1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore following attributes because they don't affect the 61 // call sequence. 62 AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex); 63 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 64 Attribute::DereferenceableOrNull, Attribute::NoAlias, 65 Attribute::NonNull}) 66 CallerAttrs.removeAttribute(Attr); 67 68 if (CallerAttrs.hasAttributes()) 69 return false; 70 71 // It's not safe to eliminate the sign / zero extension of the return value. 72 if (CallerAttrs.contains(Attribute::ZExt) || 73 CallerAttrs.contains(Attribute::SExt)) 74 return false; 75 76 // Check if the only use is a function return node. 77 return isUsedByReturnOnly(Node, Chain); 78 } 79 80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 81 const uint32_t *CallerPreservedMask, 82 const SmallVectorImpl<CCValAssign> &ArgLocs, 83 const SmallVectorImpl<SDValue> &OutVals) const { 84 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 85 const CCValAssign &ArgLoc = ArgLocs[I]; 86 if (!ArgLoc.isRegLoc()) 87 continue; 88 MCRegister Reg = ArgLoc.getLocReg(); 89 // Only look at callee saved registers. 90 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 91 continue; 92 // Check that we pass the value used for the caller. 93 // (We look for a CopyFromReg reading a virtual register that is used 94 // for the function live-in value of register Reg) 95 SDValue Value = OutVals[I]; 96 if (Value->getOpcode() != ISD::CopyFromReg) 97 return false; 98 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 99 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 100 return false; 101 } 102 return true; 103 } 104 105 /// Set CallLoweringInfo attribute flags based on a call instruction 106 /// and called function attributes. 107 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 108 unsigned ArgIdx) { 109 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 110 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 111 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 112 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 113 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 114 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 115 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 116 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 117 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 118 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 119 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 120 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 121 Alignment = Call->getParamStackAlign(ArgIdx); 122 IndirectType = nullptr; 123 assert(IsByVal + IsPreallocated + IsInAlloca <= 1 && 124 "multiple ABI attributes?"); 125 if (IsByVal) { 126 IndirectType = Call->getParamByValType(ArgIdx); 127 if (!Alignment) 128 Alignment = Call->getParamAlign(ArgIdx); 129 } 130 if (IsPreallocated) 131 IndirectType = Call->getParamPreallocatedType(ArgIdx); 132 if (IsInAlloca) 133 IndirectType = Call->getParamInAllocaType(ArgIdx); 134 } 135 136 /// Generate a libcall taking the given operands as arguments and returning a 137 /// result of type RetVT. 138 std::pair<SDValue, SDValue> 139 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 140 ArrayRef<SDValue> Ops, 141 MakeLibCallOptions CallOptions, 142 const SDLoc &dl, 143 SDValue InChain) const { 144 if (!InChain) 145 InChain = DAG.getEntryNode(); 146 147 TargetLowering::ArgListTy Args; 148 Args.reserve(Ops.size()); 149 150 TargetLowering::ArgListEntry Entry; 151 for (unsigned i = 0; i < Ops.size(); ++i) { 152 SDValue NewOp = Ops[i]; 153 Entry.Node = NewOp; 154 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 155 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 156 CallOptions.IsSExt); 157 Entry.IsZExt = !Entry.IsSExt; 158 159 if (CallOptions.IsSoften && 160 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 161 Entry.IsSExt = Entry.IsZExt = false; 162 } 163 Args.push_back(Entry); 164 } 165 166 if (LC == RTLIB::UNKNOWN_LIBCALL) 167 report_fatal_error("Unsupported library call operation!"); 168 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 169 getPointerTy(DAG.getDataLayout())); 170 171 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 172 TargetLowering::CallLoweringInfo CLI(DAG); 173 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 174 bool zeroExtend = !signExtend; 175 176 if (CallOptions.IsSoften && 177 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 178 signExtend = zeroExtend = false; 179 } 180 181 CLI.setDebugLoc(dl) 182 .setChain(InChain) 183 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 184 .setNoReturn(CallOptions.DoesNotReturn) 185 .setDiscardResult(!CallOptions.IsReturnValueUsed) 186 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 187 .setSExtResult(signExtend) 188 .setZExtResult(zeroExtend); 189 return LowerCallTo(CLI); 190 } 191 192 bool TargetLowering::findOptimalMemOpLowering( 193 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 194 unsigned SrcAS, const AttributeList &FuncAttributes) const { 195 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 196 return false; 197 198 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 199 200 if (VT == MVT::Other) { 201 // Use the largest integer type whose alignment constraints are satisfied. 202 // We only need to check DstAlign here as SrcAlign is always greater or 203 // equal to DstAlign (or zero). 204 VT = MVT::i64; 205 if (Op.isFixedDstAlign()) 206 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 207 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 208 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 209 assert(VT.isInteger()); 210 211 // Find the largest legal integer type. 212 MVT LVT = MVT::i64; 213 while (!isTypeLegal(LVT)) 214 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 215 assert(LVT.isInteger()); 216 217 // If the type we've chosen is larger than the largest legal integer type 218 // then use that instead. 219 if (VT.bitsGT(LVT)) 220 VT = LVT; 221 } 222 223 unsigned NumMemOps = 0; 224 uint64_t Size = Op.size(); 225 while (Size) { 226 unsigned VTSize = VT.getSizeInBits() / 8; 227 while (VTSize > Size) { 228 // For now, only use non-vector load / store's for the left-over pieces. 229 EVT NewVT = VT; 230 unsigned NewVTSize; 231 232 bool Found = false; 233 if (VT.isVector() || VT.isFloatingPoint()) { 234 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 235 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 236 isSafeMemOpType(NewVT.getSimpleVT())) 237 Found = true; 238 else if (NewVT == MVT::i64 && 239 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 240 isSafeMemOpType(MVT::f64)) { 241 // i64 is usually not legal on 32-bit targets, but f64 may be. 242 NewVT = MVT::f64; 243 Found = true; 244 } 245 } 246 247 if (!Found) { 248 do { 249 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 250 if (NewVT == MVT::i8) 251 break; 252 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 253 } 254 NewVTSize = NewVT.getSizeInBits() / 8; 255 256 // If the new VT cannot cover all of the remaining bits, then consider 257 // issuing a (or a pair of) unaligned and overlapping load / store. 258 bool Fast; 259 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 260 allowsMisalignedMemoryAccesses( 261 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 262 MachineMemOperand::MONone, &Fast) && 263 Fast) 264 VTSize = Size; 265 else { 266 VT = NewVT; 267 VTSize = NewVTSize; 268 } 269 } 270 271 if (++NumMemOps > Limit) 272 return false; 273 274 MemOps.push_back(VT); 275 Size -= VTSize; 276 } 277 278 return true; 279 } 280 281 /// Soften the operands of a comparison. This code is shared among BR_CC, 282 /// SELECT_CC, and SETCC handlers. 283 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 284 SDValue &NewLHS, SDValue &NewRHS, 285 ISD::CondCode &CCCode, 286 const SDLoc &dl, const SDValue OldLHS, 287 const SDValue OldRHS) const { 288 SDValue Chain; 289 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 290 OldRHS, Chain); 291 } 292 293 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 294 SDValue &NewLHS, SDValue &NewRHS, 295 ISD::CondCode &CCCode, 296 const SDLoc &dl, const SDValue OldLHS, 297 const SDValue OldRHS, 298 SDValue &Chain, 299 bool IsSignaling) const { 300 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 301 // not supporting it. We can update this code when libgcc provides such 302 // functions. 303 304 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 305 && "Unsupported setcc type!"); 306 307 // Expand into one or more soft-fp libcall(s). 308 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 309 bool ShouldInvertCC = false; 310 switch (CCCode) { 311 case ISD::SETEQ: 312 case ISD::SETOEQ: 313 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 314 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 315 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 316 break; 317 case ISD::SETNE: 318 case ISD::SETUNE: 319 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 320 (VT == MVT::f64) ? RTLIB::UNE_F64 : 321 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 322 break; 323 case ISD::SETGE: 324 case ISD::SETOGE: 325 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 326 (VT == MVT::f64) ? RTLIB::OGE_F64 : 327 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 328 break; 329 case ISD::SETLT: 330 case ISD::SETOLT: 331 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 332 (VT == MVT::f64) ? RTLIB::OLT_F64 : 333 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 334 break; 335 case ISD::SETLE: 336 case ISD::SETOLE: 337 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 338 (VT == MVT::f64) ? RTLIB::OLE_F64 : 339 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 340 break; 341 case ISD::SETGT: 342 case ISD::SETOGT: 343 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 344 (VT == MVT::f64) ? RTLIB::OGT_F64 : 345 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 346 break; 347 case ISD::SETO: 348 ShouldInvertCC = true; 349 LLVM_FALLTHROUGH; 350 case ISD::SETUO: 351 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 352 (VT == MVT::f64) ? RTLIB::UO_F64 : 353 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 354 break; 355 case ISD::SETONE: 356 // SETONE = O && UNE 357 ShouldInvertCC = true; 358 LLVM_FALLTHROUGH; 359 case ISD::SETUEQ: 360 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 361 (VT == MVT::f64) ? RTLIB::UO_F64 : 362 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 363 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 364 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 365 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 366 break; 367 default: 368 // Invert CC for unordered comparisons 369 ShouldInvertCC = true; 370 switch (CCCode) { 371 case ISD::SETULT: 372 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 373 (VT == MVT::f64) ? RTLIB::OGE_F64 : 374 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 375 break; 376 case ISD::SETULE: 377 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 378 (VT == MVT::f64) ? RTLIB::OGT_F64 : 379 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 380 break; 381 case ISD::SETUGT: 382 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 383 (VT == MVT::f64) ? RTLIB::OLE_F64 : 384 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 385 break; 386 case ISD::SETUGE: 387 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 388 (VT == MVT::f64) ? RTLIB::OLT_F64 : 389 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 390 break; 391 default: llvm_unreachable("Do not know how to soften this setcc!"); 392 } 393 } 394 395 // Use the target specific return value for comparions lib calls. 396 EVT RetVT = getCmpLibcallReturnType(); 397 SDValue Ops[2] = {NewLHS, NewRHS}; 398 TargetLowering::MakeLibCallOptions CallOptions; 399 EVT OpsVT[2] = { OldLHS.getValueType(), 400 OldRHS.getValueType() }; 401 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 402 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 403 NewLHS = Call.first; 404 NewRHS = DAG.getConstant(0, dl, RetVT); 405 406 CCCode = getCmpLibcallCC(LC1); 407 if (ShouldInvertCC) { 408 assert(RetVT.isInteger()); 409 CCCode = getSetCCInverse(CCCode, RetVT); 410 } 411 412 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 413 // Update Chain. 414 Chain = Call.second; 415 } else { 416 EVT SetCCVT = 417 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 418 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 419 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 420 CCCode = getCmpLibcallCC(LC2); 421 if (ShouldInvertCC) 422 CCCode = getSetCCInverse(CCCode, RetVT); 423 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 424 if (Chain) 425 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 426 Call2.second); 427 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 428 Tmp.getValueType(), Tmp, NewLHS); 429 NewRHS = SDValue(); 430 } 431 } 432 433 /// Return the entry encoding for a jump table in the current function. The 434 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 435 unsigned TargetLowering::getJumpTableEncoding() const { 436 // In non-pic modes, just use the address of a block. 437 if (!isPositionIndependent()) 438 return MachineJumpTableInfo::EK_BlockAddress; 439 440 // In PIC mode, if the target supports a GPRel32 directive, use it. 441 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 442 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 443 444 // Otherwise, use a label difference. 445 return MachineJumpTableInfo::EK_LabelDifference32; 446 } 447 448 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 449 SelectionDAG &DAG) const { 450 // If our PIC model is GP relative, use the global offset table as the base. 451 unsigned JTEncoding = getJumpTableEncoding(); 452 453 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 454 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 455 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 456 457 return Table; 458 } 459 460 /// This returns the relocation base for the given PIC jumptable, the same as 461 /// getPICJumpTableRelocBase, but as an MCExpr. 462 const MCExpr * 463 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 464 unsigned JTI,MCContext &Ctx) const{ 465 // The normal PIC reloc base is the label at the start of the jump table. 466 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 467 } 468 469 bool 470 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 471 const TargetMachine &TM = getTargetMachine(); 472 const GlobalValue *GV = GA->getGlobal(); 473 474 // If the address is not even local to this DSO we will have to load it from 475 // a got and then add the offset. 476 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 477 return false; 478 479 // If the code is position independent we will have to add a base register. 480 if (isPositionIndependent()) 481 return false; 482 483 // Otherwise we can do it. 484 return true; 485 } 486 487 //===----------------------------------------------------------------------===// 488 // Optimization Methods 489 //===----------------------------------------------------------------------===// 490 491 /// If the specified instruction has a constant integer operand and there are 492 /// bits set in that constant that are not demanded, then clear those bits and 493 /// return true. 494 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 495 const APInt &DemandedBits, 496 const APInt &DemandedElts, 497 TargetLoweringOpt &TLO) const { 498 SDLoc DL(Op); 499 unsigned Opcode = Op.getOpcode(); 500 501 // Do target-specific constant optimization. 502 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 503 return TLO.New.getNode(); 504 505 // FIXME: ISD::SELECT, ISD::SELECT_CC 506 switch (Opcode) { 507 default: 508 break; 509 case ISD::XOR: 510 case ISD::AND: 511 case ISD::OR: { 512 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 513 if (!Op1C || Op1C->isOpaque()) 514 return false; 515 516 // If this is a 'not' op, don't touch it because that's a canonical form. 517 const APInt &C = Op1C->getAPIntValue(); 518 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 519 return false; 520 521 if (!C.isSubsetOf(DemandedBits)) { 522 EVT VT = Op.getValueType(); 523 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 524 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 525 return TLO.CombineTo(Op, NewOp); 526 } 527 528 break; 529 } 530 } 531 532 return false; 533 } 534 535 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 536 const APInt &DemandedBits, 537 TargetLoweringOpt &TLO) const { 538 EVT VT = Op.getValueType(); 539 APInt DemandedElts = VT.isVector() 540 ? APInt::getAllOnes(VT.getVectorNumElements()) 541 : APInt(1, 1); 542 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 543 } 544 545 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 546 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 547 /// generalized for targets with other types of implicit widening casts. 548 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 549 const APInt &Demanded, 550 TargetLoweringOpt &TLO) const { 551 assert(Op.getNumOperands() == 2 && 552 "ShrinkDemandedOp only supports binary operators!"); 553 assert(Op.getNode()->getNumValues() == 1 && 554 "ShrinkDemandedOp only supports nodes with one result!"); 555 556 SelectionDAG &DAG = TLO.DAG; 557 SDLoc dl(Op); 558 559 // Early return, as this function cannot handle vector types. 560 if (Op.getValueType().isVector()) 561 return false; 562 563 // Don't do this if the node has another user, which may require the 564 // full value. 565 if (!Op.getNode()->hasOneUse()) 566 return false; 567 568 // Search for the smallest integer type with free casts to and from 569 // Op's type. For expedience, just check power-of-2 integer types. 570 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 571 unsigned DemandedSize = Demanded.getActiveBits(); 572 unsigned SmallVTBits = DemandedSize; 573 if (!isPowerOf2_32(SmallVTBits)) 574 SmallVTBits = NextPowerOf2(SmallVTBits); 575 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 576 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 577 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 578 TLI.isZExtFree(SmallVT, Op.getValueType())) { 579 // We found a type with free casts. 580 SDValue X = DAG.getNode( 581 Op.getOpcode(), dl, SmallVT, 582 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 584 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 585 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 586 return TLO.CombineTo(Op, Z); 587 } 588 } 589 return false; 590 } 591 592 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 593 DAGCombinerInfo &DCI) const { 594 SelectionDAG &DAG = DCI.DAG; 595 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 596 !DCI.isBeforeLegalizeOps()); 597 KnownBits Known; 598 599 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 600 if (Simplified) { 601 DCI.AddToWorklist(Op.getNode()); 602 DCI.CommitTargetLoweringOpt(TLO); 603 } 604 return Simplified; 605 } 606 607 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 608 KnownBits &Known, 609 TargetLoweringOpt &TLO, 610 unsigned Depth, 611 bool AssumeSingleUse) const { 612 EVT VT = Op.getValueType(); 613 614 // TODO: We can probably do more work on calculating the known bits and 615 // simplifying the operations for scalable vectors, but for now we just 616 // bail out. 617 if (VT.isScalableVector()) { 618 // Pretend we don't know anything for now. 619 Known = KnownBits(DemandedBits.getBitWidth()); 620 return false; 621 } 622 623 APInt DemandedElts = VT.isVector() 624 ? APInt::getAllOnes(VT.getVectorNumElements()) 625 : APInt(1, 1); 626 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 627 AssumeSingleUse); 628 } 629 630 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 631 // TODO: Under what circumstances can we create nodes? Constant folding? 632 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 633 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 634 SelectionDAG &DAG, unsigned Depth) const { 635 // Limit search depth. 636 if (Depth >= SelectionDAG::MaxRecursionDepth) 637 return SDValue(); 638 639 // Ignore UNDEFs. 640 if (Op.isUndef()) 641 return SDValue(); 642 643 // Not demanding any bits/elts from Op. 644 if (DemandedBits == 0 || DemandedElts == 0) 645 return DAG.getUNDEF(Op.getValueType()); 646 647 unsigned NumElts = DemandedElts.getBitWidth(); 648 unsigned BitWidth = DemandedBits.getBitWidth(); 649 KnownBits LHSKnown, RHSKnown; 650 switch (Op.getOpcode()) { 651 case ISD::BITCAST: { 652 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 653 EVT SrcVT = Src.getValueType(); 654 EVT DstVT = Op.getValueType(); 655 if (SrcVT == DstVT) 656 return Src; 657 658 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 659 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 660 if (NumSrcEltBits == NumDstEltBits) 661 if (SDValue V = SimplifyMultipleUseDemandedBits( 662 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 663 return DAG.getBitcast(DstVT, V); 664 665 // TODO - bigendian once we have test coverage. 666 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 667 DAG.getDataLayout().isLittleEndian()) { 668 unsigned Scale = NumDstEltBits / NumSrcEltBits; 669 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 670 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 671 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 672 for (unsigned i = 0; i != Scale; ++i) { 673 unsigned Offset = i * NumSrcEltBits; 674 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 675 if (!Sub.isNullValue()) { 676 DemandedSrcBits |= Sub; 677 for (unsigned j = 0; j != NumElts; ++j) 678 if (DemandedElts[j]) 679 DemandedSrcElts.setBit((j * Scale) + i); 680 } 681 } 682 683 if (SDValue V = SimplifyMultipleUseDemandedBits( 684 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 685 return DAG.getBitcast(DstVT, V); 686 } 687 688 // TODO - bigendian once we have test coverage. 689 if ((NumSrcEltBits % NumDstEltBits) == 0 && 690 DAG.getDataLayout().isLittleEndian()) { 691 unsigned Scale = NumSrcEltBits / NumDstEltBits; 692 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 693 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 694 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 695 for (unsigned i = 0; i != NumElts; ++i) 696 if (DemandedElts[i]) { 697 unsigned Offset = (i % Scale) * NumDstEltBits; 698 DemandedSrcBits.insertBits(DemandedBits, Offset); 699 DemandedSrcElts.setBit(i / Scale); 700 } 701 702 if (SDValue V = SimplifyMultipleUseDemandedBits( 703 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 704 return DAG.getBitcast(DstVT, V); 705 } 706 707 break; 708 } 709 case ISD::AND: { 710 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 711 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 712 713 // If all of the demanded bits are known 1 on one side, return the other. 714 // These bits cannot contribute to the result of the 'and' in this 715 // context. 716 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 717 return Op.getOperand(0); 718 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 719 return Op.getOperand(1); 720 break; 721 } 722 case ISD::OR: { 723 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 724 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 725 726 // If all of the demanded bits are known zero on one side, return the 727 // other. These bits cannot contribute to the result of the 'or' in this 728 // context. 729 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 730 return Op.getOperand(0); 731 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 732 return Op.getOperand(1); 733 break; 734 } 735 case ISD::XOR: { 736 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 737 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 738 739 // If all of the demanded bits are known zero on one side, return the 740 // other. 741 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 742 return Op.getOperand(0); 743 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 744 return Op.getOperand(1); 745 break; 746 } 747 case ISD::SHL: { 748 // If we are only demanding sign bits then we can use the shift source 749 // directly. 750 if (const APInt *MaxSA = 751 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 752 SDValue Op0 = Op.getOperand(0); 753 unsigned ShAmt = MaxSA->getZExtValue(); 754 unsigned NumSignBits = 755 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 756 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 757 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 758 return Op0; 759 } 760 break; 761 } 762 case ISD::SETCC: { 763 SDValue Op0 = Op.getOperand(0); 764 SDValue Op1 = Op.getOperand(1); 765 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 766 // If (1) we only need the sign-bit, (2) the setcc operands are the same 767 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 768 // -1, we may be able to bypass the setcc. 769 if (DemandedBits.isSignMask() && 770 Op0.getScalarValueSizeInBits() == BitWidth && 771 getBooleanContents(Op0.getValueType()) == 772 BooleanContent::ZeroOrNegativeOneBooleanContent) { 773 // If we're testing X < 0, then this compare isn't needed - just use X! 774 // FIXME: We're limiting to integer types here, but this should also work 775 // if we don't care about FP signed-zero. The use of SETLT with FP means 776 // that we don't care about NaNs. 777 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 778 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 779 return Op0; 780 } 781 break; 782 } 783 case ISD::SIGN_EXTEND_INREG: { 784 // If none of the extended bits are demanded, eliminate the sextinreg. 785 SDValue Op0 = Op.getOperand(0); 786 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 787 unsigned ExBits = ExVT.getScalarSizeInBits(); 788 if (DemandedBits.getActiveBits() <= ExBits) 789 return Op0; 790 // If the input is already sign extended, just drop the extension. 791 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 792 if (NumSignBits >= (BitWidth - ExBits + 1)) 793 return Op0; 794 break; 795 } 796 case ISD::ANY_EXTEND_VECTOR_INREG: 797 case ISD::SIGN_EXTEND_VECTOR_INREG: 798 case ISD::ZERO_EXTEND_VECTOR_INREG: { 799 // If we only want the lowest element and none of extended bits, then we can 800 // return the bitcasted source vector. 801 SDValue Src = Op.getOperand(0); 802 EVT SrcVT = Src.getValueType(); 803 EVT DstVT = Op.getValueType(); 804 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 805 DAG.getDataLayout().isLittleEndian() && 806 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 807 return DAG.getBitcast(DstVT, Src); 808 } 809 break; 810 } 811 case ISD::INSERT_VECTOR_ELT: { 812 // If we don't demand the inserted element, return the base vector. 813 SDValue Vec = Op.getOperand(0); 814 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 815 EVT VecVT = Vec.getValueType(); 816 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 817 !DemandedElts[CIdx->getZExtValue()]) 818 return Vec; 819 break; 820 } 821 case ISD::INSERT_SUBVECTOR: { 822 SDValue Vec = Op.getOperand(0); 823 SDValue Sub = Op.getOperand(1); 824 uint64_t Idx = Op.getConstantOperandVal(2); 825 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 826 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 827 // If we don't demand the inserted subvector, return the base vector. 828 if (DemandedSubElts == 0) 829 return Vec; 830 // If this simply widens the lowest subvector, see if we can do it earlier. 831 if (Idx == 0 && Vec.isUndef()) { 832 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 833 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 834 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 835 Op.getOperand(0), NewSub, Op.getOperand(2)); 836 } 837 break; 838 } 839 case ISD::VECTOR_SHUFFLE: { 840 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 841 842 // If all the demanded elts are from one operand and are inline, 843 // then we can use the operand directly. 844 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 845 for (unsigned i = 0; i != NumElts; ++i) { 846 int M = ShuffleMask[i]; 847 if (M < 0 || !DemandedElts[i]) 848 continue; 849 AllUndef = false; 850 IdentityLHS &= (M == (int)i); 851 IdentityRHS &= ((M - NumElts) == i); 852 } 853 854 if (AllUndef) 855 return DAG.getUNDEF(Op.getValueType()); 856 if (IdentityLHS) 857 return Op.getOperand(0); 858 if (IdentityRHS) 859 return Op.getOperand(1); 860 break; 861 } 862 default: 863 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 864 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 865 Op, DemandedBits, DemandedElts, DAG, Depth)) 866 return V; 867 break; 868 } 869 return SDValue(); 870 } 871 872 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 873 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 874 unsigned Depth) const { 875 EVT VT = Op.getValueType(); 876 APInt DemandedElts = VT.isVector() 877 ? APInt::getAllOnes(VT.getVectorNumElements()) 878 : APInt(1, 1); 879 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 880 Depth); 881 } 882 883 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 884 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 885 unsigned Depth) const { 886 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 887 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 888 Depth); 889 } 890 891 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 892 /// result of Op are ever used downstream. If we can use this information to 893 /// simplify Op, create a new simplified DAG node and return true, returning the 894 /// original and new nodes in Old and New. Otherwise, analyze the expression and 895 /// return a mask of Known bits for the expression (used to simplify the 896 /// caller). The Known bits may only be accurate for those bits in the 897 /// OriginalDemandedBits and OriginalDemandedElts. 898 bool TargetLowering::SimplifyDemandedBits( 899 SDValue Op, const APInt &OriginalDemandedBits, 900 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 901 unsigned Depth, bool AssumeSingleUse) const { 902 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 903 assert(Op.getScalarValueSizeInBits() == BitWidth && 904 "Mask size mismatches value type size!"); 905 906 // Don't know anything. 907 Known = KnownBits(BitWidth); 908 909 // TODO: We can probably do more work on calculating the known bits and 910 // simplifying the operations for scalable vectors, but for now we just 911 // bail out. 912 if (Op.getValueType().isScalableVector()) 913 return false; 914 915 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 916 assert((!Op.getValueType().isVector() || 917 NumElts == Op.getValueType().getVectorNumElements()) && 918 "Unexpected vector size"); 919 920 APInt DemandedBits = OriginalDemandedBits; 921 APInt DemandedElts = OriginalDemandedElts; 922 SDLoc dl(Op); 923 auto &DL = TLO.DAG.getDataLayout(); 924 925 // Undef operand. 926 if (Op.isUndef()) 927 return false; 928 929 if (Op.getOpcode() == ISD::Constant) { 930 // We know all of the bits for a constant! 931 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 932 return false; 933 } 934 935 if (Op.getOpcode() == ISD::ConstantFP) { 936 // We know all of the bits for a floating point constant! 937 Known = KnownBits::makeConstant( 938 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 939 return false; 940 } 941 942 // Other users may use these bits. 943 EVT VT = Op.getValueType(); 944 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 945 if (Depth != 0) { 946 // If not at the root, Just compute the Known bits to 947 // simplify things downstream. 948 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 949 return false; 950 } 951 // If this is the root being simplified, allow it to have multiple uses, 952 // just set the DemandedBits/Elts to all bits. 953 DemandedBits = APInt::getAllOnes(BitWidth); 954 DemandedElts = APInt::getAllOnes(NumElts); 955 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 956 // Not demanding any bits/elts from Op. 957 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 958 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 959 // Limit search depth. 960 return false; 961 } 962 963 KnownBits Known2; 964 switch (Op.getOpcode()) { 965 case ISD::TargetConstant: 966 llvm_unreachable("Can't simplify this node"); 967 case ISD::SCALAR_TO_VECTOR: { 968 if (!DemandedElts[0]) 969 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 970 971 KnownBits SrcKnown; 972 SDValue Src = Op.getOperand(0); 973 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 974 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 975 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 976 return true; 977 978 // Upper elements are undef, so only get the knownbits if we just demand 979 // the bottom element. 980 if (DemandedElts == 1) 981 Known = SrcKnown.anyextOrTrunc(BitWidth); 982 break; 983 } 984 case ISD::BUILD_VECTOR: 985 // Collect the known bits that are shared by every demanded element. 986 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 987 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 988 return false; // Don't fall through, will infinitely loop. 989 case ISD::LOAD: { 990 auto *LD = cast<LoadSDNode>(Op); 991 if (getTargetConstantFromLoad(LD)) { 992 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 993 return false; // Don't fall through, will infinitely loop. 994 } 995 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 996 // If this is a ZEXTLoad and we are looking at the loaded value. 997 EVT MemVT = LD->getMemoryVT(); 998 unsigned MemBits = MemVT.getScalarSizeInBits(); 999 Known.Zero.setBitsFrom(MemBits); 1000 return false; // Don't fall through, will infinitely loop. 1001 } 1002 break; 1003 } 1004 case ISD::INSERT_VECTOR_ELT: { 1005 SDValue Vec = Op.getOperand(0); 1006 SDValue Scl = Op.getOperand(1); 1007 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1008 EVT VecVT = Vec.getValueType(); 1009 1010 // If index isn't constant, assume we need all vector elements AND the 1011 // inserted element. 1012 APInt DemandedVecElts(DemandedElts); 1013 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1014 unsigned Idx = CIdx->getZExtValue(); 1015 DemandedVecElts.clearBit(Idx); 1016 1017 // Inserted element is not required. 1018 if (!DemandedElts[Idx]) 1019 return TLO.CombineTo(Op, Vec); 1020 } 1021 1022 KnownBits KnownScl; 1023 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1024 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1025 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1026 return true; 1027 1028 Known = KnownScl.anyextOrTrunc(BitWidth); 1029 1030 KnownBits KnownVec; 1031 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1032 Depth + 1)) 1033 return true; 1034 1035 if (!!DemandedVecElts) 1036 Known = KnownBits::commonBits(Known, KnownVec); 1037 1038 return false; 1039 } 1040 case ISD::INSERT_SUBVECTOR: { 1041 // Demand any elements from the subvector and the remainder from the src its 1042 // inserted into. 1043 SDValue Src = Op.getOperand(0); 1044 SDValue Sub = Op.getOperand(1); 1045 uint64_t Idx = Op.getConstantOperandVal(2); 1046 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1047 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1048 APInt DemandedSrcElts = DemandedElts; 1049 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1050 1051 KnownBits KnownSub, KnownSrc; 1052 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1053 Depth + 1)) 1054 return true; 1055 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1056 Depth + 1)) 1057 return true; 1058 1059 Known.Zero.setAllBits(); 1060 Known.One.setAllBits(); 1061 if (!!DemandedSubElts) 1062 Known = KnownBits::commonBits(Known, KnownSub); 1063 if (!!DemandedSrcElts) 1064 Known = KnownBits::commonBits(Known, KnownSrc); 1065 1066 // Attempt to avoid multi-use src if we don't need anything from it. 1067 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1068 !DemandedSrcElts.isAllOnes()) { 1069 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1070 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1071 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1072 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1073 if (NewSub || NewSrc) { 1074 NewSub = NewSub ? NewSub : Sub; 1075 NewSrc = NewSrc ? NewSrc : Src; 1076 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1077 Op.getOperand(2)); 1078 return TLO.CombineTo(Op, NewOp); 1079 } 1080 } 1081 break; 1082 } 1083 case ISD::EXTRACT_SUBVECTOR: { 1084 // Offset the demanded elts by the subvector index. 1085 SDValue Src = Op.getOperand(0); 1086 if (Src.getValueType().isScalableVector()) 1087 break; 1088 uint64_t Idx = Op.getConstantOperandVal(1); 1089 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1090 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1091 1092 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1093 Depth + 1)) 1094 return true; 1095 1096 // Attempt to avoid multi-use src if we don't need anything from it. 1097 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1098 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1099 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1100 if (DemandedSrc) { 1101 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1102 Op.getOperand(1)); 1103 return TLO.CombineTo(Op, NewOp); 1104 } 1105 } 1106 break; 1107 } 1108 case ISD::CONCAT_VECTORS: { 1109 Known.Zero.setAllBits(); 1110 Known.One.setAllBits(); 1111 EVT SubVT = Op.getOperand(0).getValueType(); 1112 unsigned NumSubVecs = Op.getNumOperands(); 1113 unsigned NumSubElts = SubVT.getVectorNumElements(); 1114 for (unsigned i = 0; i != NumSubVecs; ++i) { 1115 APInt DemandedSubElts = 1116 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1117 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1118 Known2, TLO, Depth + 1)) 1119 return true; 1120 // Known bits are shared by every demanded subvector element. 1121 if (!!DemandedSubElts) 1122 Known = KnownBits::commonBits(Known, Known2); 1123 } 1124 break; 1125 } 1126 case ISD::VECTOR_SHUFFLE: { 1127 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1128 1129 // Collect demanded elements from shuffle operands.. 1130 APInt DemandedLHS(NumElts, 0); 1131 APInt DemandedRHS(NumElts, 0); 1132 for (unsigned i = 0; i != NumElts; ++i) { 1133 if (!DemandedElts[i]) 1134 continue; 1135 int M = ShuffleMask[i]; 1136 if (M < 0) { 1137 // For UNDEF elements, we don't know anything about the common state of 1138 // the shuffle result. 1139 DemandedLHS.clearAllBits(); 1140 DemandedRHS.clearAllBits(); 1141 break; 1142 } 1143 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1144 if (M < (int)NumElts) 1145 DemandedLHS.setBit(M); 1146 else 1147 DemandedRHS.setBit(M - NumElts); 1148 } 1149 1150 if (!!DemandedLHS || !!DemandedRHS) { 1151 SDValue Op0 = Op.getOperand(0); 1152 SDValue Op1 = Op.getOperand(1); 1153 1154 Known.Zero.setAllBits(); 1155 Known.One.setAllBits(); 1156 if (!!DemandedLHS) { 1157 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1158 Depth + 1)) 1159 return true; 1160 Known = KnownBits::commonBits(Known, Known2); 1161 } 1162 if (!!DemandedRHS) { 1163 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1164 Depth + 1)) 1165 return true; 1166 Known = KnownBits::commonBits(Known, Known2); 1167 } 1168 1169 // Attempt to avoid multi-use ops if we don't need anything from them. 1170 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1171 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1172 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1173 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1174 if (DemandedOp0 || DemandedOp1) { 1175 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1176 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1177 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1178 return TLO.CombineTo(Op, NewOp); 1179 } 1180 } 1181 break; 1182 } 1183 case ISD::AND: { 1184 SDValue Op0 = Op.getOperand(0); 1185 SDValue Op1 = Op.getOperand(1); 1186 1187 // If the RHS is a constant, check to see if the LHS would be zero without 1188 // using the bits from the RHS. Below, we use knowledge about the RHS to 1189 // simplify the LHS, here we're using information from the LHS to simplify 1190 // the RHS. 1191 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1192 // Do not increment Depth here; that can cause an infinite loop. 1193 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1194 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1195 if ((LHSKnown.Zero & DemandedBits) == 1196 (~RHSC->getAPIntValue() & DemandedBits)) 1197 return TLO.CombineTo(Op, Op0); 1198 1199 // If any of the set bits in the RHS are known zero on the LHS, shrink 1200 // the constant. 1201 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1202 DemandedElts, TLO)) 1203 return true; 1204 1205 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1206 // constant, but if this 'and' is only clearing bits that were just set by 1207 // the xor, then this 'and' can be eliminated by shrinking the mask of 1208 // the xor. For example, for a 32-bit X: 1209 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1210 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1211 LHSKnown.One == ~RHSC->getAPIntValue()) { 1212 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1213 return TLO.CombineTo(Op, Xor); 1214 } 1215 } 1216 1217 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1218 Depth + 1)) 1219 return true; 1220 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1221 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1222 Known2, TLO, Depth + 1)) 1223 return true; 1224 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1225 1226 // Attempt to avoid multi-use ops if we don't need anything from them. 1227 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1228 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1229 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1230 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1231 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1232 if (DemandedOp0 || DemandedOp1) { 1233 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1234 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1235 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1236 return TLO.CombineTo(Op, NewOp); 1237 } 1238 } 1239 1240 // If all of the demanded bits are known one on one side, return the other. 1241 // These bits cannot contribute to the result of the 'and'. 1242 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1243 return TLO.CombineTo(Op, Op0); 1244 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1245 return TLO.CombineTo(Op, Op1); 1246 // If all of the demanded bits in the inputs are known zeros, return zero. 1247 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1248 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1249 // If the RHS is a constant, see if we can simplify it. 1250 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1251 TLO)) 1252 return true; 1253 // If the operation can be done in a smaller type, do so. 1254 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1255 return true; 1256 1257 Known &= Known2; 1258 break; 1259 } 1260 case ISD::OR: { 1261 SDValue Op0 = Op.getOperand(0); 1262 SDValue Op1 = Op.getOperand(1); 1263 1264 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1265 Depth + 1)) 1266 return true; 1267 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1268 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1269 Known2, TLO, Depth + 1)) 1270 return true; 1271 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1272 1273 // Attempt to avoid multi-use ops if we don't need anything from them. 1274 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1275 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1276 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1277 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1278 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1279 if (DemandedOp0 || DemandedOp1) { 1280 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1281 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1282 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1283 return TLO.CombineTo(Op, NewOp); 1284 } 1285 } 1286 1287 // If all of the demanded bits are known zero on one side, return the other. 1288 // These bits cannot contribute to the result of the 'or'. 1289 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1290 return TLO.CombineTo(Op, Op0); 1291 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1292 return TLO.CombineTo(Op, Op1); 1293 // If the RHS is a constant, see if we can simplify it. 1294 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1295 return true; 1296 // If the operation can be done in a smaller type, do so. 1297 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1298 return true; 1299 1300 Known |= Known2; 1301 break; 1302 } 1303 case ISD::XOR: { 1304 SDValue Op0 = Op.getOperand(0); 1305 SDValue Op1 = Op.getOperand(1); 1306 1307 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1308 Depth + 1)) 1309 return true; 1310 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1311 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1312 Depth + 1)) 1313 return true; 1314 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1315 1316 // Attempt to avoid multi-use ops if we don't need anything from them. 1317 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1318 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1319 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1320 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1321 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1322 if (DemandedOp0 || DemandedOp1) { 1323 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1324 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1325 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1326 return TLO.CombineTo(Op, NewOp); 1327 } 1328 } 1329 1330 // If all of the demanded bits are known zero on one side, return the other. 1331 // These bits cannot contribute to the result of the 'xor'. 1332 if (DemandedBits.isSubsetOf(Known.Zero)) 1333 return TLO.CombineTo(Op, Op0); 1334 if (DemandedBits.isSubsetOf(Known2.Zero)) 1335 return TLO.CombineTo(Op, Op1); 1336 // If the operation can be done in a smaller type, do so. 1337 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1338 return true; 1339 1340 // If all of the unknown bits are known to be zero on one side or the other 1341 // turn this into an *inclusive* or. 1342 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1343 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1344 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1345 1346 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1347 if (C) { 1348 // If one side is a constant, and all of the set bits in the constant are 1349 // also known set on the other side, turn this into an AND, as we know 1350 // the bits will be cleared. 1351 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1352 // NB: it is okay if more bits are known than are requested 1353 if (C->getAPIntValue() == Known2.One) { 1354 SDValue ANDC = 1355 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1356 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1357 } 1358 1359 // If the RHS is a constant, see if we can change it. Don't alter a -1 1360 // constant because that's a 'not' op, and that is better for combining 1361 // and codegen. 1362 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1363 // We're flipping all demanded bits. Flip the undemanded bits too. 1364 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1365 return TLO.CombineTo(Op, New); 1366 } 1367 } 1368 1369 // If we can't turn this into a 'not', try to shrink the constant. 1370 if (!C || !C->isAllOnes()) 1371 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1372 return true; 1373 1374 Known ^= Known2; 1375 break; 1376 } 1377 case ISD::SELECT: 1378 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1379 Depth + 1)) 1380 return true; 1381 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1382 Depth + 1)) 1383 return true; 1384 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1385 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1386 1387 // If the operands are constants, see if we can simplify them. 1388 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1389 return true; 1390 1391 // Only known if known in both the LHS and RHS. 1392 Known = KnownBits::commonBits(Known, Known2); 1393 break; 1394 case ISD::SELECT_CC: 1395 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1396 Depth + 1)) 1397 return true; 1398 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1399 Depth + 1)) 1400 return true; 1401 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1402 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1403 1404 // If the operands are constants, see if we can simplify them. 1405 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1406 return true; 1407 1408 // Only known if known in both the LHS and RHS. 1409 Known = KnownBits::commonBits(Known, Known2); 1410 break; 1411 case ISD::SETCC: { 1412 SDValue Op0 = Op.getOperand(0); 1413 SDValue Op1 = Op.getOperand(1); 1414 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1415 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1416 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1417 // -1, we may be able to bypass the setcc. 1418 if (DemandedBits.isSignMask() && 1419 Op0.getScalarValueSizeInBits() == BitWidth && 1420 getBooleanContents(Op0.getValueType()) == 1421 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1422 // If we're testing X < 0, then this compare isn't needed - just use X! 1423 // FIXME: We're limiting to integer types here, but this should also work 1424 // if we don't care about FP signed-zero. The use of SETLT with FP means 1425 // that we don't care about NaNs. 1426 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1427 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1428 return TLO.CombineTo(Op, Op0); 1429 1430 // TODO: Should we check for other forms of sign-bit comparisons? 1431 // Examples: X <= -1, X >= 0 1432 } 1433 if (getBooleanContents(Op0.getValueType()) == 1434 TargetLowering::ZeroOrOneBooleanContent && 1435 BitWidth > 1) 1436 Known.Zero.setBitsFrom(1); 1437 break; 1438 } 1439 case ISD::SHL: { 1440 SDValue Op0 = Op.getOperand(0); 1441 SDValue Op1 = Op.getOperand(1); 1442 EVT ShiftVT = Op1.getValueType(); 1443 1444 if (const APInt *SA = 1445 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1446 unsigned ShAmt = SA->getZExtValue(); 1447 if (ShAmt == 0) 1448 return TLO.CombineTo(Op, Op0); 1449 1450 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1451 // single shift. We can do this if the bottom bits (which are shifted 1452 // out) are never demanded. 1453 // TODO - support non-uniform vector amounts. 1454 if (Op0.getOpcode() == ISD::SRL) { 1455 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1456 if (const APInt *SA2 = 1457 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1458 unsigned C1 = SA2->getZExtValue(); 1459 unsigned Opc = ISD::SHL; 1460 int Diff = ShAmt - C1; 1461 if (Diff < 0) { 1462 Diff = -Diff; 1463 Opc = ISD::SRL; 1464 } 1465 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1466 return TLO.CombineTo( 1467 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1468 } 1469 } 1470 } 1471 1472 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1473 // are not demanded. This will likely allow the anyext to be folded away. 1474 // TODO - support non-uniform vector amounts. 1475 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1476 SDValue InnerOp = Op0.getOperand(0); 1477 EVT InnerVT = InnerOp.getValueType(); 1478 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1479 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1480 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1481 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1482 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1483 ShTy = InnerVT; 1484 SDValue NarrowShl = 1485 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1486 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1487 return TLO.CombineTo( 1488 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1489 } 1490 1491 // Repeat the SHL optimization above in cases where an extension 1492 // intervenes: (shl (anyext (shr x, c1)), c2) to 1493 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1494 // aren't demanded (as above) and that the shifted upper c1 bits of 1495 // x aren't demanded. 1496 // TODO - support non-uniform vector amounts. 1497 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1498 InnerOp.hasOneUse()) { 1499 if (const APInt *SA2 = 1500 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1501 unsigned InnerShAmt = SA2->getZExtValue(); 1502 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1503 DemandedBits.getActiveBits() <= 1504 (InnerBits - InnerShAmt + ShAmt) && 1505 DemandedBits.countTrailingZeros() >= ShAmt) { 1506 SDValue NewSA = 1507 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1508 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1509 InnerOp.getOperand(0)); 1510 return TLO.CombineTo( 1511 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1512 } 1513 } 1514 } 1515 } 1516 1517 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1518 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1519 Depth + 1)) 1520 return true; 1521 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1522 Known.Zero <<= ShAmt; 1523 Known.One <<= ShAmt; 1524 // low bits known zero. 1525 Known.Zero.setLowBits(ShAmt); 1526 1527 // Try shrinking the operation as long as the shift amount will still be 1528 // in range. 1529 if ((ShAmt < DemandedBits.getActiveBits()) && 1530 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1531 return true; 1532 } 1533 1534 // If we are only demanding sign bits then we can use the shift source 1535 // directly. 1536 if (const APInt *MaxSA = 1537 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1538 unsigned ShAmt = MaxSA->getZExtValue(); 1539 unsigned NumSignBits = 1540 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1541 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1542 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1543 return TLO.CombineTo(Op, Op0); 1544 } 1545 break; 1546 } 1547 case ISD::SRL: { 1548 SDValue Op0 = Op.getOperand(0); 1549 SDValue Op1 = Op.getOperand(1); 1550 EVT ShiftVT = Op1.getValueType(); 1551 1552 if (const APInt *SA = 1553 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1554 unsigned ShAmt = SA->getZExtValue(); 1555 if (ShAmt == 0) 1556 return TLO.CombineTo(Op, Op0); 1557 1558 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1559 // single shift. We can do this if the top bits (which are shifted out) 1560 // are never demanded. 1561 // TODO - support non-uniform vector amounts. 1562 if (Op0.getOpcode() == ISD::SHL) { 1563 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1564 if (const APInt *SA2 = 1565 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1566 unsigned C1 = SA2->getZExtValue(); 1567 unsigned Opc = ISD::SRL; 1568 int Diff = ShAmt - C1; 1569 if (Diff < 0) { 1570 Diff = -Diff; 1571 Opc = ISD::SHL; 1572 } 1573 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1574 return TLO.CombineTo( 1575 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1576 } 1577 } 1578 } 1579 1580 APInt InDemandedMask = (DemandedBits << ShAmt); 1581 1582 // If the shift is exact, then it does demand the low bits (and knows that 1583 // they are zero). 1584 if (Op->getFlags().hasExact()) 1585 InDemandedMask.setLowBits(ShAmt); 1586 1587 // Compute the new bits that are at the top now. 1588 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1589 Depth + 1)) 1590 return true; 1591 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1592 Known.Zero.lshrInPlace(ShAmt); 1593 Known.One.lshrInPlace(ShAmt); 1594 // High bits known zero. 1595 Known.Zero.setHighBits(ShAmt); 1596 } 1597 break; 1598 } 1599 case ISD::SRA: { 1600 SDValue Op0 = Op.getOperand(0); 1601 SDValue Op1 = Op.getOperand(1); 1602 EVT ShiftVT = Op1.getValueType(); 1603 1604 // If we only want bits that already match the signbit then we don't need 1605 // to shift. 1606 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1607 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1608 NumHiDemandedBits) 1609 return TLO.CombineTo(Op, Op0); 1610 1611 // If this is an arithmetic shift right and only the low-bit is set, we can 1612 // always convert this into a logical shr, even if the shift amount is 1613 // variable. The low bit of the shift cannot be an input sign bit unless 1614 // the shift amount is >= the size of the datatype, which is undefined. 1615 if (DemandedBits.isOneValue()) 1616 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1617 1618 if (const APInt *SA = 1619 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1620 unsigned ShAmt = SA->getZExtValue(); 1621 if (ShAmt == 0) 1622 return TLO.CombineTo(Op, Op0); 1623 1624 APInt InDemandedMask = (DemandedBits << ShAmt); 1625 1626 // If the shift is exact, then it does demand the low bits (and knows that 1627 // they are zero). 1628 if (Op->getFlags().hasExact()) 1629 InDemandedMask.setLowBits(ShAmt); 1630 1631 // If any of the demanded bits are produced by the sign extension, we also 1632 // demand the input sign bit. 1633 if (DemandedBits.countLeadingZeros() < ShAmt) 1634 InDemandedMask.setSignBit(); 1635 1636 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1637 Depth + 1)) 1638 return true; 1639 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1640 Known.Zero.lshrInPlace(ShAmt); 1641 Known.One.lshrInPlace(ShAmt); 1642 1643 // If the input sign bit is known to be zero, or if none of the top bits 1644 // are demanded, turn this into an unsigned shift right. 1645 if (Known.Zero[BitWidth - ShAmt - 1] || 1646 DemandedBits.countLeadingZeros() >= ShAmt) { 1647 SDNodeFlags Flags; 1648 Flags.setExact(Op->getFlags().hasExact()); 1649 return TLO.CombineTo( 1650 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1651 } 1652 1653 int Log2 = DemandedBits.exactLogBase2(); 1654 if (Log2 >= 0) { 1655 // The bit must come from the sign. 1656 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1657 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1658 } 1659 1660 if (Known.One[BitWidth - ShAmt - 1]) 1661 // New bits are known one. 1662 Known.One.setHighBits(ShAmt); 1663 1664 // Attempt to avoid multi-use ops if we don't need anything from them. 1665 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1666 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1667 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1668 if (DemandedOp0) { 1669 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1670 return TLO.CombineTo(Op, NewOp); 1671 } 1672 } 1673 } 1674 break; 1675 } 1676 case ISD::FSHL: 1677 case ISD::FSHR: { 1678 SDValue Op0 = Op.getOperand(0); 1679 SDValue Op1 = Op.getOperand(1); 1680 SDValue Op2 = Op.getOperand(2); 1681 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1682 1683 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1684 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1685 1686 // For fshl, 0-shift returns the 1st arg. 1687 // For fshr, 0-shift returns the 2nd arg. 1688 if (Amt == 0) { 1689 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1690 Known, TLO, Depth + 1)) 1691 return true; 1692 break; 1693 } 1694 1695 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1696 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1697 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1698 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1699 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1700 Depth + 1)) 1701 return true; 1702 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1703 Depth + 1)) 1704 return true; 1705 1706 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1707 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1708 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1709 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1710 Known.One |= Known2.One; 1711 Known.Zero |= Known2.Zero; 1712 } 1713 1714 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1715 if (isPowerOf2_32(BitWidth)) { 1716 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1717 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1718 Known2, TLO, Depth + 1)) 1719 return true; 1720 } 1721 break; 1722 } 1723 case ISD::ROTL: 1724 case ISD::ROTR: { 1725 SDValue Op0 = Op.getOperand(0); 1726 SDValue Op1 = Op.getOperand(1); 1727 1728 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1729 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1730 return TLO.CombineTo(Op, Op0); 1731 1732 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1733 if (isPowerOf2_32(BitWidth)) { 1734 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1735 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1736 Depth + 1)) 1737 return true; 1738 } 1739 break; 1740 } 1741 case ISD::UMIN: { 1742 // Check if one arg is always less than (or equal) to the other arg. 1743 SDValue Op0 = Op.getOperand(0); 1744 SDValue Op1 = Op.getOperand(1); 1745 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1746 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1747 Known = KnownBits::umin(Known0, Known1); 1748 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1749 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1750 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1751 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1752 break; 1753 } 1754 case ISD::UMAX: { 1755 // Check if one arg is always greater than (or equal) to the other arg. 1756 SDValue Op0 = Op.getOperand(0); 1757 SDValue Op1 = Op.getOperand(1); 1758 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1759 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1760 Known = KnownBits::umax(Known0, Known1); 1761 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1762 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1763 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1764 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1765 break; 1766 } 1767 case ISD::BITREVERSE: { 1768 SDValue Src = Op.getOperand(0); 1769 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1770 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1771 Depth + 1)) 1772 return true; 1773 Known.One = Known2.One.reverseBits(); 1774 Known.Zero = Known2.Zero.reverseBits(); 1775 break; 1776 } 1777 case ISD::BSWAP: { 1778 SDValue Src = Op.getOperand(0); 1779 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1780 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1781 Depth + 1)) 1782 return true; 1783 Known.One = Known2.One.byteSwap(); 1784 Known.Zero = Known2.Zero.byteSwap(); 1785 break; 1786 } 1787 case ISD::CTPOP: { 1788 // If only 1 bit is demanded, replace with PARITY as long as we're before 1789 // op legalization. 1790 // FIXME: Limit to scalars for now. 1791 if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector()) 1792 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1793 Op.getOperand(0))); 1794 1795 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1796 break; 1797 } 1798 case ISD::SIGN_EXTEND_INREG: { 1799 SDValue Op0 = Op.getOperand(0); 1800 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1801 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1802 1803 // If we only care about the highest bit, don't bother shifting right. 1804 if (DemandedBits.isSignMask()) { 1805 unsigned NumSignBits = 1806 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1807 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1808 // However if the input is already sign extended we expect the sign 1809 // extension to be dropped altogether later and do not simplify. 1810 if (!AlreadySignExtended) { 1811 // Compute the correct shift amount type, which must be getShiftAmountTy 1812 // for scalar types after legalization. 1813 EVT ShiftAmtTy = VT; 1814 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1815 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1816 1817 SDValue ShiftAmt = 1818 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1819 return TLO.CombineTo(Op, 1820 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1821 } 1822 } 1823 1824 // If none of the extended bits are demanded, eliminate the sextinreg. 1825 if (DemandedBits.getActiveBits() <= ExVTBits) 1826 return TLO.CombineTo(Op, Op0); 1827 1828 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1829 1830 // Since the sign extended bits are demanded, we know that the sign 1831 // bit is demanded. 1832 InputDemandedBits.setBit(ExVTBits - 1); 1833 1834 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1835 return true; 1836 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1837 1838 // If the sign bit of the input is known set or clear, then we know the 1839 // top bits of the result. 1840 1841 // If the input sign bit is known zero, convert this into a zero extension. 1842 if (Known.Zero[ExVTBits - 1]) 1843 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1844 1845 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1846 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1847 Known.One.setBitsFrom(ExVTBits); 1848 Known.Zero &= Mask; 1849 } else { // Input sign bit unknown 1850 Known.Zero &= Mask; 1851 Known.One &= Mask; 1852 } 1853 break; 1854 } 1855 case ISD::BUILD_PAIR: { 1856 EVT HalfVT = Op.getOperand(0).getValueType(); 1857 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1858 1859 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1860 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1861 1862 KnownBits KnownLo, KnownHi; 1863 1864 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1865 return true; 1866 1867 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1868 return true; 1869 1870 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1871 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1872 1873 Known.One = KnownLo.One.zext(BitWidth) | 1874 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1875 break; 1876 } 1877 case ISD::ZERO_EXTEND: 1878 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1879 SDValue Src = Op.getOperand(0); 1880 EVT SrcVT = Src.getValueType(); 1881 unsigned InBits = SrcVT.getScalarSizeInBits(); 1882 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1883 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1884 1885 // If none of the top bits are demanded, convert this into an any_extend. 1886 if (DemandedBits.getActiveBits() <= InBits) { 1887 // If we only need the non-extended bits of the bottom element 1888 // then we can just bitcast to the result. 1889 if (IsVecInReg && DemandedElts == 1 && 1890 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1891 TLO.DAG.getDataLayout().isLittleEndian()) 1892 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1893 1894 unsigned Opc = 1895 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1896 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1897 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1898 } 1899 1900 APInt InDemandedBits = DemandedBits.trunc(InBits); 1901 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1902 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1903 Depth + 1)) 1904 return true; 1905 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1906 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1907 Known = Known.zext(BitWidth); 1908 1909 // Attempt to avoid multi-use ops if we don't need anything from them. 1910 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1911 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1912 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1913 break; 1914 } 1915 case ISD::SIGN_EXTEND: 1916 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1917 SDValue Src = Op.getOperand(0); 1918 EVT SrcVT = Src.getValueType(); 1919 unsigned InBits = SrcVT.getScalarSizeInBits(); 1920 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1921 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1922 1923 // If none of the top bits are demanded, convert this into an any_extend. 1924 if (DemandedBits.getActiveBits() <= InBits) { 1925 // If we only need the non-extended bits of the bottom element 1926 // then we can just bitcast to the result. 1927 if (IsVecInReg && DemandedElts == 1 && 1928 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1929 TLO.DAG.getDataLayout().isLittleEndian()) 1930 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1931 1932 unsigned Opc = 1933 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1934 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1935 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1936 } 1937 1938 APInt InDemandedBits = DemandedBits.trunc(InBits); 1939 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1940 1941 // Since some of the sign extended bits are demanded, we know that the sign 1942 // bit is demanded. 1943 InDemandedBits.setBit(InBits - 1); 1944 1945 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1946 Depth + 1)) 1947 return true; 1948 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1949 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1950 1951 // If the sign bit is known one, the top bits match. 1952 Known = Known.sext(BitWidth); 1953 1954 // If the sign bit is known zero, convert this to a zero extend. 1955 if (Known.isNonNegative()) { 1956 unsigned Opc = 1957 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1958 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1959 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1960 } 1961 1962 // Attempt to avoid multi-use ops if we don't need anything from them. 1963 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1964 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1965 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1966 break; 1967 } 1968 case ISD::ANY_EXTEND: 1969 case ISD::ANY_EXTEND_VECTOR_INREG: { 1970 SDValue Src = Op.getOperand(0); 1971 EVT SrcVT = Src.getValueType(); 1972 unsigned InBits = SrcVT.getScalarSizeInBits(); 1973 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1974 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1975 1976 // If we only need the bottom element then we can just bitcast. 1977 // TODO: Handle ANY_EXTEND? 1978 if (IsVecInReg && DemandedElts == 1 && 1979 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1980 TLO.DAG.getDataLayout().isLittleEndian()) 1981 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1982 1983 APInt InDemandedBits = DemandedBits.trunc(InBits); 1984 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1985 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1986 Depth + 1)) 1987 return true; 1988 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1989 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1990 Known = Known.anyext(BitWidth); 1991 1992 // Attempt to avoid multi-use ops if we don't need anything from them. 1993 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1994 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1995 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1996 break; 1997 } 1998 case ISD::TRUNCATE: { 1999 SDValue Src = Op.getOperand(0); 2000 2001 // Simplify the input, using demanded bit information, and compute the known 2002 // zero/one bits live out. 2003 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2004 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2005 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2006 Depth + 1)) 2007 return true; 2008 Known = Known.trunc(BitWidth); 2009 2010 // Attempt to avoid multi-use ops if we don't need anything from them. 2011 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2012 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2013 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2014 2015 // If the input is only used by this truncate, see if we can shrink it based 2016 // on the known demanded bits. 2017 if (Src.getNode()->hasOneUse()) { 2018 switch (Src.getOpcode()) { 2019 default: 2020 break; 2021 case ISD::SRL: 2022 // Shrink SRL by a constant if none of the high bits shifted in are 2023 // demanded. 2024 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2025 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2026 // undesirable. 2027 break; 2028 2029 const APInt *ShAmtC = 2030 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2031 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2032 break; 2033 uint64_t ShVal = ShAmtC->getZExtValue(); 2034 2035 APInt HighBits = 2036 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2037 HighBits.lshrInPlace(ShVal); 2038 HighBits = HighBits.trunc(BitWidth); 2039 2040 if (!(HighBits & DemandedBits)) { 2041 // None of the shifted in bits are needed. Add a truncate of the 2042 // shift input, then shift it. 2043 SDValue NewShAmt = TLO.DAG.getConstant( 2044 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2045 SDValue NewTrunc = 2046 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2047 return TLO.CombineTo( 2048 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2049 } 2050 break; 2051 } 2052 } 2053 2054 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2055 break; 2056 } 2057 case ISD::AssertZext: { 2058 // AssertZext demands all of the high bits, plus any of the low bits 2059 // demanded by its users. 2060 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2061 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2062 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2063 TLO, Depth + 1)) 2064 return true; 2065 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2066 2067 Known.Zero |= ~InMask; 2068 break; 2069 } 2070 case ISD::EXTRACT_VECTOR_ELT: { 2071 SDValue Src = Op.getOperand(0); 2072 SDValue Idx = Op.getOperand(1); 2073 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2074 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2075 2076 if (SrcEltCnt.isScalable()) 2077 return false; 2078 2079 // Demand the bits from every vector element without a constant index. 2080 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2081 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2082 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2083 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2084 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2085 2086 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2087 // anything about the extended bits. 2088 APInt DemandedSrcBits = DemandedBits; 2089 if (BitWidth > EltBitWidth) 2090 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2091 2092 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2093 Depth + 1)) 2094 return true; 2095 2096 // Attempt to avoid multi-use ops if we don't need anything from them. 2097 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2098 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2099 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2100 SDValue NewOp = 2101 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2102 return TLO.CombineTo(Op, NewOp); 2103 } 2104 } 2105 2106 Known = Known2; 2107 if (BitWidth > EltBitWidth) 2108 Known = Known.anyext(BitWidth); 2109 break; 2110 } 2111 case ISD::BITCAST: { 2112 SDValue Src = Op.getOperand(0); 2113 EVT SrcVT = Src.getValueType(); 2114 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2115 2116 // If this is an FP->Int bitcast and if the sign bit is the only 2117 // thing demanded, turn this into a FGETSIGN. 2118 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2119 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2120 SrcVT.isFloatingPoint()) { 2121 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2122 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2123 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2124 SrcVT != MVT::f128) { 2125 // Cannot eliminate/lower SHL for f128 yet. 2126 EVT Ty = OpVTLegal ? VT : MVT::i32; 2127 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2128 // place. We expect the SHL to be eliminated by other optimizations. 2129 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2130 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2131 if (!OpVTLegal && OpVTSizeInBits > 32) 2132 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2133 unsigned ShVal = Op.getValueSizeInBits() - 1; 2134 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2135 return TLO.CombineTo(Op, 2136 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2137 } 2138 } 2139 2140 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2141 // Demand the elt/bit if any of the original elts/bits are demanded. 2142 // TODO - bigendian once we have test coverage. 2143 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2144 TLO.DAG.getDataLayout().isLittleEndian()) { 2145 unsigned Scale = BitWidth / NumSrcEltBits; 2146 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2147 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2148 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2149 for (unsigned i = 0; i != Scale; ++i) { 2150 unsigned Offset = i * NumSrcEltBits; 2151 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2152 if (!Sub.isNullValue()) { 2153 DemandedSrcBits |= Sub; 2154 for (unsigned j = 0; j != NumElts; ++j) 2155 if (DemandedElts[j]) 2156 DemandedSrcElts.setBit((j * Scale) + i); 2157 } 2158 } 2159 2160 APInt KnownSrcUndef, KnownSrcZero; 2161 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2162 KnownSrcZero, TLO, Depth + 1)) 2163 return true; 2164 2165 KnownBits KnownSrcBits; 2166 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2167 KnownSrcBits, TLO, Depth + 1)) 2168 return true; 2169 } else if ((NumSrcEltBits % BitWidth) == 0 && 2170 TLO.DAG.getDataLayout().isLittleEndian()) { 2171 unsigned Scale = NumSrcEltBits / BitWidth; 2172 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2173 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2174 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2175 for (unsigned i = 0; i != NumElts; ++i) 2176 if (DemandedElts[i]) { 2177 unsigned Offset = (i % Scale) * BitWidth; 2178 DemandedSrcBits.insertBits(DemandedBits, Offset); 2179 DemandedSrcElts.setBit(i / Scale); 2180 } 2181 2182 if (SrcVT.isVector()) { 2183 APInt KnownSrcUndef, KnownSrcZero; 2184 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2185 KnownSrcZero, TLO, Depth + 1)) 2186 return true; 2187 } 2188 2189 KnownBits KnownSrcBits; 2190 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2191 KnownSrcBits, TLO, Depth + 1)) 2192 return true; 2193 } 2194 2195 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2196 // recursive call where Known may be useful to the caller. 2197 if (Depth > 0) { 2198 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2199 return false; 2200 } 2201 break; 2202 } 2203 case ISD::ADD: 2204 case ISD::MUL: 2205 case ISD::SUB: { 2206 // Add, Sub, and Mul don't demand any bits in positions beyond that 2207 // of the highest bit demanded of them. 2208 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2209 SDNodeFlags Flags = Op.getNode()->getFlags(); 2210 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2211 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2212 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2213 Depth + 1) || 2214 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2215 Depth + 1) || 2216 // See if the operation should be performed at a smaller bit width. 2217 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2218 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2219 // Disable the nsw and nuw flags. We can no longer guarantee that we 2220 // won't wrap after simplification. 2221 Flags.setNoSignedWrap(false); 2222 Flags.setNoUnsignedWrap(false); 2223 SDValue NewOp = 2224 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2225 return TLO.CombineTo(Op, NewOp); 2226 } 2227 return true; 2228 } 2229 2230 // Attempt to avoid multi-use ops if we don't need anything from them. 2231 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2232 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2233 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2234 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2235 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2236 if (DemandedOp0 || DemandedOp1) { 2237 Flags.setNoSignedWrap(false); 2238 Flags.setNoUnsignedWrap(false); 2239 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2240 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2241 SDValue NewOp = 2242 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2243 return TLO.CombineTo(Op, NewOp); 2244 } 2245 } 2246 2247 // If we have a constant operand, we may be able to turn it into -1 if we 2248 // do not demand the high bits. This can make the constant smaller to 2249 // encode, allow more general folding, or match specialized instruction 2250 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2251 // is probably not useful (and could be detrimental). 2252 ConstantSDNode *C = isConstOrConstSplat(Op1); 2253 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2254 if (C && !C->isAllOnes() && !C->isOne() && 2255 (C->getAPIntValue() | HighMask).isAllOnes()) { 2256 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2257 // Disable the nsw and nuw flags. We can no longer guarantee that we 2258 // won't wrap after simplification. 2259 Flags.setNoSignedWrap(false); 2260 Flags.setNoUnsignedWrap(false); 2261 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2262 return TLO.CombineTo(Op, NewOp); 2263 } 2264 2265 LLVM_FALLTHROUGH; 2266 } 2267 default: 2268 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2269 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2270 Known, TLO, Depth)) 2271 return true; 2272 break; 2273 } 2274 2275 // Just use computeKnownBits to compute output bits. 2276 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2277 break; 2278 } 2279 2280 // If we know the value of all of the demanded bits, return this as a 2281 // constant. 2282 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2283 // Avoid folding to a constant if any OpaqueConstant is involved. 2284 const SDNode *N = Op.getNode(); 2285 for (SDNode *Op : 2286 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2287 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2288 if (C->isOpaque()) 2289 return false; 2290 } 2291 if (VT.isInteger()) 2292 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2293 if (VT.isFloatingPoint()) 2294 return TLO.CombineTo( 2295 Op, 2296 TLO.DAG.getConstantFP( 2297 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2298 } 2299 2300 return false; 2301 } 2302 2303 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2304 const APInt &DemandedElts, 2305 APInt &KnownUndef, 2306 APInt &KnownZero, 2307 DAGCombinerInfo &DCI) const { 2308 SelectionDAG &DAG = DCI.DAG; 2309 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2310 !DCI.isBeforeLegalizeOps()); 2311 2312 bool Simplified = 2313 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2314 if (Simplified) { 2315 DCI.AddToWorklist(Op.getNode()); 2316 DCI.CommitTargetLoweringOpt(TLO); 2317 } 2318 2319 return Simplified; 2320 } 2321 2322 /// Given a vector binary operation and known undefined elements for each input 2323 /// operand, compute whether each element of the output is undefined. 2324 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2325 const APInt &UndefOp0, 2326 const APInt &UndefOp1) { 2327 EVT VT = BO.getValueType(); 2328 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2329 "Vector binop only"); 2330 2331 EVT EltVT = VT.getVectorElementType(); 2332 unsigned NumElts = VT.getVectorNumElements(); 2333 assert(UndefOp0.getBitWidth() == NumElts && 2334 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2335 2336 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2337 const APInt &UndefVals) { 2338 if (UndefVals[Index]) 2339 return DAG.getUNDEF(EltVT); 2340 2341 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2342 // Try hard to make sure that the getNode() call is not creating temporary 2343 // nodes. Ignore opaque integers because they do not constant fold. 2344 SDValue Elt = BV->getOperand(Index); 2345 auto *C = dyn_cast<ConstantSDNode>(Elt); 2346 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2347 return Elt; 2348 } 2349 2350 return SDValue(); 2351 }; 2352 2353 APInt KnownUndef = APInt::getZero(NumElts); 2354 for (unsigned i = 0; i != NumElts; ++i) { 2355 // If both inputs for this element are either constant or undef and match 2356 // the element type, compute the constant/undef result for this element of 2357 // the vector. 2358 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2359 // not handle FP constants. The code within getNode() should be refactored 2360 // to avoid the danger of creating a bogus temporary node here. 2361 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2362 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2363 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2364 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2365 KnownUndef.setBit(i); 2366 } 2367 return KnownUndef; 2368 } 2369 2370 bool TargetLowering::SimplifyDemandedVectorElts( 2371 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2372 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2373 bool AssumeSingleUse) const { 2374 EVT VT = Op.getValueType(); 2375 unsigned Opcode = Op.getOpcode(); 2376 APInt DemandedElts = OriginalDemandedElts; 2377 unsigned NumElts = DemandedElts.getBitWidth(); 2378 assert(VT.isVector() && "Expected vector op"); 2379 2380 KnownUndef = KnownZero = APInt::getZero(NumElts); 2381 2382 // TODO: For now we assume we know nothing about scalable vectors. 2383 if (VT.isScalableVector()) 2384 return false; 2385 2386 assert(VT.getVectorNumElements() == NumElts && 2387 "Mask size mismatches value type element count!"); 2388 2389 // Undef operand. 2390 if (Op.isUndef()) { 2391 KnownUndef.setAllBits(); 2392 return false; 2393 } 2394 2395 // If Op has other users, assume that all elements are needed. 2396 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2397 DemandedElts.setAllBits(); 2398 2399 // Not demanding any elements from Op. 2400 if (DemandedElts == 0) { 2401 KnownUndef.setAllBits(); 2402 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2403 } 2404 2405 // Limit search depth. 2406 if (Depth >= SelectionDAG::MaxRecursionDepth) 2407 return false; 2408 2409 SDLoc DL(Op); 2410 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2411 2412 // Helper for demanding the specified elements and all the bits of both binary 2413 // operands. 2414 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2415 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2416 TLO.DAG, Depth + 1); 2417 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2418 TLO.DAG, Depth + 1); 2419 if (NewOp0 || NewOp1) { 2420 SDValue NewOp = TLO.DAG.getNode( 2421 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2422 return TLO.CombineTo(Op, NewOp); 2423 } 2424 return false; 2425 }; 2426 2427 switch (Opcode) { 2428 case ISD::SCALAR_TO_VECTOR: { 2429 if (!DemandedElts[0]) { 2430 KnownUndef.setAllBits(); 2431 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2432 } 2433 SDValue ScalarSrc = Op.getOperand(0); 2434 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2435 SDValue Src = ScalarSrc.getOperand(0); 2436 SDValue Idx = ScalarSrc.getOperand(1); 2437 EVT SrcVT = Src.getValueType(); 2438 2439 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2440 2441 if (SrcEltCnt.isScalable()) 2442 return false; 2443 2444 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2445 if (isNullConstant(Idx)) { 2446 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2447 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2448 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2449 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2450 TLO, Depth + 1)) 2451 return true; 2452 } 2453 } 2454 KnownUndef.setHighBits(NumElts - 1); 2455 break; 2456 } 2457 case ISD::BITCAST: { 2458 SDValue Src = Op.getOperand(0); 2459 EVT SrcVT = Src.getValueType(); 2460 2461 // We only handle vectors here. 2462 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2463 if (!SrcVT.isVector()) 2464 break; 2465 2466 // Fast handling of 'identity' bitcasts. 2467 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2468 if (NumSrcElts == NumElts) 2469 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2470 KnownZero, TLO, Depth + 1); 2471 2472 APInt SrcDemandedElts, SrcZero, SrcUndef; 2473 2474 // Bitcast from 'large element' src vector to 'small element' vector, we 2475 // must demand a source element if any DemandedElt maps to it. 2476 if ((NumElts % NumSrcElts) == 0) { 2477 unsigned Scale = NumElts / NumSrcElts; 2478 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2479 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2480 TLO, Depth + 1)) 2481 return true; 2482 2483 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2484 // of the large element. 2485 // TODO - bigendian once we have test coverage. 2486 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2487 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2488 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2489 for (unsigned i = 0; i != NumElts; ++i) 2490 if (DemandedElts[i]) { 2491 unsigned Ofs = (i % Scale) * EltSizeInBits; 2492 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2493 } 2494 2495 KnownBits Known; 2496 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2497 TLO, Depth + 1)) 2498 return true; 2499 } 2500 2501 // If the src element is zero/undef then all the output elements will be - 2502 // only demanded elements are guaranteed to be correct. 2503 for (unsigned i = 0; i != NumSrcElts; ++i) { 2504 if (SrcDemandedElts[i]) { 2505 if (SrcZero[i]) 2506 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2507 if (SrcUndef[i]) 2508 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2509 } 2510 } 2511 } 2512 2513 // Bitcast from 'small element' src vector to 'large element' vector, we 2514 // demand all smaller source elements covered by the larger demanded element 2515 // of this vector. 2516 if ((NumSrcElts % NumElts) == 0) { 2517 unsigned Scale = NumSrcElts / NumElts; 2518 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2519 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2520 TLO, Depth + 1)) 2521 return true; 2522 2523 // If all the src elements covering an output element are zero/undef, then 2524 // the output element will be as well, assuming it was demanded. 2525 for (unsigned i = 0; i != NumElts; ++i) { 2526 if (DemandedElts[i]) { 2527 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2528 KnownZero.setBit(i); 2529 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2530 KnownUndef.setBit(i); 2531 } 2532 } 2533 } 2534 break; 2535 } 2536 case ISD::BUILD_VECTOR: { 2537 // Check all elements and simplify any unused elements with UNDEF. 2538 if (!DemandedElts.isAllOnes()) { 2539 // Don't simplify BROADCASTS. 2540 if (llvm::any_of(Op->op_values(), 2541 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2542 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2543 bool Updated = false; 2544 for (unsigned i = 0; i != NumElts; ++i) { 2545 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2546 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2547 KnownUndef.setBit(i); 2548 Updated = true; 2549 } 2550 } 2551 if (Updated) 2552 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2553 } 2554 } 2555 for (unsigned i = 0; i != NumElts; ++i) { 2556 SDValue SrcOp = Op.getOperand(i); 2557 if (SrcOp.isUndef()) { 2558 KnownUndef.setBit(i); 2559 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2560 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2561 KnownZero.setBit(i); 2562 } 2563 } 2564 break; 2565 } 2566 case ISD::CONCAT_VECTORS: { 2567 EVT SubVT = Op.getOperand(0).getValueType(); 2568 unsigned NumSubVecs = Op.getNumOperands(); 2569 unsigned NumSubElts = SubVT.getVectorNumElements(); 2570 for (unsigned i = 0; i != NumSubVecs; ++i) { 2571 SDValue SubOp = Op.getOperand(i); 2572 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2573 APInt SubUndef, SubZero; 2574 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2575 Depth + 1)) 2576 return true; 2577 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2578 KnownZero.insertBits(SubZero, i * NumSubElts); 2579 } 2580 break; 2581 } 2582 case ISD::INSERT_SUBVECTOR: { 2583 // Demand any elements from the subvector and the remainder from the src its 2584 // inserted into. 2585 SDValue Src = Op.getOperand(0); 2586 SDValue Sub = Op.getOperand(1); 2587 uint64_t Idx = Op.getConstantOperandVal(2); 2588 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2589 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2590 APInt DemandedSrcElts = DemandedElts; 2591 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2592 2593 APInt SubUndef, SubZero; 2594 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2595 Depth + 1)) 2596 return true; 2597 2598 // If none of the src operand elements are demanded, replace it with undef. 2599 if (!DemandedSrcElts && !Src.isUndef()) 2600 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2601 TLO.DAG.getUNDEF(VT), Sub, 2602 Op.getOperand(2))); 2603 2604 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2605 TLO, Depth + 1)) 2606 return true; 2607 KnownUndef.insertBits(SubUndef, Idx); 2608 KnownZero.insertBits(SubZero, Idx); 2609 2610 // Attempt to avoid multi-use ops if we don't need anything from them. 2611 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2612 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2613 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2614 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2615 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2616 if (NewSrc || NewSub) { 2617 NewSrc = NewSrc ? NewSrc : Src; 2618 NewSub = NewSub ? NewSub : Sub; 2619 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2620 NewSub, Op.getOperand(2)); 2621 return TLO.CombineTo(Op, NewOp); 2622 } 2623 } 2624 break; 2625 } 2626 case ISD::EXTRACT_SUBVECTOR: { 2627 // Offset the demanded elts by the subvector index. 2628 SDValue Src = Op.getOperand(0); 2629 if (Src.getValueType().isScalableVector()) 2630 break; 2631 uint64_t Idx = Op.getConstantOperandVal(1); 2632 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2633 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2634 2635 APInt SrcUndef, SrcZero; 2636 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2637 Depth + 1)) 2638 return true; 2639 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2640 KnownZero = SrcZero.extractBits(NumElts, Idx); 2641 2642 // Attempt to avoid multi-use ops if we don't need anything from them. 2643 if (!DemandedElts.isAllOnes()) { 2644 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2645 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2646 if (NewSrc) { 2647 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2648 Op.getOperand(1)); 2649 return TLO.CombineTo(Op, NewOp); 2650 } 2651 } 2652 break; 2653 } 2654 case ISD::INSERT_VECTOR_ELT: { 2655 SDValue Vec = Op.getOperand(0); 2656 SDValue Scl = Op.getOperand(1); 2657 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2658 2659 // For a legal, constant insertion index, if we don't need this insertion 2660 // then strip it, else remove it from the demanded elts. 2661 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2662 unsigned Idx = CIdx->getZExtValue(); 2663 if (!DemandedElts[Idx]) 2664 return TLO.CombineTo(Op, Vec); 2665 2666 APInt DemandedVecElts(DemandedElts); 2667 DemandedVecElts.clearBit(Idx); 2668 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2669 KnownZero, TLO, Depth + 1)) 2670 return true; 2671 2672 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2673 2674 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2675 break; 2676 } 2677 2678 APInt VecUndef, VecZero; 2679 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2680 Depth + 1)) 2681 return true; 2682 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2683 break; 2684 } 2685 case ISD::VSELECT: { 2686 // Try to transform the select condition based on the current demanded 2687 // elements. 2688 // TODO: If a condition element is undef, we can choose from one arm of the 2689 // select (and if one arm is undef, then we can propagate that to the 2690 // result). 2691 // TODO - add support for constant vselect masks (see IR version of this). 2692 APInt UnusedUndef, UnusedZero; 2693 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2694 UnusedZero, TLO, Depth + 1)) 2695 return true; 2696 2697 // See if we can simplify either vselect operand. 2698 APInt DemandedLHS(DemandedElts); 2699 APInt DemandedRHS(DemandedElts); 2700 APInt UndefLHS, ZeroLHS; 2701 APInt UndefRHS, ZeroRHS; 2702 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2703 ZeroLHS, TLO, Depth + 1)) 2704 return true; 2705 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2706 ZeroRHS, TLO, Depth + 1)) 2707 return true; 2708 2709 KnownUndef = UndefLHS & UndefRHS; 2710 KnownZero = ZeroLHS & ZeroRHS; 2711 break; 2712 } 2713 case ISD::VECTOR_SHUFFLE: { 2714 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2715 2716 // Collect demanded elements from shuffle operands.. 2717 APInt DemandedLHS(NumElts, 0); 2718 APInt DemandedRHS(NumElts, 0); 2719 for (unsigned i = 0; i != NumElts; ++i) { 2720 int M = ShuffleMask[i]; 2721 if (M < 0 || !DemandedElts[i]) 2722 continue; 2723 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2724 if (M < (int)NumElts) 2725 DemandedLHS.setBit(M); 2726 else 2727 DemandedRHS.setBit(M - NumElts); 2728 } 2729 2730 // See if we can simplify either shuffle operand. 2731 APInt UndefLHS, ZeroLHS; 2732 APInt UndefRHS, ZeroRHS; 2733 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2734 ZeroLHS, TLO, Depth + 1)) 2735 return true; 2736 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2737 ZeroRHS, TLO, Depth + 1)) 2738 return true; 2739 2740 // Simplify mask using undef elements from LHS/RHS. 2741 bool Updated = false; 2742 bool IdentityLHS = true, IdentityRHS = true; 2743 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2744 for (unsigned i = 0; i != NumElts; ++i) { 2745 int &M = NewMask[i]; 2746 if (M < 0) 2747 continue; 2748 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2749 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2750 Updated = true; 2751 M = -1; 2752 } 2753 IdentityLHS &= (M < 0) || (M == (int)i); 2754 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2755 } 2756 2757 // Update legal shuffle masks based on demanded elements if it won't reduce 2758 // to Identity which can cause premature removal of the shuffle mask. 2759 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2760 SDValue LegalShuffle = 2761 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2762 NewMask, TLO.DAG); 2763 if (LegalShuffle) 2764 return TLO.CombineTo(Op, LegalShuffle); 2765 } 2766 2767 // Propagate undef/zero elements from LHS/RHS. 2768 for (unsigned i = 0; i != NumElts; ++i) { 2769 int M = ShuffleMask[i]; 2770 if (M < 0) { 2771 KnownUndef.setBit(i); 2772 } else if (M < (int)NumElts) { 2773 if (UndefLHS[M]) 2774 KnownUndef.setBit(i); 2775 if (ZeroLHS[M]) 2776 KnownZero.setBit(i); 2777 } else { 2778 if (UndefRHS[M - NumElts]) 2779 KnownUndef.setBit(i); 2780 if (ZeroRHS[M - NumElts]) 2781 KnownZero.setBit(i); 2782 } 2783 } 2784 break; 2785 } 2786 case ISD::ANY_EXTEND_VECTOR_INREG: 2787 case ISD::SIGN_EXTEND_VECTOR_INREG: 2788 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2789 APInt SrcUndef, SrcZero; 2790 SDValue Src = Op.getOperand(0); 2791 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2792 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2793 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2794 Depth + 1)) 2795 return true; 2796 KnownZero = SrcZero.zextOrTrunc(NumElts); 2797 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2798 2799 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2800 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2801 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2802 // aext - if we just need the bottom element then we can bitcast. 2803 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2804 } 2805 2806 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2807 // zext(undef) upper bits are guaranteed to be zero. 2808 if (DemandedElts.isSubsetOf(KnownUndef)) 2809 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2810 KnownUndef.clearAllBits(); 2811 } 2812 break; 2813 } 2814 2815 // TODO: There are more binop opcodes that could be handled here - MIN, 2816 // MAX, saturated math, etc. 2817 case ISD::OR: 2818 case ISD::XOR: 2819 case ISD::ADD: 2820 case ISD::SUB: 2821 case ISD::FADD: 2822 case ISD::FSUB: 2823 case ISD::FMUL: 2824 case ISD::FDIV: 2825 case ISD::FREM: { 2826 SDValue Op0 = Op.getOperand(0); 2827 SDValue Op1 = Op.getOperand(1); 2828 2829 APInt UndefRHS, ZeroRHS; 2830 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2831 Depth + 1)) 2832 return true; 2833 APInt UndefLHS, ZeroLHS; 2834 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2835 Depth + 1)) 2836 return true; 2837 2838 KnownZero = ZeroLHS & ZeroRHS; 2839 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2840 2841 // Attempt to avoid multi-use ops if we don't need anything from them. 2842 // TODO - use KnownUndef to relax the demandedelts? 2843 if (!DemandedElts.isAllOnes()) 2844 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2845 return true; 2846 break; 2847 } 2848 case ISD::SHL: 2849 case ISD::SRL: 2850 case ISD::SRA: 2851 case ISD::ROTL: 2852 case ISD::ROTR: { 2853 SDValue Op0 = Op.getOperand(0); 2854 SDValue Op1 = Op.getOperand(1); 2855 2856 APInt UndefRHS, ZeroRHS; 2857 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2858 Depth + 1)) 2859 return true; 2860 APInt UndefLHS, ZeroLHS; 2861 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2862 Depth + 1)) 2863 return true; 2864 2865 KnownZero = ZeroLHS; 2866 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2867 2868 // Attempt to avoid multi-use ops if we don't need anything from them. 2869 // TODO - use KnownUndef to relax the demandedelts? 2870 if (!DemandedElts.isAllOnes()) 2871 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2872 return true; 2873 break; 2874 } 2875 case ISD::MUL: 2876 case ISD::AND: { 2877 SDValue Op0 = Op.getOperand(0); 2878 SDValue Op1 = Op.getOperand(1); 2879 2880 APInt SrcUndef, SrcZero; 2881 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2882 Depth + 1)) 2883 return true; 2884 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2885 TLO, Depth + 1)) 2886 return true; 2887 2888 // If either side has a zero element, then the result element is zero, even 2889 // if the other is an UNDEF. 2890 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2891 // and then handle 'and' nodes with the rest of the binop opcodes. 2892 KnownZero |= SrcZero; 2893 KnownUndef &= SrcUndef; 2894 KnownUndef &= ~KnownZero; 2895 2896 // Attempt to avoid multi-use ops if we don't need anything from them. 2897 // TODO - use KnownUndef to relax the demandedelts? 2898 if (!DemandedElts.isAllOnes()) 2899 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2900 return true; 2901 break; 2902 } 2903 case ISD::TRUNCATE: 2904 case ISD::SIGN_EXTEND: 2905 case ISD::ZERO_EXTEND: 2906 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2907 KnownZero, TLO, Depth + 1)) 2908 return true; 2909 2910 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2911 // zext(undef) upper bits are guaranteed to be zero. 2912 if (DemandedElts.isSubsetOf(KnownUndef)) 2913 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2914 KnownUndef.clearAllBits(); 2915 } 2916 break; 2917 default: { 2918 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2919 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2920 KnownZero, TLO, Depth)) 2921 return true; 2922 } else { 2923 KnownBits Known; 2924 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 2925 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2926 TLO, Depth, AssumeSingleUse)) 2927 return true; 2928 } 2929 break; 2930 } 2931 } 2932 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2933 2934 // Constant fold all undef cases. 2935 // TODO: Handle zero cases as well. 2936 if (DemandedElts.isSubsetOf(KnownUndef)) 2937 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2938 2939 return false; 2940 } 2941 2942 /// Determine which of the bits specified in Mask are known to be either zero or 2943 /// one and return them in the Known. 2944 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2945 KnownBits &Known, 2946 const APInt &DemandedElts, 2947 const SelectionDAG &DAG, 2948 unsigned Depth) const { 2949 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2950 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2951 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2952 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2953 "Should use MaskedValueIsZero if you don't know whether Op" 2954 " is a target node!"); 2955 Known.resetAll(); 2956 } 2957 2958 void TargetLowering::computeKnownBitsForTargetInstr( 2959 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2960 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2961 unsigned Depth) const { 2962 Known.resetAll(); 2963 } 2964 2965 void TargetLowering::computeKnownBitsForFrameIndex( 2966 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2967 // The low bits are known zero if the pointer is aligned. 2968 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2969 } 2970 2971 Align TargetLowering::computeKnownAlignForTargetInstr( 2972 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 2973 unsigned Depth) const { 2974 return Align(1); 2975 } 2976 2977 /// This method can be implemented by targets that want to expose additional 2978 /// information about sign bits to the DAG Combiner. 2979 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2980 const APInt &, 2981 const SelectionDAG &, 2982 unsigned Depth) const { 2983 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2984 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2985 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2986 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2987 "Should use ComputeNumSignBits if you don't know whether Op" 2988 " is a target node!"); 2989 return 1; 2990 } 2991 2992 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2993 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2994 const MachineRegisterInfo &MRI, unsigned Depth) const { 2995 return 1; 2996 } 2997 2998 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2999 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3000 TargetLoweringOpt &TLO, unsigned Depth) const { 3001 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3002 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3003 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3004 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3005 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3006 " is a target node!"); 3007 return false; 3008 } 3009 3010 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3011 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3012 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3013 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3014 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3015 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3016 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3017 "Should use SimplifyDemandedBits if you don't know whether Op" 3018 " is a target node!"); 3019 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3020 return false; 3021 } 3022 3023 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3024 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3025 SelectionDAG &DAG, unsigned Depth) const { 3026 assert( 3027 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3028 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3029 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3030 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3031 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3032 " is a target node!"); 3033 return SDValue(); 3034 } 3035 3036 SDValue 3037 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3038 SDValue N1, MutableArrayRef<int> Mask, 3039 SelectionDAG &DAG) const { 3040 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3041 if (!LegalMask) { 3042 std::swap(N0, N1); 3043 ShuffleVectorSDNode::commuteMask(Mask); 3044 LegalMask = isShuffleMaskLegal(Mask, VT); 3045 } 3046 3047 if (!LegalMask) 3048 return SDValue(); 3049 3050 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3051 } 3052 3053 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3054 return nullptr; 3055 } 3056 3057 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3058 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3059 bool PoisonOnly, unsigned Depth) const { 3060 assert( 3061 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3062 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3063 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3064 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3065 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3066 " is a target node!"); 3067 return false; 3068 } 3069 3070 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3071 const SelectionDAG &DAG, 3072 bool SNaN, 3073 unsigned Depth) const { 3074 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3075 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3076 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3077 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3078 "Should use isKnownNeverNaN if you don't know whether Op" 3079 " is a target node!"); 3080 return false; 3081 } 3082 3083 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3084 // work with truncating build vectors and vectors with elements of less than 3085 // 8 bits. 3086 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3087 if (!N) 3088 return false; 3089 3090 APInt CVal; 3091 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3092 CVal = CN->getAPIntValue(); 3093 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3094 auto *CN = BV->getConstantSplatNode(); 3095 if (!CN) 3096 return false; 3097 3098 // If this is a truncating build vector, truncate the splat value. 3099 // Otherwise, we may fail to match the expected values below. 3100 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3101 CVal = CN->getAPIntValue(); 3102 if (BVEltWidth < CVal.getBitWidth()) 3103 CVal = CVal.trunc(BVEltWidth); 3104 } else { 3105 return false; 3106 } 3107 3108 switch (getBooleanContents(N->getValueType(0))) { 3109 case UndefinedBooleanContent: 3110 return CVal[0]; 3111 case ZeroOrOneBooleanContent: 3112 return CVal.isOneValue(); 3113 case ZeroOrNegativeOneBooleanContent: 3114 return CVal.isAllOnes(); 3115 } 3116 3117 llvm_unreachable("Invalid boolean contents"); 3118 } 3119 3120 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3121 if (!N) 3122 return false; 3123 3124 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3125 if (!CN) { 3126 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3127 if (!BV) 3128 return false; 3129 3130 // Only interested in constant splats, we don't care about undef 3131 // elements in identifying boolean constants and getConstantSplatNode 3132 // returns NULL if all ops are undef; 3133 CN = BV->getConstantSplatNode(); 3134 if (!CN) 3135 return false; 3136 } 3137 3138 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3139 return !CN->getAPIntValue()[0]; 3140 3141 return CN->isZero(); 3142 } 3143 3144 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3145 bool SExt) const { 3146 if (VT == MVT::i1) 3147 return N->isOne(); 3148 3149 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3150 switch (Cnt) { 3151 case TargetLowering::ZeroOrOneBooleanContent: 3152 // An extended value of 1 is always true, unless its original type is i1, 3153 // in which case it will be sign extended to -1. 3154 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3155 case TargetLowering::UndefinedBooleanContent: 3156 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3157 return N->isAllOnes() && SExt; 3158 } 3159 llvm_unreachable("Unexpected enumeration."); 3160 } 3161 3162 /// This helper function of SimplifySetCC tries to optimize the comparison when 3163 /// either operand of the SetCC node is a bitwise-and instruction. 3164 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3165 ISD::CondCode Cond, const SDLoc &DL, 3166 DAGCombinerInfo &DCI) const { 3167 // Match these patterns in any of their permutations: 3168 // (X & Y) == Y 3169 // (X & Y) != Y 3170 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3171 std::swap(N0, N1); 3172 3173 EVT OpVT = N0.getValueType(); 3174 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3175 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3176 return SDValue(); 3177 3178 SDValue X, Y; 3179 if (N0.getOperand(0) == N1) { 3180 X = N0.getOperand(1); 3181 Y = N0.getOperand(0); 3182 } else if (N0.getOperand(1) == N1) { 3183 X = N0.getOperand(0); 3184 Y = N0.getOperand(1); 3185 } else { 3186 return SDValue(); 3187 } 3188 3189 SelectionDAG &DAG = DCI.DAG; 3190 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3191 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3192 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3193 // Note that where Y is variable and is known to have at most one bit set 3194 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3195 // equivalent when Y == 0. 3196 assert(OpVT.isInteger()); 3197 Cond = ISD::getSetCCInverse(Cond, OpVT); 3198 if (DCI.isBeforeLegalizeOps() || 3199 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3200 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3201 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3202 // If the target supports an 'and-not' or 'and-complement' logic operation, 3203 // try to use that to make a comparison operation more efficient. 3204 // But don't do this transform if the mask is a single bit because there are 3205 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3206 // 'rlwinm' on PPC). 3207 3208 // Bail out if the compare operand that we want to turn into a zero is 3209 // already a zero (otherwise, infinite loop). 3210 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3211 if (YConst && YConst->isZero()) 3212 return SDValue(); 3213 3214 // Transform this into: ~X & Y == 0. 3215 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3216 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3217 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3218 } 3219 3220 return SDValue(); 3221 } 3222 3223 /// There are multiple IR patterns that could be checking whether certain 3224 /// truncation of a signed number would be lossy or not. The pattern which is 3225 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3226 /// We are looking for the following pattern: (KeptBits is a constant) 3227 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3228 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3229 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3230 /// We will unfold it into the natural trunc+sext pattern: 3231 /// ((%x << C) a>> C) dstcond %x 3232 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3233 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3234 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3235 const SDLoc &DL) const { 3236 // We must be comparing with a constant. 3237 ConstantSDNode *C1; 3238 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3239 return SDValue(); 3240 3241 // N0 should be: add %x, (1 << (KeptBits-1)) 3242 if (N0->getOpcode() != ISD::ADD) 3243 return SDValue(); 3244 3245 // And we must be 'add'ing a constant. 3246 ConstantSDNode *C01; 3247 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3248 return SDValue(); 3249 3250 SDValue X = N0->getOperand(0); 3251 EVT XVT = X.getValueType(); 3252 3253 // Validate constants ... 3254 3255 APInt I1 = C1->getAPIntValue(); 3256 3257 ISD::CondCode NewCond; 3258 if (Cond == ISD::CondCode::SETULT) { 3259 NewCond = ISD::CondCode::SETEQ; 3260 } else if (Cond == ISD::CondCode::SETULE) { 3261 NewCond = ISD::CondCode::SETEQ; 3262 // But need to 'canonicalize' the constant. 3263 I1 += 1; 3264 } else if (Cond == ISD::CondCode::SETUGT) { 3265 NewCond = ISD::CondCode::SETNE; 3266 // But need to 'canonicalize' the constant. 3267 I1 += 1; 3268 } else if (Cond == ISD::CondCode::SETUGE) { 3269 NewCond = ISD::CondCode::SETNE; 3270 } else 3271 return SDValue(); 3272 3273 APInt I01 = C01->getAPIntValue(); 3274 3275 auto checkConstants = [&I1, &I01]() -> bool { 3276 // Both of them must be power-of-two, and the constant from setcc is bigger. 3277 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3278 }; 3279 3280 if (checkConstants()) { 3281 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3282 } else { 3283 // What if we invert constants? (and the target predicate) 3284 I1.negate(); 3285 I01.negate(); 3286 assert(XVT.isInteger()); 3287 NewCond = getSetCCInverse(NewCond, XVT); 3288 if (!checkConstants()) 3289 return SDValue(); 3290 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3291 } 3292 3293 // They are power-of-two, so which bit is set? 3294 const unsigned KeptBits = I1.logBase2(); 3295 const unsigned KeptBitsMinusOne = I01.logBase2(); 3296 3297 // Magic! 3298 if (KeptBits != (KeptBitsMinusOne + 1)) 3299 return SDValue(); 3300 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3301 3302 // We don't want to do this in every single case. 3303 SelectionDAG &DAG = DCI.DAG; 3304 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3305 XVT, KeptBits)) 3306 return SDValue(); 3307 3308 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3309 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3310 3311 // Unfold into: ((%x << C) a>> C) cond %x 3312 // Where 'cond' will be either 'eq' or 'ne'. 3313 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3314 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3315 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3316 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3317 3318 return T2; 3319 } 3320 3321 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3322 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3323 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3324 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3325 assert(isConstOrConstSplat(N1C) && 3326 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3327 "Should be a comparison with 0."); 3328 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3329 "Valid only for [in]equality comparisons."); 3330 3331 unsigned NewShiftOpcode; 3332 SDValue X, C, Y; 3333 3334 SelectionDAG &DAG = DCI.DAG; 3335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3336 3337 // Look for '(C l>>/<< Y)'. 3338 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3339 // The shift should be one-use. 3340 if (!V.hasOneUse()) 3341 return false; 3342 unsigned OldShiftOpcode = V.getOpcode(); 3343 switch (OldShiftOpcode) { 3344 case ISD::SHL: 3345 NewShiftOpcode = ISD::SRL; 3346 break; 3347 case ISD::SRL: 3348 NewShiftOpcode = ISD::SHL; 3349 break; 3350 default: 3351 return false; // must be a logical shift. 3352 } 3353 // We should be shifting a constant. 3354 // FIXME: best to use isConstantOrConstantVector(). 3355 C = V.getOperand(0); 3356 ConstantSDNode *CC = 3357 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3358 if (!CC) 3359 return false; 3360 Y = V.getOperand(1); 3361 3362 ConstantSDNode *XC = 3363 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3364 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3365 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3366 }; 3367 3368 // LHS of comparison should be an one-use 'and'. 3369 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3370 return SDValue(); 3371 3372 X = N0.getOperand(0); 3373 SDValue Mask = N0.getOperand(1); 3374 3375 // 'and' is commutative! 3376 if (!Match(Mask)) { 3377 std::swap(X, Mask); 3378 if (!Match(Mask)) 3379 return SDValue(); 3380 } 3381 3382 EVT VT = X.getValueType(); 3383 3384 // Produce: 3385 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3386 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3387 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3388 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3389 return T2; 3390 } 3391 3392 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3393 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3394 /// handle the commuted versions of these patterns. 3395 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3396 ISD::CondCode Cond, const SDLoc &DL, 3397 DAGCombinerInfo &DCI) const { 3398 unsigned BOpcode = N0.getOpcode(); 3399 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3400 "Unexpected binop"); 3401 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3402 3403 // (X + Y) == X --> Y == 0 3404 // (X - Y) == X --> Y == 0 3405 // (X ^ Y) == X --> Y == 0 3406 SelectionDAG &DAG = DCI.DAG; 3407 EVT OpVT = N0.getValueType(); 3408 SDValue X = N0.getOperand(0); 3409 SDValue Y = N0.getOperand(1); 3410 if (X == N1) 3411 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3412 3413 if (Y != N1) 3414 return SDValue(); 3415 3416 // (X + Y) == Y --> X == 0 3417 // (X ^ Y) == Y --> X == 0 3418 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3419 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3420 3421 // The shift would not be valid if the operands are boolean (i1). 3422 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3423 return SDValue(); 3424 3425 // (X - Y) == Y --> X == Y << 1 3426 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3427 !DCI.isBeforeLegalize()); 3428 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3429 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3430 if (!DCI.isCalledByLegalizer()) 3431 DCI.AddToWorklist(YShl1.getNode()); 3432 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3433 } 3434 3435 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3436 SDValue N0, const APInt &C1, 3437 ISD::CondCode Cond, const SDLoc &dl, 3438 SelectionDAG &DAG) { 3439 // Look through truncs that don't change the value of a ctpop. 3440 // FIXME: Add vector support? Need to be careful with setcc result type below. 3441 SDValue CTPOP = N0; 3442 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3443 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3444 CTPOP = N0.getOperand(0); 3445 3446 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3447 return SDValue(); 3448 3449 EVT CTVT = CTPOP.getValueType(); 3450 SDValue CTOp = CTPOP.getOperand(0); 3451 3452 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3453 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3454 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3455 return SDValue(); 3456 3457 // (ctpop x) u< 2 -> (x & x-1) == 0 3458 // (ctpop x) u> 1 -> (x & x-1) != 0 3459 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3460 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3461 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3462 return SDValue(); 3463 if (C1 == 0 && (Cond == ISD::SETULT)) 3464 return SDValue(); // This is handled elsewhere. 3465 3466 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3467 3468 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3469 SDValue Result = CTOp; 3470 for (unsigned i = 0; i < Passes; i++) { 3471 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3472 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3473 } 3474 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3475 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3476 } 3477 3478 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3479 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3480 // For scalars, keep CTPOP if it is legal or custom. 3481 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3482 return SDValue(); 3483 // This is based on X86's custom lowering for CTPOP which produces more 3484 // instructions than the expansion here. 3485 3486 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3487 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3488 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3489 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3490 assert(CTVT.isInteger()); 3491 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3492 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3493 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3494 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3495 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3496 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3497 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3498 } 3499 3500 return SDValue(); 3501 } 3502 3503 /// Try to simplify a setcc built with the specified operands and cc. If it is 3504 /// unable to simplify it, return a null SDValue. 3505 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3506 ISD::CondCode Cond, bool foldBooleans, 3507 DAGCombinerInfo &DCI, 3508 const SDLoc &dl) const { 3509 SelectionDAG &DAG = DCI.DAG; 3510 const DataLayout &Layout = DAG.getDataLayout(); 3511 EVT OpVT = N0.getValueType(); 3512 3513 // Constant fold or commute setcc. 3514 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3515 return Fold; 3516 3517 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3518 // TODO: Handle non-splat vector constants. All undef causes trouble. 3519 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3520 // infinite loop here when we encounter one. 3521 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3522 if (isConstOrConstSplat(N0) && 3523 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3524 (DCI.isBeforeLegalizeOps() || 3525 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3526 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3527 3528 // If we have a subtract with the same 2 non-constant operands as this setcc 3529 // -- but in reverse order -- then try to commute the operands of this setcc 3530 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3531 // instruction on some targets. 3532 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3533 (DCI.isBeforeLegalizeOps() || 3534 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3535 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3536 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3537 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3538 3539 if (auto *N1C = isConstOrConstSplat(N1)) { 3540 const APInt &C1 = N1C->getAPIntValue(); 3541 3542 // Optimize some CTPOP cases. 3543 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3544 return V; 3545 3546 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3547 // equality comparison, then we're just comparing whether X itself is 3548 // zero. 3549 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3550 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3551 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3552 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3553 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3554 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3555 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3556 // (srl (ctlz x), 5) == 0 -> X != 0 3557 // (srl (ctlz x), 5) != 1 -> X != 0 3558 Cond = ISD::SETNE; 3559 } else { 3560 // (srl (ctlz x), 5) != 0 -> X == 0 3561 // (srl (ctlz x), 5) == 1 -> X == 0 3562 Cond = ISD::SETEQ; 3563 } 3564 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3565 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3566 Cond); 3567 } 3568 } 3569 } 3570 } 3571 3572 // FIXME: Support vectors. 3573 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3574 const APInt &C1 = N1C->getAPIntValue(); 3575 3576 // (zext x) == C --> x == (trunc C) 3577 // (sext x) == C --> x == (trunc C) 3578 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3579 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3580 unsigned MinBits = N0.getValueSizeInBits(); 3581 SDValue PreExt; 3582 bool Signed = false; 3583 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3584 // ZExt 3585 MinBits = N0->getOperand(0).getValueSizeInBits(); 3586 PreExt = N0->getOperand(0); 3587 } else if (N0->getOpcode() == ISD::AND) { 3588 // DAGCombine turns costly ZExts into ANDs 3589 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3590 if ((C->getAPIntValue()+1).isPowerOf2()) { 3591 MinBits = C->getAPIntValue().countTrailingOnes(); 3592 PreExt = N0->getOperand(0); 3593 } 3594 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3595 // SExt 3596 MinBits = N0->getOperand(0).getValueSizeInBits(); 3597 PreExt = N0->getOperand(0); 3598 Signed = true; 3599 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3600 // ZEXTLOAD / SEXTLOAD 3601 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3602 MinBits = LN0->getMemoryVT().getSizeInBits(); 3603 PreExt = N0; 3604 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3605 Signed = true; 3606 MinBits = LN0->getMemoryVT().getSizeInBits(); 3607 PreExt = N0; 3608 } 3609 } 3610 3611 // Figure out how many bits we need to preserve this constant. 3612 unsigned ReqdBits = Signed ? 3613 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3614 C1.getActiveBits(); 3615 3616 // Make sure we're not losing bits from the constant. 3617 if (MinBits > 0 && 3618 MinBits < C1.getBitWidth() && 3619 MinBits >= ReqdBits) { 3620 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3621 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3622 // Will get folded away. 3623 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3624 if (MinBits == 1 && C1 == 1) 3625 // Invert the condition. 3626 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3627 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3628 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3629 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3630 } 3631 3632 // If truncating the setcc operands is not desirable, we can still 3633 // simplify the expression in some cases: 3634 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3635 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3636 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3637 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3638 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3639 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3640 SDValue TopSetCC = N0->getOperand(0); 3641 unsigned N0Opc = N0->getOpcode(); 3642 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3643 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3644 TopSetCC.getOpcode() == ISD::SETCC && 3645 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3646 (isConstFalseVal(N1C) || 3647 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3648 3649 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 3650 (!N1C->isZero() && Cond == ISD::SETNE); 3651 3652 if (!Inverse) 3653 return TopSetCC; 3654 3655 ISD::CondCode InvCond = ISD::getSetCCInverse( 3656 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3657 TopSetCC.getOperand(0).getValueType()); 3658 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3659 TopSetCC.getOperand(1), 3660 InvCond); 3661 } 3662 } 3663 } 3664 3665 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3666 // equality or unsigned, and all 1 bits of the const are in the same 3667 // partial word, see if we can shorten the load. 3668 if (DCI.isBeforeLegalize() && 3669 !ISD::isSignedIntSetCC(Cond) && 3670 N0.getOpcode() == ISD::AND && C1 == 0 && 3671 N0.getNode()->hasOneUse() && 3672 isa<LoadSDNode>(N0.getOperand(0)) && 3673 N0.getOperand(0).getNode()->hasOneUse() && 3674 isa<ConstantSDNode>(N0.getOperand(1))) { 3675 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3676 APInt bestMask; 3677 unsigned bestWidth = 0, bestOffset = 0; 3678 if (Lod->isSimple() && Lod->isUnindexed()) { 3679 unsigned origWidth = N0.getValueSizeInBits(); 3680 unsigned maskWidth = origWidth; 3681 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3682 // 8 bits, but have to be careful... 3683 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3684 origWidth = Lod->getMemoryVT().getSizeInBits(); 3685 const APInt &Mask = N0.getConstantOperandAPInt(1); 3686 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3687 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3688 for (unsigned offset=0; offset<origWidth/width; offset++) { 3689 if (Mask.isSubsetOf(newMask)) { 3690 if (Layout.isLittleEndian()) 3691 bestOffset = (uint64_t)offset * (width/8); 3692 else 3693 bestOffset = (origWidth/width - offset - 1) * (width/8); 3694 bestMask = Mask.lshr(offset * (width/8) * 8); 3695 bestWidth = width; 3696 break; 3697 } 3698 newMask <<= width; 3699 } 3700 } 3701 } 3702 if (bestWidth) { 3703 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3704 if (newVT.isRound() && 3705 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3706 SDValue Ptr = Lod->getBasePtr(); 3707 if (bestOffset != 0) 3708 Ptr = 3709 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3710 SDValue NewLoad = 3711 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3712 Lod->getPointerInfo().getWithOffset(bestOffset), 3713 Lod->getOriginalAlign()); 3714 return DAG.getSetCC(dl, VT, 3715 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3716 DAG.getConstant(bestMask.trunc(bestWidth), 3717 dl, newVT)), 3718 DAG.getConstant(0LL, dl, newVT), Cond); 3719 } 3720 } 3721 } 3722 3723 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3724 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3725 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3726 3727 // If the comparison constant has bits in the upper part, the 3728 // zero-extended value could never match. 3729 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3730 C1.getBitWidth() - InSize))) { 3731 switch (Cond) { 3732 case ISD::SETUGT: 3733 case ISD::SETUGE: 3734 case ISD::SETEQ: 3735 return DAG.getConstant(0, dl, VT); 3736 case ISD::SETULT: 3737 case ISD::SETULE: 3738 case ISD::SETNE: 3739 return DAG.getConstant(1, dl, VT); 3740 case ISD::SETGT: 3741 case ISD::SETGE: 3742 // True if the sign bit of C1 is set. 3743 return DAG.getConstant(C1.isNegative(), dl, VT); 3744 case ISD::SETLT: 3745 case ISD::SETLE: 3746 // True if the sign bit of C1 isn't set. 3747 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3748 default: 3749 break; 3750 } 3751 } 3752 3753 // Otherwise, we can perform the comparison with the low bits. 3754 switch (Cond) { 3755 case ISD::SETEQ: 3756 case ISD::SETNE: 3757 case ISD::SETUGT: 3758 case ISD::SETUGE: 3759 case ISD::SETULT: 3760 case ISD::SETULE: { 3761 EVT newVT = N0.getOperand(0).getValueType(); 3762 if (DCI.isBeforeLegalizeOps() || 3763 (isOperationLegal(ISD::SETCC, newVT) && 3764 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3765 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3766 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3767 3768 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3769 NewConst, Cond); 3770 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3771 } 3772 break; 3773 } 3774 default: 3775 break; // todo, be more careful with signed comparisons 3776 } 3777 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3778 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3779 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3780 OpVT)) { 3781 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3782 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3783 EVT ExtDstTy = N0.getValueType(); 3784 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3785 3786 // If the constant doesn't fit into the number of bits for the source of 3787 // the sign extension, it is impossible for both sides to be equal. 3788 if (C1.getMinSignedBits() > ExtSrcTyBits) 3789 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3790 3791 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3792 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3793 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3794 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3795 DAG.getConstant(Imm, dl, ExtDstTy)); 3796 if (!DCI.isCalledByLegalizer()) 3797 DCI.AddToWorklist(ZextOp.getNode()); 3798 // Otherwise, make this a use of a zext. 3799 return DAG.getSetCC(dl, VT, ZextOp, 3800 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3801 } else if ((N1C->isZero() || N1C->isOne()) && 3802 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3803 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3804 if (N0.getOpcode() == ISD::SETCC && 3805 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3806 (N0.getValueType() == MVT::i1 || 3807 getBooleanContents(N0.getOperand(0).getValueType()) == 3808 ZeroOrOneBooleanContent)) { 3809 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3810 if (TrueWhenTrue) 3811 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3812 // Invert the condition. 3813 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3814 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3815 if (DCI.isBeforeLegalizeOps() || 3816 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3817 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3818 } 3819 3820 if ((N0.getOpcode() == ISD::XOR || 3821 (N0.getOpcode() == ISD::AND && 3822 N0.getOperand(0).getOpcode() == ISD::XOR && 3823 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3824 isOneConstant(N0.getOperand(1))) { 3825 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3826 // can only do this if the top bits are known zero. 3827 unsigned BitWidth = N0.getValueSizeInBits(); 3828 if (DAG.MaskedValueIsZero(N0, 3829 APInt::getHighBitsSet(BitWidth, 3830 BitWidth-1))) { 3831 // Okay, get the un-inverted input value. 3832 SDValue Val; 3833 if (N0.getOpcode() == ISD::XOR) { 3834 Val = N0.getOperand(0); 3835 } else { 3836 assert(N0.getOpcode() == ISD::AND && 3837 N0.getOperand(0).getOpcode() == ISD::XOR); 3838 // ((X^1)&1)^1 -> X & 1 3839 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3840 N0.getOperand(0).getOperand(0), 3841 N0.getOperand(1)); 3842 } 3843 3844 return DAG.getSetCC(dl, VT, Val, N1, 3845 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3846 } 3847 } else if (N1C->isOne()) { 3848 SDValue Op0 = N0; 3849 if (Op0.getOpcode() == ISD::TRUNCATE) 3850 Op0 = Op0.getOperand(0); 3851 3852 if ((Op0.getOpcode() == ISD::XOR) && 3853 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3854 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3855 SDValue XorLHS = Op0.getOperand(0); 3856 SDValue XorRHS = Op0.getOperand(1); 3857 // Ensure that the input setccs return an i1 type or 0/1 value. 3858 if (Op0.getValueType() == MVT::i1 || 3859 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3860 ZeroOrOneBooleanContent && 3861 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3862 ZeroOrOneBooleanContent)) { 3863 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3864 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3865 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3866 } 3867 } 3868 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 3869 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3870 if (Op0.getValueType().bitsGT(VT)) 3871 Op0 = DAG.getNode(ISD::AND, dl, VT, 3872 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3873 DAG.getConstant(1, dl, VT)); 3874 else if (Op0.getValueType().bitsLT(VT)) 3875 Op0 = DAG.getNode(ISD::AND, dl, VT, 3876 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3877 DAG.getConstant(1, dl, VT)); 3878 3879 return DAG.getSetCC(dl, VT, Op0, 3880 DAG.getConstant(0, dl, Op0.getValueType()), 3881 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3882 } 3883 if (Op0.getOpcode() == ISD::AssertZext && 3884 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3885 return DAG.getSetCC(dl, VT, Op0, 3886 DAG.getConstant(0, dl, Op0.getValueType()), 3887 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3888 } 3889 } 3890 3891 // Given: 3892 // icmp eq/ne (urem %x, %y), 0 3893 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3894 // icmp eq/ne %x, 0 3895 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 3896 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3897 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3898 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3899 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3900 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3901 } 3902 3903 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 3904 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 3905 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3906 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 3907 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 3908 N1C && N1C->isAllOnes()) { 3909 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3910 DAG.getConstant(0, dl, OpVT), 3911 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 3912 } 3913 3914 if (SDValue V = 3915 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3916 return V; 3917 } 3918 3919 // These simplifications apply to splat vectors as well. 3920 // TODO: Handle more splat vector cases. 3921 if (auto *N1C = isConstOrConstSplat(N1)) { 3922 const APInt &C1 = N1C->getAPIntValue(); 3923 3924 APInt MinVal, MaxVal; 3925 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3926 if (ISD::isSignedIntSetCC(Cond)) { 3927 MinVal = APInt::getSignedMinValue(OperandBitSize); 3928 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3929 } else { 3930 MinVal = APInt::getMinValue(OperandBitSize); 3931 MaxVal = APInt::getMaxValue(OperandBitSize); 3932 } 3933 3934 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3935 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3936 // X >= MIN --> true 3937 if (C1 == MinVal) 3938 return DAG.getBoolConstant(true, dl, VT, OpVT); 3939 3940 if (!VT.isVector()) { // TODO: Support this for vectors. 3941 // X >= C0 --> X > (C0 - 1) 3942 APInt C = C1 - 1; 3943 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3944 if ((DCI.isBeforeLegalizeOps() || 3945 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3946 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3947 isLegalICmpImmediate(C.getSExtValue())))) { 3948 return DAG.getSetCC(dl, VT, N0, 3949 DAG.getConstant(C, dl, N1.getValueType()), 3950 NewCC); 3951 } 3952 } 3953 } 3954 3955 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3956 // X <= MAX --> true 3957 if (C1 == MaxVal) 3958 return DAG.getBoolConstant(true, dl, VT, OpVT); 3959 3960 // X <= C0 --> X < (C0 + 1) 3961 if (!VT.isVector()) { // TODO: Support this for vectors. 3962 APInt C = C1 + 1; 3963 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3964 if ((DCI.isBeforeLegalizeOps() || 3965 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3966 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3967 isLegalICmpImmediate(C.getSExtValue())))) { 3968 return DAG.getSetCC(dl, VT, N0, 3969 DAG.getConstant(C, dl, N1.getValueType()), 3970 NewCC); 3971 } 3972 } 3973 } 3974 3975 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3976 if (C1 == MinVal) 3977 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3978 3979 // TODO: Support this for vectors after legalize ops. 3980 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3981 // Canonicalize setlt X, Max --> setne X, Max 3982 if (C1 == MaxVal) 3983 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3984 3985 // If we have setult X, 1, turn it into seteq X, 0 3986 if (C1 == MinVal+1) 3987 return DAG.getSetCC(dl, VT, N0, 3988 DAG.getConstant(MinVal, dl, N0.getValueType()), 3989 ISD::SETEQ); 3990 } 3991 } 3992 3993 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3994 if (C1 == MaxVal) 3995 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3996 3997 // TODO: Support this for vectors after legalize ops. 3998 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3999 // Canonicalize setgt X, Min --> setne X, Min 4000 if (C1 == MinVal) 4001 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4002 4003 // If we have setugt X, Max-1, turn it into seteq X, Max 4004 if (C1 == MaxVal-1) 4005 return DAG.getSetCC(dl, VT, N0, 4006 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4007 ISD::SETEQ); 4008 } 4009 } 4010 4011 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4012 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4013 if (C1.isZero()) 4014 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4015 VT, N0, N1, Cond, DCI, dl)) 4016 return CC; 4017 4018 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4019 // For example, when high 32-bits of i64 X are known clear: 4020 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4021 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4022 bool CmpZero = N1C->getAPIntValue().isNullValue(); 4023 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4024 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4025 // Match or(lo,shl(hi,bw/2)) pattern. 4026 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4027 unsigned EltBits = V.getScalarValueSizeInBits(); 4028 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4029 return false; 4030 SDValue LHS = V.getOperand(0); 4031 SDValue RHS = V.getOperand(1); 4032 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4033 // Unshifted element must have zero upperbits. 4034 if (RHS.getOpcode() == ISD::SHL && 4035 isa<ConstantSDNode>(RHS.getOperand(1)) && 4036 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4037 DAG.MaskedValueIsZero(LHS, HiBits)) { 4038 Lo = LHS; 4039 Hi = RHS.getOperand(0); 4040 return true; 4041 } 4042 if (LHS.getOpcode() == ISD::SHL && 4043 isa<ConstantSDNode>(LHS.getOperand(1)) && 4044 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4045 DAG.MaskedValueIsZero(RHS, HiBits)) { 4046 Lo = RHS; 4047 Hi = LHS.getOperand(0); 4048 return true; 4049 } 4050 return false; 4051 }; 4052 4053 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4054 unsigned EltBits = N0.getScalarValueSizeInBits(); 4055 unsigned HalfBits = EltBits / 2; 4056 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4057 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4058 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4059 SDValue NewN0 = 4060 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4061 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4062 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4063 }; 4064 4065 SDValue Lo, Hi; 4066 if (IsConcat(N0, Lo, Hi)) 4067 return MergeConcat(Lo, Hi); 4068 4069 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4070 SDValue Lo0, Lo1, Hi0, Hi1; 4071 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4072 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4073 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4074 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4075 } 4076 } 4077 } 4078 } 4079 4080 // If we have "setcc X, C0", check to see if we can shrink the immediate 4081 // by changing cc. 4082 // TODO: Support this for vectors after legalize ops. 4083 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4084 // SETUGT X, SINTMAX -> SETLT X, 0 4085 // SETUGE X, SINTMIN -> SETLT X, 0 4086 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4087 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4088 return DAG.getSetCC(dl, VT, N0, 4089 DAG.getConstant(0, dl, N1.getValueType()), 4090 ISD::SETLT); 4091 4092 // SETULT X, SINTMIN -> SETGT X, -1 4093 // SETULE X, SINTMAX -> SETGT X, -1 4094 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4095 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4096 return DAG.getSetCC(dl, VT, N0, 4097 DAG.getAllOnesConstant(dl, N1.getValueType()), 4098 ISD::SETGT); 4099 } 4100 } 4101 4102 // Back to non-vector simplifications. 4103 // TODO: Can we do these for vector splats? 4104 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4106 const APInt &C1 = N1C->getAPIntValue(); 4107 EVT ShValTy = N0.getValueType(); 4108 4109 // Fold bit comparisons when we can. This will result in an 4110 // incorrect value when boolean false is negative one, unless 4111 // the bitsize is 1 in which case the false value is the same 4112 // in practice regardless of the representation. 4113 if ((VT.getSizeInBits() == 1 || 4114 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4115 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4116 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4117 N0.getOpcode() == ISD::AND) { 4118 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4119 EVT ShiftTy = 4120 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4121 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4122 // Perform the xform if the AND RHS is a single bit. 4123 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4124 if (AndRHS->getAPIntValue().isPowerOf2() && 4125 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4126 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4127 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4128 DAG.getConstant(ShCt, dl, ShiftTy))); 4129 } 4130 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4131 // (X & 8) == 8 --> (X & 8) >> 3 4132 // Perform the xform if C1 is a single bit. 4133 unsigned ShCt = C1.logBase2(); 4134 if (C1.isPowerOf2() && 4135 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4136 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4137 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4138 DAG.getConstant(ShCt, dl, ShiftTy))); 4139 } 4140 } 4141 } 4142 } 4143 4144 if (C1.getMinSignedBits() <= 64 && 4145 !isLegalICmpImmediate(C1.getSExtValue())) { 4146 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4147 // (X & -256) == 256 -> (X >> 8) == 1 4148 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4149 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4150 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4151 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4152 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 4153 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4154 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4155 SDValue Shift = 4156 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4157 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4158 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4159 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4160 } 4161 } 4162 } 4163 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4164 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4165 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4166 // X < 0x100000000 -> (X >> 32) < 1 4167 // X >= 0x100000000 -> (X >> 32) >= 1 4168 // X <= 0x0ffffffff -> (X >> 32) < 1 4169 // X > 0x0ffffffff -> (X >> 32) >= 1 4170 unsigned ShiftBits; 4171 APInt NewC = C1; 4172 ISD::CondCode NewCond = Cond; 4173 if (AdjOne) { 4174 ShiftBits = C1.countTrailingOnes(); 4175 NewC = NewC + 1; 4176 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4177 } else { 4178 ShiftBits = C1.countTrailingZeros(); 4179 } 4180 NewC.lshrInPlace(ShiftBits); 4181 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4182 isLegalICmpImmediate(NewC.getSExtValue()) && 4183 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4184 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4185 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4186 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4187 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4188 } 4189 } 4190 } 4191 } 4192 4193 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4194 auto *CFP = cast<ConstantFPSDNode>(N1); 4195 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4196 4197 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4198 // constant if knowing that the operand is non-nan is enough. We prefer to 4199 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4200 // materialize 0.0. 4201 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4202 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4203 4204 // setcc (fneg x), C -> setcc swap(pred) x, -C 4205 if (N0.getOpcode() == ISD::FNEG) { 4206 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4207 if (DCI.isBeforeLegalizeOps() || 4208 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4209 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4210 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4211 } 4212 } 4213 4214 // If the condition is not legal, see if we can find an equivalent one 4215 // which is legal. 4216 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4217 // If the comparison was an awkward floating-point == or != and one of 4218 // the comparison operands is infinity or negative infinity, convert the 4219 // condition to a less-awkward <= or >=. 4220 if (CFP->getValueAPF().isInfinity()) { 4221 bool IsNegInf = CFP->getValueAPF().isNegative(); 4222 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4223 switch (Cond) { 4224 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4225 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4226 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4227 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4228 default: break; 4229 } 4230 if (NewCond != ISD::SETCC_INVALID && 4231 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4232 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4233 } 4234 } 4235 } 4236 4237 if (N0 == N1) { 4238 // The sext(setcc()) => setcc() optimization relies on the appropriate 4239 // constant being emitted. 4240 assert(!N0.getValueType().isInteger() && 4241 "Integer types should be handled by FoldSetCC"); 4242 4243 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4244 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4245 if (UOF == 2) // FP operators that are undefined on NaNs. 4246 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4247 if (UOF == unsigned(EqTrue)) 4248 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4249 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4250 // if it is not already. 4251 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4252 if (NewCond != Cond && 4253 (DCI.isBeforeLegalizeOps() || 4254 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4255 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4256 } 4257 4258 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4259 N0.getValueType().isInteger()) { 4260 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4261 N0.getOpcode() == ISD::XOR) { 4262 // Simplify (X+Y) == (X+Z) --> Y == Z 4263 if (N0.getOpcode() == N1.getOpcode()) { 4264 if (N0.getOperand(0) == N1.getOperand(0)) 4265 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4266 if (N0.getOperand(1) == N1.getOperand(1)) 4267 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4268 if (isCommutativeBinOp(N0.getOpcode())) { 4269 // If X op Y == Y op X, try other combinations. 4270 if (N0.getOperand(0) == N1.getOperand(1)) 4271 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4272 Cond); 4273 if (N0.getOperand(1) == N1.getOperand(0)) 4274 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4275 Cond); 4276 } 4277 } 4278 4279 // If RHS is a legal immediate value for a compare instruction, we need 4280 // to be careful about increasing register pressure needlessly. 4281 bool LegalRHSImm = false; 4282 4283 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4284 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4285 // Turn (X+C1) == C2 --> X == C2-C1 4286 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4287 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4288 DAG.getConstant(RHSC->getAPIntValue()- 4289 LHSR->getAPIntValue(), 4290 dl, N0.getValueType()), Cond); 4291 } 4292 4293 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4294 if (N0.getOpcode() == ISD::XOR) 4295 // If we know that all of the inverted bits are zero, don't bother 4296 // performing the inversion. 4297 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4298 return 4299 DAG.getSetCC(dl, VT, N0.getOperand(0), 4300 DAG.getConstant(LHSR->getAPIntValue() ^ 4301 RHSC->getAPIntValue(), 4302 dl, N0.getValueType()), 4303 Cond); 4304 } 4305 4306 // Turn (C1-X) == C2 --> X == C1-C2 4307 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4308 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4309 return 4310 DAG.getSetCC(dl, VT, N0.getOperand(1), 4311 DAG.getConstant(SUBC->getAPIntValue() - 4312 RHSC->getAPIntValue(), 4313 dl, N0.getValueType()), 4314 Cond); 4315 } 4316 } 4317 4318 // Could RHSC fold directly into a compare? 4319 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4320 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4321 } 4322 4323 // (X+Y) == X --> Y == 0 and similar folds. 4324 // Don't do this if X is an immediate that can fold into a cmp 4325 // instruction and X+Y has other uses. It could be an induction variable 4326 // chain, and the transform would increase register pressure. 4327 if (!LegalRHSImm || N0.hasOneUse()) 4328 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4329 return V; 4330 } 4331 4332 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4333 N1.getOpcode() == ISD::XOR) 4334 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4335 return V; 4336 4337 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4338 return V; 4339 } 4340 4341 // Fold remainder of division by a constant. 4342 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4343 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4344 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4345 4346 // When division is cheap or optimizing for minimum size, 4347 // fall through to DIVREM creation by skipping this fold. 4348 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4349 if (N0.getOpcode() == ISD::UREM) { 4350 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4351 return Folded; 4352 } else if (N0.getOpcode() == ISD::SREM) { 4353 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4354 return Folded; 4355 } 4356 } 4357 } 4358 4359 // Fold away ALL boolean setcc's. 4360 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4361 SDValue Temp; 4362 switch (Cond) { 4363 default: llvm_unreachable("Unknown integer setcc!"); 4364 case ISD::SETEQ: // X == Y -> ~(X^Y) 4365 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4366 N0 = DAG.getNOT(dl, Temp, OpVT); 4367 if (!DCI.isCalledByLegalizer()) 4368 DCI.AddToWorklist(Temp.getNode()); 4369 break; 4370 case ISD::SETNE: // X != Y --> (X^Y) 4371 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4372 break; 4373 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4374 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4375 Temp = DAG.getNOT(dl, N0, OpVT); 4376 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4377 if (!DCI.isCalledByLegalizer()) 4378 DCI.AddToWorklist(Temp.getNode()); 4379 break; 4380 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4381 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4382 Temp = DAG.getNOT(dl, N1, OpVT); 4383 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4384 if (!DCI.isCalledByLegalizer()) 4385 DCI.AddToWorklist(Temp.getNode()); 4386 break; 4387 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4388 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4389 Temp = DAG.getNOT(dl, N0, OpVT); 4390 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4391 if (!DCI.isCalledByLegalizer()) 4392 DCI.AddToWorklist(Temp.getNode()); 4393 break; 4394 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4395 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4396 Temp = DAG.getNOT(dl, N1, OpVT); 4397 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4398 break; 4399 } 4400 if (VT.getScalarType() != MVT::i1) { 4401 if (!DCI.isCalledByLegalizer()) 4402 DCI.AddToWorklist(N0.getNode()); 4403 // FIXME: If running after legalize, we probably can't do this. 4404 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4405 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4406 } 4407 return N0; 4408 } 4409 4410 // Could not fold it. 4411 return SDValue(); 4412 } 4413 4414 /// Returns true (and the GlobalValue and the offset) if the node is a 4415 /// GlobalAddress + offset. 4416 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4417 int64_t &Offset) const { 4418 4419 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4420 4421 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4422 GA = GASD->getGlobal(); 4423 Offset += GASD->getOffset(); 4424 return true; 4425 } 4426 4427 if (N->getOpcode() == ISD::ADD) { 4428 SDValue N1 = N->getOperand(0); 4429 SDValue N2 = N->getOperand(1); 4430 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4431 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4432 Offset += V->getSExtValue(); 4433 return true; 4434 } 4435 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4436 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4437 Offset += V->getSExtValue(); 4438 return true; 4439 } 4440 } 4441 } 4442 4443 return false; 4444 } 4445 4446 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4447 DAGCombinerInfo &DCI) const { 4448 // Default implementation: no optimization. 4449 return SDValue(); 4450 } 4451 4452 //===----------------------------------------------------------------------===// 4453 // Inline Assembler Implementation Methods 4454 //===----------------------------------------------------------------------===// 4455 4456 TargetLowering::ConstraintType 4457 TargetLowering::getConstraintType(StringRef Constraint) const { 4458 unsigned S = Constraint.size(); 4459 4460 if (S == 1) { 4461 switch (Constraint[0]) { 4462 default: break; 4463 case 'r': 4464 return C_RegisterClass; 4465 case 'm': // memory 4466 case 'o': // offsetable 4467 case 'V': // not offsetable 4468 return C_Memory; 4469 case 'n': // Simple Integer 4470 case 'E': // Floating Point Constant 4471 case 'F': // Floating Point Constant 4472 return C_Immediate; 4473 case 'i': // Simple Integer or Relocatable Constant 4474 case 's': // Relocatable Constant 4475 case 'p': // Address. 4476 case 'X': // Allow ANY value. 4477 case 'I': // Target registers. 4478 case 'J': 4479 case 'K': 4480 case 'L': 4481 case 'M': 4482 case 'N': 4483 case 'O': 4484 case 'P': 4485 case '<': 4486 case '>': 4487 return C_Other; 4488 } 4489 } 4490 4491 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4492 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4493 return C_Memory; 4494 return C_Register; 4495 } 4496 return C_Unknown; 4497 } 4498 4499 /// Try to replace an X constraint, which matches anything, with another that 4500 /// has more specific requirements based on the type of the corresponding 4501 /// operand. 4502 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4503 if (ConstraintVT.isInteger()) 4504 return "r"; 4505 if (ConstraintVT.isFloatingPoint()) 4506 return "f"; // works for many targets 4507 return nullptr; 4508 } 4509 4510 SDValue TargetLowering::LowerAsmOutputForConstraint( 4511 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4512 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4513 return SDValue(); 4514 } 4515 4516 /// Lower the specified operand into the Ops vector. 4517 /// If it is invalid, don't add anything to Ops. 4518 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4519 std::string &Constraint, 4520 std::vector<SDValue> &Ops, 4521 SelectionDAG &DAG) const { 4522 4523 if (Constraint.length() > 1) return; 4524 4525 char ConstraintLetter = Constraint[0]; 4526 switch (ConstraintLetter) { 4527 default: break; 4528 case 'X': // Allows any operand; labels (basic block) use this. 4529 if (Op.getOpcode() == ISD::BasicBlock || 4530 Op.getOpcode() == ISD::TargetBlockAddress) { 4531 Ops.push_back(Op); 4532 return; 4533 } 4534 LLVM_FALLTHROUGH; 4535 case 'i': // Simple Integer or Relocatable Constant 4536 case 'n': // Simple Integer 4537 case 's': { // Relocatable Constant 4538 4539 GlobalAddressSDNode *GA; 4540 ConstantSDNode *C; 4541 BlockAddressSDNode *BA; 4542 uint64_t Offset = 0; 4543 4544 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4545 // etc., since getelementpointer is variadic. We can't use 4546 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4547 // while in this case the GA may be furthest from the root node which is 4548 // likely an ISD::ADD. 4549 while (1) { 4550 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4551 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4552 GA->getValueType(0), 4553 Offset + GA->getOffset())); 4554 return; 4555 } 4556 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4557 // gcc prints these as sign extended. Sign extend value to 64 bits 4558 // now; without this it would get ZExt'd later in 4559 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4560 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4561 BooleanContent BCont = getBooleanContents(MVT::i64); 4562 ISD::NodeType ExtOpc = 4563 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4564 int64_t ExtVal = 4565 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4566 Ops.push_back( 4567 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4568 return; 4569 } 4570 if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4571 Ops.push_back(DAG.getTargetBlockAddress( 4572 BA->getBlockAddress(), BA->getValueType(0), 4573 Offset + BA->getOffset(), BA->getTargetFlags())); 4574 return; 4575 } 4576 const unsigned OpCode = Op.getOpcode(); 4577 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4578 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4579 Op = Op.getOperand(1); 4580 // Subtraction is not commutative. 4581 else if (OpCode == ISD::ADD && 4582 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4583 Op = Op.getOperand(0); 4584 else 4585 return; 4586 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4587 continue; 4588 } 4589 return; 4590 } 4591 break; 4592 } 4593 } 4594 } 4595 4596 std::pair<unsigned, const TargetRegisterClass *> 4597 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4598 StringRef Constraint, 4599 MVT VT) const { 4600 if (Constraint.empty() || Constraint[0] != '{') 4601 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4602 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4603 4604 // Remove the braces from around the name. 4605 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4606 4607 std::pair<unsigned, const TargetRegisterClass *> R = 4608 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4609 4610 // Figure out which register class contains this reg. 4611 for (const TargetRegisterClass *RC : RI->regclasses()) { 4612 // If none of the value types for this register class are valid, we 4613 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4614 if (!isLegalRC(*RI, *RC)) 4615 continue; 4616 4617 for (const MCPhysReg &PR : *RC) { 4618 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4619 std::pair<unsigned, const TargetRegisterClass *> S = 4620 std::make_pair(PR, RC); 4621 4622 // If this register class has the requested value type, return it, 4623 // otherwise keep searching and return the first class found 4624 // if no other is found which explicitly has the requested type. 4625 if (RI->isTypeLegalForClass(*RC, VT)) 4626 return S; 4627 if (!R.second) 4628 R = S; 4629 } 4630 } 4631 } 4632 4633 return R; 4634 } 4635 4636 //===----------------------------------------------------------------------===// 4637 // Constraint Selection. 4638 4639 /// Return true of this is an input operand that is a matching constraint like 4640 /// "4". 4641 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4642 assert(!ConstraintCode.empty() && "No known constraint!"); 4643 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4644 } 4645 4646 /// If this is an input matching constraint, this method returns the output 4647 /// operand it matches. 4648 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4649 assert(!ConstraintCode.empty() && "No known constraint!"); 4650 return atoi(ConstraintCode.c_str()); 4651 } 4652 4653 /// Split up the constraint string from the inline assembly value into the 4654 /// specific constraints and their prefixes, and also tie in the associated 4655 /// operand values. 4656 /// If this returns an empty vector, and if the constraint string itself 4657 /// isn't empty, there was an error parsing. 4658 TargetLowering::AsmOperandInfoVector 4659 TargetLowering::ParseConstraints(const DataLayout &DL, 4660 const TargetRegisterInfo *TRI, 4661 const CallBase &Call) const { 4662 /// Information about all of the constraints. 4663 AsmOperandInfoVector ConstraintOperands; 4664 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4665 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4666 4667 // Do a prepass over the constraints, canonicalizing them, and building up the 4668 // ConstraintOperands list. 4669 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4670 unsigned ResNo = 0; // ResNo - The result number of the next output. 4671 4672 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4673 ConstraintOperands.emplace_back(std::move(CI)); 4674 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4675 4676 // Update multiple alternative constraint count. 4677 if (OpInfo.multipleAlternatives.size() > maCount) 4678 maCount = OpInfo.multipleAlternatives.size(); 4679 4680 OpInfo.ConstraintVT = MVT::Other; 4681 4682 // Compute the value type for each operand. 4683 switch (OpInfo.Type) { 4684 case InlineAsm::isOutput: 4685 // Indirect outputs just consume an argument. 4686 if (OpInfo.isIndirect) { 4687 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4688 break; 4689 } 4690 4691 // The return value of the call is this value. As such, there is no 4692 // corresponding argument. 4693 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4694 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4695 OpInfo.ConstraintVT = 4696 getSimpleValueType(DL, STy->getElementType(ResNo)); 4697 } else { 4698 assert(ResNo == 0 && "Asm only has one result!"); 4699 OpInfo.ConstraintVT = 4700 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 4701 } 4702 ++ResNo; 4703 break; 4704 case InlineAsm::isInput: 4705 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4706 break; 4707 case InlineAsm::isClobber: 4708 // Nothing to do. 4709 break; 4710 } 4711 4712 if (OpInfo.CallOperandVal) { 4713 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4714 if (OpInfo.isIndirect) { 4715 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4716 if (!PtrTy) 4717 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4718 OpTy = PtrTy->getElementType(); 4719 } 4720 4721 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4722 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4723 if (STy->getNumElements() == 1) 4724 OpTy = STy->getElementType(0); 4725 4726 // If OpTy is not a single value, it may be a struct/union that we 4727 // can tile with integers. 4728 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4729 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4730 switch (BitSize) { 4731 default: break; 4732 case 1: 4733 case 8: 4734 case 16: 4735 case 32: 4736 case 64: 4737 case 128: 4738 OpInfo.ConstraintVT = 4739 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4740 break; 4741 } 4742 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4743 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4744 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4745 } else { 4746 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4747 } 4748 } 4749 } 4750 4751 // If we have multiple alternative constraints, select the best alternative. 4752 if (!ConstraintOperands.empty()) { 4753 if (maCount) { 4754 unsigned bestMAIndex = 0; 4755 int bestWeight = -1; 4756 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4757 int weight = -1; 4758 unsigned maIndex; 4759 // Compute the sums of the weights for each alternative, keeping track 4760 // of the best (highest weight) one so far. 4761 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4762 int weightSum = 0; 4763 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4764 cIndex != eIndex; ++cIndex) { 4765 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4766 if (OpInfo.Type == InlineAsm::isClobber) 4767 continue; 4768 4769 // If this is an output operand with a matching input operand, 4770 // look up the matching input. If their types mismatch, e.g. one 4771 // is an integer, the other is floating point, or their sizes are 4772 // different, flag it as an maCantMatch. 4773 if (OpInfo.hasMatchingInput()) { 4774 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4775 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4776 if ((OpInfo.ConstraintVT.isInteger() != 4777 Input.ConstraintVT.isInteger()) || 4778 (OpInfo.ConstraintVT.getSizeInBits() != 4779 Input.ConstraintVT.getSizeInBits())) { 4780 weightSum = -1; // Can't match. 4781 break; 4782 } 4783 } 4784 } 4785 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4786 if (weight == -1) { 4787 weightSum = -1; 4788 break; 4789 } 4790 weightSum += weight; 4791 } 4792 // Update best. 4793 if (weightSum > bestWeight) { 4794 bestWeight = weightSum; 4795 bestMAIndex = maIndex; 4796 } 4797 } 4798 4799 // Now select chosen alternative in each constraint. 4800 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4801 cIndex != eIndex; ++cIndex) { 4802 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4803 if (cInfo.Type == InlineAsm::isClobber) 4804 continue; 4805 cInfo.selectAlternative(bestMAIndex); 4806 } 4807 } 4808 } 4809 4810 // Check and hook up tied operands, choose constraint code to use. 4811 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4812 cIndex != eIndex; ++cIndex) { 4813 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4814 4815 // If this is an output operand with a matching input operand, look up the 4816 // matching input. If their types mismatch, e.g. one is an integer, the 4817 // other is floating point, or their sizes are different, flag it as an 4818 // error. 4819 if (OpInfo.hasMatchingInput()) { 4820 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4821 4822 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4823 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4824 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4825 OpInfo.ConstraintVT); 4826 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4827 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4828 Input.ConstraintVT); 4829 if ((OpInfo.ConstraintVT.isInteger() != 4830 Input.ConstraintVT.isInteger()) || 4831 (MatchRC.second != InputRC.second)) { 4832 report_fatal_error("Unsupported asm: input constraint" 4833 " with a matching output constraint of" 4834 " incompatible type!"); 4835 } 4836 } 4837 } 4838 } 4839 4840 return ConstraintOperands; 4841 } 4842 4843 /// Return an integer indicating how general CT is. 4844 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4845 switch (CT) { 4846 case TargetLowering::C_Immediate: 4847 case TargetLowering::C_Other: 4848 case TargetLowering::C_Unknown: 4849 return 0; 4850 case TargetLowering::C_Register: 4851 return 1; 4852 case TargetLowering::C_RegisterClass: 4853 return 2; 4854 case TargetLowering::C_Memory: 4855 return 3; 4856 } 4857 llvm_unreachable("Invalid constraint type"); 4858 } 4859 4860 /// Examine constraint type and operand type and determine a weight value. 4861 /// This object must already have been set up with the operand type 4862 /// and the current alternative constraint selected. 4863 TargetLowering::ConstraintWeight 4864 TargetLowering::getMultipleConstraintMatchWeight( 4865 AsmOperandInfo &info, int maIndex) const { 4866 InlineAsm::ConstraintCodeVector *rCodes; 4867 if (maIndex >= (int)info.multipleAlternatives.size()) 4868 rCodes = &info.Codes; 4869 else 4870 rCodes = &info.multipleAlternatives[maIndex].Codes; 4871 ConstraintWeight BestWeight = CW_Invalid; 4872 4873 // Loop over the options, keeping track of the most general one. 4874 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4875 ConstraintWeight weight = 4876 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4877 if (weight > BestWeight) 4878 BestWeight = weight; 4879 } 4880 4881 return BestWeight; 4882 } 4883 4884 /// Examine constraint type and operand type and determine a weight value. 4885 /// This object must already have been set up with the operand type 4886 /// and the current alternative constraint selected. 4887 TargetLowering::ConstraintWeight 4888 TargetLowering::getSingleConstraintMatchWeight( 4889 AsmOperandInfo &info, const char *constraint) const { 4890 ConstraintWeight weight = CW_Invalid; 4891 Value *CallOperandVal = info.CallOperandVal; 4892 // If we don't have a value, we can't do a match, 4893 // but allow it at the lowest weight. 4894 if (!CallOperandVal) 4895 return CW_Default; 4896 // Look at the constraint type. 4897 switch (*constraint) { 4898 case 'i': // immediate integer. 4899 case 'n': // immediate integer with a known value. 4900 if (isa<ConstantInt>(CallOperandVal)) 4901 weight = CW_Constant; 4902 break; 4903 case 's': // non-explicit intregal immediate. 4904 if (isa<GlobalValue>(CallOperandVal)) 4905 weight = CW_Constant; 4906 break; 4907 case 'E': // immediate float if host format. 4908 case 'F': // immediate float. 4909 if (isa<ConstantFP>(CallOperandVal)) 4910 weight = CW_Constant; 4911 break; 4912 case '<': // memory operand with autodecrement. 4913 case '>': // memory operand with autoincrement. 4914 case 'm': // memory operand. 4915 case 'o': // offsettable memory operand 4916 case 'V': // non-offsettable memory operand 4917 weight = CW_Memory; 4918 break; 4919 case 'r': // general register. 4920 case 'g': // general register, memory operand or immediate integer. 4921 // note: Clang converts "g" to "imr". 4922 if (CallOperandVal->getType()->isIntegerTy()) 4923 weight = CW_Register; 4924 break; 4925 case 'X': // any operand. 4926 default: 4927 weight = CW_Default; 4928 break; 4929 } 4930 return weight; 4931 } 4932 4933 /// If there are multiple different constraints that we could pick for this 4934 /// operand (e.g. "imr") try to pick the 'best' one. 4935 /// This is somewhat tricky: constraints fall into four classes: 4936 /// Other -> immediates and magic values 4937 /// Register -> one specific register 4938 /// RegisterClass -> a group of regs 4939 /// Memory -> memory 4940 /// Ideally, we would pick the most specific constraint possible: if we have 4941 /// something that fits into a register, we would pick it. The problem here 4942 /// is that if we have something that could either be in a register or in 4943 /// memory that use of the register could cause selection of *other* 4944 /// operands to fail: they might only succeed if we pick memory. Because of 4945 /// this the heuristic we use is: 4946 /// 4947 /// 1) If there is an 'other' constraint, and if the operand is valid for 4948 /// that constraint, use it. This makes us take advantage of 'i' 4949 /// constraints when available. 4950 /// 2) Otherwise, pick the most general constraint present. This prefers 4951 /// 'm' over 'r', for example. 4952 /// 4953 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4954 const TargetLowering &TLI, 4955 SDValue Op, SelectionDAG *DAG) { 4956 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4957 unsigned BestIdx = 0; 4958 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4959 int BestGenerality = -1; 4960 4961 // Loop over the options, keeping track of the most general one. 4962 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4963 TargetLowering::ConstraintType CType = 4964 TLI.getConstraintType(OpInfo.Codes[i]); 4965 4966 // Indirect 'other' or 'immediate' constraints are not allowed. 4967 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4968 CType == TargetLowering::C_Register || 4969 CType == TargetLowering::C_RegisterClass)) 4970 continue; 4971 4972 // If this is an 'other' or 'immediate' constraint, see if the operand is 4973 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4974 // the operand is an integer in the range [0..31] we want to use I (saving a 4975 // load of a register), otherwise we must use 'r'. 4976 if ((CType == TargetLowering::C_Other || 4977 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4978 assert(OpInfo.Codes[i].size() == 1 && 4979 "Unhandled multi-letter 'other' constraint"); 4980 std::vector<SDValue> ResultOps; 4981 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4982 ResultOps, *DAG); 4983 if (!ResultOps.empty()) { 4984 BestType = CType; 4985 BestIdx = i; 4986 break; 4987 } 4988 } 4989 4990 // Things with matching constraints can only be registers, per gcc 4991 // documentation. This mainly affects "g" constraints. 4992 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4993 continue; 4994 4995 // This constraint letter is more general than the previous one, use it. 4996 int Generality = getConstraintGenerality(CType); 4997 if (Generality > BestGenerality) { 4998 BestType = CType; 4999 BestIdx = i; 5000 BestGenerality = Generality; 5001 } 5002 } 5003 5004 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5005 OpInfo.ConstraintType = BestType; 5006 } 5007 5008 /// Determines the constraint code and constraint type to use for the specific 5009 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5010 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5011 SDValue Op, 5012 SelectionDAG *DAG) const { 5013 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5014 5015 // Single-letter constraints ('r') are very common. 5016 if (OpInfo.Codes.size() == 1) { 5017 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5018 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5019 } else { 5020 ChooseConstraint(OpInfo, *this, Op, DAG); 5021 } 5022 5023 // 'X' matches anything. 5024 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5025 // Labels and constants are handled elsewhere ('X' is the only thing 5026 // that matches labels). For Functions, the type here is the type of 5027 // the result, which is not what we want to look at; leave them alone. 5028 Value *v = OpInfo.CallOperandVal; 5029 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 5030 OpInfo.CallOperandVal = v; 5031 return; 5032 } 5033 5034 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 5035 return; 5036 5037 // Otherwise, try to resolve it to something we know about by looking at 5038 // the actual operand type. 5039 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5040 OpInfo.ConstraintCode = Repl; 5041 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5042 } 5043 } 5044 } 5045 5046 /// Given an exact SDIV by a constant, create a multiplication 5047 /// with the multiplicative inverse of the constant. 5048 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5049 const SDLoc &dl, SelectionDAG &DAG, 5050 SmallVectorImpl<SDNode *> &Created) { 5051 SDValue Op0 = N->getOperand(0); 5052 SDValue Op1 = N->getOperand(1); 5053 EVT VT = N->getValueType(0); 5054 EVT SVT = VT.getScalarType(); 5055 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5056 EVT ShSVT = ShVT.getScalarType(); 5057 5058 bool UseSRA = false; 5059 SmallVector<SDValue, 16> Shifts, Factors; 5060 5061 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5062 if (C->isZero()) 5063 return false; 5064 APInt Divisor = C->getAPIntValue(); 5065 unsigned Shift = Divisor.countTrailingZeros(); 5066 if (Shift) { 5067 Divisor.ashrInPlace(Shift); 5068 UseSRA = true; 5069 } 5070 // Calculate the multiplicative inverse, using Newton's method. 5071 APInt t; 5072 APInt Factor = Divisor; 5073 while ((t = Divisor * Factor) != 1) 5074 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5075 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5076 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5077 return true; 5078 }; 5079 5080 // Collect all magic values from the build vector. 5081 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5082 return SDValue(); 5083 5084 SDValue Shift, Factor; 5085 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5086 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5087 Factor = DAG.getBuildVector(VT, dl, Factors); 5088 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5089 assert(Shifts.size() == 1 && Factors.size() == 1 && 5090 "Expected matchUnaryPredicate to return one element for scalable " 5091 "vectors"); 5092 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5093 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5094 } else { 5095 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5096 Shift = Shifts[0]; 5097 Factor = Factors[0]; 5098 } 5099 5100 SDValue Res = Op0; 5101 5102 // Shift the value upfront if it is even, so the LSB is one. 5103 if (UseSRA) { 5104 // TODO: For UDIV use SRL instead of SRA. 5105 SDNodeFlags Flags; 5106 Flags.setExact(true); 5107 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5108 Created.push_back(Res.getNode()); 5109 } 5110 5111 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5112 } 5113 5114 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5115 SelectionDAG &DAG, 5116 SmallVectorImpl<SDNode *> &Created) const { 5117 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5118 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5119 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5120 return SDValue(N, 0); // Lower SDIV as SDIV 5121 return SDValue(); 5122 } 5123 5124 namespace { 5125 /// Magic data for optimising signed division by a constant. 5126 struct ms { 5127 APInt m; ///< magic number 5128 unsigned s; ///< shift amount 5129 }; 5130 5131 /// Magic data for optimising unsigned division by a constant. 5132 struct mu { 5133 APInt m; ///< magic number 5134 bool a; ///< add indicator 5135 unsigned s; ///< shift amount 5136 }; 5137 } // namespace 5138 5139 /// Calculate the magic numbers required to implement an unsigned integer 5140 /// division by a constant as a sequence of multiplies, adds and shifts. 5141 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry 5142 /// S. Warren, Jr., chapter 10. 5143 /// LeadingZeros can be used to simplify the calculation if the upper bits 5144 /// of the divided value are known zero. 5145 static mu magicu(const APInt &d, unsigned LeadingZeros = 0) { 5146 unsigned p; 5147 APInt nc, delta, q1, r1, q2, r2; 5148 struct mu magu; 5149 magu.a = 0; // initialize "add" indicator 5150 APInt allOnes = APInt::getAllOnes(d.getBitWidth()).lshr(LeadingZeros); 5151 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 5152 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); 5153 5154 nc = allOnes - (allOnes - d).urem(d); 5155 p = d.getBitWidth() - 1; // initialize p 5156 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc 5157 r1 = signedMin - q1 * nc; // initialize r1 = rem(2p,nc) 5158 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d 5159 r2 = signedMax - q2 * d; // initialize r2 = rem((2p-1),d) 5160 do { 5161 p = p + 1; 5162 if (r1.uge(nc - r1)) { 5163 q1 = q1 + q1 + 1; // update q1 5164 r1 = r1 + r1 - nc; // update r1 5165 } else { 5166 q1 = q1 + q1; // update q1 5167 r1 = r1 + r1; // update r1 5168 } 5169 if ((r2 + 1).uge(d - r2)) { 5170 if (q2.uge(signedMax)) 5171 magu.a = 1; 5172 q2 = q2 + q2 + 1; // update q2 5173 r2 = r2 + r2 + 1 - d; // update r2 5174 } else { 5175 if (q2.uge(signedMin)) 5176 magu.a = 1; 5177 q2 = q2 + q2; // update q2 5178 r2 = r2 + r2 + 1; // update r2 5179 } 5180 delta = d - 1 - r2; 5181 } while (p < d.getBitWidth() * 2 && 5182 (q1.ult(delta) || (q1 == delta && r1 == 0))); 5183 magu.m = q2 + 1; // resulting magic number 5184 magu.s = p - d.getBitWidth(); // resulting shift 5185 return magu; 5186 } 5187 5188 /// Calculate the magic numbers required to implement a signed integer division 5189 /// by a constant as a sequence of multiplies, adds and shifts. Requires that 5190 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. 5191 /// Warren, Jr., Chapter 10. 5192 static ms magic(const APInt &d) { 5193 unsigned p; 5194 APInt ad, anc, delta, q1, r1, q2, r2, t; 5195 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 5196 struct ms mag; 5197 5198 ad = d.abs(); 5199 t = signedMin + (d.lshr(d.getBitWidth() - 1)); 5200 anc = t - 1 - t.urem(ad); // absolute value of nc 5201 p = d.getBitWidth() - 1; // initialize p 5202 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc) 5203 r1 = signedMin - q1 * anc; // initialize r1 = rem(2p,abs(nc)) 5204 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d) 5205 r2 = signedMin - q2 * ad; // initialize r2 = rem(2p,abs(d)) 5206 do { 5207 p = p + 1; 5208 q1 = q1 << 1; // update q1 = 2p/abs(nc) 5209 r1 = r1 << 1; // update r1 = rem(2p/abs(nc)) 5210 if (r1.uge(anc)) { // must be unsigned comparison 5211 q1 = q1 + 1; 5212 r1 = r1 - anc; 5213 } 5214 q2 = q2 << 1; // update q2 = 2p/abs(d) 5215 r2 = r2 << 1; // update r2 = rem(2p/abs(d)) 5216 if (r2.uge(ad)) { // must be unsigned comparison 5217 q2 = q2 + 1; 5218 r2 = r2 - ad; 5219 } 5220 delta = ad - r2; 5221 } while (q1.ult(delta) || (q1 == delta && r1 == 0)); 5222 5223 mag.m = q2 + 1; 5224 if (d.isNegative()) 5225 mag.m = -mag.m; // resulting magic number 5226 mag.s = p - d.getBitWidth(); // resulting shift 5227 return mag; 5228 } 5229 5230 /// Given an ISD::SDIV node expressing a divide by constant, 5231 /// return a DAG expression to select that will generate the same value by 5232 /// multiplying by a magic number. 5233 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5234 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5235 bool IsAfterLegalization, 5236 SmallVectorImpl<SDNode *> &Created) const { 5237 SDLoc dl(N); 5238 EVT VT = N->getValueType(0); 5239 EVT SVT = VT.getScalarType(); 5240 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5241 EVT ShSVT = ShVT.getScalarType(); 5242 unsigned EltBits = VT.getScalarSizeInBits(); 5243 EVT MulVT; 5244 5245 // Check to see if we can do this. 5246 // FIXME: We should be more aggressive here. 5247 if (!isTypeLegal(VT)) { 5248 // Limit this to simple scalars for now. 5249 if (VT.isVector() || !VT.isSimple()) 5250 return SDValue(); 5251 5252 // If this type will be promoted to a large enough type with a legal 5253 // multiply operation, we can go ahead and do this transform. 5254 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5255 return SDValue(); 5256 5257 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5258 if (MulVT.getSizeInBits() < (2 * EltBits) || 5259 !isOperationLegal(ISD::MUL, MulVT)) 5260 return SDValue(); 5261 } 5262 5263 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5264 if (N->getFlags().hasExact()) 5265 return BuildExactSDIV(*this, N, dl, DAG, Created); 5266 5267 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5268 5269 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5270 if (C->isZero()) 5271 return false; 5272 5273 const APInt &Divisor = C->getAPIntValue(); 5274 ms magics = magic(Divisor); 5275 int NumeratorFactor = 0; 5276 int ShiftMask = -1; 5277 5278 if (Divisor.isOneValue() || Divisor.isAllOnes()) { 5279 // If d is +1/-1, we just multiply the numerator by +1/-1. 5280 NumeratorFactor = Divisor.getSExtValue(); 5281 magics.m = 0; 5282 magics.s = 0; 5283 ShiftMask = 0; 5284 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 5285 // If d > 0 and m < 0, add the numerator. 5286 NumeratorFactor = 1; 5287 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 5288 // If d < 0 and m > 0, subtract the numerator. 5289 NumeratorFactor = -1; 5290 } 5291 5292 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 5293 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5294 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 5295 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5296 return true; 5297 }; 5298 5299 SDValue N0 = N->getOperand(0); 5300 SDValue N1 = N->getOperand(1); 5301 5302 // Collect the shifts / magic values from each element. 5303 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5304 return SDValue(); 5305 5306 SDValue MagicFactor, Factor, Shift, ShiftMask; 5307 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5308 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5309 Factor = DAG.getBuildVector(VT, dl, Factors); 5310 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5311 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5312 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5313 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5314 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5315 "Expected matchUnaryPredicate to return one element for scalable " 5316 "vectors"); 5317 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5318 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5319 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5320 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5321 } else { 5322 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5323 MagicFactor = MagicFactors[0]; 5324 Factor = Factors[0]; 5325 Shift = Shifts[0]; 5326 ShiftMask = ShiftMasks[0]; 5327 } 5328 5329 // Multiply the numerator (operand 0) by the magic value. 5330 // FIXME: We should support doing a MUL in a wider type. 5331 auto GetMULHS = [&](SDValue X, SDValue Y) { 5332 // If the type isn't legal, use a wider mul of the the type calculated 5333 // earlier. 5334 if (!isTypeLegal(VT)) { 5335 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5336 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5337 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5338 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5339 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5340 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5341 } 5342 5343 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5344 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5345 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5346 SDValue LoHi = 5347 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5348 return SDValue(LoHi.getNode(), 1); 5349 } 5350 return SDValue(); 5351 }; 5352 5353 SDValue Q = GetMULHS(N0, MagicFactor); 5354 if (!Q) 5355 return SDValue(); 5356 5357 Created.push_back(Q.getNode()); 5358 5359 // (Optionally) Add/subtract the numerator using Factor. 5360 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5361 Created.push_back(Factor.getNode()); 5362 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5363 Created.push_back(Q.getNode()); 5364 5365 // Shift right algebraic by shift value. 5366 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5367 Created.push_back(Q.getNode()); 5368 5369 // Extract the sign bit, mask it and add it to the quotient. 5370 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5371 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5372 Created.push_back(T.getNode()); 5373 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5374 Created.push_back(T.getNode()); 5375 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5376 } 5377 5378 /// Given an ISD::UDIV node expressing a divide by constant, 5379 /// return a DAG expression to select that will generate the same value by 5380 /// multiplying by a magic number. 5381 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5382 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5383 bool IsAfterLegalization, 5384 SmallVectorImpl<SDNode *> &Created) const { 5385 SDLoc dl(N); 5386 EVT VT = N->getValueType(0); 5387 EVT SVT = VT.getScalarType(); 5388 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5389 EVT ShSVT = ShVT.getScalarType(); 5390 unsigned EltBits = VT.getScalarSizeInBits(); 5391 EVT MulVT; 5392 5393 // Check to see if we can do this. 5394 // FIXME: We should be more aggressive here. 5395 if (!isTypeLegal(VT)) { 5396 // Limit this to simple scalars for now. 5397 if (VT.isVector() || !VT.isSimple()) 5398 return SDValue(); 5399 5400 // If this type will be promoted to a large enough type with a legal 5401 // multiply operation, we can go ahead and do this transform. 5402 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5403 return SDValue(); 5404 5405 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5406 if (MulVT.getSizeInBits() < (2 * EltBits) || 5407 !isOperationLegal(ISD::MUL, MulVT)) 5408 return SDValue(); 5409 } 5410 5411 bool UseNPQ = false; 5412 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5413 5414 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5415 if (C->isZero()) 5416 return false; 5417 // FIXME: We should use a narrower constant when the upper 5418 // bits are known to be zero. 5419 const APInt& Divisor = C->getAPIntValue(); 5420 mu magics = magicu(Divisor); 5421 unsigned PreShift = 0, PostShift = 0; 5422 5423 // If the divisor is even, we can avoid using the expensive fixup by 5424 // shifting the divided value upfront. 5425 if (magics.a != 0 && !Divisor[0]) { 5426 PreShift = Divisor.countTrailingZeros(); 5427 // Get magic number for the shifted divisor. 5428 magics = magicu(Divisor.lshr(PreShift), PreShift); 5429 assert(magics.a == 0 && "Should use cheap fixup now"); 5430 } 5431 5432 APInt Magic = magics.m; 5433 5434 unsigned SelNPQ; 5435 if (magics.a == 0 || Divisor.isOneValue()) { 5436 assert(magics.s < Divisor.getBitWidth() && 5437 "We shouldn't generate an undefined shift!"); 5438 PostShift = magics.s; 5439 SelNPQ = false; 5440 } else { 5441 PostShift = magics.s - 1; 5442 SelNPQ = true; 5443 } 5444 5445 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5446 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5447 NPQFactors.push_back( 5448 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5449 : APInt::getZero(EltBits), 5450 dl, SVT)); 5451 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5452 UseNPQ |= SelNPQ; 5453 return true; 5454 }; 5455 5456 SDValue N0 = N->getOperand(0); 5457 SDValue N1 = N->getOperand(1); 5458 5459 // Collect the shifts/magic values from each element. 5460 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5461 return SDValue(); 5462 5463 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5464 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5465 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5466 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5467 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5468 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5469 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5470 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5471 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5472 "Expected matchUnaryPredicate to return one for scalable vectors"); 5473 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5474 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5475 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5476 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5477 } else { 5478 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5479 PreShift = PreShifts[0]; 5480 MagicFactor = MagicFactors[0]; 5481 PostShift = PostShifts[0]; 5482 } 5483 5484 SDValue Q = N0; 5485 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5486 Created.push_back(Q.getNode()); 5487 5488 // FIXME: We should support doing a MUL in a wider type. 5489 auto GetMULHU = [&](SDValue X, SDValue Y) { 5490 // If the type isn't legal, use a wider mul of the the type calculated 5491 // earlier. 5492 if (!isTypeLegal(VT)) { 5493 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5494 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5495 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5496 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5497 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5498 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5499 } 5500 5501 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5502 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5503 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5504 SDValue LoHi = 5505 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5506 return SDValue(LoHi.getNode(), 1); 5507 } 5508 return SDValue(); // No mulhu or equivalent 5509 }; 5510 5511 // Multiply the numerator (operand 0) by the magic value. 5512 Q = GetMULHU(Q, MagicFactor); 5513 if (!Q) 5514 return SDValue(); 5515 5516 Created.push_back(Q.getNode()); 5517 5518 if (UseNPQ) { 5519 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5520 Created.push_back(NPQ.getNode()); 5521 5522 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5523 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5524 if (VT.isVector()) 5525 NPQ = GetMULHU(NPQ, NPQFactor); 5526 else 5527 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5528 5529 Created.push_back(NPQ.getNode()); 5530 5531 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5532 Created.push_back(Q.getNode()); 5533 } 5534 5535 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5536 Created.push_back(Q.getNode()); 5537 5538 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5539 5540 SDValue One = DAG.getConstant(1, dl, VT); 5541 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5542 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5543 } 5544 5545 /// If all values in Values that *don't* match the predicate are same 'splat' 5546 /// value, then replace all values with that splat value. 5547 /// Else, if AlternativeReplacement was provided, then replace all values that 5548 /// do match predicate with AlternativeReplacement value. 5549 static void 5550 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5551 std::function<bool(SDValue)> Predicate, 5552 SDValue AlternativeReplacement = SDValue()) { 5553 SDValue Replacement; 5554 // Is there a value for which the Predicate does *NOT* match? What is it? 5555 auto SplatValue = llvm::find_if_not(Values, Predicate); 5556 if (SplatValue != Values.end()) { 5557 // Does Values consist only of SplatValue's and values matching Predicate? 5558 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5559 return Value == *SplatValue || Predicate(Value); 5560 })) // Then we shall replace values matching predicate with SplatValue. 5561 Replacement = *SplatValue; 5562 } 5563 if (!Replacement) { 5564 // Oops, we did not find the "baseline" splat value. 5565 if (!AlternativeReplacement) 5566 return; // Nothing to do. 5567 // Let's replace with provided value then. 5568 Replacement = AlternativeReplacement; 5569 } 5570 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5571 } 5572 5573 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5574 /// where the divisor is constant and the comparison target is zero, 5575 /// return a DAG expression that will generate the same comparison result 5576 /// using only multiplications, additions and shifts/rotations. 5577 /// Ref: "Hacker's Delight" 10-17. 5578 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5579 SDValue CompTargetNode, 5580 ISD::CondCode Cond, 5581 DAGCombinerInfo &DCI, 5582 const SDLoc &DL) const { 5583 SmallVector<SDNode *, 5> Built; 5584 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5585 DCI, DL, Built)) { 5586 for (SDNode *N : Built) 5587 DCI.AddToWorklist(N); 5588 return Folded; 5589 } 5590 5591 return SDValue(); 5592 } 5593 5594 SDValue 5595 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5596 SDValue CompTargetNode, ISD::CondCode Cond, 5597 DAGCombinerInfo &DCI, const SDLoc &DL, 5598 SmallVectorImpl<SDNode *> &Created) const { 5599 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5600 // - D must be constant, with D = D0 * 2^K where D0 is odd 5601 // - P is the multiplicative inverse of D0 modulo 2^W 5602 // - Q = floor(((2^W) - 1) / D) 5603 // where W is the width of the common type of N and D. 5604 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5605 "Only applicable for (in)equality comparisons."); 5606 5607 SelectionDAG &DAG = DCI.DAG; 5608 5609 EVT VT = REMNode.getValueType(); 5610 EVT SVT = VT.getScalarType(); 5611 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5612 EVT ShSVT = ShVT.getScalarType(); 5613 5614 // If MUL is unavailable, we cannot proceed in any case. 5615 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5616 return SDValue(); 5617 5618 bool ComparingWithAllZeros = true; 5619 bool AllComparisonsWithNonZerosAreTautological = true; 5620 bool HadTautologicalLanes = false; 5621 bool AllLanesAreTautological = true; 5622 bool HadEvenDivisor = false; 5623 bool AllDivisorsArePowerOfTwo = true; 5624 bool HadTautologicalInvertedLanes = false; 5625 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5626 5627 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5628 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5629 if (CDiv->isZero()) 5630 return false; 5631 5632 const APInt &D = CDiv->getAPIntValue(); 5633 const APInt &Cmp = CCmp->getAPIntValue(); 5634 5635 ComparingWithAllZeros &= Cmp.isNullValue(); 5636 5637 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5638 // if C2 is not less than C1, the comparison is always false. 5639 // But we will only be able to produce the comparison that will give the 5640 // opposive tautological answer. So this lane would need to be fixed up. 5641 bool TautologicalInvertedLane = D.ule(Cmp); 5642 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5643 5644 // If all lanes are tautological (either all divisors are ones, or divisor 5645 // is not greater than the constant we are comparing with), 5646 // we will prefer to avoid the fold. 5647 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5648 HadTautologicalLanes |= TautologicalLane; 5649 AllLanesAreTautological &= TautologicalLane; 5650 5651 // If we are comparing with non-zero, we need'll need to subtract said 5652 // comparison value from the LHS. But there is no point in doing that if 5653 // every lane where we are comparing with non-zero is tautological.. 5654 if (!Cmp.isNullValue()) 5655 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5656 5657 // Decompose D into D0 * 2^K 5658 unsigned K = D.countTrailingZeros(); 5659 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5660 APInt D0 = D.lshr(K); 5661 5662 // D is even if it has trailing zeros. 5663 HadEvenDivisor |= (K != 0); 5664 // D is a power-of-two if D0 is one. 5665 // If all divisors are power-of-two, we will prefer to avoid the fold. 5666 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5667 5668 // P = inv(D0, 2^W) 5669 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5670 unsigned W = D.getBitWidth(); 5671 APInt P = D0.zext(W + 1) 5672 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5673 .trunc(W); 5674 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5675 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5676 5677 // Q = floor((2^W - 1) u/ D) 5678 // R = ((2^W - 1) u% D) 5679 APInt Q, R; 5680 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 5681 5682 // If we are comparing with zero, then that comparison constant is okay, 5683 // else it may need to be one less than that. 5684 if (Cmp.ugt(R)) 5685 Q -= 1; 5686 5687 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5688 "We are expecting that K is always less than all-ones for ShSVT"); 5689 5690 // If the lane is tautological the result can be constant-folded. 5691 if (TautologicalLane) { 5692 // Set P and K amount to a bogus values so we can try to splat them. 5693 P = 0; 5694 K = -1; 5695 // And ensure that comparison constant is tautological, 5696 // it will always compare true/false. 5697 Q = -1; 5698 } 5699 5700 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5701 KAmts.push_back( 5702 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5703 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5704 return true; 5705 }; 5706 5707 SDValue N = REMNode.getOperand(0); 5708 SDValue D = REMNode.getOperand(1); 5709 5710 // Collect the values from each element. 5711 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5712 return SDValue(); 5713 5714 // If all lanes are tautological, the result can be constant-folded. 5715 if (AllLanesAreTautological) 5716 return SDValue(); 5717 5718 // If this is a urem by a powers-of-two, avoid the fold since it can be 5719 // best implemented as a bit test. 5720 if (AllDivisorsArePowerOfTwo) 5721 return SDValue(); 5722 5723 SDValue PVal, KVal, QVal; 5724 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5725 if (HadTautologicalLanes) { 5726 // Try to turn PAmts into a splat, since we don't care about the values 5727 // that are currently '0'. If we can't, just keep '0'`s. 5728 turnVectorIntoSplatVector(PAmts, isNullConstant); 5729 // Try to turn KAmts into a splat, since we don't care about the values 5730 // that are currently '-1'. If we can't, change them to '0'`s. 5731 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5732 DAG.getConstant(0, DL, ShSVT)); 5733 } 5734 5735 PVal = DAG.getBuildVector(VT, DL, PAmts); 5736 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5737 QVal = DAG.getBuildVector(VT, DL, QAmts); 5738 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5739 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 5740 "Expected matchBinaryPredicate to return one element for " 5741 "SPLAT_VECTORs"); 5742 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5743 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5744 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5745 } else { 5746 PVal = PAmts[0]; 5747 KVal = KAmts[0]; 5748 QVal = QAmts[0]; 5749 } 5750 5751 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5752 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5753 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5754 assert(CompTargetNode.getValueType() == N.getValueType() && 5755 "Expecting that the types on LHS and RHS of comparisons match."); 5756 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5757 } 5758 5759 // (mul N, P) 5760 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5761 Created.push_back(Op0.getNode()); 5762 5763 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5764 // divisors as a performance improvement, since rotating by 0 is a no-op. 5765 if (HadEvenDivisor) { 5766 // We need ROTR to do this. 5767 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5768 return SDValue(); 5769 // UREM: (rotr (mul N, P), K) 5770 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5771 Created.push_back(Op0.getNode()); 5772 } 5773 5774 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5775 SDValue NewCC = 5776 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5777 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5778 if (!HadTautologicalInvertedLanes) 5779 return NewCC; 5780 5781 // If any lanes previously compared always-false, the NewCC will give 5782 // always-true result for them, so we need to fixup those lanes. 5783 // Or the other way around for inequality predicate. 5784 assert(VT.isVector() && "Can/should only get here for vectors."); 5785 Created.push_back(NewCC.getNode()); 5786 5787 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5788 // if C2 is not less than C1, the comparison is always false. 5789 // But we have produced the comparison that will give the 5790 // opposive tautological answer. So these lanes would need to be fixed up. 5791 SDValue TautologicalInvertedChannels = 5792 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5793 Created.push_back(TautologicalInvertedChannels.getNode()); 5794 5795 // NOTE: we avoid letting illegal types through even if we're before legalize 5796 // ops – legalization has a hard time producing good code for this. 5797 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5798 // If we have a vector select, let's replace the comparison results in the 5799 // affected lanes with the correct tautological result. 5800 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5801 DL, SETCCVT, SETCCVT); 5802 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5803 Replacement, NewCC); 5804 } 5805 5806 // Else, we can just invert the comparison result in the appropriate lanes. 5807 // 5808 // NOTE: see the note above VSELECT above. 5809 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5810 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5811 TautologicalInvertedChannels); 5812 5813 return SDValue(); // Don't know how to lower. 5814 } 5815 5816 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5817 /// where the divisor is constant and the comparison target is zero, 5818 /// return a DAG expression that will generate the same comparison result 5819 /// using only multiplications, additions and shifts/rotations. 5820 /// Ref: "Hacker's Delight" 10-17. 5821 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5822 SDValue CompTargetNode, 5823 ISD::CondCode Cond, 5824 DAGCombinerInfo &DCI, 5825 const SDLoc &DL) const { 5826 SmallVector<SDNode *, 7> Built; 5827 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5828 DCI, DL, Built)) { 5829 assert(Built.size() <= 7 && "Max size prediction failed."); 5830 for (SDNode *N : Built) 5831 DCI.AddToWorklist(N); 5832 return Folded; 5833 } 5834 5835 return SDValue(); 5836 } 5837 5838 SDValue 5839 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5840 SDValue CompTargetNode, ISD::CondCode Cond, 5841 DAGCombinerInfo &DCI, const SDLoc &DL, 5842 SmallVectorImpl<SDNode *> &Created) const { 5843 // Fold: 5844 // (seteq/ne (srem N, D), 0) 5845 // To: 5846 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5847 // 5848 // - D must be constant, with D = D0 * 2^K where D0 is odd 5849 // - P is the multiplicative inverse of D0 modulo 2^W 5850 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5851 // - Q = floor((2 * A) / (2^K)) 5852 // where W is the width of the common type of N and D. 5853 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5854 "Only applicable for (in)equality comparisons."); 5855 5856 SelectionDAG &DAG = DCI.DAG; 5857 5858 EVT VT = REMNode.getValueType(); 5859 EVT SVT = VT.getScalarType(); 5860 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5861 EVT ShSVT = ShVT.getScalarType(); 5862 5863 // If we are after ops legalization, and MUL is unavailable, we can not 5864 // proceed. 5865 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5866 return SDValue(); 5867 5868 // TODO: Could support comparing with non-zero too. 5869 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5870 if (!CompTarget || !CompTarget->isZero()) 5871 return SDValue(); 5872 5873 bool HadIntMinDivisor = false; 5874 bool HadOneDivisor = false; 5875 bool AllDivisorsAreOnes = true; 5876 bool HadEvenDivisor = false; 5877 bool NeedToApplyOffset = false; 5878 bool AllDivisorsArePowerOfTwo = true; 5879 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5880 5881 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5882 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5883 if (C->isZero()) 5884 return false; 5885 5886 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5887 5888 // WARNING: this fold is only valid for positive divisors! 5889 APInt D = C->getAPIntValue(); 5890 if (D.isNegative()) 5891 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5892 5893 HadIntMinDivisor |= D.isMinSignedValue(); 5894 5895 // If all divisors are ones, we will prefer to avoid the fold. 5896 HadOneDivisor |= D.isOneValue(); 5897 AllDivisorsAreOnes &= D.isOneValue(); 5898 5899 // Decompose D into D0 * 2^K 5900 unsigned K = D.countTrailingZeros(); 5901 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5902 APInt D0 = D.lshr(K); 5903 5904 if (!D.isMinSignedValue()) { 5905 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5906 // we don't care about this lane in this fold, we'll special-handle it. 5907 HadEvenDivisor |= (K != 0); 5908 } 5909 5910 // D is a power-of-two if D0 is one. This includes INT_MIN. 5911 // If all divisors are power-of-two, we will prefer to avoid the fold. 5912 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5913 5914 // P = inv(D0, 2^W) 5915 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5916 unsigned W = D.getBitWidth(); 5917 APInt P = D0.zext(W + 1) 5918 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5919 .trunc(W); 5920 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5921 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5922 5923 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5924 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5925 A.clearLowBits(K); 5926 5927 if (!D.isMinSignedValue()) { 5928 // If divisor INT_MIN, then we don't care about this lane in this fold, 5929 // we'll special-handle it. 5930 NeedToApplyOffset |= A != 0; 5931 } 5932 5933 // Q = floor((2 * A) / (2^K)) 5934 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5935 5936 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 5937 "We are expecting that A is always less than all-ones for SVT"); 5938 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5939 "We are expecting that K is always less than all-ones for ShSVT"); 5940 5941 // If the divisor is 1 the result can be constant-folded. Likewise, we 5942 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5943 if (D.isOneValue()) { 5944 // Set P, A and K to a bogus values so we can try to splat them. 5945 P = 0; 5946 A = -1; 5947 K = -1; 5948 5949 // x ?% 1 == 0 <--> true <--> x u<= -1 5950 Q = -1; 5951 } 5952 5953 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5954 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5955 KAmts.push_back( 5956 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5957 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5958 return true; 5959 }; 5960 5961 SDValue N = REMNode.getOperand(0); 5962 SDValue D = REMNode.getOperand(1); 5963 5964 // Collect the values from each element. 5965 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5966 return SDValue(); 5967 5968 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5969 if (AllDivisorsAreOnes) 5970 return SDValue(); 5971 5972 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5973 // since it can be best implemented as a bit test. 5974 if (AllDivisorsArePowerOfTwo) 5975 return SDValue(); 5976 5977 SDValue PVal, AVal, KVal, QVal; 5978 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5979 if (HadOneDivisor) { 5980 // Try to turn PAmts into a splat, since we don't care about the values 5981 // that are currently '0'. If we can't, just keep '0'`s. 5982 turnVectorIntoSplatVector(PAmts, isNullConstant); 5983 // Try to turn AAmts into a splat, since we don't care about the 5984 // values that are currently '-1'. If we can't, change them to '0'`s. 5985 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5986 DAG.getConstant(0, DL, SVT)); 5987 // Try to turn KAmts into a splat, since we don't care about the values 5988 // that are currently '-1'. If we can't, change them to '0'`s. 5989 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5990 DAG.getConstant(0, DL, ShSVT)); 5991 } 5992 5993 PVal = DAG.getBuildVector(VT, DL, PAmts); 5994 AVal = DAG.getBuildVector(VT, DL, AAmts); 5995 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5996 QVal = DAG.getBuildVector(VT, DL, QAmts); 5997 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5998 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 5999 QAmts.size() == 1 && 6000 "Expected matchUnaryPredicate to return one element for scalable " 6001 "vectors"); 6002 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6003 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6004 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6005 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6006 } else { 6007 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6008 PVal = PAmts[0]; 6009 AVal = AAmts[0]; 6010 KVal = KAmts[0]; 6011 QVal = QAmts[0]; 6012 } 6013 6014 // (mul N, P) 6015 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6016 Created.push_back(Op0.getNode()); 6017 6018 if (NeedToApplyOffset) { 6019 // We need ADD to do this. 6020 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6021 return SDValue(); 6022 6023 // (add (mul N, P), A) 6024 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6025 Created.push_back(Op0.getNode()); 6026 } 6027 6028 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6029 // divisors as a performance improvement, since rotating by 0 is a no-op. 6030 if (HadEvenDivisor) { 6031 // We need ROTR to do this. 6032 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6033 return SDValue(); 6034 // SREM: (rotr (add (mul N, P), A), K) 6035 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6036 Created.push_back(Op0.getNode()); 6037 } 6038 6039 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6040 SDValue Fold = 6041 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6042 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6043 6044 // If we didn't have lanes with INT_MIN divisor, then we're done. 6045 if (!HadIntMinDivisor) 6046 return Fold; 6047 6048 // That fold is only valid for positive divisors. Which effectively means, 6049 // it is invalid for INT_MIN divisors. So if we have such a lane, 6050 // we must fix-up results for said lanes. 6051 assert(VT.isVector() && "Can/should only get here for vectors."); 6052 6053 // NOTE: we avoid letting illegal types through even if we're before legalize 6054 // ops – legalization has a hard time producing good code for the code that 6055 // follows. 6056 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6057 !isOperationLegalOrCustom(ISD::AND, VT) || 6058 !isOperationLegalOrCustom(Cond, VT) || 6059 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6060 return SDValue(); 6061 6062 Created.push_back(Fold.getNode()); 6063 6064 SDValue IntMin = DAG.getConstant( 6065 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6066 SDValue IntMax = DAG.getConstant( 6067 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6068 SDValue Zero = 6069 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6070 6071 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6072 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6073 Created.push_back(DivisorIsIntMin.getNode()); 6074 6075 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6076 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6077 Created.push_back(Masked.getNode()); 6078 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6079 Created.push_back(MaskedIsZero.getNode()); 6080 6081 // To produce final result we need to blend 2 vectors: 'SetCC' and 6082 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6083 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6084 // constant-folded, select can get lowered to a shuffle with constant mask. 6085 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6086 MaskedIsZero, Fold); 6087 6088 return Blended; 6089 } 6090 6091 bool TargetLowering:: 6092 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6093 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6094 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6095 "be a constant integer"); 6096 return true; 6097 } 6098 6099 return false; 6100 } 6101 6102 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6103 const DenormalMode &Mode) const { 6104 SDLoc DL(Op); 6105 EVT VT = Op.getValueType(); 6106 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6107 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6108 // Testing it with denormal inputs to avoid wrong estimate. 6109 if (Mode.Input == DenormalMode::IEEE) { 6110 // This is specifically a check for the handling of denormal inputs, 6111 // not the result. 6112 6113 // Test = fabs(X) < SmallestNormal 6114 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6115 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6116 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6117 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6118 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6119 } 6120 // Test = X == 0.0 6121 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6122 } 6123 6124 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6125 bool LegalOps, bool OptForSize, 6126 NegatibleCost &Cost, 6127 unsigned Depth) const { 6128 // fneg is removable even if it has multiple uses. 6129 if (Op.getOpcode() == ISD::FNEG) { 6130 Cost = NegatibleCost::Cheaper; 6131 return Op.getOperand(0); 6132 } 6133 6134 // Don't recurse exponentially. 6135 if (Depth > SelectionDAG::MaxRecursionDepth) 6136 return SDValue(); 6137 6138 // Pre-increment recursion depth for use in recursive calls. 6139 ++Depth; 6140 const SDNodeFlags Flags = Op->getFlags(); 6141 const TargetOptions &Options = DAG.getTarget().Options; 6142 EVT VT = Op.getValueType(); 6143 unsigned Opcode = Op.getOpcode(); 6144 6145 // Don't allow anything with multiple uses unless we know it is free. 6146 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6147 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6148 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6149 if (!IsFreeExtend) 6150 return SDValue(); 6151 } 6152 6153 auto RemoveDeadNode = [&](SDValue N) { 6154 if (N && N.getNode()->use_empty()) 6155 DAG.RemoveDeadNode(N.getNode()); 6156 }; 6157 6158 SDLoc DL(Op); 6159 6160 // Because getNegatedExpression can delete nodes we need a handle to keep 6161 // temporary nodes alive in case the recursion manages to create an identical 6162 // node. 6163 std::list<HandleSDNode> Handles; 6164 6165 switch (Opcode) { 6166 case ISD::ConstantFP: { 6167 // Don't invert constant FP values after legalization unless the target says 6168 // the negated constant is legal. 6169 bool IsOpLegal = 6170 isOperationLegal(ISD::ConstantFP, VT) || 6171 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6172 OptForSize); 6173 6174 if (LegalOps && !IsOpLegal) 6175 break; 6176 6177 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6178 V.changeSign(); 6179 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6180 6181 // If we already have the use of the negated floating constant, it is free 6182 // to negate it even it has multiple uses. 6183 if (!Op.hasOneUse() && CFP.use_empty()) 6184 break; 6185 Cost = NegatibleCost::Neutral; 6186 return CFP; 6187 } 6188 case ISD::BUILD_VECTOR: { 6189 // Only permit BUILD_VECTOR of constants. 6190 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6191 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6192 })) 6193 break; 6194 6195 bool IsOpLegal = 6196 (isOperationLegal(ISD::ConstantFP, VT) && 6197 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6198 llvm::all_of(Op->op_values(), [&](SDValue N) { 6199 return N.isUndef() || 6200 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6201 OptForSize); 6202 }); 6203 6204 if (LegalOps && !IsOpLegal) 6205 break; 6206 6207 SmallVector<SDValue, 4> Ops; 6208 for (SDValue C : Op->op_values()) { 6209 if (C.isUndef()) { 6210 Ops.push_back(C); 6211 continue; 6212 } 6213 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6214 V.changeSign(); 6215 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6216 } 6217 Cost = NegatibleCost::Neutral; 6218 return DAG.getBuildVector(VT, DL, Ops); 6219 } 6220 case ISD::FADD: { 6221 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6222 break; 6223 6224 // After operation legalization, it might not be legal to create new FSUBs. 6225 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6226 break; 6227 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6228 6229 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6230 NegatibleCost CostX = NegatibleCost::Expensive; 6231 SDValue NegX = 6232 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6233 // Prevent this node from being deleted by the next call. 6234 if (NegX) 6235 Handles.emplace_back(NegX); 6236 6237 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6238 NegatibleCost CostY = NegatibleCost::Expensive; 6239 SDValue NegY = 6240 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6241 6242 // We're done with the handles. 6243 Handles.clear(); 6244 6245 // Negate the X if its cost is less or equal than Y. 6246 if (NegX && (CostX <= CostY)) { 6247 Cost = CostX; 6248 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6249 if (NegY != N) 6250 RemoveDeadNode(NegY); 6251 return N; 6252 } 6253 6254 // Negate the Y if it is not expensive. 6255 if (NegY) { 6256 Cost = CostY; 6257 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6258 if (NegX != N) 6259 RemoveDeadNode(NegX); 6260 return N; 6261 } 6262 break; 6263 } 6264 case ISD::FSUB: { 6265 // We can't turn -(A-B) into B-A when we honor signed zeros. 6266 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6267 break; 6268 6269 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6270 // fold (fneg (fsub 0, Y)) -> Y 6271 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6272 if (C->isZero()) { 6273 Cost = NegatibleCost::Cheaper; 6274 return Y; 6275 } 6276 6277 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6278 Cost = NegatibleCost::Neutral; 6279 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6280 } 6281 case ISD::FMUL: 6282 case ISD::FDIV: { 6283 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6284 6285 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6286 NegatibleCost CostX = NegatibleCost::Expensive; 6287 SDValue NegX = 6288 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6289 // Prevent this node from being deleted by the next call. 6290 if (NegX) 6291 Handles.emplace_back(NegX); 6292 6293 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6294 NegatibleCost CostY = NegatibleCost::Expensive; 6295 SDValue NegY = 6296 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6297 6298 // We're done with the handles. 6299 Handles.clear(); 6300 6301 // Negate the X if its cost is less or equal than Y. 6302 if (NegX && (CostX <= CostY)) { 6303 Cost = CostX; 6304 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6305 if (NegY != N) 6306 RemoveDeadNode(NegY); 6307 return N; 6308 } 6309 6310 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6311 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6312 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6313 break; 6314 6315 // Negate the Y if it is not expensive. 6316 if (NegY) { 6317 Cost = CostY; 6318 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6319 if (NegX != N) 6320 RemoveDeadNode(NegX); 6321 return N; 6322 } 6323 break; 6324 } 6325 case ISD::FMA: 6326 case ISD::FMAD: { 6327 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6328 break; 6329 6330 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6331 NegatibleCost CostZ = NegatibleCost::Expensive; 6332 SDValue NegZ = 6333 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6334 // Give up if fail to negate the Z. 6335 if (!NegZ) 6336 break; 6337 6338 // Prevent this node from being deleted by the next two calls. 6339 Handles.emplace_back(NegZ); 6340 6341 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6342 NegatibleCost CostX = NegatibleCost::Expensive; 6343 SDValue NegX = 6344 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6345 // Prevent this node from being deleted by the next call. 6346 if (NegX) 6347 Handles.emplace_back(NegX); 6348 6349 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6350 NegatibleCost CostY = NegatibleCost::Expensive; 6351 SDValue NegY = 6352 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6353 6354 // We're done with the handles. 6355 Handles.clear(); 6356 6357 // Negate the X if its cost is less or equal than Y. 6358 if (NegX && (CostX <= CostY)) { 6359 Cost = std::min(CostX, CostZ); 6360 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6361 if (NegY != N) 6362 RemoveDeadNode(NegY); 6363 return N; 6364 } 6365 6366 // Negate the Y if it is not expensive. 6367 if (NegY) { 6368 Cost = std::min(CostY, CostZ); 6369 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6370 if (NegX != N) 6371 RemoveDeadNode(NegX); 6372 return N; 6373 } 6374 break; 6375 } 6376 6377 case ISD::FP_EXTEND: 6378 case ISD::FSIN: 6379 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6380 OptForSize, Cost, Depth)) 6381 return DAG.getNode(Opcode, DL, VT, NegV); 6382 break; 6383 case ISD::FP_ROUND: 6384 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6385 OptForSize, Cost, Depth)) 6386 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6387 break; 6388 } 6389 6390 return SDValue(); 6391 } 6392 6393 //===----------------------------------------------------------------------===// 6394 // Legalization Utilities 6395 //===----------------------------------------------------------------------===// 6396 6397 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6398 SDValue LHS, SDValue RHS, 6399 SmallVectorImpl<SDValue> &Result, 6400 EVT HiLoVT, SelectionDAG &DAG, 6401 MulExpansionKind Kind, SDValue LL, 6402 SDValue LH, SDValue RL, SDValue RH) const { 6403 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6404 Opcode == ISD::SMUL_LOHI); 6405 6406 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6407 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6408 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6409 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6410 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6411 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6412 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6413 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6414 6415 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6416 return false; 6417 6418 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6419 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6420 6421 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6422 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6423 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6424 6425 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6426 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6427 bool Signed) -> bool { 6428 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6429 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6430 Hi = SDValue(Lo.getNode(), 1); 6431 return true; 6432 } 6433 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6434 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6435 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6436 return true; 6437 } 6438 return false; 6439 }; 6440 6441 SDValue Lo, Hi; 6442 6443 if (!LL.getNode() && !RL.getNode() && 6444 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6445 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6446 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6447 } 6448 6449 if (!LL.getNode()) 6450 return false; 6451 6452 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6453 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6454 DAG.MaskedValueIsZero(RHS, HighMask)) { 6455 // The inputs are both zero-extended. 6456 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6457 Result.push_back(Lo); 6458 Result.push_back(Hi); 6459 if (Opcode != ISD::MUL) { 6460 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6461 Result.push_back(Zero); 6462 Result.push_back(Zero); 6463 } 6464 return true; 6465 } 6466 } 6467 6468 if (!VT.isVector() && Opcode == ISD::MUL && 6469 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6470 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6471 // The input values are both sign-extended. 6472 // TODO non-MUL case? 6473 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6474 Result.push_back(Lo); 6475 Result.push_back(Hi); 6476 return true; 6477 } 6478 } 6479 6480 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6481 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6482 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 6483 // FIXME getShiftAmountTy does not always return a sensible result when VT 6484 // is an illegal type, and so the type may be too small to fit the shift 6485 // amount. Override it with i32. The shift will have to be legalized. 6486 ShiftAmountTy = MVT::i32; 6487 } 6488 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6489 6490 if (!LH.getNode() && !RH.getNode() && 6491 isOperationLegalOrCustom(ISD::SRL, VT) && 6492 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6493 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6494 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6495 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6496 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6497 } 6498 6499 if (!LH.getNode()) 6500 return false; 6501 6502 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6503 return false; 6504 6505 Result.push_back(Lo); 6506 6507 if (Opcode == ISD::MUL) { 6508 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6509 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6510 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6511 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6512 Result.push_back(Hi); 6513 return true; 6514 } 6515 6516 // Compute the full width result. 6517 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6518 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6519 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6520 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6521 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6522 }; 6523 6524 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6525 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6526 return false; 6527 6528 // This is effectively the add part of a multiply-add of half-sized operands, 6529 // so it cannot overflow. 6530 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6531 6532 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6533 return false; 6534 6535 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6536 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6537 6538 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6539 isOperationLegalOrCustom(ISD::ADDE, VT)); 6540 if (UseGlue) 6541 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6542 Merge(Lo, Hi)); 6543 else 6544 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6545 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6546 6547 SDValue Carry = Next.getValue(1); 6548 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6549 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6550 6551 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6552 return false; 6553 6554 if (UseGlue) 6555 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6556 Carry); 6557 else 6558 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6559 Zero, Carry); 6560 6561 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6562 6563 if (Opcode == ISD::SMUL_LOHI) { 6564 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6565 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6566 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6567 6568 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6569 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6570 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6571 } 6572 6573 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6574 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6575 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6576 return true; 6577 } 6578 6579 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6580 SelectionDAG &DAG, MulExpansionKind Kind, 6581 SDValue LL, SDValue LH, SDValue RL, 6582 SDValue RH) const { 6583 SmallVector<SDValue, 2> Result; 6584 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6585 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6586 DAG, Kind, LL, LH, RL, RH); 6587 if (Ok) { 6588 assert(Result.size() == 2); 6589 Lo = Result[0]; 6590 Hi = Result[1]; 6591 } 6592 return Ok; 6593 } 6594 6595 // Check that (every element of) Z is undef or not an exact multiple of BW. 6596 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6597 return ISD::matchUnaryPredicate( 6598 Z, 6599 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6600 true); 6601 } 6602 6603 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6604 SelectionDAG &DAG) const { 6605 EVT VT = Node->getValueType(0); 6606 6607 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6608 !isOperationLegalOrCustom(ISD::SRL, VT) || 6609 !isOperationLegalOrCustom(ISD::SUB, VT) || 6610 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6611 return false; 6612 6613 SDValue X = Node->getOperand(0); 6614 SDValue Y = Node->getOperand(1); 6615 SDValue Z = Node->getOperand(2); 6616 6617 unsigned BW = VT.getScalarSizeInBits(); 6618 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6619 SDLoc DL(SDValue(Node, 0)); 6620 6621 EVT ShVT = Z.getValueType(); 6622 6623 // If a funnel shift in the other direction is more supported, use it. 6624 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6625 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6626 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6627 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6628 // fshl X, Y, Z -> fshr X, Y, -Z 6629 // fshr X, Y, Z -> fshl X, Y, -Z 6630 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6631 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6632 } else { 6633 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6634 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6635 SDValue One = DAG.getConstant(1, DL, ShVT); 6636 if (IsFSHL) { 6637 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6638 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6639 } else { 6640 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6641 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6642 } 6643 Z = DAG.getNOT(DL, Z, ShVT); 6644 } 6645 Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6646 return true; 6647 } 6648 6649 SDValue ShX, ShY; 6650 SDValue ShAmt, InvShAmt; 6651 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6652 // fshl: X << C | Y >> (BW - C) 6653 // fshr: X << (BW - C) | Y >> C 6654 // where C = Z % BW is not zero 6655 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6656 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6657 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6658 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6659 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6660 } else { 6661 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6662 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6663 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6664 if (isPowerOf2_32(BW)) { 6665 // Z % BW -> Z & (BW - 1) 6666 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6667 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6668 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6669 } else { 6670 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6671 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6672 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6673 } 6674 6675 SDValue One = DAG.getConstant(1, DL, ShVT); 6676 if (IsFSHL) { 6677 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6678 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6679 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6680 } else { 6681 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6682 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6683 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6684 } 6685 } 6686 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6687 return true; 6688 } 6689 6690 // TODO: Merge with expandFunnelShift. 6691 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6692 SDValue &Result, SelectionDAG &DAG) const { 6693 EVT VT = Node->getValueType(0); 6694 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6695 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6696 SDValue Op0 = Node->getOperand(0); 6697 SDValue Op1 = Node->getOperand(1); 6698 SDLoc DL(SDValue(Node, 0)); 6699 6700 EVT ShVT = Op1.getValueType(); 6701 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6702 6703 // If a rotate in the other direction is supported, use it. 6704 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6705 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6706 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6707 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6708 return true; 6709 } 6710 6711 if (!AllowVectorOps && VT.isVector() && 6712 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6713 !isOperationLegalOrCustom(ISD::SRL, VT) || 6714 !isOperationLegalOrCustom(ISD::SUB, VT) || 6715 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6716 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6717 return false; 6718 6719 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6720 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6721 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6722 SDValue ShVal; 6723 SDValue HsVal; 6724 if (isPowerOf2_32(EltSizeInBits)) { 6725 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6726 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6727 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6728 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6729 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6730 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6731 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6732 } else { 6733 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6734 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6735 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6736 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6737 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6738 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6739 SDValue One = DAG.getConstant(1, DL, ShVT); 6740 HsVal = 6741 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6742 } 6743 Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6744 return true; 6745 } 6746 6747 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6748 SelectionDAG &DAG) const { 6749 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6750 EVT VT = Node->getValueType(0); 6751 unsigned VTBits = VT.getScalarSizeInBits(); 6752 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6753 6754 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6755 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6756 SDValue ShOpLo = Node->getOperand(0); 6757 SDValue ShOpHi = Node->getOperand(1); 6758 SDValue ShAmt = Node->getOperand(2); 6759 EVT ShAmtVT = ShAmt.getValueType(); 6760 EVT ShAmtCCVT = 6761 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6762 SDLoc dl(Node); 6763 6764 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6765 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6766 // away during isel. 6767 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6768 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6769 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6770 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6771 : DAG.getConstant(0, dl, VT); 6772 6773 SDValue Tmp2, Tmp3; 6774 if (IsSHL) { 6775 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6776 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6777 } else { 6778 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6779 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6780 } 6781 6782 // If the shift amount is larger or equal than the width of a part we don't 6783 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 6784 // values for large shift amounts. 6785 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6786 DAG.getConstant(VTBits, dl, ShAmtVT)); 6787 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 6788 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 6789 6790 if (IsSHL) { 6791 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6792 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6793 } else { 6794 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6795 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6796 } 6797 } 6798 6799 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6800 SelectionDAG &DAG) const { 6801 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6802 SDValue Src = Node->getOperand(OpNo); 6803 EVT SrcVT = Src.getValueType(); 6804 EVT DstVT = Node->getValueType(0); 6805 SDLoc dl(SDValue(Node, 0)); 6806 6807 // FIXME: Only f32 to i64 conversions are supported. 6808 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6809 return false; 6810 6811 if (Node->isStrictFPOpcode()) 6812 // When a NaN is converted to an integer a trap is allowed. We can't 6813 // use this expansion here because it would eliminate that trap. Other 6814 // traps are also allowed and cannot be eliminated. See 6815 // IEEE 754-2008 sec 5.8. 6816 return false; 6817 6818 // Expand f32 -> i64 conversion 6819 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6820 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6821 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6822 EVT IntVT = SrcVT.changeTypeToInteger(); 6823 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6824 6825 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6826 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6827 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6828 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6829 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6830 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6831 6832 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6833 6834 SDValue ExponentBits = DAG.getNode( 6835 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6836 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6837 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6838 6839 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6840 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6841 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6842 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6843 6844 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6845 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6846 DAG.getConstant(0x00800000, dl, IntVT)); 6847 6848 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6849 6850 R = DAG.getSelectCC( 6851 dl, Exponent, ExponentLoBit, 6852 DAG.getNode(ISD::SHL, dl, DstVT, R, 6853 DAG.getZExtOrTrunc( 6854 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6855 dl, IntShVT)), 6856 DAG.getNode(ISD::SRL, dl, DstVT, R, 6857 DAG.getZExtOrTrunc( 6858 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6859 dl, IntShVT)), 6860 ISD::SETGT); 6861 6862 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6863 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6864 6865 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6866 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6867 return true; 6868 } 6869 6870 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6871 SDValue &Chain, 6872 SelectionDAG &DAG) const { 6873 SDLoc dl(SDValue(Node, 0)); 6874 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6875 SDValue Src = Node->getOperand(OpNo); 6876 6877 EVT SrcVT = Src.getValueType(); 6878 EVT DstVT = Node->getValueType(0); 6879 EVT SetCCVT = 6880 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6881 EVT DstSetCCVT = 6882 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6883 6884 // Only expand vector types if we have the appropriate vector bit operations. 6885 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6886 ISD::FP_TO_SINT; 6887 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6888 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6889 return false; 6890 6891 // If the maximum float value is smaller then the signed integer range, 6892 // the destination signmask can't be represented by the float, so we can 6893 // just use FP_TO_SINT directly. 6894 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6895 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 6896 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6897 if (APFloat::opOverflow & 6898 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6899 if (Node->isStrictFPOpcode()) { 6900 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6901 { Node->getOperand(0), Src }); 6902 Chain = Result.getValue(1); 6903 } else 6904 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6905 return true; 6906 } 6907 6908 // Don't expand it if there isn't cheap fsub instruction. 6909 if (!isOperationLegalOrCustom( 6910 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6911 return false; 6912 6913 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6914 SDValue Sel; 6915 6916 if (Node->isStrictFPOpcode()) { 6917 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6918 Node->getOperand(0), /*IsSignaling*/ true); 6919 Chain = Sel.getValue(1); 6920 } else { 6921 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6922 } 6923 6924 bool Strict = Node->isStrictFPOpcode() || 6925 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6926 6927 if (Strict) { 6928 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6929 // signmask then offset (the result of which should be fully representable). 6930 // Sel = Src < 0x8000000000000000 6931 // FltOfs = select Sel, 0, 0x8000000000000000 6932 // IntOfs = select Sel, 0, 0x8000000000000000 6933 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6934 6935 // TODO: Should any fast-math-flags be set for the FSUB? 6936 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6937 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6938 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6939 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6940 DAG.getConstant(0, dl, DstVT), 6941 DAG.getConstant(SignMask, dl, DstVT)); 6942 SDValue SInt; 6943 if (Node->isStrictFPOpcode()) { 6944 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6945 { Chain, Src, FltOfs }); 6946 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6947 { Val.getValue(1), Val }); 6948 Chain = SInt.getValue(1); 6949 } else { 6950 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6951 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6952 } 6953 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6954 } else { 6955 // Expand based on maximum range of FP_TO_SINT: 6956 // True = fp_to_sint(Src) 6957 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6958 // Result = select (Src < 0x8000000000000000), True, False 6959 6960 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6961 // TODO: Should any fast-math-flags be set for the FSUB? 6962 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6963 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6964 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6965 DAG.getConstant(SignMask, dl, DstVT)); 6966 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6967 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6968 } 6969 return true; 6970 } 6971 6972 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6973 SDValue &Chain, 6974 SelectionDAG &DAG) const { 6975 // This transform is not correct for converting 0 when rounding mode is set 6976 // to round toward negative infinity which will produce -0.0. So disable under 6977 // strictfp. 6978 if (Node->isStrictFPOpcode()) 6979 return false; 6980 6981 SDValue Src = Node->getOperand(0); 6982 EVT SrcVT = Src.getValueType(); 6983 EVT DstVT = Node->getValueType(0); 6984 6985 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6986 return false; 6987 6988 // Only expand vector types if we have the appropriate vector bit operations. 6989 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6990 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6991 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6992 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6993 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6994 return false; 6995 6996 SDLoc dl(SDValue(Node, 0)); 6997 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6998 6999 // Implementation of unsigned i64 to f64 following the algorithm in 7000 // __floatundidf in compiler_rt. This implementation performs rounding 7001 // correctly in all rounding modes with the exception of converting 0 7002 // when rounding toward negative infinity. In that case the fsub will produce 7003 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 7004 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7005 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7006 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7007 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7008 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7009 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7010 7011 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7012 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7013 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7014 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7015 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7016 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7017 SDValue HiSub = 7018 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7019 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7020 return true; 7021 } 7022 7023 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7024 SelectionDAG &DAG) const { 7025 SDLoc dl(Node); 7026 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7027 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7028 EVT VT = Node->getValueType(0); 7029 7030 if (VT.isScalableVector()) 7031 report_fatal_error( 7032 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7033 7034 if (isOperationLegalOrCustom(NewOp, VT)) { 7035 SDValue Quiet0 = Node->getOperand(0); 7036 SDValue Quiet1 = Node->getOperand(1); 7037 7038 if (!Node->getFlags().hasNoNaNs()) { 7039 // Insert canonicalizes if it's possible we need to quiet to get correct 7040 // sNaN behavior. 7041 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7042 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7043 Node->getFlags()); 7044 } 7045 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7046 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7047 Node->getFlags()); 7048 } 7049 } 7050 7051 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7052 } 7053 7054 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7055 // instead if there are no NaNs. 7056 if (Node->getFlags().hasNoNaNs()) { 7057 unsigned IEEE2018Op = 7058 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7059 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7060 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7061 Node->getOperand(1), Node->getFlags()); 7062 } 7063 } 7064 7065 // If none of the above worked, but there are no NaNs, then expand to 7066 // a compare/select sequence. This is required for correctness since 7067 // InstCombine might have canonicalized a fcmp+select sequence to a 7068 // FMINNUM/FMAXNUM node. If we were to fall through to the default 7069 // expansion to libcall, we might introduce a link-time dependency 7070 // on libm into a file that originally did not have one. 7071 if (Node->getFlags().hasNoNaNs()) { 7072 ISD::CondCode Pred = 7073 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7074 SDValue Op1 = Node->getOperand(0); 7075 SDValue Op2 = Node->getOperand(1); 7076 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 7077 // Copy FMF flags, but always set the no-signed-zeros flag 7078 // as this is implied by the FMINNUM/FMAXNUM semantics. 7079 SDNodeFlags Flags = Node->getFlags(); 7080 Flags.setNoSignedZeros(true); 7081 SelCC->setFlags(Flags); 7082 return SelCC; 7083 } 7084 7085 return SDValue(); 7086 } 7087 7088 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 7089 SelectionDAG &DAG) const { 7090 SDLoc dl(Node); 7091 EVT VT = Node->getValueType(0); 7092 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7093 SDValue Op = Node->getOperand(0); 7094 unsigned Len = VT.getScalarSizeInBits(); 7095 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7096 7097 // TODO: Add support for irregular type lengths. 7098 if (!(Len <= 128 && Len % 8 == 0)) 7099 return false; 7100 7101 // Only expand vector types if we have the appropriate vector bit operations. 7102 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 7103 !isOperationLegalOrCustom(ISD::SUB, VT) || 7104 !isOperationLegalOrCustom(ISD::SRL, VT) || 7105 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 7106 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 7107 return false; 7108 7109 // This is the "best" algorithm from 7110 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7111 SDValue Mask55 = 7112 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7113 SDValue Mask33 = 7114 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7115 SDValue Mask0F = 7116 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7117 SDValue Mask01 = 7118 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7119 7120 // v = v - ((v >> 1) & 0x55555555...) 7121 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7122 DAG.getNode(ISD::AND, dl, VT, 7123 DAG.getNode(ISD::SRL, dl, VT, Op, 7124 DAG.getConstant(1, dl, ShVT)), 7125 Mask55)); 7126 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7127 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7128 DAG.getNode(ISD::AND, dl, VT, 7129 DAG.getNode(ISD::SRL, dl, VT, Op, 7130 DAG.getConstant(2, dl, ShVT)), 7131 Mask33)); 7132 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7133 Op = DAG.getNode(ISD::AND, dl, VT, 7134 DAG.getNode(ISD::ADD, dl, VT, Op, 7135 DAG.getNode(ISD::SRL, dl, VT, Op, 7136 DAG.getConstant(4, dl, ShVT))), 7137 Mask0F); 7138 // v = (v * 0x01010101...) >> (Len - 8) 7139 if (Len > 8) 7140 Op = 7141 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7142 DAG.getConstant(Len - 8, dl, ShVT)); 7143 7144 Result = Op; 7145 return true; 7146 } 7147 7148 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 7149 SelectionDAG &DAG) const { 7150 SDLoc dl(Node); 7151 EVT VT = Node->getValueType(0); 7152 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7153 SDValue Op = Node->getOperand(0); 7154 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7155 7156 // If the non-ZERO_UNDEF version is supported we can use that instead. 7157 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7158 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 7159 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 7160 return true; 7161 } 7162 7163 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7164 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7165 EVT SetCCVT = 7166 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7167 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7168 SDValue Zero = DAG.getConstant(0, dl, VT); 7169 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7170 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7171 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7172 return true; 7173 } 7174 7175 // Only expand vector types if we have the appropriate vector bit operations. 7176 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7177 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 7178 !isOperationLegalOrCustom(ISD::SRL, VT) || 7179 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7180 return false; 7181 7182 // for now, we do this: 7183 // x = x | (x >> 1); 7184 // x = x | (x >> 2); 7185 // ... 7186 // x = x | (x >>16); 7187 // x = x | (x >>32); // for 64-bit input 7188 // return popcount(~x); 7189 // 7190 // Ref: "Hacker's Delight" by Henry Warren 7191 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7192 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7193 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7194 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7195 } 7196 Op = DAG.getNOT(dl, Op, VT); 7197 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 7198 return true; 7199 } 7200 7201 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 7202 SelectionDAG &DAG) const { 7203 SDLoc dl(Node); 7204 EVT VT = Node->getValueType(0); 7205 SDValue Op = Node->getOperand(0); 7206 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7207 7208 // If the non-ZERO_UNDEF version is supported we can use that instead. 7209 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7210 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 7211 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 7212 return true; 7213 } 7214 7215 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7216 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7217 EVT SetCCVT = 7218 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7219 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7220 SDValue Zero = DAG.getConstant(0, dl, VT); 7221 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7222 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7223 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7224 return true; 7225 } 7226 7227 // Only expand vector types if we have the appropriate vector bit operations. 7228 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7229 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7230 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 7231 !isOperationLegalOrCustom(ISD::SUB, VT) || 7232 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7233 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7234 return false; 7235 7236 // for now, we use: { return popcount(~x & (x - 1)); } 7237 // unless the target has ctlz but not ctpop, in which case we use: 7238 // { return 32 - nlz(~x & (x-1)); } 7239 // Ref: "Hacker's Delight" by Henry Warren 7240 SDValue Tmp = DAG.getNode( 7241 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7242 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7243 7244 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7245 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7246 Result = 7247 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7248 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7249 return true; 7250 } 7251 7252 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7253 return true; 7254 } 7255 7256 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 7257 SelectionDAG &DAG, bool IsNegative) const { 7258 SDLoc dl(N); 7259 EVT VT = N->getValueType(0); 7260 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7261 SDValue Op = N->getOperand(0); 7262 7263 // abs(x) -> smax(x,sub(0,x)) 7264 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7265 isOperationLegal(ISD::SMAX, VT)) { 7266 SDValue Zero = DAG.getConstant(0, dl, VT); 7267 Result = DAG.getNode(ISD::SMAX, dl, VT, Op, 7268 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7269 return true; 7270 } 7271 7272 // abs(x) -> umin(x,sub(0,x)) 7273 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7274 isOperationLegal(ISD::UMIN, VT)) { 7275 SDValue Zero = DAG.getConstant(0, dl, VT); 7276 Result = DAG.getNode(ISD::UMIN, dl, VT, Op, 7277 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7278 return true; 7279 } 7280 7281 // 0 - abs(x) -> smin(x, sub(0,x)) 7282 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7283 isOperationLegal(ISD::SMIN, VT)) { 7284 SDValue Zero = DAG.getConstant(0, dl, VT); 7285 Result = DAG.getNode(ISD::SMIN, dl, VT, Op, 7286 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7287 return true; 7288 } 7289 7290 // Only expand vector types if we have the appropriate vector operations. 7291 if (VT.isVector() && 7292 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7293 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7294 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7295 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7296 return false; 7297 7298 SDValue Shift = 7299 DAG.getNode(ISD::SRA, dl, VT, Op, 7300 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7301 if (!IsNegative) { 7302 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7303 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7304 } else { 7305 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7306 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7307 Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7308 } 7309 return true; 7310 } 7311 7312 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7313 SDLoc dl(N); 7314 EVT VT = N->getValueType(0); 7315 SDValue Op = N->getOperand(0); 7316 7317 if (!VT.isSimple()) 7318 return SDValue(); 7319 7320 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7321 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7322 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7323 default: 7324 return SDValue(); 7325 case MVT::i16: 7326 // Use a rotate by 8. This can be further expanded if necessary. 7327 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7328 case MVT::i32: 7329 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7330 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7331 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7332 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7333 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7334 DAG.getConstant(0xFF0000, dl, VT)); 7335 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7336 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7337 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7338 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7339 case MVT::i64: 7340 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7341 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7342 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7343 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7344 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7345 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7346 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7347 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7348 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7349 DAG.getConstant(255ULL<<48, dl, VT)); 7350 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7351 DAG.getConstant(255ULL<<40, dl, VT)); 7352 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7353 DAG.getConstant(255ULL<<32, dl, VT)); 7354 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7355 DAG.getConstant(255ULL<<24, dl, VT)); 7356 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7357 DAG.getConstant(255ULL<<16, dl, VT)); 7358 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7359 DAG.getConstant(255ULL<<8 , dl, VT)); 7360 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7361 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7362 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7363 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7364 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7365 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7366 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7367 } 7368 } 7369 7370 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7371 SDLoc dl(N); 7372 EVT VT = N->getValueType(0); 7373 SDValue Op = N->getOperand(0); 7374 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7375 unsigned Sz = VT.getScalarSizeInBits(); 7376 7377 SDValue Tmp, Tmp2, Tmp3; 7378 7379 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7380 // and finally the i1 pairs. 7381 // TODO: We can easily support i4/i2 legal types if any target ever does. 7382 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7383 // Create the masks - repeating the pattern every byte. 7384 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7385 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7386 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7387 7388 // BSWAP if the type is wider than a single byte. 7389 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7390 7391 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 7392 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 7393 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 7394 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 7395 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7396 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7397 7398 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 7399 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 7400 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 7401 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 7402 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7403 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7404 7405 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 7406 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 7407 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 7408 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 7409 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7410 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7411 return Tmp; 7412 } 7413 7414 Tmp = DAG.getConstant(0, dl, VT); 7415 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7416 if (I < J) 7417 Tmp2 = 7418 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7419 else 7420 Tmp2 = 7421 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7422 7423 APInt Shift(Sz, 1); 7424 Shift <<= J; 7425 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7426 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7427 } 7428 7429 return Tmp; 7430 } 7431 7432 std::pair<SDValue, SDValue> 7433 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7434 SelectionDAG &DAG) const { 7435 SDLoc SL(LD); 7436 SDValue Chain = LD->getChain(); 7437 SDValue BasePTR = LD->getBasePtr(); 7438 EVT SrcVT = LD->getMemoryVT(); 7439 EVT DstVT = LD->getValueType(0); 7440 ISD::LoadExtType ExtType = LD->getExtensionType(); 7441 7442 if (SrcVT.isScalableVector()) 7443 report_fatal_error("Cannot scalarize scalable vector loads"); 7444 7445 unsigned NumElem = SrcVT.getVectorNumElements(); 7446 7447 EVT SrcEltVT = SrcVT.getScalarType(); 7448 EVT DstEltVT = DstVT.getScalarType(); 7449 7450 // A vector must always be stored in memory as-is, i.e. without any padding 7451 // between the elements, since various code depend on it, e.g. in the 7452 // handling of a bitcast of a vector type to int, which may be done with a 7453 // vector store followed by an integer load. A vector that does not have 7454 // elements that are byte-sized must therefore be stored as an integer 7455 // built out of the extracted vector elements. 7456 if (!SrcEltVT.isByteSized()) { 7457 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7458 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7459 7460 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7461 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7462 7463 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7464 SDValue SrcEltBitMask = DAG.getConstant( 7465 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7466 7467 // Load the whole vector and avoid masking off the top bits as it makes 7468 // the codegen worse. 7469 SDValue Load = 7470 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7471 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7472 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7473 7474 SmallVector<SDValue, 8> Vals; 7475 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7476 unsigned ShiftIntoIdx = 7477 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7478 SDValue ShiftAmount = 7479 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7480 LoadVT, SL, /*LegalTypes=*/false); 7481 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7482 SDValue Elt = 7483 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7484 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7485 7486 if (ExtType != ISD::NON_EXTLOAD) { 7487 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7488 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7489 } 7490 7491 Vals.push_back(Scalar); 7492 } 7493 7494 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7495 return std::make_pair(Value, Load.getValue(1)); 7496 } 7497 7498 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7499 assert(SrcEltVT.isByteSized()); 7500 7501 SmallVector<SDValue, 8> Vals; 7502 SmallVector<SDValue, 8> LoadChains; 7503 7504 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7505 SDValue ScalarLoad = 7506 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7507 LD->getPointerInfo().getWithOffset(Idx * Stride), 7508 SrcEltVT, LD->getOriginalAlign(), 7509 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7510 7511 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7512 7513 Vals.push_back(ScalarLoad.getValue(0)); 7514 LoadChains.push_back(ScalarLoad.getValue(1)); 7515 } 7516 7517 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7518 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7519 7520 return std::make_pair(Value, NewChain); 7521 } 7522 7523 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7524 SelectionDAG &DAG) const { 7525 SDLoc SL(ST); 7526 7527 SDValue Chain = ST->getChain(); 7528 SDValue BasePtr = ST->getBasePtr(); 7529 SDValue Value = ST->getValue(); 7530 EVT StVT = ST->getMemoryVT(); 7531 7532 if (StVT.isScalableVector()) 7533 report_fatal_error("Cannot scalarize scalable vector stores"); 7534 7535 // The type of the data we want to save 7536 EVT RegVT = Value.getValueType(); 7537 EVT RegSclVT = RegVT.getScalarType(); 7538 7539 // The type of data as saved in memory. 7540 EVT MemSclVT = StVT.getScalarType(); 7541 7542 unsigned NumElem = StVT.getVectorNumElements(); 7543 7544 // A vector must always be stored in memory as-is, i.e. without any padding 7545 // between the elements, since various code depend on it, e.g. in the 7546 // handling of a bitcast of a vector type to int, which may be done with a 7547 // vector store followed by an integer load. A vector that does not have 7548 // elements that are byte-sized must therefore be stored as an integer 7549 // built out of the extracted vector elements. 7550 if (!MemSclVT.isByteSized()) { 7551 unsigned NumBits = StVT.getSizeInBits(); 7552 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7553 7554 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7555 7556 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7557 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7558 DAG.getVectorIdxConstant(Idx, SL)); 7559 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7560 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7561 unsigned ShiftIntoIdx = 7562 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7563 SDValue ShiftAmount = 7564 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7565 SDValue ShiftedElt = 7566 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7567 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7568 } 7569 7570 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7571 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7572 ST->getAAInfo()); 7573 } 7574 7575 // Store Stride in bytes 7576 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7577 assert(Stride && "Zero stride!"); 7578 // Extract each of the elements from the original vector and save them into 7579 // memory individually. 7580 SmallVector<SDValue, 8> Stores; 7581 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7582 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7583 DAG.getVectorIdxConstant(Idx, SL)); 7584 7585 SDValue Ptr = 7586 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7587 7588 // This scalar TruncStore may be illegal, but we legalize it later. 7589 SDValue Store = DAG.getTruncStore( 7590 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7591 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7592 ST->getAAInfo()); 7593 7594 Stores.push_back(Store); 7595 } 7596 7597 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7598 } 7599 7600 std::pair<SDValue, SDValue> 7601 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7602 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7603 "unaligned indexed loads not implemented!"); 7604 SDValue Chain = LD->getChain(); 7605 SDValue Ptr = LD->getBasePtr(); 7606 EVT VT = LD->getValueType(0); 7607 EVT LoadedVT = LD->getMemoryVT(); 7608 SDLoc dl(LD); 7609 auto &MF = DAG.getMachineFunction(); 7610 7611 if (VT.isFloatingPoint() || VT.isVector()) { 7612 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7613 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7614 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7615 LoadedVT.isVector()) { 7616 // Scalarize the load and let the individual components be handled. 7617 return scalarizeVectorLoad(LD, DAG); 7618 } 7619 7620 // Expand to a (misaligned) integer load of the same size, 7621 // then bitconvert to floating point or vector. 7622 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7623 LD->getMemOperand()); 7624 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7625 if (LoadedVT != VT) 7626 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7627 ISD::ANY_EXTEND, dl, VT, Result); 7628 7629 return std::make_pair(Result, newLoad.getValue(1)); 7630 } 7631 7632 // Copy the value to a (aligned) stack slot using (unaligned) integer 7633 // loads and stores, then do a (aligned) load from the stack slot. 7634 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7635 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7636 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7637 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7638 7639 // Make sure the stack slot is also aligned for the register type. 7640 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7641 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7642 SmallVector<SDValue, 8> Stores; 7643 SDValue StackPtr = StackBase; 7644 unsigned Offset = 0; 7645 7646 EVT PtrVT = Ptr.getValueType(); 7647 EVT StackPtrVT = StackPtr.getValueType(); 7648 7649 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7650 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7651 7652 // Do all but one copies using the full register width. 7653 for (unsigned i = 1; i < NumRegs; i++) { 7654 // Load one integer register's worth from the original location. 7655 SDValue Load = DAG.getLoad( 7656 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7657 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7658 LD->getAAInfo()); 7659 // Follow the load with a store to the stack slot. Remember the store. 7660 Stores.push_back(DAG.getStore( 7661 Load.getValue(1), dl, Load, StackPtr, 7662 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7663 // Increment the pointers. 7664 Offset += RegBytes; 7665 7666 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7667 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7668 } 7669 7670 // The last copy may be partial. Do an extending load. 7671 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7672 8 * (LoadedBytes - Offset)); 7673 SDValue Load = 7674 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7675 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7676 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7677 LD->getAAInfo()); 7678 // Follow the load with a store to the stack slot. Remember the store. 7679 // On big-endian machines this requires a truncating store to ensure 7680 // that the bits end up in the right place. 7681 Stores.push_back(DAG.getTruncStore( 7682 Load.getValue(1), dl, Load, StackPtr, 7683 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7684 7685 // The order of the stores doesn't matter - say it with a TokenFactor. 7686 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7687 7688 // Finally, perform the original load only redirected to the stack slot. 7689 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7690 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7691 LoadedVT); 7692 7693 // Callers expect a MERGE_VALUES node. 7694 return std::make_pair(Load, TF); 7695 } 7696 7697 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7698 "Unaligned load of unsupported type."); 7699 7700 // Compute the new VT that is half the size of the old one. This is an 7701 // integer MVT. 7702 unsigned NumBits = LoadedVT.getSizeInBits(); 7703 EVT NewLoadedVT; 7704 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7705 NumBits >>= 1; 7706 7707 Align Alignment = LD->getOriginalAlign(); 7708 unsigned IncrementSize = NumBits / 8; 7709 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7710 7711 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7712 if (HiExtType == ISD::NON_EXTLOAD) 7713 HiExtType = ISD::ZEXTLOAD; 7714 7715 // Load the value in two parts 7716 SDValue Lo, Hi; 7717 if (DAG.getDataLayout().isLittleEndian()) { 7718 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7719 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7720 LD->getAAInfo()); 7721 7722 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7723 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7724 LD->getPointerInfo().getWithOffset(IncrementSize), 7725 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7726 LD->getAAInfo()); 7727 } else { 7728 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7729 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7730 LD->getAAInfo()); 7731 7732 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7733 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7734 LD->getPointerInfo().getWithOffset(IncrementSize), 7735 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7736 LD->getAAInfo()); 7737 } 7738 7739 // aggregate the two parts 7740 SDValue ShiftAmount = 7741 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7742 DAG.getDataLayout())); 7743 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7744 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7745 7746 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7747 Hi.getValue(1)); 7748 7749 return std::make_pair(Result, TF); 7750 } 7751 7752 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7753 SelectionDAG &DAG) const { 7754 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7755 "unaligned indexed stores not implemented!"); 7756 SDValue Chain = ST->getChain(); 7757 SDValue Ptr = ST->getBasePtr(); 7758 SDValue Val = ST->getValue(); 7759 EVT VT = Val.getValueType(); 7760 Align Alignment = ST->getOriginalAlign(); 7761 auto &MF = DAG.getMachineFunction(); 7762 EVT StoreMemVT = ST->getMemoryVT(); 7763 7764 SDLoc dl(ST); 7765 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7766 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7767 if (isTypeLegal(intVT)) { 7768 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7769 StoreMemVT.isVector()) { 7770 // Scalarize the store and let the individual components be handled. 7771 SDValue Result = scalarizeVectorStore(ST, DAG); 7772 return Result; 7773 } 7774 // Expand to a bitconvert of the value to the integer type of the 7775 // same size, then a (misaligned) int store. 7776 // FIXME: Does not handle truncating floating point stores! 7777 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7778 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7779 Alignment, ST->getMemOperand()->getFlags()); 7780 return Result; 7781 } 7782 // Do a (aligned) store to a stack slot, then copy from the stack slot 7783 // to the final destination using (unaligned) integer loads and stores. 7784 MVT RegVT = getRegisterType( 7785 *DAG.getContext(), 7786 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7787 EVT PtrVT = Ptr.getValueType(); 7788 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7789 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7790 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7791 7792 // Make sure the stack slot is also aligned for the register type. 7793 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7794 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7795 7796 // Perform the original store, only redirected to the stack slot. 7797 SDValue Store = DAG.getTruncStore( 7798 Chain, dl, Val, StackPtr, 7799 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7800 7801 EVT StackPtrVT = StackPtr.getValueType(); 7802 7803 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7804 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7805 SmallVector<SDValue, 8> Stores; 7806 unsigned Offset = 0; 7807 7808 // Do all but one copies using the full register width. 7809 for (unsigned i = 1; i < NumRegs; i++) { 7810 // Load one integer register's worth from the stack slot. 7811 SDValue Load = DAG.getLoad( 7812 RegVT, dl, Store, StackPtr, 7813 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7814 // Store it to the final location. Remember the store. 7815 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7816 ST->getPointerInfo().getWithOffset(Offset), 7817 ST->getOriginalAlign(), 7818 ST->getMemOperand()->getFlags())); 7819 // Increment the pointers. 7820 Offset += RegBytes; 7821 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7822 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7823 } 7824 7825 // The last store may be partial. Do a truncating store. On big-endian 7826 // machines this requires an extending load from the stack slot to ensure 7827 // that the bits are in the right place. 7828 EVT LoadMemVT = 7829 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7830 7831 // Load from the stack slot. 7832 SDValue Load = DAG.getExtLoad( 7833 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7834 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7835 7836 Stores.push_back( 7837 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7838 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7839 ST->getOriginalAlign(), 7840 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7841 // The order of the stores doesn't matter - say it with a TokenFactor. 7842 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7843 return Result; 7844 } 7845 7846 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7847 "Unaligned store of unknown type."); 7848 // Get the half-size VT 7849 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7850 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7851 unsigned IncrementSize = NumBits / 8; 7852 7853 // Divide the stored value in two parts. 7854 SDValue ShiftAmount = DAG.getConstant( 7855 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7856 SDValue Lo = Val; 7857 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7858 7859 // Store the two parts 7860 SDValue Store1, Store2; 7861 Store1 = DAG.getTruncStore(Chain, dl, 7862 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7863 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7864 ST->getMemOperand()->getFlags()); 7865 7866 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7867 Store2 = DAG.getTruncStore( 7868 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7869 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7870 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7871 7872 SDValue Result = 7873 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7874 return Result; 7875 } 7876 7877 SDValue 7878 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7879 const SDLoc &DL, EVT DataVT, 7880 SelectionDAG &DAG, 7881 bool IsCompressedMemory) const { 7882 SDValue Increment; 7883 EVT AddrVT = Addr.getValueType(); 7884 EVT MaskVT = Mask.getValueType(); 7885 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7886 "Incompatible types of Data and Mask"); 7887 if (IsCompressedMemory) { 7888 if (DataVT.isScalableVector()) 7889 report_fatal_error( 7890 "Cannot currently handle compressed memory with scalable vectors"); 7891 // Incrementing the pointer according to number of '1's in the mask. 7892 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7893 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7894 if (MaskIntVT.getSizeInBits() < 32) { 7895 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7896 MaskIntVT = MVT::i32; 7897 } 7898 7899 // Count '1's with POPCNT. 7900 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7901 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7902 // Scale is an element size in bytes. 7903 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7904 AddrVT); 7905 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7906 } else if (DataVT.isScalableVector()) { 7907 Increment = DAG.getVScale(DL, AddrVT, 7908 APInt(AddrVT.getFixedSizeInBits(), 7909 DataVT.getStoreSize().getKnownMinSize())); 7910 } else 7911 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7912 7913 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7914 } 7915 7916 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 7917 EVT VecVT, const SDLoc &dl, 7918 unsigned NumSubElts) { 7919 if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx)) 7920 return Idx; 7921 7922 EVT IdxVT = Idx.getValueType(); 7923 unsigned NElts = VecVT.getVectorMinNumElements(); 7924 if (VecVT.isScalableVector()) { 7925 // If this is a constant index and we know the value plus the number of the 7926 // elements in the subvector minus one is less than the minimum number of 7927 // elements then it's safe to return Idx. 7928 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 7929 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 7930 return Idx; 7931 SDValue VS = 7932 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 7933 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 7934 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 7935 DAG.getConstant(NumSubElts, dl, IdxVT)); 7936 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7937 } 7938 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 7939 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 7940 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7941 DAG.getConstant(Imm, dl, IdxVT)); 7942 } 7943 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 7944 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7945 DAG.getConstant(MaxIndex, dl, IdxVT)); 7946 } 7947 7948 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7949 SDValue VecPtr, EVT VecVT, 7950 SDValue Index) const { 7951 return getVectorSubVecPointer( 7952 DAG, VecPtr, VecVT, 7953 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 7954 Index); 7955 } 7956 7957 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 7958 SDValue VecPtr, EVT VecVT, 7959 EVT SubVecVT, 7960 SDValue Index) const { 7961 SDLoc dl(Index); 7962 // Make sure the index type is big enough to compute in. 7963 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7964 7965 EVT EltVT = VecVT.getVectorElementType(); 7966 7967 // Calculate the element offset and add it to the pointer. 7968 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7969 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7970 "Converting bits to bytes lost precision"); 7971 7972 // Scalable vectors don't need clamping as these are checked at compile time 7973 if (SubVecVT.isFixedLengthVector()) { 7974 assert(SubVecVT.getVectorElementType() == EltVT && 7975 "Sub-vector must be a fixed vector with matching element type"); 7976 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 7977 SubVecVT.getVectorNumElements()); 7978 } 7979 7980 EVT IdxVT = Index.getValueType(); 7981 7982 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7983 DAG.getConstant(EltSize, dl, IdxVT)); 7984 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7985 } 7986 7987 //===----------------------------------------------------------------------===// 7988 // Implementation of Emulated TLS Model 7989 //===----------------------------------------------------------------------===// 7990 7991 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7992 SelectionDAG &DAG) const { 7993 // Access to address of TLS varialbe xyz is lowered to a function call: 7994 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7995 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7996 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7997 SDLoc dl(GA); 7998 7999 ArgListTy Args; 8000 ArgListEntry Entry; 8001 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 8002 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 8003 StringRef EmuTlsVarName(NameString); 8004 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 8005 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 8006 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 8007 Entry.Ty = VoidPtrType; 8008 Args.push_back(Entry); 8009 8010 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 8011 8012 TargetLowering::CallLoweringInfo CLI(DAG); 8013 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 8014 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 8015 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 8016 8017 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 8018 // At last for X86 targets, maybe good for other targets too? 8019 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8020 MFI.setAdjustsStack(true); // Is this only for X86 target? 8021 MFI.setHasCalls(true); 8022 8023 assert((GA->getOffset() == 0) && 8024 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 8025 return CallResult.first; 8026 } 8027 8028 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 8029 SelectionDAG &DAG) const { 8030 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 8031 if (!isCtlzFast()) 8032 return SDValue(); 8033 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8034 SDLoc dl(Op); 8035 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8036 if (C->isZero() && CC == ISD::SETEQ) { 8037 EVT VT = Op.getOperand(0).getValueType(); 8038 SDValue Zext = Op.getOperand(0); 8039 if (VT.bitsLT(MVT::i32)) { 8040 VT = MVT::i32; 8041 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8042 } 8043 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8044 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8045 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8046 DAG.getConstant(Log2b, dl, MVT::i32)); 8047 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8048 } 8049 } 8050 return SDValue(); 8051 } 8052 8053 // Convert redundant addressing modes (e.g. scaling is redundant 8054 // when accessing bytes). 8055 ISD::MemIndexType 8056 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 8057 SDValue Offsets) const { 8058 bool IsScaledIndex = 8059 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 8060 bool IsSignedIndex = 8061 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 8062 8063 // Scaling is unimportant for bytes, canonicalize to unscaled. 8064 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) { 8065 IsScaledIndex = false; 8066 IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 8067 } 8068 8069 return IndexType; 8070 } 8071 8072 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8073 SDValue Op0 = Node->getOperand(0); 8074 SDValue Op1 = Node->getOperand(1); 8075 EVT VT = Op0.getValueType(); 8076 unsigned Opcode = Node->getOpcode(); 8077 SDLoc DL(Node); 8078 8079 // umin(x,y) -> sub(x,usubsat(x,y)) 8080 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8081 isOperationLegal(ISD::USUBSAT, VT)) { 8082 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8083 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8084 } 8085 8086 // umax(x,y) -> add(x,usubsat(y,x)) 8087 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8088 isOperationLegal(ISD::USUBSAT, VT)) { 8089 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8090 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8091 } 8092 8093 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8094 ISD::CondCode CC; 8095 switch (Opcode) { 8096 default: llvm_unreachable("How did we get here?"); 8097 case ISD::SMAX: CC = ISD::SETGT; break; 8098 case ISD::SMIN: CC = ISD::SETLT; break; 8099 case ISD::UMAX: CC = ISD::SETUGT; break; 8100 case ISD::UMIN: CC = ISD::SETULT; break; 8101 } 8102 8103 // FIXME: Should really try to split the vector in case it's legal on a 8104 // subvector. 8105 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8106 return DAG.UnrollVectorOp(Node); 8107 8108 SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC); 8109 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8110 } 8111 8112 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8113 unsigned Opcode = Node->getOpcode(); 8114 SDValue LHS = Node->getOperand(0); 8115 SDValue RHS = Node->getOperand(1); 8116 EVT VT = LHS.getValueType(); 8117 SDLoc dl(Node); 8118 8119 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8120 assert(VT.isInteger() && "Expected operands to be integers"); 8121 8122 // usub.sat(a, b) -> umax(a, b) - b 8123 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8124 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8125 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8126 } 8127 8128 // uadd.sat(a, b) -> umin(a, ~b) + b 8129 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8130 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8131 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8132 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8133 } 8134 8135 unsigned OverflowOp; 8136 switch (Opcode) { 8137 case ISD::SADDSAT: 8138 OverflowOp = ISD::SADDO; 8139 break; 8140 case ISD::UADDSAT: 8141 OverflowOp = ISD::UADDO; 8142 break; 8143 case ISD::SSUBSAT: 8144 OverflowOp = ISD::SSUBO; 8145 break; 8146 case ISD::USUBSAT: 8147 OverflowOp = ISD::USUBO; 8148 break; 8149 default: 8150 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8151 "addition or subtraction node."); 8152 } 8153 8154 // FIXME: Should really try to split the vector in case it's legal on a 8155 // subvector. 8156 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8157 return DAG.UnrollVectorOp(Node); 8158 8159 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8160 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8161 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8162 SDValue SumDiff = Result.getValue(0); 8163 SDValue Overflow = Result.getValue(1); 8164 SDValue Zero = DAG.getConstant(0, dl, VT); 8165 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8166 8167 if (Opcode == ISD::UADDSAT) { 8168 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8169 // (LHS + RHS) | OverflowMask 8170 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8171 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8172 } 8173 // Overflow ? 0xffff.... : (LHS + RHS) 8174 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8175 } 8176 8177 if (Opcode == ISD::USUBSAT) { 8178 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8179 // (LHS - RHS) & ~OverflowMask 8180 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8181 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8182 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8183 } 8184 // Overflow ? 0 : (LHS - RHS) 8185 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8186 } 8187 8188 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8189 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8190 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8191 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8192 DAG.getConstant(BitWidth - 1, dl, VT)); 8193 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8194 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8195 } 8196 8197 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8198 unsigned Opcode = Node->getOpcode(); 8199 bool IsSigned = Opcode == ISD::SSHLSAT; 8200 SDValue LHS = Node->getOperand(0); 8201 SDValue RHS = Node->getOperand(1); 8202 EVT VT = LHS.getValueType(); 8203 SDLoc dl(Node); 8204 8205 assert((Node->getOpcode() == ISD::SSHLSAT || 8206 Node->getOpcode() == ISD::USHLSAT) && 8207 "Expected a SHLSAT opcode"); 8208 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8209 assert(VT.isInteger() && "Expected operands to be integers"); 8210 8211 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8212 8213 unsigned BW = VT.getScalarSizeInBits(); 8214 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8215 SDValue Orig = 8216 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8217 8218 SDValue SatVal; 8219 if (IsSigned) { 8220 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8221 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8222 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8223 SatMin, SatMax, ISD::SETLT); 8224 } else { 8225 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8226 } 8227 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8228 8229 return Result; 8230 } 8231 8232 SDValue 8233 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8234 assert((Node->getOpcode() == ISD::SMULFIX || 8235 Node->getOpcode() == ISD::UMULFIX || 8236 Node->getOpcode() == ISD::SMULFIXSAT || 8237 Node->getOpcode() == ISD::UMULFIXSAT) && 8238 "Expected a fixed point multiplication opcode"); 8239 8240 SDLoc dl(Node); 8241 SDValue LHS = Node->getOperand(0); 8242 SDValue RHS = Node->getOperand(1); 8243 EVT VT = LHS.getValueType(); 8244 unsigned Scale = Node->getConstantOperandVal(2); 8245 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8246 Node->getOpcode() == ISD::UMULFIXSAT); 8247 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8248 Node->getOpcode() == ISD::SMULFIXSAT); 8249 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8250 unsigned VTSize = VT.getScalarSizeInBits(); 8251 8252 if (!Scale) { 8253 // [us]mul.fix(a, b, 0) -> mul(a, b) 8254 if (!Saturating) { 8255 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8256 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8257 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8258 SDValue Result = 8259 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8260 SDValue Product = Result.getValue(0); 8261 SDValue Overflow = Result.getValue(1); 8262 SDValue Zero = DAG.getConstant(0, dl, VT); 8263 8264 APInt MinVal = APInt::getSignedMinValue(VTSize); 8265 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8266 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8267 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8268 // Xor the inputs, if resulting sign bit is 0 the product will be 8269 // positive, else negative. 8270 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8271 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8272 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8273 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8274 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8275 SDValue Result = 8276 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8277 SDValue Product = Result.getValue(0); 8278 SDValue Overflow = Result.getValue(1); 8279 8280 APInt MaxVal = APInt::getMaxValue(VTSize); 8281 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8282 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8283 } 8284 } 8285 8286 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8287 "Expected scale to be less than the number of bits if signed or at " 8288 "most the number of bits if unsigned."); 8289 assert(LHS.getValueType() == RHS.getValueType() && 8290 "Expected both operands to be the same type"); 8291 8292 // Get the upper and lower bits of the result. 8293 SDValue Lo, Hi; 8294 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8295 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8296 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8297 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8298 Lo = Result.getValue(0); 8299 Hi = Result.getValue(1); 8300 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8301 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8302 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8303 } else if (VT.isVector()) { 8304 return SDValue(); 8305 } else { 8306 report_fatal_error("Unable to expand fixed point multiplication."); 8307 } 8308 8309 if (Scale == VTSize) 8310 // Result is just the top half since we'd be shifting by the width of the 8311 // operand. Overflow impossible so this works for both UMULFIX and 8312 // UMULFIXSAT. 8313 return Hi; 8314 8315 // The result will need to be shifted right by the scale since both operands 8316 // are scaled. The result is given to us in 2 halves, so we only want part of 8317 // both in the result. 8318 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8319 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8320 DAG.getConstant(Scale, dl, ShiftTy)); 8321 if (!Saturating) 8322 return Result; 8323 8324 if (!Signed) { 8325 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8326 // widened multiplication) aren't all zeroes. 8327 8328 // Saturate to max if ((Hi >> Scale) != 0), 8329 // which is the same as if (Hi > ((1 << Scale) - 1)) 8330 APInt MaxVal = APInt::getMaxValue(VTSize); 8331 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8332 dl, VT); 8333 Result = DAG.getSelectCC(dl, Hi, LowMask, 8334 DAG.getConstant(MaxVal, dl, VT), Result, 8335 ISD::SETUGT); 8336 8337 return Result; 8338 } 8339 8340 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8341 // widened multiplication) aren't all ones or all zeroes. 8342 8343 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8344 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8345 8346 if (Scale == 0) { 8347 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8348 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8349 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8350 // Saturated to SatMin if wide product is negative, and SatMax if wide 8351 // product is positive ... 8352 SDValue Zero = DAG.getConstant(0, dl, VT); 8353 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8354 ISD::SETLT); 8355 // ... but only if we overflowed. 8356 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8357 } 8358 8359 // We handled Scale==0 above so all the bits to examine is in Hi. 8360 8361 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8362 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8363 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8364 dl, VT); 8365 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8366 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8367 // which is the same as if (HI < (-1 << (Scale - 1)) 8368 SDValue HighMask = 8369 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8370 dl, VT); 8371 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8372 return Result; 8373 } 8374 8375 SDValue 8376 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8377 SDValue LHS, SDValue RHS, 8378 unsigned Scale, SelectionDAG &DAG) const { 8379 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8380 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8381 "Expected a fixed point division opcode"); 8382 8383 EVT VT = LHS.getValueType(); 8384 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8385 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8386 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8387 8388 // If there is enough room in the type to upscale the LHS or downscale the 8389 // RHS before the division, we can perform it in this type without having to 8390 // resize. For signed operations, the LHS headroom is the number of 8391 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8392 // The headroom for the RHS is the number of trailing zeroes. 8393 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8394 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8395 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8396 8397 // For signed saturating operations, we need to be able to detect true integer 8398 // division overflow; that is, when you have MIN / -EPS. However, this 8399 // is undefined behavior and if we emit divisions that could take such 8400 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8401 // example). 8402 // Avoid this by requiring an extra bit so that we never get this case. 8403 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8404 // signed saturating division, we need to emit a whopping 32-bit division. 8405 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8406 return SDValue(); 8407 8408 unsigned LHSShift = std::min(LHSLead, Scale); 8409 unsigned RHSShift = Scale - LHSShift; 8410 8411 // At this point, we know that if we shift the LHS up by LHSShift and the 8412 // RHS down by RHSShift, we can emit a regular division with a final scaling 8413 // factor of Scale. 8414 8415 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8416 if (LHSShift) 8417 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8418 DAG.getConstant(LHSShift, dl, ShiftTy)); 8419 if (RHSShift) 8420 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8421 DAG.getConstant(RHSShift, dl, ShiftTy)); 8422 8423 SDValue Quot; 8424 if (Signed) { 8425 // For signed operations, if the resulting quotient is negative and the 8426 // remainder is nonzero, subtract 1 from the quotient to round towards 8427 // negative infinity. 8428 SDValue Rem; 8429 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8430 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8431 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8432 if (isTypeLegal(VT) && 8433 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8434 Quot = DAG.getNode(ISD::SDIVREM, dl, 8435 DAG.getVTList(VT, VT), 8436 LHS, RHS); 8437 Rem = Quot.getValue(1); 8438 Quot = Quot.getValue(0); 8439 } else { 8440 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8441 LHS, RHS); 8442 Rem = DAG.getNode(ISD::SREM, dl, VT, 8443 LHS, RHS); 8444 } 8445 SDValue Zero = DAG.getConstant(0, dl, VT); 8446 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8447 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8448 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8449 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8450 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8451 DAG.getConstant(1, dl, VT)); 8452 Quot = DAG.getSelect(dl, VT, 8453 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8454 Sub1, Quot); 8455 } else 8456 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8457 LHS, RHS); 8458 8459 return Quot; 8460 } 8461 8462 void TargetLowering::expandUADDSUBO( 8463 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8464 SDLoc dl(Node); 8465 SDValue LHS = Node->getOperand(0); 8466 SDValue RHS = Node->getOperand(1); 8467 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8468 8469 // If ADD/SUBCARRY is legal, use that instead. 8470 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8471 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8472 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8473 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8474 { LHS, RHS, CarryIn }); 8475 Result = SDValue(NodeCarry.getNode(), 0); 8476 Overflow = SDValue(NodeCarry.getNode(), 1); 8477 return; 8478 } 8479 8480 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8481 LHS.getValueType(), LHS, RHS); 8482 8483 EVT ResultType = Node->getValueType(1); 8484 EVT SetCCType = getSetCCResultType( 8485 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8486 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8487 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8488 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8489 } 8490 8491 void TargetLowering::expandSADDSUBO( 8492 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8493 SDLoc dl(Node); 8494 SDValue LHS = Node->getOperand(0); 8495 SDValue RHS = Node->getOperand(1); 8496 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8497 8498 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8499 LHS.getValueType(), LHS, RHS); 8500 8501 EVT ResultType = Node->getValueType(1); 8502 EVT OType = getSetCCResultType( 8503 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8504 8505 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8506 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8507 if (isOperationLegal(OpcSat, LHS.getValueType())) { 8508 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8509 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8510 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8511 return; 8512 } 8513 8514 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8515 8516 // For an addition, the result should be less than one of the operands (LHS) 8517 // if and only if the other operand (RHS) is negative, otherwise there will 8518 // be overflow. 8519 // For a subtraction, the result should be less than one of the operands 8520 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8521 // otherwise there will be overflow. 8522 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8523 SDValue ConditionRHS = 8524 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8525 8526 Overflow = DAG.getBoolExtOrTrunc( 8527 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8528 ResultType, ResultType); 8529 } 8530 8531 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8532 SDValue &Overflow, SelectionDAG &DAG) const { 8533 SDLoc dl(Node); 8534 EVT VT = Node->getValueType(0); 8535 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8536 SDValue LHS = Node->getOperand(0); 8537 SDValue RHS = Node->getOperand(1); 8538 bool isSigned = Node->getOpcode() == ISD::SMULO; 8539 8540 // For power-of-two multiplications we can use a simpler shift expansion. 8541 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8542 const APInt &C = RHSC->getAPIntValue(); 8543 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8544 if (C.isPowerOf2()) { 8545 // smulo(x, signed_min) is same as umulo(x, signed_min). 8546 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8547 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8548 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8549 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8550 Overflow = DAG.getSetCC(dl, SetCCVT, 8551 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8552 dl, VT, Result, ShiftAmt), 8553 LHS, ISD::SETNE); 8554 return true; 8555 } 8556 } 8557 8558 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8559 if (VT.isVector()) 8560 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 8561 VT.getVectorNumElements()); 8562 8563 SDValue BottomHalf; 8564 SDValue TopHalf; 8565 static const unsigned Ops[2][3] = 8566 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8567 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8568 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8569 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8570 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8571 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8572 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8573 RHS); 8574 TopHalf = BottomHalf.getValue(1); 8575 } else if (isTypeLegal(WideVT)) { 8576 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8577 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8578 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8579 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8580 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8581 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8582 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8583 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8584 } else { 8585 if (VT.isVector()) 8586 return false; 8587 8588 // We can fall back to a libcall with an illegal type for the MUL if we 8589 // have a libcall big enough. 8590 // Also, we can fall back to a division in some cases, but that's a big 8591 // performance hit in the general case. 8592 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8593 if (WideVT == MVT::i16) 8594 LC = RTLIB::MUL_I16; 8595 else if (WideVT == MVT::i32) 8596 LC = RTLIB::MUL_I32; 8597 else if (WideVT == MVT::i64) 8598 LC = RTLIB::MUL_I64; 8599 else if (WideVT == MVT::i128) 8600 LC = RTLIB::MUL_I128; 8601 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8602 8603 SDValue HiLHS; 8604 SDValue HiRHS; 8605 if (isSigned) { 8606 // The high part is obtained by SRA'ing all but one of the bits of low 8607 // part. 8608 unsigned LoSize = VT.getFixedSizeInBits(); 8609 HiLHS = 8610 DAG.getNode(ISD::SRA, dl, VT, LHS, 8611 DAG.getConstant(LoSize - 1, dl, 8612 getPointerTy(DAG.getDataLayout()))); 8613 HiRHS = 8614 DAG.getNode(ISD::SRA, dl, VT, RHS, 8615 DAG.getConstant(LoSize - 1, dl, 8616 getPointerTy(DAG.getDataLayout()))); 8617 } else { 8618 HiLHS = DAG.getConstant(0, dl, VT); 8619 HiRHS = DAG.getConstant(0, dl, VT); 8620 } 8621 8622 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8623 // pre-lowered to the correct types. This all depends upon WideVT not 8624 // being a legal type for the architecture and thus has to be split to 8625 // two arguments. 8626 SDValue Ret; 8627 TargetLowering::MakeLibCallOptions CallOptions; 8628 CallOptions.setSExt(isSigned); 8629 CallOptions.setIsPostTypeLegalization(true); 8630 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8631 // Halves of WideVT are packed into registers in different order 8632 // depending on platform endianness. This is usually handled by 8633 // the C calling convention, but we can't defer to it in 8634 // the legalizer. 8635 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8636 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8637 } else { 8638 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8639 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8640 } 8641 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8642 "Ret value is a collection of constituent nodes holding result."); 8643 if (DAG.getDataLayout().isLittleEndian()) { 8644 // Same as above. 8645 BottomHalf = Ret.getOperand(0); 8646 TopHalf = Ret.getOperand(1); 8647 } else { 8648 BottomHalf = Ret.getOperand(1); 8649 TopHalf = Ret.getOperand(0); 8650 } 8651 } 8652 8653 Result = BottomHalf; 8654 if (isSigned) { 8655 SDValue ShiftAmt = DAG.getConstant( 8656 VT.getScalarSizeInBits() - 1, dl, 8657 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8658 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8659 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8660 } else { 8661 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8662 DAG.getConstant(0, dl, VT), ISD::SETNE); 8663 } 8664 8665 // Truncate the result if SetCC returns a larger type than needed. 8666 EVT RType = Node->getValueType(1); 8667 if (RType.bitsLT(Overflow.getValueType())) 8668 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8669 8670 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8671 "Unexpected result type for S/UMULO legalization"); 8672 return true; 8673 } 8674 8675 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8676 SDLoc dl(Node); 8677 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8678 SDValue Op = Node->getOperand(0); 8679 EVT VT = Op.getValueType(); 8680 8681 if (VT.isScalableVector()) 8682 report_fatal_error( 8683 "Expanding reductions for scalable vectors is undefined."); 8684 8685 // Try to use a shuffle reduction for power of two vectors. 8686 if (VT.isPow2VectorType()) { 8687 while (VT.getVectorNumElements() > 1) { 8688 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8689 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8690 break; 8691 8692 SDValue Lo, Hi; 8693 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8694 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8695 VT = HalfVT; 8696 } 8697 } 8698 8699 EVT EltVT = VT.getVectorElementType(); 8700 unsigned NumElts = VT.getVectorNumElements(); 8701 8702 SmallVector<SDValue, 8> Ops; 8703 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8704 8705 SDValue Res = Ops[0]; 8706 for (unsigned i = 1; i < NumElts; i++) 8707 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8708 8709 // Result type may be wider than element type. 8710 if (EltVT != Node->getValueType(0)) 8711 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8712 return Res; 8713 } 8714 8715 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8716 SDLoc dl(Node); 8717 SDValue AccOp = Node->getOperand(0); 8718 SDValue VecOp = Node->getOperand(1); 8719 SDNodeFlags Flags = Node->getFlags(); 8720 8721 EVT VT = VecOp.getValueType(); 8722 EVT EltVT = VT.getVectorElementType(); 8723 8724 if (VT.isScalableVector()) 8725 report_fatal_error( 8726 "Expanding reductions for scalable vectors is undefined."); 8727 8728 unsigned NumElts = VT.getVectorNumElements(); 8729 8730 SmallVector<SDValue, 8> Ops; 8731 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8732 8733 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8734 8735 SDValue Res = AccOp; 8736 for (unsigned i = 0; i < NumElts; i++) 8737 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8738 8739 return Res; 8740 } 8741 8742 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8743 SelectionDAG &DAG) const { 8744 EVT VT = Node->getValueType(0); 8745 SDLoc dl(Node); 8746 bool isSigned = Node->getOpcode() == ISD::SREM; 8747 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8748 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8749 SDValue Dividend = Node->getOperand(0); 8750 SDValue Divisor = Node->getOperand(1); 8751 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8752 SDVTList VTs = DAG.getVTList(VT, VT); 8753 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8754 return true; 8755 } 8756 if (isOperationLegalOrCustom(DivOpc, VT)) { 8757 // X % Y -> X-X/Y*Y 8758 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8759 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8760 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8761 return true; 8762 } 8763 return false; 8764 } 8765 8766 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8767 SelectionDAG &DAG) const { 8768 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8769 SDLoc dl(SDValue(Node, 0)); 8770 SDValue Src = Node->getOperand(0); 8771 8772 // DstVT is the result type, while SatVT is the size to which we saturate 8773 EVT SrcVT = Src.getValueType(); 8774 EVT DstVT = Node->getValueType(0); 8775 8776 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8777 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8778 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8779 assert(SatWidth <= DstWidth && 8780 "Expected saturation width smaller than result width"); 8781 8782 // Determine minimum and maximum integer values and their corresponding 8783 // floating-point values. 8784 APInt MinInt, MaxInt; 8785 if (IsSigned) { 8786 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8787 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8788 } else { 8789 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8790 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8791 } 8792 8793 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8794 // libcall emission cannot handle this. Large result types will fail. 8795 if (SrcVT == MVT::f16) { 8796 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8797 SrcVT = Src.getValueType(); 8798 } 8799 8800 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8801 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8802 8803 APFloat::opStatus MinStatus = 8804 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8805 APFloat::opStatus MaxStatus = 8806 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8807 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8808 !(MaxStatus & APFloat::opStatus::opInexact); 8809 8810 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8811 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8812 8813 // If the integer bounds are exactly representable as floats and min/max are 8814 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8815 // of comparisons and selects. 8816 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8817 isOperationLegal(ISD::FMAXNUM, SrcVT); 8818 if (AreExactFloatBounds && MinMaxLegal) { 8819 SDValue Clamped = Src; 8820 8821 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8822 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8823 // Clamp by MaxFloat from above. NaN cannot occur. 8824 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8825 // Convert clamped value to integer. 8826 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8827 dl, DstVT, Clamped); 8828 8829 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8830 // which will cast to zero. 8831 if (!IsSigned) 8832 return FpToInt; 8833 8834 // Otherwise, select 0 if Src is NaN. 8835 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8836 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8837 ISD::CondCode::SETUO); 8838 } 8839 8840 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8841 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8842 8843 // Result of direct conversion. The assumption here is that the operation is 8844 // non-trapping and it's fine to apply it to an out-of-range value if we 8845 // select it away later. 8846 SDValue FpToInt = 8847 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8848 8849 SDValue Select = FpToInt; 8850 8851 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8852 // MinInt if Src is NaN. 8853 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8854 ISD::CondCode::SETULT); 8855 // If Src OGT MaxFloat, select MaxInt. 8856 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8857 ISD::CondCode::SETOGT); 8858 8859 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8860 // is already zero. 8861 if (!IsSigned) 8862 return Select; 8863 8864 // Otherwise, select 0 if Src is NaN. 8865 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8866 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8867 } 8868 8869 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8870 SelectionDAG &DAG) const { 8871 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8872 assert(Node->getValueType(0).isScalableVector() && 8873 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8874 8875 EVT VT = Node->getValueType(0); 8876 SDValue V1 = Node->getOperand(0); 8877 SDValue V2 = Node->getOperand(1); 8878 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8879 SDLoc DL(Node); 8880 8881 // Expand through memory thusly: 8882 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8883 // Store V1, Ptr 8884 // Store V2, Ptr + sizeof(V1) 8885 // If (Imm < 0) 8886 // TrailingElts = -Imm 8887 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8888 // else 8889 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8890 // Res = Load Ptr 8891 8892 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8893 8894 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8895 VT.getVectorElementCount() * 2); 8896 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8897 EVT PtrVT = StackPtr.getValueType(); 8898 auto &MF = DAG.getMachineFunction(); 8899 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8900 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8901 8902 // Store the lo part of CONCAT_VECTORS(V1, V2) 8903 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8904 // Store the hi part of CONCAT_VECTORS(V1, V2) 8905 SDValue OffsetToV2 = DAG.getVScale( 8906 DL, PtrVT, 8907 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8908 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8909 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8910 8911 if (Imm >= 0) { 8912 // Load back the required element. getVectorElementPointer takes care of 8913 // clamping the index if it's out-of-bounds. 8914 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8915 // Load the spliced result 8916 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8917 MachinePointerInfo::getUnknownStack(MF)); 8918 } 8919 8920 uint64_t TrailingElts = -Imm; 8921 8922 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8923 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8924 SDValue TrailingBytes = 8925 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8926 8927 if (TrailingElts > VT.getVectorMinNumElements()) { 8928 SDValue VLBytes = DAG.getVScale( 8929 DL, PtrVT, 8930 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8931 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8932 } 8933 8934 // Calculate the start address of the spliced result. 8935 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8936 8937 // Load the spliced result 8938 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8939 MachinePointerInfo::getUnknownStack(MF)); 8940 } 8941 8942 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8943 SDValue &LHS, SDValue &RHS, 8944 SDValue &CC, bool &NeedInvert, 8945 const SDLoc &dl, SDValue &Chain, 8946 bool IsSignaling) const { 8947 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8948 MVT OpVT = LHS.getSimpleValueType(); 8949 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8950 NeedInvert = false; 8951 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8952 default: 8953 llvm_unreachable("Unknown condition code action!"); 8954 case TargetLowering::Legal: 8955 // Nothing to do. 8956 break; 8957 case TargetLowering::Expand: { 8958 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8959 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8960 std::swap(LHS, RHS); 8961 CC = DAG.getCondCode(InvCC); 8962 return true; 8963 } 8964 // Swapping operands didn't work. Try inverting the condition. 8965 bool NeedSwap = false; 8966 InvCC = getSetCCInverse(CCCode, OpVT); 8967 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8968 // If inverting the condition is not enough, try swapping operands 8969 // on top of it. 8970 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8971 NeedSwap = true; 8972 } 8973 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8974 CC = DAG.getCondCode(InvCC); 8975 NeedInvert = true; 8976 if (NeedSwap) 8977 std::swap(LHS, RHS); 8978 return true; 8979 } 8980 8981 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8982 unsigned Opc = 0; 8983 switch (CCCode) { 8984 default: 8985 llvm_unreachable("Don't know how to expand this condition!"); 8986 case ISD::SETUO: 8987 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8988 CC1 = ISD::SETUNE; 8989 CC2 = ISD::SETUNE; 8990 Opc = ISD::OR; 8991 break; 8992 } 8993 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8994 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 8995 NeedInvert = true; 8996 LLVM_FALLTHROUGH; 8997 case ISD::SETO: 8998 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8999 "If SETO is expanded, SETOEQ must be legal!"); 9000 CC1 = ISD::SETOEQ; 9001 CC2 = ISD::SETOEQ; 9002 Opc = ISD::AND; 9003 break; 9004 case ISD::SETONE: 9005 case ISD::SETUEQ: 9006 // If the SETUO or SETO CC isn't legal, we might be able to use 9007 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 9008 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 9009 // the operands. 9010 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9011 if (!TLI.isCondCodeLegal(CC2, OpVT) && 9012 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 9013 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 9014 CC1 = ISD::SETOGT; 9015 CC2 = ISD::SETOLT; 9016 Opc = ISD::OR; 9017 NeedInvert = ((unsigned)CCCode & 0x8U); 9018 break; 9019 } 9020 LLVM_FALLTHROUGH; 9021 case ISD::SETOEQ: 9022 case ISD::SETOGT: 9023 case ISD::SETOGE: 9024 case ISD::SETOLT: 9025 case ISD::SETOLE: 9026 case ISD::SETUNE: 9027 case ISD::SETUGT: 9028 case ISD::SETUGE: 9029 case ISD::SETULT: 9030 case ISD::SETULE: 9031 // If we are floating point, assign and break, otherwise fall through. 9032 if (!OpVT.isInteger()) { 9033 // We can use the 4th bit to tell if we are the unordered 9034 // or ordered version of the opcode. 9035 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9036 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9037 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9038 break; 9039 } 9040 // Fallthrough if we are unsigned integer. 9041 LLVM_FALLTHROUGH; 9042 case ISD::SETLE: 9043 case ISD::SETGT: 9044 case ISD::SETGE: 9045 case ISD::SETLT: 9046 case ISD::SETNE: 9047 case ISD::SETEQ: 9048 // If all combinations of inverting the condition and swapping operands 9049 // didn't work then we have no means to expand the condition. 9050 llvm_unreachable("Don't know how to expand this condition!"); 9051 } 9052 9053 SDValue SetCC1, SetCC2; 9054 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9055 // If we aren't the ordered or unorder operation, 9056 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9057 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9058 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9059 } else { 9060 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9061 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9062 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9063 } 9064 if (Chain) 9065 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9066 SetCC2.getValue(1)); 9067 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9068 RHS = SDValue(); 9069 CC = SDValue(); 9070 return true; 9071 } 9072 } 9073 return false; 9074 } 9075