISD::CondCode Cond, 5061 DAGCombinerInfo &DCI, 5062 const SDLoc &DL) const { 5063 SmallVector<SDNode *, 5> Built; 5064 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5065 DCI, DL, Built)) { 5066 for (SDNode *N : Built) 5067 DCI.AddToWorklist(N); 5068 return Folded; 5069 } 5070 5071 return SDValue(); 5072 } 5073 5074 SDValue 5075 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5076 SDValue CompTargetNode, ISD::CondCode Cond, 5077 DAGCombinerInfo &DCI, const SDLoc &DL, 5078 SmallVectorImpl<SDNode *> &Created) const { 5079 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5080 // - D must be constant, with D = D0 * 2^K where D0 is odd 5081 // - P is the multiplicative inverse of D0 modulo 2^W 5082 // - Q = floor(((2^W) - 1) / D) 5083 // where W is the width of the common type of N and D. 5084 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5085 "Only applicable for (in)equality comparisons."); 5086 5087 SelectionDAG &DAG = DCI.DAG; 5088 5089 EVT VT = REMNode.getValueType(); 5090 EVT SVT = VT.getScalarType(); 5091 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5092 EVT ShSVT = ShVT.getScalarType(); 5093 5094 // If MUL is unavailable, we cannot proceed in any case. 5095 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5096 return SDValue(); 5097 5098 bool ComparingWithAllZeros = true; 5099 bool AllComparisonsWithNonZerosAreTautological = true; 5100 bool HadTautologicalLanes = false; 5101 bool AllLanesAreTautological = true; 5102 bool HadEvenDivisor = false; 5103 bool AllDivisorsArePowerOfTwo = true; 5104 bool HadTautologicalInvertedLanes = false; 5105 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5106 5107 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5108 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5109 if (CDiv->isNullValue()) 5110 return false; 5111 5112 const APInt &D = CDiv->getAPIntValue(); 5113 const APInt &Cmp = CCmp->getAPIntValue(); 5114 5115 ComparingWithAllZeros &= Cmp.isNullValue(); 5116 5117 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5118 // if C2 is not less than C1, the comparison is always false. 5119 // But we will only be able to produce the comparison that will give the 5120 // opposive tautological answer. So this lane would need to be fixed up. 5121 bool TautologicalInvertedLane = D.ule(Cmp); 5122 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5123 5124 // If all lanes are tautological (either all divisors are ones, or divisor 5125 // is not greater than the constant we are comparing with), 5126 // we will prefer to avoid the fold. 5127 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5128 HadTautologicalLanes |= TautologicalLane; 5129 AllLanesAreTautological &= TautologicalLane; 5130 5131 // If we are comparing with non-zero, we need'll need to subtract said 5132 // comparison value from the LHS. But there is no point in doing that if 5133 // every lane where we are comparing with non-zero is tautological.. 5134 if (!Cmp.isNullValue()) 5135 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5136 5137 // Decompose D into D0 * 2^K 5138 unsigned K = D.countTrailingZeros(); 5139 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5140 APInt D0 = D.lshr(K); 5141 5142 // D is even if it has trailing zeros. 5143 HadEvenDivisor |= (K != 0); 5144 // D is a power-of-two if D0 is one. 5145 // If all divisors are power-of-two, we will prefer to avoid the fold. 5146 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5147 5148 // P = inv(D0, 2^W) 5149 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5150 unsigned W = D.getBitWidth(); 5151 APInt P = D0.zext(W + 1) 5152 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5153 .trunc(W); 5154 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5155 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5156 5157 // Q = floor((2^W - 1) u/ D) 5158 // R = ((2^W - 1) u% D) 5159 APInt Q, R; 5160 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5161 5162 // If we are comparing with zero, then that comparison constant is okay, 5163 // else it may need to be one less than that. 5164 if (Cmp.ugt(R)) 5165 Q -= 1; 5166 5167 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5168 "We are expecting that K is always less than all-ones for ShSVT"); 5169 5170 // If the lane is tautological the result can be constant-folded. 5171 if (TautologicalLane) { 5172 // Set P and K amount to a bogus values so we can try to splat them. 5173 P = 0; 5174 K = -1; 5175 // And ensure that comparison constant is tautological, 5176 // it will always compare true/false. 5177 Q = -1; 5178 } 5179 5180 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5181 KAmts.push_back( 5182 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5183 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5184 return true; 5185 }; 5186 5187 SDValue N = REMNode.getOperand(0); 5188 SDValue D = REMNode.getOperand(1); 5189 5190 // Collect the values from each element. 5191 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5192 return SDValue(); 5193 5194 // If all lanes are tautological, the result can be constant-folded. 5195 if (AllLanesAreTautological) 5196 return SDValue(); 5197 5198 // If this is a urem by a powers-of-two, avoid the fold since it can be 5199 // best implemented as a bit test. 5200 if (AllDivisorsArePowerOfTwo) 5201 return SDValue(); 5202 5203 SDValue PVal, KVal, QVal; 5204 if (VT.isVector()) { 5205 if (HadTautologicalLanes) { 5206 // Try to turn PAmts into a splat, since we don't care about the values 5207 // that are currently '0'. If we can't, just keep '0'`s. 5208 turnVectorIntoSplatVector(PAmts, isNullConstant); 5209 // Try to turn KAmts into a splat, since we don't care about the values 5210 // that are currently '-1'. If we can't, change them to '0'`s. 5211 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5212 DAG.getConstant(0, DL, ShSVT)); 5213 } 5214 5215 PVal = DAG.getBuildVector(VT, DL, PAmts); 5216 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5217 QVal = DAG.getBuildVector(VT, DL, QAmts); 5218 } else { 5219 PVal = PAmts[0]; 5220 KVal = KAmts[0]; 5221 QVal = QAmts[0]; 5222 } 5223 5224 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5225 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5226 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5227 assert(CompTargetNode.getValueType() == N.getValueType() && 5228 "Expecting that the types on LHS and RHS of comparisons match."); 5229 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5230 } 5231 5232 // (mul N, P) 5233 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5234 Created.push_back(Op0.getNode()); 5235 5236 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5237 // divisors as a performance improvement, since rotating by 0 is a no-op. 5238 if (HadEvenDivisor) { 5239 // We need ROTR to do this. 5240 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5241 return SDValue(); 5242 SDNodeFlags Flags; 5243 Flags.setExact(true); 5244 // UREM: (rotr (mul N, P), K) 5245 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5246 Created.push_back(Op0.getNode()); 5247 } 5248 5249 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5250 SDValue NewCC = 5251 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5252 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5253 if (!HadTautologicalInvertedLanes) 5254 return NewCC; 5255 5256 // If any lanes previously compared always-false, the NewCC will give 5257 // always-true result for them, so we need to fixup those lanes. 5258 // Or the other way around for inequality predicate. 5259 assert(VT.isVector() && "Can/should only get here for vectors."); 5260 Created.push_back(NewCC.getNode()); 5261 5262 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5263 // if C2 is not less than C1, the comparison is always false. 5264 // But we have produced the comparison that will give the 5265 // opposive tautological answer. So these lanes would need to be fixed up. 5266 SDValue TautologicalInvertedChannels = 5267 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5268 Created.push_back(TautologicalInvertedChannels.getNode()); 5269 5270 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5271 // If we have a vector select, let's replace the comparison results in the 5272 // affected lanes with the correct tautological result. 5273 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5274 DL, SETCCVT, SETCCVT); 5275 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5276 Replacement, NewCC); 5277 } 5278 5279 // Else, we can just invert the comparison result in the appropriate lanes. 5280 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5281 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5282 TautologicalInvertedChannels); 5283 5284 return SDValue(); // Don't know how to lower. 5285 } 5286 5287 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5288 /// where the divisor is constant and the comparison target is zero, 5289 /// return a DAG expression that will generate the same comparison result 5290 /// using only multiplications, additions and shifts/rotations. 5291 /// Ref: "Hacker's Delight" 10-17. 5292 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5293 SDValue CompTargetNode, 5294 ISD::CondCode Cond, 5295 DAGCombinerInfo &DCI, 5296 const SDLoc &DL) const { 5297 SmallVector<SDNode *, 7> Built; 5298 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5299 DCI, DL, Built)) { 5300 assert(Built.size() <= 7 && "Max size prediction failed."); 5301 for (SDNode *N : Built) 5302 DCI.AddToWorklist(N); 5303 return Folded; 5304 } 5305 5306 return SDValue(); 5307 } 5308 5309 SDValue 5310 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5311 SDValue CompTargetNode, ISD::CondCode Cond, 5312 DAGCombinerInfo &DCI, const SDLoc &DL, 5313 SmallVectorImpl<SDNode *> &Created) const { 5314 // Fold: 5315 // (seteq/ne (srem N, D), 0) 5316 // To: 5317 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5318 // 5319 // - D must be constant, with D = D0 * 2^K where D0 is odd 5320 // - P is the multiplicative inverse of D0 modulo 2^W 5321 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5322 // - Q = floor((2 * A) / (2^K)) 5323 // where W is the width of the common type of N and D. 5324 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5325 "Only applicable for (in)equality comparisons."); 5326 5327 SelectionDAG &DAG = DCI.DAG; 5328 5329 EVT VT = REMNode.getValueType(); 5330 EVT SVT = VT.getScalarType(); 5331 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5332 EVT ShSVT = ShVT.getScalarType(); 5333 5334 // If MUL is unavailable, we cannot proceed in any case. 5335 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5336 return SDValue(); 5337 5338 // TODO: Could support comparing with non-zero too. 5339 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5340 if (!CompTarget || !CompTarget->isNullValue()) 5341 return SDValue(); 5342 5343 bool HadIntMinDivisor = false; 5344 bool HadOneDivisor = false; 5345 bool AllDivisorsAreOnes = true; 5346 bool HadEvenDivisor = false; 5347 bool NeedToApplyOffset = false; 5348 bool AllDivisorsArePowerOfTwo = true; 5349 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5350 5351 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5352 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5353 if (C->isNullValue()) 5354 return false; 5355 5356 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5357 5358 // WARNING: this fold is only valid for positive divisors! 5359 APInt D = C->getAPIntValue(); 5360 if (D.isNegative()) 5361 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5362 5363 HadIntMinDivisor |= D.isMinSignedValue(); 5364 5365 // If all divisors are ones, we will prefer to avoid the fold. 5366 HadOneDivisor |= D.isOneValue(); 5367 AllDivisorsAreOnes &= D.isOneValue(); 5368 5369 // Decompose D into D0 * 2^K 5370 unsigned K = D.countTrailingZeros(); 5371 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5372 APInt D0 = D.lshr(K); 5373 5374 if (!D.isMinSignedValue()) { 5375 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5376 // we don't care about this lane in this fold, we'll special-handle it. 5377 HadEvenDivisor |= (K != 0); 5378 } 5379 5380 // D is a power-of-two if D0 is one. This includes INT_MIN. 5381 // If all divisors are power-of-two, we will prefer to avoid the fold. 5382 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5383 5384 // P = inv(D0, 2^W) 5385 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5386 unsigned W = D.getBitWidth(); 5387 APInt P = D0.zext(W + 1) 5388 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5389 .trunc(W); 5390 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5391 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5392 5393 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5394 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5395 A.clearLowBits(K); 5396 5397 if (!D.isMinSignedValue()) { 5398 // If divisor INT_MIN, then we don't care about this lane in this fold, 5399 // we'll special-handle it. 5400 NeedToApplyOffset |= A != 0; 5401 } 5402 5403 // Q = floor((2 * A) / (2^K)) 5404 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5405 5406 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5407 "We are expecting that A is always less than all-ones for SVT"); 5408 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5409 "We are expecting that K is always less than all-ones for ShSVT"); 5410 5411 // If the divisor is 1 the result can be constant-folded. Likewise, we 5412 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5413 if (D.isOneValue()) { 5414 // Set P, A and K to a bogus values so we can try to splat them. 5415 P = 0; 5416 A = -1; 5417 K = -1; 5418 5419 // x ?% 1 == 0 <--> true <--> x u<= -1 5420 Q = -1; 5421 } 5422 5423 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5424 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5425 KAmts.push_back( 5426 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5427 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5428 return true; 5429 }; 5430 5431 SDValue N = REMNode.getOperand(0); 5432 SDValue D = REMNode.getOperand(1); 5433 5434 // Collect the values from each element. 5435 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5436 return SDValue(); 5437 5438 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5439 if (AllDivisorsAreOnes) 5440 return SDValue(); 5441 5442 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5443 // since it can be best implemented as a bit test. 5444 if (AllDivisorsArePowerOfTwo) 5445 return SDValue(); 5446 5447 SDValue PVal, AVal, KVal, QVal; 5448 if (VT.isVector()) { 5449 if (HadOneDivisor) { 5450 // Try to turn PAmts into a splat, since we don't care about the values 5451 // that are currently '0'. If we can't, just keep '0'`s. 5452 turnVectorIntoSplatVector(PAmts, isNullConstant); 5453 // Try to turn AAmts into a splat, since we don't care about the 5454 // values that are currently '-1'. If we can't, change them to '0'`s. 5455 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5456 DAG.getConstant(0, DL, SVT)); 5457 // Try to turn KAmts into a splat, since we don't care about the values 5458 // that are currently '-1'. If we can't, change them to '0'`s. 5459 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5460 DAG.getConstant(0, DL, ShSVT)); 5461 } 5462 5463 PVal = DAG.getBuildVector(VT, DL, PAmts); 5464 AVal = DAG.getBuildVector(VT, DL, AAmts); 5465 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5466 QVal = DAG.getBuildVector(VT, DL, QAmts); 5467 } else { 5468 PVal = PAmts[0]; 5469 AVal = AAmts[0]; 5470 KVal = KAmts[0]; 5471 QVal = QAmts[0]; 5472 } 5473 5474 // (mul N, P) 5475 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5476 Created.push_back(Op0.getNode()); 5477 5478 if (NeedToApplyOffset) { 5479 // We need ADD to do this. 5480 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5481 return SDValue(); 5482 5483 // (add (mul N, P), A) 5484 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5485 Created.push_back(Op0.getNode()); 5486 } 5487 5488 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5489 // divisors as a performance improvement, since rotating by 0 is a no-op. 5490 if (HadEvenDivisor) { 5491 // We need ROTR to do this. 5492 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5493 return SDValue(); 5494 SDNodeFlags Flags; 5495 Flags.setExact(true); 5496 // SREM: (rotr (add (mul N, P), A), K) 5497 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5498 Created.push_back(Op0.getNode()); 5499 } 5500 5501 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5502 SDValue Fold = 5503 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5504 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5505 5506 // If we didn't have lanes with INT_MIN divisor, then we're done. 5507 if (!HadIntMinDivisor) 5508 return Fold; 5509 5510 // That fold is only valid for positive divisors. Which effectively means, 5511 // it is invalid for INT_MIN divisors. So if we have such a lane, 5512 // we must fix-up results for said lanes. 5513 assert(VT.isVector() && "Can/should only get here for vectors."); 5514 5515 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5516 !isOperationLegalOrCustom(ISD::AND, VT) || 5517 !isOperationLegalOrCustom(Cond, VT) || 5518 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5519 return SDValue(); 5520 5521 Created.push_back(Fold.getNode()); 5522 5523 SDValue IntMin = DAG.getConstant( 5524 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5525 SDValue IntMax = DAG.getConstant( 5526 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5527 SDValue Zero = 5528 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5529 5530 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5531 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5532 Created.push_back(DivisorIsIntMin.getNode()); 5533 5534 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5535 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5536 Created.push_back(Masked.getNode()); 5537 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5538 Created.push_back(MaskedIsZero.getNode()); 5539 5540 // To produce final result we need to blend 2 vectors: 'SetCC' and 5541 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5542 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5543 // constant-folded, select can get lowered to a shuffle with constant mask. 5544 SDValue Blended = 5545 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5546 5547 return Blended; 5548 } 5549 5550 bool TargetLowering:: 5551 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5552 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5553 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5554 "be a constant integer"); 5555 return true; 5556 } 5557 5558 return false; 5559 } 5560 5561 TargetLowering::NegatibleCost 5562 TargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG, 5563 bool LegalOperations, bool ForCodeSize, 5564 unsigned Depth) const { 5565 // fneg is removable even if it has multiple uses. 5566 if (Op.getOpcode() == ISD::FNEG) 5567 return NegatibleCost::Cheaper; 5568 5569 // Don't allow anything with multiple uses unless we know it is free. 5570 EVT VT = Op.getValueType(); 5571 const SDNodeFlags Flags = Op->getFlags(); 5572 const TargetOptions &Options = DAG.getTarget().Options; 5573 if (!Op.hasOneUse()) { 5574 bool IsFreeExtend = Op.getOpcode() == ISD::FP_EXTEND && 5575 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5576 5577 // If we already have the use of the negated floating constant, it is free 5578 // to negate it even it has multiple uses. 5579 bool IsFreeConstant = 5580 Op.getOpcode() == ISD::ConstantFP && 5581 !getNegatedExpression(Op, DAG, LegalOperations, ForCodeSize) 5582 .use_empty(); 5583 5584 if (!IsFreeExtend && !IsFreeConstant) 5585 return NegatibleCost::Expensive; 5586 } 5587 5588 // Don't recurse exponentially. 5589 if (Depth > SelectionDAG::MaxRecursionDepth) 5590 return NegatibleCost::Expensive; 5591 5592 switch (Op.getOpcode()) { 5593 case ISD::ConstantFP: { 5594 if (!LegalOperations) 5595 return NegatibleCost::Neutral; 5596 5597 // Don't invert constant FP values after legalization unless the target says 5598 // the negated constant is legal. 5599 if (isOperationLegal(ISD::ConstantFP, VT) || 5600 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5601 ForCodeSize)) 5602 return NegatibleCost::Neutral; 5603 break; 5604 } 5605 case ISD::BUILD_VECTOR: { 5606 // Only permit BUILD_VECTOR of constants. 5607 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5608 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5609 })) 5610 return NegatibleCost::Expensive; 5611 if (!LegalOperations) 5612 return NegatibleCost::Neutral; 5613 if (isOperationLegal(ISD::ConstantFP, VT) && 5614 isOperationLegal(ISD::BUILD_VECTOR, VT)) 5615 return NegatibleCost::Neutral; 5616 if (llvm::all_of(Op->op_values(), [&](SDValue N) { 5617 return N.isUndef() || 5618 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5619 ForCodeSize); 5620 })) 5621 return NegatibleCost::Neutral; 5622 break; 5623 } 5624 case ISD::FADD: { 5625 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5626 return NegatibleCost::Expensive; 5627 5628 // After operation legalization, it might not be legal to create new FSUBs. 5629 if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5630 return NegatibleCost::Expensive; 5631 5632 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5633 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5634 ForCodeSize, Depth + 1); 5635 if (V0 != NegatibleCost::Expensive) 5636 return V0; 5637 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5638 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5639 Depth + 1); 5640 } 5641 case ISD::FSUB: 5642 // We can't turn -(A-B) into B-A when we honor signed zeros. 5643 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5644 return NegatibleCost::Expensive; 5645 5646 // fold (fneg (fsub A, B)) -> (fsub B, A) 5647 return NegatibleCost::Neutral; 5648 case ISD::FMUL: 5649 case ISD::FDIV: { 5650 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 5651 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5652 ForCodeSize, Depth + 1); 5653 if (V0 != NegatibleCost::Expensive) 5654 return V0; 5655 5656 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5657 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5658 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5659 return NegatibleCost::Expensive; 5660 5661 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5662 Depth + 1); 5663 } 5664 case ISD::FMA: 5665 case ISD::FMAD: { 5666 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5667 return NegatibleCost::Expensive; 5668 5669 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5670 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5671 NegatibleCost V2 = getNegatibleCost(Op.getOperand(2), DAG, LegalOperations, 5672 ForCodeSize, Depth + 1); 5673 if (NegatibleCost::Expensive == V2) 5674 return NegatibleCost::Expensive; 5675 5676 // One of Op0/Op1 must be cheaply negatible, then select the cheapest. 5677 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5678 ForCodeSize, Depth + 1); 5679 NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, 5680 ForCodeSize, Depth + 1); 5681 NegatibleCost V01 = std::max(V0, V1); 5682 if (V01 == NegatibleCost::Expensive) 5683 return NegatibleCost::Expensive; 5684 return std::max(V01, V2); 5685 } 5686 5687 case ISD::FP_EXTEND: 5688 case ISD::FP_ROUND: 5689 case ISD::FSIN: 5690 return getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5691 Depth + 1); 5692 } 5693 5694 return NegatibleCost::Expensive; 5695 } 5696 5697 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5698 bool LegalOperations, 5699 bool ForCodeSize, 5700 unsigned Depth) const { 5701 // fneg is removable even if it has multiple uses. 5702 if (Op.getOpcode() == ISD::FNEG) 5703 return Op.getOperand(0); 5704 5705 assert(Depth <= SelectionDAG::MaxRecursionDepth && 5706 "getNegatedExpression doesn't match getNegatibleCost"); 5707 const SDNodeFlags Flags = Op->getFlags(); 5708 5709 switch (Op.getOpcode()) { 5710 case ISD::ConstantFP: { 5711 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5712 V.changeSign(); 5713 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 5714 } 5715 case ISD::BUILD_VECTOR: { 5716 SmallVector<SDValue, 4> Ops; 5717 for (SDValue C : Op->op_values()) { 5718 if (C.isUndef()) { 5719 Ops.push_back(C); 5720 continue; 5721 } 5722 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5723 V.changeSign(); 5724 Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType())); 5725 } 5726 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops); 5727 } 5728 case ISD::FADD: { 5729 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5730 Flags.hasNoSignedZeros()) && 5731 "Expected NSZ fp-flag"); 5732 5733 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5734 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5735 ForCodeSize, Depth + 1); 5736 if (V0 != NegatibleCost::Expensive) 5737 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5738 getNegatedExpression(Op.getOperand(0), DAG, 5739 LegalOperations, ForCodeSize, 5740 Depth + 1), 5741 Op.getOperand(1), Flags); 5742 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5743 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5744 getNegatedExpression(Op.getOperand(1), DAG, 5745 LegalOperations, ForCodeSize, 5746 Depth + 1), 5747 Op.getOperand(0), Flags); 5748 } 5749 case ISD::FSUB: 5750 // fold (fneg (fsub 0, B)) -> B 5751 if (ConstantFPSDNode *N0CFP = 5752 isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true)) 5753 if (N0CFP->isZero()) 5754 return Op.getOperand(1); 5755 5756 // fold (fneg (fsub A, B)) -> (fsub B, A) 5757 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5758 Op.getOperand(1), Op.getOperand(0), Flags); 5759 5760 case ISD::FMUL: 5761 case ISD::FDIV: { 5762 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5763 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5764 ForCodeSize, Depth + 1); 5765 if (V0 != NegatibleCost::Expensive) 5766 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5767 getNegatedExpression(Op.getOperand(0), DAG, 5768 LegalOperations, ForCodeSize, 5769 Depth + 1), 5770 Op.getOperand(1), Flags); 5771 5772 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5773 return DAG.getNode( 5774 Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0), 5775 getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5776 ForCodeSize, Depth + 1), 5777 Flags); 5778 } 5779 case ISD::FMA: 5780 case ISD::FMAD: { 5781 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5782 Flags.hasNoSignedZeros()) && 5783 "Expected NSZ fp-flag"); 5784 5785 SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations, 5786 ForCodeSize, Depth + 1); 5787 5788 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5789 ForCodeSize, Depth + 1); 5790 NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, 5791 ForCodeSize, Depth + 1); 5792 if (V0 > V1) { 5793 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5794 SDValue Neg0 = getNegatedExpression( 5795 Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1); 5796 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0, 5797 Op.getOperand(1), Neg2, Flags); 5798 } 5799 5800 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5801 SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5802 ForCodeSize, Depth + 1); 5803 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5804 Op.getOperand(0), Neg1, Neg2, Flags); 5805 } 5806 5807 case ISD::FP_EXTEND: 5808 case ISD::FSIN: 5809 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5810 getNegatedExpression(Op.getOperand(0), DAG, 5811 LegalOperations, ForCodeSize, 5812 Depth + 1)); 5813 case ISD::FP_ROUND: 5814 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 5815 getNegatedExpression(Op.getOperand(0), DAG, 5816 LegalOperations, ForCodeSize, 5817 Depth + 1), 5818 Op.getOperand(1)); 5819 } 5820 5821 llvm_unreachable("Unknown code"); 5822 } 5823 5824 //===----------------------------------------------------------------------===// 5825 // Legalization Utilities 5826 //===----------------------------------------------------------------------===// 5827 5828 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5829 SDValue LHS, SDValue RHS, 5830 SmallVectorImpl<SDValue> &Result, 5831 EVT HiLoVT, SelectionDAG &DAG, 5832 MulExpansionKind Kind, SDValue LL, 5833 SDValue LH, SDValue RL, SDValue RH) const { 5834 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5835 Opcode == ISD::SMUL_LOHI); 5836 5837 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5838 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5839 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5840 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5841 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5842 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5843 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5844 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5845 5846 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5847 return false; 5848 5849 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5850 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5851 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5852 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5853 5854 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5855 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5856 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5857 5858 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5859 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5860 bool Signed) -> bool { 5861 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5862 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5863 Hi = SDValue(Lo.getNode(), 1); 5864 return true; 5865 } 5866 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5867 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5868 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5869 return true; 5870 } 5871 return false; 5872 }; 5873 5874 SDValue Lo, Hi; 5875 5876 if (!LL.getNode() && !RL.getNode() && 5877 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5878 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5879 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5880 } 5881 5882 if (!LL.getNode()) 5883 return false; 5884 5885 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5886 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5887 DAG.MaskedValueIsZero(RHS, HighMask)) { 5888 // The inputs are both zero-extended. 5889 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5890 Result.push_back(Lo); 5891 Result.push_back(Hi); 5892 if (Opcode != ISD::MUL) { 5893 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5894 Result.push_back(Zero); 5895 Result.push_back(Zero); 5896 } 5897 return true; 5898 } 5899 } 5900 5901 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5902 RHSSB > InnerBitSize) { 5903 // The input values are both sign-extended. 5904 // TODO non-MUL case? 5905 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5906 Result.push_back(Lo); 5907 Result.push_back(Hi); 5908 return true; 5909 } 5910 } 5911 5912 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5913 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5914 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5915 // FIXME getShiftAmountTy does not always return a sensible result when VT 5916 // is an illegal type, and so the type may be too small to fit the shift 5917 // amount. Override it with i32. The shift will have to be legalized. 5918 ShiftAmountTy = MVT::i32; 5919 } 5920 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5921 5922 if (!LH.getNode() && !RH.getNode() && 5923 isOperationLegalOrCustom(ISD::SRL, VT) && 5924 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5925 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5926 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5927 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5928 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5929 } 5930 5931 if (!LH.getNode()) 5932 return false; 5933 5934 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5935 return false; 5936 5937 Result.push_back(Lo); 5938 5939 if (Opcode == ISD::MUL) { 5940 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5941 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5942 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5943 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5944 Result.push_back(Hi); 5945 return true; 5946 } 5947 5948 // Compute the full width result. 5949 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5950 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5951 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5952 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5953 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5954 }; 5955 5956 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5957 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5958 return false; 5959 5960 // This is effectively the add part of a multiply-add of half-sized operands, 5961 // so it cannot overflow. 5962 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5963 5964 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5965 return false; 5966 5967 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5968 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5969 5970 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5971 isOperationLegalOrCustom(ISD::ADDE, VT)); 5972 if (UseGlue) 5973 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5974 Merge(Lo, Hi)); 5975 else 5976 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5977 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5978 5979 SDValue Carry = Next.getValue(1); 5980 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5981 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5982 5983 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5984 return false; 5985 5986 if (UseGlue) 5987 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5988 Carry); 5989 else 5990 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 5991 Zero, Carry); 5992 5993 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5994 5995 if (Opcode == ISD::SMUL_LOHI) { 5996 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5997 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 5998 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 5999 6000 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6001 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6002 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6003 } 6004 6005 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6006 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6007 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6008 return true; 6009 } 6010 6011 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6012 SelectionDAG &DAG, MulExpansionKind Kind, 6013 SDValue LL, SDValue LH, SDValue RL, 6014 SDValue RH) const { 6015 SmallVector<SDValue, 2> Result; 6016 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 6017 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6018 DAG, Kind, LL, LH, RL, RH); 6019 if (Ok) { 6020 assert(Result.size() == 2); 6021 Lo = Result[0]; 6022 Hi = Result[1]; 6023 } 6024 return Ok; 6025 } 6026 6027 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6028 SelectionDAG &DAG) const { 6029 EVT VT = Node->getValueType(0); 6030 6031 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6032 !isOperationLegalOrCustom(ISD::SRL, VT) || 6033 !isOperationLegalOrCustom(ISD::SUB, VT) || 6034 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6035 return false; 6036 6037 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6038 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6039 SDValue X = Node->getOperand(0); 6040 SDValue Y = Node->getOperand(1); 6041 SDValue Z = Node->getOperand(2); 6042 6043 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6044 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6045 SDLoc DL(SDValue(Node, 0)); 6046 6047 EVT ShVT = Z.getValueType(); 6048 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6049 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6050 6051 SDValue ShAmt; 6052 if (isPowerOf2_32(EltSizeInBits)) { 6053 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6054 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6055 } else { 6056 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6057 } 6058 6059 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6060 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6061 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6062 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6063 6064 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6065 // and that is undefined. We must compare and select to avoid UB. 6066 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 6067 6068 // For fshl, 0-shift returns the 1st arg (X). 6069 // For fshr, 0-shift returns the 2nd arg (Y). 6070 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 6071 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 6072 return true; 6073 } 6074 6075 // TODO: Merge with expandFunnelShift. 6076 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 6077 SelectionDAG &DAG) const { 6078 EVT VT = Node->getValueType(0); 6079 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6080 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6081 SDValue Op0 = Node->getOperand(0); 6082 SDValue Op1 = Node->getOperand(1); 6083 SDLoc DL(SDValue(Node, 0)); 6084 6085 EVT ShVT = Op1.getValueType(); 6086 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6087 6088 // If a rotate in the other direction is legal, use it. 6089 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6090 if (isOperationLegal(RevRot, VT)) { 6091 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6092 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6093 return true; 6094 } 6095 6096 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6097 !isOperationLegalOrCustom(ISD::SRL, VT) || 6098 !isOperationLegalOrCustom(ISD::SUB, VT) || 6099 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6100 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6101 return false; 6102 6103 // Otherwise, 6104 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 6105 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 6106 // 6107 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 6108 "Expecting the type bitwidth to be a power of 2"); 6109 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6110 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6111 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6112 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6113 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6114 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6115 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 6116 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 6117 return true; 6118 } 6119 6120 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6121 SelectionDAG &DAG) const { 6122 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6123 SDValue Src = Node->getOperand(OpNo); 6124 EVT SrcVT = Src.getValueType(); 6125 EVT DstVT = Node->getValueType(0); 6126 SDLoc dl(SDValue(Node, 0)); 6127 6128 // FIXME: Only f32 to i64 conversions are supported. 6129 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6130 return false; 6131 6132 if (Node->isStrictFPOpcode()) 6133 // When a NaN is converted to an integer a trap is allowed. We can't 6134 // use this expansion here because it would eliminate that trap. Other 6135 // traps are also allowed and cannot be eliminated. See 6136 // IEEE 754-2008 sec 5.8. 6137 return false; 6138 6139 // Expand f32 -> i64 conversion 6140 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6141 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6142 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6143 EVT IntVT = SrcVT.changeTypeToInteger(); 6144 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6145 6146 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6147 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6148 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6149 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6150 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6151 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6152 6153 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6154 6155 SDValue ExponentBits = DAG.getNode( 6156 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6157 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6158 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6159 6160 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6161 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6162 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6163 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6164 6165 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6166 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6167 DAG.getConstant(0x00800000, dl, IntVT)); 6168 6169 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6170 6171 R = DAG.getSelectCC( 6172 dl, Exponent, ExponentLoBit, 6173 DAG.getNode(ISD::SHL, dl, DstVT, R, 6174 DAG.getZExtOrTrunc( 6175 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6176 dl, IntShVT)), 6177 DAG.getNode(ISD::SRL, dl, DstVT, R, 6178 DAG.getZExtOrTrunc( 6179 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6180 dl, IntShVT)), 6181 ISD::SETGT); 6182 6183 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6184 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6185 6186 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6187 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6188 return true; 6189 } 6190 6191 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6192 SDValue &Chain, 6193 SelectionDAG &DAG) const { 6194 SDLoc dl(SDValue(Node, 0)); 6195 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6196 SDValue Src = Node->getOperand(OpNo); 6197 6198 EVT SrcVT = Src.getValueType(); 6199 EVT DstVT = Node->getValueType(0); 6200 EVT SetCCVT = 6201 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6202 EVT DstSetCCVT = 6203 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6204 6205 // Only expand vector types if we have the appropriate vector bit operations. 6206 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6207 ISD::FP_TO_SINT; 6208 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6209 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6210 return false; 6211 6212 // If the maximum float value is smaller then the signed integer range, 6213 // the destination signmask can't be represented by the float, so we can 6214 // just use FP_TO_SINT directly. 6215 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6216 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6217 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6218 if (APFloat::opOverflow & 6219 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6220 if (Node->isStrictFPOpcode()) { 6221 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6222 { Node->getOperand(0), Src }); 6223 Chain = Result.getValue(1); 6224 } else 6225 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6226 return true; 6227 } 6228 6229 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6230 SDValue Sel; 6231 6232 if (Node->isStrictFPOpcode()) { 6233 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6234 Node->getOperand(0), /*IsSignaling*/ true); 6235 Chain = Sel.getValue(1); 6236 } else { 6237 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6238 } 6239 6240 bool Strict = Node->isStrictFPOpcode() || 6241 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6242 6243 if (Strict) { 6244 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6245 // signmask then offset (the result of which should be fully representable). 6246 // Sel = Src < 0x8000000000000000 6247 // FltOfs = select Sel, 0, 0x8000000000000000 6248 // IntOfs = select Sel, 0, 0x8000000000000000 6249 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6250 6251 // TODO: Should any fast-math-flags be set for the FSUB? 6252 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6253 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6254 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6255 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6256 DAG.getConstant(0, dl, DstVT), 6257 DAG.getConstant(SignMask, dl, DstVT)); 6258 SDValue SInt; 6259 if (Node->isStrictFPOpcode()) { 6260 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6261 { Chain, Src, FltOfs }); 6262 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6263 { Val.getValue(1), Val }); 6264 Chain = SInt.getValue(1); 6265 } else { 6266 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6267 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6268 } 6269 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6270 } else { 6271 // Expand based on maximum range of FP_TO_SINT: 6272 // True = fp_to_sint(Src) 6273 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6274 // Result = select (Src < 0x8000000000000000), True, False 6275 6276 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6277 // TODO: Should any fast-math-flags be set for the FSUB? 6278 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6279 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6280 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6281 DAG.getConstant(SignMask, dl, DstVT)); 6282 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6283 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6284 } 6285 return true; 6286 } 6287 6288 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6289 SDValue &Chain, 6290 SelectionDAG &DAG) const { 6291 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6292 SDValue Src = Node->getOperand(OpNo); 6293 EVT SrcVT = Src.getValueType(); 6294 EVT DstVT = Node->getValueType(0); 6295 6296 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6297 return false; 6298 6299 // Only expand vector types if we have the appropriate vector bit operations. 6300 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6301 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6302 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6303 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6304 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6305 return false; 6306 6307 SDLoc dl(SDValue(Node, 0)); 6308 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6309 6310 // Implementation of unsigned i64 to f64 following the algorithm in 6311 // __floatundidf in compiler_rt. This implementation has the advantage 6312 // of performing rounding correctly, both in the default rounding mode 6313 // and in all alternate rounding modes. 6314 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6315 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6316 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6317 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6318 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6319 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6320 6321 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6322 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6323 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6324 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6325 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6326 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6327 if (Node->isStrictFPOpcode()) { 6328 SDValue HiSub = 6329 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6330 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6331 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6332 {HiSub.getValue(1), LoFlt, HiSub}); 6333 Chain = Result.getValue(1); 6334 } else { 6335 SDValue HiSub = 6336 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6337 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6338 } 6339 return true; 6340 } 6341 6342 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6343 SelectionDAG &DAG) const { 6344 SDLoc dl(Node); 6345 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6346 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6347 EVT VT = Node->getValueType(0); 6348 if (isOperationLegalOrCustom(NewOp, VT)) { 6349 SDValue Quiet0 = Node->getOperand(0); 6350 SDValue Quiet1 = Node->getOperand(1); 6351 6352 if (!Node->getFlags().hasNoNaNs()) { 6353 // Insert canonicalizes if it's possible we need to quiet to get correct 6354 // sNaN behavior. 6355 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6356 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6357 Node->getFlags()); 6358 } 6359 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6360 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6361 Node->getFlags()); 6362 } 6363 } 6364 6365 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6366 } 6367 6368 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6369 // instead if there are no NaNs. 6370 if (Node->getFlags().hasNoNaNs()) { 6371 unsigned IEEE2018Op = 6372 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6373 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6374 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6375 Node->getOperand(1), Node->getFlags()); 6376 } 6377 } 6378 6379 // If none of the above worked, but there are no NaNs, then expand to 6380 // a compare/select sequence. This is required for correctness since 6381 // InstCombine might have canonicalized a fcmp+select sequence to a 6382 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6383 // expansion to libcall, we might introduce a link-time dependency 6384 // on libm into a file that originally did not have one. 6385 if (Node->getFlags().hasNoNaNs()) { 6386 ISD::CondCode Pred = 6387 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6388 SDValue Op1 = Node->getOperand(0); 6389 SDValue Op2 = Node->getOperand(1); 6390 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6391 // Copy FMF flags, but always set the no-signed-zeros flag 6392 // as this is implied by the FMINNUM/FMAXNUM semantics. 6393 SDNodeFlags Flags = Node->getFlags(); 6394 Flags.setNoSignedZeros(true); 6395 SelCC->setFlags(Flags); 6396 return SelCC; 6397 } 6398 6399 return SDValue(); 6400 } 6401 6402 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6403 SelectionDAG &DAG) const { 6404 SDLoc dl(Node); 6405 EVT VT = Node->getValueType(0); 6406 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6407 SDValue Op = Node->getOperand(0); 6408 unsigned Len = VT.getScalarSizeInBits(); 6409 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6410 6411 // TODO: Add support for irregular type lengths. 6412 if (!(Len <= 128 && Len % 8 == 0)) 6413 return false; 6414 6415 // Only expand vector types if we have the appropriate vector bit operations. 6416 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6417 !isOperationLegalOrCustom(ISD::SUB, VT) || 6418 !isOperationLegalOrCustom(ISD::SRL, VT) || 6419 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6420 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6421 return false; 6422 6423 // This is the "best" algorithm from 6424 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6425 SDValue Mask55 = 6426 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6427 SDValue Mask33 = 6428 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6429 SDValue Mask0F = 6430 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6431 SDValue Mask01 = 6432 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6433 6434 // v = v - ((v >> 1) & 0x55555555...) 6435 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6436 DAG.getNode(ISD::AND, dl, VT, 6437 DAG.getNode(ISD::SRL, dl, VT, Op, 6438 DAG.getConstant(1, dl, ShVT)), 6439 Mask55)); 6440 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6441 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6442 DAG.getNode(ISD::AND, dl, VT, 6443 DAG.getNode(ISD::SRL, dl, VT, Op, 6444 DAG.getConstant(2, dl, ShVT)), 6445 Mask33)); 6446 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6447 Op = DAG.getNode(ISD::AND, dl, VT, 6448 DAG.getNode(ISD::ADD, dl, VT, Op, 6449 DAG.getNode(ISD::SRL, dl, VT, Op, 6450 DAG.getConstant(4, dl, ShVT))), 6451 Mask0F); 6452 // v = (v * 0x01010101...) >> (Len - 8) 6453 if (Len > 8) 6454 Op = 6455 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6456 DAG.getConstant(Len - 8, dl, ShVT)); 6457 6458 Result = Op; 6459 return true; 6460 } 6461 6462 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6463 SelectionDAG &DAG) const { 6464 SDLoc dl(Node); 6465 EVT VT = Node->getValueType(0); 6466 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6467 SDValue Op = Node->getOperand(0); 6468 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6469 6470 // If the non-ZERO_UNDEF version is supported we can use that instead. 6471 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6472 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6473 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6474 return true; 6475 } 6476 6477 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6478 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6479 EVT SetCCVT = 6480 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6481 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6482 SDValue Zero = DAG.getConstant(0, dl, VT); 6483 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6484 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6485 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6486 return true; 6487 } 6488 6489 // Only expand vector types if we have the appropriate vector bit operations. 6490 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6491 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6492 !isOperationLegalOrCustom(ISD::SRL, VT) || 6493 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6494 return false; 6495 6496 // for now, we do this: 6497 // x = x | (x >> 1); 6498 // x = x | (x >> 2); 6499 // ... 6500 // x = x | (x >>16); 6501 // x = x | (x >>32); // for 64-bit input 6502 // return popcount(~x); 6503 // 6504 // Ref: "Hacker's Delight" by Henry Warren 6505 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6506 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6507 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6508 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6509 } 6510 Op = DAG.getNOT(dl, Op, VT); 6511 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6512 return true; 6513 } 6514 6515 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6516 SelectionDAG &DAG) const { 6517 SDLoc dl(Node); 6518 EVT VT = Node->getValueType(0); 6519 SDValue Op = Node->getOperand(0); 6520 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6521 6522 // If the non-ZERO_UNDEF version is supported we can use that instead. 6523 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6524 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6525 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6526 return true; 6527 } 6528 6529 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6530 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6531 EVT SetCCVT = 6532 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6533 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6534 SDValue Zero = DAG.getConstant(0, dl, VT); 6535 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6536 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6537 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6538 return true; 6539 } 6540 6541 // Only expand vector types if we have the appropriate vector bit operations. 6542 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6543 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6544 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6545 !isOperationLegalOrCustom(ISD::SUB, VT) || 6546 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6547 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6548 return false; 6549 6550 // for now, we use: { return popcount(~x & (x - 1)); } 6551 // unless the target has ctlz but not ctpop, in which case we use: 6552 // { return 32 - nlz(~x & (x-1)); } 6553 // Ref: "Hacker's Delight" by Henry Warren 6554 SDValue Tmp = DAG.getNode( 6555 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6556 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6557 6558 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6559 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6560 Result = 6561 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6562 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6563 return true; 6564 } 6565 6566 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6567 return true; 6568 } 6569 6570 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6571 SelectionDAG &DAG) const { 6572 SDLoc dl(N); 6573 EVT VT = N->getValueType(0); 6574 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6575 SDValue Op = N->getOperand(0); 6576 6577 // Only expand vector types if we have the appropriate vector operations. 6578 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6579 !isOperationLegalOrCustom(ISD::ADD, VT) || 6580 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6581 return false; 6582 6583 SDValue Shift = 6584 DAG.getNode(ISD::SRA, dl, VT, Op, 6585 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6586 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6587 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6588 return true; 6589 } 6590 6591 std::pair<SDValue, SDValue> 6592 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6593 SelectionDAG &DAG) const { 6594 SDLoc SL(LD); 6595 SDValue Chain = LD->getChain(); 6596 SDValue BasePTR = LD->getBasePtr(); 6597 EVT SrcVT = LD->getMemoryVT(); 6598 EVT DstVT = LD->getValueType(0); 6599 ISD::LoadExtType ExtType = LD->getExtensionType(); 6600 6601 unsigned NumElem = SrcVT.getVectorNumElements(); 6602 6603 EVT SrcEltVT = SrcVT.getScalarType(); 6604 EVT DstEltVT = DstVT.getScalarType(); 6605 6606 // A vector must always be stored in memory as-is, i.e. without any padding 6607 // between the elements, since various code depend on it, e.g. in the 6608 // handling of a bitcast of a vector type to int, which may be done with a 6609 // vector store followed by an integer load. A vector that does not have 6610 // elements that are byte-sized must therefore be stored as an integer 6611 // built out of the extracted vector elements. 6612 if (!SrcEltVT.isByteSized()) { 6613 unsigned NumBits = SrcVT.getSizeInBits(); 6614 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6615 6616 SDValue Load = DAG.getLoad(IntVT, SL, Chain, BasePTR, LD->getPointerInfo(), 6617 LD->getAlignment(), 6618 LD->getMemOperand()->getFlags(), 6619 LD->getAAInfo()); 6620 6621 SmallVector<SDValue, 8> Vals; 6622 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6623 unsigned ShiftIntoIdx = 6624 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6625 SDValue ShiftAmount = 6626 DAG.getConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), SL, IntVT); 6627 SDValue ShiftedElt = 6628 DAG.getNode(ISD::SRL, SL, IntVT, Load, ShiftAmount); 6629 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, ShiftedElt); 6630 if (ExtType != ISD::NON_EXTLOAD) { 6631 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 6632 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 6633 } 6634 Vals.push_back(Scalar); 6635 } 6636 6637 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6638 return std::make_pair(Value, Load.getValue(1)); 6639 } 6640 6641 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6642 assert(SrcEltVT.isByteSized()); 6643 6644 SmallVector<SDValue, 8> Vals; 6645 SmallVector<SDValue, 8> LoadChains; 6646 6647 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6648 SDValue ScalarLoad = 6649 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6650 LD->getPointerInfo().getWithOffset(Idx * Stride), 6651 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6652 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6653 6654 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6655 6656 Vals.push_back(ScalarLoad.getValue(0)); 6657 LoadChains.push_back(ScalarLoad.getValue(1)); 6658 } 6659 6660 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6661 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6662 6663 return std::make_pair(Value, NewChain); 6664 } 6665 6666 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6667 SelectionDAG &DAG) const { 6668 SDLoc SL(ST); 6669 6670 SDValue Chain = ST->getChain(); 6671 SDValue BasePtr = ST->getBasePtr(); 6672 SDValue Value = ST->getValue(); 6673 EVT StVT = ST->getMemoryVT(); 6674 6675 // The type of the data we want to save 6676 EVT RegVT = Value.getValueType(); 6677 EVT RegSclVT = RegVT.getScalarType(); 6678 6679 // The type of data as saved in memory. 6680 EVT MemSclVT = StVT.getScalarType(); 6681 6682 unsigned NumElem = StVT.getVectorNumElements(); 6683 6684 // A vector must always be stored in memory as-is, i.e. without any padding 6685 // between the elements, since various code depend on it, e.g. in the 6686 // handling of a bitcast of a vector type to int, which may be done with a 6687 // vector store followed by an integer load. A vector that does not have 6688 // elements that are byte-sized must therefore be stored as an integer 6689 // built out of the extracted vector elements. 6690 if (!MemSclVT.isByteSized()) { 6691 unsigned NumBits = StVT.getSizeInBits(); 6692 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6693 6694 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6695 6696 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6697 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6698 DAG.getVectorIdxConstant(Idx, SL)); 6699 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6700 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6701 unsigned ShiftIntoIdx = 6702 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6703 SDValue ShiftAmount = 6704 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6705 SDValue ShiftedElt = 6706 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6707 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6708 } 6709 6710 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6711 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6712 ST->getAAInfo()); 6713 } 6714 6715 // Store Stride in bytes 6716 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6717 assert(Stride && "Zero stride!"); 6718 // Extract each of the elements from the original vector and save them into 6719 // memory individually. 6720 SmallVector<SDValue, 8> Stores; 6721 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6722 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6723 DAG.getVectorIdxConstant(Idx, SL)); 6724 6725 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6726 6727 // This scalar TruncStore may be illegal, but we legalize it later. 6728 SDValue Store = DAG.getTruncStore( 6729 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6730 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6731 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6732 6733 Stores.push_back(Store); 6734 } 6735 6736 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6737 } 6738 6739 std::pair<SDValue, SDValue> 6740 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6741 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6742 "unaligned indexed loads not implemented!"); 6743 SDValue Chain = LD->getChain(); 6744 SDValue Ptr = LD->getBasePtr(); 6745 EVT VT = LD->getValueType(0); 6746 EVT LoadedVT = LD->getMemoryVT(); 6747 SDLoc dl(LD); 6748 auto &MF = DAG.getMachineFunction(); 6749 6750 if (VT.isFloatingPoint() || VT.isVector()) { 6751 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6752 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6753 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6754 LoadedVT.isVector()) { 6755 // Scalarize the load and let the individual components be handled. 6756 return scalarizeVectorLoad(LD, DAG); 6757 } 6758 6759 // Expand to a (misaligned) integer load of the same size, 6760 // then bitconvert to floating point or vector. 6761 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6762 LD->getMemOperand()); 6763 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6764 if (LoadedVT != VT) 6765 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6766 ISD::ANY_EXTEND, dl, VT, Result); 6767 6768 return std::make_pair(Result, newLoad.getValue(1)); 6769 } 6770 6771 // Copy the value to a (aligned) stack slot using (unaligned) integer 6772 // loads and stores, then do a (aligned) load from the stack slot. 6773 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6774 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6775 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6776 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6777 6778 // Make sure the stack slot is also aligned for the register type. 6779 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6780 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6781 SmallVector<SDValue, 8> Stores; 6782 SDValue StackPtr = StackBase; 6783 unsigned Offset = 0; 6784 6785 EVT PtrVT = Ptr.getValueType(); 6786 EVT StackPtrVT = StackPtr.getValueType(); 6787 6788 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6789 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6790 6791 // Do all but one copies using the full register width. 6792 for (unsigned i = 1; i < NumRegs; i++) { 6793 // Load one integer register's worth from the original location. 6794 SDValue Load = DAG.getLoad( 6795 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6796 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6797 LD->getAAInfo()); 6798 // Follow the load with a store to the stack slot. Remember the store. 6799 Stores.push_back(DAG.getStore( 6800 Load.getValue(1), dl, Load, StackPtr, 6801 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6802 // Increment the pointers. 6803 Offset += RegBytes; 6804 6805 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6806 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6807 } 6808 6809 // The last copy may be partial. Do an extending load. 6810 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6811 8 * (LoadedBytes - Offset)); 6812 SDValue Load = 6813 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6814 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6815 MinAlign(LD->getAlignment(), Offset), 6816 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6817 // Follow the load with a store to the stack slot. Remember the store. 6818 // On big-endian machines this requires a truncating store to ensure 6819 // that the bits end up in the right place. 6820 Stores.push_back(DAG.getTruncStore( 6821 Load.getValue(1), dl, Load, StackPtr, 6822 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6823 6824 // The order of the stores doesn't matter - say it with a TokenFactor. 6825 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6826 6827 // Finally, perform the original load only redirected to the stack slot. 6828 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6829 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6830 LoadedVT); 6831 6832 // Callers expect a MERGE_VALUES node. 6833 return std::make_pair(Load, TF); 6834 } 6835 6836 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6837 "Unaligned load of unsupported type."); 6838 6839 // Compute the new VT that is half the size of the old one. This is an 6840 // integer MVT. 6841 unsigned NumBits = LoadedVT.getSizeInBits(); 6842 EVT NewLoadedVT; 6843 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6844 NumBits >>= 1; 6845 6846 unsigned Alignment = LD->getAlignment(); 6847 unsigned IncrementSize = NumBits / 8; 6848 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6849 6850 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6851 if (HiExtType == ISD::NON_EXTLOAD) 6852 HiExtType = ISD::ZEXTLOAD; 6853 6854 // Load the value in two parts 6855 SDValue Lo, Hi; 6856 if (DAG.getDataLayout().isLittleEndian()) { 6857 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6858 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6859 LD->getAAInfo()); 6860 6861 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6862 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6863 LD->getPointerInfo().getWithOffset(IncrementSize), 6864 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6865 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6866 } else { 6867 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6868 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6869 LD->getAAInfo()); 6870 6871 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6872 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6873 LD->getPointerInfo().getWithOffset(IncrementSize), 6874 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6875 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6876 } 6877 6878 // aggregate the two parts 6879 SDValue ShiftAmount = 6880 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6881 DAG.getDataLayout())); 6882 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6883 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6884 6885 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6886 Hi.getValue(1)); 6887 6888 return std::make_pair(Result, TF); 6889 } 6890 6891 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6892 SelectionDAG &DAG) const { 6893 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6894 "unaligned indexed stores not implemented!"); 6895 SDValue Chain = ST->getChain(); 6896 SDValue Ptr = ST->getBasePtr(); 6897 SDValue Val = ST->getValue(); 6898 EVT VT = Val.getValueType(); 6899 int Alignment = ST->getAlignment(); 6900 auto &MF = DAG.getMachineFunction(); 6901 EVT StoreMemVT = ST->getMemoryVT(); 6902 6903 SDLoc dl(ST); 6904 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6905 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6906 if (isTypeLegal(intVT)) { 6907 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6908 StoreMemVT.isVector()) { 6909 // Scalarize the store and let the individual components be handled. 6910 SDValue Result = scalarizeVectorStore(ST, DAG); 6911 return Result; 6912 } 6913 // Expand to a bitconvert of the value to the integer type of the 6914 // same size, then a (misaligned) int store. 6915 // FIXME: Does not handle truncating floating point stores! 6916 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6917 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6918 Alignment, ST->getMemOperand()->getFlags()); 6919 return Result; 6920 } 6921 // Do a (aligned) store to a stack slot, then copy from the stack slot 6922 // to the final destination using (unaligned) integer loads and stores. 6923 MVT RegVT = getRegisterType( 6924 *DAG.getContext(), 6925 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6926 EVT PtrVT = Ptr.getValueType(); 6927 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6928 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6929 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6930 6931 // Make sure the stack slot is also aligned for the register type. 6932 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6933 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6934 6935 // Perform the original store, only redirected to the stack slot. 6936 SDValue Store = DAG.getTruncStore( 6937 Chain, dl, Val, StackPtr, 6938 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6939 6940 EVT StackPtrVT = StackPtr.getValueType(); 6941 6942 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6943 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6944 SmallVector<SDValue, 8> Stores; 6945 unsigned Offset = 0; 6946 6947 // Do all but one copies using the full register width. 6948 for (unsigned i = 1; i < NumRegs; i++) { 6949 // Load one integer register's worth from the stack slot. 6950 SDValue Load = DAG.getLoad( 6951 RegVT, dl, Store, StackPtr, 6952 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6953 // Store it to the final location. Remember the store. 6954 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6955 ST->getPointerInfo().getWithOffset(Offset), 6956 MinAlign(ST->getAlignment(), Offset), 6957 ST->getMemOperand()->getFlags())); 6958 // Increment the pointers. 6959 Offset += RegBytes; 6960 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6961 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6962 } 6963 6964 // The last store may be partial. Do a truncating store. On big-endian 6965 // machines this requires an extending load from the stack slot to ensure 6966 // that the bits are in the right place. 6967 EVT LoadMemVT = 6968 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6969 6970 // Load from the stack slot. 6971 SDValue Load = DAG.getExtLoad( 6972 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6973 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6974 6975 Stores.push_back( 6976 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 6977 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 6978 MinAlign(ST->getAlignment(), Offset), 6979 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 6980 // The order of the stores doesn't matter - say it with a TokenFactor. 6981 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6982 return Result; 6983 } 6984 6985 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 6986 "Unaligned store of unknown type."); 6987 // Get the half-size VT 6988 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 6989 int NumBits = NewStoredVT.getSizeInBits(); 6990 int IncrementSize = NumBits / 8; 6991 6992 // Divide the stored value in two parts. 6993 SDValue ShiftAmount = DAG.getConstant( 6994 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 6995 SDValue Lo = Val; 6996 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 6997 6998 // Store the two parts 6999 SDValue Store1, Store2; 7000 Store1 = DAG.getTruncStore(Chain, dl, 7001 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7002 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7003 ST->getMemOperand()->getFlags()); 7004 7005 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 7006 Alignment = MinAlign(Alignment, IncrementSize); 7007 Store2 = DAG.getTruncStore( 7008 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7009 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7010 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7011 7012 SDValue Result = 7013 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7014 return Result; 7015 } 7016 7017 SDValue 7018 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7019 const SDLoc &DL, EVT DataVT, 7020 SelectionDAG &DAG, 7021 bool IsCompressedMemory) const { 7022 SDValue Increment; 7023 EVT AddrVT = Addr.getValueType(); 7024 EVT MaskVT = Mask.getValueType(); 7025 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 7026 "Incompatible types of Data and Mask"); 7027 if (IsCompressedMemory) { 7028 // Incrementing the pointer according to number of '1's in the mask. 7029 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7030 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7031 if (MaskIntVT.getSizeInBits() < 32) { 7032 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7033 MaskIntVT = MVT::i32; 7034 } 7035 7036 // Count '1's with POPCNT. 7037 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7038 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7039 // Scale is an element size in bytes. 7040 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7041 AddrVT); 7042 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7043 } else 7044 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7045 7046 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7047 } 7048 7049 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7050 SDValue Idx, 7051 EVT VecVT, 7052 const SDLoc &dl) { 7053 if (isa<ConstantSDNode>(Idx)) 7054 return Idx; 7055 7056 EVT IdxVT = Idx.getValueType(); 7057 unsigned NElts = VecVT.getVectorNumElements(); 7058 if (isPowerOf2_32(NElts)) { 7059 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7060 Log2_32(NElts)); 7061 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7062 DAG.getConstant(Imm, dl, IdxVT)); 7063 } 7064 7065 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7066 DAG.getConstant(NElts - 1, dl, IdxVT)); 7067 } 7068 7069 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7070 SDValue VecPtr, EVT VecVT, 7071 SDValue Index) const { 7072 SDLoc dl(Index); 7073 // Make sure the index type is big enough to compute in. 7074 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7075 7076 EVT EltVT = VecVT.getVectorElementType(); 7077 7078 // Calculate the element offset and add it to the pointer. 7079 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 7080 assert(EltSize * 8 == EltVT.getSizeInBits() && 7081 "Converting bits to bytes lost precision"); 7082 7083 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7084 7085 EVT IdxVT = Index.getValueType(); 7086 7087 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7088 DAG.getConstant(EltSize, dl, IdxVT)); 7089 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7090 } 7091 7092 //===----------------------------------------------------------------------===// 7093 // Implementation of Emulated TLS Model 7094 //===----------------------------------------------------------------------===// 7095 7096 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7097 SelectionDAG &DAG) const { 7098 // Access to address of TLS varialbe xyz is lowered to a function call: 7099 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7100 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7101 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7102 SDLoc dl(GA); 7103 7104 ArgListTy Args; 7105 ArgListEntry Entry; 7106 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7107 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7108 StringRef EmuTlsVarName(NameString); 7109 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7110 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7111 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7112 Entry.Ty = VoidPtrType; 7113 Args.push_back(Entry); 7114 7115 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7116 7117 TargetLowering::CallLoweringInfo CLI(DAG); 7118 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7119 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7120 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7121 7122 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7123 // At last for X86 targets, maybe good for other targets too? 7124 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7125 MFI.setAdjustsStack(true); // Is this only for X86 target? 7126 MFI.setHasCalls(true); 7127 7128 assert((GA->getOffset() == 0) && 7129 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7130 return CallResult.first; 7131 } 7132 7133 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7134 SelectionDAG &DAG) const { 7135 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7136 if (!isCtlzFast()) 7137 return SDValue(); 7138 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7139 SDLoc dl(Op); 7140 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7141 if (C->isNullValue() && CC == ISD::SETEQ) { 7142 EVT VT = Op.getOperand(0).getValueType(); 7143 SDValue Zext = Op.getOperand(0); 7144 if (VT.bitsLT(MVT::i32)) { 7145 VT = MVT::i32; 7146 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7147 } 7148 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7149 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7150 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7151 DAG.getConstant(Log2b, dl, MVT::i32)); 7152 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7153 } 7154 } 7155 return SDValue(); 7156 } 7157 7158 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7159 unsigned Opcode = Node->getOpcode(); 7160 SDValue LHS = Node->getOperand(0); 7161 SDValue RHS = Node->getOperand(1); 7162 EVT VT = LHS.getValueType(); 7163 SDLoc dl(Node); 7164 7165 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7166 assert(VT.isInteger() && "Expected operands to be integers"); 7167 7168 // usub.sat(a, b) -> umax(a, b) - b 7169 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7170 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7171 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7172 } 7173 7174 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7175 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7176 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7177 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7178 } 7179 7180 unsigned OverflowOp; 7181 switch (Opcode) { 7182 case ISD::SADDSAT: 7183 OverflowOp = ISD::SADDO; 7184 break; 7185 case ISD::UADDSAT: 7186 OverflowOp = ISD::UADDO; 7187 break; 7188 case ISD::SSUBSAT: 7189 OverflowOp = ISD::SSUBO; 7190 break; 7191 case ISD::USUBSAT: 7192 OverflowOp = ISD::USUBO; 7193 break; 7194 default: 7195 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7196 "addition or subtraction node."); 7197 } 7198 7199 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7200 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7201 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7202 LHS, RHS); 7203 SDValue SumDiff = Result.getValue(0); 7204 SDValue Overflow = Result.getValue(1); 7205 SDValue Zero = DAG.getConstant(0, dl, VT); 7206 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7207 7208 if (Opcode == ISD::UADDSAT) { 7209 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7210 // (LHS + RHS) | OverflowMask 7211 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7212 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7213 } 7214 // Overflow ? 0xffff.... : (LHS + RHS) 7215 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7216 } else if (Opcode == ISD::USUBSAT) { 7217 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7218 // (LHS - RHS) & ~OverflowMask 7219 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7220 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7221 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7222 } 7223 // Overflow ? 0 : (LHS - RHS) 7224 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7225 } else { 7226 // SatMax -> Overflow && SumDiff < 0 7227 // SatMin -> Overflow && SumDiff >= 0 7228 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7229 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7230 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7231 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7232 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7233 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7234 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7235 } 7236 } 7237 7238 SDValue 7239 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7240 assert((Node->getOpcode() == ISD::SMULFIX || 7241 Node->getOpcode() == ISD::UMULFIX || 7242 Node->getOpcode() == ISD::SMULFIXSAT || 7243 Node->getOpcode() == ISD::UMULFIXSAT) && 7244 "Expected a fixed point multiplication opcode"); 7245 7246 SDLoc dl(Node); 7247 SDValue LHS = Node->getOperand(0); 7248 SDValue RHS = Node->getOperand(1); 7249 EVT VT = LHS.getValueType(); 7250 unsigned Scale = Node->getConstantOperandVal(2); 7251 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7252 Node->getOpcode() == ISD::UMULFIXSAT); 7253 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7254 Node->getOpcode() == ISD::SMULFIXSAT); 7255 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7256 unsigned VTSize = VT.getScalarSizeInBits(); 7257 7258 if (!Scale) { 7259 // [us]mul.fix(a, b, 0) -> mul(a, b) 7260 if (!Saturating) { 7261 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7262 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7263 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7264 SDValue Result = 7265 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7266 SDValue Product = Result.getValue(0); 7267 SDValue Overflow = Result.getValue(1); 7268 SDValue Zero = DAG.getConstant(0, dl, VT); 7269 7270 APInt MinVal = APInt::getSignedMinValue(VTSize); 7271 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7272 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7273 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7274 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7275 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7276 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7277 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7278 SDValue Result = 7279 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7280 SDValue Product = Result.getValue(0); 7281 SDValue Overflow = Result.getValue(1); 7282 7283 APInt MaxVal = APInt::getMaxValue(VTSize); 7284 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7285 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7286 } 7287 } 7288 7289 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7290 "Expected scale to be less than the number of bits if signed or at " 7291 "most the number of bits if unsigned."); 7292 assert(LHS.getValueType() == RHS.getValueType() && 7293 "Expected both operands to be the same type"); 7294 7295 // Get the upper and lower bits of the result. 7296 SDValue Lo, Hi; 7297 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7298 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7299 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7300 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7301 Lo = Result.getValue(0); 7302 Hi = Result.getValue(1); 7303 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7304 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7305 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7306 } else if (VT.isVector()) { 7307 return SDValue(); 7308 } else { 7309 report_fatal_error("Unable to expand fixed point multiplication."); 7310 } 7311 7312 if (Scale == VTSize) 7313 // Result is just the top half since we'd be shifting by the width of the 7314 // operand. Overflow impossible so this works for both UMULFIX and 7315 // UMULFIXSAT. 7316 return Hi; 7317 7318 // The result will need to be shifted right by the scale since both operands 7319 // are scaled. The result is given to us in 2 halves, so we only want part of 7320 // both in the result. 7321 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7322 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7323 DAG.getConstant(Scale, dl, ShiftTy)); 7324 if (!Saturating) 7325 return Result; 7326 7327 if (!Signed) { 7328 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7329 // widened multiplication) aren't all zeroes. 7330 7331 // Saturate to max if ((Hi >> Scale) != 0), 7332 // which is the same as if (Hi > ((1 << Scale) - 1)) 7333 APInt MaxVal = APInt::getMaxValue(VTSize); 7334 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7335 dl, VT); 7336 Result = DAG.getSelectCC(dl, Hi, LowMask, 7337 DAG.getConstant(MaxVal, dl, VT), Result, 7338 ISD::SETUGT); 7339 7340 return Result; 7341 } 7342 7343 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7344 // widened multiplication) aren't all ones or all zeroes. 7345 7346 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7347 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7348 7349 if (Scale == 0) { 7350 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7351 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7352 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7353 // Saturated to SatMin if wide product is negative, and SatMax if wide 7354 // product is positive ... 7355 SDValue Zero = DAG.getConstant(0, dl, VT); 7356 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7357 ISD::SETLT); 7358 // ... but only if we overflowed. 7359 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7360 } 7361 7362 // We handled Scale==0 above so all the bits to examine is in Hi. 7363 7364 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7365 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7366 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7367 dl, VT); 7368 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7369 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7370 // which is the same as if (HI < (-1 << (Scale - 1)) 7371 SDValue HighMask = 7372 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7373 dl, VT); 7374 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7375 return Result; 7376 } 7377 7378 SDValue 7379 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7380 SDValue LHS, SDValue RHS, 7381 unsigned Scale, SelectionDAG &DAG) const { 7382 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 7383 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 7384 "Expected a fixed point division opcode"); 7385 7386 EVT VT = LHS.getValueType(); 7387 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 7388 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 7389 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7390 7391 // If there is enough room in the type to upscale the LHS or downscale the 7392 // RHS before the division, we can perform it in this type without having to 7393 // resize. For signed operations, the LHS headroom is the number of 7394 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7395 // The headroom for the RHS is the number of trailing zeroes. 7396 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7397 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7398 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7399 7400 // For signed saturating operations, we need to be able to detect true integer 7401 // division overflow; that is, when you have MIN / -EPS. However, this 7402 // is undefined behavior and if we emit divisions that could take such 7403 // values it may cause undesired behavior (arithmetic exceptions on x86, for 7404 // example). 7405 // Avoid this by requiring an extra bit so that we never get this case. 7406 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 7407 // signed saturating division, we need to emit a whopping 32-bit division. 7408 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 7409 return SDValue(); 7410 7411 unsigned LHSShift = std::min(LHSLead, Scale); 7412 unsigned RHSShift = Scale - LHSShift; 7413 7414 // At this point, we know that if we shift the LHS up by LHSShift and the 7415 // RHS down by RHSShift, we can emit a regular division with a final scaling 7416 // factor of Scale. 7417 7418 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7419 if (LHSShift) 7420 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7421 DAG.getConstant(LHSShift, dl, ShiftTy)); 7422 if (RHSShift) 7423 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7424 DAG.getConstant(RHSShift, dl, ShiftTy)); 7425 7426 SDValue Quot; 7427 if (Signed) { 7428 // For signed operations, if the resulting quotient is negative and the 7429 // remainder is nonzero, subtract 1 from the quotient to round towards 7430 // negative infinity. 7431 SDValue Rem; 7432 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7433 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7434 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7435 if (isTypeLegal(VT) && 7436 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7437 Quot = DAG.getNode(ISD::SDIVREM, dl, 7438 DAG.getVTList(VT, VT), 7439 LHS, RHS); 7440 Rem = Quot.getValue(1); 7441 Quot = Quot.getValue(0); 7442 } else { 7443 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7444 LHS, RHS); 7445 Rem = DAG.getNode(ISD::SREM, dl, VT, 7446 LHS, RHS); 7447 } 7448 SDValue Zero = DAG.getConstant(0, dl, VT); 7449 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7450 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7451 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7452 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7453 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7454 DAG.getConstant(1, dl, VT)); 7455 Quot = DAG.getSelect(dl, VT, 7456 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7457 Sub1, Quot); 7458 } else 7459 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7460 LHS, RHS); 7461 7462 return Quot; 7463 } 7464 7465 void TargetLowering::expandUADDSUBO( 7466 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7467 SDLoc dl(Node); 7468 SDValue LHS = Node->getOperand(0); 7469 SDValue RHS = Node->getOperand(1); 7470 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7471 7472 // If ADD/SUBCARRY is legal, use that instead. 7473 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7474 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7475 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7476 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7477 { LHS, RHS, CarryIn }); 7478 Result = SDValue(NodeCarry.getNode(), 0); 7479 Overflow = SDValue(NodeCarry.getNode(), 1); 7480 return; 7481 } 7482 7483 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7484 LHS.getValueType(), LHS, RHS); 7485 7486 EVT ResultType = Node->getValueType(1); 7487 EVT SetCCType = getSetCCResultType( 7488 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7489 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7490 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7491 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7492 } 7493 7494 void TargetLowering::expandSADDSUBO( 7495 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7496 SDLoc dl(Node); 7497 SDValue LHS = Node->getOperand(0); 7498 SDValue RHS = Node->getOperand(1); 7499 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7500 7501 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7502 LHS.getValueType(), LHS, RHS); 7503 7504 EVT ResultType = Node->getValueType(1); 7505 EVT OType = getSetCCResultType( 7506 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7507 7508 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7509 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7510 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7511 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7512 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7513 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7514 return; 7515 } 7516 7517 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7518 7519 // For an addition, the result should be less than one of the operands (LHS) 7520 // if and only if the other operand (RHS) is negative, otherwise there will 7521 // be overflow. 7522 // For a subtraction, the result should be less than one of the operands 7523 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7524 // otherwise there will be overflow. 7525 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7526 SDValue ConditionRHS = 7527 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7528 7529 Overflow = DAG.getBoolExtOrTrunc( 7530 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7531 ResultType, ResultType); 7532 } 7533 7534 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7535 SDValue &Overflow, SelectionDAG &DAG) const { 7536 SDLoc dl(Node); 7537 EVT VT = Node->getValueType(0); 7538 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7539 SDValue LHS = Node->getOperand(0); 7540 SDValue RHS = Node->getOperand(1); 7541 bool isSigned = Node->getOpcode() == ISD::SMULO; 7542 7543 // For power-of-two multiplications we can use a simpler shift expansion. 7544 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7545 const APInt &C = RHSC->getAPIntValue(); 7546 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7547 if (C.isPowerOf2()) { 7548 // smulo(x, signed_min) is same as umulo(x, signed_min). 7549 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7550 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7551 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7552 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7553 Overflow = DAG.getSetCC(dl, SetCCVT, 7554 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7555 dl, VT, Result, ShiftAmt), 7556 LHS, ISD::SETNE); 7557 return true; 7558 } 7559 } 7560 7561 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7562 if (VT.isVector()) 7563 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7564 VT.getVectorNumElements()); 7565 7566 SDValue BottomHalf; 7567 SDValue TopHalf; 7568 static const unsigned Ops[2][3] = 7569 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7570 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7571 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7572 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7573 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7574 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7575 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7576 RHS); 7577 TopHalf = BottomHalf.getValue(1); 7578 } else if (isTypeLegal(WideVT)) { 7579 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7580 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7581 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7582 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7583 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7584 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7585 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7586 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7587 } else { 7588 if (VT.isVector()) 7589 return false; 7590 7591 // We can fall back to a libcall with an illegal type for the MUL if we 7592 // have a libcall big enough. 7593 // Also, we can fall back to a division in some cases, but that's a big 7594 // performance hit in the general case. 7595 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7596 if (WideVT == MVT::i16) 7597 LC = RTLIB::MUL_I16; 7598 else if (WideVT == MVT::i32) 7599 LC = RTLIB::MUL_I32; 7600 else if (WideVT == MVT::i64) 7601 LC = RTLIB::MUL_I64; 7602 else if (WideVT == MVT::i128) 7603 LC = RTLIB::MUL_I128; 7604 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7605 7606 SDValue HiLHS; 7607 SDValue HiRHS; 7608 if (isSigned) { 7609 // The high part is obtained by SRA'ing all but one of the bits of low 7610 // part. 7611 unsigned LoSize = VT.getSizeInBits(); 7612 HiLHS = 7613 DAG.getNode(ISD::SRA, dl, VT, LHS, 7614 DAG.getConstant(LoSize - 1, dl, 7615 getPointerTy(DAG.getDataLayout()))); 7616 HiRHS = 7617 DAG.getNode(ISD::SRA, dl, VT, RHS, 7618 DAG.getConstant(LoSize - 1, dl, 7619 getPointerTy(DAG.getDataLayout()))); 7620 } else { 7621 HiLHS = DAG.getConstant(0, dl, VT); 7622 HiRHS = DAG.getConstant(0, dl, VT); 7623 } 7624 7625 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7626 // pre-lowered to the correct types. This all depends upon WideVT not 7627 // being a legal type for the architecture and thus has to be split to 7628 // two arguments. 7629 SDValue Ret; 7630 TargetLowering::MakeLibCallOptions CallOptions; 7631 CallOptions.setSExt(isSigned); 7632 CallOptions.setIsPostTypeLegalization(true); 7633 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7634 // Halves of WideVT are packed into registers in different order 7635 // depending on platform endianness. This is usually handled by 7636 // the C calling convention, but we can't defer to it in 7637 // the legalizer. 7638 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7639 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7640 } else { 7641 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7642 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7643 } 7644 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7645 "Ret value is a collection of constituent nodes holding result."); 7646 if (DAG.getDataLayout().isLittleEndian()) { 7647 // Same as above. 7648 BottomHalf = Ret.getOperand(0); 7649 TopHalf = Ret.getOperand(1); 7650 } else { 7651 BottomHalf = Ret.getOperand(1); 7652 TopHalf = Ret.getOperand(0); 7653 } 7654 } 7655 7656 Result = BottomHalf; 7657 if (isSigned) { 7658 SDValue ShiftAmt = DAG.getConstant( 7659 VT.getScalarSizeInBits() - 1, dl, 7660 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7661 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7662 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7663 } else { 7664 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7665 DAG.getConstant(0, dl, VT), ISD::SETNE); 7666 } 7667 7668 // Truncate the result if SetCC returns a larger type than needed. 7669 EVT RType = Node->getValueType(1); 7670 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7671 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7672 7673 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7674 "Unexpected result type for S/UMULO legalization"); 7675 return true; 7676 } 7677 7678 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7679 SDLoc dl(Node); 7680 bool NoNaN = Node->getFlags().hasNoNaNs(); 7681 unsigned BaseOpcode = 0; 7682 switch (Node->getOpcode()) { 7683 default: llvm_unreachable("Expected VECREDUCE opcode"); 7684 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7685 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7686 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7687 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7688 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7689 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7690 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7691 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7692 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7693 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7694 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7695 case ISD::VECREDUCE_FMAX: 7696 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7697 break; 7698 case ISD::VECREDUCE_FMIN: 7699 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7700 break; 7701 } 7702 7703 SDValue Op = Node->getOperand(0); 7704 EVT VT = Op.getValueType(); 7705 7706 // Try to use a shuffle reduction for power of two vectors. 7707 if (VT.isPow2VectorType()) { 7708 while (VT.getVectorNumElements() > 1) { 7709 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7710 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7711 break; 7712 7713 SDValue Lo, Hi; 7714 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7715 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7716 VT = HalfVT; 7717 } 7718 } 7719 7720 EVT EltVT = VT.getVectorElementType(); 7721 unsigned NumElts = VT.getVectorNumElements(); 7722 7723 SmallVector<SDValue, 8> Ops; 7724 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7725 7726 SDValue Res = Ops[0]; 7727 for (unsigned i = 1; i < NumElts; i++) 7728 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7729 7730 // Result type may be wider than element type. 7731 if (EltVT != Node->getValueType(0)) 7732 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7733 return Res; 7734 } 7735