1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     MCRegister Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
114   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
115   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
116   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
117   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
118   Alignment = Call->getParamAlign(ArgIdx);
119   ByValType = nullptr;
120   if (IsByVal)
121     ByValType = Call->getParamByValType(ArgIdx);
122   PreallocatedType = nullptr;
123   if (IsPreallocated)
124     PreallocatedType = Call->getParamPreallocatedType(ArgIdx);
125 }
126 
127 /// Generate a libcall taking the given operands as arguments and returning a
128 /// result of type RetVT.
129 std::pair<SDValue, SDValue>
130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
131                             ArrayRef<SDValue> Ops,
132                             MakeLibCallOptions CallOptions,
133                             const SDLoc &dl,
134                             SDValue InChain) const {
135   if (!InChain)
136     InChain = DAG.getEntryNode();
137 
138   TargetLowering::ArgListTy Args;
139   Args.reserve(Ops.size());
140 
141   TargetLowering::ArgListEntry Entry;
142   for (unsigned i = 0; i < Ops.size(); ++i) {
143     SDValue NewOp = Ops[i];
144     Entry.Node = NewOp;
145     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
146     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
147                                                  CallOptions.IsSExt);
148     Entry.IsZExt = !Entry.IsSExt;
149 
150     if (CallOptions.IsSoften &&
151         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
152       Entry.IsSExt = Entry.IsZExt = false;
153     }
154     Args.push_back(Entry);
155   }
156 
157   if (LC == RTLIB::UNKNOWN_LIBCALL)
158     report_fatal_error("Unsupported library call operation!");
159   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
160                                          getPointerTy(DAG.getDataLayout()));
161 
162   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
163   TargetLowering::CallLoweringInfo CLI(DAG);
164   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
165   bool zeroExtend = !signExtend;
166 
167   if (CallOptions.IsSoften &&
168       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
169     signExtend = zeroExtend = false;
170   }
171 
172   CLI.setDebugLoc(dl)
173       .setChain(InChain)
174       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
175       .setNoReturn(CallOptions.DoesNotReturn)
176       .setDiscardResult(!CallOptions.IsReturnValueUsed)
177       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
178       .setSExtResult(signExtend)
179       .setZExtResult(zeroExtend);
180   return LowerCallTo(CLI);
181 }
182 
183 bool TargetLowering::findOptimalMemOpLowering(
184     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
185     unsigned SrcAS, const AttributeList &FuncAttributes) const {
186   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
187     return false;
188 
189   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
190 
191   if (VT == MVT::Other) {
192     // Use the largest integer type whose alignment constraints are satisfied.
193     // We only need to check DstAlign here as SrcAlign is always greater or
194     // equal to DstAlign (or zero).
195     VT = MVT::i64;
196     if (Op.isFixedDstAlign())
197       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
198              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
199         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
200     assert(VT.isInteger());
201 
202     // Find the largest legal integer type.
203     MVT LVT = MVT::i64;
204     while (!isTypeLegal(LVT))
205       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
206     assert(LVT.isInteger());
207 
208     // If the type we've chosen is larger than the largest legal integer type
209     // then use that instead.
210     if (VT.bitsGT(LVT))
211       VT = LVT;
212   }
213 
214   unsigned NumMemOps = 0;
215   uint64_t Size = Op.size();
216   while (Size) {
217     unsigned VTSize = VT.getSizeInBits() / 8;
218     while (VTSize > Size) {
219       // For now, only use non-vector load / store's for the left-over pieces.
220       EVT NewVT = VT;
221       unsigned NewVTSize;
222 
223       bool Found = false;
224       if (VT.isVector() || VT.isFloatingPoint()) {
225         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
226         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
227             isSafeMemOpType(NewVT.getSimpleVT()))
228           Found = true;
229         else if (NewVT == MVT::i64 &&
230                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
231                  isSafeMemOpType(MVT::f64)) {
232           // i64 is usually not legal on 32-bit targets, but f64 may be.
233           NewVT = MVT::f64;
234           Found = true;
235         }
236       }
237 
238       if (!Found) {
239         do {
240           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
241           if (NewVT == MVT::i8)
242             break;
243         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
244       }
245       NewVTSize = NewVT.getSizeInBits() / 8;
246 
247       // If the new VT cannot cover all of the remaining bits, then consider
248       // issuing a (or a pair of) unaligned and overlapping load / store.
249       bool Fast;
250       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
251           allowsMisalignedMemoryAccesses(
252               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
253               MachineMemOperand::MONone, &Fast) &&
254           Fast)
255         VTSize = Size;
256       else {
257         VT = NewVT;
258         VTSize = NewVTSize;
259       }
260     }
261 
262     if (++NumMemOps > Limit)
263       return false;
264 
265     MemOps.push_back(VT);
266     Size -= VTSize;
267   }
268 
269   return true;
270 }
271 
272 /// Soften the operands of a comparison. This code is shared among BR_CC,
273 /// SELECT_CC, and SETCC handlers.
274 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
275                                          SDValue &NewLHS, SDValue &NewRHS,
276                                          ISD::CondCode &CCCode,
277                                          const SDLoc &dl, const SDValue OldLHS,
278                                          const SDValue OldRHS) const {
279   SDValue Chain;
280   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
281                              OldRHS, Chain);
282 }
283 
284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
285                                          SDValue &NewLHS, SDValue &NewRHS,
286                                          ISD::CondCode &CCCode,
287                                          const SDLoc &dl, const SDValue OldLHS,
288                                          const SDValue OldRHS,
289                                          SDValue &Chain,
290                                          bool IsSignaling) const {
291   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
292   // not supporting it. We can update this code when libgcc provides such
293   // functions.
294 
295   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
296          && "Unsupported setcc type!");
297 
298   // Expand into one or more soft-fp libcall(s).
299   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
300   bool ShouldInvertCC = false;
301   switch (CCCode) {
302   case ISD::SETEQ:
303   case ISD::SETOEQ:
304     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
305           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
306           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
307     break;
308   case ISD::SETNE:
309   case ISD::SETUNE:
310     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
311           (VT == MVT::f64) ? RTLIB::UNE_F64 :
312           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
313     break;
314   case ISD::SETGE:
315   case ISD::SETOGE:
316     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
317           (VT == MVT::f64) ? RTLIB::OGE_F64 :
318           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
319     break;
320   case ISD::SETLT:
321   case ISD::SETOLT:
322     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
323           (VT == MVT::f64) ? RTLIB::OLT_F64 :
324           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
325     break;
326   case ISD::SETLE:
327   case ISD::SETOLE:
328     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
329           (VT == MVT::f64) ? RTLIB::OLE_F64 :
330           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
331     break;
332   case ISD::SETGT:
333   case ISD::SETOGT:
334     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
335           (VT == MVT::f64) ? RTLIB::OGT_F64 :
336           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
337     break;
338   case ISD::SETO:
339     ShouldInvertCC = true;
340     LLVM_FALLTHROUGH;
341   case ISD::SETUO:
342     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
343           (VT == MVT::f64) ? RTLIB::UO_F64 :
344           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
345     break;
346   case ISD::SETONE:
347     // SETONE = O && UNE
348     ShouldInvertCC = true;
349     LLVM_FALLTHROUGH;
350   case ISD::SETUEQ:
351     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
352           (VT == MVT::f64) ? RTLIB::UO_F64 :
353           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
354     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
355           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
356           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
357     break;
358   default:
359     // Invert CC for unordered comparisons
360     ShouldInvertCC = true;
361     switch (CCCode) {
362     case ISD::SETULT:
363       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
364             (VT == MVT::f64) ? RTLIB::OGE_F64 :
365             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
366       break;
367     case ISD::SETULE:
368       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
369             (VT == MVT::f64) ? RTLIB::OGT_F64 :
370             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
371       break;
372     case ISD::SETUGT:
373       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
374             (VT == MVT::f64) ? RTLIB::OLE_F64 :
375             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
376       break;
377     case ISD::SETUGE:
378       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
379             (VT == MVT::f64) ? RTLIB::OLT_F64 :
380             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
381       break;
382     default: llvm_unreachable("Do not know how to soften this setcc!");
383     }
384   }
385 
386   // Use the target specific return value for comparions lib calls.
387   EVT RetVT = getCmpLibcallReturnType();
388   SDValue Ops[2] = {NewLHS, NewRHS};
389   TargetLowering::MakeLibCallOptions CallOptions;
390   EVT OpsVT[2] = { OldLHS.getValueType(),
391                    OldRHS.getValueType() };
392   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
393   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
394   NewLHS = Call.first;
395   NewRHS = DAG.getConstant(0, dl, RetVT);
396 
397   CCCode = getCmpLibcallCC(LC1);
398   if (ShouldInvertCC) {
399     assert(RetVT.isInteger());
400     CCCode = getSetCCInverse(CCCode, RetVT);
401   }
402 
403   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
404     // Update Chain.
405     Chain = Call.second;
406   } else {
407     EVT SetCCVT =
408         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
409     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
410     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
411     CCCode = getCmpLibcallCC(LC2);
412     if (ShouldInvertCC)
413       CCCode = getSetCCInverse(CCCode, RetVT);
414     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
415     if (Chain)
416       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
417                           Call2.second);
418     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
419                          Tmp.getValueType(), Tmp, NewLHS);
420     NewRHS = SDValue();
421   }
422 }
423 
424 /// Return the entry encoding for a jump table in the current function. The
425 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
426 unsigned TargetLowering::getJumpTableEncoding() const {
427   // In non-pic modes, just use the address of a block.
428   if (!isPositionIndependent())
429     return MachineJumpTableInfo::EK_BlockAddress;
430 
431   // In PIC mode, if the target supports a GPRel32 directive, use it.
432   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
433     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
434 
435   // Otherwise, use a label difference.
436   return MachineJumpTableInfo::EK_LabelDifference32;
437 }
438 
439 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
440                                                  SelectionDAG &DAG) const {
441   // If our PIC model is GP relative, use the global offset table as the base.
442   unsigned JTEncoding = getJumpTableEncoding();
443 
444   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
445       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
446     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
447 
448   return Table;
449 }
450 
451 /// This returns the relocation base for the given PIC jumptable, the same as
452 /// getPICJumpTableRelocBase, but as an MCExpr.
453 const MCExpr *
454 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
455                                              unsigned JTI,MCContext &Ctx) const{
456   // The normal PIC reloc base is the label at the start of the jump table.
457   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
458 }
459 
460 bool
461 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
462   const TargetMachine &TM = getTargetMachine();
463   const GlobalValue *GV = GA->getGlobal();
464 
465   // If the address is not even local to this DSO we will have to load it from
466   // a got and then add the offset.
467   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
468     return false;
469 
470   // If the code is position independent we will have to add a base register.
471   if (isPositionIndependent())
472     return false;
473 
474   // Otherwise we can do it.
475   return true;
476 }
477 
478 //===----------------------------------------------------------------------===//
479 //  Optimization Methods
480 //===----------------------------------------------------------------------===//
481 
482 /// If the specified instruction has a constant integer operand and there are
483 /// bits set in that constant that are not demanded, then clear those bits and
484 /// return true.
485 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
486                                             const APInt &DemandedBits,
487                                             const APInt &DemandedElts,
488                                             TargetLoweringOpt &TLO) const {
489   SDLoc DL(Op);
490   unsigned Opcode = Op.getOpcode();
491 
492   // Do target-specific constant optimization.
493   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
494     return TLO.New.getNode();
495 
496   // FIXME: ISD::SELECT, ISD::SELECT_CC
497   switch (Opcode) {
498   default:
499     break;
500   case ISD::XOR:
501   case ISD::AND:
502   case ISD::OR: {
503     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
504     if (!Op1C)
505       return false;
506 
507     // If this is a 'not' op, don't touch it because that's a canonical form.
508     const APInt &C = Op1C->getAPIntValue();
509     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
510       return false;
511 
512     if (!C.isSubsetOf(DemandedBits)) {
513       EVT VT = Op.getValueType();
514       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
515       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
516       return TLO.CombineTo(Op, NewOp);
517     }
518 
519     break;
520   }
521   }
522 
523   return false;
524 }
525 
526 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
527                                             const APInt &DemandedBits,
528                                             TargetLoweringOpt &TLO) const {
529   EVT VT = Op.getValueType();
530   APInt DemandedElts = VT.isVector()
531                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
532                            : APInt(1, 1);
533   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
534 }
535 
536 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
537 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
538 /// generalized for targets with other types of implicit widening casts.
539 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
540                                       const APInt &Demanded,
541                                       TargetLoweringOpt &TLO) const {
542   assert(Op.getNumOperands() == 2 &&
543          "ShrinkDemandedOp only supports binary operators!");
544   assert(Op.getNode()->getNumValues() == 1 &&
545          "ShrinkDemandedOp only supports nodes with one result!");
546 
547   SelectionDAG &DAG = TLO.DAG;
548   SDLoc dl(Op);
549 
550   // Early return, as this function cannot handle vector types.
551   if (Op.getValueType().isVector())
552     return false;
553 
554   // Don't do this if the node has another user, which may require the
555   // full value.
556   if (!Op.getNode()->hasOneUse())
557     return false;
558 
559   // Search for the smallest integer type with free casts to and from
560   // Op's type. For expedience, just check power-of-2 integer types.
561   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
562   unsigned DemandedSize = Demanded.getActiveBits();
563   unsigned SmallVTBits = DemandedSize;
564   if (!isPowerOf2_32(SmallVTBits))
565     SmallVTBits = NextPowerOf2(SmallVTBits);
566   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
567     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
568     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
569         TLI.isZExtFree(SmallVT, Op.getValueType())) {
570       // We found a type with free casts.
571       SDValue X = DAG.getNode(
572           Op.getOpcode(), dl, SmallVT,
573           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
574           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
575       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
576       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
577       return TLO.CombineTo(Op, Z);
578     }
579   }
580   return false;
581 }
582 
583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
584                                           DAGCombinerInfo &DCI) const {
585   SelectionDAG &DAG = DCI.DAG;
586   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
587                         !DCI.isBeforeLegalizeOps());
588   KnownBits Known;
589 
590   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
591   if (Simplified) {
592     DCI.AddToWorklist(Op.getNode());
593     DCI.CommitTargetLoweringOpt(TLO);
594   }
595   return Simplified;
596 }
597 
598 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
599                                           KnownBits &Known,
600                                           TargetLoweringOpt &TLO,
601                                           unsigned Depth,
602                                           bool AssumeSingleUse) const {
603   EVT VT = Op.getValueType();
604 
605   // TODO: We can probably do more work on calculating the known bits and
606   // simplifying the operations for scalable vectors, but for now we just
607   // bail out.
608   if (VT.isScalableVector()) {
609     // Pretend we don't know anything for now.
610     Known = KnownBits(DemandedBits.getBitWidth());
611     return false;
612   }
613 
614   APInt DemandedElts = VT.isVector()
615                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
616                            : APInt(1, 1);
617   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
618                               AssumeSingleUse);
619 }
620 
621 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
622 // TODO: Under what circumstances can we create nodes? Constant folding?
623 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
624     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
625     SelectionDAG &DAG, unsigned Depth) const {
626   // Limit search depth.
627   if (Depth >= SelectionDAG::MaxRecursionDepth)
628     return SDValue();
629 
630   // Ignore UNDEFs.
631   if (Op.isUndef())
632     return SDValue();
633 
634   // Not demanding any bits/elts from Op.
635   if (DemandedBits == 0 || DemandedElts == 0)
636     return DAG.getUNDEF(Op.getValueType());
637 
638   unsigned NumElts = DemandedElts.getBitWidth();
639   unsigned BitWidth = DemandedBits.getBitWidth();
640   KnownBits LHSKnown, RHSKnown;
641   switch (Op.getOpcode()) {
642   case ISD::BITCAST: {
643     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
644     EVT SrcVT = Src.getValueType();
645     EVT DstVT = Op.getValueType();
646     if (SrcVT == DstVT)
647       return Src;
648 
649     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
650     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
651     if (NumSrcEltBits == NumDstEltBits)
652       if (SDValue V = SimplifyMultipleUseDemandedBits(
653               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
654         return DAG.getBitcast(DstVT, V);
655 
656     // TODO - bigendian once we have test coverage.
657     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
658         DAG.getDataLayout().isLittleEndian()) {
659       unsigned Scale = NumDstEltBits / NumSrcEltBits;
660       unsigned NumSrcElts = SrcVT.getVectorNumElements();
661       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
662       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
663       for (unsigned i = 0; i != Scale; ++i) {
664         unsigned Offset = i * NumSrcEltBits;
665         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
666         if (!Sub.isNullValue()) {
667           DemandedSrcBits |= Sub;
668           for (unsigned j = 0; j != NumElts; ++j)
669             if (DemandedElts[j])
670               DemandedSrcElts.setBit((j * Scale) + i);
671         }
672       }
673 
674       if (SDValue V = SimplifyMultipleUseDemandedBits(
675               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
676         return DAG.getBitcast(DstVT, V);
677     }
678 
679     // TODO - bigendian once we have test coverage.
680     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
681         DAG.getDataLayout().isLittleEndian()) {
682       unsigned Scale = NumSrcEltBits / NumDstEltBits;
683       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
684       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
685       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
686       for (unsigned i = 0; i != NumElts; ++i)
687         if (DemandedElts[i]) {
688           unsigned Offset = (i % Scale) * NumDstEltBits;
689           DemandedSrcBits.insertBits(DemandedBits, Offset);
690           DemandedSrcElts.setBit(i / Scale);
691         }
692 
693       if (SDValue V = SimplifyMultipleUseDemandedBits(
694               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
695         return DAG.getBitcast(DstVT, V);
696     }
697 
698     break;
699   }
700   case ISD::AND: {
701     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
702     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
703 
704     // If all of the demanded bits are known 1 on one side, return the other.
705     // These bits cannot contribute to the result of the 'and' in this
706     // context.
707     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
708       return Op.getOperand(0);
709     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
710       return Op.getOperand(1);
711     break;
712   }
713   case ISD::OR: {
714     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
715     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
716 
717     // If all of the demanded bits are known zero on one side, return the
718     // other.  These bits cannot contribute to the result of the 'or' in this
719     // context.
720     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
721       return Op.getOperand(0);
722     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
723       return Op.getOperand(1);
724     break;
725   }
726   case ISD::XOR: {
727     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
728     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
729 
730     // If all of the demanded bits are known zero on one side, return the
731     // other.
732     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
733       return Op.getOperand(0);
734     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
735       return Op.getOperand(1);
736     break;
737   }
738   case ISD::SHL: {
739     // If we are only demanding sign bits then we can use the shift source
740     // directly.
741     if (const APInt *MaxSA =
742             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
743       SDValue Op0 = Op.getOperand(0);
744       unsigned ShAmt = MaxSA->getZExtValue();
745       unsigned NumSignBits =
746           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
747       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
748       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
749         return Op0;
750     }
751     break;
752   }
753   case ISD::SETCC: {
754     SDValue Op0 = Op.getOperand(0);
755     SDValue Op1 = Op.getOperand(1);
756     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
757     // If (1) we only need the sign-bit, (2) the setcc operands are the same
758     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
759     // -1, we may be able to bypass the setcc.
760     if (DemandedBits.isSignMask() &&
761         Op0.getScalarValueSizeInBits() == BitWidth &&
762         getBooleanContents(Op0.getValueType()) ==
763             BooleanContent::ZeroOrNegativeOneBooleanContent) {
764       // If we're testing X < 0, then this compare isn't needed - just use X!
765       // FIXME: We're limiting to integer types here, but this should also work
766       // if we don't care about FP signed-zero. The use of SETLT with FP means
767       // that we don't care about NaNs.
768       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
769           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
770         return Op0;
771     }
772     break;
773   }
774   case ISD::SIGN_EXTEND_INREG: {
775     // If none of the extended bits are demanded, eliminate the sextinreg.
776     SDValue Op0 = Op.getOperand(0);
777     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
778     unsigned ExBits = ExVT.getScalarSizeInBits();
779     if (DemandedBits.getActiveBits() <= ExBits)
780       return Op0;
781     // If the input is already sign extended, just drop the extension.
782     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
783     if (NumSignBits >= (BitWidth - ExBits + 1))
784       return Op0;
785     break;
786   }
787   case ISD::ANY_EXTEND_VECTOR_INREG:
788   case ISD::SIGN_EXTEND_VECTOR_INREG:
789   case ISD::ZERO_EXTEND_VECTOR_INREG: {
790     // If we only want the lowest element and none of extended bits, then we can
791     // return the bitcasted source vector.
792     SDValue Src = Op.getOperand(0);
793     EVT SrcVT = Src.getValueType();
794     EVT DstVT = Op.getValueType();
795     if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
796         DAG.getDataLayout().isLittleEndian() &&
797         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
798       return DAG.getBitcast(DstVT, Src);
799     }
800     break;
801   }
802   case ISD::INSERT_VECTOR_ELT: {
803     // If we don't demand the inserted element, return the base vector.
804     SDValue Vec = Op.getOperand(0);
805     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
806     EVT VecVT = Vec.getValueType();
807     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
808         !DemandedElts[CIdx->getZExtValue()])
809       return Vec;
810     break;
811   }
812   case ISD::INSERT_SUBVECTOR: {
813     // If we don't demand the inserted subvector, return the base vector.
814     SDValue Vec = Op.getOperand(0);
815     SDValue Sub = Op.getOperand(1);
816     uint64_t Idx = Op.getConstantOperandVal(2);
817     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
818     if (DemandedElts.extractBits(NumSubElts, Idx) == 0)
819       return Vec;
820     break;
821   }
822   case ISD::VECTOR_SHUFFLE: {
823     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
824 
825     // If all the demanded elts are from one operand and are inline,
826     // then we can use the operand directly.
827     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
828     for (unsigned i = 0; i != NumElts; ++i) {
829       int M = ShuffleMask[i];
830       if (M < 0 || !DemandedElts[i])
831         continue;
832       AllUndef = false;
833       IdentityLHS &= (M == (int)i);
834       IdentityRHS &= ((M - NumElts) == i);
835     }
836 
837     if (AllUndef)
838       return DAG.getUNDEF(Op.getValueType());
839     if (IdentityLHS)
840       return Op.getOperand(0);
841     if (IdentityRHS)
842       return Op.getOperand(1);
843     break;
844   }
845   default:
846     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
847       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
848               Op, DemandedBits, DemandedElts, DAG, Depth))
849         return V;
850     break;
851   }
852   return SDValue();
853 }
854 
855 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
856     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
857     unsigned Depth) const {
858   EVT VT = Op.getValueType();
859   APInt DemandedElts = VT.isVector()
860                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
861                            : APInt(1, 1);
862   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
863                                          Depth);
864 }
865 
866 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
867     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
868     unsigned Depth) const {
869   APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits());
870   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
871                                          Depth);
872 }
873 
874 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
875 /// result of Op are ever used downstream. If we can use this information to
876 /// simplify Op, create a new simplified DAG node and return true, returning the
877 /// original and new nodes in Old and New. Otherwise, analyze the expression and
878 /// return a mask of Known bits for the expression (used to simplify the
879 /// caller).  The Known bits may only be accurate for those bits in the
880 /// OriginalDemandedBits and OriginalDemandedElts.
881 bool TargetLowering::SimplifyDemandedBits(
882     SDValue Op, const APInt &OriginalDemandedBits,
883     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
884     unsigned Depth, bool AssumeSingleUse) const {
885   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
886   assert(Op.getScalarValueSizeInBits() == BitWidth &&
887          "Mask size mismatches value type size!");
888 
889   // Don't know anything.
890   Known = KnownBits(BitWidth);
891 
892   // TODO: We can probably do more work on calculating the known bits and
893   // simplifying the operations for scalable vectors, but for now we just
894   // bail out.
895   if (Op.getValueType().isScalableVector())
896     return false;
897 
898   unsigned NumElts = OriginalDemandedElts.getBitWidth();
899   assert((!Op.getValueType().isVector() ||
900           NumElts == Op.getValueType().getVectorNumElements()) &&
901          "Unexpected vector size");
902 
903   APInt DemandedBits = OriginalDemandedBits;
904   APInt DemandedElts = OriginalDemandedElts;
905   SDLoc dl(Op);
906   auto &DL = TLO.DAG.getDataLayout();
907 
908   // Undef operand.
909   if (Op.isUndef())
910     return false;
911 
912   if (Op.getOpcode() == ISD::Constant) {
913     // We know all of the bits for a constant!
914     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
915     return false;
916   }
917 
918   if (Op.getOpcode() == ISD::ConstantFP) {
919     // We know all of the bits for a floating point constant!
920     Known = KnownBits::makeConstant(
921         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
922     return false;
923   }
924 
925   // Other users may use these bits.
926   EVT VT = Op.getValueType();
927   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
928     if (Depth != 0) {
929       // If not at the root, Just compute the Known bits to
930       // simplify things downstream.
931       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
932       return false;
933     }
934     // If this is the root being simplified, allow it to have multiple uses,
935     // just set the DemandedBits/Elts to all bits.
936     DemandedBits = APInt::getAllOnesValue(BitWidth);
937     DemandedElts = APInt::getAllOnesValue(NumElts);
938   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
939     // Not demanding any bits/elts from Op.
940     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
941   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
942     // Limit search depth.
943     return false;
944   }
945 
946   KnownBits Known2;
947   switch (Op.getOpcode()) {
948   case ISD::TargetConstant:
949     llvm_unreachable("Can't simplify this node");
950   case ISD::SCALAR_TO_VECTOR: {
951     if (!DemandedElts[0])
952       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
953 
954     KnownBits SrcKnown;
955     SDValue Src = Op.getOperand(0);
956     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
957     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
958     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
959       return true;
960 
961     // Upper elements are undef, so only get the knownbits if we just demand
962     // the bottom element.
963     if (DemandedElts == 1)
964       Known = SrcKnown.anyextOrTrunc(BitWidth);
965     break;
966   }
967   case ISD::BUILD_VECTOR:
968     // Collect the known bits that are shared by every demanded element.
969     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
970     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
971     return false; // Don't fall through, will infinitely loop.
972   case ISD::LOAD: {
973     LoadSDNode *LD = cast<LoadSDNode>(Op);
974     if (getTargetConstantFromLoad(LD)) {
975       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
976       return false; // Don't fall through, will infinitely loop.
977     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
978       // If this is a ZEXTLoad and we are looking at the loaded value.
979       EVT MemVT = LD->getMemoryVT();
980       unsigned MemBits = MemVT.getScalarSizeInBits();
981       Known.Zero.setBitsFrom(MemBits);
982       return false; // Don't fall through, will infinitely loop.
983     }
984     break;
985   }
986   case ISD::INSERT_VECTOR_ELT: {
987     SDValue Vec = Op.getOperand(0);
988     SDValue Scl = Op.getOperand(1);
989     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
990     EVT VecVT = Vec.getValueType();
991 
992     // If index isn't constant, assume we need all vector elements AND the
993     // inserted element.
994     APInt DemandedVecElts(DemandedElts);
995     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
996       unsigned Idx = CIdx->getZExtValue();
997       DemandedVecElts.clearBit(Idx);
998 
999       // Inserted element is not required.
1000       if (!DemandedElts[Idx])
1001         return TLO.CombineTo(Op, Vec);
1002     }
1003 
1004     KnownBits KnownScl;
1005     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1006     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1007     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1008       return true;
1009 
1010     Known = KnownScl.anyextOrTrunc(BitWidth);
1011 
1012     KnownBits KnownVec;
1013     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1014                              Depth + 1))
1015       return true;
1016 
1017     if (!!DemandedVecElts)
1018       Known = KnownBits::commonBits(Known, KnownVec);
1019 
1020     return false;
1021   }
1022   case ISD::INSERT_SUBVECTOR: {
1023     // Demand any elements from the subvector and the remainder from the src its
1024     // inserted into.
1025     SDValue Src = Op.getOperand(0);
1026     SDValue Sub = Op.getOperand(1);
1027     uint64_t Idx = Op.getConstantOperandVal(2);
1028     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1029     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1030     APInt DemandedSrcElts = DemandedElts;
1031     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
1032 
1033     KnownBits KnownSub, KnownSrc;
1034     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1035                              Depth + 1))
1036       return true;
1037     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1038                              Depth + 1))
1039       return true;
1040 
1041     Known.Zero.setAllBits();
1042     Known.One.setAllBits();
1043     if (!!DemandedSubElts)
1044       Known = KnownBits::commonBits(Known, KnownSub);
1045     if (!!DemandedSrcElts)
1046       Known = KnownBits::commonBits(Known, KnownSrc);
1047 
1048     // Attempt to avoid multi-use src if we don't need anything from it.
1049     if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() ||
1050         !DemandedSrcElts.isAllOnesValue()) {
1051       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1052           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1053       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1054           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1055       if (NewSub || NewSrc) {
1056         NewSub = NewSub ? NewSub : Sub;
1057         NewSrc = NewSrc ? NewSrc : Src;
1058         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1059                                         Op.getOperand(2));
1060         return TLO.CombineTo(Op, NewOp);
1061       }
1062     }
1063     break;
1064   }
1065   case ISD::EXTRACT_SUBVECTOR: {
1066     // Offset the demanded elts by the subvector index.
1067     SDValue Src = Op.getOperand(0);
1068     if (Src.getValueType().isScalableVector())
1069       break;
1070     uint64_t Idx = Op.getConstantOperandVal(1);
1071     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1072     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1073 
1074     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1075                              Depth + 1))
1076       return true;
1077 
1078     // Attempt to avoid multi-use src if we don't need anything from it.
1079     if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) {
1080       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1081           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1082       if (DemandedSrc) {
1083         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1084                                         Op.getOperand(1));
1085         return TLO.CombineTo(Op, NewOp);
1086       }
1087     }
1088     break;
1089   }
1090   case ISD::CONCAT_VECTORS: {
1091     Known.Zero.setAllBits();
1092     Known.One.setAllBits();
1093     EVT SubVT = Op.getOperand(0).getValueType();
1094     unsigned NumSubVecs = Op.getNumOperands();
1095     unsigned NumSubElts = SubVT.getVectorNumElements();
1096     for (unsigned i = 0; i != NumSubVecs; ++i) {
1097       APInt DemandedSubElts =
1098           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1099       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1100                                Known2, TLO, Depth + 1))
1101         return true;
1102       // Known bits are shared by every demanded subvector element.
1103       if (!!DemandedSubElts)
1104         Known = KnownBits::commonBits(Known, Known2);
1105     }
1106     break;
1107   }
1108   case ISD::VECTOR_SHUFFLE: {
1109     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1110 
1111     // Collect demanded elements from shuffle operands..
1112     APInt DemandedLHS(NumElts, 0);
1113     APInt DemandedRHS(NumElts, 0);
1114     for (unsigned i = 0; i != NumElts; ++i) {
1115       if (!DemandedElts[i])
1116         continue;
1117       int M = ShuffleMask[i];
1118       if (M < 0) {
1119         // For UNDEF elements, we don't know anything about the common state of
1120         // the shuffle result.
1121         DemandedLHS.clearAllBits();
1122         DemandedRHS.clearAllBits();
1123         break;
1124       }
1125       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1126       if (M < (int)NumElts)
1127         DemandedLHS.setBit(M);
1128       else
1129         DemandedRHS.setBit(M - NumElts);
1130     }
1131 
1132     if (!!DemandedLHS || !!DemandedRHS) {
1133       SDValue Op0 = Op.getOperand(0);
1134       SDValue Op1 = Op.getOperand(1);
1135 
1136       Known.Zero.setAllBits();
1137       Known.One.setAllBits();
1138       if (!!DemandedLHS) {
1139         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1140                                  Depth + 1))
1141           return true;
1142         Known = KnownBits::commonBits(Known, Known2);
1143       }
1144       if (!!DemandedRHS) {
1145         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1146                                  Depth + 1))
1147           return true;
1148         Known = KnownBits::commonBits(Known, Known2);
1149       }
1150 
1151       // Attempt to avoid multi-use ops if we don't need anything from them.
1152       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1153           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1154       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1155           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1156       if (DemandedOp0 || DemandedOp1) {
1157         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1158         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1159         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1160         return TLO.CombineTo(Op, NewOp);
1161       }
1162     }
1163     break;
1164   }
1165   case ISD::AND: {
1166     SDValue Op0 = Op.getOperand(0);
1167     SDValue Op1 = Op.getOperand(1);
1168 
1169     // If the RHS is a constant, check to see if the LHS would be zero without
1170     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1171     // simplify the LHS, here we're using information from the LHS to simplify
1172     // the RHS.
1173     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1174       // Do not increment Depth here; that can cause an infinite loop.
1175       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1176       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1177       if ((LHSKnown.Zero & DemandedBits) ==
1178           (~RHSC->getAPIntValue() & DemandedBits))
1179         return TLO.CombineTo(Op, Op0);
1180 
1181       // If any of the set bits in the RHS are known zero on the LHS, shrink
1182       // the constant.
1183       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1184                                  DemandedElts, TLO))
1185         return true;
1186 
1187       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1188       // constant, but if this 'and' is only clearing bits that were just set by
1189       // the xor, then this 'and' can be eliminated by shrinking the mask of
1190       // the xor. For example, for a 32-bit X:
1191       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1192       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1193           LHSKnown.One == ~RHSC->getAPIntValue()) {
1194         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1195         return TLO.CombineTo(Op, Xor);
1196       }
1197     }
1198 
1199     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1200                              Depth + 1))
1201       return true;
1202     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1203     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1204                              Known2, TLO, Depth + 1))
1205       return true;
1206     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1207 
1208     // Attempt to avoid multi-use ops if we don't need anything from them.
1209     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1210       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1211           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1212       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1213           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1214       if (DemandedOp0 || DemandedOp1) {
1215         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1216         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1217         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1218         return TLO.CombineTo(Op, NewOp);
1219       }
1220     }
1221 
1222     // If all of the demanded bits are known one on one side, return the other.
1223     // These bits cannot contribute to the result of the 'and'.
1224     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1225       return TLO.CombineTo(Op, Op0);
1226     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1227       return TLO.CombineTo(Op, Op1);
1228     // If all of the demanded bits in the inputs are known zeros, return zero.
1229     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1230       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1231     // If the RHS is a constant, see if we can simplify it.
1232     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1233                                TLO))
1234       return true;
1235     // If the operation can be done in a smaller type, do so.
1236     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1237       return true;
1238 
1239     Known &= Known2;
1240     break;
1241   }
1242   case ISD::OR: {
1243     SDValue Op0 = Op.getOperand(0);
1244     SDValue Op1 = Op.getOperand(1);
1245 
1246     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1247                              Depth + 1))
1248       return true;
1249     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1250     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1251                              Known2, TLO, Depth + 1))
1252       return true;
1253     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1254 
1255     // Attempt to avoid multi-use ops if we don't need anything from them.
1256     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1257       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1258           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1259       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1260           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1261       if (DemandedOp0 || DemandedOp1) {
1262         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1263         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1264         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1265         return TLO.CombineTo(Op, NewOp);
1266       }
1267     }
1268 
1269     // If all of the demanded bits are known zero on one side, return the other.
1270     // These bits cannot contribute to the result of the 'or'.
1271     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1272       return TLO.CombineTo(Op, Op0);
1273     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1274       return TLO.CombineTo(Op, Op1);
1275     // If the RHS is a constant, see if we can simplify it.
1276     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1277       return true;
1278     // If the operation can be done in a smaller type, do so.
1279     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1280       return true;
1281 
1282     Known |= Known2;
1283     break;
1284   }
1285   case ISD::XOR: {
1286     SDValue Op0 = Op.getOperand(0);
1287     SDValue Op1 = Op.getOperand(1);
1288 
1289     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1290                              Depth + 1))
1291       return true;
1292     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1293     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1294                              Depth + 1))
1295       return true;
1296     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1297 
1298     // Attempt to avoid multi-use ops if we don't need anything from them.
1299     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1300       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1301           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1302       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1303           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1304       if (DemandedOp0 || DemandedOp1) {
1305         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1306         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1307         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1308         return TLO.CombineTo(Op, NewOp);
1309       }
1310     }
1311 
1312     // If all of the demanded bits are known zero on one side, return the other.
1313     // These bits cannot contribute to the result of the 'xor'.
1314     if (DemandedBits.isSubsetOf(Known.Zero))
1315       return TLO.CombineTo(Op, Op0);
1316     if (DemandedBits.isSubsetOf(Known2.Zero))
1317       return TLO.CombineTo(Op, Op1);
1318     // If the operation can be done in a smaller type, do so.
1319     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1320       return true;
1321 
1322     // If all of the unknown bits are known to be zero on one side or the other
1323     // turn this into an *inclusive* or.
1324     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1325     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1326       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1327 
1328     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1329     if (C) {
1330       // If one side is a constant, and all of the set bits in the constant are
1331       // also known set on the other side, turn this into an AND, as we know
1332       // the bits will be cleared.
1333       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1334       // NB: it is okay if more bits are known than are requested
1335       if (C->getAPIntValue() == Known2.One) {
1336         SDValue ANDC =
1337             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1338         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1339       }
1340 
1341       // If the RHS is a constant, see if we can change it. Don't alter a -1
1342       // constant because that's a 'not' op, and that is better for combining
1343       // and codegen.
1344       if (!C->isAllOnesValue() &&
1345           DemandedBits.isSubsetOf(C->getAPIntValue())) {
1346         // We're flipping all demanded bits. Flip the undemanded bits too.
1347         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1348         return TLO.CombineTo(Op, New);
1349       }
1350     }
1351 
1352     // If we can't turn this into a 'not', try to shrink the constant.
1353     if (!C || !C->isAllOnesValue())
1354       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1355         return true;
1356 
1357     Known ^= Known2;
1358     break;
1359   }
1360   case ISD::SELECT:
1361     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1362                              Depth + 1))
1363       return true;
1364     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1365                              Depth + 1))
1366       return true;
1367     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1368     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1369 
1370     // If the operands are constants, see if we can simplify them.
1371     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1372       return true;
1373 
1374     // Only known if known in both the LHS and RHS.
1375     Known = KnownBits::commonBits(Known, Known2);
1376     break;
1377   case ISD::SELECT_CC:
1378     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1379                              Depth + 1))
1380       return true;
1381     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1382                              Depth + 1))
1383       return true;
1384     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1385     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1386 
1387     // If the operands are constants, see if we can simplify them.
1388     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1389       return true;
1390 
1391     // Only known if known in both the LHS and RHS.
1392     Known = KnownBits::commonBits(Known, Known2);
1393     break;
1394   case ISD::SETCC: {
1395     SDValue Op0 = Op.getOperand(0);
1396     SDValue Op1 = Op.getOperand(1);
1397     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1398     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1399     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1400     // -1, we may be able to bypass the setcc.
1401     if (DemandedBits.isSignMask() &&
1402         Op0.getScalarValueSizeInBits() == BitWidth &&
1403         getBooleanContents(Op0.getValueType()) ==
1404             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1405       // If we're testing X < 0, then this compare isn't needed - just use X!
1406       // FIXME: We're limiting to integer types here, but this should also work
1407       // if we don't care about FP signed-zero. The use of SETLT with FP means
1408       // that we don't care about NaNs.
1409       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1410           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1411         return TLO.CombineTo(Op, Op0);
1412 
1413       // TODO: Should we check for other forms of sign-bit comparisons?
1414       // Examples: X <= -1, X >= 0
1415     }
1416     if (getBooleanContents(Op0.getValueType()) ==
1417             TargetLowering::ZeroOrOneBooleanContent &&
1418         BitWidth > 1)
1419       Known.Zero.setBitsFrom(1);
1420     break;
1421   }
1422   case ISD::SHL: {
1423     SDValue Op0 = Op.getOperand(0);
1424     SDValue Op1 = Op.getOperand(1);
1425     EVT ShiftVT = Op1.getValueType();
1426 
1427     if (const APInt *SA =
1428             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1429       unsigned ShAmt = SA->getZExtValue();
1430       if (ShAmt == 0)
1431         return TLO.CombineTo(Op, Op0);
1432 
1433       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1434       // single shift.  We can do this if the bottom bits (which are shifted
1435       // out) are never demanded.
1436       // TODO - support non-uniform vector amounts.
1437       if (Op0.getOpcode() == ISD::SRL) {
1438         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1439           if (const APInt *SA2 =
1440                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1441             unsigned C1 = SA2->getZExtValue();
1442             unsigned Opc = ISD::SHL;
1443             int Diff = ShAmt - C1;
1444             if (Diff < 0) {
1445               Diff = -Diff;
1446               Opc = ISD::SRL;
1447             }
1448             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1449             return TLO.CombineTo(
1450                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1451           }
1452         }
1453       }
1454 
1455       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1456       // are not demanded. This will likely allow the anyext to be folded away.
1457       // TODO - support non-uniform vector amounts.
1458       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1459         SDValue InnerOp = Op0.getOperand(0);
1460         EVT InnerVT = InnerOp.getValueType();
1461         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1462         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1463             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1464           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1465           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1466             ShTy = InnerVT;
1467           SDValue NarrowShl =
1468               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1469                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1470           return TLO.CombineTo(
1471               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1472         }
1473 
1474         // Repeat the SHL optimization above in cases where an extension
1475         // intervenes: (shl (anyext (shr x, c1)), c2) to
1476         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1477         // aren't demanded (as above) and that the shifted upper c1 bits of
1478         // x aren't demanded.
1479         // TODO - support non-uniform vector amounts.
1480         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1481             InnerOp.hasOneUse()) {
1482           if (const APInt *SA2 =
1483                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1484             unsigned InnerShAmt = SA2->getZExtValue();
1485             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1486                 DemandedBits.getActiveBits() <=
1487                     (InnerBits - InnerShAmt + ShAmt) &&
1488                 DemandedBits.countTrailingZeros() >= ShAmt) {
1489               SDValue NewSA =
1490                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1491               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1492                                                InnerOp.getOperand(0));
1493               return TLO.CombineTo(
1494                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1495             }
1496           }
1497         }
1498       }
1499 
1500       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1501       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1502                                Depth + 1))
1503         return true;
1504       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1505       Known.Zero <<= ShAmt;
1506       Known.One <<= ShAmt;
1507       // low bits known zero.
1508       Known.Zero.setLowBits(ShAmt);
1509 
1510       // Try shrinking the operation as long as the shift amount will still be
1511       // in range.
1512       if ((ShAmt < DemandedBits.getActiveBits()) &&
1513           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1514         return true;
1515     }
1516 
1517     // If we are only demanding sign bits then we can use the shift source
1518     // directly.
1519     if (const APInt *MaxSA =
1520             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1521       unsigned ShAmt = MaxSA->getZExtValue();
1522       unsigned NumSignBits =
1523           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1524       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1525       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1526         return TLO.CombineTo(Op, Op0);
1527     }
1528     break;
1529   }
1530   case ISD::SRL: {
1531     SDValue Op0 = Op.getOperand(0);
1532     SDValue Op1 = Op.getOperand(1);
1533     EVT ShiftVT = Op1.getValueType();
1534 
1535     if (const APInt *SA =
1536             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1537       unsigned ShAmt = SA->getZExtValue();
1538       if (ShAmt == 0)
1539         return TLO.CombineTo(Op, Op0);
1540 
1541       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1542       // single shift.  We can do this if the top bits (which are shifted out)
1543       // are never demanded.
1544       // TODO - support non-uniform vector amounts.
1545       if (Op0.getOpcode() == ISD::SHL) {
1546         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1547           if (const APInt *SA2 =
1548                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1549             unsigned C1 = SA2->getZExtValue();
1550             unsigned Opc = ISD::SRL;
1551             int Diff = ShAmt - C1;
1552             if (Diff < 0) {
1553               Diff = -Diff;
1554               Opc = ISD::SHL;
1555             }
1556             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1557             return TLO.CombineTo(
1558                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1559           }
1560         }
1561       }
1562 
1563       APInt InDemandedMask = (DemandedBits << ShAmt);
1564 
1565       // If the shift is exact, then it does demand the low bits (and knows that
1566       // they are zero).
1567       if (Op->getFlags().hasExact())
1568         InDemandedMask.setLowBits(ShAmt);
1569 
1570       // Compute the new bits that are at the top now.
1571       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1572                                Depth + 1))
1573         return true;
1574       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1575       Known.Zero.lshrInPlace(ShAmt);
1576       Known.One.lshrInPlace(ShAmt);
1577       // High bits known zero.
1578       Known.Zero.setHighBits(ShAmt);
1579     }
1580     break;
1581   }
1582   case ISD::SRA: {
1583     SDValue Op0 = Op.getOperand(0);
1584     SDValue Op1 = Op.getOperand(1);
1585     EVT ShiftVT = Op1.getValueType();
1586 
1587     // If we only want bits that already match the signbit then we don't need
1588     // to shift.
1589     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1590     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1591         NumHiDemandedBits)
1592       return TLO.CombineTo(Op, Op0);
1593 
1594     // If this is an arithmetic shift right and only the low-bit is set, we can
1595     // always convert this into a logical shr, even if the shift amount is
1596     // variable.  The low bit of the shift cannot be an input sign bit unless
1597     // the shift amount is >= the size of the datatype, which is undefined.
1598     if (DemandedBits.isOneValue())
1599       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1600 
1601     if (const APInt *SA =
1602             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1603       unsigned ShAmt = SA->getZExtValue();
1604       if (ShAmt == 0)
1605         return TLO.CombineTo(Op, Op0);
1606 
1607       APInt InDemandedMask = (DemandedBits << ShAmt);
1608 
1609       // If the shift is exact, then it does demand the low bits (and knows that
1610       // they are zero).
1611       if (Op->getFlags().hasExact())
1612         InDemandedMask.setLowBits(ShAmt);
1613 
1614       // If any of the demanded bits are produced by the sign extension, we also
1615       // demand the input sign bit.
1616       if (DemandedBits.countLeadingZeros() < ShAmt)
1617         InDemandedMask.setSignBit();
1618 
1619       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1620                                Depth + 1))
1621         return true;
1622       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1623       Known.Zero.lshrInPlace(ShAmt);
1624       Known.One.lshrInPlace(ShAmt);
1625 
1626       // If the input sign bit is known to be zero, or if none of the top bits
1627       // are demanded, turn this into an unsigned shift right.
1628       if (Known.Zero[BitWidth - ShAmt - 1] ||
1629           DemandedBits.countLeadingZeros() >= ShAmt) {
1630         SDNodeFlags Flags;
1631         Flags.setExact(Op->getFlags().hasExact());
1632         return TLO.CombineTo(
1633             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1634       }
1635 
1636       int Log2 = DemandedBits.exactLogBase2();
1637       if (Log2 >= 0) {
1638         // The bit must come from the sign.
1639         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1640         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1641       }
1642 
1643       if (Known.One[BitWidth - ShAmt - 1])
1644         // New bits are known one.
1645         Known.One.setHighBits(ShAmt);
1646 
1647       // Attempt to avoid multi-use ops if we don't need anything from them.
1648       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1649         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1650             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1651         if (DemandedOp0) {
1652           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1653           return TLO.CombineTo(Op, NewOp);
1654         }
1655       }
1656     }
1657     break;
1658   }
1659   case ISD::FSHL:
1660   case ISD::FSHR: {
1661     SDValue Op0 = Op.getOperand(0);
1662     SDValue Op1 = Op.getOperand(1);
1663     SDValue Op2 = Op.getOperand(2);
1664     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1665 
1666     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1667       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1668 
1669       // For fshl, 0-shift returns the 1st arg.
1670       // For fshr, 0-shift returns the 2nd arg.
1671       if (Amt == 0) {
1672         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1673                                  Known, TLO, Depth + 1))
1674           return true;
1675         break;
1676       }
1677 
1678       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1679       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1680       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1681       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1682       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1683                                Depth + 1))
1684         return true;
1685       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1686                                Depth + 1))
1687         return true;
1688 
1689       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1690       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1691       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1692       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1693       Known.One |= Known2.One;
1694       Known.Zero |= Known2.Zero;
1695     }
1696 
1697     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1698     if (isPowerOf2_32(BitWidth)) {
1699       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1700       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1701                                Known2, TLO, Depth + 1))
1702         return true;
1703     }
1704     break;
1705   }
1706   case ISD::ROTL:
1707   case ISD::ROTR: {
1708     SDValue Op0 = Op.getOperand(0);
1709     SDValue Op1 = Op.getOperand(1);
1710 
1711     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1712     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1713       return TLO.CombineTo(Op, Op0);
1714 
1715     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1716     if (isPowerOf2_32(BitWidth)) {
1717       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1718       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1719                                Depth + 1))
1720         return true;
1721     }
1722     break;
1723   }
1724   case ISD::UMIN: {
1725     // Check if one arg is always less than (or equal) to the other arg.
1726     SDValue Op0 = Op.getOperand(0);
1727     SDValue Op1 = Op.getOperand(1);
1728     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1729     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1730     Known = KnownBits::umin(Known0, Known1);
1731     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1732       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1733     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1734       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1735     break;
1736   }
1737   case ISD::UMAX: {
1738     // Check if one arg is always greater than (or equal) to the other arg.
1739     SDValue Op0 = Op.getOperand(0);
1740     SDValue Op1 = Op.getOperand(1);
1741     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1742     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1743     Known = KnownBits::umax(Known0, Known1);
1744     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1745       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1746     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1747       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1748     break;
1749   }
1750   case ISD::BITREVERSE: {
1751     SDValue Src = Op.getOperand(0);
1752     APInt DemandedSrcBits = DemandedBits.reverseBits();
1753     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1754                              Depth + 1))
1755       return true;
1756     Known.One = Known2.One.reverseBits();
1757     Known.Zero = Known2.Zero.reverseBits();
1758     break;
1759   }
1760   case ISD::BSWAP: {
1761     SDValue Src = Op.getOperand(0);
1762     APInt DemandedSrcBits = DemandedBits.byteSwap();
1763     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1764                              Depth + 1))
1765       return true;
1766     Known.One = Known2.One.byteSwap();
1767     Known.Zero = Known2.Zero.byteSwap();
1768     break;
1769   }
1770   case ISD::CTPOP: {
1771     // If only 1 bit is demanded, replace with PARITY as long as we're before
1772     // op legalization.
1773     // FIXME: Limit to scalars for now.
1774     if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector())
1775       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1776                                                Op.getOperand(0)));
1777 
1778     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1779     break;
1780   }
1781   case ISD::SIGN_EXTEND_INREG: {
1782     SDValue Op0 = Op.getOperand(0);
1783     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1784     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1785 
1786     // If we only care about the highest bit, don't bother shifting right.
1787     if (DemandedBits.isSignMask()) {
1788       unsigned NumSignBits =
1789           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1790       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1791       // However if the input is already sign extended we expect the sign
1792       // extension to be dropped altogether later and do not simplify.
1793       if (!AlreadySignExtended) {
1794         // Compute the correct shift amount type, which must be getShiftAmountTy
1795         // for scalar types after legalization.
1796         EVT ShiftAmtTy = VT;
1797         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1798           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1799 
1800         SDValue ShiftAmt =
1801             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1802         return TLO.CombineTo(Op,
1803                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1804       }
1805     }
1806 
1807     // If none of the extended bits are demanded, eliminate the sextinreg.
1808     if (DemandedBits.getActiveBits() <= ExVTBits)
1809       return TLO.CombineTo(Op, Op0);
1810 
1811     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1812 
1813     // Since the sign extended bits are demanded, we know that the sign
1814     // bit is demanded.
1815     InputDemandedBits.setBit(ExVTBits - 1);
1816 
1817     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1818       return true;
1819     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1820 
1821     // If the sign bit of the input is known set or clear, then we know the
1822     // top bits of the result.
1823 
1824     // If the input sign bit is known zero, convert this into a zero extension.
1825     if (Known.Zero[ExVTBits - 1])
1826       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1827 
1828     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1829     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1830       Known.One.setBitsFrom(ExVTBits);
1831       Known.Zero &= Mask;
1832     } else { // Input sign bit unknown
1833       Known.Zero &= Mask;
1834       Known.One &= Mask;
1835     }
1836     break;
1837   }
1838   case ISD::BUILD_PAIR: {
1839     EVT HalfVT = Op.getOperand(0).getValueType();
1840     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1841 
1842     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1843     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1844 
1845     KnownBits KnownLo, KnownHi;
1846 
1847     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1848       return true;
1849 
1850     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1851       return true;
1852 
1853     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1854                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1855 
1856     Known.One = KnownLo.One.zext(BitWidth) |
1857                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1858     break;
1859   }
1860   case ISD::ZERO_EXTEND:
1861   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1862     SDValue Src = Op.getOperand(0);
1863     EVT SrcVT = Src.getValueType();
1864     unsigned InBits = SrcVT.getScalarSizeInBits();
1865     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1866     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1867 
1868     // If none of the top bits are demanded, convert this into an any_extend.
1869     if (DemandedBits.getActiveBits() <= InBits) {
1870       // If we only need the non-extended bits of the bottom element
1871       // then we can just bitcast to the result.
1872       if (IsVecInReg && DemandedElts == 1 &&
1873           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1874           TLO.DAG.getDataLayout().isLittleEndian())
1875         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1876 
1877       unsigned Opc =
1878           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1879       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1880         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1881     }
1882 
1883     APInt InDemandedBits = DemandedBits.trunc(InBits);
1884     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1885     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1886                              Depth + 1))
1887       return true;
1888     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1889     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1890     Known = Known.zext(BitWidth);
1891 
1892     // Attempt to avoid multi-use ops if we don't need anything from them.
1893     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1894             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1895       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1896     break;
1897   }
1898   case ISD::SIGN_EXTEND:
1899   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1900     SDValue Src = Op.getOperand(0);
1901     EVT SrcVT = Src.getValueType();
1902     unsigned InBits = SrcVT.getScalarSizeInBits();
1903     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1904     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1905 
1906     // If none of the top bits are demanded, convert this into an any_extend.
1907     if (DemandedBits.getActiveBits() <= InBits) {
1908       // If we only need the non-extended bits of the bottom element
1909       // then we can just bitcast to the result.
1910       if (IsVecInReg && DemandedElts == 1 &&
1911           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1912           TLO.DAG.getDataLayout().isLittleEndian())
1913         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1914 
1915       unsigned Opc =
1916           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1917       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1918         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1919     }
1920 
1921     APInt InDemandedBits = DemandedBits.trunc(InBits);
1922     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1923 
1924     // Since some of the sign extended bits are demanded, we know that the sign
1925     // bit is demanded.
1926     InDemandedBits.setBit(InBits - 1);
1927 
1928     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1929                              Depth + 1))
1930       return true;
1931     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1932     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1933 
1934     // If the sign bit is known one, the top bits match.
1935     Known = Known.sext(BitWidth);
1936 
1937     // If the sign bit is known zero, convert this to a zero extend.
1938     if (Known.isNonNegative()) {
1939       unsigned Opc =
1940           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1941       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1942         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1943     }
1944 
1945     // Attempt to avoid multi-use ops if we don't need anything from them.
1946     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1947             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1948       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1949     break;
1950   }
1951   case ISD::ANY_EXTEND:
1952   case ISD::ANY_EXTEND_VECTOR_INREG: {
1953     SDValue Src = Op.getOperand(0);
1954     EVT SrcVT = Src.getValueType();
1955     unsigned InBits = SrcVT.getScalarSizeInBits();
1956     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1957     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1958 
1959     // If we only need the bottom element then we can just bitcast.
1960     // TODO: Handle ANY_EXTEND?
1961     if (IsVecInReg && DemandedElts == 1 &&
1962         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1963         TLO.DAG.getDataLayout().isLittleEndian())
1964       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1965 
1966     APInt InDemandedBits = DemandedBits.trunc(InBits);
1967     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1968     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1969                              Depth + 1))
1970       return true;
1971     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1972     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1973     Known = Known.anyext(BitWidth);
1974 
1975     // Attempt to avoid multi-use ops if we don't need anything from them.
1976     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1977             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1978       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1979     break;
1980   }
1981   case ISD::TRUNCATE: {
1982     SDValue Src = Op.getOperand(0);
1983 
1984     // Simplify the input, using demanded bit information, and compute the known
1985     // zero/one bits live out.
1986     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1987     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1988     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
1989                              Depth + 1))
1990       return true;
1991     Known = Known.trunc(BitWidth);
1992 
1993     // Attempt to avoid multi-use ops if we don't need anything from them.
1994     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1995             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1996       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1997 
1998     // If the input is only used by this truncate, see if we can shrink it based
1999     // on the known demanded bits.
2000     if (Src.getNode()->hasOneUse()) {
2001       switch (Src.getOpcode()) {
2002       default:
2003         break;
2004       case ISD::SRL:
2005         // Shrink SRL by a constant if none of the high bits shifted in are
2006         // demanded.
2007         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2008           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2009           // undesirable.
2010           break;
2011 
2012         const APInt *ShAmtC =
2013             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2014         if (!ShAmtC || ShAmtC->uge(BitWidth))
2015           break;
2016         uint64_t ShVal = ShAmtC->getZExtValue();
2017 
2018         APInt HighBits =
2019             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2020         HighBits.lshrInPlace(ShVal);
2021         HighBits = HighBits.trunc(BitWidth);
2022 
2023         if (!(HighBits & DemandedBits)) {
2024           // None of the shifted in bits are needed.  Add a truncate of the
2025           // shift input, then shift it.
2026           SDValue NewShAmt = TLO.DAG.getConstant(
2027               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2028           SDValue NewTrunc =
2029               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2030           return TLO.CombineTo(
2031               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2032         }
2033         break;
2034       }
2035     }
2036 
2037     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2038     break;
2039   }
2040   case ISD::AssertZext: {
2041     // AssertZext demands all of the high bits, plus any of the low bits
2042     // demanded by its users.
2043     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2044     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2045     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2046                              TLO, Depth + 1))
2047       return true;
2048     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2049 
2050     Known.Zero |= ~InMask;
2051     break;
2052   }
2053   case ISD::EXTRACT_VECTOR_ELT: {
2054     SDValue Src = Op.getOperand(0);
2055     SDValue Idx = Op.getOperand(1);
2056     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2057     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2058 
2059     if (SrcEltCnt.isScalable())
2060       return false;
2061 
2062     // Demand the bits from every vector element without a constant index.
2063     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2064     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
2065     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2066       if (CIdx->getAPIntValue().ult(NumSrcElts))
2067         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2068 
2069     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2070     // anything about the extended bits.
2071     APInt DemandedSrcBits = DemandedBits;
2072     if (BitWidth > EltBitWidth)
2073       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2074 
2075     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2076                              Depth + 1))
2077       return true;
2078 
2079     // Attempt to avoid multi-use ops if we don't need anything from them.
2080     if (!DemandedSrcBits.isAllOnesValue() ||
2081         !DemandedSrcElts.isAllOnesValue()) {
2082       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2083               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2084         SDValue NewOp =
2085             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2086         return TLO.CombineTo(Op, NewOp);
2087       }
2088     }
2089 
2090     Known = Known2;
2091     if (BitWidth > EltBitWidth)
2092       Known = Known.anyext(BitWidth);
2093     break;
2094   }
2095   case ISD::BITCAST: {
2096     SDValue Src = Op.getOperand(0);
2097     EVT SrcVT = Src.getValueType();
2098     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2099 
2100     // If this is an FP->Int bitcast and if the sign bit is the only
2101     // thing demanded, turn this into a FGETSIGN.
2102     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2103         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2104         SrcVT.isFloatingPoint()) {
2105       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2106       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2107       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2108           SrcVT != MVT::f128) {
2109         // Cannot eliminate/lower SHL for f128 yet.
2110         EVT Ty = OpVTLegal ? VT : MVT::i32;
2111         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2112         // place.  We expect the SHL to be eliminated by other optimizations.
2113         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2114         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2115         if (!OpVTLegal && OpVTSizeInBits > 32)
2116           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2117         unsigned ShVal = Op.getValueSizeInBits() - 1;
2118         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2119         return TLO.CombineTo(Op,
2120                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2121       }
2122     }
2123 
2124     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2125     // Demand the elt/bit if any of the original elts/bits are demanded.
2126     // TODO - bigendian once we have test coverage.
2127     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2128         TLO.DAG.getDataLayout().isLittleEndian()) {
2129       unsigned Scale = BitWidth / NumSrcEltBits;
2130       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2131       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2132       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2133       for (unsigned i = 0; i != Scale; ++i) {
2134         unsigned Offset = i * NumSrcEltBits;
2135         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2136         if (!Sub.isNullValue()) {
2137           DemandedSrcBits |= Sub;
2138           for (unsigned j = 0; j != NumElts; ++j)
2139             if (DemandedElts[j])
2140               DemandedSrcElts.setBit((j * Scale) + i);
2141         }
2142       }
2143 
2144       APInt KnownSrcUndef, KnownSrcZero;
2145       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2146                                      KnownSrcZero, TLO, Depth + 1))
2147         return true;
2148 
2149       KnownBits KnownSrcBits;
2150       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2151                                KnownSrcBits, TLO, Depth + 1))
2152         return true;
2153     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2154                TLO.DAG.getDataLayout().isLittleEndian()) {
2155       unsigned Scale = NumSrcEltBits / BitWidth;
2156       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2157       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2158       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2159       for (unsigned i = 0; i != NumElts; ++i)
2160         if (DemandedElts[i]) {
2161           unsigned Offset = (i % Scale) * BitWidth;
2162           DemandedSrcBits.insertBits(DemandedBits, Offset);
2163           DemandedSrcElts.setBit(i / Scale);
2164         }
2165 
2166       if (SrcVT.isVector()) {
2167         APInt KnownSrcUndef, KnownSrcZero;
2168         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2169                                        KnownSrcZero, TLO, Depth + 1))
2170           return true;
2171       }
2172 
2173       KnownBits KnownSrcBits;
2174       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2175                                KnownSrcBits, TLO, Depth + 1))
2176         return true;
2177     }
2178 
2179     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2180     // recursive call where Known may be useful to the caller.
2181     if (Depth > 0) {
2182       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2183       return false;
2184     }
2185     break;
2186   }
2187   case ISD::ADD:
2188   case ISD::MUL:
2189   case ISD::SUB: {
2190     // Add, Sub, and Mul don't demand any bits in positions beyond that
2191     // of the highest bit demanded of them.
2192     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2193     SDNodeFlags Flags = Op.getNode()->getFlags();
2194     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2195     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2196     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2197                              Depth + 1) ||
2198         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2199                              Depth + 1) ||
2200         // See if the operation should be performed at a smaller bit width.
2201         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2202       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2203         // Disable the nsw and nuw flags. We can no longer guarantee that we
2204         // won't wrap after simplification.
2205         Flags.setNoSignedWrap(false);
2206         Flags.setNoUnsignedWrap(false);
2207         SDValue NewOp =
2208             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2209         return TLO.CombineTo(Op, NewOp);
2210       }
2211       return true;
2212     }
2213 
2214     // Attempt to avoid multi-use ops if we don't need anything from them.
2215     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2216       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2217           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2218       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2219           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2220       if (DemandedOp0 || DemandedOp1) {
2221         Flags.setNoSignedWrap(false);
2222         Flags.setNoUnsignedWrap(false);
2223         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2224         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2225         SDValue NewOp =
2226             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2227         return TLO.CombineTo(Op, NewOp);
2228       }
2229     }
2230 
2231     // If we have a constant operand, we may be able to turn it into -1 if we
2232     // do not demand the high bits. This can make the constant smaller to
2233     // encode, allow more general folding, or match specialized instruction
2234     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2235     // is probably not useful (and could be detrimental).
2236     ConstantSDNode *C = isConstOrConstSplat(Op1);
2237     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2238     if (C && !C->isAllOnesValue() && !C->isOne() &&
2239         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2240       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2241       // Disable the nsw and nuw flags. We can no longer guarantee that we
2242       // won't wrap after simplification.
2243       Flags.setNoSignedWrap(false);
2244       Flags.setNoUnsignedWrap(false);
2245       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2246       return TLO.CombineTo(Op, NewOp);
2247     }
2248 
2249     LLVM_FALLTHROUGH;
2250   }
2251   default:
2252     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2253       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2254                                             Known, TLO, Depth))
2255         return true;
2256       break;
2257     }
2258 
2259     // Just use computeKnownBits to compute output bits.
2260     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2261     break;
2262   }
2263 
2264   // If we know the value of all of the demanded bits, return this as a
2265   // constant.
2266   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2267     // Avoid folding to a constant if any OpaqueConstant is involved.
2268     const SDNode *N = Op.getNode();
2269     for (SDNodeIterator I = SDNodeIterator::begin(N),
2270                         E = SDNodeIterator::end(N);
2271          I != E; ++I) {
2272       SDNode *Op = *I;
2273       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2274         if (C->isOpaque())
2275           return false;
2276     }
2277     if (VT.isInteger())
2278       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2279     if (VT.isFloatingPoint())
2280       return TLO.CombineTo(
2281           Op,
2282           TLO.DAG.getConstantFP(
2283               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2284   }
2285 
2286   return false;
2287 }
2288 
2289 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2290                                                 const APInt &DemandedElts,
2291                                                 APInt &KnownUndef,
2292                                                 APInt &KnownZero,
2293                                                 DAGCombinerInfo &DCI) const {
2294   SelectionDAG &DAG = DCI.DAG;
2295   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2296                         !DCI.isBeforeLegalizeOps());
2297 
2298   bool Simplified =
2299       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2300   if (Simplified) {
2301     DCI.AddToWorklist(Op.getNode());
2302     DCI.CommitTargetLoweringOpt(TLO);
2303   }
2304 
2305   return Simplified;
2306 }
2307 
2308 /// Given a vector binary operation and known undefined elements for each input
2309 /// operand, compute whether each element of the output is undefined.
2310 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2311                                          const APInt &UndefOp0,
2312                                          const APInt &UndefOp1) {
2313   EVT VT = BO.getValueType();
2314   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2315          "Vector binop only");
2316 
2317   EVT EltVT = VT.getVectorElementType();
2318   unsigned NumElts = VT.getVectorNumElements();
2319   assert(UndefOp0.getBitWidth() == NumElts &&
2320          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2321 
2322   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2323                                    const APInt &UndefVals) {
2324     if (UndefVals[Index])
2325       return DAG.getUNDEF(EltVT);
2326 
2327     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2328       // Try hard to make sure that the getNode() call is not creating temporary
2329       // nodes. Ignore opaque integers because they do not constant fold.
2330       SDValue Elt = BV->getOperand(Index);
2331       auto *C = dyn_cast<ConstantSDNode>(Elt);
2332       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2333         return Elt;
2334     }
2335 
2336     return SDValue();
2337   };
2338 
2339   APInt KnownUndef = APInt::getNullValue(NumElts);
2340   for (unsigned i = 0; i != NumElts; ++i) {
2341     // If both inputs for this element are either constant or undef and match
2342     // the element type, compute the constant/undef result for this element of
2343     // the vector.
2344     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2345     // not handle FP constants. The code within getNode() should be refactored
2346     // to avoid the danger of creating a bogus temporary node here.
2347     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2348     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2349     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2350       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2351         KnownUndef.setBit(i);
2352   }
2353   return KnownUndef;
2354 }
2355 
2356 bool TargetLowering::SimplifyDemandedVectorElts(
2357     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2358     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2359     bool AssumeSingleUse) const {
2360   EVT VT = Op.getValueType();
2361   unsigned Opcode = Op.getOpcode();
2362   APInt DemandedElts = OriginalDemandedElts;
2363   unsigned NumElts = DemandedElts.getBitWidth();
2364   assert(VT.isVector() && "Expected vector op");
2365 
2366   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2367 
2368   // TODO: For now we assume we know nothing about scalable vectors.
2369   if (VT.isScalableVector())
2370     return false;
2371 
2372   assert(VT.getVectorNumElements() == NumElts &&
2373          "Mask size mismatches value type element count!");
2374 
2375   // Undef operand.
2376   if (Op.isUndef()) {
2377     KnownUndef.setAllBits();
2378     return false;
2379   }
2380 
2381   // If Op has other users, assume that all elements are needed.
2382   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2383     DemandedElts.setAllBits();
2384 
2385   // Not demanding any elements from Op.
2386   if (DemandedElts == 0) {
2387     KnownUndef.setAllBits();
2388     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2389   }
2390 
2391   // Limit search depth.
2392   if (Depth >= SelectionDAG::MaxRecursionDepth)
2393     return false;
2394 
2395   SDLoc DL(Op);
2396   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2397 
2398   // Helper for demanding the specified elements and all the bits of both binary
2399   // operands.
2400   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2401     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2402                                                            TLO.DAG, Depth + 1);
2403     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2404                                                            TLO.DAG, Depth + 1);
2405     if (NewOp0 || NewOp1) {
2406       SDValue NewOp = TLO.DAG.getNode(
2407           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2408       return TLO.CombineTo(Op, NewOp);
2409     }
2410     return false;
2411   };
2412 
2413   switch (Opcode) {
2414   case ISD::SCALAR_TO_VECTOR: {
2415     if (!DemandedElts[0]) {
2416       KnownUndef.setAllBits();
2417       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2418     }
2419     KnownUndef.setHighBits(NumElts - 1);
2420     break;
2421   }
2422   case ISD::BITCAST: {
2423     SDValue Src = Op.getOperand(0);
2424     EVT SrcVT = Src.getValueType();
2425 
2426     // We only handle vectors here.
2427     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2428     if (!SrcVT.isVector())
2429       break;
2430 
2431     // Fast handling of 'identity' bitcasts.
2432     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2433     if (NumSrcElts == NumElts)
2434       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2435                                         KnownZero, TLO, Depth + 1);
2436 
2437     APInt SrcZero, SrcUndef;
2438     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2439 
2440     // Bitcast from 'large element' src vector to 'small element' vector, we
2441     // must demand a source element if any DemandedElt maps to it.
2442     if ((NumElts % NumSrcElts) == 0) {
2443       unsigned Scale = NumElts / NumSrcElts;
2444       for (unsigned i = 0; i != NumElts; ++i)
2445         if (DemandedElts[i])
2446           SrcDemandedElts.setBit(i / Scale);
2447 
2448       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2449                                      TLO, Depth + 1))
2450         return true;
2451 
2452       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2453       // of the large element.
2454       // TODO - bigendian once we have test coverage.
2455       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2456         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2457         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2458         for (unsigned i = 0; i != NumElts; ++i)
2459           if (DemandedElts[i]) {
2460             unsigned Ofs = (i % Scale) * EltSizeInBits;
2461             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2462           }
2463 
2464         KnownBits Known;
2465         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2466                                  TLO, Depth + 1))
2467           return true;
2468       }
2469 
2470       // If the src element is zero/undef then all the output elements will be -
2471       // only demanded elements are guaranteed to be correct.
2472       for (unsigned i = 0; i != NumSrcElts; ++i) {
2473         if (SrcDemandedElts[i]) {
2474           if (SrcZero[i])
2475             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2476           if (SrcUndef[i])
2477             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2478         }
2479       }
2480     }
2481 
2482     // Bitcast from 'small element' src vector to 'large element' vector, we
2483     // demand all smaller source elements covered by the larger demanded element
2484     // of this vector.
2485     if ((NumSrcElts % NumElts) == 0) {
2486       unsigned Scale = NumSrcElts / NumElts;
2487       for (unsigned i = 0; i != NumElts; ++i)
2488         if (DemandedElts[i])
2489           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2490 
2491       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2492                                      TLO, Depth + 1))
2493         return true;
2494 
2495       // If all the src elements covering an output element are zero/undef, then
2496       // the output element will be as well, assuming it was demanded.
2497       for (unsigned i = 0; i != NumElts; ++i) {
2498         if (DemandedElts[i]) {
2499           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2500             KnownZero.setBit(i);
2501           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2502             KnownUndef.setBit(i);
2503         }
2504       }
2505     }
2506     break;
2507   }
2508   case ISD::BUILD_VECTOR: {
2509     // Check all elements and simplify any unused elements with UNDEF.
2510     if (!DemandedElts.isAllOnesValue()) {
2511       // Don't simplify BROADCASTS.
2512       if (llvm::any_of(Op->op_values(),
2513                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2514         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2515         bool Updated = false;
2516         for (unsigned i = 0; i != NumElts; ++i) {
2517           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2518             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2519             KnownUndef.setBit(i);
2520             Updated = true;
2521           }
2522         }
2523         if (Updated)
2524           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2525       }
2526     }
2527     for (unsigned i = 0; i != NumElts; ++i) {
2528       SDValue SrcOp = Op.getOperand(i);
2529       if (SrcOp.isUndef()) {
2530         KnownUndef.setBit(i);
2531       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2532                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2533         KnownZero.setBit(i);
2534       }
2535     }
2536     break;
2537   }
2538   case ISD::CONCAT_VECTORS: {
2539     EVT SubVT = Op.getOperand(0).getValueType();
2540     unsigned NumSubVecs = Op.getNumOperands();
2541     unsigned NumSubElts = SubVT.getVectorNumElements();
2542     for (unsigned i = 0; i != NumSubVecs; ++i) {
2543       SDValue SubOp = Op.getOperand(i);
2544       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2545       APInt SubUndef, SubZero;
2546       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2547                                      Depth + 1))
2548         return true;
2549       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2550       KnownZero.insertBits(SubZero, i * NumSubElts);
2551     }
2552     break;
2553   }
2554   case ISD::INSERT_SUBVECTOR: {
2555     // Demand any elements from the subvector and the remainder from the src its
2556     // inserted into.
2557     SDValue Src = Op.getOperand(0);
2558     SDValue Sub = Op.getOperand(1);
2559     uint64_t Idx = Op.getConstantOperandVal(2);
2560     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2561     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2562     APInt DemandedSrcElts = DemandedElts;
2563     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2564 
2565     APInt SubUndef, SubZero;
2566     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2567                                    Depth + 1))
2568       return true;
2569 
2570     // If none of the src operand elements are demanded, replace it with undef.
2571     if (!DemandedSrcElts && !Src.isUndef())
2572       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2573                                                TLO.DAG.getUNDEF(VT), Sub,
2574                                                Op.getOperand(2)));
2575 
2576     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2577                                    TLO, Depth + 1))
2578       return true;
2579     KnownUndef.insertBits(SubUndef, Idx);
2580     KnownZero.insertBits(SubZero, Idx);
2581 
2582     // Attempt to avoid multi-use ops if we don't need anything from them.
2583     if (!DemandedSrcElts.isAllOnesValue() ||
2584         !DemandedSubElts.isAllOnesValue()) {
2585       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2586           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2587       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2588           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2589       if (NewSrc || NewSub) {
2590         NewSrc = NewSrc ? NewSrc : Src;
2591         NewSub = NewSub ? NewSub : Sub;
2592         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2593                                         NewSub, Op.getOperand(2));
2594         return TLO.CombineTo(Op, NewOp);
2595       }
2596     }
2597     break;
2598   }
2599   case ISD::EXTRACT_SUBVECTOR: {
2600     // Offset the demanded elts by the subvector index.
2601     SDValue Src = Op.getOperand(0);
2602     if (Src.getValueType().isScalableVector())
2603       break;
2604     uint64_t Idx = Op.getConstantOperandVal(1);
2605     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2606     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2607 
2608     APInt SrcUndef, SrcZero;
2609     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2610                                    Depth + 1))
2611       return true;
2612     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2613     KnownZero = SrcZero.extractBits(NumElts, Idx);
2614 
2615     // Attempt to avoid multi-use ops if we don't need anything from them.
2616     if (!DemandedElts.isAllOnesValue()) {
2617       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2618           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2619       if (NewSrc) {
2620         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2621                                         Op.getOperand(1));
2622         return TLO.CombineTo(Op, NewOp);
2623       }
2624     }
2625     break;
2626   }
2627   case ISD::INSERT_VECTOR_ELT: {
2628     SDValue Vec = Op.getOperand(0);
2629     SDValue Scl = Op.getOperand(1);
2630     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2631 
2632     // For a legal, constant insertion index, if we don't need this insertion
2633     // then strip it, else remove it from the demanded elts.
2634     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2635       unsigned Idx = CIdx->getZExtValue();
2636       if (!DemandedElts[Idx])
2637         return TLO.CombineTo(Op, Vec);
2638 
2639       APInt DemandedVecElts(DemandedElts);
2640       DemandedVecElts.clearBit(Idx);
2641       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2642                                      KnownZero, TLO, Depth + 1))
2643         return true;
2644 
2645       KnownUndef.setBitVal(Idx, Scl.isUndef());
2646 
2647       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2648       break;
2649     }
2650 
2651     APInt VecUndef, VecZero;
2652     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2653                                    Depth + 1))
2654       return true;
2655     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2656     break;
2657   }
2658   case ISD::VSELECT: {
2659     // Try to transform the select condition based on the current demanded
2660     // elements.
2661     // TODO: If a condition element is undef, we can choose from one arm of the
2662     //       select (and if one arm is undef, then we can propagate that to the
2663     //       result).
2664     // TODO - add support for constant vselect masks (see IR version of this).
2665     APInt UnusedUndef, UnusedZero;
2666     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2667                                    UnusedZero, TLO, Depth + 1))
2668       return true;
2669 
2670     // See if we can simplify either vselect operand.
2671     APInt DemandedLHS(DemandedElts);
2672     APInt DemandedRHS(DemandedElts);
2673     APInt UndefLHS, ZeroLHS;
2674     APInt UndefRHS, ZeroRHS;
2675     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2676                                    ZeroLHS, TLO, Depth + 1))
2677       return true;
2678     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2679                                    ZeroRHS, TLO, Depth + 1))
2680       return true;
2681 
2682     KnownUndef = UndefLHS & UndefRHS;
2683     KnownZero = ZeroLHS & ZeroRHS;
2684     break;
2685   }
2686   case ISD::VECTOR_SHUFFLE: {
2687     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2688 
2689     // Collect demanded elements from shuffle operands..
2690     APInt DemandedLHS(NumElts, 0);
2691     APInt DemandedRHS(NumElts, 0);
2692     for (unsigned i = 0; i != NumElts; ++i) {
2693       int M = ShuffleMask[i];
2694       if (M < 0 || !DemandedElts[i])
2695         continue;
2696       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2697       if (M < (int)NumElts)
2698         DemandedLHS.setBit(M);
2699       else
2700         DemandedRHS.setBit(M - NumElts);
2701     }
2702 
2703     // See if we can simplify either shuffle operand.
2704     APInt UndefLHS, ZeroLHS;
2705     APInt UndefRHS, ZeroRHS;
2706     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2707                                    ZeroLHS, TLO, Depth + 1))
2708       return true;
2709     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2710                                    ZeroRHS, TLO, Depth + 1))
2711       return true;
2712 
2713     // Simplify mask using undef elements from LHS/RHS.
2714     bool Updated = false;
2715     bool IdentityLHS = true, IdentityRHS = true;
2716     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2717     for (unsigned i = 0; i != NumElts; ++i) {
2718       int &M = NewMask[i];
2719       if (M < 0)
2720         continue;
2721       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2722           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2723         Updated = true;
2724         M = -1;
2725       }
2726       IdentityLHS &= (M < 0) || (M == (int)i);
2727       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2728     }
2729 
2730     // Update legal shuffle masks based on demanded elements if it won't reduce
2731     // to Identity which can cause premature removal of the shuffle mask.
2732     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2733       SDValue LegalShuffle =
2734           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2735                                   NewMask, TLO.DAG);
2736       if (LegalShuffle)
2737         return TLO.CombineTo(Op, LegalShuffle);
2738     }
2739 
2740     // Propagate undef/zero elements from LHS/RHS.
2741     for (unsigned i = 0; i != NumElts; ++i) {
2742       int M = ShuffleMask[i];
2743       if (M < 0) {
2744         KnownUndef.setBit(i);
2745       } else if (M < (int)NumElts) {
2746         if (UndefLHS[M])
2747           KnownUndef.setBit(i);
2748         if (ZeroLHS[M])
2749           KnownZero.setBit(i);
2750       } else {
2751         if (UndefRHS[M - NumElts])
2752           KnownUndef.setBit(i);
2753         if (ZeroRHS[M - NumElts])
2754           KnownZero.setBit(i);
2755       }
2756     }
2757     break;
2758   }
2759   case ISD::ANY_EXTEND_VECTOR_INREG:
2760   case ISD::SIGN_EXTEND_VECTOR_INREG:
2761   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2762     APInt SrcUndef, SrcZero;
2763     SDValue Src = Op.getOperand(0);
2764     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2765     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2766     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2767                                    Depth + 1))
2768       return true;
2769     KnownZero = SrcZero.zextOrTrunc(NumElts);
2770     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2771 
2772     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2773         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2774         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2775       // aext - if we just need the bottom element then we can bitcast.
2776       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2777     }
2778 
2779     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2780       // zext(undef) upper bits are guaranteed to be zero.
2781       if (DemandedElts.isSubsetOf(KnownUndef))
2782         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2783       KnownUndef.clearAllBits();
2784     }
2785     break;
2786   }
2787 
2788   // TODO: There are more binop opcodes that could be handled here - MIN,
2789   // MAX, saturated math, etc.
2790   case ISD::OR:
2791   case ISD::XOR:
2792   case ISD::ADD:
2793   case ISD::SUB:
2794   case ISD::FADD:
2795   case ISD::FSUB:
2796   case ISD::FMUL:
2797   case ISD::FDIV:
2798   case ISD::FREM: {
2799     SDValue Op0 = Op.getOperand(0);
2800     SDValue Op1 = Op.getOperand(1);
2801 
2802     APInt UndefRHS, ZeroRHS;
2803     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2804                                    Depth + 1))
2805       return true;
2806     APInt UndefLHS, ZeroLHS;
2807     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2808                                    Depth + 1))
2809       return true;
2810 
2811     KnownZero = ZeroLHS & ZeroRHS;
2812     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2813 
2814     // Attempt to avoid multi-use ops if we don't need anything from them.
2815     // TODO - use KnownUndef to relax the demandedelts?
2816     if (!DemandedElts.isAllOnesValue())
2817       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2818         return true;
2819     break;
2820   }
2821   case ISD::SHL:
2822   case ISD::SRL:
2823   case ISD::SRA:
2824   case ISD::ROTL:
2825   case ISD::ROTR: {
2826     SDValue Op0 = Op.getOperand(0);
2827     SDValue Op1 = Op.getOperand(1);
2828 
2829     APInt UndefRHS, ZeroRHS;
2830     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2831                                    Depth + 1))
2832       return true;
2833     APInt UndefLHS, ZeroLHS;
2834     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2835                                    Depth + 1))
2836       return true;
2837 
2838     KnownZero = ZeroLHS;
2839     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2840 
2841     // Attempt to avoid multi-use ops if we don't need anything from them.
2842     // TODO - use KnownUndef to relax the demandedelts?
2843     if (!DemandedElts.isAllOnesValue())
2844       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2845         return true;
2846     break;
2847   }
2848   case ISD::MUL:
2849   case ISD::AND: {
2850     SDValue Op0 = Op.getOperand(0);
2851     SDValue Op1 = Op.getOperand(1);
2852 
2853     APInt SrcUndef, SrcZero;
2854     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2855                                    Depth + 1))
2856       return true;
2857     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2858                                    TLO, Depth + 1))
2859       return true;
2860 
2861     // If either side has a zero element, then the result element is zero, even
2862     // if the other is an UNDEF.
2863     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2864     // and then handle 'and' nodes with the rest of the binop opcodes.
2865     KnownZero |= SrcZero;
2866     KnownUndef &= SrcUndef;
2867     KnownUndef &= ~KnownZero;
2868 
2869     // Attempt to avoid multi-use ops if we don't need anything from them.
2870     // TODO - use KnownUndef to relax the demandedelts?
2871     if (!DemandedElts.isAllOnesValue())
2872       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2873         return true;
2874     break;
2875   }
2876   case ISD::TRUNCATE:
2877   case ISD::SIGN_EXTEND:
2878   case ISD::ZERO_EXTEND:
2879     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2880                                    KnownZero, TLO, Depth + 1))
2881       return true;
2882 
2883     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2884       // zext(undef) upper bits are guaranteed to be zero.
2885       if (DemandedElts.isSubsetOf(KnownUndef))
2886         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2887       KnownUndef.clearAllBits();
2888     }
2889     break;
2890   default: {
2891     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2892       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2893                                                   KnownZero, TLO, Depth))
2894         return true;
2895     } else {
2896       KnownBits Known;
2897       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2898       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2899                                TLO, Depth, AssumeSingleUse))
2900         return true;
2901     }
2902     break;
2903   }
2904   }
2905   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2906 
2907   // Constant fold all undef cases.
2908   // TODO: Handle zero cases as well.
2909   if (DemandedElts.isSubsetOf(KnownUndef))
2910     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2911 
2912   return false;
2913 }
2914 
2915 /// Determine which of the bits specified in Mask are known to be either zero or
2916 /// one and return them in the Known.
2917 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2918                                                    KnownBits &Known,
2919                                                    const APInt &DemandedElts,
2920                                                    const SelectionDAG &DAG,
2921                                                    unsigned Depth) const {
2922   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2923           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2924           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2925           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2926          "Should use MaskedValueIsZero if you don't know whether Op"
2927          " is a target node!");
2928   Known.resetAll();
2929 }
2930 
2931 void TargetLowering::computeKnownBitsForTargetInstr(
2932     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2933     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2934     unsigned Depth) const {
2935   Known.resetAll();
2936 }
2937 
2938 void TargetLowering::computeKnownBitsForFrameIndex(
2939   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
2940   // The low bits are known zero if the pointer is aligned.
2941   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
2942 }
2943 
2944 Align TargetLowering::computeKnownAlignForTargetInstr(
2945   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
2946   unsigned Depth) const {
2947   return Align(1);
2948 }
2949 
2950 /// This method can be implemented by targets that want to expose additional
2951 /// information about sign bits to the DAG Combiner.
2952 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2953                                                          const APInt &,
2954                                                          const SelectionDAG &,
2955                                                          unsigned Depth) const {
2956   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2957           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2958           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2959           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2960          "Should use ComputeNumSignBits if you don't know whether Op"
2961          " is a target node!");
2962   return 1;
2963 }
2964 
2965 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2966   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2967   const MachineRegisterInfo &MRI, unsigned Depth) const {
2968   return 1;
2969 }
2970 
2971 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2972     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2973     TargetLoweringOpt &TLO, unsigned Depth) const {
2974   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2975           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2976           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2977           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2978          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2979          " is a target node!");
2980   return false;
2981 }
2982 
2983 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2984     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2985     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2986   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2987           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2988           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2989           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2990          "Should use SimplifyDemandedBits if you don't know whether Op"
2991          " is a target node!");
2992   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2993   return false;
2994 }
2995 
2996 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2997     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2998     SelectionDAG &DAG, unsigned Depth) const {
2999   assert(
3000       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3001        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3002        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3003        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3004       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3005       " is a target node!");
3006   return SDValue();
3007 }
3008 
3009 SDValue
3010 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3011                                         SDValue N1, MutableArrayRef<int> Mask,
3012                                         SelectionDAG &DAG) const {
3013   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3014   if (!LegalMask) {
3015     std::swap(N0, N1);
3016     ShuffleVectorSDNode::commuteMask(Mask);
3017     LegalMask = isShuffleMaskLegal(Mask, VT);
3018   }
3019 
3020   if (!LegalMask)
3021     return SDValue();
3022 
3023   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3024 }
3025 
3026 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3027   return nullptr;
3028 }
3029 
3030 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3031                                                   const SelectionDAG &DAG,
3032                                                   bool SNaN,
3033                                                   unsigned Depth) const {
3034   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3035           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3036           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3037           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3038          "Should use isKnownNeverNaN if you don't know whether Op"
3039          " is a target node!");
3040   return false;
3041 }
3042 
3043 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3044 // work with truncating build vectors and vectors with elements of less than
3045 // 8 bits.
3046 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3047   if (!N)
3048     return false;
3049 
3050   APInt CVal;
3051   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3052     CVal = CN->getAPIntValue();
3053   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3054     auto *CN = BV->getConstantSplatNode();
3055     if (!CN)
3056       return false;
3057 
3058     // If this is a truncating build vector, truncate the splat value.
3059     // Otherwise, we may fail to match the expected values below.
3060     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3061     CVal = CN->getAPIntValue();
3062     if (BVEltWidth < CVal.getBitWidth())
3063       CVal = CVal.trunc(BVEltWidth);
3064   } else {
3065     return false;
3066   }
3067 
3068   switch (getBooleanContents(N->getValueType(0))) {
3069   case UndefinedBooleanContent:
3070     return CVal[0];
3071   case ZeroOrOneBooleanContent:
3072     return CVal.isOneValue();
3073   case ZeroOrNegativeOneBooleanContent:
3074     return CVal.isAllOnesValue();
3075   }
3076 
3077   llvm_unreachable("Invalid boolean contents");
3078 }
3079 
3080 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3081   if (!N)
3082     return false;
3083 
3084   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3085   if (!CN) {
3086     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3087     if (!BV)
3088       return false;
3089 
3090     // Only interested in constant splats, we don't care about undef
3091     // elements in identifying boolean constants and getConstantSplatNode
3092     // returns NULL if all ops are undef;
3093     CN = BV->getConstantSplatNode();
3094     if (!CN)
3095       return false;
3096   }
3097 
3098   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3099     return !CN->getAPIntValue()[0];
3100 
3101   return CN->isNullValue();
3102 }
3103 
3104 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3105                                        bool SExt) const {
3106   if (VT == MVT::i1)
3107     return N->isOne();
3108 
3109   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3110   switch (Cnt) {
3111   case TargetLowering::ZeroOrOneBooleanContent:
3112     // An extended value of 1 is always true, unless its original type is i1,
3113     // in which case it will be sign extended to -1.
3114     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3115   case TargetLowering::UndefinedBooleanContent:
3116   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3117     return N->isAllOnesValue() && SExt;
3118   }
3119   llvm_unreachable("Unexpected enumeration.");
3120 }
3121 
3122 /// This helper function of SimplifySetCC tries to optimize the comparison when
3123 /// either operand of the SetCC node is a bitwise-and instruction.
3124 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3125                                          ISD::CondCode Cond, const SDLoc &DL,
3126                                          DAGCombinerInfo &DCI) const {
3127   // Match these patterns in any of their permutations:
3128   // (X & Y) == Y
3129   // (X & Y) != Y
3130   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3131     std::swap(N0, N1);
3132 
3133   EVT OpVT = N0.getValueType();
3134   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3135       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3136     return SDValue();
3137 
3138   SDValue X, Y;
3139   if (N0.getOperand(0) == N1) {
3140     X = N0.getOperand(1);
3141     Y = N0.getOperand(0);
3142   } else if (N0.getOperand(1) == N1) {
3143     X = N0.getOperand(0);
3144     Y = N0.getOperand(1);
3145   } else {
3146     return SDValue();
3147   }
3148 
3149   SelectionDAG &DAG = DCI.DAG;
3150   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3151   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3152     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3153     // Note that where Y is variable and is known to have at most one bit set
3154     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3155     // equivalent when Y == 0.
3156     assert(OpVT.isInteger());
3157     Cond = ISD::getSetCCInverse(Cond, OpVT);
3158     if (DCI.isBeforeLegalizeOps() ||
3159         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3160       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3161   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3162     // If the target supports an 'and-not' or 'and-complement' logic operation,
3163     // try to use that to make a comparison operation more efficient.
3164     // But don't do this transform if the mask is a single bit because there are
3165     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3166     // 'rlwinm' on PPC).
3167 
3168     // Bail out if the compare operand that we want to turn into a zero is
3169     // already a zero (otherwise, infinite loop).
3170     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3171     if (YConst && YConst->isNullValue())
3172       return SDValue();
3173 
3174     // Transform this into: ~X & Y == 0.
3175     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3176     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3177     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3178   }
3179 
3180   return SDValue();
3181 }
3182 
3183 /// There are multiple IR patterns that could be checking whether certain
3184 /// truncation of a signed number would be lossy or not. The pattern which is
3185 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3186 /// We are looking for the following pattern: (KeptBits is a constant)
3187 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3188 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3189 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3190 /// We will unfold it into the natural trunc+sext pattern:
3191 ///   ((%x << C) a>> C) dstcond %x
3192 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3193 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3194     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3195     const SDLoc &DL) const {
3196   // We must be comparing with a constant.
3197   ConstantSDNode *C1;
3198   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3199     return SDValue();
3200 
3201   // N0 should be:  add %x, (1 << (KeptBits-1))
3202   if (N0->getOpcode() != ISD::ADD)
3203     return SDValue();
3204 
3205   // And we must be 'add'ing a constant.
3206   ConstantSDNode *C01;
3207   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3208     return SDValue();
3209 
3210   SDValue X = N0->getOperand(0);
3211   EVT XVT = X.getValueType();
3212 
3213   // Validate constants ...
3214 
3215   APInt I1 = C1->getAPIntValue();
3216 
3217   ISD::CondCode NewCond;
3218   if (Cond == ISD::CondCode::SETULT) {
3219     NewCond = ISD::CondCode::SETEQ;
3220   } else if (Cond == ISD::CondCode::SETULE) {
3221     NewCond = ISD::CondCode::SETEQ;
3222     // But need to 'canonicalize' the constant.
3223     I1 += 1;
3224   } else if (Cond == ISD::CondCode::SETUGT) {
3225     NewCond = ISD::CondCode::SETNE;
3226     // But need to 'canonicalize' the constant.
3227     I1 += 1;
3228   } else if (Cond == ISD::CondCode::SETUGE) {
3229     NewCond = ISD::CondCode::SETNE;
3230   } else
3231     return SDValue();
3232 
3233   APInt I01 = C01->getAPIntValue();
3234 
3235   auto checkConstants = [&I1, &I01]() -> bool {
3236     // Both of them must be power-of-two, and the constant from setcc is bigger.
3237     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3238   };
3239 
3240   if (checkConstants()) {
3241     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3242   } else {
3243     // What if we invert constants? (and the target predicate)
3244     I1.negate();
3245     I01.negate();
3246     assert(XVT.isInteger());
3247     NewCond = getSetCCInverse(NewCond, XVT);
3248     if (!checkConstants())
3249       return SDValue();
3250     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3251   }
3252 
3253   // They are power-of-two, so which bit is set?
3254   const unsigned KeptBits = I1.logBase2();
3255   const unsigned KeptBitsMinusOne = I01.logBase2();
3256 
3257   // Magic!
3258   if (KeptBits != (KeptBitsMinusOne + 1))
3259     return SDValue();
3260   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3261 
3262   // We don't want to do this in every single case.
3263   SelectionDAG &DAG = DCI.DAG;
3264   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3265           XVT, KeptBits))
3266     return SDValue();
3267 
3268   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3269   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3270 
3271   // Unfold into:  ((%x << C) a>> C) cond %x
3272   // Where 'cond' will be either 'eq' or 'ne'.
3273   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3274   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3275   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3276   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3277 
3278   return T2;
3279 }
3280 
3281 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3282 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3283     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3284     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3285   assert(isConstOrConstSplat(N1C) &&
3286          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3287          "Should be a comparison with 0.");
3288   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3289          "Valid only for [in]equality comparisons.");
3290 
3291   unsigned NewShiftOpcode;
3292   SDValue X, C, Y;
3293 
3294   SelectionDAG &DAG = DCI.DAG;
3295   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3296 
3297   // Look for '(C l>>/<< Y)'.
3298   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3299     // The shift should be one-use.
3300     if (!V.hasOneUse())
3301       return false;
3302     unsigned OldShiftOpcode = V.getOpcode();
3303     switch (OldShiftOpcode) {
3304     case ISD::SHL:
3305       NewShiftOpcode = ISD::SRL;
3306       break;
3307     case ISD::SRL:
3308       NewShiftOpcode = ISD::SHL;
3309       break;
3310     default:
3311       return false; // must be a logical shift.
3312     }
3313     // We should be shifting a constant.
3314     // FIXME: best to use isConstantOrConstantVector().
3315     C = V.getOperand(0);
3316     ConstantSDNode *CC =
3317         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3318     if (!CC)
3319       return false;
3320     Y = V.getOperand(1);
3321 
3322     ConstantSDNode *XC =
3323         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3324     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3325         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3326   };
3327 
3328   // LHS of comparison should be an one-use 'and'.
3329   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3330     return SDValue();
3331 
3332   X = N0.getOperand(0);
3333   SDValue Mask = N0.getOperand(1);
3334 
3335   // 'and' is commutative!
3336   if (!Match(Mask)) {
3337     std::swap(X, Mask);
3338     if (!Match(Mask))
3339       return SDValue();
3340   }
3341 
3342   EVT VT = X.getValueType();
3343 
3344   // Produce:
3345   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3346   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3347   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3348   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3349   return T2;
3350 }
3351 
3352 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3353 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3354 /// handle the commuted versions of these patterns.
3355 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3356                                            ISD::CondCode Cond, const SDLoc &DL,
3357                                            DAGCombinerInfo &DCI) const {
3358   unsigned BOpcode = N0.getOpcode();
3359   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3360          "Unexpected binop");
3361   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3362 
3363   // (X + Y) == X --> Y == 0
3364   // (X - Y) == X --> Y == 0
3365   // (X ^ Y) == X --> Y == 0
3366   SelectionDAG &DAG = DCI.DAG;
3367   EVT OpVT = N0.getValueType();
3368   SDValue X = N0.getOperand(0);
3369   SDValue Y = N0.getOperand(1);
3370   if (X == N1)
3371     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3372 
3373   if (Y != N1)
3374     return SDValue();
3375 
3376   // (X + Y) == Y --> X == 0
3377   // (X ^ Y) == Y --> X == 0
3378   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3379     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3380 
3381   // The shift would not be valid if the operands are boolean (i1).
3382   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3383     return SDValue();
3384 
3385   // (X - Y) == Y --> X == Y << 1
3386   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3387                                  !DCI.isBeforeLegalize());
3388   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3389   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3390   if (!DCI.isCalledByLegalizer())
3391     DCI.AddToWorklist(YShl1.getNode());
3392   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3393 }
3394 
3395 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3396                                       SDValue N0, const APInt &C1,
3397                                       ISD::CondCode Cond, const SDLoc &dl,
3398                                       SelectionDAG &DAG) {
3399   // Look through truncs that don't change the value of a ctpop.
3400   // FIXME: Add vector support? Need to be careful with setcc result type below.
3401   SDValue CTPOP = N0;
3402   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3403       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3404     CTPOP = N0.getOperand(0);
3405 
3406   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3407     return SDValue();
3408 
3409   EVT CTVT = CTPOP.getValueType();
3410   SDValue CTOp = CTPOP.getOperand(0);
3411 
3412   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3413   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3414   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3415     return SDValue();
3416 
3417   // (ctpop x) u< 2 -> (x & x-1) == 0
3418   // (ctpop x) u> 1 -> (x & x-1) != 0
3419   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3420     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3421     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3422       return SDValue();
3423     if (C1 == 0 && (Cond == ISD::SETULT))
3424       return SDValue(); // This is handled elsewhere.
3425 
3426     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3427 
3428     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3429     SDValue Result = CTOp;
3430     for (unsigned i = 0; i < Passes; i++) {
3431       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3432       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3433     }
3434     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3435     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3436   }
3437 
3438   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3439   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3440     // For scalars, keep CTPOP if it is legal or custom.
3441     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3442       return SDValue();
3443     // This is based on X86's custom lowering for CTPOP which produces more
3444     // instructions than the expansion here.
3445 
3446     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3447     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3448     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3449     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3450     assert(CTVT.isInteger());
3451     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3452     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3453     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3454     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3455     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3456     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3457     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3458   }
3459 
3460   return SDValue();
3461 }
3462 
3463 /// Try to simplify a setcc built with the specified operands and cc. If it is
3464 /// unable to simplify it, return a null SDValue.
3465 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3466                                       ISD::CondCode Cond, bool foldBooleans,
3467                                       DAGCombinerInfo &DCI,
3468                                       const SDLoc &dl) const {
3469   SelectionDAG &DAG = DCI.DAG;
3470   const DataLayout &Layout = DAG.getDataLayout();
3471   EVT OpVT = N0.getValueType();
3472 
3473   // Constant fold or commute setcc.
3474   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3475     return Fold;
3476 
3477   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3478   // TODO: Handle non-splat vector constants. All undef causes trouble.
3479   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3480   // infinite loop here when we encounter one.
3481   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3482   if (isConstOrConstSplat(N0) &&
3483       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3484       (DCI.isBeforeLegalizeOps() ||
3485        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3486     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3487 
3488   // If we have a subtract with the same 2 non-constant operands as this setcc
3489   // -- but in reverse order -- then try to commute the operands of this setcc
3490   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3491   // instruction on some targets.
3492   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3493       (DCI.isBeforeLegalizeOps() ||
3494        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3495       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3496       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3497     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3498 
3499   if (auto *N1C = isConstOrConstSplat(N1)) {
3500     const APInt &C1 = N1C->getAPIntValue();
3501 
3502     // Optimize some CTPOP cases.
3503     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3504       return V;
3505 
3506     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3507     // equality comparison, then we're just comparing whether X itself is
3508     // zero.
3509     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3510         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3511         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3512       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3513         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3514             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3515           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3516             // (srl (ctlz x), 5) == 0  -> X != 0
3517             // (srl (ctlz x), 5) != 1  -> X != 0
3518             Cond = ISD::SETNE;
3519           } else {
3520             // (srl (ctlz x), 5) != 0  -> X == 0
3521             // (srl (ctlz x), 5) == 1  -> X == 0
3522             Cond = ISD::SETEQ;
3523           }
3524           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3525           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3526                               Cond);
3527         }
3528       }
3529     }
3530   }
3531 
3532   // FIXME: Support vectors.
3533   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3534     const APInt &C1 = N1C->getAPIntValue();
3535 
3536     // (zext x) == C --> x == (trunc C)
3537     // (sext x) == C --> x == (trunc C)
3538     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3539         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3540       unsigned MinBits = N0.getValueSizeInBits();
3541       SDValue PreExt;
3542       bool Signed = false;
3543       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3544         // ZExt
3545         MinBits = N0->getOperand(0).getValueSizeInBits();
3546         PreExt = N0->getOperand(0);
3547       } else if (N0->getOpcode() == ISD::AND) {
3548         // DAGCombine turns costly ZExts into ANDs
3549         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3550           if ((C->getAPIntValue()+1).isPowerOf2()) {
3551             MinBits = C->getAPIntValue().countTrailingOnes();
3552             PreExt = N0->getOperand(0);
3553           }
3554       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3555         // SExt
3556         MinBits = N0->getOperand(0).getValueSizeInBits();
3557         PreExt = N0->getOperand(0);
3558         Signed = true;
3559       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3560         // ZEXTLOAD / SEXTLOAD
3561         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3562           MinBits = LN0->getMemoryVT().getSizeInBits();
3563           PreExt = N0;
3564         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3565           Signed = true;
3566           MinBits = LN0->getMemoryVT().getSizeInBits();
3567           PreExt = N0;
3568         }
3569       }
3570 
3571       // Figure out how many bits we need to preserve this constant.
3572       unsigned ReqdBits = Signed ?
3573         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3574         C1.getActiveBits();
3575 
3576       // Make sure we're not losing bits from the constant.
3577       if (MinBits > 0 &&
3578           MinBits < C1.getBitWidth() &&
3579           MinBits >= ReqdBits) {
3580         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3581         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3582           // Will get folded away.
3583           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3584           if (MinBits == 1 && C1 == 1)
3585             // Invert the condition.
3586             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3587                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3588           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3589           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3590         }
3591 
3592         // If truncating the setcc operands is not desirable, we can still
3593         // simplify the expression in some cases:
3594         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3595         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3596         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3597         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3598         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3599         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3600         SDValue TopSetCC = N0->getOperand(0);
3601         unsigned N0Opc = N0->getOpcode();
3602         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3603         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3604             TopSetCC.getOpcode() == ISD::SETCC &&
3605             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3606             (isConstFalseVal(N1C) ||
3607              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3608 
3609           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3610                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3611 
3612           if (!Inverse)
3613             return TopSetCC;
3614 
3615           ISD::CondCode InvCond = ISD::getSetCCInverse(
3616               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3617               TopSetCC.getOperand(0).getValueType());
3618           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3619                                       TopSetCC.getOperand(1),
3620                                       InvCond);
3621         }
3622       }
3623     }
3624 
3625     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3626     // equality or unsigned, and all 1 bits of the const are in the same
3627     // partial word, see if we can shorten the load.
3628     if (DCI.isBeforeLegalize() &&
3629         !ISD::isSignedIntSetCC(Cond) &&
3630         N0.getOpcode() == ISD::AND && C1 == 0 &&
3631         N0.getNode()->hasOneUse() &&
3632         isa<LoadSDNode>(N0.getOperand(0)) &&
3633         N0.getOperand(0).getNode()->hasOneUse() &&
3634         isa<ConstantSDNode>(N0.getOperand(1))) {
3635       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3636       APInt bestMask;
3637       unsigned bestWidth = 0, bestOffset = 0;
3638       if (Lod->isSimple() && Lod->isUnindexed()) {
3639         unsigned origWidth = N0.getValueSizeInBits();
3640         unsigned maskWidth = origWidth;
3641         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3642         // 8 bits, but have to be careful...
3643         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3644           origWidth = Lod->getMemoryVT().getSizeInBits();
3645         const APInt &Mask = N0.getConstantOperandAPInt(1);
3646         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3647           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3648           for (unsigned offset=0; offset<origWidth/width; offset++) {
3649             if (Mask.isSubsetOf(newMask)) {
3650               if (Layout.isLittleEndian())
3651                 bestOffset = (uint64_t)offset * (width/8);
3652               else
3653                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3654               bestMask = Mask.lshr(offset * (width/8) * 8);
3655               bestWidth = width;
3656               break;
3657             }
3658             newMask <<= width;
3659           }
3660         }
3661       }
3662       if (bestWidth) {
3663         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3664         if (newVT.isRound() &&
3665             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3666           SDValue Ptr = Lod->getBasePtr();
3667           if (bestOffset != 0)
3668             Ptr =
3669                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3670           SDValue NewLoad =
3671               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3672                           Lod->getPointerInfo().getWithOffset(bestOffset),
3673                           Lod->getOriginalAlign());
3674           return DAG.getSetCC(dl, VT,
3675                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3676                                       DAG.getConstant(bestMask.trunc(bestWidth),
3677                                                       dl, newVT)),
3678                               DAG.getConstant(0LL, dl, newVT), Cond);
3679         }
3680       }
3681     }
3682 
3683     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3684     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3685       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3686 
3687       // If the comparison constant has bits in the upper part, the
3688       // zero-extended value could never match.
3689       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3690                                               C1.getBitWidth() - InSize))) {
3691         switch (Cond) {
3692         case ISD::SETUGT:
3693         case ISD::SETUGE:
3694         case ISD::SETEQ:
3695           return DAG.getConstant(0, dl, VT);
3696         case ISD::SETULT:
3697         case ISD::SETULE:
3698         case ISD::SETNE:
3699           return DAG.getConstant(1, dl, VT);
3700         case ISD::SETGT:
3701         case ISD::SETGE:
3702           // True if the sign bit of C1 is set.
3703           return DAG.getConstant(C1.isNegative(), dl, VT);
3704         case ISD::SETLT:
3705         case ISD::SETLE:
3706           // True if the sign bit of C1 isn't set.
3707           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3708         default:
3709           break;
3710         }
3711       }
3712 
3713       // Otherwise, we can perform the comparison with the low bits.
3714       switch (Cond) {
3715       case ISD::SETEQ:
3716       case ISD::SETNE:
3717       case ISD::SETUGT:
3718       case ISD::SETUGE:
3719       case ISD::SETULT:
3720       case ISD::SETULE: {
3721         EVT newVT = N0.getOperand(0).getValueType();
3722         if (DCI.isBeforeLegalizeOps() ||
3723             (isOperationLegal(ISD::SETCC, newVT) &&
3724              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3725           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3726           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3727 
3728           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3729                                           NewConst, Cond);
3730           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3731         }
3732         break;
3733       }
3734       default:
3735         break; // todo, be more careful with signed comparisons
3736       }
3737     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3738                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3739                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3740                                       OpVT)) {
3741       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3742       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3743       EVT ExtDstTy = N0.getValueType();
3744       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3745 
3746       // If the constant doesn't fit into the number of bits for the source of
3747       // the sign extension, it is impossible for both sides to be equal.
3748       if (C1.getMinSignedBits() > ExtSrcTyBits)
3749         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3750 
3751       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
3752              ExtDstTy != ExtSrcTy && "Unexpected types!");
3753       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3754       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3755                                    DAG.getConstant(Imm, dl, ExtDstTy));
3756       if (!DCI.isCalledByLegalizer())
3757         DCI.AddToWorklist(ZextOp.getNode());
3758       // Otherwise, make this a use of a zext.
3759       return DAG.getSetCC(dl, VT, ZextOp,
3760                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3761     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3762                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3763       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3764       if (N0.getOpcode() == ISD::SETCC &&
3765           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3766           (N0.getValueType() == MVT::i1 ||
3767            getBooleanContents(N0.getOperand(0).getValueType()) ==
3768                        ZeroOrOneBooleanContent)) {
3769         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3770         if (TrueWhenTrue)
3771           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3772         // Invert the condition.
3773         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3774         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3775         if (DCI.isBeforeLegalizeOps() ||
3776             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3777           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3778       }
3779 
3780       if ((N0.getOpcode() == ISD::XOR ||
3781            (N0.getOpcode() == ISD::AND &&
3782             N0.getOperand(0).getOpcode() == ISD::XOR &&
3783             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3784           isOneConstant(N0.getOperand(1))) {
3785         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3786         // can only do this if the top bits are known zero.
3787         unsigned BitWidth = N0.getValueSizeInBits();
3788         if (DAG.MaskedValueIsZero(N0,
3789                                   APInt::getHighBitsSet(BitWidth,
3790                                                         BitWidth-1))) {
3791           // Okay, get the un-inverted input value.
3792           SDValue Val;
3793           if (N0.getOpcode() == ISD::XOR) {
3794             Val = N0.getOperand(0);
3795           } else {
3796             assert(N0.getOpcode() == ISD::AND &&
3797                     N0.getOperand(0).getOpcode() == ISD::XOR);
3798             // ((X^1)&1)^1 -> X & 1
3799             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3800                               N0.getOperand(0).getOperand(0),
3801                               N0.getOperand(1));
3802           }
3803 
3804           return DAG.getSetCC(dl, VT, Val, N1,
3805                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3806         }
3807       } else if (N1C->isOne()) {
3808         SDValue Op0 = N0;
3809         if (Op0.getOpcode() == ISD::TRUNCATE)
3810           Op0 = Op0.getOperand(0);
3811 
3812         if ((Op0.getOpcode() == ISD::XOR) &&
3813             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3814             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3815           SDValue XorLHS = Op0.getOperand(0);
3816           SDValue XorRHS = Op0.getOperand(1);
3817           // Ensure that the input setccs return an i1 type or 0/1 value.
3818           if (Op0.getValueType() == MVT::i1 ||
3819               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3820                       ZeroOrOneBooleanContent &&
3821                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3822                         ZeroOrOneBooleanContent)) {
3823             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3824             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3825             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3826           }
3827         }
3828         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
3829           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3830           if (Op0.getValueType().bitsGT(VT))
3831             Op0 = DAG.getNode(ISD::AND, dl, VT,
3832                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3833                           DAG.getConstant(1, dl, VT));
3834           else if (Op0.getValueType().bitsLT(VT))
3835             Op0 = DAG.getNode(ISD::AND, dl, VT,
3836                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3837                         DAG.getConstant(1, dl, VT));
3838 
3839           return DAG.getSetCC(dl, VT, Op0,
3840                               DAG.getConstant(0, dl, Op0.getValueType()),
3841                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3842         }
3843         if (Op0.getOpcode() == ISD::AssertZext &&
3844             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3845           return DAG.getSetCC(dl, VT, Op0,
3846                               DAG.getConstant(0, dl, Op0.getValueType()),
3847                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3848       }
3849     }
3850 
3851     // Given:
3852     //   icmp eq/ne (urem %x, %y), 0
3853     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3854     //   icmp eq/ne %x, 0
3855     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3856         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3857       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3858       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3859       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3860         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3861     }
3862 
3863     if (SDValue V =
3864             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3865       return V;
3866   }
3867 
3868   // These simplifications apply to splat vectors as well.
3869   // TODO: Handle more splat vector cases.
3870   if (auto *N1C = isConstOrConstSplat(N1)) {
3871     const APInt &C1 = N1C->getAPIntValue();
3872 
3873     APInt MinVal, MaxVal;
3874     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3875     if (ISD::isSignedIntSetCC(Cond)) {
3876       MinVal = APInt::getSignedMinValue(OperandBitSize);
3877       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3878     } else {
3879       MinVal = APInt::getMinValue(OperandBitSize);
3880       MaxVal = APInt::getMaxValue(OperandBitSize);
3881     }
3882 
3883     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3884     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3885       // X >= MIN --> true
3886       if (C1 == MinVal)
3887         return DAG.getBoolConstant(true, dl, VT, OpVT);
3888 
3889       if (!VT.isVector()) { // TODO: Support this for vectors.
3890         // X >= C0 --> X > (C0 - 1)
3891         APInt C = C1 - 1;
3892         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3893         if ((DCI.isBeforeLegalizeOps() ||
3894              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3895             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3896                                   isLegalICmpImmediate(C.getSExtValue())))) {
3897           return DAG.getSetCC(dl, VT, N0,
3898                               DAG.getConstant(C, dl, N1.getValueType()),
3899                               NewCC);
3900         }
3901       }
3902     }
3903 
3904     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3905       // X <= MAX --> true
3906       if (C1 == MaxVal)
3907         return DAG.getBoolConstant(true, dl, VT, OpVT);
3908 
3909       // X <= C0 --> X < (C0 + 1)
3910       if (!VT.isVector()) { // TODO: Support this for vectors.
3911         APInt C = C1 + 1;
3912         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3913         if ((DCI.isBeforeLegalizeOps() ||
3914              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3915             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3916                                   isLegalICmpImmediate(C.getSExtValue())))) {
3917           return DAG.getSetCC(dl, VT, N0,
3918                               DAG.getConstant(C, dl, N1.getValueType()),
3919                               NewCC);
3920         }
3921       }
3922     }
3923 
3924     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3925       if (C1 == MinVal)
3926         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3927 
3928       // TODO: Support this for vectors after legalize ops.
3929       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3930         // Canonicalize setlt X, Max --> setne X, Max
3931         if (C1 == MaxVal)
3932           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3933 
3934         // If we have setult X, 1, turn it into seteq X, 0
3935         if (C1 == MinVal+1)
3936           return DAG.getSetCC(dl, VT, N0,
3937                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3938                               ISD::SETEQ);
3939       }
3940     }
3941 
3942     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3943       if (C1 == MaxVal)
3944         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3945 
3946       // TODO: Support this for vectors after legalize ops.
3947       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3948         // Canonicalize setgt X, Min --> setne X, Min
3949         if (C1 == MinVal)
3950           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3951 
3952         // If we have setugt X, Max-1, turn it into seteq X, Max
3953         if (C1 == MaxVal-1)
3954           return DAG.getSetCC(dl, VT, N0,
3955                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3956                               ISD::SETEQ);
3957       }
3958     }
3959 
3960     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3961       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3962       if (C1.isNullValue())
3963         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3964                 VT, N0, N1, Cond, DCI, dl))
3965           return CC;
3966 
3967       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
3968       // For example, when high 32-bits of i64 X are known clear:
3969       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
3970       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
3971       bool CmpZero = N1C->getAPIntValue().isNullValue();
3972       bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue();
3973       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
3974         // Match or(lo,shl(hi,bw/2)) pattern.
3975         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
3976           unsigned EltBits = V.getScalarValueSizeInBits();
3977           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
3978             return false;
3979           SDValue LHS = V.getOperand(0);
3980           SDValue RHS = V.getOperand(1);
3981           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
3982           // Unshifted element must have zero upperbits.
3983           if (RHS.getOpcode() == ISD::SHL &&
3984               isa<ConstantSDNode>(RHS.getOperand(1)) &&
3985               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
3986               DAG.MaskedValueIsZero(LHS, HiBits)) {
3987             Lo = LHS;
3988             Hi = RHS.getOperand(0);
3989             return true;
3990           }
3991           if (LHS.getOpcode() == ISD::SHL &&
3992               isa<ConstantSDNode>(LHS.getOperand(1)) &&
3993               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
3994               DAG.MaskedValueIsZero(RHS, HiBits)) {
3995             Lo = RHS;
3996             Hi = LHS.getOperand(0);
3997             return true;
3998           }
3999           return false;
4000         };
4001 
4002         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4003           unsigned EltBits = N0.getScalarValueSizeInBits();
4004           unsigned HalfBits = EltBits / 2;
4005           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4006           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4007           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4008           SDValue NewN0 =
4009               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4010           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4011           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4012         };
4013 
4014         SDValue Lo, Hi;
4015         if (IsConcat(N0, Lo, Hi))
4016           return MergeConcat(Lo, Hi);
4017 
4018         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4019           SDValue Lo0, Lo1, Hi0, Hi1;
4020           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4021               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4022             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4023                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4024           }
4025         }
4026       }
4027     }
4028 
4029     // If we have "setcc X, C0", check to see if we can shrink the immediate
4030     // by changing cc.
4031     // TODO: Support this for vectors after legalize ops.
4032     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4033       // SETUGT X, SINTMAX  -> SETLT X, 0
4034       // SETUGE X, SINTMIN -> SETLT X, 0
4035       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4036           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4037         return DAG.getSetCC(dl, VT, N0,
4038                             DAG.getConstant(0, dl, N1.getValueType()),
4039                             ISD::SETLT);
4040 
4041       // SETULT X, SINTMIN  -> SETGT X, -1
4042       // SETULE X, SINTMAX  -> SETGT X, -1
4043       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4044           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4045         return DAG.getSetCC(dl, VT, N0,
4046                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4047                             ISD::SETGT);
4048     }
4049   }
4050 
4051   // Back to non-vector simplifications.
4052   // TODO: Can we do these for vector splats?
4053   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4054     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4055     const APInt &C1 = N1C->getAPIntValue();
4056     EVT ShValTy = N0.getValueType();
4057 
4058     // Fold bit comparisons when we can. This will result in an
4059     // incorrect value when boolean false is negative one, unless
4060     // the bitsize is 1 in which case the false value is the same
4061     // in practice regardless of the representation.
4062     if ((VT.getSizeInBits() == 1 ||
4063          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4064         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4065         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4066         N0.getOpcode() == ISD::AND) {
4067       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4068         EVT ShiftTy =
4069             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4070         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4071           // Perform the xform if the AND RHS is a single bit.
4072           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4073           if (AndRHS->getAPIntValue().isPowerOf2() &&
4074               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4075             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4076                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4077                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4078           }
4079         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4080           // (X & 8) == 8  -->  (X & 8) >> 3
4081           // Perform the xform if C1 is a single bit.
4082           unsigned ShCt = C1.logBase2();
4083           if (C1.isPowerOf2() &&
4084               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4085             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4086                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4087                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4088           }
4089         }
4090       }
4091     }
4092 
4093     if (C1.getMinSignedBits() <= 64 &&
4094         !isLegalICmpImmediate(C1.getSExtValue())) {
4095       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4096       // (X & -256) == 256 -> (X >> 8) == 1
4097       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4098           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4099         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4100           const APInt &AndRHSC = AndRHS->getAPIntValue();
4101           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
4102             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4103             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4104               SDValue Shift =
4105                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4106                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4107               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4108               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4109             }
4110           }
4111         }
4112       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4113                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4114         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4115         // X <  0x100000000 -> (X >> 32) <  1
4116         // X >= 0x100000000 -> (X >> 32) >= 1
4117         // X <= 0x0ffffffff -> (X >> 32) <  1
4118         // X >  0x0ffffffff -> (X >> 32) >= 1
4119         unsigned ShiftBits;
4120         APInt NewC = C1;
4121         ISD::CondCode NewCond = Cond;
4122         if (AdjOne) {
4123           ShiftBits = C1.countTrailingOnes();
4124           NewC = NewC + 1;
4125           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4126         } else {
4127           ShiftBits = C1.countTrailingZeros();
4128         }
4129         NewC.lshrInPlace(ShiftBits);
4130         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4131             isLegalICmpImmediate(NewC.getSExtValue()) &&
4132             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4133           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4134                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4135           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4136           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4137         }
4138       }
4139     }
4140   }
4141 
4142   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4143     auto *CFP = cast<ConstantFPSDNode>(N1);
4144     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4145 
4146     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4147     // constant if knowing that the operand is non-nan is enough.  We prefer to
4148     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4149     // materialize 0.0.
4150     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4151       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4152 
4153     // setcc (fneg x), C -> setcc swap(pred) x, -C
4154     if (N0.getOpcode() == ISD::FNEG) {
4155       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4156       if (DCI.isBeforeLegalizeOps() ||
4157           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4158         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4159         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4160       }
4161     }
4162 
4163     // If the condition is not legal, see if we can find an equivalent one
4164     // which is legal.
4165     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4166       // If the comparison was an awkward floating-point == or != and one of
4167       // the comparison operands is infinity or negative infinity, convert the
4168       // condition to a less-awkward <= or >=.
4169       if (CFP->getValueAPF().isInfinity()) {
4170         bool IsNegInf = CFP->getValueAPF().isNegative();
4171         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4172         switch (Cond) {
4173         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4174         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4175         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4176         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4177         default: break;
4178         }
4179         if (NewCond != ISD::SETCC_INVALID &&
4180             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4181           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4182       }
4183     }
4184   }
4185 
4186   if (N0 == N1) {
4187     // The sext(setcc()) => setcc() optimization relies on the appropriate
4188     // constant being emitted.
4189     assert(!N0.getValueType().isInteger() &&
4190            "Integer types should be handled by FoldSetCC");
4191 
4192     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4193     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4194     if (UOF == 2) // FP operators that are undefined on NaNs.
4195       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4196     if (UOF == unsigned(EqTrue))
4197       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4198     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4199     // if it is not already.
4200     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4201     if (NewCond != Cond &&
4202         (DCI.isBeforeLegalizeOps() ||
4203                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4204       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4205   }
4206 
4207   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4208       N0.getValueType().isInteger()) {
4209     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4210         N0.getOpcode() == ISD::XOR) {
4211       // Simplify (X+Y) == (X+Z) -->  Y == Z
4212       if (N0.getOpcode() == N1.getOpcode()) {
4213         if (N0.getOperand(0) == N1.getOperand(0))
4214           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4215         if (N0.getOperand(1) == N1.getOperand(1))
4216           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4217         if (isCommutativeBinOp(N0.getOpcode())) {
4218           // If X op Y == Y op X, try other combinations.
4219           if (N0.getOperand(0) == N1.getOperand(1))
4220             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4221                                 Cond);
4222           if (N0.getOperand(1) == N1.getOperand(0))
4223             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4224                                 Cond);
4225         }
4226       }
4227 
4228       // If RHS is a legal immediate value for a compare instruction, we need
4229       // to be careful about increasing register pressure needlessly.
4230       bool LegalRHSImm = false;
4231 
4232       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4233         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4234           // Turn (X+C1) == C2 --> X == C2-C1
4235           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4236             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4237                                 DAG.getConstant(RHSC->getAPIntValue()-
4238                                                 LHSR->getAPIntValue(),
4239                                 dl, N0.getValueType()), Cond);
4240           }
4241 
4242           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4243           if (N0.getOpcode() == ISD::XOR)
4244             // If we know that all of the inverted bits are zero, don't bother
4245             // performing the inversion.
4246             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4247               return
4248                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4249                              DAG.getConstant(LHSR->getAPIntValue() ^
4250                                                RHSC->getAPIntValue(),
4251                                              dl, N0.getValueType()),
4252                              Cond);
4253         }
4254 
4255         // Turn (C1-X) == C2 --> X == C1-C2
4256         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4257           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4258             return
4259               DAG.getSetCC(dl, VT, N0.getOperand(1),
4260                            DAG.getConstant(SUBC->getAPIntValue() -
4261                                              RHSC->getAPIntValue(),
4262                                            dl, N0.getValueType()),
4263                            Cond);
4264           }
4265         }
4266 
4267         // Could RHSC fold directly into a compare?
4268         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4269           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4270       }
4271 
4272       // (X+Y) == X --> Y == 0 and similar folds.
4273       // Don't do this if X is an immediate that can fold into a cmp
4274       // instruction and X+Y has other uses. It could be an induction variable
4275       // chain, and the transform would increase register pressure.
4276       if (!LegalRHSImm || N0.hasOneUse())
4277         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4278           return V;
4279     }
4280 
4281     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4282         N1.getOpcode() == ISD::XOR)
4283       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4284         return V;
4285 
4286     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4287       return V;
4288   }
4289 
4290   // Fold remainder of division by a constant.
4291   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4292       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4293     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4294 
4295     // When division is cheap or optimizing for minimum size,
4296     // fall through to DIVREM creation by skipping this fold.
4297     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4298       if (N0.getOpcode() == ISD::UREM) {
4299         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4300           return Folded;
4301       } else if (N0.getOpcode() == ISD::SREM) {
4302         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4303           return Folded;
4304       }
4305     }
4306   }
4307 
4308   // Fold away ALL boolean setcc's.
4309   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4310     SDValue Temp;
4311     switch (Cond) {
4312     default: llvm_unreachable("Unknown integer setcc!");
4313     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4314       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4315       N0 = DAG.getNOT(dl, Temp, OpVT);
4316       if (!DCI.isCalledByLegalizer())
4317         DCI.AddToWorklist(Temp.getNode());
4318       break;
4319     case ISD::SETNE:  // X != Y   -->  (X^Y)
4320       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4321       break;
4322     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4323     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4324       Temp = DAG.getNOT(dl, N0, OpVT);
4325       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4326       if (!DCI.isCalledByLegalizer())
4327         DCI.AddToWorklist(Temp.getNode());
4328       break;
4329     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4330     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4331       Temp = DAG.getNOT(dl, N1, OpVT);
4332       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4333       if (!DCI.isCalledByLegalizer())
4334         DCI.AddToWorklist(Temp.getNode());
4335       break;
4336     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4337     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4338       Temp = DAG.getNOT(dl, N0, OpVT);
4339       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4340       if (!DCI.isCalledByLegalizer())
4341         DCI.AddToWorklist(Temp.getNode());
4342       break;
4343     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4344     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4345       Temp = DAG.getNOT(dl, N1, OpVT);
4346       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4347       break;
4348     }
4349     if (VT.getScalarType() != MVT::i1) {
4350       if (!DCI.isCalledByLegalizer())
4351         DCI.AddToWorklist(N0.getNode());
4352       // FIXME: If running after legalize, we probably can't do this.
4353       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4354       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4355     }
4356     return N0;
4357   }
4358 
4359   // Could not fold it.
4360   return SDValue();
4361 }
4362 
4363 /// Returns true (and the GlobalValue and the offset) if the node is a
4364 /// GlobalAddress + offset.
4365 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4366                                     int64_t &Offset) const {
4367 
4368   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4369 
4370   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4371     GA = GASD->getGlobal();
4372     Offset += GASD->getOffset();
4373     return true;
4374   }
4375 
4376   if (N->getOpcode() == ISD::ADD) {
4377     SDValue N1 = N->getOperand(0);
4378     SDValue N2 = N->getOperand(1);
4379     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4380       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4381         Offset += V->getSExtValue();
4382         return true;
4383       }
4384     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4385       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4386         Offset += V->getSExtValue();
4387         return true;
4388       }
4389     }
4390   }
4391 
4392   return false;
4393 }
4394 
4395 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4396                                           DAGCombinerInfo &DCI) const {
4397   // Default implementation: no optimization.
4398   return SDValue();
4399 }
4400 
4401 //===----------------------------------------------------------------------===//
4402 //  Inline Assembler Implementation Methods
4403 //===----------------------------------------------------------------------===//
4404 
4405 TargetLowering::ConstraintType
4406 TargetLowering::getConstraintType(StringRef Constraint) const {
4407   unsigned S = Constraint.size();
4408 
4409   if (S == 1) {
4410     switch (Constraint[0]) {
4411     default: break;
4412     case 'r':
4413       return C_RegisterClass;
4414     case 'm': // memory
4415     case 'o': // offsetable
4416     case 'V': // not offsetable
4417       return C_Memory;
4418     case 'n': // Simple Integer
4419     case 'E': // Floating Point Constant
4420     case 'F': // Floating Point Constant
4421       return C_Immediate;
4422     case 'i': // Simple Integer or Relocatable Constant
4423     case 's': // Relocatable Constant
4424     case 'p': // Address.
4425     case 'X': // Allow ANY value.
4426     case 'I': // Target registers.
4427     case 'J':
4428     case 'K':
4429     case 'L':
4430     case 'M':
4431     case 'N':
4432     case 'O':
4433     case 'P':
4434     case '<':
4435     case '>':
4436       return C_Other;
4437     }
4438   }
4439 
4440   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4441     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4442       return C_Memory;
4443     return C_Register;
4444   }
4445   return C_Unknown;
4446 }
4447 
4448 /// Try to replace an X constraint, which matches anything, with another that
4449 /// has more specific requirements based on the type of the corresponding
4450 /// operand.
4451 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4452   if (ConstraintVT.isInteger())
4453     return "r";
4454   if (ConstraintVT.isFloatingPoint())
4455     return "f"; // works for many targets
4456   return nullptr;
4457 }
4458 
4459 SDValue TargetLowering::LowerAsmOutputForConstraint(
4460     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4461     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4462   return SDValue();
4463 }
4464 
4465 /// Lower the specified operand into the Ops vector.
4466 /// If it is invalid, don't add anything to Ops.
4467 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4468                                                   std::string &Constraint,
4469                                                   std::vector<SDValue> &Ops,
4470                                                   SelectionDAG &DAG) const {
4471 
4472   if (Constraint.length() > 1) return;
4473 
4474   char ConstraintLetter = Constraint[0];
4475   switch (ConstraintLetter) {
4476   default: break;
4477   case 'X':     // Allows any operand; labels (basic block) use this.
4478     if (Op.getOpcode() == ISD::BasicBlock ||
4479         Op.getOpcode() == ISD::TargetBlockAddress) {
4480       Ops.push_back(Op);
4481       return;
4482     }
4483     LLVM_FALLTHROUGH;
4484   case 'i':    // Simple Integer or Relocatable Constant
4485   case 'n':    // Simple Integer
4486   case 's': {  // Relocatable Constant
4487 
4488     GlobalAddressSDNode *GA;
4489     ConstantSDNode *C;
4490     BlockAddressSDNode *BA;
4491     uint64_t Offset = 0;
4492 
4493     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4494     // etc., since getelementpointer is variadic. We can't use
4495     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4496     // while in this case the GA may be furthest from the root node which is
4497     // likely an ISD::ADD.
4498     while (1) {
4499       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4500         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4501                                                  GA->getValueType(0),
4502                                                  Offset + GA->getOffset()));
4503         return;
4504       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4505                  ConstraintLetter != 's') {
4506         // gcc prints these as sign extended.  Sign extend value to 64 bits
4507         // now; without this it would get ZExt'd later in
4508         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4509         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4510         BooleanContent BCont = getBooleanContents(MVT::i64);
4511         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4512                                       : ISD::SIGN_EXTEND;
4513         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4514                                                     : C->getSExtValue();
4515         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4516                                             SDLoc(C), MVT::i64));
4517         return;
4518       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4519                  ConstraintLetter != 'n') {
4520         Ops.push_back(DAG.getTargetBlockAddress(
4521             BA->getBlockAddress(), BA->getValueType(0),
4522             Offset + BA->getOffset(), BA->getTargetFlags()));
4523         return;
4524       } else {
4525         const unsigned OpCode = Op.getOpcode();
4526         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4527           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4528             Op = Op.getOperand(1);
4529           // Subtraction is not commutative.
4530           else if (OpCode == ISD::ADD &&
4531                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4532             Op = Op.getOperand(0);
4533           else
4534             return;
4535           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4536           continue;
4537         }
4538       }
4539       return;
4540     }
4541     break;
4542   }
4543   }
4544 }
4545 
4546 std::pair<unsigned, const TargetRegisterClass *>
4547 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4548                                              StringRef Constraint,
4549                                              MVT VT) const {
4550   if (Constraint.empty() || Constraint[0] != '{')
4551     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4552   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4553 
4554   // Remove the braces from around the name.
4555   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4556 
4557   std::pair<unsigned, const TargetRegisterClass *> R =
4558       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4559 
4560   // Figure out which register class contains this reg.
4561   for (const TargetRegisterClass *RC : RI->regclasses()) {
4562     // If none of the value types for this register class are valid, we
4563     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4564     if (!isLegalRC(*RI, *RC))
4565       continue;
4566 
4567     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4568          I != E; ++I) {
4569       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4570         std::pair<unsigned, const TargetRegisterClass *> S =
4571             std::make_pair(*I, RC);
4572 
4573         // If this register class has the requested value type, return it,
4574         // otherwise keep searching and return the first class found
4575         // if no other is found which explicitly has the requested type.
4576         if (RI->isTypeLegalForClass(*RC, VT))
4577           return S;
4578         if (!R.second)
4579           R = S;
4580       }
4581     }
4582   }
4583 
4584   return R;
4585 }
4586 
4587 //===----------------------------------------------------------------------===//
4588 // Constraint Selection.
4589 
4590 /// Return true of this is an input operand that is a matching constraint like
4591 /// "4".
4592 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4593   assert(!ConstraintCode.empty() && "No known constraint!");
4594   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4595 }
4596 
4597 /// If this is an input matching constraint, this method returns the output
4598 /// operand it matches.
4599 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4600   assert(!ConstraintCode.empty() && "No known constraint!");
4601   return atoi(ConstraintCode.c_str());
4602 }
4603 
4604 /// Split up the constraint string from the inline assembly value into the
4605 /// specific constraints and their prefixes, and also tie in the associated
4606 /// operand values.
4607 /// If this returns an empty vector, and if the constraint string itself
4608 /// isn't empty, there was an error parsing.
4609 TargetLowering::AsmOperandInfoVector
4610 TargetLowering::ParseConstraints(const DataLayout &DL,
4611                                  const TargetRegisterInfo *TRI,
4612                                  const CallBase &Call) const {
4613   /// Information about all of the constraints.
4614   AsmOperandInfoVector ConstraintOperands;
4615   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4616   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4617 
4618   // Do a prepass over the constraints, canonicalizing them, and building up the
4619   // ConstraintOperands list.
4620   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4621   unsigned ResNo = 0; // ResNo - The result number of the next output.
4622 
4623   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4624     ConstraintOperands.emplace_back(std::move(CI));
4625     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4626 
4627     // Update multiple alternative constraint count.
4628     if (OpInfo.multipleAlternatives.size() > maCount)
4629       maCount = OpInfo.multipleAlternatives.size();
4630 
4631     OpInfo.ConstraintVT = MVT::Other;
4632 
4633     // Compute the value type for each operand.
4634     switch (OpInfo.Type) {
4635     case InlineAsm::isOutput:
4636       // Indirect outputs just consume an argument.
4637       if (OpInfo.isIndirect) {
4638         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4639         break;
4640       }
4641 
4642       // The return value of the call is this value.  As such, there is no
4643       // corresponding argument.
4644       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4645       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4646         OpInfo.ConstraintVT =
4647             getSimpleValueType(DL, STy->getElementType(ResNo));
4648       } else {
4649         assert(ResNo == 0 && "Asm only has one result!");
4650         OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType());
4651       }
4652       ++ResNo;
4653       break;
4654     case InlineAsm::isInput:
4655       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4656       break;
4657     case InlineAsm::isClobber:
4658       // Nothing to do.
4659       break;
4660     }
4661 
4662     if (OpInfo.CallOperandVal) {
4663       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4664       if (OpInfo.isIndirect) {
4665         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4666         if (!PtrTy)
4667           report_fatal_error("Indirect operand for inline asm not a pointer!");
4668         OpTy = PtrTy->getElementType();
4669       }
4670 
4671       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4672       if (StructType *STy = dyn_cast<StructType>(OpTy))
4673         if (STy->getNumElements() == 1)
4674           OpTy = STy->getElementType(0);
4675 
4676       // If OpTy is not a single value, it may be a struct/union that we
4677       // can tile with integers.
4678       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4679         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4680         switch (BitSize) {
4681         default: break;
4682         case 1:
4683         case 8:
4684         case 16:
4685         case 32:
4686         case 64:
4687         case 128:
4688           OpInfo.ConstraintVT =
4689               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4690           break;
4691         }
4692       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4693         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4694         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4695       } else {
4696         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4697       }
4698     }
4699   }
4700 
4701   // If we have multiple alternative constraints, select the best alternative.
4702   if (!ConstraintOperands.empty()) {
4703     if (maCount) {
4704       unsigned bestMAIndex = 0;
4705       int bestWeight = -1;
4706       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4707       int weight = -1;
4708       unsigned maIndex;
4709       // Compute the sums of the weights for each alternative, keeping track
4710       // of the best (highest weight) one so far.
4711       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4712         int weightSum = 0;
4713         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4714              cIndex != eIndex; ++cIndex) {
4715           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4716           if (OpInfo.Type == InlineAsm::isClobber)
4717             continue;
4718 
4719           // If this is an output operand with a matching input operand,
4720           // look up the matching input. If their types mismatch, e.g. one
4721           // is an integer, the other is floating point, or their sizes are
4722           // different, flag it as an maCantMatch.
4723           if (OpInfo.hasMatchingInput()) {
4724             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4725             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4726               if ((OpInfo.ConstraintVT.isInteger() !=
4727                    Input.ConstraintVT.isInteger()) ||
4728                   (OpInfo.ConstraintVT.getSizeInBits() !=
4729                    Input.ConstraintVT.getSizeInBits())) {
4730                 weightSum = -1; // Can't match.
4731                 break;
4732               }
4733             }
4734           }
4735           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4736           if (weight == -1) {
4737             weightSum = -1;
4738             break;
4739           }
4740           weightSum += weight;
4741         }
4742         // Update best.
4743         if (weightSum > bestWeight) {
4744           bestWeight = weightSum;
4745           bestMAIndex = maIndex;
4746         }
4747       }
4748 
4749       // Now select chosen alternative in each constraint.
4750       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4751            cIndex != eIndex; ++cIndex) {
4752         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4753         if (cInfo.Type == InlineAsm::isClobber)
4754           continue;
4755         cInfo.selectAlternative(bestMAIndex);
4756       }
4757     }
4758   }
4759 
4760   // Check and hook up tied operands, choose constraint code to use.
4761   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4762        cIndex != eIndex; ++cIndex) {
4763     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4764 
4765     // If this is an output operand with a matching input operand, look up the
4766     // matching input. If their types mismatch, e.g. one is an integer, the
4767     // other is floating point, or their sizes are different, flag it as an
4768     // error.
4769     if (OpInfo.hasMatchingInput()) {
4770       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4771 
4772       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4773         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4774             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4775                                          OpInfo.ConstraintVT);
4776         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4777             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4778                                          Input.ConstraintVT);
4779         if ((OpInfo.ConstraintVT.isInteger() !=
4780              Input.ConstraintVT.isInteger()) ||
4781             (MatchRC.second != InputRC.second)) {
4782           report_fatal_error("Unsupported asm: input constraint"
4783                              " with a matching output constraint of"
4784                              " incompatible type!");
4785         }
4786       }
4787     }
4788   }
4789 
4790   return ConstraintOperands;
4791 }
4792 
4793 /// Return an integer indicating how general CT is.
4794 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4795   switch (CT) {
4796   case TargetLowering::C_Immediate:
4797   case TargetLowering::C_Other:
4798   case TargetLowering::C_Unknown:
4799     return 0;
4800   case TargetLowering::C_Register:
4801     return 1;
4802   case TargetLowering::C_RegisterClass:
4803     return 2;
4804   case TargetLowering::C_Memory:
4805     return 3;
4806   }
4807   llvm_unreachable("Invalid constraint type");
4808 }
4809 
4810 /// Examine constraint type and operand type and determine a weight value.
4811 /// This object must already have been set up with the operand type
4812 /// and the current alternative constraint selected.
4813 TargetLowering::ConstraintWeight
4814   TargetLowering::getMultipleConstraintMatchWeight(
4815     AsmOperandInfo &info, int maIndex) const {
4816   InlineAsm::ConstraintCodeVector *rCodes;
4817   if (maIndex >= (int)info.multipleAlternatives.size())
4818     rCodes = &info.Codes;
4819   else
4820     rCodes = &info.multipleAlternatives[maIndex].Codes;
4821   ConstraintWeight BestWeight = CW_Invalid;
4822 
4823   // Loop over the options, keeping track of the most general one.
4824   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4825     ConstraintWeight weight =
4826       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4827     if (weight > BestWeight)
4828       BestWeight = weight;
4829   }
4830 
4831   return BestWeight;
4832 }
4833 
4834 /// Examine constraint type and operand type and determine a weight value.
4835 /// This object must already have been set up with the operand type
4836 /// and the current alternative constraint selected.
4837 TargetLowering::ConstraintWeight
4838   TargetLowering::getSingleConstraintMatchWeight(
4839     AsmOperandInfo &info, const char *constraint) const {
4840   ConstraintWeight weight = CW_Invalid;
4841   Value *CallOperandVal = info.CallOperandVal;
4842     // If we don't have a value, we can't do a match,
4843     // but allow it at the lowest weight.
4844   if (!CallOperandVal)
4845     return CW_Default;
4846   // Look at the constraint type.
4847   switch (*constraint) {
4848     case 'i': // immediate integer.
4849     case 'n': // immediate integer with a known value.
4850       if (isa<ConstantInt>(CallOperandVal))
4851         weight = CW_Constant;
4852       break;
4853     case 's': // non-explicit intregal immediate.
4854       if (isa<GlobalValue>(CallOperandVal))
4855         weight = CW_Constant;
4856       break;
4857     case 'E': // immediate float if host format.
4858     case 'F': // immediate float.
4859       if (isa<ConstantFP>(CallOperandVal))
4860         weight = CW_Constant;
4861       break;
4862     case '<': // memory operand with autodecrement.
4863     case '>': // memory operand with autoincrement.
4864     case 'm': // memory operand.
4865     case 'o': // offsettable memory operand
4866     case 'V': // non-offsettable memory operand
4867       weight = CW_Memory;
4868       break;
4869     case 'r': // general register.
4870     case 'g': // general register, memory operand or immediate integer.
4871               // note: Clang converts "g" to "imr".
4872       if (CallOperandVal->getType()->isIntegerTy())
4873         weight = CW_Register;
4874       break;
4875     case 'X': // any operand.
4876   default:
4877     weight = CW_Default;
4878     break;
4879   }
4880   return weight;
4881 }
4882 
4883 /// If there are multiple different constraints that we could pick for this
4884 /// operand (e.g. "imr") try to pick the 'best' one.
4885 /// This is somewhat tricky: constraints fall into four classes:
4886 ///    Other         -> immediates and magic values
4887 ///    Register      -> one specific register
4888 ///    RegisterClass -> a group of regs
4889 ///    Memory        -> memory
4890 /// Ideally, we would pick the most specific constraint possible: if we have
4891 /// something that fits into a register, we would pick it.  The problem here
4892 /// is that if we have something that could either be in a register or in
4893 /// memory that use of the register could cause selection of *other*
4894 /// operands to fail: they might only succeed if we pick memory.  Because of
4895 /// this the heuristic we use is:
4896 ///
4897 ///  1) If there is an 'other' constraint, and if the operand is valid for
4898 ///     that constraint, use it.  This makes us take advantage of 'i'
4899 ///     constraints when available.
4900 ///  2) Otherwise, pick the most general constraint present.  This prefers
4901 ///     'm' over 'r', for example.
4902 ///
4903 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4904                              const TargetLowering &TLI,
4905                              SDValue Op, SelectionDAG *DAG) {
4906   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4907   unsigned BestIdx = 0;
4908   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4909   int BestGenerality = -1;
4910 
4911   // Loop over the options, keeping track of the most general one.
4912   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4913     TargetLowering::ConstraintType CType =
4914       TLI.getConstraintType(OpInfo.Codes[i]);
4915 
4916     // Indirect 'other' or 'immediate' constraints are not allowed.
4917     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4918                                CType == TargetLowering::C_Register ||
4919                                CType == TargetLowering::C_RegisterClass))
4920       continue;
4921 
4922     // If this is an 'other' or 'immediate' constraint, see if the operand is
4923     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4924     // the operand is an integer in the range [0..31] we want to use I (saving a
4925     // load of a register), otherwise we must use 'r'.
4926     if ((CType == TargetLowering::C_Other ||
4927          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4928       assert(OpInfo.Codes[i].size() == 1 &&
4929              "Unhandled multi-letter 'other' constraint");
4930       std::vector<SDValue> ResultOps;
4931       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4932                                        ResultOps, *DAG);
4933       if (!ResultOps.empty()) {
4934         BestType = CType;
4935         BestIdx = i;
4936         break;
4937       }
4938     }
4939 
4940     // Things with matching constraints can only be registers, per gcc
4941     // documentation.  This mainly affects "g" constraints.
4942     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4943       continue;
4944 
4945     // This constraint letter is more general than the previous one, use it.
4946     int Generality = getConstraintGenerality(CType);
4947     if (Generality > BestGenerality) {
4948       BestType = CType;
4949       BestIdx = i;
4950       BestGenerality = Generality;
4951     }
4952   }
4953 
4954   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4955   OpInfo.ConstraintType = BestType;
4956 }
4957 
4958 /// Determines the constraint code and constraint type to use for the specific
4959 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4960 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4961                                             SDValue Op,
4962                                             SelectionDAG *DAG) const {
4963   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4964 
4965   // Single-letter constraints ('r') are very common.
4966   if (OpInfo.Codes.size() == 1) {
4967     OpInfo.ConstraintCode = OpInfo.Codes[0];
4968     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4969   } else {
4970     ChooseConstraint(OpInfo, *this, Op, DAG);
4971   }
4972 
4973   // 'X' matches anything.
4974   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4975     // Labels and constants are handled elsewhere ('X' is the only thing
4976     // that matches labels).  For Functions, the type here is the type of
4977     // the result, which is not what we want to look at; leave them alone.
4978     Value *v = OpInfo.CallOperandVal;
4979     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4980       OpInfo.CallOperandVal = v;
4981       return;
4982     }
4983 
4984     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4985       return;
4986 
4987     // Otherwise, try to resolve it to something we know about by looking at
4988     // the actual operand type.
4989     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4990       OpInfo.ConstraintCode = Repl;
4991       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4992     }
4993   }
4994 }
4995 
4996 /// Given an exact SDIV by a constant, create a multiplication
4997 /// with the multiplicative inverse of the constant.
4998 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4999                               const SDLoc &dl, SelectionDAG &DAG,
5000                               SmallVectorImpl<SDNode *> &Created) {
5001   SDValue Op0 = N->getOperand(0);
5002   SDValue Op1 = N->getOperand(1);
5003   EVT VT = N->getValueType(0);
5004   EVT SVT = VT.getScalarType();
5005   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5006   EVT ShSVT = ShVT.getScalarType();
5007 
5008   bool UseSRA = false;
5009   SmallVector<SDValue, 16> Shifts, Factors;
5010 
5011   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5012     if (C->isNullValue())
5013       return false;
5014     APInt Divisor = C->getAPIntValue();
5015     unsigned Shift = Divisor.countTrailingZeros();
5016     if (Shift) {
5017       Divisor.ashrInPlace(Shift);
5018       UseSRA = true;
5019     }
5020     // Calculate the multiplicative inverse, using Newton's method.
5021     APInt t;
5022     APInt Factor = Divisor;
5023     while ((t = Divisor * Factor) != 1)
5024       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5025     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5026     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5027     return true;
5028   };
5029 
5030   // Collect all magic values from the build vector.
5031   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5032     return SDValue();
5033 
5034   SDValue Shift, Factor;
5035   if (VT.isFixedLengthVector()) {
5036     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5037     Factor = DAG.getBuildVector(VT, dl, Factors);
5038   } else if (VT.isScalableVector()) {
5039     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5040            "Expected matchUnaryPredicate to return one element for scalable "
5041            "vectors");
5042     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5043     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5044   } else {
5045     Shift = Shifts[0];
5046     Factor = Factors[0];
5047   }
5048 
5049   SDValue Res = Op0;
5050 
5051   // Shift the value upfront if it is even, so the LSB is one.
5052   if (UseSRA) {
5053     // TODO: For UDIV use SRL instead of SRA.
5054     SDNodeFlags Flags;
5055     Flags.setExact(true);
5056     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5057     Created.push_back(Res.getNode());
5058   }
5059 
5060   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5061 }
5062 
5063 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5064                               SelectionDAG &DAG,
5065                               SmallVectorImpl<SDNode *> &Created) const {
5066   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5067   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5068   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5069     return SDValue(N, 0); // Lower SDIV as SDIV
5070   return SDValue();
5071 }
5072 
5073 /// Given an ISD::SDIV node expressing a divide by constant,
5074 /// return a DAG expression to select that will generate the same value by
5075 /// multiplying by a magic number.
5076 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5077 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5078                                   bool IsAfterLegalization,
5079                                   SmallVectorImpl<SDNode *> &Created) const {
5080   SDLoc dl(N);
5081   EVT VT = N->getValueType(0);
5082   EVT SVT = VT.getScalarType();
5083   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5084   EVT ShSVT = ShVT.getScalarType();
5085   unsigned EltBits = VT.getScalarSizeInBits();
5086   EVT MulVT;
5087 
5088   // Check to see if we can do this.
5089   // FIXME: We should be more aggressive here.
5090   if (!isTypeLegal(VT)) {
5091     // Limit this to simple scalars for now.
5092     if (VT.isVector() || !VT.isSimple())
5093       return SDValue();
5094 
5095     // If this type will be promoted to a large enough type with a legal
5096     // multiply operation, we can go ahead and do this transform.
5097     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5098       return SDValue();
5099 
5100     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5101     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5102         !isOperationLegal(ISD::MUL, MulVT))
5103       return SDValue();
5104   }
5105 
5106   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5107   if (N->getFlags().hasExact())
5108     return BuildExactSDIV(*this, N, dl, DAG, Created);
5109 
5110   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5111 
5112   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5113     if (C->isNullValue())
5114       return false;
5115 
5116     const APInt &Divisor = C->getAPIntValue();
5117     APInt::ms magics = Divisor.magic();
5118     int NumeratorFactor = 0;
5119     int ShiftMask = -1;
5120 
5121     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
5122       // If d is +1/-1, we just multiply the numerator by +1/-1.
5123       NumeratorFactor = Divisor.getSExtValue();
5124       magics.m = 0;
5125       magics.s = 0;
5126       ShiftMask = 0;
5127     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
5128       // If d > 0 and m < 0, add the numerator.
5129       NumeratorFactor = 1;
5130     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
5131       // If d < 0 and m > 0, subtract the numerator.
5132       NumeratorFactor = -1;
5133     }
5134 
5135     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
5136     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5137     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
5138     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5139     return true;
5140   };
5141 
5142   SDValue N0 = N->getOperand(0);
5143   SDValue N1 = N->getOperand(1);
5144 
5145   // Collect the shifts / magic values from each element.
5146   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5147     return SDValue();
5148 
5149   SDValue MagicFactor, Factor, Shift, ShiftMask;
5150   if (VT.isFixedLengthVector()) {
5151     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5152     Factor = DAG.getBuildVector(VT, dl, Factors);
5153     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5154     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5155   } else if (VT.isScalableVector()) {
5156     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5157            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5158            "Expected matchUnaryPredicate to return one element for scalable "
5159            "vectors");
5160     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5161     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5162     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5163     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5164   } else {
5165     MagicFactor = MagicFactors[0];
5166     Factor = Factors[0];
5167     Shift = Shifts[0];
5168     ShiftMask = ShiftMasks[0];
5169   }
5170 
5171   // Multiply the numerator (operand 0) by the magic value.
5172   // FIXME: We should support doing a MUL in a wider type.
5173   auto GetMULHS = [&](SDValue X, SDValue Y) {
5174     // If the type isn't legal, use a wider mul of the the type calculated
5175     // earlier.
5176     if (!isTypeLegal(VT)) {
5177       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5178       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5179       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5180       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5181                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5182       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5183     }
5184 
5185     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5186       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5187     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5188       SDValue LoHi =
5189           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5190       return SDValue(LoHi.getNode(), 1);
5191     }
5192     return SDValue();
5193   };
5194 
5195   SDValue Q = GetMULHS(N0, MagicFactor);
5196   if (!Q)
5197     return SDValue();
5198 
5199   Created.push_back(Q.getNode());
5200 
5201   // (Optionally) Add/subtract the numerator using Factor.
5202   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5203   Created.push_back(Factor.getNode());
5204   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5205   Created.push_back(Q.getNode());
5206 
5207   // Shift right algebraic by shift value.
5208   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5209   Created.push_back(Q.getNode());
5210 
5211   // Extract the sign bit, mask it and add it to the quotient.
5212   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5213   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5214   Created.push_back(T.getNode());
5215   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5216   Created.push_back(T.getNode());
5217   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5218 }
5219 
5220 /// Given an ISD::UDIV node expressing a divide by constant,
5221 /// return a DAG expression to select that will generate the same value by
5222 /// multiplying by a magic number.
5223 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5224 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5225                                   bool IsAfterLegalization,
5226                                   SmallVectorImpl<SDNode *> &Created) const {
5227   SDLoc dl(N);
5228   EVT VT = N->getValueType(0);
5229   EVT SVT = VT.getScalarType();
5230   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5231   EVT ShSVT = ShVT.getScalarType();
5232   unsigned EltBits = VT.getScalarSizeInBits();
5233   EVT MulVT;
5234 
5235   // Check to see if we can do this.
5236   // FIXME: We should be more aggressive here.
5237   if (!isTypeLegal(VT)) {
5238     // Limit this to simple scalars for now.
5239     if (VT.isVector() || !VT.isSimple())
5240       return SDValue();
5241 
5242     // If this type will be promoted to a large enough type with a legal
5243     // multiply operation, we can go ahead and do this transform.
5244     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5245       return SDValue();
5246 
5247     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5248     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5249         !isOperationLegal(ISD::MUL, MulVT))
5250       return SDValue();
5251   }
5252 
5253   bool UseNPQ = false;
5254   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5255 
5256   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5257     if (C->isNullValue())
5258       return false;
5259     // FIXME: We should use a narrower constant when the upper
5260     // bits are known to be zero.
5261     APInt Divisor = C->getAPIntValue();
5262     APInt::mu magics = Divisor.magicu();
5263     unsigned PreShift = 0, PostShift = 0;
5264 
5265     // If the divisor is even, we can avoid using the expensive fixup by
5266     // shifting the divided value upfront.
5267     if (magics.a != 0 && !Divisor[0]) {
5268       PreShift = Divisor.countTrailingZeros();
5269       // Get magic number for the shifted divisor.
5270       magics = Divisor.lshr(PreShift).magicu(PreShift);
5271       assert(magics.a == 0 && "Should use cheap fixup now");
5272     }
5273 
5274     APInt Magic = magics.m;
5275 
5276     unsigned SelNPQ;
5277     if (magics.a == 0 || Divisor.isOneValue()) {
5278       assert(magics.s < Divisor.getBitWidth() &&
5279              "We shouldn't generate an undefined shift!");
5280       PostShift = magics.s;
5281       SelNPQ = false;
5282     } else {
5283       PostShift = magics.s - 1;
5284       SelNPQ = true;
5285     }
5286 
5287     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5288     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5289     NPQFactors.push_back(
5290         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5291                                : APInt::getNullValue(EltBits),
5292                         dl, SVT));
5293     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5294     UseNPQ |= SelNPQ;
5295     return true;
5296   };
5297 
5298   SDValue N0 = N->getOperand(0);
5299   SDValue N1 = N->getOperand(1);
5300 
5301   // Collect the shifts/magic values from each element.
5302   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5303     return SDValue();
5304 
5305   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5306   if (VT.isFixedLengthVector()) {
5307     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5308     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5309     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5310     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5311   } else if (VT.isScalableVector()) {
5312     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5313            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5314            "Expected matchUnaryPredicate to return one for scalable vectors");
5315     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5316     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5317     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5318     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5319   } else {
5320     PreShift = PreShifts[0];
5321     MagicFactor = MagicFactors[0];
5322     PostShift = PostShifts[0];
5323   }
5324 
5325   SDValue Q = N0;
5326   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5327   Created.push_back(Q.getNode());
5328 
5329   // FIXME: We should support doing a MUL in a wider type.
5330   auto GetMULHU = [&](SDValue X, SDValue Y) {
5331     // If the type isn't legal, use a wider mul of the the type calculated
5332     // earlier.
5333     if (!isTypeLegal(VT)) {
5334       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5335       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5336       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5337       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5338                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5339       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5340     }
5341 
5342     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5343       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5344     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5345       SDValue LoHi =
5346           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5347       return SDValue(LoHi.getNode(), 1);
5348     }
5349     return SDValue(); // No mulhu or equivalent
5350   };
5351 
5352   // Multiply the numerator (operand 0) by the magic value.
5353   Q = GetMULHU(Q, MagicFactor);
5354   if (!Q)
5355     return SDValue();
5356 
5357   Created.push_back(Q.getNode());
5358 
5359   if (UseNPQ) {
5360     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5361     Created.push_back(NPQ.getNode());
5362 
5363     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5364     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5365     if (VT.isVector())
5366       NPQ = GetMULHU(NPQ, NPQFactor);
5367     else
5368       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5369 
5370     Created.push_back(NPQ.getNode());
5371 
5372     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5373     Created.push_back(Q.getNode());
5374   }
5375 
5376   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5377   Created.push_back(Q.getNode());
5378 
5379   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5380 
5381   SDValue One = DAG.getConstant(1, dl, VT);
5382   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5383   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5384 }
5385 
5386 /// If all values in Values that *don't* match the predicate are same 'splat'
5387 /// value, then replace all values with that splat value.
5388 /// Else, if AlternativeReplacement was provided, then replace all values that
5389 /// do match predicate with AlternativeReplacement value.
5390 static void
5391 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5392                           std::function<bool(SDValue)> Predicate,
5393                           SDValue AlternativeReplacement = SDValue()) {
5394   SDValue Replacement;
5395   // Is there a value for which the Predicate does *NOT* match? What is it?
5396   auto SplatValue = llvm::find_if_not(Values, Predicate);
5397   if (SplatValue != Values.end()) {
5398     // Does Values consist only of SplatValue's and values matching Predicate?
5399     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5400           return Value == *SplatValue || Predicate(Value);
5401         })) // Then we shall replace values matching predicate with SplatValue.
5402       Replacement = *SplatValue;
5403   }
5404   if (!Replacement) {
5405     // Oops, we did not find the "baseline" splat value.
5406     if (!AlternativeReplacement)
5407       return; // Nothing to do.
5408     // Let's replace with provided value then.
5409     Replacement = AlternativeReplacement;
5410   }
5411   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5412 }
5413 
5414 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5415 /// where the divisor is constant and the comparison target is zero,
5416 /// return a DAG expression that will generate the same comparison result
5417 /// using only multiplications, additions and shifts/rotations.
5418 /// Ref: "Hacker's Delight" 10-17.
5419 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5420                                         SDValue CompTargetNode,
5421                                         ISD::CondCode Cond,
5422                                         DAGCombinerInfo &DCI,
5423                                         const SDLoc &DL) const {
5424   SmallVector<SDNode *, 5> Built;
5425   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5426                                          DCI, DL, Built)) {
5427     for (SDNode *N : Built)
5428       DCI.AddToWorklist(N);
5429     return Folded;
5430   }
5431 
5432   return SDValue();
5433 }
5434 
5435 SDValue
5436 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5437                                   SDValue CompTargetNode, ISD::CondCode Cond,
5438                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5439                                   SmallVectorImpl<SDNode *> &Created) const {
5440   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5441   // - D must be constant, with D = D0 * 2^K where D0 is odd
5442   // - P is the multiplicative inverse of D0 modulo 2^W
5443   // - Q = floor(((2^W) - 1) / D)
5444   // where W is the width of the common type of N and D.
5445   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5446          "Only applicable for (in)equality comparisons.");
5447 
5448   SelectionDAG &DAG = DCI.DAG;
5449 
5450   EVT VT = REMNode.getValueType();
5451   EVT SVT = VT.getScalarType();
5452   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5453   EVT ShSVT = ShVT.getScalarType();
5454 
5455   // If MUL is unavailable, we cannot proceed in any case.
5456   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5457     return SDValue();
5458 
5459   bool ComparingWithAllZeros = true;
5460   bool AllComparisonsWithNonZerosAreTautological = true;
5461   bool HadTautologicalLanes = false;
5462   bool AllLanesAreTautological = true;
5463   bool HadEvenDivisor = false;
5464   bool AllDivisorsArePowerOfTwo = true;
5465   bool HadTautologicalInvertedLanes = false;
5466   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5467 
5468   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5469     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5470     if (CDiv->isNullValue())
5471       return false;
5472 
5473     const APInt &D = CDiv->getAPIntValue();
5474     const APInt &Cmp = CCmp->getAPIntValue();
5475 
5476     ComparingWithAllZeros &= Cmp.isNullValue();
5477 
5478     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5479     // if C2 is not less than C1, the comparison is always false.
5480     // But we will only be able to produce the comparison that will give the
5481     // opposive tautological answer. So this lane would need to be fixed up.
5482     bool TautologicalInvertedLane = D.ule(Cmp);
5483     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5484 
5485     // If all lanes are tautological (either all divisors are ones, or divisor
5486     // is not greater than the constant we are comparing with),
5487     // we will prefer to avoid the fold.
5488     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5489     HadTautologicalLanes |= TautologicalLane;
5490     AllLanesAreTautological &= TautologicalLane;
5491 
5492     // If we are comparing with non-zero, we need'll need  to subtract said
5493     // comparison value from the LHS. But there is no point in doing that if
5494     // every lane where we are comparing with non-zero is tautological..
5495     if (!Cmp.isNullValue())
5496       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5497 
5498     // Decompose D into D0 * 2^K
5499     unsigned K = D.countTrailingZeros();
5500     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5501     APInt D0 = D.lshr(K);
5502 
5503     // D is even if it has trailing zeros.
5504     HadEvenDivisor |= (K != 0);
5505     // D is a power-of-two if D0 is one.
5506     // If all divisors are power-of-two, we will prefer to avoid the fold.
5507     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5508 
5509     // P = inv(D0, 2^W)
5510     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5511     unsigned W = D.getBitWidth();
5512     APInt P = D0.zext(W + 1)
5513                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5514                   .trunc(W);
5515     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5516     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5517 
5518     // Q = floor((2^W - 1) u/ D)
5519     // R = ((2^W - 1) u% D)
5520     APInt Q, R;
5521     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5522 
5523     // If we are comparing with zero, then that comparison constant is okay,
5524     // else it may need to be one less than that.
5525     if (Cmp.ugt(R))
5526       Q -= 1;
5527 
5528     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5529            "We are expecting that K is always less than all-ones for ShSVT");
5530 
5531     // If the lane is tautological the result can be constant-folded.
5532     if (TautologicalLane) {
5533       // Set P and K amount to a bogus values so we can try to splat them.
5534       P = 0;
5535       K = -1;
5536       // And ensure that comparison constant is tautological,
5537       // it will always compare true/false.
5538       Q = -1;
5539     }
5540 
5541     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5542     KAmts.push_back(
5543         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5544     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5545     return true;
5546   };
5547 
5548   SDValue N = REMNode.getOperand(0);
5549   SDValue D = REMNode.getOperand(1);
5550 
5551   // Collect the values from each element.
5552   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5553     return SDValue();
5554 
5555   // If all lanes are tautological, the result can be constant-folded.
5556   if (AllLanesAreTautological)
5557     return SDValue();
5558 
5559   // If this is a urem by a powers-of-two, avoid the fold since it can be
5560   // best implemented as a bit test.
5561   if (AllDivisorsArePowerOfTwo)
5562     return SDValue();
5563 
5564   SDValue PVal, KVal, QVal;
5565   if (VT.isVector()) {
5566     if (HadTautologicalLanes) {
5567       // Try to turn PAmts into a splat, since we don't care about the values
5568       // that are currently '0'. If we can't, just keep '0'`s.
5569       turnVectorIntoSplatVector(PAmts, isNullConstant);
5570       // Try to turn KAmts into a splat, since we don't care about the values
5571       // that are currently '-1'. If we can't, change them to '0'`s.
5572       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5573                                 DAG.getConstant(0, DL, ShSVT));
5574     }
5575 
5576     PVal = DAG.getBuildVector(VT, DL, PAmts);
5577     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5578     QVal = DAG.getBuildVector(VT, DL, QAmts);
5579   } else {
5580     PVal = PAmts[0];
5581     KVal = KAmts[0];
5582     QVal = QAmts[0];
5583   }
5584 
5585   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5586     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5587       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5588     assert(CompTargetNode.getValueType() == N.getValueType() &&
5589            "Expecting that the types on LHS and RHS of comparisons match.");
5590     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5591   }
5592 
5593   // (mul N, P)
5594   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5595   Created.push_back(Op0.getNode());
5596 
5597   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5598   // divisors as a performance improvement, since rotating by 0 is a no-op.
5599   if (HadEvenDivisor) {
5600     // We need ROTR to do this.
5601     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5602       return SDValue();
5603     SDNodeFlags Flags;
5604     Flags.setExact(true);
5605     // UREM: (rotr (mul N, P), K)
5606     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5607     Created.push_back(Op0.getNode());
5608   }
5609 
5610   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5611   SDValue NewCC =
5612       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5613                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5614   if (!HadTautologicalInvertedLanes)
5615     return NewCC;
5616 
5617   // If any lanes previously compared always-false, the NewCC will give
5618   // always-true result for them, so we need to fixup those lanes.
5619   // Or the other way around for inequality predicate.
5620   assert(VT.isVector() && "Can/should only get here for vectors.");
5621   Created.push_back(NewCC.getNode());
5622 
5623   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5624   // if C2 is not less than C1, the comparison is always false.
5625   // But we have produced the comparison that will give the
5626   // opposive tautological answer. So these lanes would need to be fixed up.
5627   SDValue TautologicalInvertedChannels =
5628       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5629   Created.push_back(TautologicalInvertedChannels.getNode());
5630 
5631   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5632     // If we have a vector select, let's replace the comparison results in the
5633     // affected lanes with the correct tautological result.
5634     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5635                                               DL, SETCCVT, SETCCVT);
5636     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5637                        Replacement, NewCC);
5638   }
5639 
5640   // Else, we can just invert the comparison result in the appropriate lanes.
5641   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5642     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5643                        TautologicalInvertedChannels);
5644 
5645   return SDValue(); // Don't know how to lower.
5646 }
5647 
5648 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5649 /// where the divisor is constant and the comparison target is zero,
5650 /// return a DAG expression that will generate the same comparison result
5651 /// using only multiplications, additions and shifts/rotations.
5652 /// Ref: "Hacker's Delight" 10-17.
5653 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5654                                         SDValue CompTargetNode,
5655                                         ISD::CondCode Cond,
5656                                         DAGCombinerInfo &DCI,
5657                                         const SDLoc &DL) const {
5658   SmallVector<SDNode *, 7> Built;
5659   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5660                                          DCI, DL, Built)) {
5661     assert(Built.size() <= 7 && "Max size prediction failed.");
5662     for (SDNode *N : Built)
5663       DCI.AddToWorklist(N);
5664     return Folded;
5665   }
5666 
5667   return SDValue();
5668 }
5669 
5670 SDValue
5671 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5672                                   SDValue CompTargetNode, ISD::CondCode Cond,
5673                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5674                                   SmallVectorImpl<SDNode *> &Created) const {
5675   // Fold:
5676   //   (seteq/ne (srem N, D), 0)
5677   // To:
5678   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5679   //
5680   // - D must be constant, with D = D0 * 2^K where D0 is odd
5681   // - P is the multiplicative inverse of D0 modulo 2^W
5682   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5683   // - Q = floor((2 * A) / (2^K))
5684   // where W is the width of the common type of N and D.
5685   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5686          "Only applicable for (in)equality comparisons.");
5687 
5688   SelectionDAG &DAG = DCI.DAG;
5689 
5690   EVT VT = REMNode.getValueType();
5691   EVT SVT = VT.getScalarType();
5692   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5693   EVT ShSVT = ShVT.getScalarType();
5694 
5695   // If MUL is unavailable, we cannot proceed in any case.
5696   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5697     return SDValue();
5698 
5699   // TODO: Could support comparing with non-zero too.
5700   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5701   if (!CompTarget || !CompTarget->isNullValue())
5702     return SDValue();
5703 
5704   bool HadIntMinDivisor = false;
5705   bool HadOneDivisor = false;
5706   bool AllDivisorsAreOnes = true;
5707   bool HadEvenDivisor = false;
5708   bool NeedToApplyOffset = false;
5709   bool AllDivisorsArePowerOfTwo = true;
5710   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5711 
5712   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5713     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5714     if (C->isNullValue())
5715       return false;
5716 
5717     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5718 
5719     // WARNING: this fold is only valid for positive divisors!
5720     APInt D = C->getAPIntValue();
5721     if (D.isNegative())
5722       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5723 
5724     HadIntMinDivisor |= D.isMinSignedValue();
5725 
5726     // If all divisors are ones, we will prefer to avoid the fold.
5727     HadOneDivisor |= D.isOneValue();
5728     AllDivisorsAreOnes &= D.isOneValue();
5729 
5730     // Decompose D into D0 * 2^K
5731     unsigned K = D.countTrailingZeros();
5732     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5733     APInt D0 = D.lshr(K);
5734 
5735     if (!D.isMinSignedValue()) {
5736       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5737       // we don't care about this lane in this fold, we'll special-handle it.
5738       HadEvenDivisor |= (K != 0);
5739     }
5740 
5741     // D is a power-of-two if D0 is one. This includes INT_MIN.
5742     // If all divisors are power-of-two, we will prefer to avoid the fold.
5743     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5744 
5745     // P = inv(D0, 2^W)
5746     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5747     unsigned W = D.getBitWidth();
5748     APInt P = D0.zext(W + 1)
5749                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5750                   .trunc(W);
5751     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5752     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5753 
5754     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5755     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5756     A.clearLowBits(K);
5757 
5758     if (!D.isMinSignedValue()) {
5759       // If divisor INT_MIN, then we don't care about this lane in this fold,
5760       // we'll special-handle it.
5761       NeedToApplyOffset |= A != 0;
5762     }
5763 
5764     // Q = floor((2 * A) / (2^K))
5765     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5766 
5767     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5768            "We are expecting that A is always less than all-ones for SVT");
5769     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5770            "We are expecting that K is always less than all-ones for ShSVT");
5771 
5772     // If the divisor is 1 the result can be constant-folded. Likewise, we
5773     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5774     if (D.isOneValue()) {
5775       // Set P, A and K to a bogus values so we can try to splat them.
5776       P = 0;
5777       A = -1;
5778       K = -1;
5779 
5780       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5781       Q = -1;
5782     }
5783 
5784     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5785     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5786     KAmts.push_back(
5787         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5788     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5789     return true;
5790   };
5791 
5792   SDValue N = REMNode.getOperand(0);
5793   SDValue D = REMNode.getOperand(1);
5794 
5795   // Collect the values from each element.
5796   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5797     return SDValue();
5798 
5799   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5800   if (AllDivisorsAreOnes)
5801     return SDValue();
5802 
5803   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5804   // since it can be best implemented as a bit test.
5805   if (AllDivisorsArePowerOfTwo)
5806     return SDValue();
5807 
5808   SDValue PVal, AVal, KVal, QVal;
5809   if (VT.isFixedLengthVector()) {
5810     if (HadOneDivisor) {
5811       // Try to turn PAmts into a splat, since we don't care about the values
5812       // that are currently '0'. If we can't, just keep '0'`s.
5813       turnVectorIntoSplatVector(PAmts, isNullConstant);
5814       // Try to turn AAmts into a splat, since we don't care about the
5815       // values that are currently '-1'. If we can't, change them to '0'`s.
5816       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5817                                 DAG.getConstant(0, DL, SVT));
5818       // Try to turn KAmts into a splat, since we don't care about the values
5819       // that are currently '-1'. If we can't, change them to '0'`s.
5820       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5821                                 DAG.getConstant(0, DL, ShSVT));
5822     }
5823 
5824     PVal = DAG.getBuildVector(VT, DL, PAmts);
5825     AVal = DAG.getBuildVector(VT, DL, AAmts);
5826     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5827     QVal = DAG.getBuildVector(VT, DL, QAmts);
5828   } else if (VT.isScalableVector()) {
5829     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
5830            QAmts.size() == 1 &&
5831            "Expected matchUnaryPredicate to return one element for scalable "
5832            "vectors");
5833     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5834     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
5835     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5836     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5837   } else {
5838     PVal = PAmts[0];
5839     AVal = AAmts[0];
5840     KVal = KAmts[0];
5841     QVal = QAmts[0];
5842   }
5843 
5844   // (mul N, P)
5845   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5846   Created.push_back(Op0.getNode());
5847 
5848   if (NeedToApplyOffset) {
5849     // We need ADD to do this.
5850     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5851       return SDValue();
5852 
5853     // (add (mul N, P), A)
5854     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5855     Created.push_back(Op0.getNode());
5856   }
5857 
5858   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5859   // divisors as a performance improvement, since rotating by 0 is a no-op.
5860   if (HadEvenDivisor) {
5861     // We need ROTR to do this.
5862     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5863       return SDValue();
5864     SDNodeFlags Flags;
5865     Flags.setExact(true);
5866     // SREM: (rotr (add (mul N, P), A), K)
5867     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5868     Created.push_back(Op0.getNode());
5869   }
5870 
5871   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5872   SDValue Fold =
5873       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5874                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5875 
5876   // If we didn't have lanes with INT_MIN divisor, then we're done.
5877   if (!HadIntMinDivisor)
5878     return Fold;
5879 
5880   // That fold is only valid for positive divisors. Which effectively means,
5881   // it is invalid for INT_MIN divisors. So if we have such a lane,
5882   // we must fix-up results for said lanes.
5883   assert(VT.isVector() && "Can/should only get here for vectors.");
5884 
5885   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5886       !isOperationLegalOrCustom(ISD::AND, VT) ||
5887       !isOperationLegalOrCustom(Cond, VT) ||
5888       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5889     return SDValue();
5890 
5891   Created.push_back(Fold.getNode());
5892 
5893   SDValue IntMin = DAG.getConstant(
5894       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5895   SDValue IntMax = DAG.getConstant(
5896       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5897   SDValue Zero =
5898       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5899 
5900   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5901   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5902   Created.push_back(DivisorIsIntMin.getNode());
5903 
5904   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5905   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5906   Created.push_back(Masked.getNode());
5907   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5908   Created.push_back(MaskedIsZero.getNode());
5909 
5910   // To produce final result we need to blend 2 vectors: 'SetCC' and
5911   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5912   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5913   // constant-folded, select can get lowered to a shuffle with constant mask.
5914   SDValue Blended =
5915       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5916 
5917   return Blended;
5918 }
5919 
5920 bool TargetLowering::
5921 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5922   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5923     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5924                                 "be a constant integer");
5925     return true;
5926   }
5927 
5928   return false;
5929 }
5930 
5931 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
5932                                          const DenormalMode &Mode) const {
5933   SDLoc DL(Op);
5934   EVT VT = Op.getValueType();
5935   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5936   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
5937   // Testing it with denormal inputs to avoid wrong estimate.
5938   if (Mode.Input == DenormalMode::IEEE) {
5939     // This is specifically a check for the handling of denormal inputs,
5940     // not the result.
5941 
5942     // Test = fabs(X) < SmallestNormal
5943     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
5944     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
5945     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
5946     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
5947     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
5948   }
5949   // Test = X == 0.0
5950   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
5951 }
5952 
5953 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5954                                              bool LegalOps, bool OptForSize,
5955                                              NegatibleCost &Cost,
5956                                              unsigned Depth) const {
5957   // fneg is removable even if it has multiple uses.
5958   if (Op.getOpcode() == ISD::FNEG) {
5959     Cost = NegatibleCost::Cheaper;
5960     return Op.getOperand(0);
5961   }
5962 
5963   // Don't recurse exponentially.
5964   if (Depth > SelectionDAG::MaxRecursionDepth)
5965     return SDValue();
5966 
5967   // Pre-increment recursion depth for use in recursive calls.
5968   ++Depth;
5969   const SDNodeFlags Flags = Op->getFlags();
5970   const TargetOptions &Options = DAG.getTarget().Options;
5971   EVT VT = Op.getValueType();
5972   unsigned Opcode = Op.getOpcode();
5973 
5974   // Don't allow anything with multiple uses unless we know it is free.
5975   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
5976     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
5977                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5978     if (!IsFreeExtend)
5979       return SDValue();
5980   }
5981 
5982   auto RemoveDeadNode = [&](SDValue N) {
5983     if (N && N.getNode()->use_empty())
5984       DAG.RemoveDeadNode(N.getNode());
5985   };
5986 
5987   SDLoc DL(Op);
5988 
5989   switch (Opcode) {
5990   case ISD::ConstantFP: {
5991     // Don't invert constant FP values after legalization unless the target says
5992     // the negated constant is legal.
5993     bool IsOpLegal =
5994         isOperationLegal(ISD::ConstantFP, VT) ||
5995         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5996                      OptForSize);
5997 
5998     if (LegalOps && !IsOpLegal)
5999       break;
6000 
6001     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6002     V.changeSign();
6003     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6004 
6005     // If we already have the use of the negated floating constant, it is free
6006     // to negate it even it has multiple uses.
6007     if (!Op.hasOneUse() && CFP.use_empty())
6008       break;
6009     Cost = NegatibleCost::Neutral;
6010     return CFP;
6011   }
6012   case ISD::BUILD_VECTOR: {
6013     // Only permit BUILD_VECTOR of constants.
6014     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6015           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6016         }))
6017       break;
6018 
6019     bool IsOpLegal =
6020         (isOperationLegal(ISD::ConstantFP, VT) &&
6021          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6022         llvm::all_of(Op->op_values(), [&](SDValue N) {
6023           return N.isUndef() ||
6024                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6025                               OptForSize);
6026         });
6027 
6028     if (LegalOps && !IsOpLegal)
6029       break;
6030 
6031     SmallVector<SDValue, 4> Ops;
6032     for (SDValue C : Op->op_values()) {
6033       if (C.isUndef()) {
6034         Ops.push_back(C);
6035         continue;
6036       }
6037       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6038       V.changeSign();
6039       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6040     }
6041     Cost = NegatibleCost::Neutral;
6042     return DAG.getBuildVector(VT, DL, Ops);
6043   }
6044   case ISD::FADD: {
6045     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6046       break;
6047 
6048     // After operation legalization, it might not be legal to create new FSUBs.
6049     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6050       break;
6051     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6052 
6053     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6054     NegatibleCost CostX = NegatibleCost::Expensive;
6055     SDValue NegX =
6056         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6057     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6058     NegatibleCost CostY = NegatibleCost::Expensive;
6059     SDValue NegY =
6060         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6061 
6062     // Negate the X if its cost is less or equal than Y.
6063     if (NegX && (CostX <= CostY)) {
6064       Cost = CostX;
6065       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6066       if (NegY != N)
6067         RemoveDeadNode(NegY);
6068       return N;
6069     }
6070 
6071     // Negate the Y if it is not expensive.
6072     if (NegY) {
6073       Cost = CostY;
6074       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6075       if (NegX != N)
6076         RemoveDeadNode(NegX);
6077       return N;
6078     }
6079     break;
6080   }
6081   case ISD::FSUB: {
6082     // We can't turn -(A-B) into B-A when we honor signed zeros.
6083     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6084       break;
6085 
6086     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6087     // fold (fneg (fsub 0, Y)) -> Y
6088     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6089       if (C->isZero()) {
6090         Cost = NegatibleCost::Cheaper;
6091         return Y;
6092       }
6093 
6094     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6095     Cost = NegatibleCost::Neutral;
6096     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6097   }
6098   case ISD::FMUL:
6099   case ISD::FDIV: {
6100     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6101 
6102     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6103     NegatibleCost CostX = NegatibleCost::Expensive;
6104     SDValue NegX =
6105         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6106     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6107     NegatibleCost CostY = NegatibleCost::Expensive;
6108     SDValue NegY =
6109         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6110 
6111     // Negate the X if its cost is less or equal than Y.
6112     if (NegX && (CostX <= CostY)) {
6113       Cost = CostX;
6114       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6115       if (NegY != N)
6116         RemoveDeadNode(NegY);
6117       return N;
6118     }
6119 
6120     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6121     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6122       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6123         break;
6124 
6125     // Negate the Y if it is not expensive.
6126     if (NegY) {
6127       Cost = CostY;
6128       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6129       if (NegX != N)
6130         RemoveDeadNode(NegX);
6131       return N;
6132     }
6133     break;
6134   }
6135   case ISD::FMA:
6136   case ISD::FMAD: {
6137     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6138       break;
6139 
6140     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6141     NegatibleCost CostZ = NegatibleCost::Expensive;
6142     SDValue NegZ =
6143         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6144     // Give up if fail to negate the Z.
6145     if (!NegZ)
6146       break;
6147 
6148     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6149     NegatibleCost CostX = NegatibleCost::Expensive;
6150     SDValue NegX =
6151         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6152     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6153     NegatibleCost CostY = NegatibleCost::Expensive;
6154     SDValue NegY =
6155         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6156 
6157     // Negate the X if its cost is less or equal than Y.
6158     if (NegX && (CostX <= CostY)) {
6159       Cost = std::min(CostX, CostZ);
6160       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6161       if (NegY != N)
6162         RemoveDeadNode(NegY);
6163       return N;
6164     }
6165 
6166     // Negate the Y if it is not expensive.
6167     if (NegY) {
6168       Cost = std::min(CostY, CostZ);
6169       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6170       if (NegX != N)
6171         RemoveDeadNode(NegX);
6172       return N;
6173     }
6174     break;
6175   }
6176 
6177   case ISD::FP_EXTEND:
6178   case ISD::FSIN:
6179     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6180                                             OptForSize, Cost, Depth))
6181       return DAG.getNode(Opcode, DL, VT, NegV);
6182     break;
6183   case ISD::FP_ROUND:
6184     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6185                                             OptForSize, Cost, Depth))
6186       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6187     break;
6188   }
6189 
6190   return SDValue();
6191 }
6192 
6193 //===----------------------------------------------------------------------===//
6194 // Legalization Utilities
6195 //===----------------------------------------------------------------------===//
6196 
6197 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6198                                     SDValue LHS, SDValue RHS,
6199                                     SmallVectorImpl<SDValue> &Result,
6200                                     EVT HiLoVT, SelectionDAG &DAG,
6201                                     MulExpansionKind Kind, SDValue LL,
6202                                     SDValue LH, SDValue RL, SDValue RH) const {
6203   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6204          Opcode == ISD::SMUL_LOHI);
6205 
6206   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6207                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6208   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6209                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6210   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6211                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6212   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6213                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6214 
6215   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6216     return false;
6217 
6218   unsigned OuterBitSize = VT.getScalarSizeInBits();
6219   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6220 
6221   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6222   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6223          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6224 
6225   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6226   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6227                           bool Signed) -> bool {
6228     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6229       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6230       Hi = SDValue(Lo.getNode(), 1);
6231       return true;
6232     }
6233     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6234       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6235       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6236       return true;
6237     }
6238     return false;
6239   };
6240 
6241   SDValue Lo, Hi;
6242 
6243   if (!LL.getNode() && !RL.getNode() &&
6244       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6245     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6246     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6247   }
6248 
6249   if (!LL.getNode())
6250     return false;
6251 
6252   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6253   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6254       DAG.MaskedValueIsZero(RHS, HighMask)) {
6255     // The inputs are both zero-extended.
6256     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6257       Result.push_back(Lo);
6258       Result.push_back(Hi);
6259       if (Opcode != ISD::MUL) {
6260         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6261         Result.push_back(Zero);
6262         Result.push_back(Zero);
6263       }
6264       return true;
6265     }
6266   }
6267 
6268   if (!VT.isVector() && Opcode == ISD::MUL &&
6269       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6270       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6271     // The input values are both sign-extended.
6272     // TODO non-MUL case?
6273     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6274       Result.push_back(Lo);
6275       Result.push_back(Hi);
6276       return true;
6277     }
6278   }
6279 
6280   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6281   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6282   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6283     // FIXME getShiftAmountTy does not always return a sensible result when VT
6284     // is an illegal type, and so the type may be too small to fit the shift
6285     // amount. Override it with i32. The shift will have to be legalized.
6286     ShiftAmountTy = MVT::i32;
6287   }
6288   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6289 
6290   if (!LH.getNode() && !RH.getNode() &&
6291       isOperationLegalOrCustom(ISD::SRL, VT) &&
6292       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6293     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6294     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6295     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6296     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6297   }
6298 
6299   if (!LH.getNode())
6300     return false;
6301 
6302   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6303     return false;
6304 
6305   Result.push_back(Lo);
6306 
6307   if (Opcode == ISD::MUL) {
6308     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6309     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6310     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6311     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6312     Result.push_back(Hi);
6313     return true;
6314   }
6315 
6316   // Compute the full width result.
6317   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6318     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6319     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6320     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6321     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6322   };
6323 
6324   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6325   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6326     return false;
6327 
6328   // This is effectively the add part of a multiply-add of half-sized operands,
6329   // so it cannot overflow.
6330   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6331 
6332   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6333     return false;
6334 
6335   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6336   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6337 
6338   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6339                   isOperationLegalOrCustom(ISD::ADDE, VT));
6340   if (UseGlue)
6341     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6342                        Merge(Lo, Hi));
6343   else
6344     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6345                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6346 
6347   SDValue Carry = Next.getValue(1);
6348   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6349   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6350 
6351   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6352     return false;
6353 
6354   if (UseGlue)
6355     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6356                      Carry);
6357   else
6358     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6359                      Zero, Carry);
6360 
6361   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6362 
6363   if (Opcode == ISD::SMUL_LOHI) {
6364     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6365                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6366     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6367 
6368     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6369                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6370     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6371   }
6372 
6373   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6374   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6375   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6376   return true;
6377 }
6378 
6379 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6380                                SelectionDAG &DAG, MulExpansionKind Kind,
6381                                SDValue LL, SDValue LH, SDValue RL,
6382                                SDValue RH) const {
6383   SmallVector<SDValue, 2> Result;
6384   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6385                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6386                            DAG, Kind, LL, LH, RL, RH);
6387   if (Ok) {
6388     assert(Result.size() == 2);
6389     Lo = Result[0];
6390     Hi = Result[1];
6391   }
6392   return Ok;
6393 }
6394 
6395 // Check that (every element of) Z is undef or not an exact multiple of BW.
6396 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6397   return ISD::matchUnaryPredicate(
6398       Z,
6399       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6400       true);
6401 }
6402 
6403 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6404                                        SelectionDAG &DAG) const {
6405   EVT VT = Node->getValueType(0);
6406 
6407   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6408                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6409                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6410                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6411     return false;
6412 
6413   SDValue X = Node->getOperand(0);
6414   SDValue Y = Node->getOperand(1);
6415   SDValue Z = Node->getOperand(2);
6416 
6417   unsigned BW = VT.getScalarSizeInBits();
6418   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6419   SDLoc DL(SDValue(Node, 0));
6420 
6421   EVT ShVT = Z.getValueType();
6422 
6423   // If a funnel shift in the other direction is more supported, use it.
6424   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6425   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6426       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6427     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6428       // fshl X, Y, Z -> fshr X, Y, -Z
6429       // fshr X, Y, Z -> fshl X, Y, -Z
6430       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6431       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6432     } else {
6433       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6434       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6435       SDValue One = DAG.getConstant(1, DL, ShVT);
6436       if (IsFSHL) {
6437         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6438         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6439       } else {
6440         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6441         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6442       }
6443       Z = DAG.getNOT(DL, Z, ShVT);
6444     }
6445     Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6446     return true;
6447   }
6448 
6449   SDValue ShX, ShY;
6450   SDValue ShAmt, InvShAmt;
6451   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6452     // fshl: X << C | Y >> (BW - C)
6453     // fshr: X << (BW - C) | Y >> C
6454     // where C = Z % BW is not zero
6455     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6456     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6457     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6458     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6459     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6460   } else {
6461     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6462     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6463     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6464     if (isPowerOf2_32(BW)) {
6465       // Z % BW -> Z & (BW - 1)
6466       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6467       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6468       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6469     } else {
6470       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6471       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6472       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6473     }
6474 
6475     SDValue One = DAG.getConstant(1, DL, ShVT);
6476     if (IsFSHL) {
6477       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6478       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6479       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6480     } else {
6481       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6482       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6483       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6484     }
6485   }
6486   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6487   return true;
6488 }
6489 
6490 // TODO: Merge with expandFunnelShift.
6491 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6492                                SDValue &Result, SelectionDAG &DAG) const {
6493   EVT VT = Node->getValueType(0);
6494   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6495   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6496   SDValue Op0 = Node->getOperand(0);
6497   SDValue Op1 = Node->getOperand(1);
6498   SDLoc DL(SDValue(Node, 0));
6499 
6500   EVT ShVT = Op1.getValueType();
6501   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6502 
6503   // If a rotate in the other direction is supported, use it.
6504   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6505   if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6506     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6507     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6508     return true;
6509   }
6510 
6511   if (!AllowVectorOps && VT.isVector() &&
6512       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6513        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6514        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6515        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6516        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6517     return false;
6518 
6519   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6520   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6521   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6522   SDValue ShVal;
6523   SDValue HsVal;
6524   if (isPowerOf2_32(EltSizeInBits)) {
6525     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6526     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6527     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6528     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6529     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6530     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6531     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6532   } else {
6533     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6534     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6535     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6536     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6537     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6538     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6539     SDValue One = DAG.getConstant(1, DL, ShVT);
6540     HsVal =
6541         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6542   }
6543   Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6544   return true;
6545 }
6546 
6547 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6548                                       SelectionDAG &DAG) const {
6549   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6550   SDValue Src = Node->getOperand(OpNo);
6551   EVT SrcVT = Src.getValueType();
6552   EVT DstVT = Node->getValueType(0);
6553   SDLoc dl(SDValue(Node, 0));
6554 
6555   // FIXME: Only f32 to i64 conversions are supported.
6556   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6557     return false;
6558 
6559   if (Node->isStrictFPOpcode())
6560     // When a NaN is converted to an integer a trap is allowed. We can't
6561     // use this expansion here because it would eliminate that trap. Other
6562     // traps are also allowed and cannot be eliminated. See
6563     // IEEE 754-2008 sec 5.8.
6564     return false;
6565 
6566   // Expand f32 -> i64 conversion
6567   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6568   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6569   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6570   EVT IntVT = SrcVT.changeTypeToInteger();
6571   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6572 
6573   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6574   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6575   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6576   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6577   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6578   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6579 
6580   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6581 
6582   SDValue ExponentBits = DAG.getNode(
6583       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6584       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6585   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6586 
6587   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6588                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6589                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6590   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6591 
6592   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6593                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6594                           DAG.getConstant(0x00800000, dl, IntVT));
6595 
6596   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6597 
6598   R = DAG.getSelectCC(
6599       dl, Exponent, ExponentLoBit,
6600       DAG.getNode(ISD::SHL, dl, DstVT, R,
6601                   DAG.getZExtOrTrunc(
6602                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6603                       dl, IntShVT)),
6604       DAG.getNode(ISD::SRL, dl, DstVT, R,
6605                   DAG.getZExtOrTrunc(
6606                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6607                       dl, IntShVT)),
6608       ISD::SETGT);
6609 
6610   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6611                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6612 
6613   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6614                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6615   return true;
6616 }
6617 
6618 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6619                                       SDValue &Chain,
6620                                       SelectionDAG &DAG) const {
6621   SDLoc dl(SDValue(Node, 0));
6622   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6623   SDValue Src = Node->getOperand(OpNo);
6624 
6625   EVT SrcVT = Src.getValueType();
6626   EVT DstVT = Node->getValueType(0);
6627   EVT SetCCVT =
6628       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6629   EVT DstSetCCVT =
6630       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6631 
6632   // Only expand vector types if we have the appropriate vector bit operations.
6633   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6634                                                    ISD::FP_TO_SINT;
6635   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6636                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6637     return false;
6638 
6639   // If the maximum float value is smaller then the signed integer range,
6640   // the destination signmask can't be represented by the float, so we can
6641   // just use FP_TO_SINT directly.
6642   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6643   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6644   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6645   if (APFloat::opOverflow &
6646       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6647     if (Node->isStrictFPOpcode()) {
6648       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6649                            { Node->getOperand(0), Src });
6650       Chain = Result.getValue(1);
6651     } else
6652       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6653     return true;
6654   }
6655 
6656   // Don't expand it if there isn't cheap fsub instruction.
6657   if (!isOperationLegalOrCustom(
6658           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6659     return false;
6660 
6661   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6662   SDValue Sel;
6663 
6664   if (Node->isStrictFPOpcode()) {
6665     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6666                        Node->getOperand(0), /*IsSignaling*/ true);
6667     Chain = Sel.getValue(1);
6668   } else {
6669     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6670   }
6671 
6672   bool Strict = Node->isStrictFPOpcode() ||
6673                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6674 
6675   if (Strict) {
6676     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6677     // signmask then offset (the result of which should be fully representable).
6678     // Sel = Src < 0x8000000000000000
6679     // FltOfs = select Sel, 0, 0x8000000000000000
6680     // IntOfs = select Sel, 0, 0x8000000000000000
6681     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6682 
6683     // TODO: Should any fast-math-flags be set for the FSUB?
6684     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6685                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6686     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6687     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6688                                    DAG.getConstant(0, dl, DstVT),
6689                                    DAG.getConstant(SignMask, dl, DstVT));
6690     SDValue SInt;
6691     if (Node->isStrictFPOpcode()) {
6692       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6693                                 { Chain, Src, FltOfs });
6694       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6695                          { Val.getValue(1), Val });
6696       Chain = SInt.getValue(1);
6697     } else {
6698       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6699       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6700     }
6701     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6702   } else {
6703     // Expand based on maximum range of FP_TO_SINT:
6704     // True = fp_to_sint(Src)
6705     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6706     // Result = select (Src < 0x8000000000000000), True, False
6707 
6708     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6709     // TODO: Should any fast-math-flags be set for the FSUB?
6710     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6711                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6712     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6713                         DAG.getConstant(SignMask, dl, DstVT));
6714     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6715     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6716   }
6717   return true;
6718 }
6719 
6720 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6721                                       SDValue &Chain,
6722                                       SelectionDAG &DAG) const {
6723   // This transform is not correct for converting 0 when rounding mode is set
6724   // to round toward negative infinity which will produce -0.0. So disable under
6725   // strictfp.
6726   if (Node->isStrictFPOpcode())
6727     return false;
6728 
6729   SDValue Src = Node->getOperand(0);
6730   EVT SrcVT = Src.getValueType();
6731   EVT DstVT = Node->getValueType(0);
6732 
6733   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6734     return false;
6735 
6736   // Only expand vector types if we have the appropriate vector bit operations.
6737   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6738                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6739                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6740                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6741                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6742     return false;
6743 
6744   SDLoc dl(SDValue(Node, 0));
6745   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6746 
6747   // Implementation of unsigned i64 to f64 following the algorithm in
6748   // __floatundidf in compiler_rt.  This implementation performs rounding
6749   // correctly in all rounding modes with the exception of converting 0
6750   // when rounding toward negative infinity. In that case the fsub will produce
6751   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6752   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6753   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6754       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6755   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6756   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6757   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6758 
6759   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6760   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6761   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6762   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6763   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6764   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6765   SDValue HiSub =
6766       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6767   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6768   return true;
6769 }
6770 
6771 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6772                                               SelectionDAG &DAG) const {
6773   SDLoc dl(Node);
6774   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6775     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6776   EVT VT = Node->getValueType(0);
6777 
6778   if (VT.isScalableVector())
6779     report_fatal_error(
6780         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
6781 
6782   if (isOperationLegalOrCustom(NewOp, VT)) {
6783     SDValue Quiet0 = Node->getOperand(0);
6784     SDValue Quiet1 = Node->getOperand(1);
6785 
6786     if (!Node->getFlags().hasNoNaNs()) {
6787       // Insert canonicalizes if it's possible we need to quiet to get correct
6788       // sNaN behavior.
6789       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6790         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6791                              Node->getFlags());
6792       }
6793       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6794         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6795                              Node->getFlags());
6796       }
6797     }
6798 
6799     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6800   }
6801 
6802   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6803   // instead if there are no NaNs.
6804   if (Node->getFlags().hasNoNaNs()) {
6805     unsigned IEEE2018Op =
6806         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6807     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6808       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6809                          Node->getOperand(1), Node->getFlags());
6810     }
6811   }
6812 
6813   // If none of the above worked, but there are no NaNs, then expand to
6814   // a compare/select sequence.  This is required for correctness since
6815   // InstCombine might have canonicalized a fcmp+select sequence to a
6816   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6817   // expansion to libcall, we might introduce a link-time dependency
6818   // on libm into a file that originally did not have one.
6819   if (Node->getFlags().hasNoNaNs()) {
6820     ISD::CondCode Pred =
6821         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6822     SDValue Op1 = Node->getOperand(0);
6823     SDValue Op2 = Node->getOperand(1);
6824     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6825     // Copy FMF flags, but always set the no-signed-zeros flag
6826     // as this is implied by the FMINNUM/FMAXNUM semantics.
6827     SDNodeFlags Flags = Node->getFlags();
6828     Flags.setNoSignedZeros(true);
6829     SelCC->setFlags(Flags);
6830     return SelCC;
6831   }
6832 
6833   return SDValue();
6834 }
6835 
6836 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6837                                  SelectionDAG &DAG) const {
6838   SDLoc dl(Node);
6839   EVT VT = Node->getValueType(0);
6840   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6841   SDValue Op = Node->getOperand(0);
6842   unsigned Len = VT.getScalarSizeInBits();
6843   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6844 
6845   // TODO: Add support for irregular type lengths.
6846   if (!(Len <= 128 && Len % 8 == 0))
6847     return false;
6848 
6849   // Only expand vector types if we have the appropriate vector bit operations.
6850   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6851                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6852                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6853                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6854                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6855     return false;
6856 
6857   // This is the "best" algorithm from
6858   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6859   SDValue Mask55 =
6860       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6861   SDValue Mask33 =
6862       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6863   SDValue Mask0F =
6864       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6865   SDValue Mask01 =
6866       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6867 
6868   // v = v - ((v >> 1) & 0x55555555...)
6869   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6870                    DAG.getNode(ISD::AND, dl, VT,
6871                                DAG.getNode(ISD::SRL, dl, VT, Op,
6872                                            DAG.getConstant(1, dl, ShVT)),
6873                                Mask55));
6874   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6875   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6876                    DAG.getNode(ISD::AND, dl, VT,
6877                                DAG.getNode(ISD::SRL, dl, VT, Op,
6878                                            DAG.getConstant(2, dl, ShVT)),
6879                                Mask33));
6880   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6881   Op = DAG.getNode(ISD::AND, dl, VT,
6882                    DAG.getNode(ISD::ADD, dl, VT, Op,
6883                                DAG.getNode(ISD::SRL, dl, VT, Op,
6884                                            DAG.getConstant(4, dl, ShVT))),
6885                    Mask0F);
6886   // v = (v * 0x01010101...) >> (Len - 8)
6887   if (Len > 8)
6888     Op =
6889         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6890                     DAG.getConstant(Len - 8, dl, ShVT));
6891 
6892   Result = Op;
6893   return true;
6894 }
6895 
6896 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6897                                 SelectionDAG &DAG) const {
6898   SDLoc dl(Node);
6899   EVT VT = Node->getValueType(0);
6900   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6901   SDValue Op = Node->getOperand(0);
6902   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6903 
6904   // If the non-ZERO_UNDEF version is supported we can use that instead.
6905   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6906       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6907     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6908     return true;
6909   }
6910 
6911   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6912   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6913     EVT SetCCVT =
6914         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6915     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6916     SDValue Zero = DAG.getConstant(0, dl, VT);
6917     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6918     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6919                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6920     return true;
6921   }
6922 
6923   // Only expand vector types if we have the appropriate vector bit operations.
6924   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6925                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6926                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6927                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6928     return false;
6929 
6930   // for now, we do this:
6931   // x = x | (x >> 1);
6932   // x = x | (x >> 2);
6933   // ...
6934   // x = x | (x >>16);
6935   // x = x | (x >>32); // for 64-bit input
6936   // return popcount(~x);
6937   //
6938   // Ref: "Hacker's Delight" by Henry Warren
6939   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6940     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6941     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6942                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6943   }
6944   Op = DAG.getNOT(dl, Op, VT);
6945   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6946   return true;
6947 }
6948 
6949 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6950                                 SelectionDAG &DAG) const {
6951   SDLoc dl(Node);
6952   EVT VT = Node->getValueType(0);
6953   SDValue Op = Node->getOperand(0);
6954   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6955 
6956   // If the non-ZERO_UNDEF version is supported we can use that instead.
6957   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6958       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6959     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6960     return true;
6961   }
6962 
6963   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6964   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6965     EVT SetCCVT =
6966         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6967     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6968     SDValue Zero = DAG.getConstant(0, dl, VT);
6969     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6970     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6971                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6972     return true;
6973   }
6974 
6975   // Only expand vector types if we have the appropriate vector bit operations.
6976   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6977                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6978                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6979                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6980                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6981                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6982     return false;
6983 
6984   // for now, we use: { return popcount(~x & (x - 1)); }
6985   // unless the target has ctlz but not ctpop, in which case we use:
6986   // { return 32 - nlz(~x & (x-1)); }
6987   // Ref: "Hacker's Delight" by Henry Warren
6988   SDValue Tmp = DAG.getNode(
6989       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6990       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6991 
6992   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6993   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6994     Result =
6995         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6996                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6997     return true;
6998   }
6999 
7000   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7001   return true;
7002 }
7003 
7004 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
7005                                SelectionDAG &DAG, bool IsNegative) const {
7006   SDLoc dl(N);
7007   EVT VT = N->getValueType(0);
7008   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7009   SDValue Op = N->getOperand(0);
7010 
7011   // abs(x) -> smax(x,sub(0,x))
7012   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7013       isOperationLegal(ISD::SMAX, VT)) {
7014     SDValue Zero = DAG.getConstant(0, dl, VT);
7015     Result = DAG.getNode(ISD::SMAX, dl, VT, Op,
7016                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7017     return true;
7018   }
7019 
7020   // abs(x) -> umin(x,sub(0,x))
7021   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7022       isOperationLegal(ISD::UMIN, VT)) {
7023     SDValue Zero = DAG.getConstant(0, dl, VT);
7024     Result = DAG.getNode(ISD::UMIN, dl, VT, Op,
7025                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7026     return true;
7027   }
7028 
7029   // 0 - abs(x) -> smin(x, sub(0,x))
7030   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7031       isOperationLegal(ISD::SMIN, VT)) {
7032     SDValue Zero = DAG.getConstant(0, dl, VT);
7033     Result = DAG.getNode(ISD::SMIN, dl, VT, Op,
7034                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7035     return true;
7036   }
7037 
7038   // Only expand vector types if we have the appropriate vector operations.
7039   if (VT.isVector() &&
7040       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7041        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7042        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7043        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7044     return false;
7045 
7046   SDValue Shift =
7047       DAG.getNode(ISD::SRA, dl, VT, Op,
7048                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7049   if (!IsNegative) {
7050     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7051     Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7052   } else {
7053     // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7054     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7055     Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7056   }
7057   return true;
7058 }
7059 
7060 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7061   SDLoc dl(N);
7062   EVT VT = N->getValueType(0);
7063   SDValue Op = N->getOperand(0);
7064 
7065   if (!VT.isSimple())
7066     return SDValue();
7067 
7068   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7069   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7070   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7071   default:
7072     return SDValue();
7073   case MVT::i16:
7074     // Use a rotate by 8. This can be further expanded if necessary.
7075     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7076   case MVT::i32:
7077     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7078     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7079     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7080     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7081     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7082                        DAG.getConstant(0xFF0000, dl, VT));
7083     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7084     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7085     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7086     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7087   case MVT::i64:
7088     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7089     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7090     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7091     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7092     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7093     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7094     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7095     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7096     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7097                        DAG.getConstant(255ULL<<48, dl, VT));
7098     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7099                        DAG.getConstant(255ULL<<40, dl, VT));
7100     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7101                        DAG.getConstant(255ULL<<32, dl, VT));
7102     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7103                        DAG.getConstant(255ULL<<24, dl, VT));
7104     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7105                        DAG.getConstant(255ULL<<16, dl, VT));
7106     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7107                        DAG.getConstant(255ULL<<8 , dl, VT));
7108     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7109     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7110     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7111     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7112     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7113     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7114     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7115   }
7116 }
7117 
7118 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7119   SDLoc dl(N);
7120   EVT VT = N->getValueType(0);
7121   SDValue Op = N->getOperand(0);
7122   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7123   unsigned Sz = VT.getScalarSizeInBits();
7124 
7125   SDValue Tmp, Tmp2, Tmp3;
7126 
7127   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7128   // and finally the i1 pairs.
7129   // TODO: We can easily support i4/i2 legal types if any target ever does.
7130   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7131     // Create the masks - repeating the pattern every byte.
7132     APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0));
7133     APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC));
7134     APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA));
7135     APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7136     APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33));
7137     APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55));
7138 
7139     // BSWAP if the type is wider than a single byte.
7140     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7141 
7142     // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
7143     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
7144     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
7145     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT));
7146     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7147     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7148 
7149     // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
7150     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
7151     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
7152     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT));
7153     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7154     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7155 
7156     // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
7157     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
7158     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
7159     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT));
7160     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7161     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7162     return Tmp;
7163   }
7164 
7165   Tmp = DAG.getConstant(0, dl, VT);
7166   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7167     if (I < J)
7168       Tmp2 =
7169           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7170     else
7171       Tmp2 =
7172           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7173 
7174     APInt Shift(Sz, 1);
7175     Shift <<= J;
7176     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7177     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7178   }
7179 
7180   return Tmp;
7181 }
7182 
7183 std::pair<SDValue, SDValue>
7184 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7185                                     SelectionDAG &DAG) const {
7186   SDLoc SL(LD);
7187   SDValue Chain = LD->getChain();
7188   SDValue BasePTR = LD->getBasePtr();
7189   EVT SrcVT = LD->getMemoryVT();
7190   EVT DstVT = LD->getValueType(0);
7191   ISD::LoadExtType ExtType = LD->getExtensionType();
7192 
7193   if (SrcVT.isScalableVector())
7194     report_fatal_error("Cannot scalarize scalable vector loads");
7195 
7196   unsigned NumElem = SrcVT.getVectorNumElements();
7197 
7198   EVT SrcEltVT = SrcVT.getScalarType();
7199   EVT DstEltVT = DstVT.getScalarType();
7200 
7201   // A vector must always be stored in memory as-is, i.e. without any padding
7202   // between the elements, since various code depend on it, e.g. in the
7203   // handling of a bitcast of a vector type to int, which may be done with a
7204   // vector store followed by an integer load. A vector that does not have
7205   // elements that are byte-sized must therefore be stored as an integer
7206   // built out of the extracted vector elements.
7207   if (!SrcEltVT.isByteSized()) {
7208     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7209     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7210 
7211     unsigned NumSrcBits = SrcVT.getSizeInBits();
7212     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7213 
7214     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7215     SDValue SrcEltBitMask = DAG.getConstant(
7216         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7217 
7218     // Load the whole vector and avoid masking off the top bits as it makes
7219     // the codegen worse.
7220     SDValue Load =
7221         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7222                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7223                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7224 
7225     SmallVector<SDValue, 8> Vals;
7226     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7227       unsigned ShiftIntoIdx =
7228           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7229       SDValue ShiftAmount =
7230           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7231                                      LoadVT, SL, /*LegalTypes=*/false);
7232       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7233       SDValue Elt =
7234           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7235       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7236 
7237       if (ExtType != ISD::NON_EXTLOAD) {
7238         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7239         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7240       }
7241 
7242       Vals.push_back(Scalar);
7243     }
7244 
7245     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7246     return std::make_pair(Value, Load.getValue(1));
7247   }
7248 
7249   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7250   assert(SrcEltVT.isByteSized());
7251 
7252   SmallVector<SDValue, 8> Vals;
7253   SmallVector<SDValue, 8> LoadChains;
7254 
7255   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7256     SDValue ScalarLoad =
7257         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7258                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7259                        SrcEltVT, LD->getOriginalAlign(),
7260                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7261 
7262     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7263 
7264     Vals.push_back(ScalarLoad.getValue(0));
7265     LoadChains.push_back(ScalarLoad.getValue(1));
7266   }
7267 
7268   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7269   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7270 
7271   return std::make_pair(Value, NewChain);
7272 }
7273 
7274 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7275                                              SelectionDAG &DAG) const {
7276   SDLoc SL(ST);
7277 
7278   SDValue Chain = ST->getChain();
7279   SDValue BasePtr = ST->getBasePtr();
7280   SDValue Value = ST->getValue();
7281   EVT StVT = ST->getMemoryVT();
7282 
7283   if (StVT.isScalableVector())
7284     report_fatal_error("Cannot scalarize scalable vector stores");
7285 
7286   // The type of the data we want to save
7287   EVT RegVT = Value.getValueType();
7288   EVT RegSclVT = RegVT.getScalarType();
7289 
7290   // The type of data as saved in memory.
7291   EVT MemSclVT = StVT.getScalarType();
7292 
7293   unsigned NumElem = StVT.getVectorNumElements();
7294 
7295   // A vector must always be stored in memory as-is, i.e. without any padding
7296   // between the elements, since various code depend on it, e.g. in the
7297   // handling of a bitcast of a vector type to int, which may be done with a
7298   // vector store followed by an integer load. A vector that does not have
7299   // elements that are byte-sized must therefore be stored as an integer
7300   // built out of the extracted vector elements.
7301   if (!MemSclVT.isByteSized()) {
7302     unsigned NumBits = StVT.getSizeInBits();
7303     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7304 
7305     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7306 
7307     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7308       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7309                                 DAG.getVectorIdxConstant(Idx, SL));
7310       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7311       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7312       unsigned ShiftIntoIdx =
7313           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7314       SDValue ShiftAmount =
7315           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7316       SDValue ShiftedElt =
7317           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7318       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7319     }
7320 
7321     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7322                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7323                         ST->getAAInfo());
7324   }
7325 
7326   // Store Stride in bytes
7327   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7328   assert(Stride && "Zero stride!");
7329   // Extract each of the elements from the original vector and save them into
7330   // memory individually.
7331   SmallVector<SDValue, 8> Stores;
7332   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7333     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7334                               DAG.getVectorIdxConstant(Idx, SL));
7335 
7336     SDValue Ptr =
7337         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7338 
7339     // This scalar TruncStore may be illegal, but we legalize it later.
7340     SDValue Store = DAG.getTruncStore(
7341         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7342         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7343         ST->getAAInfo());
7344 
7345     Stores.push_back(Store);
7346   }
7347 
7348   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7349 }
7350 
7351 std::pair<SDValue, SDValue>
7352 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7353   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7354          "unaligned indexed loads not implemented!");
7355   SDValue Chain = LD->getChain();
7356   SDValue Ptr = LD->getBasePtr();
7357   EVT VT = LD->getValueType(0);
7358   EVT LoadedVT = LD->getMemoryVT();
7359   SDLoc dl(LD);
7360   auto &MF = DAG.getMachineFunction();
7361 
7362   if (VT.isFloatingPoint() || VT.isVector()) {
7363     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7364     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7365       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7366           LoadedVT.isVector()) {
7367         // Scalarize the load and let the individual components be handled.
7368         return scalarizeVectorLoad(LD, DAG);
7369       }
7370 
7371       // Expand to a (misaligned) integer load of the same size,
7372       // then bitconvert to floating point or vector.
7373       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7374                                     LD->getMemOperand());
7375       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7376       if (LoadedVT != VT)
7377         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7378                              ISD::ANY_EXTEND, dl, VT, Result);
7379 
7380       return std::make_pair(Result, newLoad.getValue(1));
7381     }
7382 
7383     // Copy the value to a (aligned) stack slot using (unaligned) integer
7384     // loads and stores, then do a (aligned) load from the stack slot.
7385     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7386     unsigned LoadedBytes = LoadedVT.getStoreSize();
7387     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7388     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7389 
7390     // Make sure the stack slot is also aligned for the register type.
7391     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7392     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7393     SmallVector<SDValue, 8> Stores;
7394     SDValue StackPtr = StackBase;
7395     unsigned Offset = 0;
7396 
7397     EVT PtrVT = Ptr.getValueType();
7398     EVT StackPtrVT = StackPtr.getValueType();
7399 
7400     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7401     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7402 
7403     // Do all but one copies using the full register width.
7404     for (unsigned i = 1; i < NumRegs; i++) {
7405       // Load one integer register's worth from the original location.
7406       SDValue Load = DAG.getLoad(
7407           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7408           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7409           LD->getAAInfo());
7410       // Follow the load with a store to the stack slot.  Remember the store.
7411       Stores.push_back(DAG.getStore(
7412           Load.getValue(1), dl, Load, StackPtr,
7413           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7414       // Increment the pointers.
7415       Offset += RegBytes;
7416 
7417       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7418       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7419     }
7420 
7421     // The last copy may be partial.  Do an extending load.
7422     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7423                                   8 * (LoadedBytes - Offset));
7424     SDValue Load =
7425         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7426                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7427                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7428                        LD->getAAInfo());
7429     // Follow the load with a store to the stack slot.  Remember the store.
7430     // On big-endian machines this requires a truncating store to ensure
7431     // that the bits end up in the right place.
7432     Stores.push_back(DAG.getTruncStore(
7433         Load.getValue(1), dl, Load, StackPtr,
7434         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7435 
7436     // The order of the stores doesn't matter - say it with a TokenFactor.
7437     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7438 
7439     // Finally, perform the original load only redirected to the stack slot.
7440     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7441                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7442                           LoadedVT);
7443 
7444     // Callers expect a MERGE_VALUES node.
7445     return std::make_pair(Load, TF);
7446   }
7447 
7448   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7449          "Unaligned load of unsupported type.");
7450 
7451   // Compute the new VT that is half the size of the old one.  This is an
7452   // integer MVT.
7453   unsigned NumBits = LoadedVT.getSizeInBits();
7454   EVT NewLoadedVT;
7455   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7456   NumBits >>= 1;
7457 
7458   Align Alignment = LD->getOriginalAlign();
7459   unsigned IncrementSize = NumBits / 8;
7460   ISD::LoadExtType HiExtType = LD->getExtensionType();
7461 
7462   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7463   if (HiExtType == ISD::NON_EXTLOAD)
7464     HiExtType = ISD::ZEXTLOAD;
7465 
7466   // Load the value in two parts
7467   SDValue Lo, Hi;
7468   if (DAG.getDataLayout().isLittleEndian()) {
7469     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7470                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7471                         LD->getAAInfo());
7472 
7473     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7474     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7475                         LD->getPointerInfo().getWithOffset(IncrementSize),
7476                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7477                         LD->getAAInfo());
7478   } else {
7479     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7480                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7481                         LD->getAAInfo());
7482 
7483     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7484     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7485                         LD->getPointerInfo().getWithOffset(IncrementSize),
7486                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7487                         LD->getAAInfo());
7488   }
7489 
7490   // aggregate the two parts
7491   SDValue ShiftAmount =
7492       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7493                                                     DAG.getDataLayout()));
7494   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7495   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7496 
7497   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7498                              Hi.getValue(1));
7499 
7500   return std::make_pair(Result, TF);
7501 }
7502 
7503 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7504                                              SelectionDAG &DAG) const {
7505   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7506          "unaligned indexed stores not implemented!");
7507   SDValue Chain = ST->getChain();
7508   SDValue Ptr = ST->getBasePtr();
7509   SDValue Val = ST->getValue();
7510   EVT VT = Val.getValueType();
7511   Align Alignment = ST->getOriginalAlign();
7512   auto &MF = DAG.getMachineFunction();
7513   EVT StoreMemVT = ST->getMemoryVT();
7514 
7515   SDLoc dl(ST);
7516   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7517     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7518     if (isTypeLegal(intVT)) {
7519       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7520           StoreMemVT.isVector()) {
7521         // Scalarize the store and let the individual components be handled.
7522         SDValue Result = scalarizeVectorStore(ST, DAG);
7523         return Result;
7524       }
7525       // Expand to a bitconvert of the value to the integer type of the
7526       // same size, then a (misaligned) int store.
7527       // FIXME: Does not handle truncating floating point stores!
7528       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7529       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7530                             Alignment, ST->getMemOperand()->getFlags());
7531       return Result;
7532     }
7533     // Do a (aligned) store to a stack slot, then copy from the stack slot
7534     // to the final destination using (unaligned) integer loads and stores.
7535     MVT RegVT = getRegisterType(
7536         *DAG.getContext(),
7537         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7538     EVT PtrVT = Ptr.getValueType();
7539     unsigned StoredBytes = StoreMemVT.getStoreSize();
7540     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7541     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7542 
7543     // Make sure the stack slot is also aligned for the register type.
7544     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7545     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7546 
7547     // Perform the original store, only redirected to the stack slot.
7548     SDValue Store = DAG.getTruncStore(
7549         Chain, dl, Val, StackPtr,
7550         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7551 
7552     EVT StackPtrVT = StackPtr.getValueType();
7553 
7554     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7555     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7556     SmallVector<SDValue, 8> Stores;
7557     unsigned Offset = 0;
7558 
7559     // Do all but one copies using the full register width.
7560     for (unsigned i = 1; i < NumRegs; i++) {
7561       // Load one integer register's worth from the stack slot.
7562       SDValue Load = DAG.getLoad(
7563           RegVT, dl, Store, StackPtr,
7564           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7565       // Store it to the final location.  Remember the store.
7566       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7567                                     ST->getPointerInfo().getWithOffset(Offset),
7568                                     ST->getOriginalAlign(),
7569                                     ST->getMemOperand()->getFlags()));
7570       // Increment the pointers.
7571       Offset += RegBytes;
7572       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7573       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7574     }
7575 
7576     // The last store may be partial.  Do a truncating store.  On big-endian
7577     // machines this requires an extending load from the stack slot to ensure
7578     // that the bits are in the right place.
7579     EVT LoadMemVT =
7580         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7581 
7582     // Load from the stack slot.
7583     SDValue Load = DAG.getExtLoad(
7584         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7585         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7586 
7587     Stores.push_back(
7588         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7589                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7590                           ST->getOriginalAlign(),
7591                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7592     // The order of the stores doesn't matter - say it with a TokenFactor.
7593     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7594     return Result;
7595   }
7596 
7597   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7598          "Unaligned store of unknown type.");
7599   // Get the half-size VT
7600   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7601   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7602   unsigned IncrementSize = NumBits / 8;
7603 
7604   // Divide the stored value in two parts.
7605   SDValue ShiftAmount = DAG.getConstant(
7606       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7607   SDValue Lo = Val;
7608   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7609 
7610   // Store the two parts
7611   SDValue Store1, Store2;
7612   Store1 = DAG.getTruncStore(Chain, dl,
7613                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7614                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7615                              ST->getMemOperand()->getFlags());
7616 
7617   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7618   Store2 = DAG.getTruncStore(
7619       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7620       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7621       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7622 
7623   SDValue Result =
7624       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7625   return Result;
7626 }
7627 
7628 SDValue
7629 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7630                                        const SDLoc &DL, EVT DataVT,
7631                                        SelectionDAG &DAG,
7632                                        bool IsCompressedMemory) const {
7633   SDValue Increment;
7634   EVT AddrVT = Addr.getValueType();
7635   EVT MaskVT = Mask.getValueType();
7636   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7637          "Incompatible types of Data and Mask");
7638   if (IsCompressedMemory) {
7639     if (DataVT.isScalableVector())
7640       report_fatal_error(
7641           "Cannot currently handle compressed memory with scalable vectors");
7642     // Incrementing the pointer according to number of '1's in the mask.
7643     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7644     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7645     if (MaskIntVT.getSizeInBits() < 32) {
7646       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7647       MaskIntVT = MVT::i32;
7648     }
7649 
7650     // Count '1's with POPCNT.
7651     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7652     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7653     // Scale is an element size in bytes.
7654     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7655                                     AddrVT);
7656     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7657   } else if (DataVT.isScalableVector()) {
7658     Increment = DAG.getVScale(DL, AddrVT,
7659                               APInt(AddrVT.getFixedSizeInBits(),
7660                                     DataVT.getStoreSize().getKnownMinSize()));
7661   } else
7662     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7663 
7664   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7665 }
7666 
7667 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7668                                        SDValue Idx,
7669                                        EVT VecVT,
7670                                        const SDLoc &dl) {
7671   if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx))
7672     return Idx;
7673 
7674   EVT IdxVT = Idx.getValueType();
7675   unsigned NElts = VecVT.getVectorMinNumElements();
7676   if (VecVT.isScalableVector()) {
7677     SDValue VS = DAG.getVScale(dl, IdxVT,
7678                                APInt(IdxVT.getFixedSizeInBits(),
7679                                      NElts));
7680     SDValue Sub = DAG.getNode(ISD::SUB, dl, IdxVT, VS,
7681                               DAG.getConstant(1, dl, IdxVT));
7682 
7683     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7684   } else {
7685     if (isPowerOf2_32(NElts)) {
7686       APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7687                                        Log2_32(NElts));
7688       return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7689                          DAG.getConstant(Imm, dl, IdxVT));
7690     }
7691   }
7692 
7693   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7694                      DAG.getConstant(NElts - 1, dl, IdxVT));
7695 }
7696 
7697 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7698                                                 SDValue VecPtr, EVT VecVT,
7699                                                 SDValue Index) const {
7700   SDLoc dl(Index);
7701   // Make sure the index type is big enough to compute in.
7702   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7703 
7704   EVT EltVT = VecVT.getVectorElementType();
7705 
7706   // Calculate the element offset and add it to the pointer.
7707   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7708   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7709          "Converting bits to bytes lost precision");
7710 
7711   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7712 
7713   EVT IdxVT = Index.getValueType();
7714 
7715   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7716                       DAG.getConstant(EltSize, dl, IdxVT));
7717   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7718 }
7719 
7720 //===----------------------------------------------------------------------===//
7721 // Implementation of Emulated TLS Model
7722 //===----------------------------------------------------------------------===//
7723 
7724 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7725                                                 SelectionDAG &DAG) const {
7726   // Access to address of TLS varialbe xyz is lowered to a function call:
7727   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7728   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7729   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7730   SDLoc dl(GA);
7731 
7732   ArgListTy Args;
7733   ArgListEntry Entry;
7734   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7735   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7736   StringRef EmuTlsVarName(NameString);
7737   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7738   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7739   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7740   Entry.Ty = VoidPtrType;
7741   Args.push_back(Entry);
7742 
7743   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7744 
7745   TargetLowering::CallLoweringInfo CLI(DAG);
7746   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7747   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7748   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7749 
7750   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7751   // At last for X86 targets, maybe good for other targets too?
7752   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7753   MFI.setAdjustsStack(true); // Is this only for X86 target?
7754   MFI.setHasCalls(true);
7755 
7756   assert((GA->getOffset() == 0) &&
7757          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7758   return CallResult.first;
7759 }
7760 
7761 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7762                                                 SelectionDAG &DAG) const {
7763   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7764   if (!isCtlzFast())
7765     return SDValue();
7766   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7767   SDLoc dl(Op);
7768   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7769     if (C->isNullValue() && CC == ISD::SETEQ) {
7770       EVT VT = Op.getOperand(0).getValueType();
7771       SDValue Zext = Op.getOperand(0);
7772       if (VT.bitsLT(MVT::i32)) {
7773         VT = MVT::i32;
7774         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7775       }
7776       unsigned Log2b = Log2_32(VT.getSizeInBits());
7777       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7778       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7779                                 DAG.getConstant(Log2b, dl, MVT::i32));
7780       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7781     }
7782   }
7783   return SDValue();
7784 }
7785 
7786 // Convert redundant addressing modes (e.g. scaling is redundant
7787 // when accessing bytes).
7788 ISD::MemIndexType
7789 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
7790                                       SDValue Offsets) const {
7791   bool IsScaledIndex =
7792       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
7793   bool IsSignedIndex =
7794       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
7795 
7796   // Scaling is unimportant for bytes, canonicalize to unscaled.
7797   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) {
7798     IsScaledIndex = false;
7799     IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
7800   }
7801 
7802   return IndexType;
7803 }
7804 
7805 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
7806   SDValue Op0 = Node->getOperand(0);
7807   SDValue Op1 = Node->getOperand(1);
7808   EVT VT = Op0.getValueType();
7809   unsigned Opcode = Node->getOpcode();
7810   SDLoc DL(Node);
7811 
7812   // umin(x,y) -> sub(x,usubsat(x,y))
7813   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
7814       isOperationLegal(ISD::USUBSAT, VT)) {
7815     return DAG.getNode(ISD::SUB, DL, VT, Op0,
7816                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
7817   }
7818 
7819   // umax(x,y) -> add(x,usubsat(y,x))
7820   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
7821       isOperationLegal(ISD::USUBSAT, VT)) {
7822     return DAG.getNode(ISD::ADD, DL, VT, Op0,
7823                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
7824   }
7825 
7826   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
7827   ISD::CondCode CC;
7828   switch (Opcode) {
7829   default: llvm_unreachable("How did we get here?");
7830   case ISD::SMAX: CC = ISD::SETGT; break;
7831   case ISD::SMIN: CC = ISD::SETLT; break;
7832   case ISD::UMAX: CC = ISD::SETUGT; break;
7833   case ISD::UMIN: CC = ISD::SETULT; break;
7834   }
7835 
7836   // FIXME: Should really try to split the vector in case it's legal on a
7837   // subvector.
7838   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7839     return DAG.UnrollVectorOp(Node);
7840 
7841   SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC);
7842   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
7843 }
7844 
7845 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7846   unsigned Opcode = Node->getOpcode();
7847   SDValue LHS = Node->getOperand(0);
7848   SDValue RHS = Node->getOperand(1);
7849   EVT VT = LHS.getValueType();
7850   SDLoc dl(Node);
7851 
7852   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7853   assert(VT.isInteger() && "Expected operands to be integers");
7854 
7855   // usub.sat(a, b) -> umax(a, b) - b
7856   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
7857     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7858     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7859   }
7860 
7861   // uadd.sat(a, b) -> umin(a, ~b) + b
7862   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
7863     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7864     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7865     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7866   }
7867 
7868   unsigned OverflowOp;
7869   switch (Opcode) {
7870   case ISD::SADDSAT:
7871     OverflowOp = ISD::SADDO;
7872     break;
7873   case ISD::UADDSAT:
7874     OverflowOp = ISD::UADDO;
7875     break;
7876   case ISD::SSUBSAT:
7877     OverflowOp = ISD::SSUBO;
7878     break;
7879   case ISD::USUBSAT:
7880     OverflowOp = ISD::USUBO;
7881     break;
7882   default:
7883     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7884                      "addition or subtraction node.");
7885   }
7886 
7887   // FIXME: Should really try to split the vector in case it's legal on a
7888   // subvector.
7889   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7890     return DAG.UnrollVectorOp(Node);
7891 
7892   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7893   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7894   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7895                                LHS, RHS);
7896   SDValue SumDiff = Result.getValue(0);
7897   SDValue Overflow = Result.getValue(1);
7898   SDValue Zero = DAG.getConstant(0, dl, VT);
7899   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7900 
7901   if (Opcode == ISD::UADDSAT) {
7902     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7903       // (LHS + RHS) | OverflowMask
7904       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7905       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7906     }
7907     // Overflow ? 0xffff.... : (LHS + RHS)
7908     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7909   } else if (Opcode == ISD::USUBSAT) {
7910     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7911       // (LHS - RHS) & ~OverflowMask
7912       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7913       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7914       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7915     }
7916     // Overflow ? 0 : (LHS - RHS)
7917     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7918   } else {
7919     // SatMax -> Overflow && SumDiff < 0
7920     // SatMin -> Overflow && SumDiff >= 0
7921     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7922     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7923     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7924     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7925     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7926     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7927     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7928   }
7929 }
7930 
7931 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
7932   unsigned Opcode = Node->getOpcode();
7933   bool IsSigned = Opcode == ISD::SSHLSAT;
7934   SDValue LHS = Node->getOperand(0);
7935   SDValue RHS = Node->getOperand(1);
7936   EVT VT = LHS.getValueType();
7937   SDLoc dl(Node);
7938 
7939   assert((Node->getOpcode() == ISD::SSHLSAT ||
7940           Node->getOpcode() == ISD::USHLSAT) &&
7941           "Expected a SHLSAT opcode");
7942   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7943   assert(VT.isInteger() && "Expected operands to be integers");
7944 
7945   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
7946 
7947   unsigned BW = VT.getScalarSizeInBits();
7948   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
7949   SDValue Orig =
7950       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
7951 
7952   SDValue SatVal;
7953   if (IsSigned) {
7954     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
7955     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
7956     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
7957                              SatMin, SatMax, ISD::SETLT);
7958   } else {
7959     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
7960   }
7961   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
7962 
7963   return Result;
7964 }
7965 
7966 SDValue
7967 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7968   assert((Node->getOpcode() == ISD::SMULFIX ||
7969           Node->getOpcode() == ISD::UMULFIX ||
7970           Node->getOpcode() == ISD::SMULFIXSAT ||
7971           Node->getOpcode() == ISD::UMULFIXSAT) &&
7972          "Expected a fixed point multiplication opcode");
7973 
7974   SDLoc dl(Node);
7975   SDValue LHS = Node->getOperand(0);
7976   SDValue RHS = Node->getOperand(1);
7977   EVT VT = LHS.getValueType();
7978   unsigned Scale = Node->getConstantOperandVal(2);
7979   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7980                      Node->getOpcode() == ISD::UMULFIXSAT);
7981   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7982                  Node->getOpcode() == ISD::SMULFIXSAT);
7983   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7984   unsigned VTSize = VT.getScalarSizeInBits();
7985 
7986   if (!Scale) {
7987     // [us]mul.fix(a, b, 0) -> mul(a, b)
7988     if (!Saturating) {
7989       if (isOperationLegalOrCustom(ISD::MUL, VT))
7990         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7991     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7992       SDValue Result =
7993           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7994       SDValue Product = Result.getValue(0);
7995       SDValue Overflow = Result.getValue(1);
7996       SDValue Zero = DAG.getConstant(0, dl, VT);
7997 
7998       APInt MinVal = APInt::getSignedMinValue(VTSize);
7999       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8000       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8001       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8002       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
8003       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
8004       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8005     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8006       SDValue Result =
8007           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8008       SDValue Product = Result.getValue(0);
8009       SDValue Overflow = Result.getValue(1);
8010 
8011       APInt MaxVal = APInt::getMaxValue(VTSize);
8012       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8013       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8014     }
8015   }
8016 
8017   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8018          "Expected scale to be less than the number of bits if signed or at "
8019          "most the number of bits if unsigned.");
8020   assert(LHS.getValueType() == RHS.getValueType() &&
8021          "Expected both operands to be the same type");
8022 
8023   // Get the upper and lower bits of the result.
8024   SDValue Lo, Hi;
8025   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8026   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8027   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8028     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8029     Lo = Result.getValue(0);
8030     Hi = Result.getValue(1);
8031   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8032     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8033     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8034   } else if (VT.isVector()) {
8035     return SDValue();
8036   } else {
8037     report_fatal_error("Unable to expand fixed point multiplication.");
8038   }
8039 
8040   if (Scale == VTSize)
8041     // Result is just the top half since we'd be shifting by the width of the
8042     // operand. Overflow impossible so this works for both UMULFIX and
8043     // UMULFIXSAT.
8044     return Hi;
8045 
8046   // The result will need to be shifted right by the scale since both operands
8047   // are scaled. The result is given to us in 2 halves, so we only want part of
8048   // both in the result.
8049   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8050   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8051                                DAG.getConstant(Scale, dl, ShiftTy));
8052   if (!Saturating)
8053     return Result;
8054 
8055   if (!Signed) {
8056     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8057     // widened multiplication) aren't all zeroes.
8058 
8059     // Saturate to max if ((Hi >> Scale) != 0),
8060     // which is the same as if (Hi > ((1 << Scale) - 1))
8061     APInt MaxVal = APInt::getMaxValue(VTSize);
8062     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8063                                       dl, VT);
8064     Result = DAG.getSelectCC(dl, Hi, LowMask,
8065                              DAG.getConstant(MaxVal, dl, VT), Result,
8066                              ISD::SETUGT);
8067 
8068     return Result;
8069   }
8070 
8071   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8072   // widened multiplication) aren't all ones or all zeroes.
8073 
8074   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8075   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8076 
8077   if (Scale == 0) {
8078     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8079                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8080     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8081     // Saturated to SatMin if wide product is negative, and SatMax if wide
8082     // product is positive ...
8083     SDValue Zero = DAG.getConstant(0, dl, VT);
8084     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8085                                                ISD::SETLT);
8086     // ... but only if we overflowed.
8087     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8088   }
8089 
8090   //  We handled Scale==0 above so all the bits to examine is in Hi.
8091 
8092   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8093   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8094   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8095                                     dl, VT);
8096   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8097   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8098   // which is the same as if (HI < (-1 << (Scale - 1))
8099   SDValue HighMask =
8100       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8101                       dl, VT);
8102   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8103   return Result;
8104 }
8105 
8106 SDValue
8107 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8108                                     SDValue LHS, SDValue RHS,
8109                                     unsigned Scale, SelectionDAG &DAG) const {
8110   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8111           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8112          "Expected a fixed point division opcode");
8113 
8114   EVT VT = LHS.getValueType();
8115   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8116   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8117   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8118 
8119   // If there is enough room in the type to upscale the LHS or downscale the
8120   // RHS before the division, we can perform it in this type without having to
8121   // resize. For signed operations, the LHS headroom is the number of
8122   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8123   // The headroom for the RHS is the number of trailing zeroes.
8124   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8125                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8126   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8127 
8128   // For signed saturating operations, we need to be able to detect true integer
8129   // division overflow; that is, when you have MIN / -EPS. However, this
8130   // is undefined behavior and if we emit divisions that could take such
8131   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8132   // example).
8133   // Avoid this by requiring an extra bit so that we never get this case.
8134   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8135   // signed saturating division, we need to emit a whopping 32-bit division.
8136   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8137     return SDValue();
8138 
8139   unsigned LHSShift = std::min(LHSLead, Scale);
8140   unsigned RHSShift = Scale - LHSShift;
8141 
8142   // At this point, we know that if we shift the LHS up by LHSShift and the
8143   // RHS down by RHSShift, we can emit a regular division with a final scaling
8144   // factor of Scale.
8145 
8146   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8147   if (LHSShift)
8148     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8149                       DAG.getConstant(LHSShift, dl, ShiftTy));
8150   if (RHSShift)
8151     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8152                       DAG.getConstant(RHSShift, dl, ShiftTy));
8153 
8154   SDValue Quot;
8155   if (Signed) {
8156     // For signed operations, if the resulting quotient is negative and the
8157     // remainder is nonzero, subtract 1 from the quotient to round towards
8158     // negative infinity.
8159     SDValue Rem;
8160     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8161     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8162     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8163     if (isTypeLegal(VT) &&
8164         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8165       Quot = DAG.getNode(ISD::SDIVREM, dl,
8166                          DAG.getVTList(VT, VT),
8167                          LHS, RHS);
8168       Rem = Quot.getValue(1);
8169       Quot = Quot.getValue(0);
8170     } else {
8171       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8172                          LHS, RHS);
8173       Rem = DAG.getNode(ISD::SREM, dl, VT,
8174                         LHS, RHS);
8175     }
8176     SDValue Zero = DAG.getConstant(0, dl, VT);
8177     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8178     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8179     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8180     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8181     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8182                                DAG.getConstant(1, dl, VT));
8183     Quot = DAG.getSelect(dl, VT,
8184                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8185                          Sub1, Quot);
8186   } else
8187     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8188                        LHS, RHS);
8189 
8190   return Quot;
8191 }
8192 
8193 void TargetLowering::expandUADDSUBO(
8194     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8195   SDLoc dl(Node);
8196   SDValue LHS = Node->getOperand(0);
8197   SDValue RHS = Node->getOperand(1);
8198   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8199 
8200   // If ADD/SUBCARRY is legal, use that instead.
8201   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8202   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8203     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8204     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8205                                     { LHS, RHS, CarryIn });
8206     Result = SDValue(NodeCarry.getNode(), 0);
8207     Overflow = SDValue(NodeCarry.getNode(), 1);
8208     return;
8209   }
8210 
8211   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8212                             LHS.getValueType(), LHS, RHS);
8213 
8214   EVT ResultType = Node->getValueType(1);
8215   EVT SetCCType = getSetCCResultType(
8216       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8217   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8218   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8219   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8220 }
8221 
8222 void TargetLowering::expandSADDSUBO(
8223     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8224   SDLoc dl(Node);
8225   SDValue LHS = Node->getOperand(0);
8226   SDValue RHS = Node->getOperand(1);
8227   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8228 
8229   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8230                             LHS.getValueType(), LHS, RHS);
8231 
8232   EVT ResultType = Node->getValueType(1);
8233   EVT OType = getSetCCResultType(
8234       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8235 
8236   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8237   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8238   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
8239     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8240     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8241     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8242     return;
8243   }
8244 
8245   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8246 
8247   // For an addition, the result should be less than one of the operands (LHS)
8248   // if and only if the other operand (RHS) is negative, otherwise there will
8249   // be overflow.
8250   // For a subtraction, the result should be less than one of the operands
8251   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8252   // otherwise there will be overflow.
8253   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8254   SDValue ConditionRHS =
8255       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8256 
8257   Overflow = DAG.getBoolExtOrTrunc(
8258       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8259       ResultType, ResultType);
8260 }
8261 
8262 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8263                                 SDValue &Overflow, SelectionDAG &DAG) const {
8264   SDLoc dl(Node);
8265   EVT VT = Node->getValueType(0);
8266   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8267   SDValue LHS = Node->getOperand(0);
8268   SDValue RHS = Node->getOperand(1);
8269   bool isSigned = Node->getOpcode() == ISD::SMULO;
8270 
8271   // For power-of-two multiplications we can use a simpler shift expansion.
8272   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8273     const APInt &C = RHSC->getAPIntValue();
8274     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8275     if (C.isPowerOf2()) {
8276       // smulo(x, signed_min) is same as umulo(x, signed_min).
8277       bool UseArithShift = isSigned && !C.isMinSignedValue();
8278       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8279       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8280       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8281       Overflow = DAG.getSetCC(dl, SetCCVT,
8282           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8283                       dl, VT, Result, ShiftAmt),
8284           LHS, ISD::SETNE);
8285       return true;
8286     }
8287   }
8288 
8289   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8290   if (VT.isVector())
8291     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
8292                               VT.getVectorNumElements());
8293 
8294   SDValue BottomHalf;
8295   SDValue TopHalf;
8296   static const unsigned Ops[2][3] =
8297       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8298         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8299   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8300     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8301     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8302   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8303     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8304                              RHS);
8305     TopHalf = BottomHalf.getValue(1);
8306   } else if (isTypeLegal(WideVT)) {
8307     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8308     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8309     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8310     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8311     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8312         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8313     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8314                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8315   } else {
8316     if (VT.isVector())
8317       return false;
8318 
8319     // We can fall back to a libcall with an illegal type for the MUL if we
8320     // have a libcall big enough.
8321     // Also, we can fall back to a division in some cases, but that's a big
8322     // performance hit in the general case.
8323     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8324     if (WideVT == MVT::i16)
8325       LC = RTLIB::MUL_I16;
8326     else if (WideVT == MVT::i32)
8327       LC = RTLIB::MUL_I32;
8328     else if (WideVT == MVT::i64)
8329       LC = RTLIB::MUL_I64;
8330     else if (WideVT == MVT::i128)
8331       LC = RTLIB::MUL_I128;
8332     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8333 
8334     SDValue HiLHS;
8335     SDValue HiRHS;
8336     if (isSigned) {
8337       // The high part is obtained by SRA'ing all but one of the bits of low
8338       // part.
8339       unsigned LoSize = VT.getFixedSizeInBits();
8340       HiLHS =
8341           DAG.getNode(ISD::SRA, dl, VT, LHS,
8342                       DAG.getConstant(LoSize - 1, dl,
8343                                       getPointerTy(DAG.getDataLayout())));
8344       HiRHS =
8345           DAG.getNode(ISD::SRA, dl, VT, RHS,
8346                       DAG.getConstant(LoSize - 1, dl,
8347                                       getPointerTy(DAG.getDataLayout())));
8348     } else {
8349         HiLHS = DAG.getConstant(0, dl, VT);
8350         HiRHS = DAG.getConstant(0, dl, VT);
8351     }
8352 
8353     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8354     // pre-lowered to the correct types. This all depends upon WideVT not
8355     // being a legal type for the architecture and thus has to be split to
8356     // two arguments.
8357     SDValue Ret;
8358     TargetLowering::MakeLibCallOptions CallOptions;
8359     CallOptions.setSExt(isSigned);
8360     CallOptions.setIsPostTypeLegalization(true);
8361     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8362       // Halves of WideVT are packed into registers in different order
8363       // depending on platform endianness. This is usually handled by
8364       // the C calling convention, but we can't defer to it in
8365       // the legalizer.
8366       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8367       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8368     } else {
8369       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8370       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8371     }
8372     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8373            "Ret value is a collection of constituent nodes holding result.");
8374     if (DAG.getDataLayout().isLittleEndian()) {
8375       // Same as above.
8376       BottomHalf = Ret.getOperand(0);
8377       TopHalf = Ret.getOperand(1);
8378     } else {
8379       BottomHalf = Ret.getOperand(1);
8380       TopHalf = Ret.getOperand(0);
8381     }
8382   }
8383 
8384   Result = BottomHalf;
8385   if (isSigned) {
8386     SDValue ShiftAmt = DAG.getConstant(
8387         VT.getScalarSizeInBits() - 1, dl,
8388         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8389     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8390     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8391   } else {
8392     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8393                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8394   }
8395 
8396   // Truncate the result if SetCC returns a larger type than needed.
8397   EVT RType = Node->getValueType(1);
8398   if (RType.bitsLT(Overflow.getValueType()))
8399     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8400 
8401   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8402          "Unexpected result type for S/UMULO legalization");
8403   return true;
8404 }
8405 
8406 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8407   SDLoc dl(Node);
8408   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8409   SDValue Op = Node->getOperand(0);
8410   EVT VT = Op.getValueType();
8411 
8412   if (VT.isScalableVector())
8413     report_fatal_error(
8414         "Expanding reductions for scalable vectors is undefined.");
8415 
8416   // Try to use a shuffle reduction for power of two vectors.
8417   if (VT.isPow2VectorType()) {
8418     while (VT.getVectorNumElements() > 1) {
8419       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8420       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8421         break;
8422 
8423       SDValue Lo, Hi;
8424       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8425       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8426       VT = HalfVT;
8427     }
8428   }
8429 
8430   EVT EltVT = VT.getVectorElementType();
8431   unsigned NumElts = VT.getVectorNumElements();
8432 
8433   SmallVector<SDValue, 8> Ops;
8434   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8435 
8436   SDValue Res = Ops[0];
8437   for (unsigned i = 1; i < NumElts; i++)
8438     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8439 
8440   // Result type may be wider than element type.
8441   if (EltVT != Node->getValueType(0))
8442     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8443   return Res;
8444 }
8445 
8446 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8447   SDLoc dl(Node);
8448   SDValue AccOp = Node->getOperand(0);
8449   SDValue VecOp = Node->getOperand(1);
8450   SDNodeFlags Flags = Node->getFlags();
8451 
8452   EVT VT = VecOp.getValueType();
8453   EVT EltVT = VT.getVectorElementType();
8454 
8455   if (VT.isScalableVector())
8456     report_fatal_error(
8457         "Expanding reductions for scalable vectors is undefined.");
8458 
8459   unsigned NumElts = VT.getVectorNumElements();
8460 
8461   SmallVector<SDValue, 8> Ops;
8462   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8463 
8464   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8465 
8466   SDValue Res = AccOp;
8467   for (unsigned i = 0; i < NumElts; i++)
8468     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8469 
8470   return Res;
8471 }
8472 
8473 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8474                                SelectionDAG &DAG) const {
8475   EVT VT = Node->getValueType(0);
8476   SDLoc dl(Node);
8477   bool isSigned = Node->getOpcode() == ISD::SREM;
8478   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8479   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8480   SDValue Dividend = Node->getOperand(0);
8481   SDValue Divisor = Node->getOperand(1);
8482   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8483     SDVTList VTs = DAG.getVTList(VT, VT);
8484     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8485     return true;
8486   } else if (isOperationLegalOrCustom(DivOpc, VT)) {
8487     // X % Y -> X-X/Y*Y
8488     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8489     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8490     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8491     return true;
8492   }
8493   return false;
8494 }
8495 
8496 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8497                                             SelectionDAG &DAG) const {
8498   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8499   SDLoc dl(SDValue(Node, 0));
8500   SDValue Src = Node->getOperand(0);
8501 
8502   // DstVT is the result type, while SatVT is the size to which we saturate
8503   EVT SrcVT = Src.getValueType();
8504   EVT DstVT = Node->getValueType(0);
8505 
8506   unsigned SatWidth = Node->getConstantOperandVal(1);
8507   unsigned DstWidth = DstVT.getScalarSizeInBits();
8508   assert(SatWidth <= DstWidth &&
8509          "Expected saturation width smaller than result width");
8510 
8511   // Determine minimum and maximum integer values and their corresponding
8512   // floating-point values.
8513   APInt MinInt, MaxInt;
8514   if (IsSigned) {
8515     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8516     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8517   } else {
8518     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8519     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8520   }
8521 
8522   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8523   // libcall emission cannot handle this. Large result types will fail.
8524   if (SrcVT == MVT::f16) {
8525     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8526     SrcVT = Src.getValueType();
8527   }
8528 
8529   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8530   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8531 
8532   APFloat::opStatus MinStatus =
8533       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8534   APFloat::opStatus MaxStatus =
8535       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8536   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8537                              !(MaxStatus & APFloat::opStatus::opInexact);
8538 
8539   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8540   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8541 
8542   // If the integer bounds are exactly representable as floats and min/max are
8543   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8544   // of comparisons and selects.
8545   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8546                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8547   if (AreExactFloatBounds && MinMaxLegal) {
8548     SDValue Clamped = Src;
8549 
8550     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8551     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8552     // Clamp by MaxFloat from above. NaN cannot occur.
8553     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8554     // Convert clamped value to integer.
8555     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8556                                   dl, DstVT, Clamped);
8557 
8558     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8559     // which will cast to zero.
8560     if (!IsSigned)
8561       return FpToInt;
8562 
8563     // Otherwise, select 0 if Src is NaN.
8564     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8565     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8566                            ISD::CondCode::SETUO);
8567   }
8568 
8569   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8570   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8571 
8572   // Result of direct conversion. The assumption here is that the operation is
8573   // non-trapping and it's fine to apply it to an out-of-range value if we
8574   // select it away later.
8575   SDValue FpToInt =
8576       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8577 
8578   SDValue Select = FpToInt;
8579 
8580   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8581   // MinInt if Src is NaN.
8582   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8583                            ISD::CondCode::SETULT);
8584   // If Src OGT MaxFloat, select MaxInt.
8585   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8586                            ISD::CondCode::SETOGT);
8587 
8588   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8589   // is already zero.
8590   if (!IsSigned)
8591     return Select;
8592 
8593   // Otherwise, select 0 if Src is NaN.
8594   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8595   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8596 }
8597