1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     Register Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
114   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
115   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
116   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
117   Alignment = Call->getParamAlignment(ArgIdx);
118   ByValType = nullptr;
119   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
120     ByValType = Call->getParamByValType(ArgIdx);
121 }
122 
123 /// Generate a libcall taking the given operands as arguments and returning a
124 /// result of type RetVT.
125 std::pair<SDValue, SDValue>
126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
127                             ArrayRef<SDValue> Ops,
128                             MakeLibCallOptions CallOptions,
129                             const SDLoc &dl,
130                             SDValue InChain) const {
131   if (!InChain)
132     InChain = DAG.getEntryNode();
133 
134   TargetLowering::ArgListTy Args;
135   Args.reserve(Ops.size());
136 
137   TargetLowering::ArgListEntry Entry;
138   for (unsigned i = 0; i < Ops.size(); ++i) {
139     SDValue NewOp = Ops[i];
140     Entry.Node = NewOp;
141     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
142     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
143                                                  CallOptions.IsSExt);
144     Entry.IsZExt = !Entry.IsSExt;
145 
146     if (CallOptions.IsSoften &&
147         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
148       Entry.IsSExt = Entry.IsZExt = false;
149     }
150     Args.push_back(Entry);
151   }
152 
153   if (LC == RTLIB::UNKNOWN_LIBCALL)
154     report_fatal_error("Unsupported library call operation!");
155   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
156                                          getPointerTy(DAG.getDataLayout()));
157 
158   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
159   TargetLowering::CallLoweringInfo CLI(DAG);
160   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
161   bool zeroExtend = !signExtend;
162 
163   if (CallOptions.IsSoften &&
164       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
165     signExtend = zeroExtend = false;
166   }
167 
168   CLI.setDebugLoc(dl)
169       .setChain(InChain)
170       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
171       .setNoReturn(CallOptions.DoesNotReturn)
172       .setDiscardResult(!CallOptions.IsReturnValueUsed)
173       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
174       .setSExtResult(signExtend)
175       .setZExtResult(zeroExtend);
176   return LowerCallTo(CLI);
177 }
178 
179 bool
180 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
181                                          unsigned Limit, uint64_t Size,
182                                          unsigned DstAlign, unsigned SrcAlign,
183                                          bool IsMemset,
184                                          bool ZeroMemset,
185                                          bool MemcpyStrSrc,
186                                          bool AllowOverlap,
187                                          unsigned DstAS, unsigned SrcAS,
188                                          const AttributeList &FuncAttributes) const {
189   // If 'SrcAlign' is zero, that means the memory operation does not need to
190   // load the value, i.e. memset or memcpy from constant string. Otherwise,
191   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
192   // is the specified alignment of the memory operation. If it is zero, that
193   // means it's possible to change the alignment of the destination.
194   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
195   // not need to be loaded.
196   if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
197     return false;
198 
199   EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
200                                IsMemset, ZeroMemset, MemcpyStrSrc,
201                                FuncAttributes);
202 
203   if (VT == MVT::Other) {
204     // Use the largest integer type whose alignment constraints are satisfied.
205     // We only need to check DstAlign here as SrcAlign is always greater or
206     // equal to DstAlign (or zero).
207     VT = MVT::i64;
208     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
209            !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
210       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
211     assert(VT.isInteger());
212 
213     // Find the largest legal integer type.
214     MVT LVT = MVT::i64;
215     while (!isTypeLegal(LVT))
216       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
217     assert(LVT.isInteger());
218 
219     // If the type we've chosen is larger than the largest legal integer type
220     // then use that instead.
221     if (VT.bitsGT(LVT))
222       VT = LVT;
223   }
224 
225   unsigned NumMemOps = 0;
226   while (Size != 0) {
227     unsigned VTSize = VT.getSizeInBits() / 8;
228     while (VTSize > Size) {
229       // For now, only use non-vector load / store's for the left-over pieces.
230       EVT NewVT = VT;
231       unsigned NewVTSize;
232 
233       bool Found = false;
234       if (VT.isVector() || VT.isFloatingPoint()) {
235         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
236         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
237             isSafeMemOpType(NewVT.getSimpleVT()))
238           Found = true;
239         else if (NewVT == MVT::i64 &&
240                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
241                  isSafeMemOpType(MVT::f64)) {
242           // i64 is usually not legal on 32-bit targets, but f64 may be.
243           NewVT = MVT::f64;
244           Found = true;
245         }
246       }
247 
248       if (!Found) {
249         do {
250           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
251           if (NewVT == MVT::i8)
252             break;
253         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
254       }
255       NewVTSize = NewVT.getSizeInBits() / 8;
256 
257       // If the new VT cannot cover all of the remaining bits, then consider
258       // issuing a (or a pair of) unaligned and overlapping load / store.
259       bool Fast;
260       if (NumMemOps && AllowOverlap && NewVTSize < Size &&
261           allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign,
262                                          MachineMemOperand::MONone, &Fast) &&
263           Fast)
264         VTSize = Size;
265       else {
266         VT = NewVT;
267         VTSize = NewVTSize;
268       }
269     }
270 
271     if (++NumMemOps > Limit)
272       return false;
273 
274     MemOps.push_back(VT);
275     Size -= VTSize;
276   }
277 
278   return true;
279 }
280 
281 /// Soften the operands of a comparison. This code is shared among BR_CC,
282 /// SELECT_CC, and SETCC handlers.
283 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
284                                          SDValue &NewLHS, SDValue &NewRHS,
285                                          ISD::CondCode &CCCode,
286                                          const SDLoc &dl, const SDValue OldLHS,
287                                          const SDValue OldRHS) const {
288   SDValue Chain;
289   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
290                              OldRHS, Chain);
291 }
292 
293 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
294                                          SDValue &NewLHS, SDValue &NewRHS,
295                                          ISD::CondCode &CCCode,
296                                          const SDLoc &dl, const SDValue OldLHS,
297                                          const SDValue OldRHS,
298                                          SDValue &Chain,
299                                          bool IsSignaling) const {
300   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
301   // not supporting it. We can update this code when libgcc provides such
302   // functions.
303 
304   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
305          && "Unsupported setcc type!");
306 
307   // Expand into one or more soft-fp libcall(s).
308   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
309   bool ShouldInvertCC = false;
310   switch (CCCode) {
311   case ISD::SETEQ:
312   case ISD::SETOEQ:
313     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
314           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
315           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
316     break;
317   case ISD::SETNE:
318   case ISD::SETUNE:
319     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
320           (VT == MVT::f64) ? RTLIB::UNE_F64 :
321           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
322     break;
323   case ISD::SETGE:
324   case ISD::SETOGE:
325     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
326           (VT == MVT::f64) ? RTLIB::OGE_F64 :
327           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
328     break;
329   case ISD::SETLT:
330   case ISD::SETOLT:
331     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
332           (VT == MVT::f64) ? RTLIB::OLT_F64 :
333           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
334     break;
335   case ISD::SETLE:
336   case ISD::SETOLE:
337     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
338           (VT == MVT::f64) ? RTLIB::OLE_F64 :
339           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
340     break;
341   case ISD::SETGT:
342   case ISD::SETOGT:
343     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
344           (VT == MVT::f64) ? RTLIB::OGT_F64 :
345           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
346     break;
347   case ISD::SETO:
348     ShouldInvertCC = true;
349     LLVM_FALLTHROUGH;
350   case ISD::SETUO:
351     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
352           (VT == MVT::f64) ? RTLIB::UO_F64 :
353           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
354     break;
355   case ISD::SETONE:
356     // SETONE = O && UNE
357     ShouldInvertCC = true;
358     LLVM_FALLTHROUGH;
359   case ISD::SETUEQ:
360     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
361           (VT == MVT::f64) ? RTLIB::UO_F64 :
362           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
363     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
364           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
365           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
366     break;
367   default:
368     // Invert CC for unordered comparisons
369     ShouldInvertCC = true;
370     switch (CCCode) {
371     case ISD::SETULT:
372       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
373             (VT == MVT::f64) ? RTLIB::OGE_F64 :
374             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
375       break;
376     case ISD::SETULE:
377       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
378             (VT == MVT::f64) ? RTLIB::OGT_F64 :
379             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
380       break;
381     case ISD::SETUGT:
382       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
383             (VT == MVT::f64) ? RTLIB::OLE_F64 :
384             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
385       break;
386     case ISD::SETUGE:
387       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
388             (VT == MVT::f64) ? RTLIB::OLT_F64 :
389             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
390       break;
391     default: llvm_unreachable("Do not know how to soften this setcc!");
392     }
393   }
394 
395   // Use the target specific return value for comparions lib calls.
396   EVT RetVT = getCmpLibcallReturnType();
397   SDValue Ops[2] = {NewLHS, NewRHS};
398   TargetLowering::MakeLibCallOptions CallOptions;
399   EVT OpsVT[2] = { OldLHS.getValueType(),
400                    OldRHS.getValueType() };
401   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
402   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
403   NewLHS = Call.first;
404   NewRHS = DAG.getConstant(0, dl, RetVT);
405 
406   CCCode = getCmpLibcallCC(LC1);
407   if (ShouldInvertCC) {
408     assert(RetVT.isInteger());
409     CCCode = getSetCCInverse(CCCode, RetVT);
410   }
411 
412   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
413     // Update Chain.
414     Chain = Call.second;
415   } else {
416     EVT SetCCVT =
417         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
418     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
419     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
420     CCCode = getCmpLibcallCC(LC2);
421     if (ShouldInvertCC)
422       CCCode = getSetCCInverse(CCCode, RetVT);
423     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
424     if (Chain)
425       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
426                           Call2.second);
427     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
428                          Tmp.getValueType(), Tmp, NewLHS);
429     NewRHS = SDValue();
430   }
431 }
432 
433 /// Return the entry encoding for a jump table in the current function. The
434 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
435 unsigned TargetLowering::getJumpTableEncoding() const {
436   // In non-pic modes, just use the address of a block.
437   if (!isPositionIndependent())
438     return MachineJumpTableInfo::EK_BlockAddress;
439 
440   // In PIC mode, if the target supports a GPRel32 directive, use it.
441   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
442     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
443 
444   // Otherwise, use a label difference.
445   return MachineJumpTableInfo::EK_LabelDifference32;
446 }
447 
448 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
449                                                  SelectionDAG &DAG) const {
450   // If our PIC model is GP relative, use the global offset table as the base.
451   unsigned JTEncoding = getJumpTableEncoding();
452 
453   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
454       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
455     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
456 
457   return Table;
458 }
459 
460 /// This returns the relocation base for the given PIC jumptable, the same as
461 /// getPICJumpTableRelocBase, but as an MCExpr.
462 const MCExpr *
463 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
464                                              unsigned JTI,MCContext &Ctx) const{
465   // The normal PIC reloc base is the label at the start of the jump table.
466   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
467 }
468 
469 bool
470 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
471   const TargetMachine &TM = getTargetMachine();
472   const GlobalValue *GV = GA->getGlobal();
473 
474   // If the address is not even local to this DSO we will have to load it from
475   // a got and then add the offset.
476   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
477     return false;
478 
479   // If the code is position independent we will have to add a base register.
480   if (isPositionIndependent())
481     return false;
482 
483   // Otherwise we can do it.
484   return true;
485 }
486 
487 //===----------------------------------------------------------------------===//
488 //  Optimization Methods
489 //===----------------------------------------------------------------------===//
490 
491 /// If the specified instruction has a constant integer operand and there are
492 /// bits set in that constant that are not demanded, then clear those bits and
493 /// return true.
494 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
495                                             TargetLoweringOpt &TLO) const {
496   SDLoc DL(Op);
497   unsigned Opcode = Op.getOpcode();
498 
499   // Do target-specific constant optimization.
500   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
501     return TLO.New.getNode();
502 
503   // FIXME: ISD::SELECT, ISD::SELECT_CC
504   switch (Opcode) {
505   default:
506     break;
507   case ISD::XOR:
508   case ISD::AND:
509   case ISD::OR: {
510     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
511     if (!Op1C)
512       return false;
513 
514     // If this is a 'not' op, don't touch it because that's a canonical form.
515     const APInt &C = Op1C->getAPIntValue();
516     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
517       return false;
518 
519     if (!C.isSubsetOf(Demanded)) {
520       EVT VT = Op.getValueType();
521       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
522       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
523       return TLO.CombineTo(Op, NewOp);
524     }
525 
526     break;
527   }
528   }
529 
530   return false;
531 }
532 
533 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
534 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
535 /// generalized for targets with other types of implicit widening casts.
536 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
537                                       const APInt &Demanded,
538                                       TargetLoweringOpt &TLO) const {
539   assert(Op.getNumOperands() == 2 &&
540          "ShrinkDemandedOp only supports binary operators!");
541   assert(Op.getNode()->getNumValues() == 1 &&
542          "ShrinkDemandedOp only supports nodes with one result!");
543 
544   SelectionDAG &DAG = TLO.DAG;
545   SDLoc dl(Op);
546 
547   // Early return, as this function cannot handle vector types.
548   if (Op.getValueType().isVector())
549     return false;
550 
551   // Don't do this if the node has another user, which may require the
552   // full value.
553   if (!Op.getNode()->hasOneUse())
554     return false;
555 
556   // Search for the smallest integer type with free casts to and from
557   // Op's type. For expedience, just check power-of-2 integer types.
558   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
559   unsigned DemandedSize = Demanded.getActiveBits();
560   unsigned SmallVTBits = DemandedSize;
561   if (!isPowerOf2_32(SmallVTBits))
562     SmallVTBits = NextPowerOf2(SmallVTBits);
563   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
564     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
565     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
566         TLI.isZExtFree(SmallVT, Op.getValueType())) {
567       // We found a type with free casts.
568       SDValue X = DAG.getNode(
569           Op.getOpcode(), dl, SmallVT,
570           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
571           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
572       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
573       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
574       return TLO.CombineTo(Op, Z);
575     }
576   }
577   return false;
578 }
579 
580 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
581                                           DAGCombinerInfo &DCI) const {
582   SelectionDAG &DAG = DCI.DAG;
583   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
584                         !DCI.isBeforeLegalizeOps());
585   KnownBits Known;
586 
587   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
588   if (Simplified) {
589     DCI.AddToWorklist(Op.getNode());
590     DCI.CommitTargetLoweringOpt(TLO);
591   }
592   return Simplified;
593 }
594 
595 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
596                                           KnownBits &Known,
597                                           TargetLoweringOpt &TLO,
598                                           unsigned Depth,
599                                           bool AssumeSingleUse) const {
600   EVT VT = Op.getValueType();
601   APInt DemandedElts = VT.isVector()
602                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
603                            : APInt(1, 1);
604   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
605                               AssumeSingleUse);
606 }
607 
608 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
609 // TODO: Under what circumstances can we create nodes? Constant folding?
610 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
611     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
612     SelectionDAG &DAG, unsigned Depth) const {
613   // Limit search depth.
614   if (Depth >= SelectionDAG::MaxRecursionDepth)
615     return SDValue();
616 
617   // Ignore UNDEFs.
618   if (Op.isUndef())
619     return SDValue();
620 
621   // Not demanding any bits/elts from Op.
622   if (DemandedBits == 0 || DemandedElts == 0)
623     return DAG.getUNDEF(Op.getValueType());
624 
625   unsigned NumElts = DemandedElts.getBitWidth();
626   KnownBits LHSKnown, RHSKnown;
627   switch (Op.getOpcode()) {
628   case ISD::BITCAST: {
629     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
630     EVT SrcVT = Src.getValueType();
631     EVT DstVT = Op.getValueType();
632     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
633     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
634 
635     if (NumSrcEltBits == NumDstEltBits)
636       if (SDValue V = SimplifyMultipleUseDemandedBits(
637               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
638         return DAG.getBitcast(DstVT, V);
639 
640     // TODO - bigendian once we have test coverage.
641     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
642         DAG.getDataLayout().isLittleEndian()) {
643       unsigned Scale = NumDstEltBits / NumSrcEltBits;
644       unsigned NumSrcElts = SrcVT.getVectorNumElements();
645       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
646       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
647       for (unsigned i = 0; i != Scale; ++i) {
648         unsigned Offset = i * NumSrcEltBits;
649         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
650         if (!Sub.isNullValue()) {
651           DemandedSrcBits |= Sub;
652           for (unsigned j = 0; j != NumElts; ++j)
653             if (DemandedElts[j])
654               DemandedSrcElts.setBit((j * Scale) + i);
655         }
656       }
657 
658       if (SDValue V = SimplifyMultipleUseDemandedBits(
659               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
660         return DAG.getBitcast(DstVT, V);
661     }
662 
663     // TODO - bigendian once we have test coverage.
664     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
665         DAG.getDataLayout().isLittleEndian()) {
666       unsigned Scale = NumSrcEltBits / NumDstEltBits;
667       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
668       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
669       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
670       for (unsigned i = 0; i != NumElts; ++i)
671         if (DemandedElts[i]) {
672           unsigned Offset = (i % Scale) * NumDstEltBits;
673           DemandedSrcBits.insertBits(DemandedBits, Offset);
674           DemandedSrcElts.setBit(i / Scale);
675         }
676 
677       if (SDValue V = SimplifyMultipleUseDemandedBits(
678               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
679         return DAG.getBitcast(DstVT, V);
680     }
681 
682     break;
683   }
684   case ISD::AND: {
685     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
686     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
687 
688     // If all of the demanded bits are known 1 on one side, return the other.
689     // These bits cannot contribute to the result of the 'and' in this
690     // context.
691     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
692       return Op.getOperand(0);
693     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
694       return Op.getOperand(1);
695     break;
696   }
697   case ISD::OR: {
698     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
699     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
700 
701     // If all of the demanded bits are known zero on one side, return the
702     // other.  These bits cannot contribute to the result of the 'or' in this
703     // context.
704     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
705       return Op.getOperand(0);
706     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
707       return Op.getOperand(1);
708     break;
709   }
710   case ISD::XOR: {
711     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
712     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
713 
714     // If all of the demanded bits are known zero on one side, return the
715     // other.
716     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
717       return Op.getOperand(0);
718     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
719       return Op.getOperand(1);
720     break;
721   }
722   case ISD::SETCC: {
723     SDValue Op0 = Op.getOperand(0);
724     SDValue Op1 = Op.getOperand(1);
725     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
726     // If (1) we only need the sign-bit, (2) the setcc operands are the same
727     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
728     // -1, we may be able to bypass the setcc.
729     if (DemandedBits.isSignMask() &&
730         Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() &&
731         getBooleanContents(Op0.getValueType()) ==
732             BooleanContent::ZeroOrNegativeOneBooleanContent) {
733       // If we're testing X < 0, then this compare isn't needed - just use X!
734       // FIXME: We're limiting to integer types here, but this should also work
735       // if we don't care about FP signed-zero. The use of SETLT with FP means
736       // that we don't care about NaNs.
737       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
738           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
739         return Op0;
740     }
741     break;
742   }
743   case ISD::SIGN_EXTEND_INREG: {
744     // If none of the extended bits are demanded, eliminate the sextinreg.
745     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
746     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
747       return Op.getOperand(0);
748     break;
749   }
750   case ISD::INSERT_VECTOR_ELT: {
751     // If we don't demand the inserted element, return the base vector.
752     SDValue Vec = Op.getOperand(0);
753     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
754     EVT VecVT = Vec.getValueType();
755     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
756         !DemandedElts[CIdx->getZExtValue()])
757       return Vec;
758     break;
759   }
760   case ISD::VECTOR_SHUFFLE: {
761     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
762 
763     // If all the demanded elts are from one operand and are inline,
764     // then we can use the operand directly.
765     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
766     for (unsigned i = 0; i != NumElts; ++i) {
767       int M = ShuffleMask[i];
768       if (M < 0 || !DemandedElts[i])
769         continue;
770       AllUndef = false;
771       IdentityLHS &= (M == (int)i);
772       IdentityRHS &= ((M - NumElts) == i);
773     }
774 
775     if (AllUndef)
776       return DAG.getUNDEF(Op.getValueType());
777     if (IdentityLHS)
778       return Op.getOperand(0);
779     if (IdentityRHS)
780       return Op.getOperand(1);
781     break;
782   }
783   default:
784     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
785       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
786               Op, DemandedBits, DemandedElts, DAG, Depth))
787         return V;
788     break;
789   }
790   return SDValue();
791 }
792 
793 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
794 /// result of Op are ever used downstream. If we can use this information to
795 /// simplify Op, create a new simplified DAG node and return true, returning the
796 /// original and new nodes in Old and New. Otherwise, analyze the expression and
797 /// return a mask of Known bits for the expression (used to simplify the
798 /// caller).  The Known bits may only be accurate for those bits in the
799 /// OriginalDemandedBits and OriginalDemandedElts.
800 bool TargetLowering::SimplifyDemandedBits(
801     SDValue Op, const APInt &OriginalDemandedBits,
802     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
803     unsigned Depth, bool AssumeSingleUse) const {
804   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
805   assert(Op.getScalarValueSizeInBits() == BitWidth &&
806          "Mask size mismatches value type size!");
807 
808   unsigned NumElts = OriginalDemandedElts.getBitWidth();
809   assert((!Op.getValueType().isVector() ||
810           NumElts == Op.getValueType().getVectorNumElements()) &&
811          "Unexpected vector size");
812 
813   APInt DemandedBits = OriginalDemandedBits;
814   APInt DemandedElts = OriginalDemandedElts;
815   SDLoc dl(Op);
816   auto &DL = TLO.DAG.getDataLayout();
817 
818   // Don't know anything.
819   Known = KnownBits(BitWidth);
820 
821   // Undef operand.
822   if (Op.isUndef())
823     return false;
824 
825   if (Op.getOpcode() == ISD::Constant) {
826     // We know all of the bits for a constant!
827     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
828     Known.Zero = ~Known.One;
829     return false;
830   }
831 
832   // Other users may use these bits.
833   EVT VT = Op.getValueType();
834   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
835     if (Depth != 0) {
836       // If not at the root, Just compute the Known bits to
837       // simplify things downstream.
838       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
839       return false;
840     }
841     // If this is the root being simplified, allow it to have multiple uses,
842     // just set the DemandedBits/Elts to all bits.
843     DemandedBits = APInt::getAllOnesValue(BitWidth);
844     DemandedElts = APInt::getAllOnesValue(NumElts);
845   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
846     // Not demanding any bits/elts from Op.
847     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
848   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
849     // Limit search depth.
850     return false;
851   }
852 
853   KnownBits Known2, KnownOut;
854   switch (Op.getOpcode()) {
855   case ISD::TargetConstant:
856     llvm_unreachable("Can't simplify this node");
857   case ISD::SCALAR_TO_VECTOR: {
858     if (!DemandedElts[0])
859       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
860 
861     KnownBits SrcKnown;
862     SDValue Src = Op.getOperand(0);
863     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
864     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
865     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
866       return true;
867     Known = SrcKnown.zextOrTrunc(BitWidth, false);
868     break;
869   }
870   case ISD::BUILD_VECTOR:
871     // Collect the known bits that are shared by every demanded element.
872     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
873     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
874     return false; // Don't fall through, will infinitely loop.
875   case ISD::LOAD: {
876     LoadSDNode *LD = cast<LoadSDNode>(Op);
877     if (getTargetConstantFromLoad(LD)) {
878       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
879       return false; // Don't fall through, will infinitely loop.
880     }
881     break;
882   }
883   case ISD::INSERT_VECTOR_ELT: {
884     SDValue Vec = Op.getOperand(0);
885     SDValue Scl = Op.getOperand(1);
886     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
887     EVT VecVT = Vec.getValueType();
888 
889     // If index isn't constant, assume we need all vector elements AND the
890     // inserted element.
891     APInt DemandedVecElts(DemandedElts);
892     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
893       unsigned Idx = CIdx->getZExtValue();
894       DemandedVecElts.clearBit(Idx);
895 
896       // Inserted element is not required.
897       if (!DemandedElts[Idx])
898         return TLO.CombineTo(Op, Vec);
899     }
900 
901     KnownBits KnownScl;
902     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
903     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
904     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
905       return true;
906 
907     Known = KnownScl.zextOrTrunc(BitWidth, false);
908 
909     KnownBits KnownVec;
910     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
911                              Depth + 1))
912       return true;
913 
914     if (!!DemandedVecElts) {
915       Known.One &= KnownVec.One;
916       Known.Zero &= KnownVec.Zero;
917     }
918 
919     return false;
920   }
921   case ISD::INSERT_SUBVECTOR: {
922     SDValue Base = Op.getOperand(0);
923     SDValue Sub = Op.getOperand(1);
924     EVT SubVT = Sub.getValueType();
925     unsigned NumSubElts = SubVT.getVectorNumElements();
926 
927     // If index isn't constant, assume we need the original demanded base
928     // elements and ALL the inserted subvector elements.
929     APInt BaseElts = DemandedElts;
930     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
931     if (isa<ConstantSDNode>(Op.getOperand(2))) {
932       const APInt &Idx = Op.getConstantOperandAPInt(2);
933       if (Idx.ule(NumElts - NumSubElts)) {
934         unsigned SubIdx = Idx.getZExtValue();
935         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
936         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
937       }
938     }
939 
940     KnownBits KnownSub, KnownBase;
941     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
942                              Depth + 1))
943       return true;
944     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
945                              Depth + 1))
946       return true;
947 
948     Known.Zero.setAllBits();
949     Known.One.setAllBits();
950     if (!!SubElts) {
951         Known.One &= KnownSub.One;
952         Known.Zero &= KnownSub.Zero;
953     }
954     if (!!BaseElts) {
955         Known.One &= KnownBase.One;
956         Known.Zero &= KnownBase.Zero;
957     }
958     break;
959   }
960   case ISD::EXTRACT_SUBVECTOR: {
961     // If index isn't constant, assume we need all the source vector elements.
962     SDValue Src = Op.getOperand(0);
963     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
964     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
965     APInt SrcElts = APInt::getAllOnesValue(NumSrcElts);
966     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
967       // Offset the demanded elts by the subvector index.
968       uint64_t Idx = SubIdx->getZExtValue();
969       SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
970     }
971     if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1))
972       return true;
973 
974     // Attempt to avoid multi-use src if we don't need anything from it.
975     if (!DemandedBits.isAllOnesValue() || !SrcElts.isAllOnesValue()) {
976       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
977           Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1);
978       if (DemandedSrc) {
979         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
980                                         Op.getOperand(1));
981         return TLO.CombineTo(Op, NewOp);
982       }
983     }
984     break;
985   }
986   case ISD::CONCAT_VECTORS: {
987     Known.Zero.setAllBits();
988     Known.One.setAllBits();
989     EVT SubVT = Op.getOperand(0).getValueType();
990     unsigned NumSubVecs = Op.getNumOperands();
991     unsigned NumSubElts = SubVT.getVectorNumElements();
992     for (unsigned i = 0; i != NumSubVecs; ++i) {
993       APInt DemandedSubElts =
994           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
995       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
996                                Known2, TLO, Depth + 1))
997         return true;
998       // Known bits are shared by every demanded subvector element.
999       if (!!DemandedSubElts) {
1000         Known.One &= Known2.One;
1001         Known.Zero &= Known2.Zero;
1002       }
1003     }
1004     break;
1005   }
1006   case ISD::VECTOR_SHUFFLE: {
1007     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1008 
1009     // Collect demanded elements from shuffle operands..
1010     APInt DemandedLHS(NumElts, 0);
1011     APInt DemandedRHS(NumElts, 0);
1012     for (unsigned i = 0; i != NumElts; ++i) {
1013       if (!DemandedElts[i])
1014         continue;
1015       int M = ShuffleMask[i];
1016       if (M < 0) {
1017         // For UNDEF elements, we don't know anything about the common state of
1018         // the shuffle result.
1019         DemandedLHS.clearAllBits();
1020         DemandedRHS.clearAllBits();
1021         break;
1022       }
1023       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1024       if (M < (int)NumElts)
1025         DemandedLHS.setBit(M);
1026       else
1027         DemandedRHS.setBit(M - NumElts);
1028     }
1029 
1030     if (!!DemandedLHS || !!DemandedRHS) {
1031       SDValue Op0 = Op.getOperand(0);
1032       SDValue Op1 = Op.getOperand(1);
1033 
1034       Known.Zero.setAllBits();
1035       Known.One.setAllBits();
1036       if (!!DemandedLHS) {
1037         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1038                                  Depth + 1))
1039           return true;
1040         Known.One &= Known2.One;
1041         Known.Zero &= Known2.Zero;
1042       }
1043       if (!!DemandedRHS) {
1044         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1045                                  Depth + 1))
1046           return true;
1047         Known.One &= Known2.One;
1048         Known.Zero &= Known2.Zero;
1049       }
1050 
1051       // Attempt to avoid multi-use ops if we don't need anything from them.
1052       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1053           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1054       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1055           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1056       if (DemandedOp0 || DemandedOp1) {
1057         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1058         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1059         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1060         return TLO.CombineTo(Op, NewOp);
1061       }
1062     }
1063     break;
1064   }
1065   case ISD::AND: {
1066     SDValue Op0 = Op.getOperand(0);
1067     SDValue Op1 = Op.getOperand(1);
1068 
1069     // If the RHS is a constant, check to see if the LHS would be zero without
1070     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1071     // simplify the LHS, here we're using information from the LHS to simplify
1072     // the RHS.
1073     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1074       // Do not increment Depth here; that can cause an infinite loop.
1075       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1076       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1077       if ((LHSKnown.Zero & DemandedBits) ==
1078           (~RHSC->getAPIntValue() & DemandedBits))
1079         return TLO.CombineTo(Op, Op0);
1080 
1081       // If any of the set bits in the RHS are known zero on the LHS, shrink
1082       // the constant.
1083       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1084         return true;
1085 
1086       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1087       // constant, but if this 'and' is only clearing bits that were just set by
1088       // the xor, then this 'and' can be eliminated by shrinking the mask of
1089       // the xor. For example, for a 32-bit X:
1090       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1091       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1092           LHSKnown.One == ~RHSC->getAPIntValue()) {
1093         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1094         return TLO.CombineTo(Op, Xor);
1095       }
1096     }
1097 
1098     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1099                              Depth + 1))
1100       return true;
1101     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1102     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1103                              Known2, TLO, Depth + 1))
1104       return true;
1105     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1106 
1107     // Attempt to avoid multi-use ops if we don't need anything from them.
1108     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1109       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1110           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1111       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1112           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1113       if (DemandedOp0 || DemandedOp1) {
1114         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1115         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1116         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1117         return TLO.CombineTo(Op, NewOp);
1118       }
1119     }
1120 
1121     // If all of the demanded bits are known one on one side, return the other.
1122     // These bits cannot contribute to the result of the 'and'.
1123     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1124       return TLO.CombineTo(Op, Op0);
1125     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1126       return TLO.CombineTo(Op, Op1);
1127     // If all of the demanded bits in the inputs are known zeros, return zero.
1128     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1129       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1130     // If the RHS is a constant, see if we can simplify it.
1131     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1132       return true;
1133     // If the operation can be done in a smaller type, do so.
1134     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1135       return true;
1136 
1137     // Output known-1 bits are only known if set in both the LHS & RHS.
1138     Known.One &= Known2.One;
1139     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1140     Known.Zero |= Known2.Zero;
1141     break;
1142   }
1143   case ISD::OR: {
1144     SDValue Op0 = Op.getOperand(0);
1145     SDValue Op1 = Op.getOperand(1);
1146 
1147     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1148                              Depth + 1))
1149       return true;
1150     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1151     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1152                              Known2, TLO, Depth + 1))
1153       return true;
1154     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1155 
1156     // Attempt to avoid multi-use ops if we don't need anything from them.
1157     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1158       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1159           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1160       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1161           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1162       if (DemandedOp0 || DemandedOp1) {
1163         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1164         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1165         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1166         return TLO.CombineTo(Op, NewOp);
1167       }
1168     }
1169 
1170     // If all of the demanded bits are known zero on one side, return the other.
1171     // These bits cannot contribute to the result of the 'or'.
1172     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1173       return TLO.CombineTo(Op, Op0);
1174     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1175       return TLO.CombineTo(Op, Op1);
1176     // If the RHS is a constant, see if we can simplify it.
1177     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1178       return true;
1179     // If the operation can be done in a smaller type, do so.
1180     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1181       return true;
1182 
1183     // Output known-0 bits are only known if clear in both the LHS & RHS.
1184     Known.Zero &= Known2.Zero;
1185     // Output known-1 are known to be set if set in either the LHS | RHS.
1186     Known.One |= Known2.One;
1187     break;
1188   }
1189   case ISD::XOR: {
1190     SDValue Op0 = Op.getOperand(0);
1191     SDValue Op1 = Op.getOperand(1);
1192 
1193     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1194                              Depth + 1))
1195       return true;
1196     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1197     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1198                              Depth + 1))
1199       return true;
1200     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1201 
1202     // Attempt to avoid multi-use ops if we don't need anything from them.
1203     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1204       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1205           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1206       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1207           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1208       if (DemandedOp0 || DemandedOp1) {
1209         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1210         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1211         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1212         return TLO.CombineTo(Op, NewOp);
1213       }
1214     }
1215 
1216     // If all of the demanded bits are known zero on one side, return the other.
1217     // These bits cannot contribute to the result of the 'xor'.
1218     if (DemandedBits.isSubsetOf(Known.Zero))
1219       return TLO.CombineTo(Op, Op0);
1220     if (DemandedBits.isSubsetOf(Known2.Zero))
1221       return TLO.CombineTo(Op, Op1);
1222     // If the operation can be done in a smaller type, do so.
1223     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1224       return true;
1225 
1226     // If all of the unknown bits are known to be zero on one side or the other
1227     // (but not both) turn this into an *inclusive* or.
1228     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1229     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1230       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1231 
1232     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1233     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1234     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1235     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1236 
1237     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1238       // If one side is a constant, and all of the known set bits on the other
1239       // side are also set in the constant, turn this into an AND, as we know
1240       // the bits will be cleared.
1241       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1242       // NB: it is okay if more bits are known than are requested
1243       if (C->getAPIntValue() == Known2.One) {
1244         SDValue ANDC =
1245             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1246         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1247       }
1248 
1249       // If the RHS is a constant, see if we can change it. Don't alter a -1
1250       // constant because that's a 'not' op, and that is better for combining
1251       // and codegen.
1252       if (!C->isAllOnesValue()) {
1253         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1254           // We're flipping all demanded bits. Flip the undemanded bits too.
1255           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1256           return TLO.CombineTo(Op, New);
1257         }
1258         // If we can't turn this into a 'not', try to shrink the constant.
1259         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1260           return true;
1261       }
1262     }
1263 
1264     Known = std::move(KnownOut);
1265     break;
1266   }
1267   case ISD::SELECT:
1268     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1269                              Depth + 1))
1270       return true;
1271     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1272                              Depth + 1))
1273       return true;
1274     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1275     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1276 
1277     // If the operands are constants, see if we can simplify them.
1278     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1279       return true;
1280 
1281     // Only known if known in both the LHS and RHS.
1282     Known.One &= Known2.One;
1283     Known.Zero &= Known2.Zero;
1284     break;
1285   case ISD::SELECT_CC:
1286     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1287                              Depth + 1))
1288       return true;
1289     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1290                              Depth + 1))
1291       return true;
1292     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1293     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1294 
1295     // If the operands are constants, see if we can simplify them.
1296     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1297       return true;
1298 
1299     // Only known if known in both the LHS and RHS.
1300     Known.One &= Known2.One;
1301     Known.Zero &= Known2.Zero;
1302     break;
1303   case ISD::SETCC: {
1304     SDValue Op0 = Op.getOperand(0);
1305     SDValue Op1 = Op.getOperand(1);
1306     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1307     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1308     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1309     // -1, we may be able to bypass the setcc.
1310     if (DemandedBits.isSignMask() &&
1311         Op0.getScalarValueSizeInBits() == BitWidth &&
1312         getBooleanContents(Op0.getValueType()) ==
1313             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1314       // If we're testing X < 0, then this compare isn't needed - just use X!
1315       // FIXME: We're limiting to integer types here, but this should also work
1316       // if we don't care about FP signed-zero. The use of SETLT with FP means
1317       // that we don't care about NaNs.
1318       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1319           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1320         return TLO.CombineTo(Op, Op0);
1321 
1322       // TODO: Should we check for other forms of sign-bit comparisons?
1323       // Examples: X <= -1, X >= 0
1324     }
1325     if (getBooleanContents(Op0.getValueType()) ==
1326             TargetLowering::ZeroOrOneBooleanContent &&
1327         BitWidth > 1)
1328       Known.Zero.setBitsFrom(1);
1329     break;
1330   }
1331   case ISD::SHL: {
1332     SDValue Op0 = Op.getOperand(0);
1333     SDValue Op1 = Op.getOperand(1);
1334 
1335     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1336       // If the shift count is an invalid immediate, don't do anything.
1337       if (SA->getAPIntValue().uge(BitWidth))
1338         break;
1339 
1340       unsigned ShAmt = SA->getZExtValue();
1341       if (ShAmt == 0)
1342         return TLO.CombineTo(Op, Op0);
1343 
1344       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1345       // single shift.  We can do this if the bottom bits (which are shifted
1346       // out) are never demanded.
1347       // TODO - support non-uniform vector amounts.
1348       if (Op0.getOpcode() == ISD::SRL) {
1349         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1350           if (ConstantSDNode *SA2 =
1351                   isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1352             if (SA2->getAPIntValue().ult(BitWidth)) {
1353               unsigned C1 = SA2->getZExtValue();
1354               unsigned Opc = ISD::SHL;
1355               int Diff = ShAmt - C1;
1356               if (Diff < 0) {
1357                 Diff = -Diff;
1358                 Opc = ISD::SRL;
1359               }
1360 
1361               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1362               return TLO.CombineTo(
1363                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1364             }
1365           }
1366         }
1367       }
1368 
1369       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1370       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1371                                Depth + 1))
1372         return true;
1373 
1374       // Try shrinking the operation as long as the shift amount will still be
1375       // in range.
1376       if ((ShAmt < DemandedBits.getActiveBits()) &&
1377           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1378         return true;
1379 
1380       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1381       // are not demanded. This will likely allow the anyext to be folded away.
1382       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1383         SDValue InnerOp = Op0.getOperand(0);
1384         EVT InnerVT = InnerOp.getValueType();
1385         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1386         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1387             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1388           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1389           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1390             ShTy = InnerVT;
1391           SDValue NarrowShl =
1392               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1393                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1394           return TLO.CombineTo(
1395               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1396         }
1397         // Repeat the SHL optimization above in cases where an extension
1398         // intervenes: (shl (anyext (shr x, c1)), c2) to
1399         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1400         // aren't demanded (as above) and that the shifted upper c1 bits of
1401         // x aren't demanded.
1402         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1403             InnerOp.hasOneUse()) {
1404           if (ConstantSDNode *SA2 =
1405                   isConstOrConstSplat(InnerOp.getOperand(1))) {
1406             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1407             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1408                 DemandedBits.getActiveBits() <=
1409                     (InnerBits - InnerShAmt + ShAmt) &&
1410                 DemandedBits.countTrailingZeros() >= ShAmt) {
1411               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
1412                                                   Op1.getValueType());
1413               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1414                                                InnerOp.getOperand(0));
1415               return TLO.CombineTo(
1416                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1417             }
1418           }
1419         }
1420       }
1421 
1422       Known.Zero <<= ShAmt;
1423       Known.One <<= ShAmt;
1424       // low bits known zero.
1425       Known.Zero.setLowBits(ShAmt);
1426     }
1427     break;
1428   }
1429   case ISD::SRL: {
1430     SDValue Op0 = Op.getOperand(0);
1431     SDValue Op1 = Op.getOperand(1);
1432 
1433     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1434       // If the shift count is an invalid immediate, don't do anything.
1435       if (SA->getAPIntValue().uge(BitWidth))
1436         break;
1437 
1438       unsigned ShAmt = SA->getZExtValue();
1439       if (ShAmt == 0)
1440         return TLO.CombineTo(Op, Op0);
1441 
1442       EVT ShiftVT = Op1.getValueType();
1443       APInt InDemandedMask = (DemandedBits << ShAmt);
1444 
1445       // If the shift is exact, then it does demand the low bits (and knows that
1446       // they are zero).
1447       if (Op->getFlags().hasExact())
1448         InDemandedMask.setLowBits(ShAmt);
1449 
1450       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1451       // single shift.  We can do this if the top bits (which are shifted out)
1452       // are never demanded.
1453       // TODO - support non-uniform vector amounts.
1454       if (Op0.getOpcode() == ISD::SHL) {
1455         if (ConstantSDNode *SA2 =
1456                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1457           if (!DemandedBits.intersects(
1458                   APInt::getHighBitsSet(BitWidth, ShAmt))) {
1459             if (SA2->getAPIntValue().ult(BitWidth)) {
1460               unsigned C1 = SA2->getZExtValue();
1461               unsigned Opc = ISD::SRL;
1462               int Diff = ShAmt - C1;
1463               if (Diff < 0) {
1464                 Diff = -Diff;
1465                 Opc = ISD::SHL;
1466               }
1467 
1468               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1469               return TLO.CombineTo(
1470                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1471             }
1472           }
1473         }
1474       }
1475 
1476       // Compute the new bits that are at the top now.
1477       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1478                                Depth + 1))
1479         return true;
1480       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1481       Known.Zero.lshrInPlace(ShAmt);
1482       Known.One.lshrInPlace(ShAmt);
1483 
1484       Known.Zero.setHighBits(ShAmt); // High bits known zero.
1485     }
1486     break;
1487   }
1488   case ISD::SRA: {
1489     SDValue Op0 = Op.getOperand(0);
1490     SDValue Op1 = Op.getOperand(1);
1491 
1492     // If we only want bits that already match the signbit then we don't need
1493     // to shift.
1494     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1495     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1496         NumHiDemandedBits)
1497       return TLO.CombineTo(Op, Op0);
1498 
1499     // If this is an arithmetic shift right and only the low-bit is set, we can
1500     // always convert this into a logical shr, even if the shift amount is
1501     // variable.  The low bit of the shift cannot be an input sign bit unless
1502     // the shift amount is >= the size of the datatype, which is undefined.
1503     if (DemandedBits.isOneValue())
1504       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1505 
1506     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1507       // If the shift count is an invalid immediate, don't do anything.
1508       if (SA->getAPIntValue().uge(BitWidth))
1509         break;
1510 
1511       unsigned ShAmt = SA->getZExtValue();
1512       if (ShAmt == 0)
1513         return TLO.CombineTo(Op, Op0);
1514 
1515       APInt InDemandedMask = (DemandedBits << ShAmt);
1516 
1517       // If the shift is exact, then it does demand the low bits (and knows that
1518       // they are zero).
1519       if (Op->getFlags().hasExact())
1520         InDemandedMask.setLowBits(ShAmt);
1521 
1522       // If any of the demanded bits are produced by the sign extension, we also
1523       // demand the input sign bit.
1524       if (DemandedBits.countLeadingZeros() < ShAmt)
1525         InDemandedMask.setSignBit();
1526 
1527       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1528                                Depth + 1))
1529         return true;
1530       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1531       Known.Zero.lshrInPlace(ShAmt);
1532       Known.One.lshrInPlace(ShAmt);
1533 
1534       // If the input sign bit is known to be zero, or if none of the top bits
1535       // are demanded, turn this into an unsigned shift right.
1536       if (Known.Zero[BitWidth - ShAmt - 1] ||
1537           DemandedBits.countLeadingZeros() >= ShAmt) {
1538         SDNodeFlags Flags;
1539         Flags.setExact(Op->getFlags().hasExact());
1540         return TLO.CombineTo(
1541             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1542       }
1543 
1544       int Log2 = DemandedBits.exactLogBase2();
1545       if (Log2 >= 0) {
1546         // The bit must come from the sign.
1547         SDValue NewSA =
1548             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1549         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1550       }
1551 
1552       if (Known.One[BitWidth - ShAmt - 1])
1553         // New bits are known one.
1554         Known.One.setHighBits(ShAmt);
1555 
1556       // Attempt to avoid multi-use ops if we don't need anything from them.
1557       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1558         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1559             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1560         if (DemandedOp0) {
1561           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1562           return TLO.CombineTo(Op, NewOp);
1563         }
1564       }
1565     }
1566     break;
1567   }
1568   case ISD::FSHL:
1569   case ISD::FSHR: {
1570     SDValue Op0 = Op.getOperand(0);
1571     SDValue Op1 = Op.getOperand(1);
1572     SDValue Op2 = Op.getOperand(2);
1573     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1574 
1575     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1576       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1577 
1578       // For fshl, 0-shift returns the 1st arg.
1579       // For fshr, 0-shift returns the 2nd arg.
1580       if (Amt == 0) {
1581         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1582                                  Known, TLO, Depth + 1))
1583           return true;
1584         break;
1585       }
1586 
1587       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1588       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1589       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1590       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1591       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1592                                Depth + 1))
1593         return true;
1594       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1595                                Depth + 1))
1596         return true;
1597 
1598       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1599       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1600       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1601       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1602       Known.One |= Known2.One;
1603       Known.Zero |= Known2.Zero;
1604     }
1605     break;
1606   }
1607   case ISD::ROTL:
1608   case ISD::ROTR: {
1609     SDValue Op0 = Op.getOperand(0);
1610 
1611     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1612     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1613       return TLO.CombineTo(Op, Op0);
1614     break;
1615   }
1616   case ISD::BITREVERSE: {
1617     SDValue Src = Op.getOperand(0);
1618     APInt DemandedSrcBits = DemandedBits.reverseBits();
1619     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1620                              Depth + 1))
1621       return true;
1622     Known.One = Known2.One.reverseBits();
1623     Known.Zero = Known2.Zero.reverseBits();
1624     break;
1625   }
1626   case ISD::BSWAP: {
1627     SDValue Src = Op.getOperand(0);
1628     APInt DemandedSrcBits = DemandedBits.byteSwap();
1629     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1630                              Depth + 1))
1631       return true;
1632     Known.One = Known2.One.byteSwap();
1633     Known.Zero = Known2.Zero.byteSwap();
1634     break;
1635   }
1636   case ISD::SIGN_EXTEND_INREG: {
1637     SDValue Op0 = Op.getOperand(0);
1638     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1639     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1640 
1641     // If we only care about the highest bit, don't bother shifting right.
1642     if (DemandedBits.isSignMask()) {
1643       unsigned NumSignBits =
1644           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1645       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1646       // However if the input is already sign extended we expect the sign
1647       // extension to be dropped altogether later and do not simplify.
1648       if (!AlreadySignExtended) {
1649         // Compute the correct shift amount type, which must be getShiftAmountTy
1650         // for scalar types after legalization.
1651         EVT ShiftAmtTy = VT;
1652         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1653           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1654 
1655         SDValue ShiftAmt =
1656             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1657         return TLO.CombineTo(Op,
1658                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1659       }
1660     }
1661 
1662     // If none of the extended bits are demanded, eliminate the sextinreg.
1663     if (DemandedBits.getActiveBits() <= ExVTBits)
1664       return TLO.CombineTo(Op, Op0);
1665 
1666     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1667 
1668     // Since the sign extended bits are demanded, we know that the sign
1669     // bit is demanded.
1670     InputDemandedBits.setBit(ExVTBits - 1);
1671 
1672     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1673       return true;
1674     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1675 
1676     // If the sign bit of the input is known set or clear, then we know the
1677     // top bits of the result.
1678 
1679     // If the input sign bit is known zero, convert this into a zero extension.
1680     if (Known.Zero[ExVTBits - 1])
1681       return TLO.CombineTo(
1682           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1683 
1684     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1685     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1686       Known.One.setBitsFrom(ExVTBits);
1687       Known.Zero &= Mask;
1688     } else { // Input sign bit unknown
1689       Known.Zero &= Mask;
1690       Known.One &= Mask;
1691     }
1692     break;
1693   }
1694   case ISD::BUILD_PAIR: {
1695     EVT HalfVT = Op.getOperand(0).getValueType();
1696     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1697 
1698     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1699     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1700 
1701     KnownBits KnownLo, KnownHi;
1702 
1703     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1704       return true;
1705 
1706     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1707       return true;
1708 
1709     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1710                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1711 
1712     Known.One = KnownLo.One.zext(BitWidth) |
1713                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1714     break;
1715   }
1716   case ISD::ZERO_EXTEND:
1717   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1718     SDValue Src = Op.getOperand(0);
1719     EVT SrcVT = Src.getValueType();
1720     unsigned InBits = SrcVT.getScalarSizeInBits();
1721     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1722     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1723 
1724     // If none of the top bits are demanded, convert this into an any_extend.
1725     if (DemandedBits.getActiveBits() <= InBits) {
1726       // If we only need the non-extended bits of the bottom element
1727       // then we can just bitcast to the result.
1728       if (IsVecInReg && DemandedElts == 1 &&
1729           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1730           TLO.DAG.getDataLayout().isLittleEndian())
1731         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1732 
1733       unsigned Opc =
1734           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1735       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1736         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1737     }
1738 
1739     APInt InDemandedBits = DemandedBits.trunc(InBits);
1740     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1741     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1742                              Depth + 1))
1743       return true;
1744     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1745     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1746     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1747     break;
1748   }
1749   case ISD::SIGN_EXTEND:
1750   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1751     SDValue Src = Op.getOperand(0);
1752     EVT SrcVT = Src.getValueType();
1753     unsigned InBits = SrcVT.getScalarSizeInBits();
1754     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1755     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1756 
1757     // If none of the top bits are demanded, convert this into an any_extend.
1758     if (DemandedBits.getActiveBits() <= InBits) {
1759       // If we only need the non-extended bits of the bottom element
1760       // then we can just bitcast to the result.
1761       if (IsVecInReg && DemandedElts == 1 &&
1762           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1763           TLO.DAG.getDataLayout().isLittleEndian())
1764         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1765 
1766       unsigned Opc =
1767           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1768       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1769         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1770     }
1771 
1772     APInt InDemandedBits = DemandedBits.trunc(InBits);
1773     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1774 
1775     // Since some of the sign extended bits are demanded, we know that the sign
1776     // bit is demanded.
1777     InDemandedBits.setBit(InBits - 1);
1778 
1779     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1780                              Depth + 1))
1781       return true;
1782     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1783     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1784 
1785     // If the sign bit is known one, the top bits match.
1786     Known = Known.sext(BitWidth);
1787 
1788     // If the sign bit is known zero, convert this to a zero extend.
1789     if (Known.isNonNegative()) {
1790       unsigned Opc =
1791           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1792       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1793         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1794     }
1795     break;
1796   }
1797   case ISD::ANY_EXTEND:
1798   case ISD::ANY_EXTEND_VECTOR_INREG: {
1799     SDValue Src = Op.getOperand(0);
1800     EVT SrcVT = Src.getValueType();
1801     unsigned InBits = SrcVT.getScalarSizeInBits();
1802     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1803     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1804 
1805     // If we only need the bottom element then we can just bitcast.
1806     // TODO: Handle ANY_EXTEND?
1807     if (IsVecInReg && DemandedElts == 1 &&
1808         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1809         TLO.DAG.getDataLayout().isLittleEndian())
1810       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1811 
1812     APInt InDemandedBits = DemandedBits.trunc(InBits);
1813     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1814     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1815                              Depth + 1))
1816       return true;
1817     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1818     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1819     Known = Known.zext(BitWidth, false /* => any extend */);
1820 
1821     // Attempt to avoid multi-use ops if we don't need anything from them.
1822     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1823             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1824       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1825     break;
1826   }
1827   case ISD::TRUNCATE: {
1828     SDValue Src = Op.getOperand(0);
1829 
1830     // Simplify the input, using demanded bit information, and compute the known
1831     // zero/one bits live out.
1832     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1833     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1834     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1835       return true;
1836     Known = Known.trunc(BitWidth);
1837 
1838     // Attempt to avoid multi-use ops if we don't need anything from them.
1839     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1840             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1841       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1842 
1843     // If the input is only used by this truncate, see if we can shrink it based
1844     // on the known demanded bits.
1845     if (Src.getNode()->hasOneUse()) {
1846       switch (Src.getOpcode()) {
1847       default:
1848         break;
1849       case ISD::SRL:
1850         // Shrink SRL by a constant if none of the high bits shifted in are
1851         // demanded.
1852         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1853           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1854           // undesirable.
1855           break;
1856 
1857         SDValue ShAmt = Src.getOperand(1);
1858         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
1859         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
1860           break;
1861         uint64_t ShVal = ShAmtC->getZExtValue();
1862 
1863         APInt HighBits =
1864             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1865         HighBits.lshrInPlace(ShVal);
1866         HighBits = HighBits.trunc(BitWidth);
1867 
1868         if (!(HighBits & DemandedBits)) {
1869           // None of the shifted in bits are needed.  Add a truncate of the
1870           // shift input, then shift it.
1871           if (TLO.LegalTypes())
1872             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1873           SDValue NewTrunc =
1874               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1875           return TLO.CombineTo(
1876               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
1877         }
1878         break;
1879       }
1880     }
1881 
1882     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1883     break;
1884   }
1885   case ISD::AssertZext: {
1886     // AssertZext demands all of the high bits, plus any of the low bits
1887     // demanded by its users.
1888     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1889     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1890     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1891                              TLO, Depth + 1))
1892       return true;
1893     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1894 
1895     Known.Zero |= ~InMask;
1896     break;
1897   }
1898   case ISD::EXTRACT_VECTOR_ELT: {
1899     SDValue Src = Op.getOperand(0);
1900     SDValue Idx = Op.getOperand(1);
1901     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1902     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1903 
1904     // Demand the bits from every vector element without a constant index.
1905     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1906     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1907       if (CIdx->getAPIntValue().ult(NumSrcElts))
1908         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1909 
1910     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1911     // anything about the extended bits.
1912     APInt DemandedSrcBits = DemandedBits;
1913     if (BitWidth > EltBitWidth)
1914       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1915 
1916     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1917                              Depth + 1))
1918       return true;
1919 
1920     // Attempt to avoid multi-use ops if we don't need anything from them.
1921     if (!DemandedSrcBits.isAllOnesValue() ||
1922         !DemandedSrcElts.isAllOnesValue()) {
1923       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1924               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
1925         SDValue NewOp =
1926             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
1927         return TLO.CombineTo(Op, NewOp);
1928       }
1929     }
1930 
1931     Known = Known2;
1932     if (BitWidth > EltBitWidth)
1933       Known = Known.zext(BitWidth, false /* => any extend */);
1934     break;
1935   }
1936   case ISD::BITCAST: {
1937     SDValue Src = Op.getOperand(0);
1938     EVT SrcVT = Src.getValueType();
1939     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1940 
1941     // If this is an FP->Int bitcast and if the sign bit is the only
1942     // thing demanded, turn this into a FGETSIGN.
1943     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1944         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1945         SrcVT.isFloatingPoint()) {
1946       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1947       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1948       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1949           SrcVT != MVT::f128) {
1950         // Cannot eliminate/lower SHL for f128 yet.
1951         EVT Ty = OpVTLegal ? VT : MVT::i32;
1952         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1953         // place.  We expect the SHL to be eliminated by other optimizations.
1954         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1955         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1956         if (!OpVTLegal && OpVTSizeInBits > 32)
1957           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1958         unsigned ShVal = Op.getValueSizeInBits() - 1;
1959         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1960         return TLO.CombineTo(Op,
1961                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1962       }
1963     }
1964 
1965     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1966     // Demand the elt/bit if any of the original elts/bits are demanded.
1967     // TODO - bigendian once we have test coverage.
1968     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
1969         TLO.DAG.getDataLayout().isLittleEndian()) {
1970       unsigned Scale = BitWidth / NumSrcEltBits;
1971       unsigned NumSrcElts = SrcVT.getVectorNumElements();
1972       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1973       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1974       for (unsigned i = 0; i != Scale; ++i) {
1975         unsigned Offset = i * NumSrcEltBits;
1976         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1977         if (!Sub.isNullValue()) {
1978           DemandedSrcBits |= Sub;
1979           for (unsigned j = 0; j != NumElts; ++j)
1980             if (DemandedElts[j])
1981               DemandedSrcElts.setBit((j * Scale) + i);
1982         }
1983       }
1984 
1985       APInt KnownSrcUndef, KnownSrcZero;
1986       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1987                                      KnownSrcZero, TLO, Depth + 1))
1988         return true;
1989 
1990       KnownBits KnownSrcBits;
1991       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1992                                KnownSrcBits, TLO, Depth + 1))
1993         return true;
1994     } else if ((NumSrcEltBits % BitWidth) == 0 &&
1995                TLO.DAG.getDataLayout().isLittleEndian()) {
1996       unsigned Scale = NumSrcEltBits / BitWidth;
1997       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1998       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1999       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2000       for (unsigned i = 0; i != NumElts; ++i)
2001         if (DemandedElts[i]) {
2002           unsigned Offset = (i % Scale) * BitWidth;
2003           DemandedSrcBits.insertBits(DemandedBits, Offset);
2004           DemandedSrcElts.setBit(i / Scale);
2005         }
2006 
2007       if (SrcVT.isVector()) {
2008         APInt KnownSrcUndef, KnownSrcZero;
2009         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2010                                        KnownSrcZero, TLO, Depth + 1))
2011           return true;
2012       }
2013 
2014       KnownBits KnownSrcBits;
2015       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2016                                KnownSrcBits, TLO, Depth + 1))
2017         return true;
2018     }
2019 
2020     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2021     // recursive call where Known may be useful to the caller.
2022     if (Depth > 0) {
2023       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2024       return false;
2025     }
2026     break;
2027   }
2028   case ISD::ADD:
2029   case ISD::MUL:
2030   case ISD::SUB: {
2031     // Add, Sub, and Mul don't demand any bits in positions beyond that
2032     // of the highest bit demanded of them.
2033     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2034     SDNodeFlags Flags = Op.getNode()->getFlags();
2035     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2036     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2037     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2038                              Depth + 1) ||
2039         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2040                              Depth + 1) ||
2041         // See if the operation should be performed at a smaller bit width.
2042         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2043       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2044         // Disable the nsw and nuw flags. We can no longer guarantee that we
2045         // won't wrap after simplification.
2046         Flags.setNoSignedWrap(false);
2047         Flags.setNoUnsignedWrap(false);
2048         SDValue NewOp =
2049             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2050         return TLO.CombineTo(Op, NewOp);
2051       }
2052       return true;
2053     }
2054 
2055     // Attempt to avoid multi-use ops if we don't need anything from them.
2056     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2057       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2058           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2059       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2060           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2061       if (DemandedOp0 || DemandedOp1) {
2062         Flags.setNoSignedWrap(false);
2063         Flags.setNoUnsignedWrap(false);
2064         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2065         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2066         SDValue NewOp =
2067             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2068         return TLO.CombineTo(Op, NewOp);
2069       }
2070     }
2071 
2072     // If we have a constant operand, we may be able to turn it into -1 if we
2073     // do not demand the high bits. This can make the constant smaller to
2074     // encode, allow more general folding, or match specialized instruction
2075     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2076     // is probably not useful (and could be detrimental).
2077     ConstantSDNode *C = isConstOrConstSplat(Op1);
2078     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2079     if (C && !C->isAllOnesValue() && !C->isOne() &&
2080         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2081       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2082       // Disable the nsw and nuw flags. We can no longer guarantee that we
2083       // won't wrap after simplification.
2084       Flags.setNoSignedWrap(false);
2085       Flags.setNoUnsignedWrap(false);
2086       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2087       return TLO.CombineTo(Op, NewOp);
2088     }
2089 
2090     LLVM_FALLTHROUGH;
2091   }
2092   default:
2093     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2094       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2095                                             Known, TLO, Depth))
2096         return true;
2097       break;
2098     }
2099 
2100     // Just use computeKnownBits to compute output bits.
2101     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2102     break;
2103   }
2104 
2105   // If we know the value of all of the demanded bits, return this as a
2106   // constant.
2107   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2108     // Avoid folding to a constant if any OpaqueConstant is involved.
2109     const SDNode *N = Op.getNode();
2110     for (SDNodeIterator I = SDNodeIterator::begin(N),
2111                         E = SDNodeIterator::end(N);
2112          I != E; ++I) {
2113       SDNode *Op = *I;
2114       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2115         if (C->isOpaque())
2116           return false;
2117     }
2118     // TODO: Handle float bits as well.
2119     if (VT.isInteger())
2120       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2121   }
2122 
2123   return false;
2124 }
2125 
2126 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2127                                                 const APInt &DemandedElts,
2128                                                 APInt &KnownUndef,
2129                                                 APInt &KnownZero,
2130                                                 DAGCombinerInfo &DCI) const {
2131   SelectionDAG &DAG = DCI.DAG;
2132   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2133                         !DCI.isBeforeLegalizeOps());
2134 
2135   bool Simplified =
2136       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2137   if (Simplified) {
2138     DCI.AddToWorklist(Op.getNode());
2139     DCI.CommitTargetLoweringOpt(TLO);
2140   }
2141 
2142   return Simplified;
2143 }
2144 
2145 /// Given a vector binary operation and known undefined elements for each input
2146 /// operand, compute whether each element of the output is undefined.
2147 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2148                                          const APInt &UndefOp0,
2149                                          const APInt &UndefOp1) {
2150   EVT VT = BO.getValueType();
2151   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2152          "Vector binop only");
2153 
2154   EVT EltVT = VT.getVectorElementType();
2155   unsigned NumElts = VT.getVectorNumElements();
2156   assert(UndefOp0.getBitWidth() == NumElts &&
2157          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2158 
2159   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2160                                    const APInt &UndefVals) {
2161     if (UndefVals[Index])
2162       return DAG.getUNDEF(EltVT);
2163 
2164     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2165       // Try hard to make sure that the getNode() call is not creating temporary
2166       // nodes. Ignore opaque integers because they do not constant fold.
2167       SDValue Elt = BV->getOperand(Index);
2168       auto *C = dyn_cast<ConstantSDNode>(Elt);
2169       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2170         return Elt;
2171     }
2172 
2173     return SDValue();
2174   };
2175 
2176   APInt KnownUndef = APInt::getNullValue(NumElts);
2177   for (unsigned i = 0; i != NumElts; ++i) {
2178     // If both inputs for this element are either constant or undef and match
2179     // the element type, compute the constant/undef result for this element of
2180     // the vector.
2181     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2182     // not handle FP constants. The code within getNode() should be refactored
2183     // to avoid the danger of creating a bogus temporary node here.
2184     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2185     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2186     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2187       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2188         KnownUndef.setBit(i);
2189   }
2190   return KnownUndef;
2191 }
2192 
2193 bool TargetLowering::SimplifyDemandedVectorElts(
2194     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2195     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2196     bool AssumeSingleUse) const {
2197   EVT VT = Op.getValueType();
2198   APInt DemandedElts = OriginalDemandedElts;
2199   unsigned NumElts = DemandedElts.getBitWidth();
2200   assert(VT.isVector() && "Expected vector op");
2201   assert(VT.getVectorNumElements() == NumElts &&
2202          "Mask size mismatches value type element count!");
2203 
2204   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2205 
2206   // Undef operand.
2207   if (Op.isUndef()) {
2208     KnownUndef.setAllBits();
2209     return false;
2210   }
2211 
2212   // If Op has other users, assume that all elements are needed.
2213   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2214     DemandedElts.setAllBits();
2215 
2216   // Not demanding any elements from Op.
2217   if (DemandedElts == 0) {
2218     KnownUndef.setAllBits();
2219     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2220   }
2221 
2222   // Limit search depth.
2223   if (Depth >= SelectionDAG::MaxRecursionDepth)
2224     return false;
2225 
2226   SDLoc DL(Op);
2227   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2228 
2229   switch (Op.getOpcode()) {
2230   case ISD::SCALAR_TO_VECTOR: {
2231     if (!DemandedElts[0]) {
2232       KnownUndef.setAllBits();
2233       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2234     }
2235     KnownUndef.setHighBits(NumElts - 1);
2236     break;
2237   }
2238   case ISD::BITCAST: {
2239     SDValue Src = Op.getOperand(0);
2240     EVT SrcVT = Src.getValueType();
2241 
2242     // We only handle vectors here.
2243     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2244     if (!SrcVT.isVector())
2245       break;
2246 
2247     // Fast handling of 'identity' bitcasts.
2248     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2249     if (NumSrcElts == NumElts)
2250       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2251                                         KnownZero, TLO, Depth + 1);
2252 
2253     APInt SrcZero, SrcUndef;
2254     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2255 
2256     // Bitcast from 'large element' src vector to 'small element' vector, we
2257     // must demand a source element if any DemandedElt maps to it.
2258     if ((NumElts % NumSrcElts) == 0) {
2259       unsigned Scale = NumElts / NumSrcElts;
2260       for (unsigned i = 0; i != NumElts; ++i)
2261         if (DemandedElts[i])
2262           SrcDemandedElts.setBit(i / Scale);
2263 
2264       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2265                                      TLO, Depth + 1))
2266         return true;
2267 
2268       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2269       // of the large element.
2270       // TODO - bigendian once we have test coverage.
2271       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2272         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2273         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2274         for (unsigned i = 0; i != NumElts; ++i)
2275           if (DemandedElts[i]) {
2276             unsigned Ofs = (i % Scale) * EltSizeInBits;
2277             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2278           }
2279 
2280         KnownBits Known;
2281         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
2282           return true;
2283       }
2284 
2285       // If the src element is zero/undef then all the output elements will be -
2286       // only demanded elements are guaranteed to be correct.
2287       for (unsigned i = 0; i != NumSrcElts; ++i) {
2288         if (SrcDemandedElts[i]) {
2289           if (SrcZero[i])
2290             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2291           if (SrcUndef[i])
2292             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2293         }
2294       }
2295     }
2296 
2297     // Bitcast from 'small element' src vector to 'large element' vector, we
2298     // demand all smaller source elements covered by the larger demanded element
2299     // of this vector.
2300     if ((NumSrcElts % NumElts) == 0) {
2301       unsigned Scale = NumSrcElts / NumElts;
2302       for (unsigned i = 0; i != NumElts; ++i)
2303         if (DemandedElts[i])
2304           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2305 
2306       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2307                                      TLO, Depth + 1))
2308         return true;
2309 
2310       // If all the src elements covering an output element are zero/undef, then
2311       // the output element will be as well, assuming it was demanded.
2312       for (unsigned i = 0; i != NumElts; ++i) {
2313         if (DemandedElts[i]) {
2314           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2315             KnownZero.setBit(i);
2316           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2317             KnownUndef.setBit(i);
2318         }
2319       }
2320     }
2321     break;
2322   }
2323   case ISD::BUILD_VECTOR: {
2324     // Check all elements and simplify any unused elements with UNDEF.
2325     if (!DemandedElts.isAllOnesValue()) {
2326       // Don't simplify BROADCASTS.
2327       if (llvm::any_of(Op->op_values(),
2328                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2329         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2330         bool Updated = false;
2331         for (unsigned i = 0; i != NumElts; ++i) {
2332           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2333             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2334             KnownUndef.setBit(i);
2335             Updated = true;
2336           }
2337         }
2338         if (Updated)
2339           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2340       }
2341     }
2342     for (unsigned i = 0; i != NumElts; ++i) {
2343       SDValue SrcOp = Op.getOperand(i);
2344       if (SrcOp.isUndef()) {
2345         KnownUndef.setBit(i);
2346       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2347                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2348         KnownZero.setBit(i);
2349       }
2350     }
2351     break;
2352   }
2353   case ISD::CONCAT_VECTORS: {
2354     EVT SubVT = Op.getOperand(0).getValueType();
2355     unsigned NumSubVecs = Op.getNumOperands();
2356     unsigned NumSubElts = SubVT.getVectorNumElements();
2357     for (unsigned i = 0; i != NumSubVecs; ++i) {
2358       SDValue SubOp = Op.getOperand(i);
2359       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2360       APInt SubUndef, SubZero;
2361       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2362                                      Depth + 1))
2363         return true;
2364       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2365       KnownZero.insertBits(SubZero, i * NumSubElts);
2366     }
2367     break;
2368   }
2369   case ISD::INSERT_SUBVECTOR: {
2370     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2371       break;
2372     SDValue Base = Op.getOperand(0);
2373     SDValue Sub = Op.getOperand(1);
2374     EVT SubVT = Sub.getValueType();
2375     unsigned NumSubElts = SubVT.getVectorNumElements();
2376     const APInt &Idx = Op.getConstantOperandAPInt(2);
2377     if (Idx.ugt(NumElts - NumSubElts))
2378       break;
2379     unsigned SubIdx = Idx.getZExtValue();
2380     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2381     APInt SubUndef, SubZero;
2382     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2383                                    Depth + 1))
2384       return true;
2385     APInt BaseElts = DemandedElts;
2386     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2387 
2388     // If none of the base operand elements are demanded, replace it with undef.
2389     if (!BaseElts && !Base.isUndef())
2390       return TLO.CombineTo(Op,
2391                            TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2392                                            TLO.DAG.getUNDEF(VT),
2393                                            Op.getOperand(1),
2394                                            Op.getOperand(2)));
2395 
2396     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2397                                    Depth + 1))
2398       return true;
2399     KnownUndef.insertBits(SubUndef, SubIdx);
2400     KnownZero.insertBits(SubZero, SubIdx);
2401     break;
2402   }
2403   case ISD::EXTRACT_SUBVECTOR: {
2404     SDValue Src = Op.getOperand(0);
2405     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2406     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2407     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2408       // Offset the demanded elts by the subvector index.
2409       uint64_t Idx = SubIdx->getZExtValue();
2410       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2411       APInt SrcUndef, SrcZero;
2412       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2413                                      Depth + 1))
2414         return true;
2415       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2416       KnownZero = SrcZero.extractBits(NumElts, Idx);
2417     }
2418     break;
2419   }
2420   case ISD::INSERT_VECTOR_ELT: {
2421     SDValue Vec = Op.getOperand(0);
2422     SDValue Scl = Op.getOperand(1);
2423     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2424 
2425     // For a legal, constant insertion index, if we don't need this insertion
2426     // then strip it, else remove it from the demanded elts.
2427     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2428       unsigned Idx = CIdx->getZExtValue();
2429       if (!DemandedElts[Idx])
2430         return TLO.CombineTo(Op, Vec);
2431 
2432       APInt DemandedVecElts(DemandedElts);
2433       DemandedVecElts.clearBit(Idx);
2434       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2435                                      KnownZero, TLO, Depth + 1))
2436         return true;
2437 
2438       KnownUndef.clearBit(Idx);
2439       if (Scl.isUndef())
2440         KnownUndef.setBit(Idx);
2441 
2442       KnownZero.clearBit(Idx);
2443       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2444         KnownZero.setBit(Idx);
2445       break;
2446     }
2447 
2448     APInt VecUndef, VecZero;
2449     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2450                                    Depth + 1))
2451       return true;
2452     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2453     break;
2454   }
2455   case ISD::VSELECT: {
2456     // Try to transform the select condition based on the current demanded
2457     // elements.
2458     // TODO: If a condition element is undef, we can choose from one arm of the
2459     //       select (and if one arm is undef, then we can propagate that to the
2460     //       result).
2461     // TODO - add support for constant vselect masks (see IR version of this).
2462     APInt UnusedUndef, UnusedZero;
2463     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2464                                    UnusedZero, TLO, Depth + 1))
2465       return true;
2466 
2467     // See if we can simplify either vselect operand.
2468     APInt DemandedLHS(DemandedElts);
2469     APInt DemandedRHS(DemandedElts);
2470     APInt UndefLHS, ZeroLHS;
2471     APInt UndefRHS, ZeroRHS;
2472     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2473                                    ZeroLHS, TLO, Depth + 1))
2474       return true;
2475     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2476                                    ZeroRHS, TLO, Depth + 1))
2477       return true;
2478 
2479     KnownUndef = UndefLHS & UndefRHS;
2480     KnownZero = ZeroLHS & ZeroRHS;
2481     break;
2482   }
2483   case ISD::VECTOR_SHUFFLE: {
2484     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2485 
2486     // Collect demanded elements from shuffle operands..
2487     APInt DemandedLHS(NumElts, 0);
2488     APInt DemandedRHS(NumElts, 0);
2489     for (unsigned i = 0; i != NumElts; ++i) {
2490       int M = ShuffleMask[i];
2491       if (M < 0 || !DemandedElts[i])
2492         continue;
2493       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2494       if (M < (int)NumElts)
2495         DemandedLHS.setBit(M);
2496       else
2497         DemandedRHS.setBit(M - NumElts);
2498     }
2499 
2500     // See if we can simplify either shuffle operand.
2501     APInt UndefLHS, ZeroLHS;
2502     APInt UndefRHS, ZeroRHS;
2503     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2504                                    ZeroLHS, TLO, Depth + 1))
2505       return true;
2506     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2507                                    ZeroRHS, TLO, Depth + 1))
2508       return true;
2509 
2510     // Simplify mask using undef elements from LHS/RHS.
2511     bool Updated = false;
2512     bool IdentityLHS = true, IdentityRHS = true;
2513     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2514     for (unsigned i = 0; i != NumElts; ++i) {
2515       int &M = NewMask[i];
2516       if (M < 0)
2517         continue;
2518       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2519           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2520         Updated = true;
2521         M = -1;
2522       }
2523       IdentityLHS &= (M < 0) || (M == (int)i);
2524       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2525     }
2526 
2527     // Update legal shuffle masks based on demanded elements if it won't reduce
2528     // to Identity which can cause premature removal of the shuffle mask.
2529     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2530       SDValue LegalShuffle =
2531           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2532                                   NewMask, TLO.DAG);
2533       if (LegalShuffle)
2534         return TLO.CombineTo(Op, LegalShuffle);
2535     }
2536 
2537     // Propagate undef/zero elements from LHS/RHS.
2538     for (unsigned i = 0; i != NumElts; ++i) {
2539       int M = ShuffleMask[i];
2540       if (M < 0) {
2541         KnownUndef.setBit(i);
2542       } else if (M < (int)NumElts) {
2543         if (UndefLHS[M])
2544           KnownUndef.setBit(i);
2545         if (ZeroLHS[M])
2546           KnownZero.setBit(i);
2547       } else {
2548         if (UndefRHS[M - NumElts])
2549           KnownUndef.setBit(i);
2550         if (ZeroRHS[M - NumElts])
2551           KnownZero.setBit(i);
2552       }
2553     }
2554     break;
2555   }
2556   case ISD::ANY_EXTEND_VECTOR_INREG:
2557   case ISD::SIGN_EXTEND_VECTOR_INREG:
2558   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2559     APInt SrcUndef, SrcZero;
2560     SDValue Src = Op.getOperand(0);
2561     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2562     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2563     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2564                                    Depth + 1))
2565       return true;
2566     KnownZero = SrcZero.zextOrTrunc(NumElts);
2567     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2568 
2569     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2570         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2571         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2572       // aext - if we just need the bottom element then we can bitcast.
2573       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2574     }
2575 
2576     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2577       // zext(undef) upper bits are guaranteed to be zero.
2578       if (DemandedElts.isSubsetOf(KnownUndef))
2579         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2580       KnownUndef.clearAllBits();
2581     }
2582     break;
2583   }
2584 
2585   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2586   // MAX, saturated math, etc.
2587   case ISD::OR:
2588   case ISD::XOR:
2589   case ISD::ADD:
2590   case ISD::SUB:
2591   case ISD::FADD:
2592   case ISD::FSUB:
2593   case ISD::FMUL:
2594   case ISD::FDIV:
2595   case ISD::FREM: {
2596     APInt UndefRHS, ZeroRHS;
2597     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2598                                    ZeroRHS, TLO, Depth + 1))
2599       return true;
2600     APInt UndefLHS, ZeroLHS;
2601     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2602                                    ZeroLHS, TLO, Depth + 1))
2603       return true;
2604 
2605     KnownZero = ZeroLHS & ZeroRHS;
2606     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2607     break;
2608   }
2609   case ISD::SHL:
2610   case ISD::SRL:
2611   case ISD::SRA:
2612   case ISD::ROTL:
2613   case ISD::ROTR: {
2614     APInt UndefRHS, ZeroRHS;
2615     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2616                                    ZeroRHS, TLO, Depth + 1))
2617       return true;
2618     APInt UndefLHS, ZeroLHS;
2619     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2620                                    ZeroLHS, TLO, Depth + 1))
2621       return true;
2622 
2623     KnownZero = ZeroLHS;
2624     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2625     break;
2626   }
2627   case ISD::MUL:
2628   case ISD::AND: {
2629     APInt SrcUndef, SrcZero;
2630     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2631                                    SrcZero, TLO, Depth + 1))
2632       return true;
2633     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2634                                    KnownZero, TLO, Depth + 1))
2635       return true;
2636 
2637     // If either side has a zero element, then the result element is zero, even
2638     // if the other is an UNDEF.
2639     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2640     // and then handle 'and' nodes with the rest of the binop opcodes.
2641     KnownZero |= SrcZero;
2642     KnownUndef &= SrcUndef;
2643     KnownUndef &= ~KnownZero;
2644     break;
2645   }
2646   case ISD::TRUNCATE:
2647   case ISD::SIGN_EXTEND:
2648   case ISD::ZERO_EXTEND:
2649     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2650                                    KnownZero, TLO, Depth + 1))
2651       return true;
2652 
2653     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2654       // zext(undef) upper bits are guaranteed to be zero.
2655       if (DemandedElts.isSubsetOf(KnownUndef))
2656         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2657       KnownUndef.clearAllBits();
2658     }
2659     break;
2660   default: {
2661     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2662       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2663                                                   KnownZero, TLO, Depth))
2664         return true;
2665     } else {
2666       KnownBits Known;
2667       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2668       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2669                                TLO, Depth, AssumeSingleUse))
2670         return true;
2671     }
2672     break;
2673   }
2674   }
2675   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2676 
2677   // Constant fold all undef cases.
2678   // TODO: Handle zero cases as well.
2679   if (DemandedElts.isSubsetOf(KnownUndef))
2680     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2681 
2682   return false;
2683 }
2684 
2685 /// Determine which of the bits specified in Mask are known to be either zero or
2686 /// one and return them in the Known.
2687 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2688                                                    KnownBits &Known,
2689                                                    const APInt &DemandedElts,
2690                                                    const SelectionDAG &DAG,
2691                                                    unsigned Depth) const {
2692   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2693           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2694           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2695           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2696          "Should use MaskedValueIsZero if you don't know whether Op"
2697          " is a target node!");
2698   Known.resetAll();
2699 }
2700 
2701 void TargetLowering::computeKnownBitsForTargetInstr(
2702     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2703     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2704     unsigned Depth) const {
2705   Known.resetAll();
2706 }
2707 
2708 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2709                                                    KnownBits &Known,
2710                                                    const APInt &DemandedElts,
2711                                                    const SelectionDAG &DAG,
2712                                                    unsigned Depth) const {
2713   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2714 
2715   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2716     // The low bits are known zero if the pointer is aligned.
2717     Known.Zero.setLowBits(Log2_32(Align));
2718   }
2719 }
2720 
2721 /// This method can be implemented by targets that want to expose additional
2722 /// information about sign bits to the DAG Combiner.
2723 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2724                                                          const APInt &,
2725                                                          const SelectionDAG &,
2726                                                          unsigned Depth) const {
2727   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2728           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2729           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2730           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2731          "Should use ComputeNumSignBits if you don't know whether Op"
2732          " is a target node!");
2733   return 1;
2734 }
2735 
2736 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2737     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2738     TargetLoweringOpt &TLO, unsigned Depth) const {
2739   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2740           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2741           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2742           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2743          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2744          " is a target node!");
2745   return false;
2746 }
2747 
2748 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2749     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2750     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2751   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2752           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2753           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2754           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2755          "Should use SimplifyDemandedBits if you don't know whether Op"
2756          " is a target node!");
2757   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2758   return false;
2759 }
2760 
2761 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2762     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2763     SelectionDAG &DAG, unsigned Depth) const {
2764   assert(
2765       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2766        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2767        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2768        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2769       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2770       " is a target node!");
2771   return SDValue();
2772 }
2773 
2774 SDValue
2775 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2776                                         SDValue N1, MutableArrayRef<int> Mask,
2777                                         SelectionDAG &DAG) const {
2778   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2779   if (!LegalMask) {
2780     std::swap(N0, N1);
2781     ShuffleVectorSDNode::commuteMask(Mask);
2782     LegalMask = isShuffleMaskLegal(Mask, VT);
2783   }
2784 
2785   if (!LegalMask)
2786     return SDValue();
2787 
2788   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2789 }
2790 
2791 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2792   return nullptr;
2793 }
2794 
2795 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2796                                                   const SelectionDAG &DAG,
2797                                                   bool SNaN,
2798                                                   unsigned Depth) const {
2799   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2800           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2801           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2802           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2803          "Should use isKnownNeverNaN if you don't know whether Op"
2804          " is a target node!");
2805   return false;
2806 }
2807 
2808 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2809 // work with truncating build vectors and vectors with elements of less than
2810 // 8 bits.
2811 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2812   if (!N)
2813     return false;
2814 
2815   APInt CVal;
2816   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2817     CVal = CN->getAPIntValue();
2818   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2819     auto *CN = BV->getConstantSplatNode();
2820     if (!CN)
2821       return false;
2822 
2823     // If this is a truncating build vector, truncate the splat value.
2824     // Otherwise, we may fail to match the expected values below.
2825     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2826     CVal = CN->getAPIntValue();
2827     if (BVEltWidth < CVal.getBitWidth())
2828       CVal = CVal.trunc(BVEltWidth);
2829   } else {
2830     return false;
2831   }
2832 
2833   switch (getBooleanContents(N->getValueType(0))) {
2834   case UndefinedBooleanContent:
2835     return CVal[0];
2836   case ZeroOrOneBooleanContent:
2837     return CVal.isOneValue();
2838   case ZeroOrNegativeOneBooleanContent:
2839     return CVal.isAllOnesValue();
2840   }
2841 
2842   llvm_unreachable("Invalid boolean contents");
2843 }
2844 
2845 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2846   if (!N)
2847     return false;
2848 
2849   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2850   if (!CN) {
2851     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2852     if (!BV)
2853       return false;
2854 
2855     // Only interested in constant splats, we don't care about undef
2856     // elements in identifying boolean constants and getConstantSplatNode
2857     // returns NULL if all ops are undef;
2858     CN = BV->getConstantSplatNode();
2859     if (!CN)
2860       return false;
2861   }
2862 
2863   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2864     return !CN->getAPIntValue()[0];
2865 
2866   return CN->isNullValue();
2867 }
2868 
2869 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2870                                        bool SExt) const {
2871   if (VT == MVT::i1)
2872     return N->isOne();
2873 
2874   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2875   switch (Cnt) {
2876   case TargetLowering::ZeroOrOneBooleanContent:
2877     // An extended value of 1 is always true, unless its original type is i1,
2878     // in which case it will be sign extended to -1.
2879     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2880   case TargetLowering::UndefinedBooleanContent:
2881   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2882     return N->isAllOnesValue() && SExt;
2883   }
2884   llvm_unreachable("Unexpected enumeration.");
2885 }
2886 
2887 /// This helper function of SimplifySetCC tries to optimize the comparison when
2888 /// either operand of the SetCC node is a bitwise-and instruction.
2889 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2890                                          ISD::CondCode Cond, const SDLoc &DL,
2891                                          DAGCombinerInfo &DCI) const {
2892   // Match these patterns in any of their permutations:
2893   // (X & Y) == Y
2894   // (X & Y) != Y
2895   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2896     std::swap(N0, N1);
2897 
2898   EVT OpVT = N0.getValueType();
2899   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2900       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2901     return SDValue();
2902 
2903   SDValue X, Y;
2904   if (N0.getOperand(0) == N1) {
2905     X = N0.getOperand(1);
2906     Y = N0.getOperand(0);
2907   } else if (N0.getOperand(1) == N1) {
2908     X = N0.getOperand(0);
2909     Y = N0.getOperand(1);
2910   } else {
2911     return SDValue();
2912   }
2913 
2914   SelectionDAG &DAG = DCI.DAG;
2915   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2916   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2917     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2918     // Note that where Y is variable and is known to have at most one bit set
2919     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2920     // equivalent when Y == 0.
2921     assert(OpVT.isInteger());
2922     Cond = ISD::getSetCCInverse(Cond, OpVT);
2923     if (DCI.isBeforeLegalizeOps() ||
2924         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2925       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2926   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2927     // If the target supports an 'and-not' or 'and-complement' logic operation,
2928     // try to use that to make a comparison operation more efficient.
2929     // But don't do this transform if the mask is a single bit because there are
2930     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2931     // 'rlwinm' on PPC).
2932 
2933     // Bail out if the compare operand that we want to turn into a zero is
2934     // already a zero (otherwise, infinite loop).
2935     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2936     if (YConst && YConst->isNullValue())
2937       return SDValue();
2938 
2939     // Transform this into: ~X & Y == 0.
2940     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2941     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2942     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2943   }
2944 
2945   return SDValue();
2946 }
2947 
2948 /// There are multiple IR patterns that could be checking whether certain
2949 /// truncation of a signed number would be lossy or not. The pattern which is
2950 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2951 /// We are looking for the following pattern: (KeptBits is a constant)
2952 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2953 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2954 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2955 /// We will unfold it into the natural trunc+sext pattern:
2956 ///   ((%x << C) a>> C) dstcond %x
2957 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2958 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2959     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2960     const SDLoc &DL) const {
2961   // We must be comparing with a constant.
2962   ConstantSDNode *C1;
2963   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2964     return SDValue();
2965 
2966   // N0 should be:  add %x, (1 << (KeptBits-1))
2967   if (N0->getOpcode() != ISD::ADD)
2968     return SDValue();
2969 
2970   // And we must be 'add'ing a constant.
2971   ConstantSDNode *C01;
2972   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2973     return SDValue();
2974 
2975   SDValue X = N0->getOperand(0);
2976   EVT XVT = X.getValueType();
2977 
2978   // Validate constants ...
2979 
2980   APInt I1 = C1->getAPIntValue();
2981 
2982   ISD::CondCode NewCond;
2983   if (Cond == ISD::CondCode::SETULT) {
2984     NewCond = ISD::CondCode::SETEQ;
2985   } else if (Cond == ISD::CondCode::SETULE) {
2986     NewCond = ISD::CondCode::SETEQ;
2987     // But need to 'canonicalize' the constant.
2988     I1 += 1;
2989   } else if (Cond == ISD::CondCode::SETUGT) {
2990     NewCond = ISD::CondCode::SETNE;
2991     // But need to 'canonicalize' the constant.
2992     I1 += 1;
2993   } else if (Cond == ISD::CondCode::SETUGE) {
2994     NewCond = ISD::CondCode::SETNE;
2995   } else
2996     return SDValue();
2997 
2998   APInt I01 = C01->getAPIntValue();
2999 
3000   auto checkConstants = [&I1, &I01]() -> bool {
3001     // Both of them must be power-of-two, and the constant from setcc is bigger.
3002     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3003   };
3004 
3005   if (checkConstants()) {
3006     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3007   } else {
3008     // What if we invert constants? (and the target predicate)
3009     I1.negate();
3010     I01.negate();
3011     assert(XVT.isInteger());
3012     NewCond = getSetCCInverse(NewCond, XVT);
3013     if (!checkConstants())
3014       return SDValue();
3015     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3016   }
3017 
3018   // They are power-of-two, so which bit is set?
3019   const unsigned KeptBits = I1.logBase2();
3020   const unsigned KeptBitsMinusOne = I01.logBase2();
3021 
3022   // Magic!
3023   if (KeptBits != (KeptBitsMinusOne + 1))
3024     return SDValue();
3025   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3026 
3027   // We don't want to do this in every single case.
3028   SelectionDAG &DAG = DCI.DAG;
3029   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3030           XVT, KeptBits))
3031     return SDValue();
3032 
3033   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3034   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3035 
3036   // Unfold into:  ((%x << C) a>> C) cond %x
3037   // Where 'cond' will be either 'eq' or 'ne'.
3038   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3039   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3040   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3041   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3042 
3043   return T2;
3044 }
3045 
3046 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3047 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3048     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3049     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3050   assert(isConstOrConstSplat(N1C) &&
3051          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3052          "Should be a comparison with 0.");
3053   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3054          "Valid only for [in]equality comparisons.");
3055 
3056   unsigned NewShiftOpcode;
3057   SDValue X, C, Y;
3058 
3059   SelectionDAG &DAG = DCI.DAG;
3060   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3061 
3062   // Look for '(C l>>/<< Y)'.
3063   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3064     // The shift should be one-use.
3065     if (!V.hasOneUse())
3066       return false;
3067     unsigned OldShiftOpcode = V.getOpcode();
3068     switch (OldShiftOpcode) {
3069     case ISD::SHL:
3070       NewShiftOpcode = ISD::SRL;
3071       break;
3072     case ISD::SRL:
3073       NewShiftOpcode = ISD::SHL;
3074       break;
3075     default:
3076       return false; // must be a logical shift.
3077     }
3078     // We should be shifting a constant.
3079     // FIXME: best to use isConstantOrConstantVector().
3080     C = V.getOperand(0);
3081     ConstantSDNode *CC =
3082         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3083     if (!CC)
3084       return false;
3085     Y = V.getOperand(1);
3086 
3087     ConstantSDNode *XC =
3088         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3089     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3090         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3091   };
3092 
3093   // LHS of comparison should be an one-use 'and'.
3094   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3095     return SDValue();
3096 
3097   X = N0.getOperand(0);
3098   SDValue Mask = N0.getOperand(1);
3099 
3100   // 'and' is commutative!
3101   if (!Match(Mask)) {
3102     std::swap(X, Mask);
3103     if (!Match(Mask))
3104       return SDValue();
3105   }
3106 
3107   EVT VT = X.getValueType();
3108 
3109   // Produce:
3110   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3111   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3112   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3113   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3114   return T2;
3115 }
3116 
3117 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3118 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3119 /// handle the commuted versions of these patterns.
3120 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3121                                            ISD::CondCode Cond, const SDLoc &DL,
3122                                            DAGCombinerInfo &DCI) const {
3123   unsigned BOpcode = N0.getOpcode();
3124   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3125          "Unexpected binop");
3126   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3127 
3128   // (X + Y) == X --> Y == 0
3129   // (X - Y) == X --> Y == 0
3130   // (X ^ Y) == X --> Y == 0
3131   SelectionDAG &DAG = DCI.DAG;
3132   EVT OpVT = N0.getValueType();
3133   SDValue X = N0.getOperand(0);
3134   SDValue Y = N0.getOperand(1);
3135   if (X == N1)
3136     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3137 
3138   if (Y != N1)
3139     return SDValue();
3140 
3141   // (X + Y) == Y --> X == 0
3142   // (X ^ Y) == Y --> X == 0
3143   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3144     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3145 
3146   // The shift would not be valid if the operands are boolean (i1).
3147   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3148     return SDValue();
3149 
3150   // (X - Y) == Y --> X == Y << 1
3151   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3152                                  !DCI.isBeforeLegalize());
3153   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3154   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3155   if (!DCI.isCalledByLegalizer())
3156     DCI.AddToWorklist(YShl1.getNode());
3157   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3158 }
3159 
3160 /// Try to simplify a setcc built with the specified operands and cc. If it is
3161 /// unable to simplify it, return a null SDValue.
3162 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3163                                       ISD::CondCode Cond, bool foldBooleans,
3164                                       DAGCombinerInfo &DCI,
3165                                       const SDLoc &dl) const {
3166   SelectionDAG &DAG = DCI.DAG;
3167   const DataLayout &Layout = DAG.getDataLayout();
3168   EVT OpVT = N0.getValueType();
3169 
3170   // Constant fold or commute setcc.
3171   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3172     return Fold;
3173 
3174   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3175   // TODO: Handle non-splat vector constants. All undef causes trouble.
3176   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3177   if (isConstOrConstSplat(N0) &&
3178       (DCI.isBeforeLegalizeOps() ||
3179        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3180     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3181 
3182   // If we have a subtract with the same 2 non-constant operands as this setcc
3183   // -- but in reverse order -- then try to commute the operands of this setcc
3184   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3185   // instruction on some targets.
3186   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3187       (DCI.isBeforeLegalizeOps() ||
3188        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3189       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3190       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3191     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3192 
3193   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3194     const APInt &C1 = N1C->getAPIntValue();
3195 
3196     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3197     // equality comparison, then we're just comparing whether X itself is
3198     // zero.
3199     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3200         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3201         N0.getOperand(1).getOpcode() == ISD::Constant) {
3202       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3203       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3204           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3205         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3206           // (srl (ctlz x), 5) == 0  -> X != 0
3207           // (srl (ctlz x), 5) != 1  -> X != 0
3208           Cond = ISD::SETNE;
3209         } else {
3210           // (srl (ctlz x), 5) != 0  -> X == 0
3211           // (srl (ctlz x), 5) == 1  -> X == 0
3212           Cond = ISD::SETEQ;
3213         }
3214         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3215         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3216                             Zero, Cond);
3217       }
3218     }
3219 
3220     SDValue CTPOP = N0;
3221     // Look through truncs that don't change the value of a ctpop.
3222     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3223       CTPOP = N0.getOperand(0);
3224 
3225     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3226         (N0 == CTPOP ||
3227          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3228       EVT CTVT = CTPOP.getValueType();
3229       SDValue CTOp = CTPOP.getOperand(0);
3230 
3231       // (ctpop x) u< 2 -> (x & x-1) == 0
3232       // (ctpop x) u> 1 -> (x & x-1) != 0
3233       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3234         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3235         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3236         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3237         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3238         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3239       }
3240 
3241       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3242       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3243           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3244         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3245         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3246         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3247         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3248         assert(CTVT.isInteger());
3249         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3250         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3251         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3252         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3253         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3254         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3255         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3256       }
3257     }
3258 
3259     // (zext x) == C --> x == (trunc C)
3260     // (sext x) == C --> x == (trunc C)
3261     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3262         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3263       unsigned MinBits = N0.getValueSizeInBits();
3264       SDValue PreExt;
3265       bool Signed = false;
3266       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3267         // ZExt
3268         MinBits = N0->getOperand(0).getValueSizeInBits();
3269         PreExt = N0->getOperand(0);
3270       } else if (N0->getOpcode() == ISD::AND) {
3271         // DAGCombine turns costly ZExts into ANDs
3272         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3273           if ((C->getAPIntValue()+1).isPowerOf2()) {
3274             MinBits = C->getAPIntValue().countTrailingOnes();
3275             PreExt = N0->getOperand(0);
3276           }
3277       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3278         // SExt
3279         MinBits = N0->getOperand(0).getValueSizeInBits();
3280         PreExt = N0->getOperand(0);
3281         Signed = true;
3282       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3283         // ZEXTLOAD / SEXTLOAD
3284         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3285           MinBits = LN0->getMemoryVT().getSizeInBits();
3286           PreExt = N0;
3287         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3288           Signed = true;
3289           MinBits = LN0->getMemoryVT().getSizeInBits();
3290           PreExt = N0;
3291         }
3292       }
3293 
3294       // Figure out how many bits we need to preserve this constant.
3295       unsigned ReqdBits = Signed ?
3296         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3297         C1.getActiveBits();
3298 
3299       // Make sure we're not losing bits from the constant.
3300       if (MinBits > 0 &&
3301           MinBits < C1.getBitWidth() &&
3302           MinBits >= ReqdBits) {
3303         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3304         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3305           // Will get folded away.
3306           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3307           if (MinBits == 1 && C1 == 1)
3308             // Invert the condition.
3309             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3310                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3311           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3312           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3313         }
3314 
3315         // If truncating the setcc operands is not desirable, we can still
3316         // simplify the expression in some cases:
3317         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3318         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3319         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3320         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3321         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3322         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3323         SDValue TopSetCC = N0->getOperand(0);
3324         unsigned N0Opc = N0->getOpcode();
3325         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3326         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3327             TopSetCC.getOpcode() == ISD::SETCC &&
3328             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3329             (isConstFalseVal(N1C) ||
3330              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3331 
3332           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3333                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3334 
3335           if (!Inverse)
3336             return TopSetCC;
3337 
3338           ISD::CondCode InvCond = ISD::getSetCCInverse(
3339               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3340               TopSetCC.getOperand(0).getValueType());
3341           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3342                                       TopSetCC.getOperand(1),
3343                                       InvCond);
3344         }
3345       }
3346     }
3347 
3348     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3349     // equality or unsigned, and all 1 bits of the const are in the same
3350     // partial word, see if we can shorten the load.
3351     if (DCI.isBeforeLegalize() &&
3352         !ISD::isSignedIntSetCC(Cond) &&
3353         N0.getOpcode() == ISD::AND && C1 == 0 &&
3354         N0.getNode()->hasOneUse() &&
3355         isa<LoadSDNode>(N0.getOperand(0)) &&
3356         N0.getOperand(0).getNode()->hasOneUse() &&
3357         isa<ConstantSDNode>(N0.getOperand(1))) {
3358       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3359       APInt bestMask;
3360       unsigned bestWidth = 0, bestOffset = 0;
3361       if (Lod->isSimple() && Lod->isUnindexed()) {
3362         unsigned origWidth = N0.getValueSizeInBits();
3363         unsigned maskWidth = origWidth;
3364         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3365         // 8 bits, but have to be careful...
3366         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3367           origWidth = Lod->getMemoryVT().getSizeInBits();
3368         const APInt &Mask = N0.getConstantOperandAPInt(1);
3369         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3370           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3371           for (unsigned offset=0; offset<origWidth/width; offset++) {
3372             if (Mask.isSubsetOf(newMask)) {
3373               if (Layout.isLittleEndian())
3374                 bestOffset = (uint64_t)offset * (width/8);
3375               else
3376                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3377               bestMask = Mask.lshr(offset * (width/8) * 8);
3378               bestWidth = width;
3379               break;
3380             }
3381             newMask <<= width;
3382           }
3383         }
3384       }
3385       if (bestWidth) {
3386         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3387         if (newVT.isRound() &&
3388             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3389           SDValue Ptr = Lod->getBasePtr();
3390           if (bestOffset != 0)
3391             Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl);
3392           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3393           SDValue NewLoad = DAG.getLoad(
3394               newVT, dl, Lod->getChain(), Ptr,
3395               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3396           return DAG.getSetCC(dl, VT,
3397                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3398                                       DAG.getConstant(bestMask.trunc(bestWidth),
3399                                                       dl, newVT)),
3400                               DAG.getConstant(0LL, dl, newVT), Cond);
3401         }
3402       }
3403     }
3404 
3405     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3406     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3407       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3408 
3409       // If the comparison constant has bits in the upper part, the
3410       // zero-extended value could never match.
3411       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3412                                               C1.getBitWidth() - InSize))) {
3413         switch (Cond) {
3414         case ISD::SETUGT:
3415         case ISD::SETUGE:
3416         case ISD::SETEQ:
3417           return DAG.getConstant(0, dl, VT);
3418         case ISD::SETULT:
3419         case ISD::SETULE:
3420         case ISD::SETNE:
3421           return DAG.getConstant(1, dl, VT);
3422         case ISD::SETGT:
3423         case ISD::SETGE:
3424           // True if the sign bit of C1 is set.
3425           return DAG.getConstant(C1.isNegative(), dl, VT);
3426         case ISD::SETLT:
3427         case ISD::SETLE:
3428           // True if the sign bit of C1 isn't set.
3429           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3430         default:
3431           break;
3432         }
3433       }
3434 
3435       // Otherwise, we can perform the comparison with the low bits.
3436       switch (Cond) {
3437       case ISD::SETEQ:
3438       case ISD::SETNE:
3439       case ISD::SETUGT:
3440       case ISD::SETUGE:
3441       case ISD::SETULT:
3442       case ISD::SETULE: {
3443         EVT newVT = N0.getOperand(0).getValueType();
3444         if (DCI.isBeforeLegalizeOps() ||
3445             (isOperationLegal(ISD::SETCC, newVT) &&
3446              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3447           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3448           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3449 
3450           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3451                                           NewConst, Cond);
3452           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3453         }
3454         break;
3455       }
3456       default:
3457         break; // todo, be more careful with signed comparisons
3458       }
3459     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3460                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3461       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3462       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3463       EVT ExtDstTy = N0.getValueType();
3464       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3465 
3466       // If the constant doesn't fit into the number of bits for the source of
3467       // the sign extension, it is impossible for both sides to be equal.
3468       if (C1.getMinSignedBits() > ExtSrcTyBits)
3469         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3470 
3471       SDValue ZextOp;
3472       EVT Op0Ty = N0.getOperand(0).getValueType();
3473       if (Op0Ty == ExtSrcTy) {
3474         ZextOp = N0.getOperand(0);
3475       } else {
3476         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3477         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3478                              DAG.getConstant(Imm, dl, Op0Ty));
3479       }
3480       if (!DCI.isCalledByLegalizer())
3481         DCI.AddToWorklist(ZextOp.getNode());
3482       // Otherwise, make this a use of a zext.
3483       return DAG.getSetCC(dl, VT, ZextOp,
3484                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3485                                                               ExtDstTyBits,
3486                                                               ExtSrcTyBits),
3487                                           dl, ExtDstTy),
3488                           Cond);
3489     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3490                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3491       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3492       if (N0.getOpcode() == ISD::SETCC &&
3493           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3494           (N0.getValueType() == MVT::i1 ||
3495            getBooleanContents(N0.getOperand(0).getValueType()) ==
3496                        ZeroOrOneBooleanContent)) {
3497         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3498         if (TrueWhenTrue)
3499           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3500         // Invert the condition.
3501         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3502         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3503         if (DCI.isBeforeLegalizeOps() ||
3504             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3505           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3506       }
3507 
3508       if ((N0.getOpcode() == ISD::XOR ||
3509            (N0.getOpcode() == ISD::AND &&
3510             N0.getOperand(0).getOpcode() == ISD::XOR &&
3511             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3512           isa<ConstantSDNode>(N0.getOperand(1)) &&
3513           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3514         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3515         // can only do this if the top bits are known zero.
3516         unsigned BitWidth = N0.getValueSizeInBits();
3517         if (DAG.MaskedValueIsZero(N0,
3518                                   APInt::getHighBitsSet(BitWidth,
3519                                                         BitWidth-1))) {
3520           // Okay, get the un-inverted input value.
3521           SDValue Val;
3522           if (N0.getOpcode() == ISD::XOR) {
3523             Val = N0.getOperand(0);
3524           } else {
3525             assert(N0.getOpcode() == ISD::AND &&
3526                     N0.getOperand(0).getOpcode() == ISD::XOR);
3527             // ((X^1)&1)^1 -> X & 1
3528             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3529                               N0.getOperand(0).getOperand(0),
3530                               N0.getOperand(1));
3531           }
3532 
3533           return DAG.getSetCC(dl, VT, Val, N1,
3534                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3535         }
3536       } else if (N1C->isOne()) {
3537         SDValue Op0 = N0;
3538         if (Op0.getOpcode() == ISD::TRUNCATE)
3539           Op0 = Op0.getOperand(0);
3540 
3541         if ((Op0.getOpcode() == ISD::XOR) &&
3542             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3543             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3544           SDValue XorLHS = Op0.getOperand(0);
3545           SDValue XorRHS = Op0.getOperand(1);
3546           // Ensure that the input setccs return an i1 type or 0/1 value.
3547           if (Op0.getValueType() == MVT::i1 ||
3548               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3549                       ZeroOrOneBooleanContent &&
3550                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3551                         ZeroOrOneBooleanContent)) {
3552             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3553             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3554             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3555           }
3556         }
3557         if (Op0.getOpcode() == ISD::AND &&
3558             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3559             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3560           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3561           if (Op0.getValueType().bitsGT(VT))
3562             Op0 = DAG.getNode(ISD::AND, dl, VT,
3563                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3564                           DAG.getConstant(1, dl, VT));
3565           else if (Op0.getValueType().bitsLT(VT))
3566             Op0 = DAG.getNode(ISD::AND, dl, VT,
3567                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3568                         DAG.getConstant(1, dl, VT));
3569 
3570           return DAG.getSetCC(dl, VT, Op0,
3571                               DAG.getConstant(0, dl, Op0.getValueType()),
3572                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3573         }
3574         if (Op0.getOpcode() == ISD::AssertZext &&
3575             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3576           return DAG.getSetCC(dl, VT, Op0,
3577                               DAG.getConstant(0, dl, Op0.getValueType()),
3578                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3579       }
3580     }
3581 
3582     // Given:
3583     //   icmp eq/ne (urem %x, %y), 0
3584     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3585     //   icmp eq/ne %x, 0
3586     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3587         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3588       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3589       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3590       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3591         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3592     }
3593 
3594     if (SDValue V =
3595             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3596       return V;
3597   }
3598 
3599   // These simplifications apply to splat vectors as well.
3600   // TODO: Handle more splat vector cases.
3601   if (auto *N1C = isConstOrConstSplat(N1)) {
3602     const APInt &C1 = N1C->getAPIntValue();
3603 
3604     APInt MinVal, MaxVal;
3605     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3606     if (ISD::isSignedIntSetCC(Cond)) {
3607       MinVal = APInt::getSignedMinValue(OperandBitSize);
3608       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3609     } else {
3610       MinVal = APInt::getMinValue(OperandBitSize);
3611       MaxVal = APInt::getMaxValue(OperandBitSize);
3612     }
3613 
3614     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3615     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3616       // X >= MIN --> true
3617       if (C1 == MinVal)
3618         return DAG.getBoolConstant(true, dl, VT, OpVT);
3619 
3620       if (!VT.isVector()) { // TODO: Support this for vectors.
3621         // X >= C0 --> X > (C0 - 1)
3622         APInt C = C1 - 1;
3623         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3624         if ((DCI.isBeforeLegalizeOps() ||
3625              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3626             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3627                                   isLegalICmpImmediate(C.getSExtValue())))) {
3628           return DAG.getSetCC(dl, VT, N0,
3629                               DAG.getConstant(C, dl, N1.getValueType()),
3630                               NewCC);
3631         }
3632       }
3633     }
3634 
3635     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3636       // X <= MAX --> true
3637       if (C1 == MaxVal)
3638         return DAG.getBoolConstant(true, dl, VT, OpVT);
3639 
3640       // X <= C0 --> X < (C0 + 1)
3641       if (!VT.isVector()) { // TODO: Support this for vectors.
3642         APInt C = C1 + 1;
3643         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3644         if ((DCI.isBeforeLegalizeOps() ||
3645              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3646             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3647                                   isLegalICmpImmediate(C.getSExtValue())))) {
3648           return DAG.getSetCC(dl, VT, N0,
3649                               DAG.getConstant(C, dl, N1.getValueType()),
3650                               NewCC);
3651         }
3652       }
3653     }
3654 
3655     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3656       if (C1 == MinVal)
3657         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3658 
3659       // TODO: Support this for vectors after legalize ops.
3660       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3661         // Canonicalize setlt X, Max --> setne X, Max
3662         if (C1 == MaxVal)
3663           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3664 
3665         // If we have setult X, 1, turn it into seteq X, 0
3666         if (C1 == MinVal+1)
3667           return DAG.getSetCC(dl, VT, N0,
3668                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3669                               ISD::SETEQ);
3670       }
3671     }
3672 
3673     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3674       if (C1 == MaxVal)
3675         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3676 
3677       // TODO: Support this for vectors after legalize ops.
3678       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3679         // Canonicalize setgt X, Min --> setne X, Min
3680         if (C1 == MinVal)
3681           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3682 
3683         // If we have setugt X, Max-1, turn it into seteq X, Max
3684         if (C1 == MaxVal-1)
3685           return DAG.getSetCC(dl, VT, N0,
3686                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3687                               ISD::SETEQ);
3688       }
3689     }
3690 
3691     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3692       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3693       if (C1.isNullValue())
3694         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3695                 VT, N0, N1, Cond, DCI, dl))
3696           return CC;
3697     }
3698 
3699     // If we have "setcc X, C0", check to see if we can shrink the immediate
3700     // by changing cc.
3701     // TODO: Support this for vectors after legalize ops.
3702     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3703       // SETUGT X, SINTMAX  -> SETLT X, 0
3704       if (Cond == ISD::SETUGT &&
3705           C1 == APInt::getSignedMaxValue(OperandBitSize))
3706         return DAG.getSetCC(dl, VT, N0,
3707                             DAG.getConstant(0, dl, N1.getValueType()),
3708                             ISD::SETLT);
3709 
3710       // SETULT X, SINTMIN  -> SETGT X, -1
3711       if (Cond == ISD::SETULT &&
3712           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3713         SDValue ConstMinusOne =
3714             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3715                             N1.getValueType());
3716         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3717       }
3718     }
3719   }
3720 
3721   // Back to non-vector simplifications.
3722   // TODO: Can we do these for vector splats?
3723   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3724     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3725     const APInt &C1 = N1C->getAPIntValue();
3726     EVT ShValTy = N0.getValueType();
3727 
3728     // Fold bit comparisons when we can.
3729     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3730         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3731         N0.getOpcode() == ISD::AND) {
3732       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3733         EVT ShiftTy =
3734             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3735         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3736           // Perform the xform if the AND RHS is a single bit.
3737           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3738           if (AndRHS->getAPIntValue().isPowerOf2() &&
3739               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3740             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3741                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3742                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3743           }
3744         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3745           // (X & 8) == 8  -->  (X & 8) >> 3
3746           // Perform the xform if C1 is a single bit.
3747           unsigned ShCt = C1.logBase2();
3748           if (C1.isPowerOf2() &&
3749               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3750             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3751                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3752                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3753           }
3754         }
3755       }
3756     }
3757 
3758     if (C1.getMinSignedBits() <= 64 &&
3759         !isLegalICmpImmediate(C1.getSExtValue())) {
3760       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3761       // (X & -256) == 256 -> (X >> 8) == 1
3762       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3763           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3764         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3765           const APInt &AndRHSC = AndRHS->getAPIntValue();
3766           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3767             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3768             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3769               SDValue Shift =
3770                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3771                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3772               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3773               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3774             }
3775           }
3776         }
3777       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3778                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3779         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3780         // X <  0x100000000 -> (X >> 32) <  1
3781         // X >= 0x100000000 -> (X >> 32) >= 1
3782         // X <= 0x0ffffffff -> (X >> 32) <  1
3783         // X >  0x0ffffffff -> (X >> 32) >= 1
3784         unsigned ShiftBits;
3785         APInt NewC = C1;
3786         ISD::CondCode NewCond = Cond;
3787         if (AdjOne) {
3788           ShiftBits = C1.countTrailingOnes();
3789           NewC = NewC + 1;
3790           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3791         } else {
3792           ShiftBits = C1.countTrailingZeros();
3793         }
3794         NewC.lshrInPlace(ShiftBits);
3795         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3796             isLegalICmpImmediate(NewC.getSExtValue()) &&
3797             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3798           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3799                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3800           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
3801           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3802         }
3803       }
3804     }
3805   }
3806 
3807   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3808     auto *CFP = cast<ConstantFPSDNode>(N1);
3809     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3810 
3811     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3812     // constant if knowing that the operand is non-nan is enough.  We prefer to
3813     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3814     // materialize 0.0.
3815     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3816       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3817 
3818     // setcc (fneg x), C -> setcc swap(pred) x, -C
3819     if (N0.getOpcode() == ISD::FNEG) {
3820       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3821       if (DCI.isBeforeLegalizeOps() ||
3822           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3823         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3824         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3825       }
3826     }
3827 
3828     // If the condition is not legal, see if we can find an equivalent one
3829     // which is legal.
3830     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3831       // If the comparison was an awkward floating-point == or != and one of
3832       // the comparison operands is infinity or negative infinity, convert the
3833       // condition to a less-awkward <= or >=.
3834       if (CFP->getValueAPF().isInfinity()) {
3835         if (CFP->getValueAPF().isNegative()) {
3836           if (Cond == ISD::SETOEQ &&
3837               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3838             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3839           if (Cond == ISD::SETUEQ &&
3840               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3841             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3842           if (Cond == ISD::SETUNE &&
3843               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3844             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3845           if (Cond == ISD::SETONE &&
3846               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3847             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3848         } else {
3849           if (Cond == ISD::SETOEQ &&
3850               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3851             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3852           if (Cond == ISD::SETUEQ &&
3853               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3854             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3855           if (Cond == ISD::SETUNE &&
3856               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3857             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3858           if (Cond == ISD::SETONE &&
3859               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3860             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3861         }
3862       }
3863     }
3864   }
3865 
3866   if (N0 == N1) {
3867     // The sext(setcc()) => setcc() optimization relies on the appropriate
3868     // constant being emitted.
3869     assert(!N0.getValueType().isInteger() &&
3870            "Integer types should be handled by FoldSetCC");
3871 
3872     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3873     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3874     if (UOF == 2) // FP operators that are undefined on NaNs.
3875       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3876     if (UOF == unsigned(EqTrue))
3877       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3878     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3879     // if it is not already.
3880     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3881     if (NewCond != Cond &&
3882         (DCI.isBeforeLegalizeOps() ||
3883                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3884       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3885   }
3886 
3887   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3888       N0.getValueType().isInteger()) {
3889     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3890         N0.getOpcode() == ISD::XOR) {
3891       // Simplify (X+Y) == (X+Z) -->  Y == Z
3892       if (N0.getOpcode() == N1.getOpcode()) {
3893         if (N0.getOperand(0) == N1.getOperand(0))
3894           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3895         if (N0.getOperand(1) == N1.getOperand(1))
3896           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3897         if (isCommutativeBinOp(N0.getOpcode())) {
3898           // If X op Y == Y op X, try other combinations.
3899           if (N0.getOperand(0) == N1.getOperand(1))
3900             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3901                                 Cond);
3902           if (N0.getOperand(1) == N1.getOperand(0))
3903             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3904                                 Cond);
3905         }
3906       }
3907 
3908       // If RHS is a legal immediate value for a compare instruction, we need
3909       // to be careful about increasing register pressure needlessly.
3910       bool LegalRHSImm = false;
3911 
3912       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3913         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3914           // Turn (X+C1) == C2 --> X == C2-C1
3915           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3916             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3917                                 DAG.getConstant(RHSC->getAPIntValue()-
3918                                                 LHSR->getAPIntValue(),
3919                                 dl, N0.getValueType()), Cond);
3920           }
3921 
3922           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3923           if (N0.getOpcode() == ISD::XOR)
3924             // If we know that all of the inverted bits are zero, don't bother
3925             // performing the inversion.
3926             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3927               return
3928                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3929                              DAG.getConstant(LHSR->getAPIntValue() ^
3930                                                RHSC->getAPIntValue(),
3931                                              dl, N0.getValueType()),
3932                              Cond);
3933         }
3934 
3935         // Turn (C1-X) == C2 --> X == C1-C2
3936         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3937           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3938             return
3939               DAG.getSetCC(dl, VT, N0.getOperand(1),
3940                            DAG.getConstant(SUBC->getAPIntValue() -
3941                                              RHSC->getAPIntValue(),
3942                                            dl, N0.getValueType()),
3943                            Cond);
3944           }
3945         }
3946 
3947         // Could RHSC fold directly into a compare?
3948         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3949           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3950       }
3951 
3952       // (X+Y) == X --> Y == 0 and similar folds.
3953       // Don't do this if X is an immediate that can fold into a cmp
3954       // instruction and X+Y has other uses. It could be an induction variable
3955       // chain, and the transform would increase register pressure.
3956       if (!LegalRHSImm || N0.hasOneUse())
3957         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3958           return V;
3959     }
3960 
3961     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3962         N1.getOpcode() == ISD::XOR)
3963       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3964         return V;
3965 
3966     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3967       return V;
3968   }
3969 
3970   // Fold remainder of division by a constant.
3971   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
3972       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3973     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3974 
3975     // When division is cheap or optimizing for minimum size,
3976     // fall through to DIVREM creation by skipping this fold.
3977     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
3978       if (N0.getOpcode() == ISD::UREM) {
3979         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
3980           return Folded;
3981       } else if (N0.getOpcode() == ISD::SREM) {
3982         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
3983           return Folded;
3984       }
3985     }
3986   }
3987 
3988   // Fold away ALL boolean setcc's.
3989   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3990     SDValue Temp;
3991     switch (Cond) {
3992     default: llvm_unreachable("Unknown integer setcc!");
3993     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
3994       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3995       N0 = DAG.getNOT(dl, Temp, OpVT);
3996       if (!DCI.isCalledByLegalizer())
3997         DCI.AddToWorklist(Temp.getNode());
3998       break;
3999     case ISD::SETNE:  // X != Y   -->  (X^Y)
4000       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4001       break;
4002     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4003     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4004       Temp = DAG.getNOT(dl, N0, OpVT);
4005       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4006       if (!DCI.isCalledByLegalizer())
4007         DCI.AddToWorklist(Temp.getNode());
4008       break;
4009     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4010     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4011       Temp = DAG.getNOT(dl, N1, OpVT);
4012       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4013       if (!DCI.isCalledByLegalizer())
4014         DCI.AddToWorklist(Temp.getNode());
4015       break;
4016     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4017     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4018       Temp = DAG.getNOT(dl, N0, OpVT);
4019       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4020       if (!DCI.isCalledByLegalizer())
4021         DCI.AddToWorklist(Temp.getNode());
4022       break;
4023     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4024     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4025       Temp = DAG.getNOT(dl, N1, OpVT);
4026       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4027       break;
4028     }
4029     if (VT.getScalarType() != MVT::i1) {
4030       if (!DCI.isCalledByLegalizer())
4031         DCI.AddToWorklist(N0.getNode());
4032       // FIXME: If running after legalize, we probably can't do this.
4033       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4034       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4035     }
4036     return N0;
4037   }
4038 
4039   // Could not fold it.
4040   return SDValue();
4041 }
4042 
4043 /// Returns true (and the GlobalValue and the offset) if the node is a
4044 /// GlobalAddress + offset.
4045 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4046                                     int64_t &Offset) const {
4047 
4048   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4049 
4050   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4051     GA = GASD->getGlobal();
4052     Offset += GASD->getOffset();
4053     return true;
4054   }
4055 
4056   if (N->getOpcode() == ISD::ADD) {
4057     SDValue N1 = N->getOperand(0);
4058     SDValue N2 = N->getOperand(1);
4059     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4060       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4061         Offset += V->getSExtValue();
4062         return true;
4063       }
4064     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4065       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4066         Offset += V->getSExtValue();
4067         return true;
4068       }
4069     }
4070   }
4071 
4072   return false;
4073 }
4074 
4075 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4076                                           DAGCombinerInfo &DCI) const {
4077   // Default implementation: no optimization.
4078   return SDValue();
4079 }
4080 
4081 //===----------------------------------------------------------------------===//
4082 //  Inline Assembler Implementation Methods
4083 //===----------------------------------------------------------------------===//
4084 
4085 TargetLowering::ConstraintType
4086 TargetLowering::getConstraintType(StringRef Constraint) const {
4087   unsigned S = Constraint.size();
4088 
4089   if (S == 1) {
4090     switch (Constraint[0]) {
4091     default: break;
4092     case 'r':
4093       return C_RegisterClass;
4094     case 'm': // memory
4095     case 'o': // offsetable
4096     case 'V': // not offsetable
4097       return C_Memory;
4098     case 'n': // Simple Integer
4099     case 'E': // Floating Point Constant
4100     case 'F': // Floating Point Constant
4101       return C_Immediate;
4102     case 'i': // Simple Integer or Relocatable Constant
4103     case 's': // Relocatable Constant
4104     case 'p': // Address.
4105     case 'X': // Allow ANY value.
4106     case 'I': // Target registers.
4107     case 'J':
4108     case 'K':
4109     case 'L':
4110     case 'M':
4111     case 'N':
4112     case 'O':
4113     case 'P':
4114     case '<':
4115     case '>':
4116       return C_Other;
4117     }
4118   }
4119 
4120   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4121     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4122       return C_Memory;
4123     return C_Register;
4124   }
4125   return C_Unknown;
4126 }
4127 
4128 /// Try to replace an X constraint, which matches anything, with another that
4129 /// has more specific requirements based on the type of the corresponding
4130 /// operand.
4131 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4132   if (ConstraintVT.isInteger())
4133     return "r";
4134   if (ConstraintVT.isFloatingPoint())
4135     return "f"; // works for many targets
4136   return nullptr;
4137 }
4138 
4139 SDValue TargetLowering::LowerAsmOutputForConstraint(
4140     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4141     SelectionDAG &DAG) const {
4142   return SDValue();
4143 }
4144 
4145 /// Lower the specified operand into the Ops vector.
4146 /// If it is invalid, don't add anything to Ops.
4147 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4148                                                   std::string &Constraint,
4149                                                   std::vector<SDValue> &Ops,
4150                                                   SelectionDAG &DAG) const {
4151 
4152   if (Constraint.length() > 1) return;
4153 
4154   char ConstraintLetter = Constraint[0];
4155   switch (ConstraintLetter) {
4156   default: break;
4157   case 'X':     // Allows any operand; labels (basic block) use this.
4158     if (Op.getOpcode() == ISD::BasicBlock ||
4159         Op.getOpcode() == ISD::TargetBlockAddress) {
4160       Ops.push_back(Op);
4161       return;
4162     }
4163     LLVM_FALLTHROUGH;
4164   case 'i':    // Simple Integer or Relocatable Constant
4165   case 'n':    // Simple Integer
4166   case 's': {  // Relocatable Constant
4167 
4168     GlobalAddressSDNode *GA;
4169     ConstantSDNode *C;
4170     BlockAddressSDNode *BA;
4171     uint64_t Offset = 0;
4172 
4173     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4174     // etc., since getelementpointer is variadic. We can't use
4175     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4176     // while in this case the GA may be furthest from the root node which is
4177     // likely an ISD::ADD.
4178     while (1) {
4179       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4180         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4181                                                  GA->getValueType(0),
4182                                                  Offset + GA->getOffset()));
4183         return;
4184       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4185                  ConstraintLetter != 's') {
4186         // gcc prints these as sign extended.  Sign extend value to 64 bits
4187         // now; without this it would get ZExt'd later in
4188         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4189         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4190         BooleanContent BCont = getBooleanContents(MVT::i64);
4191         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4192                                       : ISD::SIGN_EXTEND;
4193         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4194                                                     : C->getSExtValue();
4195         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4196                                             SDLoc(C), MVT::i64));
4197         return;
4198       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4199                  ConstraintLetter != 'n') {
4200         Ops.push_back(DAG.getTargetBlockAddress(
4201             BA->getBlockAddress(), BA->getValueType(0),
4202             Offset + BA->getOffset(), BA->getTargetFlags()));
4203         return;
4204       } else {
4205         const unsigned OpCode = Op.getOpcode();
4206         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4207           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4208             Op = Op.getOperand(1);
4209           // Subtraction is not commutative.
4210           else if (OpCode == ISD::ADD &&
4211                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4212             Op = Op.getOperand(0);
4213           else
4214             return;
4215           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4216           continue;
4217         }
4218       }
4219       return;
4220     }
4221     break;
4222   }
4223   }
4224 }
4225 
4226 std::pair<unsigned, const TargetRegisterClass *>
4227 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4228                                              StringRef Constraint,
4229                                              MVT VT) const {
4230   if (Constraint.empty() || Constraint[0] != '{')
4231     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4232   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4233 
4234   // Remove the braces from around the name.
4235   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4236 
4237   std::pair<unsigned, const TargetRegisterClass *> R =
4238       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4239 
4240   // Figure out which register class contains this reg.
4241   for (const TargetRegisterClass *RC : RI->regclasses()) {
4242     // If none of the value types for this register class are valid, we
4243     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4244     if (!isLegalRC(*RI, *RC))
4245       continue;
4246 
4247     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4248          I != E; ++I) {
4249       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4250         std::pair<unsigned, const TargetRegisterClass *> S =
4251             std::make_pair(*I, RC);
4252 
4253         // If this register class has the requested value type, return it,
4254         // otherwise keep searching and return the first class found
4255         // if no other is found which explicitly has the requested type.
4256         if (RI->isTypeLegalForClass(*RC, VT))
4257           return S;
4258         if (!R.second)
4259           R = S;
4260       }
4261     }
4262   }
4263 
4264   return R;
4265 }
4266 
4267 //===----------------------------------------------------------------------===//
4268 // Constraint Selection.
4269 
4270 /// Return true of this is an input operand that is a matching constraint like
4271 /// "4".
4272 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4273   assert(!ConstraintCode.empty() && "No known constraint!");
4274   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4275 }
4276 
4277 /// If this is an input matching constraint, this method returns the output
4278 /// operand it matches.
4279 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4280   assert(!ConstraintCode.empty() && "No known constraint!");
4281   return atoi(ConstraintCode.c_str());
4282 }
4283 
4284 /// Split up the constraint string from the inline assembly value into the
4285 /// specific constraints and their prefixes, and also tie in the associated
4286 /// operand values.
4287 /// If this returns an empty vector, and if the constraint string itself
4288 /// isn't empty, there was an error parsing.
4289 TargetLowering::AsmOperandInfoVector
4290 TargetLowering::ParseConstraints(const DataLayout &DL,
4291                                  const TargetRegisterInfo *TRI,
4292                                  ImmutableCallSite CS) const {
4293   /// Information about all of the constraints.
4294   AsmOperandInfoVector ConstraintOperands;
4295   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4296   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4297 
4298   // Do a prepass over the constraints, canonicalizing them, and building up the
4299   // ConstraintOperands list.
4300   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4301   unsigned ResNo = 0; // ResNo - The result number of the next output.
4302 
4303   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4304     ConstraintOperands.emplace_back(std::move(CI));
4305     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4306 
4307     // Update multiple alternative constraint count.
4308     if (OpInfo.multipleAlternatives.size() > maCount)
4309       maCount = OpInfo.multipleAlternatives.size();
4310 
4311     OpInfo.ConstraintVT = MVT::Other;
4312 
4313     // Compute the value type for each operand.
4314     switch (OpInfo.Type) {
4315     case InlineAsm::isOutput:
4316       // Indirect outputs just consume an argument.
4317       if (OpInfo.isIndirect) {
4318         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4319         break;
4320       }
4321 
4322       // The return value of the call is this value.  As such, there is no
4323       // corresponding argument.
4324       assert(!CS.getType()->isVoidTy() &&
4325              "Bad inline asm!");
4326       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4327         OpInfo.ConstraintVT =
4328             getSimpleValueType(DL, STy->getElementType(ResNo));
4329       } else {
4330         assert(ResNo == 0 && "Asm only has one result!");
4331         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4332       }
4333       ++ResNo;
4334       break;
4335     case InlineAsm::isInput:
4336       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4337       break;
4338     case InlineAsm::isClobber:
4339       // Nothing to do.
4340       break;
4341     }
4342 
4343     if (OpInfo.CallOperandVal) {
4344       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4345       if (OpInfo.isIndirect) {
4346         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4347         if (!PtrTy)
4348           report_fatal_error("Indirect operand for inline asm not a pointer!");
4349         OpTy = PtrTy->getElementType();
4350       }
4351 
4352       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4353       if (StructType *STy = dyn_cast<StructType>(OpTy))
4354         if (STy->getNumElements() == 1)
4355           OpTy = STy->getElementType(0);
4356 
4357       // If OpTy is not a single value, it may be a struct/union that we
4358       // can tile with integers.
4359       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4360         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4361         switch (BitSize) {
4362         default: break;
4363         case 1:
4364         case 8:
4365         case 16:
4366         case 32:
4367         case 64:
4368         case 128:
4369           OpInfo.ConstraintVT =
4370               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4371           break;
4372         }
4373       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4374         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4375         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4376       } else {
4377         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4378       }
4379     }
4380   }
4381 
4382   // If we have multiple alternative constraints, select the best alternative.
4383   if (!ConstraintOperands.empty()) {
4384     if (maCount) {
4385       unsigned bestMAIndex = 0;
4386       int bestWeight = -1;
4387       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4388       int weight = -1;
4389       unsigned maIndex;
4390       // Compute the sums of the weights for each alternative, keeping track
4391       // of the best (highest weight) one so far.
4392       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4393         int weightSum = 0;
4394         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4395              cIndex != eIndex; ++cIndex) {
4396           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4397           if (OpInfo.Type == InlineAsm::isClobber)
4398             continue;
4399 
4400           // If this is an output operand with a matching input operand,
4401           // look up the matching input. If their types mismatch, e.g. one
4402           // is an integer, the other is floating point, or their sizes are
4403           // different, flag it as an maCantMatch.
4404           if (OpInfo.hasMatchingInput()) {
4405             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4406             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4407               if ((OpInfo.ConstraintVT.isInteger() !=
4408                    Input.ConstraintVT.isInteger()) ||
4409                   (OpInfo.ConstraintVT.getSizeInBits() !=
4410                    Input.ConstraintVT.getSizeInBits())) {
4411                 weightSum = -1; // Can't match.
4412                 break;
4413               }
4414             }
4415           }
4416           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4417           if (weight == -1) {
4418             weightSum = -1;
4419             break;
4420           }
4421           weightSum += weight;
4422         }
4423         // Update best.
4424         if (weightSum > bestWeight) {
4425           bestWeight = weightSum;
4426           bestMAIndex = maIndex;
4427         }
4428       }
4429 
4430       // Now select chosen alternative in each constraint.
4431       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4432            cIndex != eIndex; ++cIndex) {
4433         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4434         if (cInfo.Type == InlineAsm::isClobber)
4435           continue;
4436         cInfo.selectAlternative(bestMAIndex);
4437       }
4438     }
4439   }
4440 
4441   // Check and hook up tied operands, choose constraint code to use.
4442   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4443        cIndex != eIndex; ++cIndex) {
4444     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4445 
4446     // If this is an output operand with a matching input operand, look up the
4447     // matching input. If their types mismatch, e.g. one is an integer, the
4448     // other is floating point, or their sizes are different, flag it as an
4449     // error.
4450     if (OpInfo.hasMatchingInput()) {
4451       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4452 
4453       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4454         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4455             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4456                                          OpInfo.ConstraintVT);
4457         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4458             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4459                                          Input.ConstraintVT);
4460         if ((OpInfo.ConstraintVT.isInteger() !=
4461              Input.ConstraintVT.isInteger()) ||
4462             (MatchRC.second != InputRC.second)) {
4463           report_fatal_error("Unsupported asm: input constraint"
4464                              " with a matching output constraint of"
4465                              " incompatible type!");
4466         }
4467       }
4468     }
4469   }
4470 
4471   return ConstraintOperands;
4472 }
4473 
4474 /// Return an integer indicating how general CT is.
4475 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4476   switch (CT) {
4477   case TargetLowering::C_Immediate:
4478   case TargetLowering::C_Other:
4479   case TargetLowering::C_Unknown:
4480     return 0;
4481   case TargetLowering::C_Register:
4482     return 1;
4483   case TargetLowering::C_RegisterClass:
4484     return 2;
4485   case TargetLowering::C_Memory:
4486     return 3;
4487   }
4488   llvm_unreachable("Invalid constraint type");
4489 }
4490 
4491 /// Examine constraint type and operand type and determine a weight value.
4492 /// This object must already have been set up with the operand type
4493 /// and the current alternative constraint selected.
4494 TargetLowering::ConstraintWeight
4495   TargetLowering::getMultipleConstraintMatchWeight(
4496     AsmOperandInfo &info, int maIndex) const {
4497   InlineAsm::ConstraintCodeVector *rCodes;
4498   if (maIndex >= (int)info.multipleAlternatives.size())
4499     rCodes = &info.Codes;
4500   else
4501     rCodes = &info.multipleAlternatives[maIndex].Codes;
4502   ConstraintWeight BestWeight = CW_Invalid;
4503 
4504   // Loop over the options, keeping track of the most general one.
4505   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4506     ConstraintWeight weight =
4507       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4508     if (weight > BestWeight)
4509       BestWeight = weight;
4510   }
4511 
4512   return BestWeight;
4513 }
4514 
4515 /// Examine constraint type and operand type and determine a weight value.
4516 /// This object must already have been set up with the operand type
4517 /// and the current alternative constraint selected.
4518 TargetLowering::ConstraintWeight
4519   TargetLowering::getSingleConstraintMatchWeight(
4520     AsmOperandInfo &info, const char *constraint) const {
4521   ConstraintWeight weight = CW_Invalid;
4522   Value *CallOperandVal = info.CallOperandVal;
4523     // If we don't have a value, we can't do a match,
4524     // but allow it at the lowest weight.
4525   if (!CallOperandVal)
4526     return CW_Default;
4527   // Look at the constraint type.
4528   switch (*constraint) {
4529     case 'i': // immediate integer.
4530     case 'n': // immediate integer with a known value.
4531       if (isa<ConstantInt>(CallOperandVal))
4532         weight = CW_Constant;
4533       break;
4534     case 's': // non-explicit intregal immediate.
4535       if (isa<GlobalValue>(CallOperandVal))
4536         weight = CW_Constant;
4537       break;
4538     case 'E': // immediate float if host format.
4539     case 'F': // immediate float.
4540       if (isa<ConstantFP>(CallOperandVal))
4541         weight = CW_Constant;
4542       break;
4543     case '<': // memory operand with autodecrement.
4544     case '>': // memory operand with autoincrement.
4545     case 'm': // memory operand.
4546     case 'o': // offsettable memory operand
4547     case 'V': // non-offsettable memory operand
4548       weight = CW_Memory;
4549       break;
4550     case 'r': // general register.
4551     case 'g': // general register, memory operand or immediate integer.
4552               // note: Clang converts "g" to "imr".
4553       if (CallOperandVal->getType()->isIntegerTy())
4554         weight = CW_Register;
4555       break;
4556     case 'X': // any operand.
4557   default:
4558     weight = CW_Default;
4559     break;
4560   }
4561   return weight;
4562 }
4563 
4564 /// If there are multiple different constraints that we could pick for this
4565 /// operand (e.g. "imr") try to pick the 'best' one.
4566 /// This is somewhat tricky: constraints fall into four classes:
4567 ///    Other         -> immediates and magic values
4568 ///    Register      -> one specific register
4569 ///    RegisterClass -> a group of regs
4570 ///    Memory        -> memory
4571 /// Ideally, we would pick the most specific constraint possible: if we have
4572 /// something that fits into a register, we would pick it.  The problem here
4573 /// is that if we have something that could either be in a register or in
4574 /// memory that use of the register could cause selection of *other*
4575 /// operands to fail: they might only succeed if we pick memory.  Because of
4576 /// this the heuristic we use is:
4577 ///
4578 ///  1) If there is an 'other' constraint, and if the operand is valid for
4579 ///     that constraint, use it.  This makes us take advantage of 'i'
4580 ///     constraints when available.
4581 ///  2) Otherwise, pick the most general constraint present.  This prefers
4582 ///     'm' over 'r', for example.
4583 ///
4584 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4585                              const TargetLowering &TLI,
4586                              SDValue Op, SelectionDAG *DAG) {
4587   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4588   unsigned BestIdx = 0;
4589   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4590   int BestGenerality = -1;
4591 
4592   // Loop over the options, keeping track of the most general one.
4593   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4594     TargetLowering::ConstraintType CType =
4595       TLI.getConstraintType(OpInfo.Codes[i]);
4596 
4597     // Indirect 'other' or 'immediate' constraints are not allowed.
4598     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4599                                CType == TargetLowering::C_Register ||
4600                                CType == TargetLowering::C_RegisterClass))
4601       continue;
4602 
4603     // If this is an 'other' or 'immediate' constraint, see if the operand is
4604     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4605     // the operand is an integer in the range [0..31] we want to use I (saving a
4606     // load of a register), otherwise we must use 'r'.
4607     if ((CType == TargetLowering::C_Other ||
4608          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4609       assert(OpInfo.Codes[i].size() == 1 &&
4610              "Unhandled multi-letter 'other' constraint");
4611       std::vector<SDValue> ResultOps;
4612       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4613                                        ResultOps, *DAG);
4614       if (!ResultOps.empty()) {
4615         BestType = CType;
4616         BestIdx = i;
4617         break;
4618       }
4619     }
4620 
4621     // Things with matching constraints can only be registers, per gcc
4622     // documentation.  This mainly affects "g" constraints.
4623     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4624       continue;
4625 
4626     // This constraint letter is more general than the previous one, use it.
4627     int Generality = getConstraintGenerality(CType);
4628     if (Generality > BestGenerality) {
4629       BestType = CType;
4630       BestIdx = i;
4631       BestGenerality = Generality;
4632     }
4633   }
4634 
4635   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4636   OpInfo.ConstraintType = BestType;
4637 }
4638 
4639 /// Determines the constraint code and constraint type to use for the specific
4640 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4641 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4642                                             SDValue Op,
4643                                             SelectionDAG *DAG) const {
4644   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4645 
4646   // Single-letter constraints ('r') are very common.
4647   if (OpInfo.Codes.size() == 1) {
4648     OpInfo.ConstraintCode = OpInfo.Codes[0];
4649     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4650   } else {
4651     ChooseConstraint(OpInfo, *this, Op, DAG);
4652   }
4653 
4654   // 'X' matches anything.
4655   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4656     // Labels and constants are handled elsewhere ('X' is the only thing
4657     // that matches labels).  For Functions, the type here is the type of
4658     // the result, which is not what we want to look at; leave them alone.
4659     Value *v = OpInfo.CallOperandVal;
4660     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4661       OpInfo.CallOperandVal = v;
4662       return;
4663     }
4664 
4665     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4666       return;
4667 
4668     // Otherwise, try to resolve it to something we know about by looking at
4669     // the actual operand type.
4670     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4671       OpInfo.ConstraintCode = Repl;
4672       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4673     }
4674   }
4675 }
4676 
4677 /// Given an exact SDIV by a constant, create a multiplication
4678 /// with the multiplicative inverse of the constant.
4679 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4680                               const SDLoc &dl, SelectionDAG &DAG,
4681                               SmallVectorImpl<SDNode *> &Created) {
4682   SDValue Op0 = N->getOperand(0);
4683   SDValue Op1 = N->getOperand(1);
4684   EVT VT = N->getValueType(0);
4685   EVT SVT = VT.getScalarType();
4686   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4687   EVT ShSVT = ShVT.getScalarType();
4688 
4689   bool UseSRA = false;
4690   SmallVector<SDValue, 16> Shifts, Factors;
4691 
4692   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4693     if (C->isNullValue())
4694       return false;
4695     APInt Divisor = C->getAPIntValue();
4696     unsigned Shift = Divisor.countTrailingZeros();
4697     if (Shift) {
4698       Divisor.ashrInPlace(Shift);
4699       UseSRA = true;
4700     }
4701     // Calculate the multiplicative inverse, using Newton's method.
4702     APInt t;
4703     APInt Factor = Divisor;
4704     while ((t = Divisor * Factor) != 1)
4705       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4706     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4707     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4708     return true;
4709   };
4710 
4711   // Collect all magic values from the build vector.
4712   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4713     return SDValue();
4714 
4715   SDValue Shift, Factor;
4716   if (VT.isVector()) {
4717     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4718     Factor = DAG.getBuildVector(VT, dl, Factors);
4719   } else {
4720     Shift = Shifts[0];
4721     Factor = Factors[0];
4722   }
4723 
4724   SDValue Res = Op0;
4725 
4726   // Shift the value upfront if it is even, so the LSB is one.
4727   if (UseSRA) {
4728     // TODO: For UDIV use SRL instead of SRA.
4729     SDNodeFlags Flags;
4730     Flags.setExact(true);
4731     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4732     Created.push_back(Res.getNode());
4733   }
4734 
4735   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4736 }
4737 
4738 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4739                               SelectionDAG &DAG,
4740                               SmallVectorImpl<SDNode *> &Created) const {
4741   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4742   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4743   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4744     return SDValue(N, 0); // Lower SDIV as SDIV
4745   return SDValue();
4746 }
4747 
4748 /// Given an ISD::SDIV node expressing a divide by constant,
4749 /// return a DAG expression to select that will generate the same value by
4750 /// multiplying by a magic number.
4751 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4752 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4753                                   bool IsAfterLegalization,
4754                                   SmallVectorImpl<SDNode *> &Created) const {
4755   SDLoc dl(N);
4756   EVT VT = N->getValueType(0);
4757   EVT SVT = VT.getScalarType();
4758   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4759   EVT ShSVT = ShVT.getScalarType();
4760   unsigned EltBits = VT.getScalarSizeInBits();
4761 
4762   // Check to see if we can do this.
4763   // FIXME: We should be more aggressive here.
4764   if (!isTypeLegal(VT))
4765     return SDValue();
4766 
4767   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4768   if (N->getFlags().hasExact())
4769     return BuildExactSDIV(*this, N, dl, DAG, Created);
4770 
4771   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4772 
4773   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4774     if (C->isNullValue())
4775       return false;
4776 
4777     const APInt &Divisor = C->getAPIntValue();
4778     APInt::ms magics = Divisor.magic();
4779     int NumeratorFactor = 0;
4780     int ShiftMask = -1;
4781 
4782     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4783       // If d is +1/-1, we just multiply the numerator by +1/-1.
4784       NumeratorFactor = Divisor.getSExtValue();
4785       magics.m = 0;
4786       magics.s = 0;
4787       ShiftMask = 0;
4788     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4789       // If d > 0 and m < 0, add the numerator.
4790       NumeratorFactor = 1;
4791     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4792       // If d < 0 and m > 0, subtract the numerator.
4793       NumeratorFactor = -1;
4794     }
4795 
4796     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4797     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4798     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4799     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4800     return true;
4801   };
4802 
4803   SDValue N0 = N->getOperand(0);
4804   SDValue N1 = N->getOperand(1);
4805 
4806   // Collect the shifts / magic values from each element.
4807   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4808     return SDValue();
4809 
4810   SDValue MagicFactor, Factor, Shift, ShiftMask;
4811   if (VT.isVector()) {
4812     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4813     Factor = DAG.getBuildVector(VT, dl, Factors);
4814     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4815     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4816   } else {
4817     MagicFactor = MagicFactors[0];
4818     Factor = Factors[0];
4819     Shift = Shifts[0];
4820     ShiftMask = ShiftMasks[0];
4821   }
4822 
4823   // Multiply the numerator (operand 0) by the magic value.
4824   // FIXME: We should support doing a MUL in a wider type.
4825   SDValue Q;
4826   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4827                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4828     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4829   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4830                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4831     SDValue LoHi =
4832         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4833     Q = SDValue(LoHi.getNode(), 1);
4834   } else
4835     return SDValue(); // No mulhs or equivalent.
4836   Created.push_back(Q.getNode());
4837 
4838   // (Optionally) Add/subtract the numerator using Factor.
4839   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4840   Created.push_back(Factor.getNode());
4841   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4842   Created.push_back(Q.getNode());
4843 
4844   // Shift right algebraic by shift value.
4845   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4846   Created.push_back(Q.getNode());
4847 
4848   // Extract the sign bit, mask it and add it to the quotient.
4849   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4850   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4851   Created.push_back(T.getNode());
4852   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4853   Created.push_back(T.getNode());
4854   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4855 }
4856 
4857 /// Given an ISD::UDIV node expressing a divide by constant,
4858 /// return a DAG expression to select that will generate the same value by
4859 /// multiplying by a magic number.
4860 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4861 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4862                                   bool IsAfterLegalization,
4863                                   SmallVectorImpl<SDNode *> &Created) const {
4864   SDLoc dl(N);
4865   EVT VT = N->getValueType(0);
4866   EVT SVT = VT.getScalarType();
4867   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4868   EVT ShSVT = ShVT.getScalarType();
4869   unsigned EltBits = VT.getScalarSizeInBits();
4870 
4871   // Check to see if we can do this.
4872   // FIXME: We should be more aggressive here.
4873   if (!isTypeLegal(VT))
4874     return SDValue();
4875 
4876   bool UseNPQ = false;
4877   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4878 
4879   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4880     if (C->isNullValue())
4881       return false;
4882     // FIXME: We should use a narrower constant when the upper
4883     // bits are known to be zero.
4884     APInt Divisor = C->getAPIntValue();
4885     APInt::mu magics = Divisor.magicu();
4886     unsigned PreShift = 0, PostShift = 0;
4887 
4888     // If the divisor is even, we can avoid using the expensive fixup by
4889     // shifting the divided value upfront.
4890     if (magics.a != 0 && !Divisor[0]) {
4891       PreShift = Divisor.countTrailingZeros();
4892       // Get magic number for the shifted divisor.
4893       magics = Divisor.lshr(PreShift).magicu(PreShift);
4894       assert(magics.a == 0 && "Should use cheap fixup now");
4895     }
4896 
4897     APInt Magic = magics.m;
4898 
4899     unsigned SelNPQ;
4900     if (magics.a == 0 || Divisor.isOneValue()) {
4901       assert(magics.s < Divisor.getBitWidth() &&
4902              "We shouldn't generate an undefined shift!");
4903       PostShift = magics.s;
4904       SelNPQ = false;
4905     } else {
4906       PostShift = magics.s - 1;
4907       SelNPQ = true;
4908     }
4909 
4910     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4911     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4912     NPQFactors.push_back(
4913         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4914                                : APInt::getNullValue(EltBits),
4915                         dl, SVT));
4916     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4917     UseNPQ |= SelNPQ;
4918     return true;
4919   };
4920 
4921   SDValue N0 = N->getOperand(0);
4922   SDValue N1 = N->getOperand(1);
4923 
4924   // Collect the shifts/magic values from each element.
4925   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4926     return SDValue();
4927 
4928   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4929   if (VT.isVector()) {
4930     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4931     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4932     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4933     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4934   } else {
4935     PreShift = PreShifts[0];
4936     MagicFactor = MagicFactors[0];
4937     PostShift = PostShifts[0];
4938   }
4939 
4940   SDValue Q = N0;
4941   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4942   Created.push_back(Q.getNode());
4943 
4944   // FIXME: We should support doing a MUL in a wider type.
4945   auto GetMULHU = [&](SDValue X, SDValue Y) {
4946     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4947                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4948       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4949     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4950                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4951       SDValue LoHi =
4952           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4953       return SDValue(LoHi.getNode(), 1);
4954     }
4955     return SDValue(); // No mulhu or equivalent
4956   };
4957 
4958   // Multiply the numerator (operand 0) by the magic value.
4959   Q = GetMULHU(Q, MagicFactor);
4960   if (!Q)
4961     return SDValue();
4962 
4963   Created.push_back(Q.getNode());
4964 
4965   if (UseNPQ) {
4966     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4967     Created.push_back(NPQ.getNode());
4968 
4969     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4970     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4971     if (VT.isVector())
4972       NPQ = GetMULHU(NPQ, NPQFactor);
4973     else
4974       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4975 
4976     Created.push_back(NPQ.getNode());
4977 
4978     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4979     Created.push_back(Q.getNode());
4980   }
4981 
4982   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4983   Created.push_back(Q.getNode());
4984 
4985   SDValue One = DAG.getConstant(1, dl, VT);
4986   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4987   return DAG.getSelect(dl, VT, IsOne, N0, Q);
4988 }
4989 
4990 /// If all values in Values that *don't* match the predicate are same 'splat'
4991 /// value, then replace all values with that splat value.
4992 /// Else, if AlternativeReplacement was provided, then replace all values that
4993 /// do match predicate with AlternativeReplacement value.
4994 static void
4995 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
4996                           std::function<bool(SDValue)> Predicate,
4997                           SDValue AlternativeReplacement = SDValue()) {
4998   SDValue Replacement;
4999   // Is there a value for which the Predicate does *NOT* match? What is it?
5000   auto SplatValue = llvm::find_if_not(Values, Predicate);
5001   if (SplatValue != Values.end()) {
5002     // Does Values consist only of SplatValue's and values matching Predicate?
5003     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5004           return Value == *SplatValue || Predicate(Value);
5005         })) // Then we shall replace values matching predicate with SplatValue.
5006       Replacement = *SplatValue;
5007   }
5008   if (!Replacement) {
5009     // Oops, we did not find the "baseline" splat value.
5010     if (!AlternativeReplacement)
5011       return; // Nothing to do.
5012     // Let's replace with provided value then.
5013     Replacement = AlternativeReplacement;
5014   }
5015   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5016 }
5017 
5018 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5019 /// where the divisor is constant and the comparison target is zero,
5020 /// return a DAG expression that will generate the same comparison result
5021 /// using only multiplications, additions and shifts/rotations.
5022 /// Ref: "Hacker's Delight" 10-17.
5023 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5024                                         SDValue CompTargetNode,
5025                                         ISD::CondCode Cond,
5026                                         DAGCombinerInfo &DCI,
5027                                         const SDLoc &DL) const {
5028   SmallVector<SDNode *, 5> Built;
5029   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5030                                          DCI, DL, Built)) {
5031     for (SDNode *N : Built)
5032       DCI.AddToWorklist(N);
5033     return Folded;
5034   }
5035 
5036   return SDValue();
5037 }
5038 
5039 SDValue
5040 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5041                                   SDValue CompTargetNode, ISD::CondCode Cond,
5042                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5043                                   SmallVectorImpl<SDNode *> &Created) const {
5044   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5045   // - D must be constant, with D = D0 * 2^K where D0 is odd
5046   // - P is the multiplicative inverse of D0 modulo 2^W
5047   // - Q = floor(((2^W) - 1) / D)
5048   // where W is the width of the common type of N and D.
5049   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5050          "Only applicable for (in)equality comparisons.");
5051 
5052   SelectionDAG &DAG = DCI.DAG;
5053 
5054   EVT VT = REMNode.getValueType();
5055   EVT SVT = VT.getScalarType();
5056   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5057   EVT ShSVT = ShVT.getScalarType();
5058 
5059   // If MUL is unavailable, we cannot proceed in any case.
5060   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5061     return SDValue();
5062 
5063   bool ComparingWithAllZeros = true;
5064   bool AllComparisonsWithNonZerosAreTautological = true;
5065   bool HadTautologicalLanes = false;
5066   bool AllLanesAreTautological = true;
5067   bool HadEvenDivisor = false;
5068   bool AllDivisorsArePowerOfTwo = true;
5069   bool HadTautologicalInvertedLanes = false;
5070   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5071 
5072   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5073     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5074     if (CDiv->isNullValue())
5075       return false;
5076 
5077     const APInt &D = CDiv->getAPIntValue();
5078     const APInt &Cmp = CCmp->getAPIntValue();
5079 
5080     ComparingWithAllZeros &= Cmp.isNullValue();
5081 
5082     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5083     // if C2 is not less than C1, the comparison is always false.
5084     // But we will only be able to produce the comparison that will give the
5085     // opposive tautological answer. So this lane would need to be fixed up.
5086     bool TautologicalInvertedLane = D.ule(Cmp);
5087     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5088 
5089     // If all lanes are tautological (either all divisors are ones, or divisor
5090     // is not greater than the constant we are comparing with),
5091     // we will prefer to avoid the fold.
5092     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5093     HadTautologicalLanes |= TautologicalLane;
5094     AllLanesAreTautological &= TautologicalLane;
5095 
5096     // If we are comparing with non-zero, we need'll need  to subtract said
5097     // comparison value from the LHS. But there is no point in doing that if
5098     // every lane where we are comparing with non-zero is tautological..
5099     if (!Cmp.isNullValue())
5100       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5101 
5102     // Decompose D into D0 * 2^K
5103     unsigned K = D.countTrailingZeros();
5104     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5105     APInt D0 = D.lshr(K);
5106 
5107     // D is even if it has trailing zeros.
5108     HadEvenDivisor |= (K != 0);
5109     // D is a power-of-two if D0 is one.
5110     // If all divisors are power-of-two, we will prefer to avoid the fold.
5111     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5112 
5113     // P = inv(D0, 2^W)
5114     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5115     unsigned W = D.getBitWidth();
5116     APInt P = D0.zext(W + 1)
5117                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5118                   .trunc(W);
5119     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5120     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5121 
5122     // Q = floor((2^W - 1) u/ D)
5123     // R = ((2^W - 1) u% D)
5124     APInt Q, R;
5125     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5126 
5127     // If we are comparing with zero, then that comparison constant is okay,
5128     // else it may need to be one less than that.
5129     if (Cmp.ugt(R))
5130       Q -= 1;
5131 
5132     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5133            "We are expecting that K is always less than all-ones for ShSVT");
5134 
5135     // If the lane is tautological the result can be constant-folded.
5136     if (TautologicalLane) {
5137       // Set P and K amount to a bogus values so we can try to splat them.
5138       P = 0;
5139       K = -1;
5140       // And ensure that comparison constant is tautological,
5141       // it will always compare true/false.
5142       Q = -1;
5143     }
5144 
5145     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5146     KAmts.push_back(
5147         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5148     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5149     return true;
5150   };
5151 
5152   SDValue N = REMNode.getOperand(0);
5153   SDValue D = REMNode.getOperand(1);
5154 
5155   // Collect the values from each element.
5156   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5157     return SDValue();
5158 
5159   // If all lanes are tautological, the result can be constant-folded.
5160   if (AllLanesAreTautological)
5161     return SDValue();
5162 
5163   // If this is a urem by a powers-of-two, avoid the fold since it can be
5164   // best implemented as a bit test.
5165   if (AllDivisorsArePowerOfTwo)
5166     return SDValue();
5167 
5168   SDValue PVal, KVal, QVal;
5169   if (VT.isVector()) {
5170     if (HadTautologicalLanes) {
5171       // Try to turn PAmts into a splat, since we don't care about the values
5172       // that are currently '0'. If we can't, just keep '0'`s.
5173       turnVectorIntoSplatVector(PAmts, isNullConstant);
5174       // Try to turn KAmts into a splat, since we don't care about the values
5175       // that are currently '-1'. If we can't, change them to '0'`s.
5176       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5177                                 DAG.getConstant(0, DL, ShSVT));
5178     }
5179 
5180     PVal = DAG.getBuildVector(VT, DL, PAmts);
5181     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5182     QVal = DAG.getBuildVector(VT, DL, QAmts);
5183   } else {
5184     PVal = PAmts[0];
5185     KVal = KAmts[0];
5186     QVal = QAmts[0];
5187   }
5188 
5189   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5190     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5191       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5192     assert(CompTargetNode.getValueType() == N.getValueType() &&
5193            "Expecting that the types on LHS and RHS of comparisons match.");
5194     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5195   }
5196 
5197   // (mul N, P)
5198   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5199   Created.push_back(Op0.getNode());
5200 
5201   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5202   // divisors as a performance improvement, since rotating by 0 is a no-op.
5203   if (HadEvenDivisor) {
5204     // We need ROTR to do this.
5205     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5206       return SDValue();
5207     SDNodeFlags Flags;
5208     Flags.setExact(true);
5209     // UREM: (rotr (mul N, P), K)
5210     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5211     Created.push_back(Op0.getNode());
5212   }
5213 
5214   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5215   SDValue NewCC =
5216       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5217                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5218   if (!HadTautologicalInvertedLanes)
5219     return NewCC;
5220 
5221   // If any lanes previously compared always-false, the NewCC will give
5222   // always-true result for them, so we need to fixup those lanes.
5223   // Or the other way around for inequality predicate.
5224   assert(VT.isVector() && "Can/should only get here for vectors.");
5225   Created.push_back(NewCC.getNode());
5226 
5227   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5228   // if C2 is not less than C1, the comparison is always false.
5229   // But we have produced the comparison that will give the
5230   // opposive tautological answer. So these lanes would need to be fixed up.
5231   SDValue TautologicalInvertedChannels =
5232       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5233   Created.push_back(TautologicalInvertedChannels.getNode());
5234 
5235   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5236     // If we have a vector select, let's replace the comparison results in the
5237     // affected lanes with the correct tautological result.
5238     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5239                                               DL, SETCCVT, SETCCVT);
5240     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5241                        Replacement, NewCC);
5242   }
5243 
5244   // Else, we can just invert the comparison result in the appropriate lanes.
5245   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5246     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5247                        TautologicalInvertedChannels);
5248 
5249   return SDValue(); // Don't know how to lower.
5250 }
5251 
5252 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5253 /// where the divisor is constant and the comparison target is zero,
5254 /// return a DAG expression that will generate the same comparison result
5255 /// using only multiplications, additions and shifts/rotations.
5256 /// Ref: "Hacker's Delight" 10-17.
5257 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5258                                         SDValue CompTargetNode,
5259                                         ISD::CondCode Cond,
5260                                         DAGCombinerInfo &DCI,
5261                                         const SDLoc &DL) const {
5262   SmallVector<SDNode *, 7> Built;
5263   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5264                                          DCI, DL, Built)) {
5265     assert(Built.size() <= 7 && "Max size prediction failed.");
5266     for (SDNode *N : Built)
5267       DCI.AddToWorklist(N);
5268     return Folded;
5269   }
5270 
5271   return SDValue();
5272 }
5273 
5274 SDValue
5275 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5276                                   SDValue CompTargetNode, ISD::CondCode Cond,
5277                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5278                                   SmallVectorImpl<SDNode *> &Created) const {
5279   // Fold:
5280   //   (seteq/ne (srem N, D), 0)
5281   // To:
5282   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5283   //
5284   // - D must be constant, with D = D0 * 2^K where D0 is odd
5285   // - P is the multiplicative inverse of D0 modulo 2^W
5286   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5287   // - Q = floor((2 * A) / (2^K))
5288   // where W is the width of the common type of N and D.
5289   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5290          "Only applicable for (in)equality comparisons.");
5291 
5292   SelectionDAG &DAG = DCI.DAG;
5293 
5294   EVT VT = REMNode.getValueType();
5295   EVT SVT = VT.getScalarType();
5296   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5297   EVT ShSVT = ShVT.getScalarType();
5298 
5299   // If MUL is unavailable, we cannot proceed in any case.
5300   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5301     return SDValue();
5302 
5303   // TODO: Could support comparing with non-zero too.
5304   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5305   if (!CompTarget || !CompTarget->isNullValue())
5306     return SDValue();
5307 
5308   bool HadIntMinDivisor = false;
5309   bool HadOneDivisor = false;
5310   bool AllDivisorsAreOnes = true;
5311   bool HadEvenDivisor = false;
5312   bool NeedToApplyOffset = false;
5313   bool AllDivisorsArePowerOfTwo = true;
5314   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5315 
5316   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5317     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5318     if (C->isNullValue())
5319       return false;
5320 
5321     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5322 
5323     // WARNING: this fold is only valid for positive divisors!
5324     APInt D = C->getAPIntValue();
5325     if (D.isNegative())
5326       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5327 
5328     HadIntMinDivisor |= D.isMinSignedValue();
5329 
5330     // If all divisors are ones, we will prefer to avoid the fold.
5331     HadOneDivisor |= D.isOneValue();
5332     AllDivisorsAreOnes &= D.isOneValue();
5333 
5334     // Decompose D into D0 * 2^K
5335     unsigned K = D.countTrailingZeros();
5336     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5337     APInt D0 = D.lshr(K);
5338 
5339     if (!D.isMinSignedValue()) {
5340       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5341       // we don't care about this lane in this fold, we'll special-handle it.
5342       HadEvenDivisor |= (K != 0);
5343     }
5344 
5345     // D is a power-of-two if D0 is one. This includes INT_MIN.
5346     // If all divisors are power-of-two, we will prefer to avoid the fold.
5347     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5348 
5349     // P = inv(D0, 2^W)
5350     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5351     unsigned W = D.getBitWidth();
5352     APInt P = D0.zext(W + 1)
5353                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5354                   .trunc(W);
5355     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5356     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5357 
5358     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5359     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5360     A.clearLowBits(K);
5361 
5362     if (!D.isMinSignedValue()) {
5363       // If divisor INT_MIN, then we don't care about this lane in this fold,
5364       // we'll special-handle it.
5365       NeedToApplyOffset |= A != 0;
5366     }
5367 
5368     // Q = floor((2 * A) / (2^K))
5369     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5370 
5371     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5372            "We are expecting that A is always less than all-ones for SVT");
5373     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5374            "We are expecting that K is always less than all-ones for ShSVT");
5375 
5376     // If the divisor is 1 the result can be constant-folded. Likewise, we
5377     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5378     if (D.isOneValue()) {
5379       // Set P, A and K to a bogus values so we can try to splat them.
5380       P = 0;
5381       A = -1;
5382       K = -1;
5383 
5384       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5385       Q = -1;
5386     }
5387 
5388     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5389     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5390     KAmts.push_back(
5391         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5392     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5393     return true;
5394   };
5395 
5396   SDValue N = REMNode.getOperand(0);
5397   SDValue D = REMNode.getOperand(1);
5398 
5399   // Collect the values from each element.
5400   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5401     return SDValue();
5402 
5403   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5404   if (AllDivisorsAreOnes)
5405     return SDValue();
5406 
5407   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5408   // since it can be best implemented as a bit test.
5409   if (AllDivisorsArePowerOfTwo)
5410     return SDValue();
5411 
5412   SDValue PVal, AVal, KVal, QVal;
5413   if (VT.isVector()) {
5414     if (HadOneDivisor) {
5415       // Try to turn PAmts into a splat, since we don't care about the values
5416       // that are currently '0'. If we can't, just keep '0'`s.
5417       turnVectorIntoSplatVector(PAmts, isNullConstant);
5418       // Try to turn AAmts into a splat, since we don't care about the
5419       // values that are currently '-1'. If we can't, change them to '0'`s.
5420       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5421                                 DAG.getConstant(0, DL, SVT));
5422       // Try to turn KAmts into a splat, since we don't care about the values
5423       // that are currently '-1'. If we can't, change them to '0'`s.
5424       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5425                                 DAG.getConstant(0, DL, ShSVT));
5426     }
5427 
5428     PVal = DAG.getBuildVector(VT, DL, PAmts);
5429     AVal = DAG.getBuildVector(VT, DL, AAmts);
5430     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5431     QVal = DAG.getBuildVector(VT, DL, QAmts);
5432   } else {
5433     PVal = PAmts[0];
5434     AVal = AAmts[0];
5435     KVal = KAmts[0];
5436     QVal = QAmts[0];
5437   }
5438 
5439   // (mul N, P)
5440   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5441   Created.push_back(Op0.getNode());
5442 
5443   if (NeedToApplyOffset) {
5444     // We need ADD to do this.
5445     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5446       return SDValue();
5447 
5448     // (add (mul N, P), A)
5449     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5450     Created.push_back(Op0.getNode());
5451   }
5452 
5453   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5454   // divisors as a performance improvement, since rotating by 0 is a no-op.
5455   if (HadEvenDivisor) {
5456     // We need ROTR to do this.
5457     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5458       return SDValue();
5459     SDNodeFlags Flags;
5460     Flags.setExact(true);
5461     // SREM: (rotr (add (mul N, P), A), K)
5462     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5463     Created.push_back(Op0.getNode());
5464   }
5465 
5466   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5467   SDValue Fold =
5468       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5469                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5470 
5471   // If we didn't have lanes with INT_MIN divisor, then we're done.
5472   if (!HadIntMinDivisor)
5473     return Fold;
5474 
5475   // That fold is only valid for positive divisors. Which effectively means,
5476   // it is invalid for INT_MIN divisors. So if we have such a lane,
5477   // we must fix-up results for said lanes.
5478   assert(VT.isVector() && "Can/should only get here for vectors.");
5479 
5480   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5481       !isOperationLegalOrCustom(ISD::AND, VT) ||
5482       !isOperationLegalOrCustom(Cond, VT) ||
5483       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5484     return SDValue();
5485 
5486   Created.push_back(Fold.getNode());
5487 
5488   SDValue IntMin = DAG.getConstant(
5489       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5490   SDValue IntMax = DAG.getConstant(
5491       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5492   SDValue Zero =
5493       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5494 
5495   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5496   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5497   Created.push_back(DivisorIsIntMin.getNode());
5498 
5499   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5500   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5501   Created.push_back(Masked.getNode());
5502   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5503   Created.push_back(MaskedIsZero.getNode());
5504 
5505   // To produce final result we need to blend 2 vectors: 'SetCC' and
5506   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5507   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5508   // constant-folded, select can get lowered to a shuffle with constant mask.
5509   SDValue Blended =
5510       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5511 
5512   return Blended;
5513 }
5514 
5515 bool TargetLowering::
5516 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5517   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5518     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5519                                 "be a constant integer");
5520     return true;
5521   }
5522 
5523   return false;
5524 }
5525 
5526 char TargetLowering::isNegatibleForFree(SDValue Op, SelectionDAG &DAG,
5527                                         bool LegalOperations, bool ForCodeSize,
5528                                         unsigned Depth) const {
5529   // fneg is removable even if it has multiple uses.
5530   if (Op.getOpcode() == ISD::FNEG)
5531     return 2;
5532 
5533   // Don't allow anything with multiple uses unless we know it is free.
5534   EVT VT = Op.getValueType();
5535   const SDNodeFlags Flags = Op->getFlags();
5536   const TargetOptions &Options = DAG.getTarget().Options;
5537   if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND &&
5538                            isFPExtFree(VT, Op.getOperand(0).getValueType())))
5539     return 0;
5540 
5541   // Don't recurse exponentially.
5542   if (Depth > SelectionDAG::MaxRecursionDepth)
5543     return 0;
5544 
5545   switch (Op.getOpcode()) {
5546   case ISD::ConstantFP: {
5547     if (!LegalOperations)
5548       return 1;
5549 
5550     // Don't invert constant FP values after legalization unless the target says
5551     // the negated constant is legal.
5552     return isOperationLegal(ISD::ConstantFP, VT) ||
5553            isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5554                         ForCodeSize);
5555   }
5556   case ISD::BUILD_VECTOR: {
5557     // Only permit BUILD_VECTOR of constants.
5558     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5559           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5560         }))
5561       return 0;
5562     if (!LegalOperations)
5563       return 1;
5564     if (isOperationLegal(ISD::ConstantFP, VT) &&
5565         isOperationLegal(ISD::BUILD_VECTOR, VT))
5566       return 1;
5567     return llvm::all_of(Op->op_values(), [&](SDValue N) {
5568       return N.isUndef() ||
5569              isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5570                           ForCodeSize);
5571     });
5572   }
5573   case ISD::FADD:
5574     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5575       return 0;
5576 
5577     // After operation legalization, it might not be legal to create new FSUBs.
5578     if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT))
5579       return 0;
5580 
5581     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5582     if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5583                                     ForCodeSize, Depth + 1))
5584       return V;
5585     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5586     return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5587                               ForCodeSize, Depth + 1);
5588   case ISD::FSUB:
5589     // We can't turn -(A-B) into B-A when we honor signed zeros.
5590     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5591       return 0;
5592 
5593     // fold (fneg (fsub A, B)) -> (fsub B, A)
5594     return 1;
5595 
5596   case ISD::FMUL:
5597   case ISD::FDIV:
5598     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
5599     if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5600                                     ForCodeSize, Depth + 1))
5601       return V;
5602 
5603     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5604     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5605       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5606         return 0;
5607 
5608     return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5609                               ForCodeSize, Depth + 1);
5610 
5611   case ISD::FMA:
5612   case ISD::FMAD: {
5613     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5614       return 0;
5615 
5616     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5617     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5618     char V2 = isNegatibleForFree(Op.getOperand(2), DAG, LegalOperations,
5619                                  ForCodeSize, Depth + 1);
5620     if (!V2)
5621       return 0;
5622 
5623     // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
5624     char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5625                                  ForCodeSize, Depth + 1);
5626     char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5627                                  ForCodeSize, Depth + 1);
5628     char V01 = std::max(V0, V1);
5629     return V01 ? std::max(V01, V2) : 0;
5630   }
5631 
5632   case ISD::FP_EXTEND:
5633   case ISD::FP_ROUND:
5634   case ISD::FSIN:
5635     return isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5636                               ForCodeSize, Depth + 1);
5637   }
5638 
5639   return 0;
5640 }
5641 
5642 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5643                                              bool LegalOperations,
5644                                              bool ForCodeSize,
5645                                              unsigned Depth) const {
5646   // fneg is removable even if it has multiple uses.
5647   if (Op.getOpcode() == ISD::FNEG)
5648     return Op.getOperand(0);
5649 
5650   assert(Depth <= SelectionDAG::MaxRecursionDepth &&
5651          "getNegatedExpression doesn't match isNegatibleForFree");
5652   const SDNodeFlags Flags = Op->getFlags();
5653 
5654   switch (Op.getOpcode()) {
5655   case ISD::ConstantFP: {
5656     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5657     V.changeSign();
5658     return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
5659   }
5660   case ISD::BUILD_VECTOR: {
5661     SmallVector<SDValue, 4> Ops;
5662     for (SDValue C : Op->op_values()) {
5663       if (C.isUndef()) {
5664         Ops.push_back(C);
5665         continue;
5666       }
5667       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5668       V.changeSign();
5669       Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType()));
5670     }
5671     return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops);
5672   }
5673   case ISD::FADD:
5674     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5675             Flags.hasNoSignedZeros()) &&
5676            "Expected NSZ fp-flag");
5677 
5678     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5679     if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5680                            Depth + 1))
5681       return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5682                          getNegatedExpression(Op.getOperand(0), DAG,
5683                                               LegalOperations, ForCodeSize,
5684                                               Depth + 1),
5685                          Op.getOperand(1), Flags);
5686     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5687     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5688                        getNegatedExpression(Op.getOperand(1), DAG,
5689                                             LegalOperations, ForCodeSize,
5690                                             Depth + 1),
5691                        Op.getOperand(0), Flags);
5692   case ISD::FSUB:
5693     // fold (fneg (fsub 0, B)) -> B
5694     if (ConstantFPSDNode *N0CFP =
5695             isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true))
5696       if (N0CFP->isZero())
5697         return Op.getOperand(1);
5698 
5699     // fold (fneg (fsub A, B)) -> (fsub B, A)
5700     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5701                        Op.getOperand(1), Op.getOperand(0), Flags);
5702 
5703   case ISD::FMUL:
5704   case ISD::FDIV:
5705     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5706     if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5707                            Depth + 1))
5708       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5709                          getNegatedExpression(Op.getOperand(0), DAG,
5710                                               LegalOperations, ForCodeSize,
5711                                               Depth + 1),
5712                          Op.getOperand(1), Flags);
5713 
5714     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5715     return DAG.getNode(
5716         Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0),
5717         getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5718                              ForCodeSize, Depth + 1),
5719         Flags);
5720 
5721   case ISD::FMA:
5722   case ISD::FMAD: {
5723     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5724             Flags.hasNoSignedZeros()) &&
5725            "Expected NSZ fp-flag");
5726 
5727     SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations,
5728                                         ForCodeSize, Depth + 1);
5729 
5730     char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5731                                  ForCodeSize, Depth + 1);
5732     char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5733                                  ForCodeSize, Depth + 1);
5734     // TODO: This is a hack. It is possible that costs have changed between now
5735     //       and the initial calls to isNegatibleForFree(). That is because we
5736     //       are rewriting the expression, and that may change the number of
5737     //       uses (and therefore the cost) of values. If the negation costs are
5738     //       equal, only negate this value if it is a constant. Otherwise, try
5739     //       operand 1. A better fix would eliminate uses as a cost factor or
5740     //       track the change in uses as we rewrite the expression.
5741     if (V0 > V1 || (V0 == V1 && isa<ConstantFPSDNode>(Op.getOperand(0)))) {
5742       // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5743       SDValue Neg0 = getNegatedExpression(
5744           Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1);
5745       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0,
5746                          Op.getOperand(1), Neg2, Flags);
5747     }
5748 
5749     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5750     SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5751                                         ForCodeSize, Depth + 1);
5752     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5753                        Op.getOperand(0), Neg1, Neg2, Flags);
5754   }
5755 
5756   case ISD::FP_EXTEND:
5757   case ISD::FSIN:
5758     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5759                        getNegatedExpression(Op.getOperand(0), DAG,
5760                                             LegalOperations, ForCodeSize,
5761                                             Depth + 1));
5762   case ISD::FP_ROUND:
5763     return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
5764                        getNegatedExpression(Op.getOperand(0), DAG,
5765                                             LegalOperations, ForCodeSize,
5766                                             Depth + 1),
5767                        Op.getOperand(1));
5768   }
5769 
5770   llvm_unreachable("Unknown code");
5771 }
5772 
5773 //===----------------------------------------------------------------------===//
5774 // Legalization Utilities
5775 //===----------------------------------------------------------------------===//
5776 
5777 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5778                                     SDValue LHS, SDValue RHS,
5779                                     SmallVectorImpl<SDValue> &Result,
5780                                     EVT HiLoVT, SelectionDAG &DAG,
5781                                     MulExpansionKind Kind, SDValue LL,
5782                                     SDValue LH, SDValue RL, SDValue RH) const {
5783   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5784          Opcode == ISD::SMUL_LOHI);
5785 
5786   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5787                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5788   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5789                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5790   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5791                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5792   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5793                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5794 
5795   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5796     return false;
5797 
5798   unsigned OuterBitSize = VT.getScalarSizeInBits();
5799   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5800   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5801   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5802 
5803   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5804   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5805          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5806 
5807   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5808   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5809                           bool Signed) -> bool {
5810     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5811       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5812       Hi = SDValue(Lo.getNode(), 1);
5813       return true;
5814     }
5815     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5816       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5817       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5818       return true;
5819     }
5820     return false;
5821   };
5822 
5823   SDValue Lo, Hi;
5824 
5825   if (!LL.getNode() && !RL.getNode() &&
5826       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5827     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5828     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5829   }
5830 
5831   if (!LL.getNode())
5832     return false;
5833 
5834   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5835   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5836       DAG.MaskedValueIsZero(RHS, HighMask)) {
5837     // The inputs are both zero-extended.
5838     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5839       Result.push_back(Lo);
5840       Result.push_back(Hi);
5841       if (Opcode != ISD::MUL) {
5842         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5843         Result.push_back(Zero);
5844         Result.push_back(Zero);
5845       }
5846       return true;
5847     }
5848   }
5849 
5850   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5851       RHSSB > InnerBitSize) {
5852     // The input values are both sign-extended.
5853     // TODO non-MUL case?
5854     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5855       Result.push_back(Lo);
5856       Result.push_back(Hi);
5857       return true;
5858     }
5859   }
5860 
5861   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5862   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5863   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5864     // FIXME getShiftAmountTy does not always return a sensible result when VT
5865     // is an illegal type, and so the type may be too small to fit the shift
5866     // amount. Override it with i32. The shift will have to be legalized.
5867     ShiftAmountTy = MVT::i32;
5868   }
5869   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5870 
5871   if (!LH.getNode() && !RH.getNode() &&
5872       isOperationLegalOrCustom(ISD::SRL, VT) &&
5873       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5874     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5875     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5876     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5877     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5878   }
5879 
5880   if (!LH.getNode())
5881     return false;
5882 
5883   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5884     return false;
5885 
5886   Result.push_back(Lo);
5887 
5888   if (Opcode == ISD::MUL) {
5889     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5890     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5891     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5892     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5893     Result.push_back(Hi);
5894     return true;
5895   }
5896 
5897   // Compute the full width result.
5898   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5899     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5900     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5901     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5902     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5903   };
5904 
5905   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5906   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5907     return false;
5908 
5909   // This is effectively the add part of a multiply-add of half-sized operands,
5910   // so it cannot overflow.
5911   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5912 
5913   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5914     return false;
5915 
5916   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5917   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5918 
5919   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5920                   isOperationLegalOrCustom(ISD::ADDE, VT));
5921   if (UseGlue)
5922     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5923                        Merge(Lo, Hi));
5924   else
5925     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5926                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5927 
5928   SDValue Carry = Next.getValue(1);
5929   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5930   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5931 
5932   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5933     return false;
5934 
5935   if (UseGlue)
5936     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5937                      Carry);
5938   else
5939     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5940                      Zero, Carry);
5941 
5942   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5943 
5944   if (Opcode == ISD::SMUL_LOHI) {
5945     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5946                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5947     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5948 
5949     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5950                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5951     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5952   }
5953 
5954   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5955   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5956   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5957   return true;
5958 }
5959 
5960 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5961                                SelectionDAG &DAG, MulExpansionKind Kind,
5962                                SDValue LL, SDValue LH, SDValue RL,
5963                                SDValue RH) const {
5964   SmallVector<SDValue, 2> Result;
5965   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5966                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5967                            DAG, Kind, LL, LH, RL, RH);
5968   if (Ok) {
5969     assert(Result.size() == 2);
5970     Lo = Result[0];
5971     Hi = Result[1];
5972   }
5973   return Ok;
5974 }
5975 
5976 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
5977                                        SelectionDAG &DAG) const {
5978   EVT VT = Node->getValueType(0);
5979 
5980   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5981                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5982                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5983                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5984     return false;
5985 
5986   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5987   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5988   SDValue X = Node->getOperand(0);
5989   SDValue Y = Node->getOperand(1);
5990   SDValue Z = Node->getOperand(2);
5991 
5992   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5993   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
5994   SDLoc DL(SDValue(Node, 0));
5995 
5996   EVT ShVT = Z.getValueType();
5997   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5998   SDValue Zero = DAG.getConstant(0, DL, ShVT);
5999 
6000   SDValue ShAmt;
6001   if (isPowerOf2_32(EltSizeInBits)) {
6002     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6003     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6004   } else {
6005     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6006   }
6007 
6008   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6009   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6010   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6011   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6012 
6013   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6014   // and that is undefined. We must compare and select to avoid UB.
6015   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
6016 
6017   // For fshl, 0-shift returns the 1st arg (X).
6018   // For fshr, 0-shift returns the 2nd arg (Y).
6019   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
6020   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
6021   return true;
6022 }
6023 
6024 // TODO: Merge with expandFunnelShift.
6025 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
6026                                SelectionDAG &DAG) const {
6027   EVT VT = Node->getValueType(0);
6028   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6029   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6030   SDValue Op0 = Node->getOperand(0);
6031   SDValue Op1 = Node->getOperand(1);
6032   SDLoc DL(SDValue(Node, 0));
6033 
6034   EVT ShVT = Op1.getValueType();
6035   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6036 
6037   // If a rotate in the other direction is legal, use it.
6038   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6039   if (isOperationLegal(RevRot, VT)) {
6040     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6041     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6042     return true;
6043   }
6044 
6045   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6046                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6047                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6048                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6049                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6050     return false;
6051 
6052   // Otherwise,
6053   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
6054   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
6055   //
6056   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
6057          "Expecting the type bitwidth to be a power of 2");
6058   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6059   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6060   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6061   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6062   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6063   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6064   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
6065                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
6066   return true;
6067 }
6068 
6069 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6070                                       SelectionDAG &DAG) const {
6071   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6072   SDValue Src = Node->getOperand(OpNo);
6073   EVT SrcVT = Src.getValueType();
6074   EVT DstVT = Node->getValueType(0);
6075   SDLoc dl(SDValue(Node, 0));
6076 
6077   // FIXME: Only f32 to i64 conversions are supported.
6078   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6079     return false;
6080 
6081   if (Node->isStrictFPOpcode())
6082     // When a NaN is converted to an integer a trap is allowed. We can't
6083     // use this expansion here because it would eliminate that trap. Other
6084     // traps are also allowed and cannot be eliminated. See
6085     // IEEE 754-2008 sec 5.8.
6086     return false;
6087 
6088   // Expand f32 -> i64 conversion
6089   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6090   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6091   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6092   EVT IntVT = SrcVT.changeTypeToInteger();
6093   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6094 
6095   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6096   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6097   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6098   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6099   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6100   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6101 
6102   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6103 
6104   SDValue ExponentBits = DAG.getNode(
6105       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6106       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6107   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6108 
6109   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6110                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6111                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6112   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6113 
6114   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6115                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6116                           DAG.getConstant(0x00800000, dl, IntVT));
6117 
6118   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6119 
6120   R = DAG.getSelectCC(
6121       dl, Exponent, ExponentLoBit,
6122       DAG.getNode(ISD::SHL, dl, DstVT, R,
6123                   DAG.getZExtOrTrunc(
6124                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6125                       dl, IntShVT)),
6126       DAG.getNode(ISD::SRL, dl, DstVT, R,
6127                   DAG.getZExtOrTrunc(
6128                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6129                       dl, IntShVT)),
6130       ISD::SETGT);
6131 
6132   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6133                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6134 
6135   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6136                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6137   return true;
6138 }
6139 
6140 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6141                                       SDValue &Chain,
6142                                       SelectionDAG &DAG) const {
6143   SDLoc dl(SDValue(Node, 0));
6144   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6145   SDValue Src = Node->getOperand(OpNo);
6146 
6147   EVT SrcVT = Src.getValueType();
6148   EVT DstVT = Node->getValueType(0);
6149   EVT SetCCVT =
6150       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6151   EVT DstSetCCVT =
6152       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6153 
6154   // Only expand vector types if we have the appropriate vector bit operations.
6155   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6156                                                    ISD::FP_TO_SINT;
6157   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6158                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6159     return false;
6160 
6161   // If the maximum float value is smaller then the signed integer range,
6162   // the destination signmask can't be represented by the float, so we can
6163   // just use FP_TO_SINT directly.
6164   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6165   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6166   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6167   if (APFloat::opOverflow &
6168       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6169     if (Node->isStrictFPOpcode()) {
6170       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6171                            { Node->getOperand(0), Src });
6172       Chain = Result.getValue(1);
6173     } else
6174       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6175     return true;
6176   }
6177 
6178   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6179   SDValue Sel;
6180 
6181   if (Node->isStrictFPOpcode()) {
6182     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6183                        Node->getOperand(0), /*IsSignaling*/ true);
6184     Chain = Sel.getValue(1);
6185   } else {
6186     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6187   }
6188 
6189   bool Strict = Node->isStrictFPOpcode() ||
6190                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6191 
6192   if (Strict) {
6193     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6194     // signmask then offset (the result of which should be fully representable).
6195     // Sel = Src < 0x8000000000000000
6196     // FltOfs = select Sel, 0, 0x8000000000000000
6197     // IntOfs = select Sel, 0, 0x8000000000000000
6198     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6199 
6200     // TODO: Should any fast-math-flags be set for the FSUB?
6201     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6202                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6203     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6204     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6205                                    DAG.getConstant(0, dl, DstVT),
6206                                    DAG.getConstant(SignMask, dl, DstVT));
6207     SDValue SInt;
6208     if (Node->isStrictFPOpcode()) {
6209       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6210                                 { Chain, Src, FltOfs });
6211       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6212                          { Val.getValue(1), Val });
6213       Chain = SInt.getValue(1);
6214     } else {
6215       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6216       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6217     }
6218     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6219   } else {
6220     // Expand based on maximum range of FP_TO_SINT:
6221     // True = fp_to_sint(Src)
6222     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6223     // Result = select (Src < 0x8000000000000000), True, False
6224 
6225     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6226     // TODO: Should any fast-math-flags be set for the FSUB?
6227     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6228                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6229     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6230                         DAG.getConstant(SignMask, dl, DstVT));
6231     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6232     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6233   }
6234   return true;
6235 }
6236 
6237 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6238                                       SDValue &Chain,
6239                                       SelectionDAG &DAG) const {
6240   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6241   SDValue Src = Node->getOperand(OpNo);
6242   EVT SrcVT = Src.getValueType();
6243   EVT DstVT = Node->getValueType(0);
6244 
6245   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6246     return false;
6247 
6248   // Only expand vector types if we have the appropriate vector bit operations.
6249   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6250                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6251                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6252                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6253                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6254     return false;
6255 
6256   SDLoc dl(SDValue(Node, 0));
6257   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6258 
6259   // Implementation of unsigned i64 to f64 following the algorithm in
6260   // __floatundidf in compiler_rt. This implementation has the advantage
6261   // of performing rounding correctly, both in the default rounding mode
6262   // and in all alternate rounding modes.
6263   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6264   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6265       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6266   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6267   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6268   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6269 
6270   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6271   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6272   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6273   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6274   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6275   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6276   if (Node->isStrictFPOpcode()) {
6277     SDValue HiSub =
6278         DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6279                     {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6280     Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6281                          {HiSub.getValue(1), LoFlt, HiSub});
6282     Chain = Result.getValue(1);
6283   } else {
6284     SDValue HiSub =
6285         DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6286     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6287   }
6288   return true;
6289 }
6290 
6291 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6292                                               SelectionDAG &DAG) const {
6293   SDLoc dl(Node);
6294   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6295     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6296   EVT VT = Node->getValueType(0);
6297   if (isOperationLegalOrCustom(NewOp, VT)) {
6298     SDValue Quiet0 = Node->getOperand(0);
6299     SDValue Quiet1 = Node->getOperand(1);
6300 
6301     if (!Node->getFlags().hasNoNaNs()) {
6302       // Insert canonicalizes if it's possible we need to quiet to get correct
6303       // sNaN behavior.
6304       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6305         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6306                              Node->getFlags());
6307       }
6308       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6309         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6310                              Node->getFlags());
6311       }
6312     }
6313 
6314     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6315   }
6316 
6317   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6318   // instead if there are no NaNs.
6319   if (Node->getFlags().hasNoNaNs()) {
6320     unsigned IEEE2018Op =
6321         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6322     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6323       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6324                          Node->getOperand(1), Node->getFlags());
6325     }
6326   }
6327 
6328   // If none of the above worked, but there are no NaNs, then expand to
6329   // a compare/select sequence.  This is required for correctness since
6330   // InstCombine might have canonicalized a fcmp+select sequence to a
6331   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6332   // expansion to libcall, we might introduce a link-time dependency
6333   // on libm into a file that originally did not have one.
6334   if (Node->getFlags().hasNoNaNs()) {
6335     ISD::CondCode Pred =
6336         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6337     SDValue Op1 = Node->getOperand(0);
6338     SDValue Op2 = Node->getOperand(1);
6339     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6340     // Copy FMF flags, but always set the no-signed-zeros flag
6341     // as this is implied by the FMINNUM/FMAXNUM semantics.
6342     SDNodeFlags Flags = Node->getFlags();
6343     Flags.setNoSignedZeros(true);
6344     SelCC->setFlags(Flags);
6345     return SelCC;
6346   }
6347 
6348   return SDValue();
6349 }
6350 
6351 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6352                                  SelectionDAG &DAG) const {
6353   SDLoc dl(Node);
6354   EVT VT = Node->getValueType(0);
6355   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6356   SDValue Op = Node->getOperand(0);
6357   unsigned Len = VT.getScalarSizeInBits();
6358   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6359 
6360   // TODO: Add support for irregular type lengths.
6361   if (!(Len <= 128 && Len % 8 == 0))
6362     return false;
6363 
6364   // Only expand vector types if we have the appropriate vector bit operations.
6365   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6366                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6367                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6368                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6369                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6370     return false;
6371 
6372   // This is the "best" algorithm from
6373   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6374   SDValue Mask55 =
6375       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6376   SDValue Mask33 =
6377       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6378   SDValue Mask0F =
6379       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6380   SDValue Mask01 =
6381       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6382 
6383   // v = v - ((v >> 1) & 0x55555555...)
6384   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6385                    DAG.getNode(ISD::AND, dl, VT,
6386                                DAG.getNode(ISD::SRL, dl, VT, Op,
6387                                            DAG.getConstant(1, dl, ShVT)),
6388                                Mask55));
6389   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6390   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6391                    DAG.getNode(ISD::AND, dl, VT,
6392                                DAG.getNode(ISD::SRL, dl, VT, Op,
6393                                            DAG.getConstant(2, dl, ShVT)),
6394                                Mask33));
6395   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6396   Op = DAG.getNode(ISD::AND, dl, VT,
6397                    DAG.getNode(ISD::ADD, dl, VT, Op,
6398                                DAG.getNode(ISD::SRL, dl, VT, Op,
6399                                            DAG.getConstant(4, dl, ShVT))),
6400                    Mask0F);
6401   // v = (v * 0x01010101...) >> (Len - 8)
6402   if (Len > 8)
6403     Op =
6404         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6405                     DAG.getConstant(Len - 8, dl, ShVT));
6406 
6407   Result = Op;
6408   return true;
6409 }
6410 
6411 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6412                                 SelectionDAG &DAG) const {
6413   SDLoc dl(Node);
6414   EVT VT = Node->getValueType(0);
6415   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6416   SDValue Op = Node->getOperand(0);
6417   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6418 
6419   // If the non-ZERO_UNDEF version is supported we can use that instead.
6420   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6421       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6422     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6423     return true;
6424   }
6425 
6426   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6427   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6428     EVT SetCCVT =
6429         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6430     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6431     SDValue Zero = DAG.getConstant(0, dl, VT);
6432     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6433     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6434                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6435     return true;
6436   }
6437 
6438   // Only expand vector types if we have the appropriate vector bit operations.
6439   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6440                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6441                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6442                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6443     return false;
6444 
6445   // for now, we do this:
6446   // x = x | (x >> 1);
6447   // x = x | (x >> 2);
6448   // ...
6449   // x = x | (x >>16);
6450   // x = x | (x >>32); // for 64-bit input
6451   // return popcount(~x);
6452   //
6453   // Ref: "Hacker's Delight" by Henry Warren
6454   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6455     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6456     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6457                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6458   }
6459   Op = DAG.getNOT(dl, Op, VT);
6460   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6461   return true;
6462 }
6463 
6464 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6465                                 SelectionDAG &DAG) const {
6466   SDLoc dl(Node);
6467   EVT VT = Node->getValueType(0);
6468   SDValue Op = Node->getOperand(0);
6469   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6470 
6471   // If the non-ZERO_UNDEF version is supported we can use that instead.
6472   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6473       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6474     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6475     return true;
6476   }
6477 
6478   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6479   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6480     EVT SetCCVT =
6481         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6482     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6483     SDValue Zero = DAG.getConstant(0, dl, VT);
6484     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6485     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6486                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6487     return true;
6488   }
6489 
6490   // Only expand vector types if we have the appropriate vector bit operations.
6491   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6492                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6493                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6494                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6495                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6496                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6497     return false;
6498 
6499   // for now, we use: { return popcount(~x & (x - 1)); }
6500   // unless the target has ctlz but not ctpop, in which case we use:
6501   // { return 32 - nlz(~x & (x-1)); }
6502   // Ref: "Hacker's Delight" by Henry Warren
6503   SDValue Tmp = DAG.getNode(
6504       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6505       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6506 
6507   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6508   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6509     Result =
6510         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6511                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6512     return true;
6513   }
6514 
6515   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6516   return true;
6517 }
6518 
6519 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6520                                SelectionDAG &DAG) const {
6521   SDLoc dl(N);
6522   EVT VT = N->getValueType(0);
6523   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6524   SDValue Op = N->getOperand(0);
6525 
6526   // Only expand vector types if we have the appropriate vector operations.
6527   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6528                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6529                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6530     return false;
6531 
6532   SDValue Shift =
6533       DAG.getNode(ISD::SRA, dl, VT, Op,
6534                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6535   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6536   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6537   return true;
6538 }
6539 
6540 std::pair<SDValue, SDValue>
6541 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6542                                     SelectionDAG &DAG) const {
6543   SDLoc SL(LD);
6544   SDValue Chain = LD->getChain();
6545   SDValue BasePTR = LD->getBasePtr();
6546   EVT SrcVT = LD->getMemoryVT();
6547   ISD::LoadExtType ExtType = LD->getExtensionType();
6548 
6549   unsigned NumElem = SrcVT.getVectorNumElements();
6550 
6551   EVT SrcEltVT = SrcVT.getScalarType();
6552   EVT DstEltVT = LD->getValueType(0).getScalarType();
6553 
6554   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6555   assert(SrcEltVT.isByteSized());
6556 
6557   SmallVector<SDValue, 8> Vals;
6558   SmallVector<SDValue, 8> LoadChains;
6559 
6560   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6561     SDValue ScalarLoad =
6562         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6563                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6564                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6565                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6566 
6567     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6568 
6569     Vals.push_back(ScalarLoad.getValue(0));
6570     LoadChains.push_back(ScalarLoad.getValue(1));
6571   }
6572 
6573   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6574   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
6575 
6576   return std::make_pair(Value, NewChain);
6577 }
6578 
6579 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6580                                              SelectionDAG &DAG) const {
6581   SDLoc SL(ST);
6582 
6583   SDValue Chain = ST->getChain();
6584   SDValue BasePtr = ST->getBasePtr();
6585   SDValue Value = ST->getValue();
6586   EVT StVT = ST->getMemoryVT();
6587 
6588   // The type of the data we want to save
6589   EVT RegVT = Value.getValueType();
6590   EVT RegSclVT = RegVT.getScalarType();
6591 
6592   // The type of data as saved in memory.
6593   EVT MemSclVT = StVT.getScalarType();
6594 
6595   unsigned NumElem = StVT.getVectorNumElements();
6596 
6597   // A vector must always be stored in memory as-is, i.e. without any padding
6598   // between the elements, since various code depend on it, e.g. in the
6599   // handling of a bitcast of a vector type to int, which may be done with a
6600   // vector store followed by an integer load. A vector that does not have
6601   // elements that are byte-sized must therefore be stored as an integer
6602   // built out of the extracted vector elements.
6603   if (!MemSclVT.isByteSized()) {
6604     unsigned NumBits = StVT.getSizeInBits();
6605     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6606 
6607     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6608 
6609     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6610       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6611                                 DAG.getVectorIdxConstant(Idx, SL));
6612       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6613       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6614       unsigned ShiftIntoIdx =
6615           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6616       SDValue ShiftAmount =
6617           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6618       SDValue ShiftedElt =
6619           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6620       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6621     }
6622 
6623     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6624                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6625                         ST->getAAInfo());
6626   }
6627 
6628   // Store Stride in bytes
6629   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6630   assert(Stride && "Zero stride!");
6631   // Extract each of the elements from the original vector and save them into
6632   // memory individually.
6633   SmallVector<SDValue, 8> Stores;
6634   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6635     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6636                               DAG.getVectorIdxConstant(Idx, SL));
6637 
6638     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6639 
6640     // This scalar TruncStore may be illegal, but we legalize it later.
6641     SDValue Store = DAG.getTruncStore(
6642         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6643         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6644         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6645 
6646     Stores.push_back(Store);
6647   }
6648 
6649   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6650 }
6651 
6652 std::pair<SDValue, SDValue>
6653 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6654   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6655          "unaligned indexed loads not implemented!");
6656   SDValue Chain = LD->getChain();
6657   SDValue Ptr = LD->getBasePtr();
6658   EVT VT = LD->getValueType(0);
6659   EVT LoadedVT = LD->getMemoryVT();
6660   SDLoc dl(LD);
6661   auto &MF = DAG.getMachineFunction();
6662 
6663   if (VT.isFloatingPoint() || VT.isVector()) {
6664     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6665     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6666       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6667           LoadedVT.isVector()) {
6668         // Scalarize the load and let the individual components be handled.
6669         return scalarizeVectorLoad(LD, DAG);
6670       }
6671 
6672       // Expand to a (misaligned) integer load of the same size,
6673       // then bitconvert to floating point or vector.
6674       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6675                                     LD->getMemOperand());
6676       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6677       if (LoadedVT != VT)
6678         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6679                              ISD::ANY_EXTEND, dl, VT, Result);
6680 
6681       return std::make_pair(Result, newLoad.getValue(1));
6682     }
6683 
6684     // Copy the value to a (aligned) stack slot using (unaligned) integer
6685     // loads and stores, then do a (aligned) load from the stack slot.
6686     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6687     unsigned LoadedBytes = LoadedVT.getStoreSize();
6688     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6689     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6690 
6691     // Make sure the stack slot is also aligned for the register type.
6692     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6693     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6694     SmallVector<SDValue, 8> Stores;
6695     SDValue StackPtr = StackBase;
6696     unsigned Offset = 0;
6697 
6698     EVT PtrVT = Ptr.getValueType();
6699     EVT StackPtrVT = StackPtr.getValueType();
6700 
6701     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6702     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6703 
6704     // Do all but one copies using the full register width.
6705     for (unsigned i = 1; i < NumRegs; i++) {
6706       // Load one integer register's worth from the original location.
6707       SDValue Load = DAG.getLoad(
6708           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6709           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6710           LD->getAAInfo());
6711       // Follow the load with a store to the stack slot.  Remember the store.
6712       Stores.push_back(DAG.getStore(
6713           Load.getValue(1), dl, Load, StackPtr,
6714           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6715       // Increment the pointers.
6716       Offset += RegBytes;
6717 
6718       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6719       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6720     }
6721 
6722     // The last copy may be partial.  Do an extending load.
6723     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6724                                   8 * (LoadedBytes - Offset));
6725     SDValue Load =
6726         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6727                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6728                        MinAlign(LD->getAlignment(), Offset),
6729                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6730     // Follow the load with a store to the stack slot.  Remember the store.
6731     // On big-endian machines this requires a truncating store to ensure
6732     // that the bits end up in the right place.
6733     Stores.push_back(DAG.getTruncStore(
6734         Load.getValue(1), dl, Load, StackPtr,
6735         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6736 
6737     // The order of the stores doesn't matter - say it with a TokenFactor.
6738     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6739 
6740     // Finally, perform the original load only redirected to the stack slot.
6741     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6742                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6743                           LoadedVT);
6744 
6745     // Callers expect a MERGE_VALUES node.
6746     return std::make_pair(Load, TF);
6747   }
6748 
6749   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6750          "Unaligned load of unsupported type.");
6751 
6752   // Compute the new VT that is half the size of the old one.  This is an
6753   // integer MVT.
6754   unsigned NumBits = LoadedVT.getSizeInBits();
6755   EVT NewLoadedVT;
6756   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6757   NumBits >>= 1;
6758 
6759   unsigned Alignment = LD->getAlignment();
6760   unsigned IncrementSize = NumBits / 8;
6761   ISD::LoadExtType HiExtType = LD->getExtensionType();
6762 
6763   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6764   if (HiExtType == ISD::NON_EXTLOAD)
6765     HiExtType = ISD::ZEXTLOAD;
6766 
6767   // Load the value in two parts
6768   SDValue Lo, Hi;
6769   if (DAG.getDataLayout().isLittleEndian()) {
6770     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6771                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6772                         LD->getAAInfo());
6773 
6774     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6775     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6776                         LD->getPointerInfo().getWithOffset(IncrementSize),
6777                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6778                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6779   } else {
6780     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6781                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6782                         LD->getAAInfo());
6783 
6784     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6785     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6786                         LD->getPointerInfo().getWithOffset(IncrementSize),
6787                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6788                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6789   }
6790 
6791   // aggregate the two parts
6792   SDValue ShiftAmount =
6793       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6794                                                     DAG.getDataLayout()));
6795   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6796   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6797 
6798   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6799                              Hi.getValue(1));
6800 
6801   return std::make_pair(Result, TF);
6802 }
6803 
6804 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6805                                              SelectionDAG &DAG) const {
6806   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6807          "unaligned indexed stores not implemented!");
6808   SDValue Chain = ST->getChain();
6809   SDValue Ptr = ST->getBasePtr();
6810   SDValue Val = ST->getValue();
6811   EVT VT = Val.getValueType();
6812   int Alignment = ST->getAlignment();
6813   auto &MF = DAG.getMachineFunction();
6814   EVT StoreMemVT = ST->getMemoryVT();
6815 
6816   SDLoc dl(ST);
6817   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6818     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6819     if (isTypeLegal(intVT)) {
6820       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6821           StoreMemVT.isVector()) {
6822         // Scalarize the store and let the individual components be handled.
6823         SDValue Result = scalarizeVectorStore(ST, DAG);
6824         return Result;
6825       }
6826       // Expand to a bitconvert of the value to the integer type of the
6827       // same size, then a (misaligned) int store.
6828       // FIXME: Does not handle truncating floating point stores!
6829       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6830       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6831                             Alignment, ST->getMemOperand()->getFlags());
6832       return Result;
6833     }
6834     // Do a (aligned) store to a stack slot, then copy from the stack slot
6835     // to the final destination using (unaligned) integer loads and stores.
6836     MVT RegVT = getRegisterType(
6837         *DAG.getContext(),
6838         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6839     EVT PtrVT = Ptr.getValueType();
6840     unsigned StoredBytes = StoreMemVT.getStoreSize();
6841     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6842     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6843 
6844     // Make sure the stack slot is also aligned for the register type.
6845     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6846     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6847 
6848     // Perform the original store, only redirected to the stack slot.
6849     SDValue Store = DAG.getTruncStore(
6850         Chain, dl, Val, StackPtr,
6851         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6852 
6853     EVT StackPtrVT = StackPtr.getValueType();
6854 
6855     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6856     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6857     SmallVector<SDValue, 8> Stores;
6858     unsigned Offset = 0;
6859 
6860     // Do all but one copies using the full register width.
6861     for (unsigned i = 1; i < NumRegs; i++) {
6862       // Load one integer register's worth from the stack slot.
6863       SDValue Load = DAG.getLoad(
6864           RegVT, dl, Store, StackPtr,
6865           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6866       // Store it to the final location.  Remember the store.
6867       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6868                                     ST->getPointerInfo().getWithOffset(Offset),
6869                                     MinAlign(ST->getAlignment(), Offset),
6870                                     ST->getMemOperand()->getFlags()));
6871       // Increment the pointers.
6872       Offset += RegBytes;
6873       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6874       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6875     }
6876 
6877     // The last store may be partial.  Do a truncating store.  On big-endian
6878     // machines this requires an extending load from the stack slot to ensure
6879     // that the bits are in the right place.
6880     EVT LoadMemVT =
6881         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6882 
6883     // Load from the stack slot.
6884     SDValue Load = DAG.getExtLoad(
6885         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6886         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6887 
6888     Stores.push_back(
6889         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6890                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6891                           MinAlign(ST->getAlignment(), Offset),
6892                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6893     // The order of the stores doesn't matter - say it with a TokenFactor.
6894     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6895     return Result;
6896   }
6897 
6898   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6899          "Unaligned store of unknown type.");
6900   // Get the half-size VT
6901   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6902   int NumBits = NewStoredVT.getSizeInBits();
6903   int IncrementSize = NumBits / 8;
6904 
6905   // Divide the stored value in two parts.
6906   SDValue ShiftAmount = DAG.getConstant(
6907       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6908   SDValue Lo = Val;
6909   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6910 
6911   // Store the two parts
6912   SDValue Store1, Store2;
6913   Store1 = DAG.getTruncStore(Chain, dl,
6914                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6915                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6916                              ST->getMemOperand()->getFlags());
6917 
6918   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6919   Alignment = MinAlign(Alignment, IncrementSize);
6920   Store2 = DAG.getTruncStore(
6921       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6922       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6923       ST->getMemOperand()->getFlags(), ST->getAAInfo());
6924 
6925   SDValue Result =
6926       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6927   return Result;
6928 }
6929 
6930 SDValue
6931 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6932                                        const SDLoc &DL, EVT DataVT,
6933                                        SelectionDAG &DAG,
6934                                        bool IsCompressedMemory) const {
6935   SDValue Increment;
6936   EVT AddrVT = Addr.getValueType();
6937   EVT MaskVT = Mask.getValueType();
6938   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
6939          "Incompatible types of Data and Mask");
6940   if (IsCompressedMemory) {
6941     // Incrementing the pointer according to number of '1's in the mask.
6942     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
6943     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
6944     if (MaskIntVT.getSizeInBits() < 32) {
6945       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
6946       MaskIntVT = MVT::i32;
6947     }
6948 
6949     // Count '1's with POPCNT.
6950     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
6951     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
6952     // Scale is an element size in bytes.
6953     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
6954                                     AddrVT);
6955     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
6956   } else
6957     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
6958 
6959   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
6960 }
6961 
6962 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
6963                                        SDValue Idx,
6964                                        EVT VecVT,
6965                                        const SDLoc &dl) {
6966   if (isa<ConstantSDNode>(Idx))
6967     return Idx;
6968 
6969   EVT IdxVT = Idx.getValueType();
6970   unsigned NElts = VecVT.getVectorNumElements();
6971   if (isPowerOf2_32(NElts)) {
6972     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
6973                                      Log2_32(NElts));
6974     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
6975                        DAG.getConstant(Imm, dl, IdxVT));
6976   }
6977 
6978   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
6979                      DAG.getConstant(NElts - 1, dl, IdxVT));
6980 }
6981 
6982 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
6983                                                 SDValue VecPtr, EVT VecVT,
6984                                                 SDValue Index) const {
6985   SDLoc dl(Index);
6986   // Make sure the index type is big enough to compute in.
6987   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
6988 
6989   EVT EltVT = VecVT.getVectorElementType();
6990 
6991   // Calculate the element offset and add it to the pointer.
6992   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
6993   assert(EltSize * 8 == EltVT.getSizeInBits() &&
6994          "Converting bits to bytes lost precision");
6995 
6996   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
6997 
6998   EVT IdxVT = Index.getValueType();
6999 
7000   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7001                       DAG.getConstant(EltSize, dl, IdxVT));
7002   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7003 }
7004 
7005 //===----------------------------------------------------------------------===//
7006 // Implementation of Emulated TLS Model
7007 //===----------------------------------------------------------------------===//
7008 
7009 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7010                                                 SelectionDAG &DAG) const {
7011   // Access to address of TLS varialbe xyz is lowered to a function call:
7012   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7013   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7014   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7015   SDLoc dl(GA);
7016 
7017   ArgListTy Args;
7018   ArgListEntry Entry;
7019   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7020   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7021   StringRef EmuTlsVarName(NameString);
7022   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7023   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7024   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7025   Entry.Ty = VoidPtrType;
7026   Args.push_back(Entry);
7027 
7028   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7029 
7030   TargetLowering::CallLoweringInfo CLI(DAG);
7031   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7032   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7033   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7034 
7035   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7036   // At last for X86 targets, maybe good for other targets too?
7037   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7038   MFI.setAdjustsStack(true); // Is this only for X86 target?
7039   MFI.setHasCalls(true);
7040 
7041   assert((GA->getOffset() == 0) &&
7042          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7043   return CallResult.first;
7044 }
7045 
7046 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7047                                                 SelectionDAG &DAG) const {
7048   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7049   if (!isCtlzFast())
7050     return SDValue();
7051   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7052   SDLoc dl(Op);
7053   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7054     if (C->isNullValue() && CC == ISD::SETEQ) {
7055       EVT VT = Op.getOperand(0).getValueType();
7056       SDValue Zext = Op.getOperand(0);
7057       if (VT.bitsLT(MVT::i32)) {
7058         VT = MVT::i32;
7059         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7060       }
7061       unsigned Log2b = Log2_32(VT.getSizeInBits());
7062       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7063       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7064                                 DAG.getConstant(Log2b, dl, MVT::i32));
7065       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7066     }
7067   }
7068   return SDValue();
7069 }
7070 
7071 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7072   unsigned Opcode = Node->getOpcode();
7073   SDValue LHS = Node->getOperand(0);
7074   SDValue RHS = Node->getOperand(1);
7075   EVT VT = LHS.getValueType();
7076   SDLoc dl(Node);
7077 
7078   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7079   assert(VT.isInteger() && "Expected operands to be integers");
7080 
7081   // usub.sat(a, b) -> umax(a, b) - b
7082   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7083     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7084     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7085   }
7086 
7087   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7088     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7089     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7090     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7091   }
7092 
7093   unsigned OverflowOp;
7094   switch (Opcode) {
7095   case ISD::SADDSAT:
7096     OverflowOp = ISD::SADDO;
7097     break;
7098   case ISD::UADDSAT:
7099     OverflowOp = ISD::UADDO;
7100     break;
7101   case ISD::SSUBSAT:
7102     OverflowOp = ISD::SSUBO;
7103     break;
7104   case ISD::USUBSAT:
7105     OverflowOp = ISD::USUBO;
7106     break;
7107   default:
7108     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7109                      "addition or subtraction node.");
7110   }
7111 
7112   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7113   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7114   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7115                                LHS, RHS);
7116   SDValue SumDiff = Result.getValue(0);
7117   SDValue Overflow = Result.getValue(1);
7118   SDValue Zero = DAG.getConstant(0, dl, VT);
7119   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7120 
7121   if (Opcode == ISD::UADDSAT) {
7122     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7123       // (LHS + RHS) | OverflowMask
7124       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7125       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7126     }
7127     // Overflow ? 0xffff.... : (LHS + RHS)
7128     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7129   } else if (Opcode == ISD::USUBSAT) {
7130     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7131       // (LHS - RHS) & ~OverflowMask
7132       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7133       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7134       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7135     }
7136     // Overflow ? 0 : (LHS - RHS)
7137     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7138   } else {
7139     // SatMax -> Overflow && SumDiff < 0
7140     // SatMin -> Overflow && SumDiff >= 0
7141     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7142     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7143     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7144     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7145     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7146     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7147     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7148   }
7149 }
7150 
7151 SDValue
7152 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7153   assert((Node->getOpcode() == ISD::SMULFIX ||
7154           Node->getOpcode() == ISD::UMULFIX ||
7155           Node->getOpcode() == ISD::SMULFIXSAT ||
7156           Node->getOpcode() == ISD::UMULFIXSAT) &&
7157          "Expected a fixed point multiplication opcode");
7158 
7159   SDLoc dl(Node);
7160   SDValue LHS = Node->getOperand(0);
7161   SDValue RHS = Node->getOperand(1);
7162   EVT VT = LHS.getValueType();
7163   unsigned Scale = Node->getConstantOperandVal(2);
7164   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7165                      Node->getOpcode() == ISD::UMULFIXSAT);
7166   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7167                  Node->getOpcode() == ISD::SMULFIXSAT);
7168   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7169   unsigned VTSize = VT.getScalarSizeInBits();
7170 
7171   if (!Scale) {
7172     // [us]mul.fix(a, b, 0) -> mul(a, b)
7173     if (!Saturating) {
7174       if (isOperationLegalOrCustom(ISD::MUL, VT))
7175         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7176     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7177       SDValue Result =
7178           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7179       SDValue Product = Result.getValue(0);
7180       SDValue Overflow = Result.getValue(1);
7181       SDValue Zero = DAG.getConstant(0, dl, VT);
7182 
7183       APInt MinVal = APInt::getSignedMinValue(VTSize);
7184       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7185       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7186       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7187       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7188       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7189       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7190     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7191       SDValue Result =
7192           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7193       SDValue Product = Result.getValue(0);
7194       SDValue Overflow = Result.getValue(1);
7195 
7196       APInt MaxVal = APInt::getMaxValue(VTSize);
7197       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7198       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7199     }
7200   }
7201 
7202   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7203          "Expected scale to be less than the number of bits if signed or at "
7204          "most the number of bits if unsigned.");
7205   assert(LHS.getValueType() == RHS.getValueType() &&
7206          "Expected both operands to be the same type");
7207 
7208   // Get the upper and lower bits of the result.
7209   SDValue Lo, Hi;
7210   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7211   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7212   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7213     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7214     Lo = Result.getValue(0);
7215     Hi = Result.getValue(1);
7216   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7217     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7218     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7219   } else if (VT.isVector()) {
7220     return SDValue();
7221   } else {
7222     report_fatal_error("Unable to expand fixed point multiplication.");
7223   }
7224 
7225   if (Scale == VTSize)
7226     // Result is just the top half since we'd be shifting by the width of the
7227     // operand. Overflow impossible so this works for both UMULFIX and
7228     // UMULFIXSAT.
7229     return Hi;
7230 
7231   // The result will need to be shifted right by the scale since both operands
7232   // are scaled. The result is given to us in 2 halves, so we only want part of
7233   // both in the result.
7234   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7235   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7236                                DAG.getConstant(Scale, dl, ShiftTy));
7237   if (!Saturating)
7238     return Result;
7239 
7240   if (!Signed) {
7241     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7242     // widened multiplication) aren't all zeroes.
7243 
7244     // Saturate to max if ((Hi >> Scale) != 0),
7245     // which is the same as if (Hi > ((1 << Scale) - 1))
7246     APInt MaxVal = APInt::getMaxValue(VTSize);
7247     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7248                                       dl, VT);
7249     Result = DAG.getSelectCC(dl, Hi, LowMask,
7250                              DAG.getConstant(MaxVal, dl, VT), Result,
7251                              ISD::SETUGT);
7252 
7253     return Result;
7254   }
7255 
7256   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7257   // widened multiplication) aren't all ones or all zeroes.
7258 
7259   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7260   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7261 
7262   if (Scale == 0) {
7263     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7264                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7265     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7266     // Saturated to SatMin if wide product is negative, and SatMax if wide
7267     // product is positive ...
7268     SDValue Zero = DAG.getConstant(0, dl, VT);
7269     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7270                                                ISD::SETLT);
7271     // ... but only if we overflowed.
7272     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7273   }
7274 
7275   //  We handled Scale==0 above so all the bits to examine is in Hi.
7276 
7277   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7278   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7279   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7280                                     dl, VT);
7281   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7282   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7283   // which is the same as if (HI < (-1 << (Scale - 1))
7284   SDValue HighMask =
7285       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7286                       dl, VT);
7287   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7288   return Result;
7289 }
7290 
7291 SDValue
7292 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7293                                     SDValue LHS, SDValue RHS,
7294                                     unsigned Scale, SelectionDAG &DAG) const {
7295   assert((Opcode == ISD::SDIVFIX ||
7296           Opcode == ISD::UDIVFIX) &&
7297          "Expected a fixed point division opcode");
7298 
7299   EVT VT = LHS.getValueType();
7300   bool Signed = Opcode == ISD::SDIVFIX;
7301   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7302 
7303   // If there is enough room in the type to upscale the LHS or downscale the
7304   // RHS before the division, we can perform it in this type without having to
7305   // resize. For signed operations, the LHS headroom is the number of
7306   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7307   // The headroom for the RHS is the number of trailing zeroes.
7308   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7309                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7310   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7311 
7312   if (LHSLead + RHSTrail < Scale)
7313     return SDValue();
7314 
7315   unsigned LHSShift = std::min(LHSLead, Scale);
7316   unsigned RHSShift = Scale - LHSShift;
7317 
7318   // At this point, we know that if we shift the LHS up by LHSShift and the
7319   // RHS down by RHSShift, we can emit a regular division with a final scaling
7320   // factor of Scale.
7321 
7322   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7323   if (LHSShift)
7324     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7325                       DAG.getConstant(LHSShift, dl, ShiftTy));
7326   if (RHSShift)
7327     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7328                       DAG.getConstant(RHSShift, dl, ShiftTy));
7329 
7330   SDValue Quot;
7331   if (Signed) {
7332     // For signed operations, if the resulting quotient is negative and the
7333     // remainder is nonzero, subtract 1 from the quotient to round towards
7334     // negative infinity.
7335     SDValue Rem;
7336     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7337     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7338     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7339     if (isTypeLegal(VT) &&
7340         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7341       Quot = DAG.getNode(ISD::SDIVREM, dl,
7342                          DAG.getVTList(VT, VT),
7343                          LHS, RHS);
7344       Rem = Quot.getValue(1);
7345       Quot = Quot.getValue(0);
7346     } else {
7347       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7348                          LHS, RHS);
7349       Rem = DAG.getNode(ISD::SREM, dl, VT,
7350                         LHS, RHS);
7351     }
7352     SDValue Zero = DAG.getConstant(0, dl, VT);
7353     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7354     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7355     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7356     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7357     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7358                                DAG.getConstant(1, dl, VT));
7359     Quot = DAG.getSelect(dl, VT,
7360                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7361                          Sub1, Quot);
7362   } else
7363     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7364                        LHS, RHS);
7365 
7366   // TODO: Saturation.
7367 
7368   return Quot;
7369 }
7370 
7371 void TargetLowering::expandUADDSUBO(
7372     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7373   SDLoc dl(Node);
7374   SDValue LHS = Node->getOperand(0);
7375   SDValue RHS = Node->getOperand(1);
7376   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7377 
7378   // If ADD/SUBCARRY is legal, use that instead.
7379   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7380   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7381     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7382     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7383                                     { LHS, RHS, CarryIn });
7384     Result = SDValue(NodeCarry.getNode(), 0);
7385     Overflow = SDValue(NodeCarry.getNode(), 1);
7386     return;
7387   }
7388 
7389   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7390                             LHS.getValueType(), LHS, RHS);
7391 
7392   EVT ResultType = Node->getValueType(1);
7393   EVT SetCCType = getSetCCResultType(
7394       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7395   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7396   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7397   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7398 }
7399 
7400 void TargetLowering::expandSADDSUBO(
7401     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7402   SDLoc dl(Node);
7403   SDValue LHS = Node->getOperand(0);
7404   SDValue RHS = Node->getOperand(1);
7405   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7406 
7407   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7408                             LHS.getValueType(), LHS, RHS);
7409 
7410   EVT ResultType = Node->getValueType(1);
7411   EVT OType = getSetCCResultType(
7412       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7413 
7414   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7415   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7416   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7417     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7418     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7419     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7420     return;
7421   }
7422 
7423   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7424 
7425   // For an addition, the result should be less than one of the operands (LHS)
7426   // if and only if the other operand (RHS) is negative, otherwise there will
7427   // be overflow.
7428   // For a subtraction, the result should be less than one of the operands
7429   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7430   // otherwise there will be overflow.
7431   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7432   SDValue ConditionRHS =
7433       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7434 
7435   Overflow = DAG.getBoolExtOrTrunc(
7436       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7437       ResultType, ResultType);
7438 }
7439 
7440 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7441                                 SDValue &Overflow, SelectionDAG &DAG) const {
7442   SDLoc dl(Node);
7443   EVT VT = Node->getValueType(0);
7444   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7445   SDValue LHS = Node->getOperand(0);
7446   SDValue RHS = Node->getOperand(1);
7447   bool isSigned = Node->getOpcode() == ISD::SMULO;
7448 
7449   // For power-of-two multiplications we can use a simpler shift expansion.
7450   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7451     const APInt &C = RHSC->getAPIntValue();
7452     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7453     if (C.isPowerOf2()) {
7454       // smulo(x, signed_min) is same as umulo(x, signed_min).
7455       bool UseArithShift = isSigned && !C.isMinSignedValue();
7456       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7457       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7458       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7459       Overflow = DAG.getSetCC(dl, SetCCVT,
7460           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7461                       dl, VT, Result, ShiftAmt),
7462           LHS, ISD::SETNE);
7463       return true;
7464     }
7465   }
7466 
7467   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7468   if (VT.isVector())
7469     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7470                               VT.getVectorNumElements());
7471 
7472   SDValue BottomHalf;
7473   SDValue TopHalf;
7474   static const unsigned Ops[2][3] =
7475       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7476         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7477   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7478     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7479     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7480   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7481     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7482                              RHS);
7483     TopHalf = BottomHalf.getValue(1);
7484   } else if (isTypeLegal(WideVT)) {
7485     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7486     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7487     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7488     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7489     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7490         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7491     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7492                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7493   } else {
7494     if (VT.isVector())
7495       return false;
7496 
7497     // We can fall back to a libcall with an illegal type for the MUL if we
7498     // have a libcall big enough.
7499     // Also, we can fall back to a division in some cases, but that's a big
7500     // performance hit in the general case.
7501     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7502     if (WideVT == MVT::i16)
7503       LC = RTLIB::MUL_I16;
7504     else if (WideVT == MVT::i32)
7505       LC = RTLIB::MUL_I32;
7506     else if (WideVT == MVT::i64)
7507       LC = RTLIB::MUL_I64;
7508     else if (WideVT == MVT::i128)
7509       LC = RTLIB::MUL_I128;
7510     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7511 
7512     SDValue HiLHS;
7513     SDValue HiRHS;
7514     if (isSigned) {
7515       // The high part is obtained by SRA'ing all but one of the bits of low
7516       // part.
7517       unsigned LoSize = VT.getSizeInBits();
7518       HiLHS =
7519           DAG.getNode(ISD::SRA, dl, VT, LHS,
7520                       DAG.getConstant(LoSize - 1, dl,
7521                                       getPointerTy(DAG.getDataLayout())));
7522       HiRHS =
7523           DAG.getNode(ISD::SRA, dl, VT, RHS,
7524                       DAG.getConstant(LoSize - 1, dl,
7525                                       getPointerTy(DAG.getDataLayout())));
7526     } else {
7527         HiLHS = DAG.getConstant(0, dl, VT);
7528         HiRHS = DAG.getConstant(0, dl, VT);
7529     }
7530 
7531     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7532     // pre-lowered to the correct types. This all depends upon WideVT not
7533     // being a legal type for the architecture and thus has to be split to
7534     // two arguments.
7535     SDValue Ret;
7536     TargetLowering::MakeLibCallOptions CallOptions;
7537     CallOptions.setSExt(isSigned);
7538     CallOptions.setIsPostTypeLegalization(true);
7539     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7540       // Halves of WideVT are packed into registers in different order
7541       // depending on platform endianness. This is usually handled by
7542       // the C calling convention, but we can't defer to it in
7543       // the legalizer.
7544       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7545       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7546     } else {
7547       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7548       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7549     }
7550     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7551            "Ret value is a collection of constituent nodes holding result.");
7552     if (DAG.getDataLayout().isLittleEndian()) {
7553       // Same as above.
7554       BottomHalf = Ret.getOperand(0);
7555       TopHalf = Ret.getOperand(1);
7556     } else {
7557       BottomHalf = Ret.getOperand(1);
7558       TopHalf = Ret.getOperand(0);
7559     }
7560   }
7561 
7562   Result = BottomHalf;
7563   if (isSigned) {
7564     SDValue ShiftAmt = DAG.getConstant(
7565         VT.getScalarSizeInBits() - 1, dl,
7566         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7567     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7568     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7569   } else {
7570     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7571                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7572   }
7573 
7574   // Truncate the result if SetCC returns a larger type than needed.
7575   EVT RType = Node->getValueType(1);
7576   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7577     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7578 
7579   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7580          "Unexpected result type for S/UMULO legalization");
7581   return true;
7582 }
7583 
7584 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7585   SDLoc dl(Node);
7586   bool NoNaN = Node->getFlags().hasNoNaNs();
7587   unsigned BaseOpcode = 0;
7588   switch (Node->getOpcode()) {
7589   default: llvm_unreachable("Expected VECREDUCE opcode");
7590   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7591   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7592   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7593   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7594   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7595   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7596   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7597   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7598   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7599   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7600   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7601   case ISD::VECREDUCE_FMAX:
7602     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7603     break;
7604   case ISD::VECREDUCE_FMIN:
7605     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7606     break;
7607   }
7608 
7609   SDValue Op = Node->getOperand(0);
7610   EVT VT = Op.getValueType();
7611 
7612   // Try to use a shuffle reduction for power of two vectors.
7613   if (VT.isPow2VectorType()) {
7614     while (VT.getVectorNumElements() > 1) {
7615       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7616       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7617         break;
7618 
7619       SDValue Lo, Hi;
7620       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7621       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7622       VT = HalfVT;
7623     }
7624   }
7625 
7626   EVT EltVT = VT.getVectorElementType();
7627   unsigned NumElts = VT.getVectorNumElements();
7628 
7629   SmallVector<SDValue, 8> Ops;
7630   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7631 
7632   SDValue Res = Ops[0];
7633   for (unsigned i = 1; i < NumElts; i++)
7634     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7635 
7636   // Result type may be wider than element type.
7637   if (EltVT != Node->getValueType(0))
7638     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7639   return Res;
7640 }
7641