1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore following attributes because they don't affect the
61   // call sequence.
62   AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex);
63   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
64                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
65                            Attribute::NonNull})
66     CallerAttrs.removeAttribute(Attr);
67 
68   if (CallerAttrs.hasAttributes())
69     return false;
70 
71   // It's not safe to eliminate the sign / zero extension of the return value.
72   if (CallerAttrs.contains(Attribute::ZExt) ||
73       CallerAttrs.contains(Attribute::SExt))
74     return false;
75 
76   // Check if the only use is a function return node.
77   return isUsedByReturnOnly(Node, Chain);
78 }
79 
80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
81     const uint32_t *CallerPreservedMask,
82     const SmallVectorImpl<CCValAssign> &ArgLocs,
83     const SmallVectorImpl<SDValue> &OutVals) const {
84   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
85     const CCValAssign &ArgLoc = ArgLocs[I];
86     if (!ArgLoc.isRegLoc())
87       continue;
88     MCRegister Reg = ArgLoc.getLocReg();
89     // Only look at callee saved registers.
90     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
91       continue;
92     // Check that we pass the value used for the caller.
93     // (We look for a CopyFromReg reading a virtual register that is used
94     //  for the function live-in value of register Reg)
95     SDValue Value = OutVals[I];
96     if (Value->getOpcode() != ISD::CopyFromReg)
97       return false;
98     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
99     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
100       return false;
101   }
102   return true;
103 }
104 
105 /// Set CallLoweringInfo attribute flags based on a call instruction
106 /// and called function attributes.
107 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
108                                                      unsigned ArgIdx) {
109   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
110   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
111   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
112   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
113   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
114   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
115   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
116   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
117   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
118   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
119   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
120   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
121   Alignment = Call->getParamStackAlign(ArgIdx);
122   IndirectType = nullptr;
123   assert(IsByVal + IsPreallocated + IsInAlloca <= 1 &&
124          "multiple ABI attributes?");
125   if (IsByVal) {
126     IndirectType = Call->getParamByValType(ArgIdx);
127     if (!Alignment)
128       Alignment = Call->getParamAlign(ArgIdx);
129   }
130   if (IsPreallocated)
131     IndirectType = Call->getParamPreallocatedType(ArgIdx);
132   if (IsInAlloca)
133     IndirectType = Call->getParamInAllocaType(ArgIdx);
134 }
135 
136 /// Generate a libcall taking the given operands as arguments and returning a
137 /// result of type RetVT.
138 std::pair<SDValue, SDValue>
139 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
140                             ArrayRef<SDValue> Ops,
141                             MakeLibCallOptions CallOptions,
142                             const SDLoc &dl,
143                             SDValue InChain) const {
144   if (!InChain)
145     InChain = DAG.getEntryNode();
146 
147   TargetLowering::ArgListTy Args;
148   Args.reserve(Ops.size());
149 
150   TargetLowering::ArgListEntry Entry;
151   for (unsigned i = 0; i < Ops.size(); ++i) {
152     SDValue NewOp = Ops[i];
153     Entry.Node = NewOp;
154     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
155     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
156                                                  CallOptions.IsSExt);
157     Entry.IsZExt = !Entry.IsSExt;
158 
159     if (CallOptions.IsSoften &&
160         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
161       Entry.IsSExt = Entry.IsZExt = false;
162     }
163     Args.push_back(Entry);
164   }
165 
166   if (LC == RTLIB::UNKNOWN_LIBCALL)
167     report_fatal_error("Unsupported library call operation!");
168   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
169                                          getPointerTy(DAG.getDataLayout()));
170 
171   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
172   TargetLowering::CallLoweringInfo CLI(DAG);
173   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
174   bool zeroExtend = !signExtend;
175 
176   if (CallOptions.IsSoften &&
177       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
178     signExtend = zeroExtend = false;
179   }
180 
181   CLI.setDebugLoc(dl)
182       .setChain(InChain)
183       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
184       .setNoReturn(CallOptions.DoesNotReturn)
185       .setDiscardResult(!CallOptions.IsReturnValueUsed)
186       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
187       .setSExtResult(signExtend)
188       .setZExtResult(zeroExtend);
189   return LowerCallTo(CLI);
190 }
191 
192 bool TargetLowering::findOptimalMemOpLowering(
193     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
194     unsigned SrcAS, const AttributeList &FuncAttributes) const {
195   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
196     return false;
197 
198   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
199 
200   if (VT == MVT::Other) {
201     // Use the largest integer type whose alignment constraints are satisfied.
202     // We only need to check DstAlign here as SrcAlign is always greater or
203     // equal to DstAlign (or zero).
204     VT = MVT::i64;
205     if (Op.isFixedDstAlign())
206       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
207              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
208         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
209     assert(VT.isInteger());
210 
211     // Find the largest legal integer type.
212     MVT LVT = MVT::i64;
213     while (!isTypeLegal(LVT))
214       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
215     assert(LVT.isInteger());
216 
217     // If the type we've chosen is larger than the largest legal integer type
218     // then use that instead.
219     if (VT.bitsGT(LVT))
220       VT = LVT;
221   }
222 
223   unsigned NumMemOps = 0;
224   uint64_t Size = Op.size();
225   while (Size) {
226     unsigned VTSize = VT.getSizeInBits() / 8;
227     while (VTSize > Size) {
228       // For now, only use non-vector load / store's for the left-over pieces.
229       EVT NewVT = VT;
230       unsigned NewVTSize;
231 
232       bool Found = false;
233       if (VT.isVector() || VT.isFloatingPoint()) {
234         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
235         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
236             isSafeMemOpType(NewVT.getSimpleVT()))
237           Found = true;
238         else if (NewVT == MVT::i64 &&
239                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
240                  isSafeMemOpType(MVT::f64)) {
241           // i64 is usually not legal on 32-bit targets, but f64 may be.
242           NewVT = MVT::f64;
243           Found = true;
244         }
245       }
246 
247       if (!Found) {
248         do {
249           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
250           if (NewVT == MVT::i8)
251             break;
252         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
253       }
254       NewVTSize = NewVT.getSizeInBits() / 8;
255 
256       // If the new VT cannot cover all of the remaining bits, then consider
257       // issuing a (or a pair of) unaligned and overlapping load / store.
258       bool Fast;
259       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
260           allowsMisalignedMemoryAccesses(
261               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
262               MachineMemOperand::MONone, &Fast) &&
263           Fast)
264         VTSize = Size;
265       else {
266         VT = NewVT;
267         VTSize = NewVTSize;
268       }
269     }
270 
271     if (++NumMemOps > Limit)
272       return false;
273 
274     MemOps.push_back(VT);
275     Size -= VTSize;
276   }
277 
278   return true;
279 }
280 
281 /// Soften the operands of a comparison. This code is shared among BR_CC,
282 /// SELECT_CC, and SETCC handlers.
283 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
284                                          SDValue &NewLHS, SDValue &NewRHS,
285                                          ISD::CondCode &CCCode,
286                                          const SDLoc &dl, const SDValue OldLHS,
287                                          const SDValue OldRHS) const {
288   SDValue Chain;
289   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
290                              OldRHS, Chain);
291 }
292 
293 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
294                                          SDValue &NewLHS, SDValue &NewRHS,
295                                          ISD::CondCode &CCCode,
296                                          const SDLoc &dl, const SDValue OldLHS,
297                                          const SDValue OldRHS,
298                                          SDValue &Chain,
299                                          bool IsSignaling) const {
300   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
301   // not supporting it. We can update this code when libgcc provides such
302   // functions.
303 
304   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
305          && "Unsupported setcc type!");
306 
307   // Expand into one or more soft-fp libcall(s).
308   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
309   bool ShouldInvertCC = false;
310   switch (CCCode) {
311   case ISD::SETEQ:
312   case ISD::SETOEQ:
313     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
314           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
315           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
316     break;
317   case ISD::SETNE:
318   case ISD::SETUNE:
319     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
320           (VT == MVT::f64) ? RTLIB::UNE_F64 :
321           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
322     break;
323   case ISD::SETGE:
324   case ISD::SETOGE:
325     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
326           (VT == MVT::f64) ? RTLIB::OGE_F64 :
327           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
328     break;
329   case ISD::SETLT:
330   case ISD::SETOLT:
331     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
332           (VT == MVT::f64) ? RTLIB::OLT_F64 :
333           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
334     break;
335   case ISD::SETLE:
336   case ISD::SETOLE:
337     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
338           (VT == MVT::f64) ? RTLIB::OLE_F64 :
339           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
340     break;
341   case ISD::SETGT:
342   case ISD::SETOGT:
343     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
344           (VT == MVT::f64) ? RTLIB::OGT_F64 :
345           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
346     break;
347   case ISD::SETO:
348     ShouldInvertCC = true;
349     LLVM_FALLTHROUGH;
350   case ISD::SETUO:
351     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
352           (VT == MVT::f64) ? RTLIB::UO_F64 :
353           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
354     break;
355   case ISD::SETONE:
356     // SETONE = O && UNE
357     ShouldInvertCC = true;
358     LLVM_FALLTHROUGH;
359   case ISD::SETUEQ:
360     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
361           (VT == MVT::f64) ? RTLIB::UO_F64 :
362           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
363     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
364           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
365           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
366     break;
367   default:
368     // Invert CC for unordered comparisons
369     ShouldInvertCC = true;
370     switch (CCCode) {
371     case ISD::SETULT:
372       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
373             (VT == MVT::f64) ? RTLIB::OGE_F64 :
374             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
375       break;
376     case ISD::SETULE:
377       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
378             (VT == MVT::f64) ? RTLIB::OGT_F64 :
379             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
380       break;
381     case ISD::SETUGT:
382       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
383             (VT == MVT::f64) ? RTLIB::OLE_F64 :
384             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
385       break;
386     case ISD::SETUGE:
387       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
388             (VT == MVT::f64) ? RTLIB::OLT_F64 :
389             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
390       break;
391     default: llvm_unreachable("Do not know how to soften this setcc!");
392     }
393   }
394 
395   // Use the target specific return value for comparions lib calls.
396   EVT RetVT = getCmpLibcallReturnType();
397   SDValue Ops[2] = {NewLHS, NewRHS};
398   TargetLowering::MakeLibCallOptions CallOptions;
399   EVT OpsVT[2] = { OldLHS.getValueType(),
400                    OldRHS.getValueType() };
401   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
402   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
403   NewLHS = Call.first;
404   NewRHS = DAG.getConstant(0, dl, RetVT);
405 
406   CCCode = getCmpLibcallCC(LC1);
407   if (ShouldInvertCC) {
408     assert(RetVT.isInteger());
409     CCCode = getSetCCInverse(CCCode, RetVT);
410   }
411 
412   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
413     // Update Chain.
414     Chain = Call.second;
415   } else {
416     EVT SetCCVT =
417         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
418     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
419     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
420     CCCode = getCmpLibcallCC(LC2);
421     if (ShouldInvertCC)
422       CCCode = getSetCCInverse(CCCode, RetVT);
423     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
424     if (Chain)
425       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
426                           Call2.second);
427     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
428                          Tmp.getValueType(), Tmp, NewLHS);
429     NewRHS = SDValue();
430   }
431 }
432 
433 /// Return the entry encoding for a jump table in the current function. The
434 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
435 unsigned TargetLowering::getJumpTableEncoding() const {
436   // In non-pic modes, just use the address of a block.
437   if (!isPositionIndependent())
438     return MachineJumpTableInfo::EK_BlockAddress;
439 
440   // In PIC mode, if the target supports a GPRel32 directive, use it.
441   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
442     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
443 
444   // Otherwise, use a label difference.
445   return MachineJumpTableInfo::EK_LabelDifference32;
446 }
447 
448 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
449                                                  SelectionDAG &DAG) const {
450   // If our PIC model is GP relative, use the global offset table as the base.
451   unsigned JTEncoding = getJumpTableEncoding();
452 
453   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
454       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
455     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
456 
457   return Table;
458 }
459 
460 /// This returns the relocation base for the given PIC jumptable, the same as
461 /// getPICJumpTableRelocBase, but as an MCExpr.
462 const MCExpr *
463 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
464                                              unsigned JTI,MCContext &Ctx) const{
465   // The normal PIC reloc base is the label at the start of the jump table.
466   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
467 }
468 
469 bool
470 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
471   const TargetMachine &TM = getTargetMachine();
472   const GlobalValue *GV = GA->getGlobal();
473 
474   // If the address is not even local to this DSO we will have to load it from
475   // a got and then add the offset.
476   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
477     return false;
478 
479   // If the code is position independent we will have to add a base register.
480   if (isPositionIndependent())
481     return false;
482 
483   // Otherwise we can do it.
484   return true;
485 }
486 
487 //===----------------------------------------------------------------------===//
488 //  Optimization Methods
489 //===----------------------------------------------------------------------===//
490 
491 /// If the specified instruction has a constant integer operand and there are
492 /// bits set in that constant that are not demanded, then clear those bits and
493 /// return true.
494 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
495                                             const APInt &DemandedBits,
496                                             const APInt &DemandedElts,
497                                             TargetLoweringOpt &TLO) const {
498   SDLoc DL(Op);
499   unsigned Opcode = Op.getOpcode();
500 
501   // Do target-specific constant optimization.
502   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
503     return TLO.New.getNode();
504 
505   // FIXME: ISD::SELECT, ISD::SELECT_CC
506   switch (Opcode) {
507   default:
508     break;
509   case ISD::XOR:
510   case ISD::AND:
511   case ISD::OR: {
512     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
513     if (!Op1C || Op1C->isOpaque())
514       return false;
515 
516     // If this is a 'not' op, don't touch it because that's a canonical form.
517     const APInt &C = Op1C->getAPIntValue();
518     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
519       return false;
520 
521     if (!C.isSubsetOf(DemandedBits)) {
522       EVT VT = Op.getValueType();
523       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
524       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
525       return TLO.CombineTo(Op, NewOp);
526     }
527 
528     break;
529   }
530   }
531 
532   return false;
533 }
534 
535 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
536                                             const APInt &DemandedBits,
537                                             TargetLoweringOpt &TLO) const {
538   EVT VT = Op.getValueType();
539   APInt DemandedElts = VT.isVector()
540                            ? APInt::getAllOnes(VT.getVectorNumElements())
541                            : APInt(1, 1);
542   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
543 }
544 
545 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
546 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
547 /// generalized for targets with other types of implicit widening casts.
548 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
549                                       const APInt &Demanded,
550                                       TargetLoweringOpt &TLO) const {
551   assert(Op.getNumOperands() == 2 &&
552          "ShrinkDemandedOp only supports binary operators!");
553   assert(Op.getNode()->getNumValues() == 1 &&
554          "ShrinkDemandedOp only supports nodes with one result!");
555 
556   SelectionDAG &DAG = TLO.DAG;
557   SDLoc dl(Op);
558 
559   // Early return, as this function cannot handle vector types.
560   if (Op.getValueType().isVector())
561     return false;
562 
563   // Don't do this if the node has another user, which may require the
564   // full value.
565   if (!Op.getNode()->hasOneUse())
566     return false;
567 
568   // Search for the smallest integer type with free casts to and from
569   // Op's type. For expedience, just check power-of-2 integer types.
570   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
571   unsigned DemandedSize = Demanded.getActiveBits();
572   unsigned SmallVTBits = DemandedSize;
573   if (!isPowerOf2_32(SmallVTBits))
574     SmallVTBits = NextPowerOf2(SmallVTBits);
575   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
576     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
577     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
578         TLI.isZExtFree(SmallVT, Op.getValueType())) {
579       // We found a type with free casts.
580       SDValue X = DAG.getNode(
581           Op.getOpcode(), dl, SmallVT,
582           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
583           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
584       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
585       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
586       return TLO.CombineTo(Op, Z);
587     }
588   }
589   return false;
590 }
591 
592 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
593                                           DAGCombinerInfo &DCI) const {
594   SelectionDAG &DAG = DCI.DAG;
595   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
596                         !DCI.isBeforeLegalizeOps());
597   KnownBits Known;
598 
599   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
600   if (Simplified) {
601     DCI.AddToWorklist(Op.getNode());
602     DCI.CommitTargetLoweringOpt(TLO);
603   }
604   return Simplified;
605 }
606 
607 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
608                                           KnownBits &Known,
609                                           TargetLoweringOpt &TLO,
610                                           unsigned Depth,
611                                           bool AssumeSingleUse) const {
612   EVT VT = Op.getValueType();
613 
614   // TODO: We can probably do more work on calculating the known bits and
615   // simplifying the operations for scalable vectors, but for now we just
616   // bail out.
617   if (VT.isScalableVector()) {
618     // Pretend we don't know anything for now.
619     Known = KnownBits(DemandedBits.getBitWidth());
620     return false;
621   }
622 
623   APInt DemandedElts = VT.isVector()
624                            ? APInt::getAllOnes(VT.getVectorNumElements())
625                            : APInt(1, 1);
626   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
627                               AssumeSingleUse);
628 }
629 
630 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
631 // TODO: Under what circumstances can we create nodes? Constant folding?
632 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
633     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
634     SelectionDAG &DAG, unsigned Depth) const {
635   // Limit search depth.
636   if (Depth >= SelectionDAG::MaxRecursionDepth)
637     return SDValue();
638 
639   // Ignore UNDEFs.
640   if (Op.isUndef())
641     return SDValue();
642 
643   // Not demanding any bits/elts from Op.
644   if (DemandedBits == 0 || DemandedElts == 0)
645     return DAG.getUNDEF(Op.getValueType());
646 
647   unsigned NumElts = DemandedElts.getBitWidth();
648   unsigned BitWidth = DemandedBits.getBitWidth();
649   KnownBits LHSKnown, RHSKnown;
650   switch (Op.getOpcode()) {
651   case ISD::BITCAST: {
652     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
653     EVT SrcVT = Src.getValueType();
654     EVT DstVT = Op.getValueType();
655     if (SrcVT == DstVT)
656       return Src;
657 
658     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
659     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
660     if (NumSrcEltBits == NumDstEltBits)
661       if (SDValue V = SimplifyMultipleUseDemandedBits(
662               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
663         return DAG.getBitcast(DstVT, V);
664 
665     // TODO - bigendian once we have test coverage.
666     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
667         DAG.getDataLayout().isLittleEndian()) {
668       unsigned Scale = NumDstEltBits / NumSrcEltBits;
669       unsigned NumSrcElts = SrcVT.getVectorNumElements();
670       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
671       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
672       for (unsigned i = 0; i != Scale; ++i) {
673         unsigned Offset = i * NumSrcEltBits;
674         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
675         if (!Sub.isNullValue()) {
676           DemandedSrcBits |= Sub;
677           for (unsigned j = 0; j != NumElts; ++j)
678             if (DemandedElts[j])
679               DemandedSrcElts.setBit((j * Scale) + i);
680         }
681       }
682 
683       if (SDValue V = SimplifyMultipleUseDemandedBits(
684               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
685         return DAG.getBitcast(DstVT, V);
686     }
687 
688     // TODO - bigendian once we have test coverage.
689     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
690         DAG.getDataLayout().isLittleEndian()) {
691       unsigned Scale = NumSrcEltBits / NumDstEltBits;
692       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
693       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
694       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
695       for (unsigned i = 0; i != NumElts; ++i)
696         if (DemandedElts[i]) {
697           unsigned Offset = (i % Scale) * NumDstEltBits;
698           DemandedSrcBits.insertBits(DemandedBits, Offset);
699           DemandedSrcElts.setBit(i / Scale);
700         }
701 
702       if (SDValue V = SimplifyMultipleUseDemandedBits(
703               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
704         return DAG.getBitcast(DstVT, V);
705     }
706 
707     break;
708   }
709   case ISD::AND: {
710     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
711     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
712 
713     // If all of the demanded bits are known 1 on one side, return the other.
714     // These bits cannot contribute to the result of the 'and' in this
715     // context.
716     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
717       return Op.getOperand(0);
718     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
719       return Op.getOperand(1);
720     break;
721   }
722   case ISD::OR: {
723     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
724     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
725 
726     // If all of the demanded bits are known zero on one side, return the
727     // other.  These bits cannot contribute to the result of the 'or' in this
728     // context.
729     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
730       return Op.getOperand(0);
731     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
732       return Op.getOperand(1);
733     break;
734   }
735   case ISD::XOR: {
736     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
737     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
738 
739     // If all of the demanded bits are known zero on one side, return the
740     // other.
741     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
742       return Op.getOperand(0);
743     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
744       return Op.getOperand(1);
745     break;
746   }
747   case ISD::SHL: {
748     // If we are only demanding sign bits then we can use the shift source
749     // directly.
750     if (const APInt *MaxSA =
751             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
752       SDValue Op0 = Op.getOperand(0);
753       unsigned ShAmt = MaxSA->getZExtValue();
754       unsigned NumSignBits =
755           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
756       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
757       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
758         return Op0;
759     }
760     break;
761   }
762   case ISD::SETCC: {
763     SDValue Op0 = Op.getOperand(0);
764     SDValue Op1 = Op.getOperand(1);
765     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
766     // If (1) we only need the sign-bit, (2) the setcc operands are the same
767     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
768     // -1, we may be able to bypass the setcc.
769     if (DemandedBits.isSignMask() &&
770         Op0.getScalarValueSizeInBits() == BitWidth &&
771         getBooleanContents(Op0.getValueType()) ==
772             BooleanContent::ZeroOrNegativeOneBooleanContent) {
773       // If we're testing X < 0, then this compare isn't needed - just use X!
774       // FIXME: We're limiting to integer types here, but this should also work
775       // if we don't care about FP signed-zero. The use of SETLT with FP means
776       // that we don't care about NaNs.
777       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
778           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SIGN_EXTEND_INREG: {
784     // If none of the extended bits are demanded, eliminate the sextinreg.
785     SDValue Op0 = Op.getOperand(0);
786     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
787     unsigned ExBits = ExVT.getScalarSizeInBits();
788     if (DemandedBits.getActiveBits() <= ExBits)
789       return Op0;
790     // If the input is already sign extended, just drop the extension.
791     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
792     if (NumSignBits >= (BitWidth - ExBits + 1))
793       return Op0;
794     break;
795   }
796   case ISD::ANY_EXTEND_VECTOR_INREG:
797   case ISD::SIGN_EXTEND_VECTOR_INREG:
798   case ISD::ZERO_EXTEND_VECTOR_INREG: {
799     // If we only want the lowest element and none of extended bits, then we can
800     // return the bitcasted source vector.
801     SDValue Src = Op.getOperand(0);
802     EVT SrcVT = Src.getValueType();
803     EVT DstVT = Op.getValueType();
804     if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
805         DAG.getDataLayout().isLittleEndian() &&
806         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
807       return DAG.getBitcast(DstVT, Src);
808     }
809     break;
810   }
811   case ISD::INSERT_VECTOR_ELT: {
812     // If we don't demand the inserted element, return the base vector.
813     SDValue Vec = Op.getOperand(0);
814     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
815     EVT VecVT = Vec.getValueType();
816     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
817         !DemandedElts[CIdx->getZExtValue()])
818       return Vec;
819     break;
820   }
821   case ISD::INSERT_SUBVECTOR: {
822     SDValue Vec = Op.getOperand(0);
823     SDValue Sub = Op.getOperand(1);
824     uint64_t Idx = Op.getConstantOperandVal(2);
825     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
826     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
827     // If we don't demand the inserted subvector, return the base vector.
828     if (DemandedSubElts == 0)
829       return Vec;
830     // If this simply widens the lowest subvector, see if we can do it earlier.
831     if (Idx == 0 && Vec.isUndef()) {
832       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
833               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
834         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
835                            Op.getOperand(0), NewSub, Op.getOperand(2));
836     }
837     break;
838   }
839   case ISD::VECTOR_SHUFFLE: {
840     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
841 
842     // If all the demanded elts are from one operand and are inline,
843     // then we can use the operand directly.
844     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
845     for (unsigned i = 0; i != NumElts; ++i) {
846       int M = ShuffleMask[i];
847       if (M < 0 || !DemandedElts[i])
848         continue;
849       AllUndef = false;
850       IdentityLHS &= (M == (int)i);
851       IdentityRHS &= ((M - NumElts) == i);
852     }
853 
854     if (AllUndef)
855       return DAG.getUNDEF(Op.getValueType());
856     if (IdentityLHS)
857       return Op.getOperand(0);
858     if (IdentityRHS)
859       return Op.getOperand(1);
860     break;
861   }
862   default:
863     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
864       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
865               Op, DemandedBits, DemandedElts, DAG, Depth))
866         return V;
867     break;
868   }
869   return SDValue();
870 }
871 
872 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
873     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
874     unsigned Depth) const {
875   EVT VT = Op.getValueType();
876   APInt DemandedElts = VT.isVector()
877                            ? APInt::getAllOnes(VT.getVectorNumElements())
878                            : APInt(1, 1);
879   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
880                                          Depth);
881 }
882 
883 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
884     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
885     unsigned Depth) const {
886   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
887   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
888                                          Depth);
889 }
890 
891 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
892 /// result of Op are ever used downstream. If we can use this information to
893 /// simplify Op, create a new simplified DAG node and return true, returning the
894 /// original and new nodes in Old and New. Otherwise, analyze the expression and
895 /// return a mask of Known bits for the expression (used to simplify the
896 /// caller).  The Known bits may only be accurate for those bits in the
897 /// OriginalDemandedBits and OriginalDemandedElts.
898 bool TargetLowering::SimplifyDemandedBits(
899     SDValue Op, const APInt &OriginalDemandedBits,
900     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
901     unsigned Depth, bool AssumeSingleUse) const {
902   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
903   assert(Op.getScalarValueSizeInBits() == BitWidth &&
904          "Mask size mismatches value type size!");
905 
906   // Don't know anything.
907   Known = KnownBits(BitWidth);
908 
909   // TODO: We can probably do more work on calculating the known bits and
910   // simplifying the operations for scalable vectors, but for now we just
911   // bail out.
912   if (Op.getValueType().isScalableVector())
913     return false;
914 
915   unsigned NumElts = OriginalDemandedElts.getBitWidth();
916   assert((!Op.getValueType().isVector() ||
917           NumElts == Op.getValueType().getVectorNumElements()) &&
918          "Unexpected vector size");
919 
920   APInt DemandedBits = OriginalDemandedBits;
921   APInt DemandedElts = OriginalDemandedElts;
922   SDLoc dl(Op);
923   auto &DL = TLO.DAG.getDataLayout();
924 
925   // Undef operand.
926   if (Op.isUndef())
927     return false;
928 
929   if (Op.getOpcode() == ISD::Constant) {
930     // We know all of the bits for a constant!
931     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
932     return false;
933   }
934 
935   if (Op.getOpcode() == ISD::ConstantFP) {
936     // We know all of the bits for a floating point constant!
937     Known = KnownBits::makeConstant(
938         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
939     return false;
940   }
941 
942   // Other users may use these bits.
943   EVT VT = Op.getValueType();
944   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
945     if (Depth != 0) {
946       // If not at the root, Just compute the Known bits to
947       // simplify things downstream.
948       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
949       return false;
950     }
951     // If this is the root being simplified, allow it to have multiple uses,
952     // just set the DemandedBits/Elts to all bits.
953     DemandedBits = APInt::getAllOnes(BitWidth);
954     DemandedElts = APInt::getAllOnes(NumElts);
955   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
956     // Not demanding any bits/elts from Op.
957     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
958   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
959     // Limit search depth.
960     return false;
961   }
962 
963   KnownBits Known2;
964   switch (Op.getOpcode()) {
965   case ISD::TargetConstant:
966     llvm_unreachable("Can't simplify this node");
967   case ISD::SCALAR_TO_VECTOR: {
968     if (!DemandedElts[0])
969       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
970 
971     KnownBits SrcKnown;
972     SDValue Src = Op.getOperand(0);
973     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
974     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
975     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
976       return true;
977 
978     // Upper elements are undef, so only get the knownbits if we just demand
979     // the bottom element.
980     if (DemandedElts == 1)
981       Known = SrcKnown.anyextOrTrunc(BitWidth);
982     break;
983   }
984   case ISD::BUILD_VECTOR:
985     // Collect the known bits that are shared by every demanded element.
986     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
987     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
988     return false; // Don't fall through, will infinitely loop.
989   case ISD::LOAD: {
990     auto *LD = cast<LoadSDNode>(Op);
991     if (getTargetConstantFromLoad(LD)) {
992       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
993       return false; // Don't fall through, will infinitely loop.
994     }
995     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
996       // If this is a ZEXTLoad and we are looking at the loaded value.
997       EVT MemVT = LD->getMemoryVT();
998       unsigned MemBits = MemVT.getScalarSizeInBits();
999       Known.Zero.setBitsFrom(MemBits);
1000       return false; // Don't fall through, will infinitely loop.
1001     }
1002     break;
1003   }
1004   case ISD::INSERT_VECTOR_ELT: {
1005     SDValue Vec = Op.getOperand(0);
1006     SDValue Scl = Op.getOperand(1);
1007     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1008     EVT VecVT = Vec.getValueType();
1009 
1010     // If index isn't constant, assume we need all vector elements AND the
1011     // inserted element.
1012     APInt DemandedVecElts(DemandedElts);
1013     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1014       unsigned Idx = CIdx->getZExtValue();
1015       DemandedVecElts.clearBit(Idx);
1016 
1017       // Inserted element is not required.
1018       if (!DemandedElts[Idx])
1019         return TLO.CombineTo(Op, Vec);
1020     }
1021 
1022     KnownBits KnownScl;
1023     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1024     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1025     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1026       return true;
1027 
1028     Known = KnownScl.anyextOrTrunc(BitWidth);
1029 
1030     KnownBits KnownVec;
1031     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1032                              Depth + 1))
1033       return true;
1034 
1035     if (!!DemandedVecElts)
1036       Known = KnownBits::commonBits(Known, KnownVec);
1037 
1038     return false;
1039   }
1040   case ISD::INSERT_SUBVECTOR: {
1041     // Demand any elements from the subvector and the remainder from the src its
1042     // inserted into.
1043     SDValue Src = Op.getOperand(0);
1044     SDValue Sub = Op.getOperand(1);
1045     uint64_t Idx = Op.getConstantOperandVal(2);
1046     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1047     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1048     APInt DemandedSrcElts = DemandedElts;
1049     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1050 
1051     KnownBits KnownSub, KnownSrc;
1052     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1053                              Depth + 1))
1054       return true;
1055     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1056                              Depth + 1))
1057       return true;
1058 
1059     Known.Zero.setAllBits();
1060     Known.One.setAllBits();
1061     if (!!DemandedSubElts)
1062       Known = KnownBits::commonBits(Known, KnownSub);
1063     if (!!DemandedSrcElts)
1064       Known = KnownBits::commonBits(Known, KnownSrc);
1065 
1066     // Attempt to avoid multi-use src if we don't need anything from it.
1067     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1068         !DemandedSrcElts.isAllOnes()) {
1069       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1070           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1071       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1072           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1073       if (NewSub || NewSrc) {
1074         NewSub = NewSub ? NewSub : Sub;
1075         NewSrc = NewSrc ? NewSrc : Src;
1076         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1077                                         Op.getOperand(2));
1078         return TLO.CombineTo(Op, NewOp);
1079       }
1080     }
1081     break;
1082   }
1083   case ISD::EXTRACT_SUBVECTOR: {
1084     // Offset the demanded elts by the subvector index.
1085     SDValue Src = Op.getOperand(0);
1086     if (Src.getValueType().isScalableVector())
1087       break;
1088     uint64_t Idx = Op.getConstantOperandVal(1);
1089     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1090     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1091 
1092     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1093                              Depth + 1))
1094       return true;
1095 
1096     // Attempt to avoid multi-use src if we don't need anything from it.
1097     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1098       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1099           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1100       if (DemandedSrc) {
1101         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1102                                         Op.getOperand(1));
1103         return TLO.CombineTo(Op, NewOp);
1104       }
1105     }
1106     break;
1107   }
1108   case ISD::CONCAT_VECTORS: {
1109     Known.Zero.setAllBits();
1110     Known.One.setAllBits();
1111     EVT SubVT = Op.getOperand(0).getValueType();
1112     unsigned NumSubVecs = Op.getNumOperands();
1113     unsigned NumSubElts = SubVT.getVectorNumElements();
1114     for (unsigned i = 0; i != NumSubVecs; ++i) {
1115       APInt DemandedSubElts =
1116           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1117       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1118                                Known2, TLO, Depth + 1))
1119         return true;
1120       // Known bits are shared by every demanded subvector element.
1121       if (!!DemandedSubElts)
1122         Known = KnownBits::commonBits(Known, Known2);
1123     }
1124     break;
1125   }
1126   case ISD::VECTOR_SHUFFLE: {
1127     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1128 
1129     // Collect demanded elements from shuffle operands..
1130     APInt DemandedLHS(NumElts, 0);
1131     APInt DemandedRHS(NumElts, 0);
1132     for (unsigned i = 0; i != NumElts; ++i) {
1133       if (!DemandedElts[i])
1134         continue;
1135       int M = ShuffleMask[i];
1136       if (M < 0) {
1137         // For UNDEF elements, we don't know anything about the common state of
1138         // the shuffle result.
1139         DemandedLHS.clearAllBits();
1140         DemandedRHS.clearAllBits();
1141         break;
1142       }
1143       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1144       if (M < (int)NumElts)
1145         DemandedLHS.setBit(M);
1146       else
1147         DemandedRHS.setBit(M - NumElts);
1148     }
1149 
1150     if (!!DemandedLHS || !!DemandedRHS) {
1151       SDValue Op0 = Op.getOperand(0);
1152       SDValue Op1 = Op.getOperand(1);
1153 
1154       Known.Zero.setAllBits();
1155       Known.One.setAllBits();
1156       if (!!DemandedLHS) {
1157         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1158                                  Depth + 1))
1159           return true;
1160         Known = KnownBits::commonBits(Known, Known2);
1161       }
1162       if (!!DemandedRHS) {
1163         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1164                                  Depth + 1))
1165           return true;
1166         Known = KnownBits::commonBits(Known, Known2);
1167       }
1168 
1169       // Attempt to avoid multi-use ops if we don't need anything from them.
1170       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1171           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1172       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1173           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1174       if (DemandedOp0 || DemandedOp1) {
1175         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1176         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1177         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1178         return TLO.CombineTo(Op, NewOp);
1179       }
1180     }
1181     break;
1182   }
1183   case ISD::AND: {
1184     SDValue Op0 = Op.getOperand(0);
1185     SDValue Op1 = Op.getOperand(1);
1186 
1187     // If the RHS is a constant, check to see if the LHS would be zero without
1188     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1189     // simplify the LHS, here we're using information from the LHS to simplify
1190     // the RHS.
1191     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1192       // Do not increment Depth here; that can cause an infinite loop.
1193       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1194       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1195       if ((LHSKnown.Zero & DemandedBits) ==
1196           (~RHSC->getAPIntValue() & DemandedBits))
1197         return TLO.CombineTo(Op, Op0);
1198 
1199       // If any of the set bits in the RHS are known zero on the LHS, shrink
1200       // the constant.
1201       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1202                                  DemandedElts, TLO))
1203         return true;
1204 
1205       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1206       // constant, but if this 'and' is only clearing bits that were just set by
1207       // the xor, then this 'and' can be eliminated by shrinking the mask of
1208       // the xor. For example, for a 32-bit X:
1209       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1210       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1211           LHSKnown.One == ~RHSC->getAPIntValue()) {
1212         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1213         return TLO.CombineTo(Op, Xor);
1214       }
1215     }
1216 
1217     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1218                              Depth + 1))
1219       return true;
1220     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1221     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1222                              Known2, TLO, Depth + 1))
1223       return true;
1224     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1225 
1226     // Attempt to avoid multi-use ops if we don't need anything from them.
1227     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1228       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1229           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1230       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1231           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1232       if (DemandedOp0 || DemandedOp1) {
1233         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1234         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1235         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1236         return TLO.CombineTo(Op, NewOp);
1237       }
1238     }
1239 
1240     // If all of the demanded bits are known one on one side, return the other.
1241     // These bits cannot contribute to the result of the 'and'.
1242     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1243       return TLO.CombineTo(Op, Op0);
1244     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1245       return TLO.CombineTo(Op, Op1);
1246     // If all of the demanded bits in the inputs are known zeros, return zero.
1247     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1248       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1249     // If the RHS is a constant, see if we can simplify it.
1250     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1251                                TLO))
1252       return true;
1253     // If the operation can be done in a smaller type, do so.
1254     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1255       return true;
1256 
1257     Known &= Known2;
1258     break;
1259   }
1260   case ISD::OR: {
1261     SDValue Op0 = Op.getOperand(0);
1262     SDValue Op1 = Op.getOperand(1);
1263 
1264     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1265                              Depth + 1))
1266       return true;
1267     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1268     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1269                              Known2, TLO, Depth + 1))
1270       return true;
1271     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1272 
1273     // Attempt to avoid multi-use ops if we don't need anything from them.
1274     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1275       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1276           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1277       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1278           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1279       if (DemandedOp0 || DemandedOp1) {
1280         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1281         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1282         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1283         return TLO.CombineTo(Op, NewOp);
1284       }
1285     }
1286 
1287     // If all of the demanded bits are known zero on one side, return the other.
1288     // These bits cannot contribute to the result of the 'or'.
1289     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1290       return TLO.CombineTo(Op, Op0);
1291     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1292       return TLO.CombineTo(Op, Op1);
1293     // If the RHS is a constant, see if we can simplify it.
1294     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1295       return true;
1296     // If the operation can be done in a smaller type, do so.
1297     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1298       return true;
1299 
1300     Known |= Known2;
1301     break;
1302   }
1303   case ISD::XOR: {
1304     SDValue Op0 = Op.getOperand(0);
1305     SDValue Op1 = Op.getOperand(1);
1306 
1307     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1308                              Depth + 1))
1309       return true;
1310     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1311     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1312                              Depth + 1))
1313       return true;
1314     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1315 
1316     // Attempt to avoid multi-use ops if we don't need anything from them.
1317     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1318       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1319           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1320       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1321           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1322       if (DemandedOp0 || DemandedOp1) {
1323         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1324         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1325         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1326         return TLO.CombineTo(Op, NewOp);
1327       }
1328     }
1329 
1330     // If all of the demanded bits are known zero on one side, return the other.
1331     // These bits cannot contribute to the result of the 'xor'.
1332     if (DemandedBits.isSubsetOf(Known.Zero))
1333       return TLO.CombineTo(Op, Op0);
1334     if (DemandedBits.isSubsetOf(Known2.Zero))
1335       return TLO.CombineTo(Op, Op1);
1336     // If the operation can be done in a smaller type, do so.
1337     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1338       return true;
1339 
1340     // If all of the unknown bits are known to be zero on one side or the other
1341     // turn this into an *inclusive* or.
1342     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1343     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1344       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1345 
1346     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1347     if (C) {
1348       // If one side is a constant, and all of the set bits in the constant are
1349       // also known set on the other side, turn this into an AND, as we know
1350       // the bits will be cleared.
1351       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1352       // NB: it is okay if more bits are known than are requested
1353       if (C->getAPIntValue() == Known2.One) {
1354         SDValue ANDC =
1355             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1356         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1357       }
1358 
1359       // If the RHS is a constant, see if we can change it. Don't alter a -1
1360       // constant because that's a 'not' op, and that is better for combining
1361       // and codegen.
1362       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1363         // We're flipping all demanded bits. Flip the undemanded bits too.
1364         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1365         return TLO.CombineTo(Op, New);
1366       }
1367     }
1368 
1369     // If we can't turn this into a 'not', try to shrink the constant.
1370     if (!C || !C->isAllOnes())
1371       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1372         return true;
1373 
1374     Known ^= Known2;
1375     break;
1376   }
1377   case ISD::SELECT:
1378     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1379                              Depth + 1))
1380       return true;
1381     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1382                              Depth + 1))
1383       return true;
1384     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1385     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1386 
1387     // If the operands are constants, see if we can simplify them.
1388     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1389       return true;
1390 
1391     // Only known if known in both the LHS and RHS.
1392     Known = KnownBits::commonBits(Known, Known2);
1393     break;
1394   case ISD::SELECT_CC:
1395     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1396                              Depth + 1))
1397       return true;
1398     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1399                              Depth + 1))
1400       return true;
1401     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1402     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1403 
1404     // If the operands are constants, see if we can simplify them.
1405     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1406       return true;
1407 
1408     // Only known if known in both the LHS and RHS.
1409     Known = KnownBits::commonBits(Known, Known2);
1410     break;
1411   case ISD::SETCC: {
1412     SDValue Op0 = Op.getOperand(0);
1413     SDValue Op1 = Op.getOperand(1);
1414     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1415     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1416     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1417     // -1, we may be able to bypass the setcc.
1418     if (DemandedBits.isSignMask() &&
1419         Op0.getScalarValueSizeInBits() == BitWidth &&
1420         getBooleanContents(Op0.getValueType()) ==
1421             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1422       // If we're testing X < 0, then this compare isn't needed - just use X!
1423       // FIXME: We're limiting to integer types here, but this should also work
1424       // if we don't care about FP signed-zero. The use of SETLT with FP means
1425       // that we don't care about NaNs.
1426       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1427           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1428         return TLO.CombineTo(Op, Op0);
1429 
1430       // TODO: Should we check for other forms of sign-bit comparisons?
1431       // Examples: X <= -1, X >= 0
1432     }
1433     if (getBooleanContents(Op0.getValueType()) ==
1434             TargetLowering::ZeroOrOneBooleanContent &&
1435         BitWidth > 1)
1436       Known.Zero.setBitsFrom(1);
1437     break;
1438   }
1439   case ISD::SHL: {
1440     SDValue Op0 = Op.getOperand(0);
1441     SDValue Op1 = Op.getOperand(1);
1442     EVT ShiftVT = Op1.getValueType();
1443 
1444     if (const APInt *SA =
1445             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1446       unsigned ShAmt = SA->getZExtValue();
1447       if (ShAmt == 0)
1448         return TLO.CombineTo(Op, Op0);
1449 
1450       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1451       // single shift.  We can do this if the bottom bits (which are shifted
1452       // out) are never demanded.
1453       // TODO - support non-uniform vector amounts.
1454       if (Op0.getOpcode() == ISD::SRL) {
1455         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1456           if (const APInt *SA2 =
1457                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1458             unsigned C1 = SA2->getZExtValue();
1459             unsigned Opc = ISD::SHL;
1460             int Diff = ShAmt - C1;
1461             if (Diff < 0) {
1462               Diff = -Diff;
1463               Opc = ISD::SRL;
1464             }
1465             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1466             return TLO.CombineTo(
1467                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1468           }
1469         }
1470       }
1471 
1472       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1473       // are not demanded. This will likely allow the anyext to be folded away.
1474       // TODO - support non-uniform vector amounts.
1475       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1476         SDValue InnerOp = Op0.getOperand(0);
1477         EVT InnerVT = InnerOp.getValueType();
1478         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1479         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1480             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1481           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1482           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1483             ShTy = InnerVT;
1484           SDValue NarrowShl =
1485               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1486                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1487           return TLO.CombineTo(
1488               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1489         }
1490 
1491         // Repeat the SHL optimization above in cases where an extension
1492         // intervenes: (shl (anyext (shr x, c1)), c2) to
1493         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1494         // aren't demanded (as above) and that the shifted upper c1 bits of
1495         // x aren't demanded.
1496         // TODO - support non-uniform vector amounts.
1497         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1498             InnerOp.hasOneUse()) {
1499           if (const APInt *SA2 =
1500                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1501             unsigned InnerShAmt = SA2->getZExtValue();
1502             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1503                 DemandedBits.getActiveBits() <=
1504                     (InnerBits - InnerShAmt + ShAmt) &&
1505                 DemandedBits.countTrailingZeros() >= ShAmt) {
1506               SDValue NewSA =
1507                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1508               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1509                                                InnerOp.getOperand(0));
1510               return TLO.CombineTo(
1511                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1512             }
1513           }
1514         }
1515       }
1516 
1517       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1518       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1519                                Depth + 1))
1520         return true;
1521       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1522       Known.Zero <<= ShAmt;
1523       Known.One <<= ShAmt;
1524       // low bits known zero.
1525       Known.Zero.setLowBits(ShAmt);
1526 
1527       // Try shrinking the operation as long as the shift amount will still be
1528       // in range.
1529       if ((ShAmt < DemandedBits.getActiveBits()) &&
1530           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1531         return true;
1532     }
1533 
1534     // If we are only demanding sign bits then we can use the shift source
1535     // directly.
1536     if (const APInt *MaxSA =
1537             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1538       unsigned ShAmt = MaxSA->getZExtValue();
1539       unsigned NumSignBits =
1540           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1541       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1542       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1543         return TLO.CombineTo(Op, Op0);
1544     }
1545     break;
1546   }
1547   case ISD::SRL: {
1548     SDValue Op0 = Op.getOperand(0);
1549     SDValue Op1 = Op.getOperand(1);
1550     EVT ShiftVT = Op1.getValueType();
1551 
1552     if (const APInt *SA =
1553             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1554       unsigned ShAmt = SA->getZExtValue();
1555       if (ShAmt == 0)
1556         return TLO.CombineTo(Op, Op0);
1557 
1558       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1559       // single shift.  We can do this if the top bits (which are shifted out)
1560       // are never demanded.
1561       // TODO - support non-uniform vector amounts.
1562       if (Op0.getOpcode() == ISD::SHL) {
1563         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1564           if (const APInt *SA2 =
1565                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1566             unsigned C1 = SA2->getZExtValue();
1567             unsigned Opc = ISD::SRL;
1568             int Diff = ShAmt - C1;
1569             if (Diff < 0) {
1570               Diff = -Diff;
1571               Opc = ISD::SHL;
1572             }
1573             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1574             return TLO.CombineTo(
1575                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1576           }
1577         }
1578       }
1579 
1580       APInt InDemandedMask = (DemandedBits << ShAmt);
1581 
1582       // If the shift is exact, then it does demand the low bits (and knows that
1583       // they are zero).
1584       if (Op->getFlags().hasExact())
1585         InDemandedMask.setLowBits(ShAmt);
1586 
1587       // Compute the new bits that are at the top now.
1588       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1589                                Depth + 1))
1590         return true;
1591       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1592       Known.Zero.lshrInPlace(ShAmt);
1593       Known.One.lshrInPlace(ShAmt);
1594       // High bits known zero.
1595       Known.Zero.setHighBits(ShAmt);
1596     }
1597     break;
1598   }
1599   case ISD::SRA: {
1600     SDValue Op0 = Op.getOperand(0);
1601     SDValue Op1 = Op.getOperand(1);
1602     EVT ShiftVT = Op1.getValueType();
1603 
1604     // If we only want bits that already match the signbit then we don't need
1605     // to shift.
1606     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1607     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1608         NumHiDemandedBits)
1609       return TLO.CombineTo(Op, Op0);
1610 
1611     // If this is an arithmetic shift right and only the low-bit is set, we can
1612     // always convert this into a logical shr, even if the shift amount is
1613     // variable.  The low bit of the shift cannot be an input sign bit unless
1614     // the shift amount is >= the size of the datatype, which is undefined.
1615     if (DemandedBits.isOneValue())
1616       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1617 
1618     if (const APInt *SA =
1619             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1620       unsigned ShAmt = SA->getZExtValue();
1621       if (ShAmt == 0)
1622         return TLO.CombineTo(Op, Op0);
1623 
1624       APInt InDemandedMask = (DemandedBits << ShAmt);
1625 
1626       // If the shift is exact, then it does demand the low bits (and knows that
1627       // they are zero).
1628       if (Op->getFlags().hasExact())
1629         InDemandedMask.setLowBits(ShAmt);
1630 
1631       // If any of the demanded bits are produced by the sign extension, we also
1632       // demand the input sign bit.
1633       if (DemandedBits.countLeadingZeros() < ShAmt)
1634         InDemandedMask.setSignBit();
1635 
1636       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1637                                Depth + 1))
1638         return true;
1639       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1640       Known.Zero.lshrInPlace(ShAmt);
1641       Known.One.lshrInPlace(ShAmt);
1642 
1643       // If the input sign bit is known to be zero, or if none of the top bits
1644       // are demanded, turn this into an unsigned shift right.
1645       if (Known.Zero[BitWidth - ShAmt - 1] ||
1646           DemandedBits.countLeadingZeros() >= ShAmt) {
1647         SDNodeFlags Flags;
1648         Flags.setExact(Op->getFlags().hasExact());
1649         return TLO.CombineTo(
1650             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1651       }
1652 
1653       int Log2 = DemandedBits.exactLogBase2();
1654       if (Log2 >= 0) {
1655         // The bit must come from the sign.
1656         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1657         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1658       }
1659 
1660       if (Known.One[BitWidth - ShAmt - 1])
1661         // New bits are known one.
1662         Known.One.setHighBits(ShAmt);
1663 
1664       // Attempt to avoid multi-use ops if we don't need anything from them.
1665       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1666         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1667             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1668         if (DemandedOp0) {
1669           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1670           return TLO.CombineTo(Op, NewOp);
1671         }
1672       }
1673     }
1674     break;
1675   }
1676   case ISD::FSHL:
1677   case ISD::FSHR: {
1678     SDValue Op0 = Op.getOperand(0);
1679     SDValue Op1 = Op.getOperand(1);
1680     SDValue Op2 = Op.getOperand(2);
1681     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1682 
1683     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1684       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1685 
1686       // For fshl, 0-shift returns the 1st arg.
1687       // For fshr, 0-shift returns the 2nd arg.
1688       if (Amt == 0) {
1689         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1690                                  Known, TLO, Depth + 1))
1691           return true;
1692         break;
1693       }
1694 
1695       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1696       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1697       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1698       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1699       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1700                                Depth + 1))
1701         return true;
1702       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1703                                Depth + 1))
1704         return true;
1705 
1706       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1707       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1708       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1709       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1710       Known.One |= Known2.One;
1711       Known.Zero |= Known2.Zero;
1712     }
1713 
1714     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1715     if (isPowerOf2_32(BitWidth)) {
1716       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1717       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1718                                Known2, TLO, Depth + 1))
1719         return true;
1720     }
1721     break;
1722   }
1723   case ISD::ROTL:
1724   case ISD::ROTR: {
1725     SDValue Op0 = Op.getOperand(0);
1726     SDValue Op1 = Op.getOperand(1);
1727 
1728     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1729     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1730       return TLO.CombineTo(Op, Op0);
1731 
1732     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1733     if (isPowerOf2_32(BitWidth)) {
1734       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1735       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1736                                Depth + 1))
1737         return true;
1738     }
1739     break;
1740   }
1741   case ISD::UMIN: {
1742     // Check if one arg is always less than (or equal) to the other arg.
1743     SDValue Op0 = Op.getOperand(0);
1744     SDValue Op1 = Op.getOperand(1);
1745     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1746     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1747     Known = KnownBits::umin(Known0, Known1);
1748     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1749       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1750     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1751       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1752     break;
1753   }
1754   case ISD::UMAX: {
1755     // Check if one arg is always greater than (or equal) to the other arg.
1756     SDValue Op0 = Op.getOperand(0);
1757     SDValue Op1 = Op.getOperand(1);
1758     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1759     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1760     Known = KnownBits::umax(Known0, Known1);
1761     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1762       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1763     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1764       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1765     break;
1766   }
1767   case ISD::BITREVERSE: {
1768     SDValue Src = Op.getOperand(0);
1769     APInt DemandedSrcBits = DemandedBits.reverseBits();
1770     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1771                              Depth + 1))
1772       return true;
1773     Known.One = Known2.One.reverseBits();
1774     Known.Zero = Known2.Zero.reverseBits();
1775     break;
1776   }
1777   case ISD::BSWAP: {
1778     SDValue Src = Op.getOperand(0);
1779     APInt DemandedSrcBits = DemandedBits.byteSwap();
1780     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1781                              Depth + 1))
1782       return true;
1783     Known.One = Known2.One.byteSwap();
1784     Known.Zero = Known2.Zero.byteSwap();
1785     break;
1786   }
1787   case ISD::CTPOP: {
1788     // If only 1 bit is demanded, replace with PARITY as long as we're before
1789     // op legalization.
1790     // FIXME: Limit to scalars for now.
1791     if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector())
1792       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1793                                                Op.getOperand(0)));
1794 
1795     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1796     break;
1797   }
1798   case ISD::SIGN_EXTEND_INREG: {
1799     SDValue Op0 = Op.getOperand(0);
1800     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1801     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1802 
1803     // If we only care about the highest bit, don't bother shifting right.
1804     if (DemandedBits.isSignMask()) {
1805       unsigned NumSignBits =
1806           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1807       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1808       // However if the input is already sign extended we expect the sign
1809       // extension to be dropped altogether later and do not simplify.
1810       if (!AlreadySignExtended) {
1811         // Compute the correct shift amount type, which must be getShiftAmountTy
1812         // for scalar types after legalization.
1813         EVT ShiftAmtTy = VT;
1814         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1815           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1816 
1817         SDValue ShiftAmt =
1818             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1819         return TLO.CombineTo(Op,
1820                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1821       }
1822     }
1823 
1824     // If none of the extended bits are demanded, eliminate the sextinreg.
1825     if (DemandedBits.getActiveBits() <= ExVTBits)
1826       return TLO.CombineTo(Op, Op0);
1827 
1828     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1829 
1830     // Since the sign extended bits are demanded, we know that the sign
1831     // bit is demanded.
1832     InputDemandedBits.setBit(ExVTBits - 1);
1833 
1834     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1835       return true;
1836     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1837 
1838     // If the sign bit of the input is known set or clear, then we know the
1839     // top bits of the result.
1840 
1841     // If the input sign bit is known zero, convert this into a zero extension.
1842     if (Known.Zero[ExVTBits - 1])
1843       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1844 
1845     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1846     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1847       Known.One.setBitsFrom(ExVTBits);
1848       Known.Zero &= Mask;
1849     } else { // Input sign bit unknown
1850       Known.Zero &= Mask;
1851       Known.One &= Mask;
1852     }
1853     break;
1854   }
1855   case ISD::BUILD_PAIR: {
1856     EVT HalfVT = Op.getOperand(0).getValueType();
1857     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1858 
1859     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1860     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1861 
1862     KnownBits KnownLo, KnownHi;
1863 
1864     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1865       return true;
1866 
1867     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1868       return true;
1869 
1870     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1871                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1872 
1873     Known.One = KnownLo.One.zext(BitWidth) |
1874                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1875     break;
1876   }
1877   case ISD::ZERO_EXTEND:
1878   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1879     SDValue Src = Op.getOperand(0);
1880     EVT SrcVT = Src.getValueType();
1881     unsigned InBits = SrcVT.getScalarSizeInBits();
1882     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1883     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1884 
1885     // If none of the top bits are demanded, convert this into an any_extend.
1886     if (DemandedBits.getActiveBits() <= InBits) {
1887       // If we only need the non-extended bits of the bottom element
1888       // then we can just bitcast to the result.
1889       if (IsVecInReg && DemandedElts == 1 &&
1890           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1891           TLO.DAG.getDataLayout().isLittleEndian())
1892         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1893 
1894       unsigned Opc =
1895           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1896       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1897         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1898     }
1899 
1900     APInt InDemandedBits = DemandedBits.trunc(InBits);
1901     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1902     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1903                              Depth + 1))
1904       return true;
1905     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1906     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1907     Known = Known.zext(BitWidth);
1908 
1909     // Attempt to avoid multi-use ops if we don't need anything from them.
1910     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1911             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1912       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1913     break;
1914   }
1915   case ISD::SIGN_EXTEND:
1916   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1917     SDValue Src = Op.getOperand(0);
1918     EVT SrcVT = Src.getValueType();
1919     unsigned InBits = SrcVT.getScalarSizeInBits();
1920     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1921     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1922 
1923     // If none of the top bits are demanded, convert this into an any_extend.
1924     if (DemandedBits.getActiveBits() <= InBits) {
1925       // If we only need the non-extended bits of the bottom element
1926       // then we can just bitcast to the result.
1927       if (IsVecInReg && DemandedElts == 1 &&
1928           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1929           TLO.DAG.getDataLayout().isLittleEndian())
1930         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1931 
1932       unsigned Opc =
1933           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1934       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1935         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1936     }
1937 
1938     APInt InDemandedBits = DemandedBits.trunc(InBits);
1939     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1940 
1941     // Since some of the sign extended bits are demanded, we know that the sign
1942     // bit is demanded.
1943     InDemandedBits.setBit(InBits - 1);
1944 
1945     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1946                              Depth + 1))
1947       return true;
1948     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1949     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1950 
1951     // If the sign bit is known one, the top bits match.
1952     Known = Known.sext(BitWidth);
1953 
1954     // If the sign bit is known zero, convert this to a zero extend.
1955     if (Known.isNonNegative()) {
1956       unsigned Opc =
1957           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1958       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1959         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1960     }
1961 
1962     // Attempt to avoid multi-use ops if we don't need anything from them.
1963     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1964             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1965       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1966     break;
1967   }
1968   case ISD::ANY_EXTEND:
1969   case ISD::ANY_EXTEND_VECTOR_INREG: {
1970     SDValue Src = Op.getOperand(0);
1971     EVT SrcVT = Src.getValueType();
1972     unsigned InBits = SrcVT.getScalarSizeInBits();
1973     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1974     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1975 
1976     // If we only need the bottom element then we can just bitcast.
1977     // TODO: Handle ANY_EXTEND?
1978     if (IsVecInReg && DemandedElts == 1 &&
1979         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1980         TLO.DAG.getDataLayout().isLittleEndian())
1981       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1982 
1983     APInt InDemandedBits = DemandedBits.trunc(InBits);
1984     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1985     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1986                              Depth + 1))
1987       return true;
1988     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1989     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1990     Known = Known.anyext(BitWidth);
1991 
1992     // Attempt to avoid multi-use ops if we don't need anything from them.
1993     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1994             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1995       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1996     break;
1997   }
1998   case ISD::TRUNCATE: {
1999     SDValue Src = Op.getOperand(0);
2000 
2001     // Simplify the input, using demanded bit information, and compute the known
2002     // zero/one bits live out.
2003     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2004     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2005     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2006                              Depth + 1))
2007       return true;
2008     Known = Known.trunc(BitWidth);
2009 
2010     // Attempt to avoid multi-use ops if we don't need anything from them.
2011     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2012             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2013       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2014 
2015     // If the input is only used by this truncate, see if we can shrink it based
2016     // on the known demanded bits.
2017     if (Src.getNode()->hasOneUse()) {
2018       switch (Src.getOpcode()) {
2019       default:
2020         break;
2021       case ISD::SRL:
2022         // Shrink SRL by a constant if none of the high bits shifted in are
2023         // demanded.
2024         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2025           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2026           // undesirable.
2027           break;
2028 
2029         const APInt *ShAmtC =
2030             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2031         if (!ShAmtC || ShAmtC->uge(BitWidth))
2032           break;
2033         uint64_t ShVal = ShAmtC->getZExtValue();
2034 
2035         APInt HighBits =
2036             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2037         HighBits.lshrInPlace(ShVal);
2038         HighBits = HighBits.trunc(BitWidth);
2039 
2040         if (!(HighBits & DemandedBits)) {
2041           // None of the shifted in bits are needed.  Add a truncate of the
2042           // shift input, then shift it.
2043           SDValue NewShAmt = TLO.DAG.getConstant(
2044               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2045           SDValue NewTrunc =
2046               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2047           return TLO.CombineTo(
2048               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2049         }
2050         break;
2051       }
2052     }
2053 
2054     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2055     break;
2056   }
2057   case ISD::AssertZext: {
2058     // AssertZext demands all of the high bits, plus any of the low bits
2059     // demanded by its users.
2060     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2061     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2062     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2063                              TLO, Depth + 1))
2064       return true;
2065     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2066 
2067     Known.Zero |= ~InMask;
2068     break;
2069   }
2070   case ISD::EXTRACT_VECTOR_ELT: {
2071     SDValue Src = Op.getOperand(0);
2072     SDValue Idx = Op.getOperand(1);
2073     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2074     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2075 
2076     if (SrcEltCnt.isScalable())
2077       return false;
2078 
2079     // Demand the bits from every vector element without a constant index.
2080     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2081     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2082     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2083       if (CIdx->getAPIntValue().ult(NumSrcElts))
2084         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2085 
2086     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2087     // anything about the extended bits.
2088     APInt DemandedSrcBits = DemandedBits;
2089     if (BitWidth > EltBitWidth)
2090       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2091 
2092     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2093                              Depth + 1))
2094       return true;
2095 
2096     // Attempt to avoid multi-use ops if we don't need anything from them.
2097     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2098       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2099               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2100         SDValue NewOp =
2101             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2102         return TLO.CombineTo(Op, NewOp);
2103       }
2104     }
2105 
2106     Known = Known2;
2107     if (BitWidth > EltBitWidth)
2108       Known = Known.anyext(BitWidth);
2109     break;
2110   }
2111   case ISD::BITCAST: {
2112     SDValue Src = Op.getOperand(0);
2113     EVT SrcVT = Src.getValueType();
2114     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2115 
2116     // If this is an FP->Int bitcast and if the sign bit is the only
2117     // thing demanded, turn this into a FGETSIGN.
2118     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2119         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2120         SrcVT.isFloatingPoint()) {
2121       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2122       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2123       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2124           SrcVT != MVT::f128) {
2125         // Cannot eliminate/lower SHL for f128 yet.
2126         EVT Ty = OpVTLegal ? VT : MVT::i32;
2127         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2128         // place.  We expect the SHL to be eliminated by other optimizations.
2129         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2130         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2131         if (!OpVTLegal && OpVTSizeInBits > 32)
2132           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2133         unsigned ShVal = Op.getValueSizeInBits() - 1;
2134         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2135         return TLO.CombineTo(Op,
2136                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2137       }
2138     }
2139 
2140     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2141     // Demand the elt/bit if any of the original elts/bits are demanded.
2142     // TODO - bigendian once we have test coverage.
2143     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2144         TLO.DAG.getDataLayout().isLittleEndian()) {
2145       unsigned Scale = BitWidth / NumSrcEltBits;
2146       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2147       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2148       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2149       for (unsigned i = 0; i != Scale; ++i) {
2150         unsigned Offset = i * NumSrcEltBits;
2151         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2152         if (!Sub.isNullValue()) {
2153           DemandedSrcBits |= Sub;
2154           for (unsigned j = 0; j != NumElts; ++j)
2155             if (DemandedElts[j])
2156               DemandedSrcElts.setBit((j * Scale) + i);
2157         }
2158       }
2159 
2160       APInt KnownSrcUndef, KnownSrcZero;
2161       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2162                                      KnownSrcZero, TLO, Depth + 1))
2163         return true;
2164 
2165       KnownBits KnownSrcBits;
2166       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2167                                KnownSrcBits, TLO, Depth + 1))
2168         return true;
2169     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2170                TLO.DAG.getDataLayout().isLittleEndian()) {
2171       unsigned Scale = NumSrcEltBits / BitWidth;
2172       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2173       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2174       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2175       for (unsigned i = 0; i != NumElts; ++i)
2176         if (DemandedElts[i]) {
2177           unsigned Offset = (i % Scale) * BitWidth;
2178           DemandedSrcBits.insertBits(DemandedBits, Offset);
2179           DemandedSrcElts.setBit(i / Scale);
2180         }
2181 
2182       if (SrcVT.isVector()) {
2183         APInt KnownSrcUndef, KnownSrcZero;
2184         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2185                                        KnownSrcZero, TLO, Depth + 1))
2186           return true;
2187       }
2188 
2189       KnownBits KnownSrcBits;
2190       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2191                                KnownSrcBits, TLO, Depth + 1))
2192         return true;
2193     }
2194 
2195     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2196     // recursive call where Known may be useful to the caller.
2197     if (Depth > 0) {
2198       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2199       return false;
2200     }
2201     break;
2202   }
2203   case ISD::ADD:
2204   case ISD::MUL:
2205   case ISD::SUB: {
2206     // Add, Sub, and Mul don't demand any bits in positions beyond that
2207     // of the highest bit demanded of them.
2208     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2209     SDNodeFlags Flags = Op.getNode()->getFlags();
2210     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2211     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2212     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2213                              Depth + 1) ||
2214         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2215                              Depth + 1) ||
2216         // See if the operation should be performed at a smaller bit width.
2217         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2218       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2219         // Disable the nsw and nuw flags. We can no longer guarantee that we
2220         // won't wrap after simplification.
2221         Flags.setNoSignedWrap(false);
2222         Flags.setNoUnsignedWrap(false);
2223         SDValue NewOp =
2224             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2225         return TLO.CombineTo(Op, NewOp);
2226       }
2227       return true;
2228     }
2229 
2230     // Attempt to avoid multi-use ops if we don't need anything from them.
2231     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2232       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2233           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2234       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2235           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2236       if (DemandedOp0 || DemandedOp1) {
2237         Flags.setNoSignedWrap(false);
2238         Flags.setNoUnsignedWrap(false);
2239         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2240         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2241         SDValue NewOp =
2242             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2243         return TLO.CombineTo(Op, NewOp);
2244       }
2245     }
2246 
2247     // If we have a constant operand, we may be able to turn it into -1 if we
2248     // do not demand the high bits. This can make the constant smaller to
2249     // encode, allow more general folding, or match specialized instruction
2250     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2251     // is probably not useful (and could be detrimental).
2252     ConstantSDNode *C = isConstOrConstSplat(Op1);
2253     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2254     if (C && !C->isAllOnes() && !C->isOne() &&
2255         (C->getAPIntValue() | HighMask).isAllOnes()) {
2256       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2257       // Disable the nsw and nuw flags. We can no longer guarantee that we
2258       // won't wrap after simplification.
2259       Flags.setNoSignedWrap(false);
2260       Flags.setNoUnsignedWrap(false);
2261       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2262       return TLO.CombineTo(Op, NewOp);
2263     }
2264 
2265     LLVM_FALLTHROUGH;
2266   }
2267   default:
2268     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2269       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2270                                             Known, TLO, Depth))
2271         return true;
2272       break;
2273     }
2274 
2275     // Just use computeKnownBits to compute output bits.
2276     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2277     break;
2278   }
2279 
2280   // If we know the value of all of the demanded bits, return this as a
2281   // constant.
2282   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2283     // Avoid folding to a constant if any OpaqueConstant is involved.
2284     const SDNode *N = Op.getNode();
2285     for (SDNode *Op :
2286          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2287       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2288         if (C->isOpaque())
2289           return false;
2290     }
2291     if (VT.isInteger())
2292       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2293     if (VT.isFloatingPoint())
2294       return TLO.CombineTo(
2295           Op,
2296           TLO.DAG.getConstantFP(
2297               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2298   }
2299 
2300   return false;
2301 }
2302 
2303 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2304                                                 const APInt &DemandedElts,
2305                                                 APInt &KnownUndef,
2306                                                 APInt &KnownZero,
2307                                                 DAGCombinerInfo &DCI) const {
2308   SelectionDAG &DAG = DCI.DAG;
2309   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2310                         !DCI.isBeforeLegalizeOps());
2311 
2312   bool Simplified =
2313       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2314   if (Simplified) {
2315     DCI.AddToWorklist(Op.getNode());
2316     DCI.CommitTargetLoweringOpt(TLO);
2317   }
2318 
2319   return Simplified;
2320 }
2321 
2322 /// Given a vector binary operation and known undefined elements for each input
2323 /// operand, compute whether each element of the output is undefined.
2324 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2325                                          const APInt &UndefOp0,
2326                                          const APInt &UndefOp1) {
2327   EVT VT = BO.getValueType();
2328   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2329          "Vector binop only");
2330 
2331   EVT EltVT = VT.getVectorElementType();
2332   unsigned NumElts = VT.getVectorNumElements();
2333   assert(UndefOp0.getBitWidth() == NumElts &&
2334          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2335 
2336   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2337                                    const APInt &UndefVals) {
2338     if (UndefVals[Index])
2339       return DAG.getUNDEF(EltVT);
2340 
2341     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2342       // Try hard to make sure that the getNode() call is not creating temporary
2343       // nodes. Ignore opaque integers because they do not constant fold.
2344       SDValue Elt = BV->getOperand(Index);
2345       auto *C = dyn_cast<ConstantSDNode>(Elt);
2346       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2347         return Elt;
2348     }
2349 
2350     return SDValue();
2351   };
2352 
2353   APInt KnownUndef = APInt::getZero(NumElts);
2354   for (unsigned i = 0; i != NumElts; ++i) {
2355     // If both inputs for this element are either constant or undef and match
2356     // the element type, compute the constant/undef result for this element of
2357     // the vector.
2358     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2359     // not handle FP constants. The code within getNode() should be refactored
2360     // to avoid the danger of creating a bogus temporary node here.
2361     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2362     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2363     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2364       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2365         KnownUndef.setBit(i);
2366   }
2367   return KnownUndef;
2368 }
2369 
2370 bool TargetLowering::SimplifyDemandedVectorElts(
2371     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2372     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2373     bool AssumeSingleUse) const {
2374   EVT VT = Op.getValueType();
2375   unsigned Opcode = Op.getOpcode();
2376   APInt DemandedElts = OriginalDemandedElts;
2377   unsigned NumElts = DemandedElts.getBitWidth();
2378   assert(VT.isVector() && "Expected vector op");
2379 
2380   KnownUndef = KnownZero = APInt::getZero(NumElts);
2381 
2382   // TODO: For now we assume we know nothing about scalable vectors.
2383   if (VT.isScalableVector())
2384     return false;
2385 
2386   assert(VT.getVectorNumElements() == NumElts &&
2387          "Mask size mismatches value type element count!");
2388 
2389   // Undef operand.
2390   if (Op.isUndef()) {
2391     KnownUndef.setAllBits();
2392     return false;
2393   }
2394 
2395   // If Op has other users, assume that all elements are needed.
2396   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2397     DemandedElts.setAllBits();
2398 
2399   // Not demanding any elements from Op.
2400   if (DemandedElts == 0) {
2401     KnownUndef.setAllBits();
2402     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2403   }
2404 
2405   // Limit search depth.
2406   if (Depth >= SelectionDAG::MaxRecursionDepth)
2407     return false;
2408 
2409   SDLoc DL(Op);
2410   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2411 
2412   // Helper for demanding the specified elements and all the bits of both binary
2413   // operands.
2414   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2415     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2416                                                            TLO.DAG, Depth + 1);
2417     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2418                                                            TLO.DAG, Depth + 1);
2419     if (NewOp0 || NewOp1) {
2420       SDValue NewOp = TLO.DAG.getNode(
2421           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2422       return TLO.CombineTo(Op, NewOp);
2423     }
2424     return false;
2425   };
2426 
2427   switch (Opcode) {
2428   case ISD::SCALAR_TO_VECTOR: {
2429     if (!DemandedElts[0]) {
2430       KnownUndef.setAllBits();
2431       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2432     }
2433     SDValue ScalarSrc = Op.getOperand(0);
2434     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2435       SDValue Src = ScalarSrc.getOperand(0);
2436       SDValue Idx = ScalarSrc.getOperand(1);
2437       EVT SrcVT = Src.getValueType();
2438 
2439       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2440 
2441       if (SrcEltCnt.isScalable())
2442         return false;
2443 
2444       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2445       if (isNullConstant(Idx)) {
2446         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2447         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2448         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2449         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2450                                        TLO, Depth + 1))
2451           return true;
2452       }
2453     }
2454     KnownUndef.setHighBits(NumElts - 1);
2455     break;
2456   }
2457   case ISD::BITCAST: {
2458     SDValue Src = Op.getOperand(0);
2459     EVT SrcVT = Src.getValueType();
2460 
2461     // We only handle vectors here.
2462     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2463     if (!SrcVT.isVector())
2464       break;
2465 
2466     // Fast handling of 'identity' bitcasts.
2467     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2468     if (NumSrcElts == NumElts)
2469       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2470                                         KnownZero, TLO, Depth + 1);
2471 
2472     APInt SrcDemandedElts, SrcZero, SrcUndef;
2473 
2474     // Bitcast from 'large element' src vector to 'small element' vector, we
2475     // must demand a source element if any DemandedElt maps to it.
2476     if ((NumElts % NumSrcElts) == 0) {
2477       unsigned Scale = NumElts / NumSrcElts;
2478       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2479       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2480                                      TLO, Depth + 1))
2481         return true;
2482 
2483       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2484       // of the large element.
2485       // TODO - bigendian once we have test coverage.
2486       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2487         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2488         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2489         for (unsigned i = 0; i != NumElts; ++i)
2490           if (DemandedElts[i]) {
2491             unsigned Ofs = (i % Scale) * EltSizeInBits;
2492             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2493           }
2494 
2495         KnownBits Known;
2496         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2497                                  TLO, Depth + 1))
2498           return true;
2499       }
2500 
2501       // If the src element is zero/undef then all the output elements will be -
2502       // only demanded elements are guaranteed to be correct.
2503       for (unsigned i = 0; i != NumSrcElts; ++i) {
2504         if (SrcDemandedElts[i]) {
2505           if (SrcZero[i])
2506             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2507           if (SrcUndef[i])
2508             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2509         }
2510       }
2511     }
2512 
2513     // Bitcast from 'small element' src vector to 'large element' vector, we
2514     // demand all smaller source elements covered by the larger demanded element
2515     // of this vector.
2516     if ((NumSrcElts % NumElts) == 0) {
2517       unsigned Scale = NumSrcElts / NumElts;
2518       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2519       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2520                                      TLO, Depth + 1))
2521         return true;
2522 
2523       // If all the src elements covering an output element are zero/undef, then
2524       // the output element will be as well, assuming it was demanded.
2525       for (unsigned i = 0; i != NumElts; ++i) {
2526         if (DemandedElts[i]) {
2527           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2528             KnownZero.setBit(i);
2529           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2530             KnownUndef.setBit(i);
2531         }
2532       }
2533     }
2534     break;
2535   }
2536   case ISD::BUILD_VECTOR: {
2537     // Check all elements and simplify any unused elements with UNDEF.
2538     if (!DemandedElts.isAllOnes()) {
2539       // Don't simplify BROADCASTS.
2540       if (llvm::any_of(Op->op_values(),
2541                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2542         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2543         bool Updated = false;
2544         for (unsigned i = 0; i != NumElts; ++i) {
2545           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2546             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2547             KnownUndef.setBit(i);
2548             Updated = true;
2549           }
2550         }
2551         if (Updated)
2552           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2553       }
2554     }
2555     for (unsigned i = 0; i != NumElts; ++i) {
2556       SDValue SrcOp = Op.getOperand(i);
2557       if (SrcOp.isUndef()) {
2558         KnownUndef.setBit(i);
2559       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2560                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2561         KnownZero.setBit(i);
2562       }
2563     }
2564     break;
2565   }
2566   case ISD::CONCAT_VECTORS: {
2567     EVT SubVT = Op.getOperand(0).getValueType();
2568     unsigned NumSubVecs = Op.getNumOperands();
2569     unsigned NumSubElts = SubVT.getVectorNumElements();
2570     for (unsigned i = 0; i != NumSubVecs; ++i) {
2571       SDValue SubOp = Op.getOperand(i);
2572       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2573       APInt SubUndef, SubZero;
2574       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2575                                      Depth + 1))
2576         return true;
2577       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2578       KnownZero.insertBits(SubZero, i * NumSubElts);
2579     }
2580     break;
2581   }
2582   case ISD::INSERT_SUBVECTOR: {
2583     // Demand any elements from the subvector and the remainder from the src its
2584     // inserted into.
2585     SDValue Src = Op.getOperand(0);
2586     SDValue Sub = Op.getOperand(1);
2587     uint64_t Idx = Op.getConstantOperandVal(2);
2588     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2589     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2590     APInt DemandedSrcElts = DemandedElts;
2591     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2592 
2593     APInt SubUndef, SubZero;
2594     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2595                                    Depth + 1))
2596       return true;
2597 
2598     // If none of the src operand elements are demanded, replace it with undef.
2599     if (!DemandedSrcElts && !Src.isUndef())
2600       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2601                                                TLO.DAG.getUNDEF(VT), Sub,
2602                                                Op.getOperand(2)));
2603 
2604     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2605                                    TLO, Depth + 1))
2606       return true;
2607     KnownUndef.insertBits(SubUndef, Idx);
2608     KnownZero.insertBits(SubZero, Idx);
2609 
2610     // Attempt to avoid multi-use ops if we don't need anything from them.
2611     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2612       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2613           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2614       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2615           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2616       if (NewSrc || NewSub) {
2617         NewSrc = NewSrc ? NewSrc : Src;
2618         NewSub = NewSub ? NewSub : Sub;
2619         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2620                                         NewSub, Op.getOperand(2));
2621         return TLO.CombineTo(Op, NewOp);
2622       }
2623     }
2624     break;
2625   }
2626   case ISD::EXTRACT_SUBVECTOR: {
2627     // Offset the demanded elts by the subvector index.
2628     SDValue Src = Op.getOperand(0);
2629     if (Src.getValueType().isScalableVector())
2630       break;
2631     uint64_t Idx = Op.getConstantOperandVal(1);
2632     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2633     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2634 
2635     APInt SrcUndef, SrcZero;
2636     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2637                                    Depth + 1))
2638       return true;
2639     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2640     KnownZero = SrcZero.extractBits(NumElts, Idx);
2641 
2642     // Attempt to avoid multi-use ops if we don't need anything from them.
2643     if (!DemandedElts.isAllOnes()) {
2644       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2645           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2646       if (NewSrc) {
2647         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2648                                         Op.getOperand(1));
2649         return TLO.CombineTo(Op, NewOp);
2650       }
2651     }
2652     break;
2653   }
2654   case ISD::INSERT_VECTOR_ELT: {
2655     SDValue Vec = Op.getOperand(0);
2656     SDValue Scl = Op.getOperand(1);
2657     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2658 
2659     // For a legal, constant insertion index, if we don't need this insertion
2660     // then strip it, else remove it from the demanded elts.
2661     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2662       unsigned Idx = CIdx->getZExtValue();
2663       if (!DemandedElts[Idx])
2664         return TLO.CombineTo(Op, Vec);
2665 
2666       APInt DemandedVecElts(DemandedElts);
2667       DemandedVecElts.clearBit(Idx);
2668       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2669                                      KnownZero, TLO, Depth + 1))
2670         return true;
2671 
2672       KnownUndef.setBitVal(Idx, Scl.isUndef());
2673 
2674       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2675       break;
2676     }
2677 
2678     APInt VecUndef, VecZero;
2679     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2680                                    Depth + 1))
2681       return true;
2682     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2683     break;
2684   }
2685   case ISD::VSELECT: {
2686     // Try to transform the select condition based on the current demanded
2687     // elements.
2688     // TODO: If a condition element is undef, we can choose from one arm of the
2689     //       select (and if one arm is undef, then we can propagate that to the
2690     //       result).
2691     // TODO - add support for constant vselect masks (see IR version of this).
2692     APInt UnusedUndef, UnusedZero;
2693     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2694                                    UnusedZero, TLO, Depth + 1))
2695       return true;
2696 
2697     // See if we can simplify either vselect operand.
2698     APInt DemandedLHS(DemandedElts);
2699     APInt DemandedRHS(DemandedElts);
2700     APInt UndefLHS, ZeroLHS;
2701     APInt UndefRHS, ZeroRHS;
2702     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2703                                    ZeroLHS, TLO, Depth + 1))
2704       return true;
2705     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2706                                    ZeroRHS, TLO, Depth + 1))
2707       return true;
2708 
2709     KnownUndef = UndefLHS & UndefRHS;
2710     KnownZero = ZeroLHS & ZeroRHS;
2711     break;
2712   }
2713   case ISD::VECTOR_SHUFFLE: {
2714     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2715 
2716     // Collect demanded elements from shuffle operands..
2717     APInt DemandedLHS(NumElts, 0);
2718     APInt DemandedRHS(NumElts, 0);
2719     for (unsigned i = 0; i != NumElts; ++i) {
2720       int M = ShuffleMask[i];
2721       if (M < 0 || !DemandedElts[i])
2722         continue;
2723       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2724       if (M < (int)NumElts)
2725         DemandedLHS.setBit(M);
2726       else
2727         DemandedRHS.setBit(M - NumElts);
2728     }
2729 
2730     // See if we can simplify either shuffle operand.
2731     APInt UndefLHS, ZeroLHS;
2732     APInt UndefRHS, ZeroRHS;
2733     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2734                                    ZeroLHS, TLO, Depth + 1))
2735       return true;
2736     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2737                                    ZeroRHS, TLO, Depth + 1))
2738       return true;
2739 
2740     // Simplify mask using undef elements from LHS/RHS.
2741     bool Updated = false;
2742     bool IdentityLHS = true, IdentityRHS = true;
2743     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2744     for (unsigned i = 0; i != NumElts; ++i) {
2745       int &M = NewMask[i];
2746       if (M < 0)
2747         continue;
2748       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2749           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2750         Updated = true;
2751         M = -1;
2752       }
2753       IdentityLHS &= (M < 0) || (M == (int)i);
2754       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2755     }
2756 
2757     // Update legal shuffle masks based on demanded elements if it won't reduce
2758     // to Identity which can cause premature removal of the shuffle mask.
2759     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2760       SDValue LegalShuffle =
2761           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2762                                   NewMask, TLO.DAG);
2763       if (LegalShuffle)
2764         return TLO.CombineTo(Op, LegalShuffle);
2765     }
2766 
2767     // Propagate undef/zero elements from LHS/RHS.
2768     for (unsigned i = 0; i != NumElts; ++i) {
2769       int M = ShuffleMask[i];
2770       if (M < 0) {
2771         KnownUndef.setBit(i);
2772       } else if (M < (int)NumElts) {
2773         if (UndefLHS[M])
2774           KnownUndef.setBit(i);
2775         if (ZeroLHS[M])
2776           KnownZero.setBit(i);
2777       } else {
2778         if (UndefRHS[M - NumElts])
2779           KnownUndef.setBit(i);
2780         if (ZeroRHS[M - NumElts])
2781           KnownZero.setBit(i);
2782       }
2783     }
2784     break;
2785   }
2786   case ISD::ANY_EXTEND_VECTOR_INREG:
2787   case ISD::SIGN_EXTEND_VECTOR_INREG:
2788   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2789     APInt SrcUndef, SrcZero;
2790     SDValue Src = Op.getOperand(0);
2791     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2792     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2793     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2794                                    Depth + 1))
2795       return true;
2796     KnownZero = SrcZero.zextOrTrunc(NumElts);
2797     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2798 
2799     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2800         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2801         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2802       // aext - if we just need the bottom element then we can bitcast.
2803       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2804     }
2805 
2806     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2807       // zext(undef) upper bits are guaranteed to be zero.
2808       if (DemandedElts.isSubsetOf(KnownUndef))
2809         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2810       KnownUndef.clearAllBits();
2811     }
2812     break;
2813   }
2814 
2815   // TODO: There are more binop opcodes that could be handled here - MIN,
2816   // MAX, saturated math, etc.
2817   case ISD::OR:
2818   case ISD::XOR:
2819   case ISD::ADD:
2820   case ISD::SUB:
2821   case ISD::FADD:
2822   case ISD::FSUB:
2823   case ISD::FMUL:
2824   case ISD::FDIV:
2825   case ISD::FREM: {
2826     SDValue Op0 = Op.getOperand(0);
2827     SDValue Op1 = Op.getOperand(1);
2828 
2829     APInt UndefRHS, ZeroRHS;
2830     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2831                                    Depth + 1))
2832       return true;
2833     APInt UndefLHS, ZeroLHS;
2834     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2835                                    Depth + 1))
2836       return true;
2837 
2838     KnownZero = ZeroLHS & ZeroRHS;
2839     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2840 
2841     // Attempt to avoid multi-use ops if we don't need anything from them.
2842     // TODO - use KnownUndef to relax the demandedelts?
2843     if (!DemandedElts.isAllOnes())
2844       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2845         return true;
2846     break;
2847   }
2848   case ISD::SHL:
2849   case ISD::SRL:
2850   case ISD::SRA:
2851   case ISD::ROTL:
2852   case ISD::ROTR: {
2853     SDValue Op0 = Op.getOperand(0);
2854     SDValue Op1 = Op.getOperand(1);
2855 
2856     APInt UndefRHS, ZeroRHS;
2857     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2858                                    Depth + 1))
2859       return true;
2860     APInt UndefLHS, ZeroLHS;
2861     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2862                                    Depth + 1))
2863       return true;
2864 
2865     KnownZero = ZeroLHS;
2866     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2867 
2868     // Attempt to avoid multi-use ops if we don't need anything from them.
2869     // TODO - use KnownUndef to relax the demandedelts?
2870     if (!DemandedElts.isAllOnes())
2871       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2872         return true;
2873     break;
2874   }
2875   case ISD::MUL:
2876   case ISD::AND: {
2877     SDValue Op0 = Op.getOperand(0);
2878     SDValue Op1 = Op.getOperand(1);
2879 
2880     APInt SrcUndef, SrcZero;
2881     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2882                                    Depth + 1))
2883       return true;
2884     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2885                                    TLO, Depth + 1))
2886       return true;
2887 
2888     // If either side has a zero element, then the result element is zero, even
2889     // if the other is an UNDEF.
2890     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2891     // and then handle 'and' nodes with the rest of the binop opcodes.
2892     KnownZero |= SrcZero;
2893     KnownUndef &= SrcUndef;
2894     KnownUndef &= ~KnownZero;
2895 
2896     // Attempt to avoid multi-use ops if we don't need anything from them.
2897     // TODO - use KnownUndef to relax the demandedelts?
2898     if (!DemandedElts.isAllOnes())
2899       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2900         return true;
2901     break;
2902   }
2903   case ISD::TRUNCATE:
2904   case ISD::SIGN_EXTEND:
2905   case ISD::ZERO_EXTEND:
2906     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2907                                    KnownZero, TLO, Depth + 1))
2908       return true;
2909 
2910     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2911       // zext(undef) upper bits are guaranteed to be zero.
2912       if (DemandedElts.isSubsetOf(KnownUndef))
2913         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2914       KnownUndef.clearAllBits();
2915     }
2916     break;
2917   default: {
2918     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2919       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2920                                                   KnownZero, TLO, Depth))
2921         return true;
2922     } else {
2923       KnownBits Known;
2924       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
2925       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2926                                TLO, Depth, AssumeSingleUse))
2927         return true;
2928     }
2929     break;
2930   }
2931   }
2932   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2933 
2934   // Constant fold all undef cases.
2935   // TODO: Handle zero cases as well.
2936   if (DemandedElts.isSubsetOf(KnownUndef))
2937     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2938 
2939   return false;
2940 }
2941 
2942 /// Determine which of the bits specified in Mask are known to be either zero or
2943 /// one and return them in the Known.
2944 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2945                                                    KnownBits &Known,
2946                                                    const APInt &DemandedElts,
2947                                                    const SelectionDAG &DAG,
2948                                                    unsigned Depth) const {
2949   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2950           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2951           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2952           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2953          "Should use MaskedValueIsZero if you don't know whether Op"
2954          " is a target node!");
2955   Known.resetAll();
2956 }
2957 
2958 void TargetLowering::computeKnownBitsForTargetInstr(
2959     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2960     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2961     unsigned Depth) const {
2962   Known.resetAll();
2963 }
2964 
2965 void TargetLowering::computeKnownBitsForFrameIndex(
2966   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
2967   // The low bits are known zero if the pointer is aligned.
2968   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
2969 }
2970 
2971 Align TargetLowering::computeKnownAlignForTargetInstr(
2972   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
2973   unsigned Depth) const {
2974   return Align(1);
2975 }
2976 
2977 /// This method can be implemented by targets that want to expose additional
2978 /// information about sign bits to the DAG Combiner.
2979 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2980                                                          const APInt &,
2981                                                          const SelectionDAG &,
2982                                                          unsigned Depth) const {
2983   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2984           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2985           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2986           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2987          "Should use ComputeNumSignBits if you don't know whether Op"
2988          " is a target node!");
2989   return 1;
2990 }
2991 
2992 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2993   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2994   const MachineRegisterInfo &MRI, unsigned Depth) const {
2995   return 1;
2996 }
2997 
2998 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2999     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3000     TargetLoweringOpt &TLO, unsigned Depth) const {
3001   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3002           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3003           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3004           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3005          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3006          " is a target node!");
3007   return false;
3008 }
3009 
3010 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3011     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3012     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3013   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3014           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3015           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3016           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3017          "Should use SimplifyDemandedBits if you don't know whether Op"
3018          " is a target node!");
3019   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3020   return false;
3021 }
3022 
3023 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3024     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3025     SelectionDAG &DAG, unsigned Depth) const {
3026   assert(
3027       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3028        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3029        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3030        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3031       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3032       " is a target node!");
3033   return SDValue();
3034 }
3035 
3036 SDValue
3037 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3038                                         SDValue N1, MutableArrayRef<int> Mask,
3039                                         SelectionDAG &DAG) const {
3040   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3041   if (!LegalMask) {
3042     std::swap(N0, N1);
3043     ShuffleVectorSDNode::commuteMask(Mask);
3044     LegalMask = isShuffleMaskLegal(Mask, VT);
3045   }
3046 
3047   if (!LegalMask)
3048     return SDValue();
3049 
3050   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3051 }
3052 
3053 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3054   return nullptr;
3055 }
3056 
3057 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3058     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3059     bool PoisonOnly, unsigned Depth) const {
3060   assert(
3061       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3062        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3063        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3064        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3065       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3066       " is a target node!");
3067   return false;
3068 }
3069 
3070 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3071                                                   const SelectionDAG &DAG,
3072                                                   bool SNaN,
3073                                                   unsigned Depth) const {
3074   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3075           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3076           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3077           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3078          "Should use isKnownNeverNaN if you don't know whether Op"
3079          " is a target node!");
3080   return false;
3081 }
3082 
3083 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3084 // work with truncating build vectors and vectors with elements of less than
3085 // 8 bits.
3086 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3087   if (!N)
3088     return false;
3089 
3090   APInt CVal;
3091   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3092     CVal = CN->getAPIntValue();
3093   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3094     auto *CN = BV->getConstantSplatNode();
3095     if (!CN)
3096       return false;
3097 
3098     // If this is a truncating build vector, truncate the splat value.
3099     // Otherwise, we may fail to match the expected values below.
3100     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3101     CVal = CN->getAPIntValue();
3102     if (BVEltWidth < CVal.getBitWidth())
3103       CVal = CVal.trunc(BVEltWidth);
3104   } else {
3105     return false;
3106   }
3107 
3108   switch (getBooleanContents(N->getValueType(0))) {
3109   case UndefinedBooleanContent:
3110     return CVal[0];
3111   case ZeroOrOneBooleanContent:
3112     return CVal.isOneValue();
3113   case ZeroOrNegativeOneBooleanContent:
3114     return CVal.isAllOnes();
3115   }
3116 
3117   llvm_unreachable("Invalid boolean contents");
3118 }
3119 
3120 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3121   if (!N)
3122     return false;
3123 
3124   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3125   if (!CN) {
3126     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3127     if (!BV)
3128       return false;
3129 
3130     // Only interested in constant splats, we don't care about undef
3131     // elements in identifying boolean constants and getConstantSplatNode
3132     // returns NULL if all ops are undef;
3133     CN = BV->getConstantSplatNode();
3134     if (!CN)
3135       return false;
3136   }
3137 
3138   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3139     return !CN->getAPIntValue()[0];
3140 
3141   return CN->isZero();
3142 }
3143 
3144 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3145                                        bool SExt) const {
3146   if (VT == MVT::i1)
3147     return N->isOne();
3148 
3149   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3150   switch (Cnt) {
3151   case TargetLowering::ZeroOrOneBooleanContent:
3152     // An extended value of 1 is always true, unless its original type is i1,
3153     // in which case it will be sign extended to -1.
3154     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3155   case TargetLowering::UndefinedBooleanContent:
3156   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3157     return N->isAllOnes() && SExt;
3158   }
3159   llvm_unreachable("Unexpected enumeration.");
3160 }
3161 
3162 /// This helper function of SimplifySetCC tries to optimize the comparison when
3163 /// either operand of the SetCC node is a bitwise-and instruction.
3164 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3165                                          ISD::CondCode Cond, const SDLoc &DL,
3166                                          DAGCombinerInfo &DCI) const {
3167   // Match these patterns in any of their permutations:
3168   // (X & Y) == Y
3169   // (X & Y) != Y
3170   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3171     std::swap(N0, N1);
3172 
3173   EVT OpVT = N0.getValueType();
3174   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3175       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3176     return SDValue();
3177 
3178   SDValue X, Y;
3179   if (N0.getOperand(0) == N1) {
3180     X = N0.getOperand(1);
3181     Y = N0.getOperand(0);
3182   } else if (N0.getOperand(1) == N1) {
3183     X = N0.getOperand(0);
3184     Y = N0.getOperand(1);
3185   } else {
3186     return SDValue();
3187   }
3188 
3189   SelectionDAG &DAG = DCI.DAG;
3190   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3191   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3192     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3193     // Note that where Y is variable and is known to have at most one bit set
3194     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3195     // equivalent when Y == 0.
3196     assert(OpVT.isInteger());
3197     Cond = ISD::getSetCCInverse(Cond, OpVT);
3198     if (DCI.isBeforeLegalizeOps() ||
3199         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3200       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3201   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3202     // If the target supports an 'and-not' or 'and-complement' logic operation,
3203     // try to use that to make a comparison operation more efficient.
3204     // But don't do this transform if the mask is a single bit because there are
3205     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3206     // 'rlwinm' on PPC).
3207 
3208     // Bail out if the compare operand that we want to turn into a zero is
3209     // already a zero (otherwise, infinite loop).
3210     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3211     if (YConst && YConst->isZero())
3212       return SDValue();
3213 
3214     // Transform this into: ~X & Y == 0.
3215     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3216     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3217     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3218   }
3219 
3220   return SDValue();
3221 }
3222 
3223 /// There are multiple IR patterns that could be checking whether certain
3224 /// truncation of a signed number would be lossy or not. The pattern which is
3225 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3226 /// We are looking for the following pattern: (KeptBits is a constant)
3227 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3228 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3229 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3230 /// We will unfold it into the natural trunc+sext pattern:
3231 ///   ((%x << C) a>> C) dstcond %x
3232 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3233 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3234     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3235     const SDLoc &DL) const {
3236   // We must be comparing with a constant.
3237   ConstantSDNode *C1;
3238   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3239     return SDValue();
3240 
3241   // N0 should be:  add %x, (1 << (KeptBits-1))
3242   if (N0->getOpcode() != ISD::ADD)
3243     return SDValue();
3244 
3245   // And we must be 'add'ing a constant.
3246   ConstantSDNode *C01;
3247   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3248     return SDValue();
3249 
3250   SDValue X = N0->getOperand(0);
3251   EVT XVT = X.getValueType();
3252 
3253   // Validate constants ...
3254 
3255   APInt I1 = C1->getAPIntValue();
3256 
3257   ISD::CondCode NewCond;
3258   if (Cond == ISD::CondCode::SETULT) {
3259     NewCond = ISD::CondCode::SETEQ;
3260   } else if (Cond == ISD::CondCode::SETULE) {
3261     NewCond = ISD::CondCode::SETEQ;
3262     // But need to 'canonicalize' the constant.
3263     I1 += 1;
3264   } else if (Cond == ISD::CondCode::SETUGT) {
3265     NewCond = ISD::CondCode::SETNE;
3266     // But need to 'canonicalize' the constant.
3267     I1 += 1;
3268   } else if (Cond == ISD::CondCode::SETUGE) {
3269     NewCond = ISD::CondCode::SETNE;
3270   } else
3271     return SDValue();
3272 
3273   APInt I01 = C01->getAPIntValue();
3274 
3275   auto checkConstants = [&I1, &I01]() -> bool {
3276     // Both of them must be power-of-two, and the constant from setcc is bigger.
3277     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3278   };
3279 
3280   if (checkConstants()) {
3281     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3282   } else {
3283     // What if we invert constants? (and the target predicate)
3284     I1.negate();
3285     I01.negate();
3286     assert(XVT.isInteger());
3287     NewCond = getSetCCInverse(NewCond, XVT);
3288     if (!checkConstants())
3289       return SDValue();
3290     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3291   }
3292 
3293   // They are power-of-two, so which bit is set?
3294   const unsigned KeptBits = I1.logBase2();
3295   const unsigned KeptBitsMinusOne = I01.logBase2();
3296 
3297   // Magic!
3298   if (KeptBits != (KeptBitsMinusOne + 1))
3299     return SDValue();
3300   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3301 
3302   // We don't want to do this in every single case.
3303   SelectionDAG &DAG = DCI.DAG;
3304   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3305           XVT, KeptBits))
3306     return SDValue();
3307 
3308   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3309   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3310 
3311   // Unfold into:  ((%x << C) a>> C) cond %x
3312   // Where 'cond' will be either 'eq' or 'ne'.
3313   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3314   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3315   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3316   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3317 
3318   return T2;
3319 }
3320 
3321 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3322 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3323     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3324     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3325   assert(isConstOrConstSplat(N1C) &&
3326          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3327          "Should be a comparison with 0.");
3328   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3329          "Valid only for [in]equality comparisons.");
3330 
3331   unsigned NewShiftOpcode;
3332   SDValue X, C, Y;
3333 
3334   SelectionDAG &DAG = DCI.DAG;
3335   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3336 
3337   // Look for '(C l>>/<< Y)'.
3338   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3339     // The shift should be one-use.
3340     if (!V.hasOneUse())
3341       return false;
3342     unsigned OldShiftOpcode = V.getOpcode();
3343     switch (OldShiftOpcode) {
3344     case ISD::SHL:
3345       NewShiftOpcode = ISD::SRL;
3346       break;
3347     case ISD::SRL:
3348       NewShiftOpcode = ISD::SHL;
3349       break;
3350     default:
3351       return false; // must be a logical shift.
3352     }
3353     // We should be shifting a constant.
3354     // FIXME: best to use isConstantOrConstantVector().
3355     C = V.getOperand(0);
3356     ConstantSDNode *CC =
3357         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3358     if (!CC)
3359       return false;
3360     Y = V.getOperand(1);
3361 
3362     ConstantSDNode *XC =
3363         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3364     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3365         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3366   };
3367 
3368   // LHS of comparison should be an one-use 'and'.
3369   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3370     return SDValue();
3371 
3372   X = N0.getOperand(0);
3373   SDValue Mask = N0.getOperand(1);
3374 
3375   // 'and' is commutative!
3376   if (!Match(Mask)) {
3377     std::swap(X, Mask);
3378     if (!Match(Mask))
3379       return SDValue();
3380   }
3381 
3382   EVT VT = X.getValueType();
3383 
3384   // Produce:
3385   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3386   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3387   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3388   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3389   return T2;
3390 }
3391 
3392 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3393 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3394 /// handle the commuted versions of these patterns.
3395 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3396                                            ISD::CondCode Cond, const SDLoc &DL,
3397                                            DAGCombinerInfo &DCI) const {
3398   unsigned BOpcode = N0.getOpcode();
3399   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3400          "Unexpected binop");
3401   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3402 
3403   // (X + Y) == X --> Y == 0
3404   // (X - Y) == X --> Y == 0
3405   // (X ^ Y) == X --> Y == 0
3406   SelectionDAG &DAG = DCI.DAG;
3407   EVT OpVT = N0.getValueType();
3408   SDValue X = N0.getOperand(0);
3409   SDValue Y = N0.getOperand(1);
3410   if (X == N1)
3411     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3412 
3413   if (Y != N1)
3414     return SDValue();
3415 
3416   // (X + Y) == Y --> X == 0
3417   // (X ^ Y) == Y --> X == 0
3418   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3419     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3420 
3421   // The shift would not be valid if the operands are boolean (i1).
3422   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3423     return SDValue();
3424 
3425   // (X - Y) == Y --> X == Y << 1
3426   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3427                                  !DCI.isBeforeLegalize());
3428   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3429   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3430   if (!DCI.isCalledByLegalizer())
3431     DCI.AddToWorklist(YShl1.getNode());
3432   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3433 }
3434 
3435 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3436                                       SDValue N0, const APInt &C1,
3437                                       ISD::CondCode Cond, const SDLoc &dl,
3438                                       SelectionDAG &DAG) {
3439   // Look through truncs that don't change the value of a ctpop.
3440   // FIXME: Add vector support? Need to be careful with setcc result type below.
3441   SDValue CTPOP = N0;
3442   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3443       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3444     CTPOP = N0.getOperand(0);
3445 
3446   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3447     return SDValue();
3448 
3449   EVT CTVT = CTPOP.getValueType();
3450   SDValue CTOp = CTPOP.getOperand(0);
3451 
3452   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3453   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3454   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3455     return SDValue();
3456 
3457   // (ctpop x) u< 2 -> (x & x-1) == 0
3458   // (ctpop x) u> 1 -> (x & x-1) != 0
3459   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3460     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3461     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3462       return SDValue();
3463     if (C1 == 0 && (Cond == ISD::SETULT))
3464       return SDValue(); // This is handled elsewhere.
3465 
3466     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3467 
3468     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3469     SDValue Result = CTOp;
3470     for (unsigned i = 0; i < Passes; i++) {
3471       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3472       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3473     }
3474     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3475     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3476   }
3477 
3478   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3479   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3480     // For scalars, keep CTPOP if it is legal or custom.
3481     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3482       return SDValue();
3483     // This is based on X86's custom lowering for CTPOP which produces more
3484     // instructions than the expansion here.
3485 
3486     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3487     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3488     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3489     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3490     assert(CTVT.isInteger());
3491     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3492     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3493     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3494     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3495     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3496     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3497     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3498   }
3499 
3500   return SDValue();
3501 }
3502 
3503 /// Try to simplify a setcc built with the specified operands and cc. If it is
3504 /// unable to simplify it, return a null SDValue.
3505 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3506                                       ISD::CondCode Cond, bool foldBooleans,
3507                                       DAGCombinerInfo &DCI,
3508                                       const SDLoc &dl) const {
3509   SelectionDAG &DAG = DCI.DAG;
3510   const DataLayout &Layout = DAG.getDataLayout();
3511   EVT OpVT = N0.getValueType();
3512 
3513   // Constant fold or commute setcc.
3514   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3515     return Fold;
3516 
3517   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3518   // TODO: Handle non-splat vector constants. All undef causes trouble.
3519   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3520   // infinite loop here when we encounter one.
3521   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3522   if (isConstOrConstSplat(N0) &&
3523       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3524       (DCI.isBeforeLegalizeOps() ||
3525        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3526     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3527 
3528   // If we have a subtract with the same 2 non-constant operands as this setcc
3529   // -- but in reverse order -- then try to commute the operands of this setcc
3530   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3531   // instruction on some targets.
3532   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3533       (DCI.isBeforeLegalizeOps() ||
3534        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3535       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3536       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3537     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3538 
3539   if (auto *N1C = isConstOrConstSplat(N1)) {
3540     const APInt &C1 = N1C->getAPIntValue();
3541 
3542     // Optimize some CTPOP cases.
3543     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3544       return V;
3545 
3546     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3547     // equality comparison, then we're just comparing whether X itself is
3548     // zero.
3549     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3550         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3551         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3552       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3553         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3554             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3555           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3556             // (srl (ctlz x), 5) == 0  -> X != 0
3557             // (srl (ctlz x), 5) != 1  -> X != 0
3558             Cond = ISD::SETNE;
3559           } else {
3560             // (srl (ctlz x), 5) != 0  -> X == 0
3561             // (srl (ctlz x), 5) == 1  -> X == 0
3562             Cond = ISD::SETEQ;
3563           }
3564           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3565           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3566                               Cond);
3567         }
3568       }
3569     }
3570   }
3571 
3572   // FIXME: Support vectors.
3573   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3574     const APInt &C1 = N1C->getAPIntValue();
3575 
3576     // (zext x) == C --> x == (trunc C)
3577     // (sext x) == C --> x == (trunc C)
3578     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3579         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3580       unsigned MinBits = N0.getValueSizeInBits();
3581       SDValue PreExt;
3582       bool Signed = false;
3583       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3584         // ZExt
3585         MinBits = N0->getOperand(0).getValueSizeInBits();
3586         PreExt = N0->getOperand(0);
3587       } else if (N0->getOpcode() == ISD::AND) {
3588         // DAGCombine turns costly ZExts into ANDs
3589         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3590           if ((C->getAPIntValue()+1).isPowerOf2()) {
3591             MinBits = C->getAPIntValue().countTrailingOnes();
3592             PreExt = N0->getOperand(0);
3593           }
3594       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3595         // SExt
3596         MinBits = N0->getOperand(0).getValueSizeInBits();
3597         PreExt = N0->getOperand(0);
3598         Signed = true;
3599       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3600         // ZEXTLOAD / SEXTLOAD
3601         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3602           MinBits = LN0->getMemoryVT().getSizeInBits();
3603           PreExt = N0;
3604         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3605           Signed = true;
3606           MinBits = LN0->getMemoryVT().getSizeInBits();
3607           PreExt = N0;
3608         }
3609       }
3610 
3611       // Figure out how many bits we need to preserve this constant.
3612       unsigned ReqdBits = Signed ?
3613         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3614         C1.getActiveBits();
3615 
3616       // Make sure we're not losing bits from the constant.
3617       if (MinBits > 0 &&
3618           MinBits < C1.getBitWidth() &&
3619           MinBits >= ReqdBits) {
3620         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3621         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3622           // Will get folded away.
3623           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3624           if (MinBits == 1 && C1 == 1)
3625             // Invert the condition.
3626             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3627                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3628           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3629           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3630         }
3631 
3632         // If truncating the setcc operands is not desirable, we can still
3633         // simplify the expression in some cases:
3634         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3635         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3636         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3637         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3638         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3639         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3640         SDValue TopSetCC = N0->getOperand(0);
3641         unsigned N0Opc = N0->getOpcode();
3642         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3643         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3644             TopSetCC.getOpcode() == ISD::SETCC &&
3645             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3646             (isConstFalseVal(N1C) ||
3647              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3648 
3649           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
3650                          (!N1C->isZero() && Cond == ISD::SETNE);
3651 
3652           if (!Inverse)
3653             return TopSetCC;
3654 
3655           ISD::CondCode InvCond = ISD::getSetCCInverse(
3656               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3657               TopSetCC.getOperand(0).getValueType());
3658           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3659                                       TopSetCC.getOperand(1),
3660                                       InvCond);
3661         }
3662       }
3663     }
3664 
3665     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3666     // equality or unsigned, and all 1 bits of the const are in the same
3667     // partial word, see if we can shorten the load.
3668     if (DCI.isBeforeLegalize() &&
3669         !ISD::isSignedIntSetCC(Cond) &&
3670         N0.getOpcode() == ISD::AND && C1 == 0 &&
3671         N0.getNode()->hasOneUse() &&
3672         isa<LoadSDNode>(N0.getOperand(0)) &&
3673         N0.getOperand(0).getNode()->hasOneUse() &&
3674         isa<ConstantSDNode>(N0.getOperand(1))) {
3675       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3676       APInt bestMask;
3677       unsigned bestWidth = 0, bestOffset = 0;
3678       if (Lod->isSimple() && Lod->isUnindexed()) {
3679         unsigned origWidth = N0.getValueSizeInBits();
3680         unsigned maskWidth = origWidth;
3681         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3682         // 8 bits, but have to be careful...
3683         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3684           origWidth = Lod->getMemoryVT().getSizeInBits();
3685         const APInt &Mask = N0.getConstantOperandAPInt(1);
3686         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3687           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3688           for (unsigned offset=0; offset<origWidth/width; offset++) {
3689             if (Mask.isSubsetOf(newMask)) {
3690               if (Layout.isLittleEndian())
3691                 bestOffset = (uint64_t)offset * (width/8);
3692               else
3693                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3694               bestMask = Mask.lshr(offset * (width/8) * 8);
3695               bestWidth = width;
3696               break;
3697             }
3698             newMask <<= width;
3699           }
3700         }
3701       }
3702       if (bestWidth) {
3703         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3704         if (newVT.isRound() &&
3705             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3706           SDValue Ptr = Lod->getBasePtr();
3707           if (bestOffset != 0)
3708             Ptr =
3709                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3710           SDValue NewLoad =
3711               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3712                           Lod->getPointerInfo().getWithOffset(bestOffset),
3713                           Lod->getOriginalAlign());
3714           return DAG.getSetCC(dl, VT,
3715                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3716                                       DAG.getConstant(bestMask.trunc(bestWidth),
3717                                                       dl, newVT)),
3718                               DAG.getConstant(0LL, dl, newVT), Cond);
3719         }
3720       }
3721     }
3722 
3723     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3724     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3725       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3726 
3727       // If the comparison constant has bits in the upper part, the
3728       // zero-extended value could never match.
3729       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3730                                               C1.getBitWidth() - InSize))) {
3731         switch (Cond) {
3732         case ISD::SETUGT:
3733         case ISD::SETUGE:
3734         case ISD::SETEQ:
3735           return DAG.getConstant(0, dl, VT);
3736         case ISD::SETULT:
3737         case ISD::SETULE:
3738         case ISD::SETNE:
3739           return DAG.getConstant(1, dl, VT);
3740         case ISD::SETGT:
3741         case ISD::SETGE:
3742           // True if the sign bit of C1 is set.
3743           return DAG.getConstant(C1.isNegative(), dl, VT);
3744         case ISD::SETLT:
3745         case ISD::SETLE:
3746           // True if the sign bit of C1 isn't set.
3747           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3748         default:
3749           break;
3750         }
3751       }
3752 
3753       // Otherwise, we can perform the comparison with the low bits.
3754       switch (Cond) {
3755       case ISD::SETEQ:
3756       case ISD::SETNE:
3757       case ISD::SETUGT:
3758       case ISD::SETUGE:
3759       case ISD::SETULT:
3760       case ISD::SETULE: {
3761         EVT newVT = N0.getOperand(0).getValueType();
3762         if (DCI.isBeforeLegalizeOps() ||
3763             (isOperationLegal(ISD::SETCC, newVT) &&
3764              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3765           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3766           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3767 
3768           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3769                                           NewConst, Cond);
3770           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3771         }
3772         break;
3773       }
3774       default:
3775         break; // todo, be more careful with signed comparisons
3776       }
3777     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3778                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3779                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3780                                       OpVT)) {
3781       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3782       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3783       EVT ExtDstTy = N0.getValueType();
3784       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3785 
3786       // If the constant doesn't fit into the number of bits for the source of
3787       // the sign extension, it is impossible for both sides to be equal.
3788       if (C1.getMinSignedBits() > ExtSrcTyBits)
3789         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3790 
3791       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
3792              ExtDstTy != ExtSrcTy && "Unexpected types!");
3793       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3794       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3795                                    DAG.getConstant(Imm, dl, ExtDstTy));
3796       if (!DCI.isCalledByLegalizer())
3797         DCI.AddToWorklist(ZextOp.getNode());
3798       // Otherwise, make this a use of a zext.
3799       return DAG.getSetCC(dl, VT, ZextOp,
3800                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3801     } else if ((N1C->isZero() || N1C->isOne()) &&
3802                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3803       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3804       if (N0.getOpcode() == ISD::SETCC &&
3805           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3806           (N0.getValueType() == MVT::i1 ||
3807            getBooleanContents(N0.getOperand(0).getValueType()) ==
3808                        ZeroOrOneBooleanContent)) {
3809         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3810         if (TrueWhenTrue)
3811           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3812         // Invert the condition.
3813         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3814         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3815         if (DCI.isBeforeLegalizeOps() ||
3816             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3817           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3818       }
3819 
3820       if ((N0.getOpcode() == ISD::XOR ||
3821            (N0.getOpcode() == ISD::AND &&
3822             N0.getOperand(0).getOpcode() == ISD::XOR &&
3823             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3824           isOneConstant(N0.getOperand(1))) {
3825         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3826         // can only do this if the top bits are known zero.
3827         unsigned BitWidth = N0.getValueSizeInBits();
3828         if (DAG.MaskedValueIsZero(N0,
3829                                   APInt::getHighBitsSet(BitWidth,
3830                                                         BitWidth-1))) {
3831           // Okay, get the un-inverted input value.
3832           SDValue Val;
3833           if (N0.getOpcode() == ISD::XOR) {
3834             Val = N0.getOperand(0);
3835           } else {
3836             assert(N0.getOpcode() == ISD::AND &&
3837                     N0.getOperand(0).getOpcode() == ISD::XOR);
3838             // ((X^1)&1)^1 -> X & 1
3839             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3840                               N0.getOperand(0).getOperand(0),
3841                               N0.getOperand(1));
3842           }
3843 
3844           return DAG.getSetCC(dl, VT, Val, N1,
3845                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3846         }
3847       } else if (N1C->isOne()) {
3848         SDValue Op0 = N0;
3849         if (Op0.getOpcode() == ISD::TRUNCATE)
3850           Op0 = Op0.getOperand(0);
3851 
3852         if ((Op0.getOpcode() == ISD::XOR) &&
3853             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3854             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3855           SDValue XorLHS = Op0.getOperand(0);
3856           SDValue XorRHS = Op0.getOperand(1);
3857           // Ensure that the input setccs return an i1 type or 0/1 value.
3858           if (Op0.getValueType() == MVT::i1 ||
3859               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3860                       ZeroOrOneBooleanContent &&
3861                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3862                         ZeroOrOneBooleanContent)) {
3863             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3864             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3865             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3866           }
3867         }
3868         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
3869           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3870           if (Op0.getValueType().bitsGT(VT))
3871             Op0 = DAG.getNode(ISD::AND, dl, VT,
3872                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3873                           DAG.getConstant(1, dl, VT));
3874           else if (Op0.getValueType().bitsLT(VT))
3875             Op0 = DAG.getNode(ISD::AND, dl, VT,
3876                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3877                         DAG.getConstant(1, dl, VT));
3878 
3879           return DAG.getSetCC(dl, VT, Op0,
3880                               DAG.getConstant(0, dl, Op0.getValueType()),
3881                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3882         }
3883         if (Op0.getOpcode() == ISD::AssertZext &&
3884             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3885           return DAG.getSetCC(dl, VT, Op0,
3886                               DAG.getConstant(0, dl, Op0.getValueType()),
3887                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3888       }
3889     }
3890 
3891     // Given:
3892     //   icmp eq/ne (urem %x, %y), 0
3893     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3894     //   icmp eq/ne %x, 0
3895     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
3896         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3897       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3898       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3899       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3900         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3901     }
3902 
3903     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
3904     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
3905     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3906         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
3907         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
3908         N1C && N1C->isAllOnes()) {
3909       return DAG.getSetCC(dl, VT, N0.getOperand(0),
3910                           DAG.getConstant(0, dl, OpVT),
3911                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
3912     }
3913 
3914     if (SDValue V =
3915             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3916       return V;
3917   }
3918 
3919   // These simplifications apply to splat vectors as well.
3920   // TODO: Handle more splat vector cases.
3921   if (auto *N1C = isConstOrConstSplat(N1)) {
3922     const APInt &C1 = N1C->getAPIntValue();
3923 
3924     APInt MinVal, MaxVal;
3925     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3926     if (ISD::isSignedIntSetCC(Cond)) {
3927       MinVal = APInt::getSignedMinValue(OperandBitSize);
3928       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3929     } else {
3930       MinVal = APInt::getMinValue(OperandBitSize);
3931       MaxVal = APInt::getMaxValue(OperandBitSize);
3932     }
3933 
3934     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3935     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3936       // X >= MIN --> true
3937       if (C1 == MinVal)
3938         return DAG.getBoolConstant(true, dl, VT, OpVT);
3939 
3940       if (!VT.isVector()) { // TODO: Support this for vectors.
3941         // X >= C0 --> X > (C0 - 1)
3942         APInt C = C1 - 1;
3943         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3944         if ((DCI.isBeforeLegalizeOps() ||
3945              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3946             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3947                                   isLegalICmpImmediate(C.getSExtValue())))) {
3948           return DAG.getSetCC(dl, VT, N0,
3949                               DAG.getConstant(C, dl, N1.getValueType()),
3950                               NewCC);
3951         }
3952       }
3953     }
3954 
3955     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3956       // X <= MAX --> true
3957       if (C1 == MaxVal)
3958         return DAG.getBoolConstant(true, dl, VT, OpVT);
3959 
3960       // X <= C0 --> X < (C0 + 1)
3961       if (!VT.isVector()) { // TODO: Support this for vectors.
3962         APInt C = C1 + 1;
3963         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3964         if ((DCI.isBeforeLegalizeOps() ||
3965              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3966             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3967                                   isLegalICmpImmediate(C.getSExtValue())))) {
3968           return DAG.getSetCC(dl, VT, N0,
3969                               DAG.getConstant(C, dl, N1.getValueType()),
3970                               NewCC);
3971         }
3972       }
3973     }
3974 
3975     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3976       if (C1 == MinVal)
3977         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3978 
3979       // TODO: Support this for vectors after legalize ops.
3980       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3981         // Canonicalize setlt X, Max --> setne X, Max
3982         if (C1 == MaxVal)
3983           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3984 
3985         // If we have setult X, 1, turn it into seteq X, 0
3986         if (C1 == MinVal+1)
3987           return DAG.getSetCC(dl, VT, N0,
3988                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3989                               ISD::SETEQ);
3990       }
3991     }
3992 
3993     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3994       if (C1 == MaxVal)
3995         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3996 
3997       // TODO: Support this for vectors after legalize ops.
3998       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3999         // Canonicalize setgt X, Min --> setne X, Min
4000         if (C1 == MinVal)
4001           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4002 
4003         // If we have setugt X, Max-1, turn it into seteq X, Max
4004         if (C1 == MaxVal-1)
4005           return DAG.getSetCC(dl, VT, N0,
4006                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4007                               ISD::SETEQ);
4008       }
4009     }
4010 
4011     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4012       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4013       if (C1.isZero())
4014         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4015                 VT, N0, N1, Cond, DCI, dl))
4016           return CC;
4017 
4018       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4019       // For example, when high 32-bits of i64 X are known clear:
4020       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4021       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4022       bool CmpZero = N1C->getAPIntValue().isNullValue();
4023       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4024       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4025         // Match or(lo,shl(hi,bw/2)) pattern.
4026         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4027           unsigned EltBits = V.getScalarValueSizeInBits();
4028           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4029             return false;
4030           SDValue LHS = V.getOperand(0);
4031           SDValue RHS = V.getOperand(1);
4032           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4033           // Unshifted element must have zero upperbits.
4034           if (RHS.getOpcode() == ISD::SHL &&
4035               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4036               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4037               DAG.MaskedValueIsZero(LHS, HiBits)) {
4038             Lo = LHS;
4039             Hi = RHS.getOperand(0);
4040             return true;
4041           }
4042           if (LHS.getOpcode() == ISD::SHL &&
4043               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4044               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4045               DAG.MaskedValueIsZero(RHS, HiBits)) {
4046             Lo = RHS;
4047             Hi = LHS.getOperand(0);
4048             return true;
4049           }
4050           return false;
4051         };
4052 
4053         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4054           unsigned EltBits = N0.getScalarValueSizeInBits();
4055           unsigned HalfBits = EltBits / 2;
4056           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4057           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4058           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4059           SDValue NewN0 =
4060               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4061           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4062           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4063         };
4064 
4065         SDValue Lo, Hi;
4066         if (IsConcat(N0, Lo, Hi))
4067           return MergeConcat(Lo, Hi);
4068 
4069         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4070           SDValue Lo0, Lo1, Hi0, Hi1;
4071           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4072               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4073             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4074                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4075           }
4076         }
4077       }
4078     }
4079 
4080     // If we have "setcc X, C0", check to see if we can shrink the immediate
4081     // by changing cc.
4082     // TODO: Support this for vectors after legalize ops.
4083     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4084       // SETUGT X, SINTMAX  -> SETLT X, 0
4085       // SETUGE X, SINTMIN -> SETLT X, 0
4086       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4087           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4088         return DAG.getSetCC(dl, VT, N0,
4089                             DAG.getConstant(0, dl, N1.getValueType()),
4090                             ISD::SETLT);
4091 
4092       // SETULT X, SINTMIN  -> SETGT X, -1
4093       // SETULE X, SINTMAX  -> SETGT X, -1
4094       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4095           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4096         return DAG.getSetCC(dl, VT, N0,
4097                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4098                             ISD::SETGT);
4099     }
4100   }
4101 
4102   // Back to non-vector simplifications.
4103   // TODO: Can we do these for vector splats?
4104   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4105     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4106     const APInt &C1 = N1C->getAPIntValue();
4107     EVT ShValTy = N0.getValueType();
4108 
4109     // Fold bit comparisons when we can. This will result in an
4110     // incorrect value when boolean false is negative one, unless
4111     // the bitsize is 1 in which case the false value is the same
4112     // in practice regardless of the representation.
4113     if ((VT.getSizeInBits() == 1 ||
4114          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4115         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4116         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4117         N0.getOpcode() == ISD::AND) {
4118       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4119         EVT ShiftTy =
4120             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4121         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4122           // Perform the xform if the AND RHS is a single bit.
4123           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4124           if (AndRHS->getAPIntValue().isPowerOf2() &&
4125               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4126             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4127                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4128                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4129           }
4130         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4131           // (X & 8) == 8  -->  (X & 8) >> 3
4132           // Perform the xform if C1 is a single bit.
4133           unsigned ShCt = C1.logBase2();
4134           if (C1.isPowerOf2() &&
4135               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4136             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4137                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4138                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4139           }
4140         }
4141       }
4142     }
4143 
4144     if (C1.getMinSignedBits() <= 64 &&
4145         !isLegalICmpImmediate(C1.getSExtValue())) {
4146       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4147       // (X & -256) == 256 -> (X >> 8) == 1
4148       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4149           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4150         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4151           const APInt &AndRHSC = AndRHS->getAPIntValue();
4152           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
4153             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4154             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4155               SDValue Shift =
4156                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4157                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4158               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4159               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4160             }
4161           }
4162         }
4163       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4164                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4165         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4166         // X <  0x100000000 -> (X >> 32) <  1
4167         // X >= 0x100000000 -> (X >> 32) >= 1
4168         // X <= 0x0ffffffff -> (X >> 32) <  1
4169         // X >  0x0ffffffff -> (X >> 32) >= 1
4170         unsigned ShiftBits;
4171         APInt NewC = C1;
4172         ISD::CondCode NewCond = Cond;
4173         if (AdjOne) {
4174           ShiftBits = C1.countTrailingOnes();
4175           NewC = NewC + 1;
4176           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4177         } else {
4178           ShiftBits = C1.countTrailingZeros();
4179         }
4180         NewC.lshrInPlace(ShiftBits);
4181         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4182             isLegalICmpImmediate(NewC.getSExtValue()) &&
4183             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4184           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4185                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4186           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4187           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4188         }
4189       }
4190     }
4191   }
4192 
4193   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4194     auto *CFP = cast<ConstantFPSDNode>(N1);
4195     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4196 
4197     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4198     // constant if knowing that the operand is non-nan is enough.  We prefer to
4199     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4200     // materialize 0.0.
4201     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4202       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4203 
4204     // setcc (fneg x), C -> setcc swap(pred) x, -C
4205     if (N0.getOpcode() == ISD::FNEG) {
4206       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4207       if (DCI.isBeforeLegalizeOps() ||
4208           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4209         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4210         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4211       }
4212     }
4213 
4214     // If the condition is not legal, see if we can find an equivalent one
4215     // which is legal.
4216     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4217       // If the comparison was an awkward floating-point == or != and one of
4218       // the comparison operands is infinity or negative infinity, convert the
4219       // condition to a less-awkward <= or >=.
4220       if (CFP->getValueAPF().isInfinity()) {
4221         bool IsNegInf = CFP->getValueAPF().isNegative();
4222         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4223         switch (Cond) {
4224         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4225         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4226         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4227         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4228         default: break;
4229         }
4230         if (NewCond != ISD::SETCC_INVALID &&
4231             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4232           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4233       }
4234     }
4235   }
4236 
4237   if (N0 == N1) {
4238     // The sext(setcc()) => setcc() optimization relies on the appropriate
4239     // constant being emitted.
4240     assert(!N0.getValueType().isInteger() &&
4241            "Integer types should be handled by FoldSetCC");
4242 
4243     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4244     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4245     if (UOF == 2) // FP operators that are undefined on NaNs.
4246       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4247     if (UOF == unsigned(EqTrue))
4248       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4249     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4250     // if it is not already.
4251     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4252     if (NewCond != Cond &&
4253         (DCI.isBeforeLegalizeOps() ||
4254                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4255       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4256   }
4257 
4258   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4259       N0.getValueType().isInteger()) {
4260     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4261         N0.getOpcode() == ISD::XOR) {
4262       // Simplify (X+Y) == (X+Z) -->  Y == Z
4263       if (N0.getOpcode() == N1.getOpcode()) {
4264         if (N0.getOperand(0) == N1.getOperand(0))
4265           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4266         if (N0.getOperand(1) == N1.getOperand(1))
4267           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4268         if (isCommutativeBinOp(N0.getOpcode())) {
4269           // If X op Y == Y op X, try other combinations.
4270           if (N0.getOperand(0) == N1.getOperand(1))
4271             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4272                                 Cond);
4273           if (N0.getOperand(1) == N1.getOperand(0))
4274             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4275                                 Cond);
4276         }
4277       }
4278 
4279       // If RHS is a legal immediate value for a compare instruction, we need
4280       // to be careful about increasing register pressure needlessly.
4281       bool LegalRHSImm = false;
4282 
4283       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4284         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4285           // Turn (X+C1) == C2 --> X == C2-C1
4286           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4287             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4288                                 DAG.getConstant(RHSC->getAPIntValue()-
4289                                                 LHSR->getAPIntValue(),
4290                                 dl, N0.getValueType()), Cond);
4291           }
4292 
4293           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4294           if (N0.getOpcode() == ISD::XOR)
4295             // If we know that all of the inverted bits are zero, don't bother
4296             // performing the inversion.
4297             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4298               return
4299                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4300                              DAG.getConstant(LHSR->getAPIntValue() ^
4301                                                RHSC->getAPIntValue(),
4302                                              dl, N0.getValueType()),
4303                              Cond);
4304         }
4305 
4306         // Turn (C1-X) == C2 --> X == C1-C2
4307         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4308           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4309             return
4310               DAG.getSetCC(dl, VT, N0.getOperand(1),
4311                            DAG.getConstant(SUBC->getAPIntValue() -
4312                                              RHSC->getAPIntValue(),
4313                                            dl, N0.getValueType()),
4314                            Cond);
4315           }
4316         }
4317 
4318         // Could RHSC fold directly into a compare?
4319         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4320           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4321       }
4322 
4323       // (X+Y) == X --> Y == 0 and similar folds.
4324       // Don't do this if X is an immediate that can fold into a cmp
4325       // instruction and X+Y has other uses. It could be an induction variable
4326       // chain, and the transform would increase register pressure.
4327       if (!LegalRHSImm || N0.hasOneUse())
4328         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4329           return V;
4330     }
4331 
4332     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4333         N1.getOpcode() == ISD::XOR)
4334       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4335         return V;
4336 
4337     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4338       return V;
4339   }
4340 
4341   // Fold remainder of division by a constant.
4342   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4343       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4344     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4345 
4346     // When division is cheap or optimizing for minimum size,
4347     // fall through to DIVREM creation by skipping this fold.
4348     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4349       if (N0.getOpcode() == ISD::UREM) {
4350         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4351           return Folded;
4352       } else if (N0.getOpcode() == ISD::SREM) {
4353         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4354           return Folded;
4355       }
4356     }
4357   }
4358 
4359   // Fold away ALL boolean setcc's.
4360   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4361     SDValue Temp;
4362     switch (Cond) {
4363     default: llvm_unreachable("Unknown integer setcc!");
4364     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4365       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4366       N0 = DAG.getNOT(dl, Temp, OpVT);
4367       if (!DCI.isCalledByLegalizer())
4368         DCI.AddToWorklist(Temp.getNode());
4369       break;
4370     case ISD::SETNE:  // X != Y   -->  (X^Y)
4371       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4372       break;
4373     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4374     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4375       Temp = DAG.getNOT(dl, N0, OpVT);
4376       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4377       if (!DCI.isCalledByLegalizer())
4378         DCI.AddToWorklist(Temp.getNode());
4379       break;
4380     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4381     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4382       Temp = DAG.getNOT(dl, N1, OpVT);
4383       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4384       if (!DCI.isCalledByLegalizer())
4385         DCI.AddToWorklist(Temp.getNode());
4386       break;
4387     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4388     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4389       Temp = DAG.getNOT(dl, N0, OpVT);
4390       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4391       if (!DCI.isCalledByLegalizer())
4392         DCI.AddToWorklist(Temp.getNode());
4393       break;
4394     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4395     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4396       Temp = DAG.getNOT(dl, N1, OpVT);
4397       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4398       break;
4399     }
4400     if (VT.getScalarType() != MVT::i1) {
4401       if (!DCI.isCalledByLegalizer())
4402         DCI.AddToWorklist(N0.getNode());
4403       // FIXME: If running after legalize, we probably can't do this.
4404       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4405       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4406     }
4407     return N0;
4408   }
4409 
4410   // Could not fold it.
4411   return SDValue();
4412 }
4413 
4414 /// Returns true (and the GlobalValue and the offset) if the node is a
4415 /// GlobalAddress + offset.
4416 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4417                                     int64_t &Offset) const {
4418 
4419   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4420 
4421   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4422     GA = GASD->getGlobal();
4423     Offset += GASD->getOffset();
4424     return true;
4425   }
4426 
4427   if (N->getOpcode() == ISD::ADD) {
4428     SDValue N1 = N->getOperand(0);
4429     SDValue N2 = N->getOperand(1);
4430     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4431       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4432         Offset += V->getSExtValue();
4433         return true;
4434       }
4435     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4436       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4437         Offset += V->getSExtValue();
4438         return true;
4439       }
4440     }
4441   }
4442 
4443   return false;
4444 }
4445 
4446 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4447                                           DAGCombinerInfo &DCI) const {
4448   // Default implementation: no optimization.
4449   return SDValue();
4450 }
4451 
4452 //===----------------------------------------------------------------------===//
4453 //  Inline Assembler Implementation Methods
4454 //===----------------------------------------------------------------------===//
4455 
4456 TargetLowering::ConstraintType
4457 TargetLowering::getConstraintType(StringRef Constraint) const {
4458   unsigned S = Constraint.size();
4459 
4460   if (S == 1) {
4461     switch (Constraint[0]) {
4462     default: break;
4463     case 'r':
4464       return C_RegisterClass;
4465     case 'm': // memory
4466     case 'o': // offsetable
4467     case 'V': // not offsetable
4468       return C_Memory;
4469     case 'n': // Simple Integer
4470     case 'E': // Floating Point Constant
4471     case 'F': // Floating Point Constant
4472       return C_Immediate;
4473     case 'i': // Simple Integer or Relocatable Constant
4474     case 's': // Relocatable Constant
4475     case 'p': // Address.
4476     case 'X': // Allow ANY value.
4477     case 'I': // Target registers.
4478     case 'J':
4479     case 'K':
4480     case 'L':
4481     case 'M':
4482     case 'N':
4483     case 'O':
4484     case 'P':
4485     case '<':
4486     case '>':
4487       return C_Other;
4488     }
4489   }
4490 
4491   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4492     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4493       return C_Memory;
4494     return C_Register;
4495   }
4496   return C_Unknown;
4497 }
4498 
4499 /// Try to replace an X constraint, which matches anything, with another that
4500 /// has more specific requirements based on the type of the corresponding
4501 /// operand.
4502 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4503   if (ConstraintVT.isInteger())
4504     return "r";
4505   if (ConstraintVT.isFloatingPoint())
4506     return "f"; // works for many targets
4507   return nullptr;
4508 }
4509 
4510 SDValue TargetLowering::LowerAsmOutputForConstraint(
4511     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4512     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4513   return SDValue();
4514 }
4515 
4516 /// Lower the specified operand into the Ops vector.
4517 /// If it is invalid, don't add anything to Ops.
4518 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4519                                                   std::string &Constraint,
4520                                                   std::vector<SDValue> &Ops,
4521                                                   SelectionDAG &DAG) const {
4522 
4523   if (Constraint.length() > 1) return;
4524 
4525   char ConstraintLetter = Constraint[0];
4526   switch (ConstraintLetter) {
4527   default: break;
4528   case 'X':     // Allows any operand; labels (basic block) use this.
4529     if (Op.getOpcode() == ISD::BasicBlock ||
4530         Op.getOpcode() == ISD::TargetBlockAddress) {
4531       Ops.push_back(Op);
4532       return;
4533     }
4534     LLVM_FALLTHROUGH;
4535   case 'i':    // Simple Integer or Relocatable Constant
4536   case 'n':    // Simple Integer
4537   case 's': {  // Relocatable Constant
4538 
4539     GlobalAddressSDNode *GA;
4540     ConstantSDNode *C;
4541     BlockAddressSDNode *BA;
4542     uint64_t Offset = 0;
4543 
4544     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4545     // etc., since getelementpointer is variadic. We can't use
4546     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4547     // while in this case the GA may be furthest from the root node which is
4548     // likely an ISD::ADD.
4549     while (1) {
4550       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4551         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4552                                                  GA->getValueType(0),
4553                                                  Offset + GA->getOffset()));
4554         return;
4555       }
4556       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4557         // gcc prints these as sign extended.  Sign extend value to 64 bits
4558         // now; without this it would get ZExt'd later in
4559         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4560         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4561         BooleanContent BCont = getBooleanContents(MVT::i64);
4562         ISD::NodeType ExtOpc =
4563             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4564         int64_t ExtVal =
4565             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4566         Ops.push_back(
4567             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4568         return;
4569       }
4570       if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4571         Ops.push_back(DAG.getTargetBlockAddress(
4572             BA->getBlockAddress(), BA->getValueType(0),
4573             Offset + BA->getOffset(), BA->getTargetFlags()));
4574         return;
4575       }
4576       const unsigned OpCode = Op.getOpcode();
4577       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4578         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4579           Op = Op.getOperand(1);
4580         // Subtraction is not commutative.
4581         else if (OpCode == ISD::ADD &&
4582                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4583           Op = Op.getOperand(0);
4584         else
4585           return;
4586         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4587         continue;
4588       }
4589       return;
4590     }
4591     break;
4592   }
4593   }
4594 }
4595 
4596 std::pair<unsigned, const TargetRegisterClass *>
4597 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4598                                              StringRef Constraint,
4599                                              MVT VT) const {
4600   if (Constraint.empty() || Constraint[0] != '{')
4601     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4602   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4603 
4604   // Remove the braces from around the name.
4605   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4606 
4607   std::pair<unsigned, const TargetRegisterClass *> R =
4608       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4609 
4610   // Figure out which register class contains this reg.
4611   for (const TargetRegisterClass *RC : RI->regclasses()) {
4612     // If none of the value types for this register class are valid, we
4613     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4614     if (!isLegalRC(*RI, *RC))
4615       continue;
4616 
4617     for (const MCPhysReg &PR : *RC) {
4618       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
4619         std::pair<unsigned, const TargetRegisterClass *> S =
4620             std::make_pair(PR, RC);
4621 
4622         // If this register class has the requested value type, return it,
4623         // otherwise keep searching and return the first class found
4624         // if no other is found which explicitly has the requested type.
4625         if (RI->isTypeLegalForClass(*RC, VT))
4626           return S;
4627         if (!R.second)
4628           R = S;
4629       }
4630     }
4631   }
4632 
4633   return R;
4634 }
4635 
4636 //===----------------------------------------------------------------------===//
4637 // Constraint Selection.
4638 
4639 /// Return true of this is an input operand that is a matching constraint like
4640 /// "4".
4641 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4642   assert(!ConstraintCode.empty() && "No known constraint!");
4643   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4644 }
4645 
4646 /// If this is an input matching constraint, this method returns the output
4647 /// operand it matches.
4648 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4649   assert(!ConstraintCode.empty() && "No known constraint!");
4650   return atoi(ConstraintCode.c_str());
4651 }
4652 
4653 /// Split up the constraint string from the inline assembly value into the
4654 /// specific constraints and their prefixes, and also tie in the associated
4655 /// operand values.
4656 /// If this returns an empty vector, and if the constraint string itself
4657 /// isn't empty, there was an error parsing.
4658 TargetLowering::AsmOperandInfoVector
4659 TargetLowering::ParseConstraints(const DataLayout &DL,
4660                                  const TargetRegisterInfo *TRI,
4661                                  const CallBase &Call) const {
4662   /// Information about all of the constraints.
4663   AsmOperandInfoVector ConstraintOperands;
4664   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4665   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4666 
4667   // Do a prepass over the constraints, canonicalizing them, and building up the
4668   // ConstraintOperands list.
4669   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4670   unsigned ResNo = 0; // ResNo - The result number of the next output.
4671 
4672   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4673     ConstraintOperands.emplace_back(std::move(CI));
4674     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4675 
4676     // Update multiple alternative constraint count.
4677     if (OpInfo.multipleAlternatives.size() > maCount)
4678       maCount = OpInfo.multipleAlternatives.size();
4679 
4680     OpInfo.ConstraintVT = MVT::Other;
4681 
4682     // Compute the value type for each operand.
4683     switch (OpInfo.Type) {
4684     case InlineAsm::isOutput:
4685       // Indirect outputs just consume an argument.
4686       if (OpInfo.isIndirect) {
4687         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4688         break;
4689       }
4690 
4691       // The return value of the call is this value.  As such, there is no
4692       // corresponding argument.
4693       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4694       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4695         OpInfo.ConstraintVT =
4696             getSimpleValueType(DL, STy->getElementType(ResNo));
4697       } else {
4698         assert(ResNo == 0 && "Asm only has one result!");
4699         OpInfo.ConstraintVT =
4700             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
4701       }
4702       ++ResNo;
4703       break;
4704     case InlineAsm::isInput:
4705       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4706       break;
4707     case InlineAsm::isClobber:
4708       // Nothing to do.
4709       break;
4710     }
4711 
4712     if (OpInfo.CallOperandVal) {
4713       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4714       if (OpInfo.isIndirect) {
4715         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4716         if (!PtrTy)
4717           report_fatal_error("Indirect operand for inline asm not a pointer!");
4718         OpTy = PtrTy->getElementType();
4719       }
4720 
4721       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4722       if (StructType *STy = dyn_cast<StructType>(OpTy))
4723         if (STy->getNumElements() == 1)
4724           OpTy = STy->getElementType(0);
4725 
4726       // If OpTy is not a single value, it may be a struct/union that we
4727       // can tile with integers.
4728       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4729         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4730         switch (BitSize) {
4731         default: break;
4732         case 1:
4733         case 8:
4734         case 16:
4735         case 32:
4736         case 64:
4737         case 128:
4738           OpInfo.ConstraintVT =
4739               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4740           break;
4741         }
4742       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4743         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4744         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4745       } else {
4746         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4747       }
4748     }
4749   }
4750 
4751   // If we have multiple alternative constraints, select the best alternative.
4752   if (!ConstraintOperands.empty()) {
4753     if (maCount) {
4754       unsigned bestMAIndex = 0;
4755       int bestWeight = -1;
4756       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4757       int weight = -1;
4758       unsigned maIndex;
4759       // Compute the sums of the weights for each alternative, keeping track
4760       // of the best (highest weight) one so far.
4761       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4762         int weightSum = 0;
4763         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4764              cIndex != eIndex; ++cIndex) {
4765           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4766           if (OpInfo.Type == InlineAsm::isClobber)
4767             continue;
4768 
4769           // If this is an output operand with a matching input operand,
4770           // look up the matching input. If their types mismatch, e.g. one
4771           // is an integer, the other is floating point, or their sizes are
4772           // different, flag it as an maCantMatch.
4773           if (OpInfo.hasMatchingInput()) {
4774             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4775             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4776               if ((OpInfo.ConstraintVT.isInteger() !=
4777                    Input.ConstraintVT.isInteger()) ||
4778                   (OpInfo.ConstraintVT.getSizeInBits() !=
4779                    Input.ConstraintVT.getSizeInBits())) {
4780                 weightSum = -1; // Can't match.
4781                 break;
4782               }
4783             }
4784           }
4785           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4786           if (weight == -1) {
4787             weightSum = -1;
4788             break;
4789           }
4790           weightSum += weight;
4791         }
4792         // Update best.
4793         if (weightSum > bestWeight) {
4794           bestWeight = weightSum;
4795           bestMAIndex = maIndex;
4796         }
4797       }
4798 
4799       // Now select chosen alternative in each constraint.
4800       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4801            cIndex != eIndex; ++cIndex) {
4802         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4803         if (cInfo.Type == InlineAsm::isClobber)
4804           continue;
4805         cInfo.selectAlternative(bestMAIndex);
4806       }
4807     }
4808   }
4809 
4810   // Check and hook up tied operands, choose constraint code to use.
4811   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4812        cIndex != eIndex; ++cIndex) {
4813     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4814 
4815     // If this is an output operand with a matching input operand, look up the
4816     // matching input. If their types mismatch, e.g. one is an integer, the
4817     // other is floating point, or their sizes are different, flag it as an
4818     // error.
4819     if (OpInfo.hasMatchingInput()) {
4820       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4821 
4822       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4823         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4824             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4825                                          OpInfo.ConstraintVT);
4826         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4827             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4828                                          Input.ConstraintVT);
4829         if ((OpInfo.ConstraintVT.isInteger() !=
4830              Input.ConstraintVT.isInteger()) ||
4831             (MatchRC.second != InputRC.second)) {
4832           report_fatal_error("Unsupported asm: input constraint"
4833                              " with a matching output constraint of"
4834                              " incompatible type!");
4835         }
4836       }
4837     }
4838   }
4839 
4840   return ConstraintOperands;
4841 }
4842 
4843 /// Return an integer indicating how general CT is.
4844 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4845   switch (CT) {
4846   case TargetLowering::C_Immediate:
4847   case TargetLowering::C_Other:
4848   case TargetLowering::C_Unknown:
4849     return 0;
4850   case TargetLowering::C_Register:
4851     return 1;
4852   case TargetLowering::C_RegisterClass:
4853     return 2;
4854   case TargetLowering::C_Memory:
4855     return 3;
4856   }
4857   llvm_unreachable("Invalid constraint type");
4858 }
4859 
4860 /// Examine constraint type and operand type and determine a weight value.
4861 /// This object must already have been set up with the operand type
4862 /// and the current alternative constraint selected.
4863 TargetLowering::ConstraintWeight
4864   TargetLowering::getMultipleConstraintMatchWeight(
4865     AsmOperandInfo &info, int maIndex) const {
4866   InlineAsm::ConstraintCodeVector *rCodes;
4867   if (maIndex >= (int)info.multipleAlternatives.size())
4868     rCodes = &info.Codes;
4869   else
4870     rCodes = &info.multipleAlternatives[maIndex].Codes;
4871   ConstraintWeight BestWeight = CW_Invalid;
4872 
4873   // Loop over the options, keeping track of the most general one.
4874   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4875     ConstraintWeight weight =
4876       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4877     if (weight > BestWeight)
4878       BestWeight = weight;
4879   }
4880 
4881   return BestWeight;
4882 }
4883 
4884 /// Examine constraint type and operand type and determine a weight value.
4885 /// This object must already have been set up with the operand type
4886 /// and the current alternative constraint selected.
4887 TargetLowering::ConstraintWeight
4888   TargetLowering::getSingleConstraintMatchWeight(
4889     AsmOperandInfo &info, const char *constraint) const {
4890   ConstraintWeight weight = CW_Invalid;
4891   Value *CallOperandVal = info.CallOperandVal;
4892     // If we don't have a value, we can't do a match,
4893     // but allow it at the lowest weight.
4894   if (!CallOperandVal)
4895     return CW_Default;
4896   // Look at the constraint type.
4897   switch (*constraint) {
4898     case 'i': // immediate integer.
4899     case 'n': // immediate integer with a known value.
4900       if (isa<ConstantInt>(CallOperandVal))
4901         weight = CW_Constant;
4902       break;
4903     case 's': // non-explicit intregal immediate.
4904       if (isa<GlobalValue>(CallOperandVal))
4905         weight = CW_Constant;
4906       break;
4907     case 'E': // immediate float if host format.
4908     case 'F': // immediate float.
4909       if (isa<ConstantFP>(CallOperandVal))
4910         weight = CW_Constant;
4911       break;
4912     case '<': // memory operand with autodecrement.
4913     case '>': // memory operand with autoincrement.
4914     case 'm': // memory operand.
4915     case 'o': // offsettable memory operand
4916     case 'V': // non-offsettable memory operand
4917       weight = CW_Memory;
4918       break;
4919     case 'r': // general register.
4920     case 'g': // general register, memory operand or immediate integer.
4921               // note: Clang converts "g" to "imr".
4922       if (CallOperandVal->getType()->isIntegerTy())
4923         weight = CW_Register;
4924       break;
4925     case 'X': // any operand.
4926   default:
4927     weight = CW_Default;
4928     break;
4929   }
4930   return weight;
4931 }
4932 
4933 /// If there are multiple different constraints that we could pick for this
4934 /// operand (e.g. "imr") try to pick the 'best' one.
4935 /// This is somewhat tricky: constraints fall into four classes:
4936 ///    Other         -> immediates and magic values
4937 ///    Register      -> one specific register
4938 ///    RegisterClass -> a group of regs
4939 ///    Memory        -> memory
4940 /// Ideally, we would pick the most specific constraint possible: if we have
4941 /// something that fits into a register, we would pick it.  The problem here
4942 /// is that if we have something that could either be in a register or in
4943 /// memory that use of the register could cause selection of *other*
4944 /// operands to fail: they might only succeed if we pick memory.  Because of
4945 /// this the heuristic we use is:
4946 ///
4947 ///  1) If there is an 'other' constraint, and if the operand is valid for
4948 ///     that constraint, use it.  This makes us take advantage of 'i'
4949 ///     constraints when available.
4950 ///  2) Otherwise, pick the most general constraint present.  This prefers
4951 ///     'm' over 'r', for example.
4952 ///
4953 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4954                              const TargetLowering &TLI,
4955                              SDValue Op, SelectionDAG *DAG) {
4956   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4957   unsigned BestIdx = 0;
4958   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4959   int BestGenerality = -1;
4960 
4961   // Loop over the options, keeping track of the most general one.
4962   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4963     TargetLowering::ConstraintType CType =
4964       TLI.getConstraintType(OpInfo.Codes[i]);
4965 
4966     // Indirect 'other' or 'immediate' constraints are not allowed.
4967     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4968                                CType == TargetLowering::C_Register ||
4969                                CType == TargetLowering::C_RegisterClass))
4970       continue;
4971 
4972     // If this is an 'other' or 'immediate' constraint, see if the operand is
4973     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4974     // the operand is an integer in the range [0..31] we want to use I (saving a
4975     // load of a register), otherwise we must use 'r'.
4976     if ((CType == TargetLowering::C_Other ||
4977          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4978       assert(OpInfo.Codes[i].size() == 1 &&
4979              "Unhandled multi-letter 'other' constraint");
4980       std::vector<SDValue> ResultOps;
4981       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4982                                        ResultOps, *DAG);
4983       if (!ResultOps.empty()) {
4984         BestType = CType;
4985         BestIdx = i;
4986         break;
4987       }
4988     }
4989 
4990     // Things with matching constraints can only be registers, per gcc
4991     // documentation.  This mainly affects "g" constraints.
4992     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4993       continue;
4994 
4995     // This constraint letter is more general than the previous one, use it.
4996     int Generality = getConstraintGenerality(CType);
4997     if (Generality > BestGenerality) {
4998       BestType = CType;
4999       BestIdx = i;
5000       BestGenerality = Generality;
5001     }
5002   }
5003 
5004   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5005   OpInfo.ConstraintType = BestType;
5006 }
5007 
5008 /// Determines the constraint code and constraint type to use for the specific
5009 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5010 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5011                                             SDValue Op,
5012                                             SelectionDAG *DAG) const {
5013   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5014 
5015   // Single-letter constraints ('r') are very common.
5016   if (OpInfo.Codes.size() == 1) {
5017     OpInfo.ConstraintCode = OpInfo.Codes[0];
5018     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5019   } else {
5020     ChooseConstraint(OpInfo, *this, Op, DAG);
5021   }
5022 
5023   // 'X' matches anything.
5024   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5025     // Labels and constants are handled elsewhere ('X' is the only thing
5026     // that matches labels).  For Functions, the type here is the type of
5027     // the result, which is not what we want to look at; leave them alone.
5028     Value *v = OpInfo.CallOperandVal;
5029     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
5030       OpInfo.CallOperandVal = v;
5031       return;
5032     }
5033 
5034     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
5035       return;
5036 
5037     // Otherwise, try to resolve it to something we know about by looking at
5038     // the actual operand type.
5039     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5040       OpInfo.ConstraintCode = Repl;
5041       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5042     }
5043   }
5044 }
5045 
5046 /// Given an exact SDIV by a constant, create a multiplication
5047 /// with the multiplicative inverse of the constant.
5048 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5049                               const SDLoc &dl, SelectionDAG &DAG,
5050                               SmallVectorImpl<SDNode *> &Created) {
5051   SDValue Op0 = N->getOperand(0);
5052   SDValue Op1 = N->getOperand(1);
5053   EVT VT = N->getValueType(0);
5054   EVT SVT = VT.getScalarType();
5055   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5056   EVT ShSVT = ShVT.getScalarType();
5057 
5058   bool UseSRA = false;
5059   SmallVector<SDValue, 16> Shifts, Factors;
5060 
5061   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5062     if (C->isZero())
5063       return false;
5064     APInt Divisor = C->getAPIntValue();
5065     unsigned Shift = Divisor.countTrailingZeros();
5066     if (Shift) {
5067       Divisor.ashrInPlace(Shift);
5068       UseSRA = true;
5069     }
5070     // Calculate the multiplicative inverse, using Newton's method.
5071     APInt t;
5072     APInt Factor = Divisor;
5073     while ((t = Divisor * Factor) != 1)
5074       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5075     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5076     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5077     return true;
5078   };
5079 
5080   // Collect all magic values from the build vector.
5081   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5082     return SDValue();
5083 
5084   SDValue Shift, Factor;
5085   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5086     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5087     Factor = DAG.getBuildVector(VT, dl, Factors);
5088   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5089     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5090            "Expected matchUnaryPredicate to return one element for scalable "
5091            "vectors");
5092     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5093     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5094   } else {
5095     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5096     Shift = Shifts[0];
5097     Factor = Factors[0];
5098   }
5099 
5100   SDValue Res = Op0;
5101 
5102   // Shift the value upfront if it is even, so the LSB is one.
5103   if (UseSRA) {
5104     // TODO: For UDIV use SRL instead of SRA.
5105     SDNodeFlags Flags;
5106     Flags.setExact(true);
5107     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5108     Created.push_back(Res.getNode());
5109   }
5110 
5111   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5112 }
5113 
5114 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5115                               SelectionDAG &DAG,
5116                               SmallVectorImpl<SDNode *> &Created) const {
5117   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5118   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5119   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5120     return SDValue(N, 0); // Lower SDIV as SDIV
5121   return SDValue();
5122 }
5123 
5124 namespace {
5125 /// Magic data for optimising signed division by a constant.
5126 struct ms {
5127   APInt m;    ///< magic number
5128   unsigned s; ///< shift amount
5129 };
5130 
5131 /// Magic data for optimising unsigned division by a constant.
5132 struct mu {
5133   APInt m;    ///< magic number
5134   bool a;     ///< add indicator
5135   unsigned s; ///< shift amount
5136 };
5137 } // namespace
5138 
5139 /// Calculate the magic numbers required to implement an unsigned integer
5140 /// division by a constant as a sequence of multiplies, adds and shifts.
5141 /// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry
5142 /// S. Warren, Jr., chapter 10.
5143 /// LeadingZeros can be used to simplify the calculation if the upper bits
5144 /// of the divided value are known zero.
5145 static mu magicu(const APInt &d, unsigned LeadingZeros = 0) {
5146   unsigned p;
5147   APInt nc, delta, q1, r1, q2, r2;
5148   struct mu magu;
5149   magu.a = 0; // initialize "add" indicator
5150   APInt allOnes = APInt::getAllOnes(d.getBitWidth()).lshr(LeadingZeros);
5151   APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
5152   APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
5153 
5154   nc = allOnes - (allOnes - d).urem(d);
5155   p = d.getBitWidth() - 1;  // initialize p
5156   q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc
5157   r1 = signedMin - q1 * nc; // initialize r1 = rem(2p,nc)
5158   q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d
5159   r2 = signedMax - q2 * d;  // initialize r2 = rem((2p-1),d)
5160   do {
5161     p = p + 1;
5162     if (r1.uge(nc - r1)) {
5163       q1 = q1 + q1 + 1;  // update q1
5164       r1 = r1 + r1 - nc; // update r1
5165     } else {
5166       q1 = q1 + q1; // update q1
5167       r1 = r1 + r1; // update r1
5168     }
5169     if ((r2 + 1).uge(d - r2)) {
5170       if (q2.uge(signedMax))
5171         magu.a = 1;
5172       q2 = q2 + q2 + 1;     // update q2
5173       r2 = r2 + r2 + 1 - d; // update r2
5174     } else {
5175       if (q2.uge(signedMin))
5176         magu.a = 1;
5177       q2 = q2 + q2;     // update q2
5178       r2 = r2 + r2 + 1; // update r2
5179     }
5180     delta = d - 1 - r2;
5181   } while (p < d.getBitWidth() * 2 &&
5182            (q1.ult(delta) || (q1 == delta && r1 == 0)));
5183   magu.m = q2 + 1;              // resulting magic number
5184   magu.s = p - d.getBitWidth(); // resulting shift
5185   return magu;
5186 }
5187 
5188 /// Calculate the magic numbers required to implement a signed integer division
5189 /// by a constant as a sequence of multiplies, adds and shifts.  Requires that
5190 /// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S.
5191 /// Warren, Jr., Chapter 10.
5192 static ms magic(const APInt &d) {
5193   unsigned p;
5194   APInt ad, anc, delta, q1, r1, q2, r2, t;
5195   APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
5196   struct ms mag;
5197 
5198   ad = d.abs();
5199   t = signedMin + (d.lshr(d.getBitWidth() - 1));
5200   anc = t - 1 - t.urem(ad);  // absolute value of nc
5201   p = d.getBitWidth() - 1;   // initialize p
5202   q1 = signedMin.udiv(anc);  // initialize q1 = 2p/abs(nc)
5203   r1 = signedMin - q1 * anc; // initialize r1 = rem(2p,abs(nc))
5204   q2 = signedMin.udiv(ad);   // initialize q2 = 2p/abs(d)
5205   r2 = signedMin - q2 * ad;  // initialize r2 = rem(2p,abs(d))
5206   do {
5207     p = p + 1;
5208     q1 = q1 << 1;      // update q1 = 2p/abs(nc)
5209     r1 = r1 << 1;      // update r1 = rem(2p/abs(nc))
5210     if (r1.uge(anc)) { // must be unsigned comparison
5211       q1 = q1 + 1;
5212       r1 = r1 - anc;
5213     }
5214     q2 = q2 << 1;     // update q2 = 2p/abs(d)
5215     r2 = r2 << 1;     // update r2 = rem(2p/abs(d))
5216     if (r2.uge(ad)) { // must be unsigned comparison
5217       q2 = q2 + 1;
5218       r2 = r2 - ad;
5219     }
5220     delta = ad - r2;
5221   } while (q1.ult(delta) || (q1 == delta && r1 == 0));
5222 
5223   mag.m = q2 + 1;
5224   if (d.isNegative())
5225     mag.m = -mag.m;            // resulting magic number
5226   mag.s = p - d.getBitWidth(); // resulting shift
5227   return mag;
5228 }
5229 
5230 /// Given an ISD::SDIV node expressing a divide by constant,
5231 /// return a DAG expression to select that will generate the same value by
5232 /// multiplying by a magic number.
5233 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5234 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5235                                   bool IsAfterLegalization,
5236                                   SmallVectorImpl<SDNode *> &Created) const {
5237   SDLoc dl(N);
5238   EVT VT = N->getValueType(0);
5239   EVT SVT = VT.getScalarType();
5240   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5241   EVT ShSVT = ShVT.getScalarType();
5242   unsigned EltBits = VT.getScalarSizeInBits();
5243   EVT MulVT;
5244 
5245   // Check to see if we can do this.
5246   // FIXME: We should be more aggressive here.
5247   if (!isTypeLegal(VT)) {
5248     // Limit this to simple scalars for now.
5249     if (VT.isVector() || !VT.isSimple())
5250       return SDValue();
5251 
5252     // If this type will be promoted to a large enough type with a legal
5253     // multiply operation, we can go ahead and do this transform.
5254     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5255       return SDValue();
5256 
5257     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5258     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5259         !isOperationLegal(ISD::MUL, MulVT))
5260       return SDValue();
5261   }
5262 
5263   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5264   if (N->getFlags().hasExact())
5265     return BuildExactSDIV(*this, N, dl, DAG, Created);
5266 
5267   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5268 
5269   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5270     if (C->isZero())
5271       return false;
5272 
5273     const APInt &Divisor = C->getAPIntValue();
5274     ms magics = magic(Divisor);
5275     int NumeratorFactor = 0;
5276     int ShiftMask = -1;
5277 
5278     if (Divisor.isOneValue() || Divisor.isAllOnes()) {
5279       // If d is +1/-1, we just multiply the numerator by +1/-1.
5280       NumeratorFactor = Divisor.getSExtValue();
5281       magics.m = 0;
5282       magics.s = 0;
5283       ShiftMask = 0;
5284     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
5285       // If d > 0 and m < 0, add the numerator.
5286       NumeratorFactor = 1;
5287     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
5288       // If d < 0 and m > 0, subtract the numerator.
5289       NumeratorFactor = -1;
5290     }
5291 
5292     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
5293     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5294     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
5295     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5296     return true;
5297   };
5298 
5299   SDValue N0 = N->getOperand(0);
5300   SDValue N1 = N->getOperand(1);
5301 
5302   // Collect the shifts / magic values from each element.
5303   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5304     return SDValue();
5305 
5306   SDValue MagicFactor, Factor, Shift, ShiftMask;
5307   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5308     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5309     Factor = DAG.getBuildVector(VT, dl, Factors);
5310     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5311     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5312   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5313     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5314            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5315            "Expected matchUnaryPredicate to return one element for scalable "
5316            "vectors");
5317     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5318     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5319     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5320     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5321   } else {
5322     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5323     MagicFactor = MagicFactors[0];
5324     Factor = Factors[0];
5325     Shift = Shifts[0];
5326     ShiftMask = ShiftMasks[0];
5327   }
5328 
5329   // Multiply the numerator (operand 0) by the magic value.
5330   // FIXME: We should support doing a MUL in a wider type.
5331   auto GetMULHS = [&](SDValue X, SDValue Y) {
5332     // If the type isn't legal, use a wider mul of the the type calculated
5333     // earlier.
5334     if (!isTypeLegal(VT)) {
5335       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5336       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5337       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5338       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5339                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5340       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5341     }
5342 
5343     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5344       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5345     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5346       SDValue LoHi =
5347           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5348       return SDValue(LoHi.getNode(), 1);
5349     }
5350     return SDValue();
5351   };
5352 
5353   SDValue Q = GetMULHS(N0, MagicFactor);
5354   if (!Q)
5355     return SDValue();
5356 
5357   Created.push_back(Q.getNode());
5358 
5359   // (Optionally) Add/subtract the numerator using Factor.
5360   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5361   Created.push_back(Factor.getNode());
5362   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5363   Created.push_back(Q.getNode());
5364 
5365   // Shift right algebraic by shift value.
5366   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5367   Created.push_back(Q.getNode());
5368 
5369   // Extract the sign bit, mask it and add it to the quotient.
5370   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5371   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5372   Created.push_back(T.getNode());
5373   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5374   Created.push_back(T.getNode());
5375   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5376 }
5377 
5378 /// Given an ISD::UDIV node expressing a divide by constant,
5379 /// return a DAG expression to select that will generate the same value by
5380 /// multiplying by a magic number.
5381 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5382 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5383                                   bool IsAfterLegalization,
5384                                   SmallVectorImpl<SDNode *> &Created) const {
5385   SDLoc dl(N);
5386   EVT VT = N->getValueType(0);
5387   EVT SVT = VT.getScalarType();
5388   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5389   EVT ShSVT = ShVT.getScalarType();
5390   unsigned EltBits = VT.getScalarSizeInBits();
5391   EVT MulVT;
5392 
5393   // Check to see if we can do this.
5394   // FIXME: We should be more aggressive here.
5395   if (!isTypeLegal(VT)) {
5396     // Limit this to simple scalars for now.
5397     if (VT.isVector() || !VT.isSimple())
5398       return SDValue();
5399 
5400     // If this type will be promoted to a large enough type with a legal
5401     // multiply operation, we can go ahead and do this transform.
5402     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5403       return SDValue();
5404 
5405     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5406     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5407         !isOperationLegal(ISD::MUL, MulVT))
5408       return SDValue();
5409   }
5410 
5411   bool UseNPQ = false;
5412   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5413 
5414   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5415     if (C->isZero())
5416       return false;
5417     // FIXME: We should use a narrower constant when the upper
5418     // bits are known to be zero.
5419     const APInt& Divisor = C->getAPIntValue();
5420     mu magics = magicu(Divisor);
5421     unsigned PreShift = 0, PostShift = 0;
5422 
5423     // If the divisor is even, we can avoid using the expensive fixup by
5424     // shifting the divided value upfront.
5425     if (magics.a != 0 && !Divisor[0]) {
5426       PreShift = Divisor.countTrailingZeros();
5427       // Get magic number for the shifted divisor.
5428       magics = magicu(Divisor.lshr(PreShift), PreShift);
5429       assert(magics.a == 0 && "Should use cheap fixup now");
5430     }
5431 
5432     APInt Magic = magics.m;
5433 
5434     unsigned SelNPQ;
5435     if (magics.a == 0 || Divisor.isOneValue()) {
5436       assert(magics.s < Divisor.getBitWidth() &&
5437              "We shouldn't generate an undefined shift!");
5438       PostShift = magics.s;
5439       SelNPQ = false;
5440     } else {
5441       PostShift = magics.s - 1;
5442       SelNPQ = true;
5443     }
5444 
5445     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5446     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5447     NPQFactors.push_back(
5448         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5449                                : APInt::getZero(EltBits),
5450                         dl, SVT));
5451     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5452     UseNPQ |= SelNPQ;
5453     return true;
5454   };
5455 
5456   SDValue N0 = N->getOperand(0);
5457   SDValue N1 = N->getOperand(1);
5458 
5459   // Collect the shifts/magic values from each element.
5460   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5461     return SDValue();
5462 
5463   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5464   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5465     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5466     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5467     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5468     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5469   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5470     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5471            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5472            "Expected matchUnaryPredicate to return one for scalable vectors");
5473     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5474     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5475     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5476     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5477   } else {
5478     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5479     PreShift = PreShifts[0];
5480     MagicFactor = MagicFactors[0];
5481     PostShift = PostShifts[0];
5482   }
5483 
5484   SDValue Q = N0;
5485   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5486   Created.push_back(Q.getNode());
5487 
5488   // FIXME: We should support doing a MUL in a wider type.
5489   auto GetMULHU = [&](SDValue X, SDValue Y) {
5490     // If the type isn't legal, use a wider mul of the the type calculated
5491     // earlier.
5492     if (!isTypeLegal(VT)) {
5493       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5494       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5495       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5496       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5497                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5498       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5499     }
5500 
5501     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5502       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5503     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5504       SDValue LoHi =
5505           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5506       return SDValue(LoHi.getNode(), 1);
5507     }
5508     return SDValue(); // No mulhu or equivalent
5509   };
5510 
5511   // Multiply the numerator (operand 0) by the magic value.
5512   Q = GetMULHU(Q, MagicFactor);
5513   if (!Q)
5514     return SDValue();
5515 
5516   Created.push_back(Q.getNode());
5517 
5518   if (UseNPQ) {
5519     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5520     Created.push_back(NPQ.getNode());
5521 
5522     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5523     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5524     if (VT.isVector())
5525       NPQ = GetMULHU(NPQ, NPQFactor);
5526     else
5527       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5528 
5529     Created.push_back(NPQ.getNode());
5530 
5531     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5532     Created.push_back(Q.getNode());
5533   }
5534 
5535   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5536   Created.push_back(Q.getNode());
5537 
5538   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5539 
5540   SDValue One = DAG.getConstant(1, dl, VT);
5541   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5542   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5543 }
5544 
5545 /// If all values in Values that *don't* match the predicate are same 'splat'
5546 /// value, then replace all values with that splat value.
5547 /// Else, if AlternativeReplacement was provided, then replace all values that
5548 /// do match predicate with AlternativeReplacement value.
5549 static void
5550 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5551                           std::function<bool(SDValue)> Predicate,
5552                           SDValue AlternativeReplacement = SDValue()) {
5553   SDValue Replacement;
5554   // Is there a value for which the Predicate does *NOT* match? What is it?
5555   auto SplatValue = llvm::find_if_not(Values, Predicate);
5556   if (SplatValue != Values.end()) {
5557     // Does Values consist only of SplatValue's and values matching Predicate?
5558     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5559           return Value == *SplatValue || Predicate(Value);
5560         })) // Then we shall replace values matching predicate with SplatValue.
5561       Replacement = *SplatValue;
5562   }
5563   if (!Replacement) {
5564     // Oops, we did not find the "baseline" splat value.
5565     if (!AlternativeReplacement)
5566       return; // Nothing to do.
5567     // Let's replace with provided value then.
5568     Replacement = AlternativeReplacement;
5569   }
5570   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5571 }
5572 
5573 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5574 /// where the divisor is constant and the comparison target is zero,
5575 /// return a DAG expression that will generate the same comparison result
5576 /// using only multiplications, additions and shifts/rotations.
5577 /// Ref: "Hacker's Delight" 10-17.
5578 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5579                                         SDValue CompTargetNode,
5580                                         ISD::CondCode Cond,
5581                                         DAGCombinerInfo &DCI,
5582                                         const SDLoc &DL) const {
5583   SmallVector<SDNode *, 5> Built;
5584   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5585                                          DCI, DL, Built)) {
5586     for (SDNode *N : Built)
5587       DCI.AddToWorklist(N);
5588     return Folded;
5589   }
5590 
5591   return SDValue();
5592 }
5593 
5594 SDValue
5595 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5596                                   SDValue CompTargetNode, ISD::CondCode Cond,
5597                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5598                                   SmallVectorImpl<SDNode *> &Created) const {
5599   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5600   // - D must be constant, with D = D0 * 2^K where D0 is odd
5601   // - P is the multiplicative inverse of D0 modulo 2^W
5602   // - Q = floor(((2^W) - 1) / D)
5603   // where W is the width of the common type of N and D.
5604   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5605          "Only applicable for (in)equality comparisons.");
5606 
5607   SelectionDAG &DAG = DCI.DAG;
5608 
5609   EVT VT = REMNode.getValueType();
5610   EVT SVT = VT.getScalarType();
5611   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5612   EVT ShSVT = ShVT.getScalarType();
5613 
5614   // If MUL is unavailable, we cannot proceed in any case.
5615   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5616     return SDValue();
5617 
5618   bool ComparingWithAllZeros = true;
5619   bool AllComparisonsWithNonZerosAreTautological = true;
5620   bool HadTautologicalLanes = false;
5621   bool AllLanesAreTautological = true;
5622   bool HadEvenDivisor = false;
5623   bool AllDivisorsArePowerOfTwo = true;
5624   bool HadTautologicalInvertedLanes = false;
5625   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5626 
5627   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5628     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5629     if (CDiv->isZero())
5630       return false;
5631 
5632     const APInt &D = CDiv->getAPIntValue();
5633     const APInt &Cmp = CCmp->getAPIntValue();
5634 
5635     ComparingWithAllZeros &= Cmp.isNullValue();
5636 
5637     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5638     // if C2 is not less than C1, the comparison is always false.
5639     // But we will only be able to produce the comparison that will give the
5640     // opposive tautological answer. So this lane would need to be fixed up.
5641     bool TautologicalInvertedLane = D.ule(Cmp);
5642     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5643 
5644     // If all lanes are tautological (either all divisors are ones, or divisor
5645     // is not greater than the constant we are comparing with),
5646     // we will prefer to avoid the fold.
5647     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5648     HadTautologicalLanes |= TautologicalLane;
5649     AllLanesAreTautological &= TautologicalLane;
5650 
5651     // If we are comparing with non-zero, we need'll need  to subtract said
5652     // comparison value from the LHS. But there is no point in doing that if
5653     // every lane where we are comparing with non-zero is tautological..
5654     if (!Cmp.isNullValue())
5655       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5656 
5657     // Decompose D into D0 * 2^K
5658     unsigned K = D.countTrailingZeros();
5659     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5660     APInt D0 = D.lshr(K);
5661 
5662     // D is even if it has trailing zeros.
5663     HadEvenDivisor |= (K != 0);
5664     // D is a power-of-two if D0 is one.
5665     // If all divisors are power-of-two, we will prefer to avoid the fold.
5666     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5667 
5668     // P = inv(D0, 2^W)
5669     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5670     unsigned W = D.getBitWidth();
5671     APInt P = D0.zext(W + 1)
5672                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5673                   .trunc(W);
5674     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5675     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5676 
5677     // Q = floor((2^W - 1) u/ D)
5678     // R = ((2^W - 1) u% D)
5679     APInt Q, R;
5680     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
5681 
5682     // If we are comparing with zero, then that comparison constant is okay,
5683     // else it may need to be one less than that.
5684     if (Cmp.ugt(R))
5685       Q -= 1;
5686 
5687     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5688            "We are expecting that K is always less than all-ones for ShSVT");
5689 
5690     // If the lane is tautological the result can be constant-folded.
5691     if (TautologicalLane) {
5692       // Set P and K amount to a bogus values so we can try to splat them.
5693       P = 0;
5694       K = -1;
5695       // And ensure that comparison constant is tautological,
5696       // it will always compare true/false.
5697       Q = -1;
5698     }
5699 
5700     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5701     KAmts.push_back(
5702         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5703     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5704     return true;
5705   };
5706 
5707   SDValue N = REMNode.getOperand(0);
5708   SDValue D = REMNode.getOperand(1);
5709 
5710   // Collect the values from each element.
5711   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5712     return SDValue();
5713 
5714   // If all lanes are tautological, the result can be constant-folded.
5715   if (AllLanesAreTautological)
5716     return SDValue();
5717 
5718   // If this is a urem by a powers-of-two, avoid the fold since it can be
5719   // best implemented as a bit test.
5720   if (AllDivisorsArePowerOfTwo)
5721     return SDValue();
5722 
5723   SDValue PVal, KVal, QVal;
5724   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5725     if (HadTautologicalLanes) {
5726       // Try to turn PAmts into a splat, since we don't care about the values
5727       // that are currently '0'. If we can't, just keep '0'`s.
5728       turnVectorIntoSplatVector(PAmts, isNullConstant);
5729       // Try to turn KAmts into a splat, since we don't care about the values
5730       // that are currently '-1'. If we can't, change them to '0'`s.
5731       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5732                                 DAG.getConstant(0, DL, ShSVT));
5733     }
5734 
5735     PVal = DAG.getBuildVector(VT, DL, PAmts);
5736     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5737     QVal = DAG.getBuildVector(VT, DL, QAmts);
5738   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5739     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
5740            "Expected matchBinaryPredicate to return one element for "
5741            "SPLAT_VECTORs");
5742     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5743     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5744     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5745   } else {
5746     PVal = PAmts[0];
5747     KVal = KAmts[0];
5748     QVal = QAmts[0];
5749   }
5750 
5751   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5752     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5753       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5754     assert(CompTargetNode.getValueType() == N.getValueType() &&
5755            "Expecting that the types on LHS and RHS of comparisons match.");
5756     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5757   }
5758 
5759   // (mul N, P)
5760   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5761   Created.push_back(Op0.getNode());
5762 
5763   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5764   // divisors as a performance improvement, since rotating by 0 is a no-op.
5765   if (HadEvenDivisor) {
5766     // We need ROTR to do this.
5767     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5768       return SDValue();
5769     // UREM: (rotr (mul N, P), K)
5770     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5771     Created.push_back(Op0.getNode());
5772   }
5773 
5774   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5775   SDValue NewCC =
5776       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5777                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5778   if (!HadTautologicalInvertedLanes)
5779     return NewCC;
5780 
5781   // If any lanes previously compared always-false, the NewCC will give
5782   // always-true result for them, so we need to fixup those lanes.
5783   // Or the other way around for inequality predicate.
5784   assert(VT.isVector() && "Can/should only get here for vectors.");
5785   Created.push_back(NewCC.getNode());
5786 
5787   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5788   // if C2 is not less than C1, the comparison is always false.
5789   // But we have produced the comparison that will give the
5790   // opposive tautological answer. So these lanes would need to be fixed up.
5791   SDValue TautologicalInvertedChannels =
5792       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5793   Created.push_back(TautologicalInvertedChannels.getNode());
5794 
5795   // NOTE: we avoid letting illegal types through even if we're before legalize
5796   // ops – legalization has a hard time producing good code for this.
5797   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5798     // If we have a vector select, let's replace the comparison results in the
5799     // affected lanes with the correct tautological result.
5800     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5801                                               DL, SETCCVT, SETCCVT);
5802     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5803                        Replacement, NewCC);
5804   }
5805 
5806   // Else, we can just invert the comparison result in the appropriate lanes.
5807   //
5808   // NOTE: see the note above VSELECT above.
5809   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5810     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5811                        TautologicalInvertedChannels);
5812 
5813   return SDValue(); // Don't know how to lower.
5814 }
5815 
5816 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5817 /// where the divisor is constant and the comparison target is zero,
5818 /// return a DAG expression that will generate the same comparison result
5819 /// using only multiplications, additions and shifts/rotations.
5820 /// Ref: "Hacker's Delight" 10-17.
5821 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5822                                         SDValue CompTargetNode,
5823                                         ISD::CondCode Cond,
5824                                         DAGCombinerInfo &DCI,
5825                                         const SDLoc &DL) const {
5826   SmallVector<SDNode *, 7> Built;
5827   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5828                                          DCI, DL, Built)) {
5829     assert(Built.size() <= 7 && "Max size prediction failed.");
5830     for (SDNode *N : Built)
5831       DCI.AddToWorklist(N);
5832     return Folded;
5833   }
5834 
5835   return SDValue();
5836 }
5837 
5838 SDValue
5839 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5840                                   SDValue CompTargetNode, ISD::CondCode Cond,
5841                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5842                                   SmallVectorImpl<SDNode *> &Created) const {
5843   // Fold:
5844   //   (seteq/ne (srem N, D), 0)
5845   // To:
5846   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5847   //
5848   // - D must be constant, with D = D0 * 2^K where D0 is odd
5849   // - P is the multiplicative inverse of D0 modulo 2^W
5850   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5851   // - Q = floor((2 * A) / (2^K))
5852   // where W is the width of the common type of N and D.
5853   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5854          "Only applicable for (in)equality comparisons.");
5855 
5856   SelectionDAG &DAG = DCI.DAG;
5857 
5858   EVT VT = REMNode.getValueType();
5859   EVT SVT = VT.getScalarType();
5860   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5861   EVT ShSVT = ShVT.getScalarType();
5862 
5863   // If we are after ops legalization, and MUL is unavailable, we can not
5864   // proceed.
5865   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5866     return SDValue();
5867 
5868   // TODO: Could support comparing with non-zero too.
5869   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5870   if (!CompTarget || !CompTarget->isZero())
5871     return SDValue();
5872 
5873   bool HadIntMinDivisor = false;
5874   bool HadOneDivisor = false;
5875   bool AllDivisorsAreOnes = true;
5876   bool HadEvenDivisor = false;
5877   bool NeedToApplyOffset = false;
5878   bool AllDivisorsArePowerOfTwo = true;
5879   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5880 
5881   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5882     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5883     if (C->isZero())
5884       return false;
5885 
5886     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5887 
5888     // WARNING: this fold is only valid for positive divisors!
5889     APInt D = C->getAPIntValue();
5890     if (D.isNegative())
5891       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5892 
5893     HadIntMinDivisor |= D.isMinSignedValue();
5894 
5895     // If all divisors are ones, we will prefer to avoid the fold.
5896     HadOneDivisor |= D.isOneValue();
5897     AllDivisorsAreOnes &= D.isOneValue();
5898 
5899     // Decompose D into D0 * 2^K
5900     unsigned K = D.countTrailingZeros();
5901     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5902     APInt D0 = D.lshr(K);
5903 
5904     if (!D.isMinSignedValue()) {
5905       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5906       // we don't care about this lane in this fold, we'll special-handle it.
5907       HadEvenDivisor |= (K != 0);
5908     }
5909 
5910     // D is a power-of-two if D0 is one. This includes INT_MIN.
5911     // If all divisors are power-of-two, we will prefer to avoid the fold.
5912     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5913 
5914     // P = inv(D0, 2^W)
5915     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5916     unsigned W = D.getBitWidth();
5917     APInt P = D0.zext(W + 1)
5918                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5919                   .trunc(W);
5920     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5921     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5922 
5923     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5924     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5925     A.clearLowBits(K);
5926 
5927     if (!D.isMinSignedValue()) {
5928       // If divisor INT_MIN, then we don't care about this lane in this fold,
5929       // we'll special-handle it.
5930       NeedToApplyOffset |= A != 0;
5931     }
5932 
5933     // Q = floor((2 * A) / (2^K))
5934     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5935 
5936     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
5937            "We are expecting that A is always less than all-ones for SVT");
5938     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5939            "We are expecting that K is always less than all-ones for ShSVT");
5940 
5941     // If the divisor is 1 the result can be constant-folded. Likewise, we
5942     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5943     if (D.isOneValue()) {
5944       // Set P, A and K to a bogus values so we can try to splat them.
5945       P = 0;
5946       A = -1;
5947       K = -1;
5948 
5949       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5950       Q = -1;
5951     }
5952 
5953     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5954     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5955     KAmts.push_back(
5956         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5957     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5958     return true;
5959   };
5960 
5961   SDValue N = REMNode.getOperand(0);
5962   SDValue D = REMNode.getOperand(1);
5963 
5964   // Collect the values from each element.
5965   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5966     return SDValue();
5967 
5968   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5969   if (AllDivisorsAreOnes)
5970     return SDValue();
5971 
5972   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5973   // since it can be best implemented as a bit test.
5974   if (AllDivisorsArePowerOfTwo)
5975     return SDValue();
5976 
5977   SDValue PVal, AVal, KVal, QVal;
5978   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5979     if (HadOneDivisor) {
5980       // Try to turn PAmts into a splat, since we don't care about the values
5981       // that are currently '0'. If we can't, just keep '0'`s.
5982       turnVectorIntoSplatVector(PAmts, isNullConstant);
5983       // Try to turn AAmts into a splat, since we don't care about the
5984       // values that are currently '-1'. If we can't, change them to '0'`s.
5985       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5986                                 DAG.getConstant(0, DL, SVT));
5987       // Try to turn KAmts into a splat, since we don't care about the values
5988       // that are currently '-1'. If we can't, change them to '0'`s.
5989       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5990                                 DAG.getConstant(0, DL, ShSVT));
5991     }
5992 
5993     PVal = DAG.getBuildVector(VT, DL, PAmts);
5994     AVal = DAG.getBuildVector(VT, DL, AAmts);
5995     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5996     QVal = DAG.getBuildVector(VT, DL, QAmts);
5997   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5998     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
5999            QAmts.size() == 1 &&
6000            "Expected matchUnaryPredicate to return one element for scalable "
6001            "vectors");
6002     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6003     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6004     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6005     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6006   } else {
6007     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6008     PVal = PAmts[0];
6009     AVal = AAmts[0];
6010     KVal = KAmts[0];
6011     QVal = QAmts[0];
6012   }
6013 
6014   // (mul N, P)
6015   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6016   Created.push_back(Op0.getNode());
6017 
6018   if (NeedToApplyOffset) {
6019     // We need ADD to do this.
6020     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6021       return SDValue();
6022 
6023     // (add (mul N, P), A)
6024     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6025     Created.push_back(Op0.getNode());
6026   }
6027 
6028   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6029   // divisors as a performance improvement, since rotating by 0 is a no-op.
6030   if (HadEvenDivisor) {
6031     // We need ROTR to do this.
6032     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6033       return SDValue();
6034     // SREM: (rotr (add (mul N, P), A), K)
6035     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6036     Created.push_back(Op0.getNode());
6037   }
6038 
6039   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6040   SDValue Fold =
6041       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6042                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6043 
6044   // If we didn't have lanes with INT_MIN divisor, then we're done.
6045   if (!HadIntMinDivisor)
6046     return Fold;
6047 
6048   // That fold is only valid for positive divisors. Which effectively means,
6049   // it is invalid for INT_MIN divisors. So if we have such a lane,
6050   // we must fix-up results for said lanes.
6051   assert(VT.isVector() && "Can/should only get here for vectors.");
6052 
6053   // NOTE: we avoid letting illegal types through even if we're before legalize
6054   // ops – legalization has a hard time producing good code for the code that
6055   // follows.
6056   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6057       !isOperationLegalOrCustom(ISD::AND, VT) ||
6058       !isOperationLegalOrCustom(Cond, VT) ||
6059       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6060     return SDValue();
6061 
6062   Created.push_back(Fold.getNode());
6063 
6064   SDValue IntMin = DAG.getConstant(
6065       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6066   SDValue IntMax = DAG.getConstant(
6067       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6068   SDValue Zero =
6069       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6070 
6071   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6072   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6073   Created.push_back(DivisorIsIntMin.getNode());
6074 
6075   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6076   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6077   Created.push_back(Masked.getNode());
6078   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6079   Created.push_back(MaskedIsZero.getNode());
6080 
6081   // To produce final result we need to blend 2 vectors: 'SetCC' and
6082   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6083   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6084   // constant-folded, select can get lowered to a shuffle with constant mask.
6085   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6086                                 MaskedIsZero, Fold);
6087 
6088   return Blended;
6089 }
6090 
6091 bool TargetLowering::
6092 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6093   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6094     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6095                                 "be a constant integer");
6096     return true;
6097   }
6098 
6099   return false;
6100 }
6101 
6102 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6103                                          const DenormalMode &Mode) const {
6104   SDLoc DL(Op);
6105   EVT VT = Op.getValueType();
6106   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6107   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6108   // Testing it with denormal inputs to avoid wrong estimate.
6109   if (Mode.Input == DenormalMode::IEEE) {
6110     // This is specifically a check for the handling of denormal inputs,
6111     // not the result.
6112 
6113     // Test = fabs(X) < SmallestNormal
6114     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6115     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6116     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6117     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6118     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6119   }
6120   // Test = X == 0.0
6121   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6122 }
6123 
6124 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6125                                              bool LegalOps, bool OptForSize,
6126                                              NegatibleCost &Cost,
6127                                              unsigned Depth) const {
6128   // fneg is removable even if it has multiple uses.
6129   if (Op.getOpcode() == ISD::FNEG) {
6130     Cost = NegatibleCost::Cheaper;
6131     return Op.getOperand(0);
6132   }
6133 
6134   // Don't recurse exponentially.
6135   if (Depth > SelectionDAG::MaxRecursionDepth)
6136     return SDValue();
6137 
6138   // Pre-increment recursion depth for use in recursive calls.
6139   ++Depth;
6140   const SDNodeFlags Flags = Op->getFlags();
6141   const TargetOptions &Options = DAG.getTarget().Options;
6142   EVT VT = Op.getValueType();
6143   unsigned Opcode = Op.getOpcode();
6144 
6145   // Don't allow anything with multiple uses unless we know it is free.
6146   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6147     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6148                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6149     if (!IsFreeExtend)
6150       return SDValue();
6151   }
6152 
6153   auto RemoveDeadNode = [&](SDValue N) {
6154     if (N && N.getNode()->use_empty())
6155       DAG.RemoveDeadNode(N.getNode());
6156   };
6157 
6158   SDLoc DL(Op);
6159 
6160   // Because getNegatedExpression can delete nodes we need a handle to keep
6161   // temporary nodes alive in case the recursion manages to create an identical
6162   // node.
6163   std::list<HandleSDNode> Handles;
6164 
6165   switch (Opcode) {
6166   case ISD::ConstantFP: {
6167     // Don't invert constant FP values after legalization unless the target says
6168     // the negated constant is legal.
6169     bool IsOpLegal =
6170         isOperationLegal(ISD::ConstantFP, VT) ||
6171         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6172                      OptForSize);
6173 
6174     if (LegalOps && !IsOpLegal)
6175       break;
6176 
6177     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6178     V.changeSign();
6179     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6180 
6181     // If we already have the use of the negated floating constant, it is free
6182     // to negate it even it has multiple uses.
6183     if (!Op.hasOneUse() && CFP.use_empty())
6184       break;
6185     Cost = NegatibleCost::Neutral;
6186     return CFP;
6187   }
6188   case ISD::BUILD_VECTOR: {
6189     // Only permit BUILD_VECTOR of constants.
6190     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6191           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6192         }))
6193       break;
6194 
6195     bool IsOpLegal =
6196         (isOperationLegal(ISD::ConstantFP, VT) &&
6197          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6198         llvm::all_of(Op->op_values(), [&](SDValue N) {
6199           return N.isUndef() ||
6200                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6201                               OptForSize);
6202         });
6203 
6204     if (LegalOps && !IsOpLegal)
6205       break;
6206 
6207     SmallVector<SDValue, 4> Ops;
6208     for (SDValue C : Op->op_values()) {
6209       if (C.isUndef()) {
6210         Ops.push_back(C);
6211         continue;
6212       }
6213       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6214       V.changeSign();
6215       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6216     }
6217     Cost = NegatibleCost::Neutral;
6218     return DAG.getBuildVector(VT, DL, Ops);
6219   }
6220   case ISD::FADD: {
6221     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6222       break;
6223 
6224     // After operation legalization, it might not be legal to create new FSUBs.
6225     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6226       break;
6227     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6228 
6229     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6230     NegatibleCost CostX = NegatibleCost::Expensive;
6231     SDValue NegX =
6232         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6233     // Prevent this node from being deleted by the next call.
6234     if (NegX)
6235       Handles.emplace_back(NegX);
6236 
6237     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6238     NegatibleCost CostY = NegatibleCost::Expensive;
6239     SDValue NegY =
6240         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6241 
6242     // We're done with the handles.
6243     Handles.clear();
6244 
6245     // Negate the X if its cost is less or equal than Y.
6246     if (NegX && (CostX <= CostY)) {
6247       Cost = CostX;
6248       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6249       if (NegY != N)
6250         RemoveDeadNode(NegY);
6251       return N;
6252     }
6253 
6254     // Negate the Y if it is not expensive.
6255     if (NegY) {
6256       Cost = CostY;
6257       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6258       if (NegX != N)
6259         RemoveDeadNode(NegX);
6260       return N;
6261     }
6262     break;
6263   }
6264   case ISD::FSUB: {
6265     // We can't turn -(A-B) into B-A when we honor signed zeros.
6266     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6267       break;
6268 
6269     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6270     // fold (fneg (fsub 0, Y)) -> Y
6271     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6272       if (C->isZero()) {
6273         Cost = NegatibleCost::Cheaper;
6274         return Y;
6275       }
6276 
6277     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6278     Cost = NegatibleCost::Neutral;
6279     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6280   }
6281   case ISD::FMUL:
6282   case ISD::FDIV: {
6283     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6284 
6285     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6286     NegatibleCost CostX = NegatibleCost::Expensive;
6287     SDValue NegX =
6288         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6289     // Prevent this node from being deleted by the next call.
6290     if (NegX)
6291       Handles.emplace_back(NegX);
6292 
6293     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6294     NegatibleCost CostY = NegatibleCost::Expensive;
6295     SDValue NegY =
6296         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6297 
6298     // We're done with the handles.
6299     Handles.clear();
6300 
6301     // Negate the X if its cost is less or equal than Y.
6302     if (NegX && (CostX <= CostY)) {
6303       Cost = CostX;
6304       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6305       if (NegY != N)
6306         RemoveDeadNode(NegY);
6307       return N;
6308     }
6309 
6310     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6311     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6312       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6313         break;
6314 
6315     // Negate the Y if it is not expensive.
6316     if (NegY) {
6317       Cost = CostY;
6318       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6319       if (NegX != N)
6320         RemoveDeadNode(NegX);
6321       return N;
6322     }
6323     break;
6324   }
6325   case ISD::FMA:
6326   case ISD::FMAD: {
6327     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6328       break;
6329 
6330     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6331     NegatibleCost CostZ = NegatibleCost::Expensive;
6332     SDValue NegZ =
6333         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6334     // Give up if fail to negate the Z.
6335     if (!NegZ)
6336       break;
6337 
6338     // Prevent this node from being deleted by the next two calls.
6339     Handles.emplace_back(NegZ);
6340 
6341     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6342     NegatibleCost CostX = NegatibleCost::Expensive;
6343     SDValue NegX =
6344         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6345     // Prevent this node from being deleted by the next call.
6346     if (NegX)
6347       Handles.emplace_back(NegX);
6348 
6349     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6350     NegatibleCost CostY = NegatibleCost::Expensive;
6351     SDValue NegY =
6352         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6353 
6354     // We're done with the handles.
6355     Handles.clear();
6356 
6357     // Negate the X if its cost is less or equal than Y.
6358     if (NegX && (CostX <= CostY)) {
6359       Cost = std::min(CostX, CostZ);
6360       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6361       if (NegY != N)
6362         RemoveDeadNode(NegY);
6363       return N;
6364     }
6365 
6366     // Negate the Y if it is not expensive.
6367     if (NegY) {
6368       Cost = std::min(CostY, CostZ);
6369       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6370       if (NegX != N)
6371         RemoveDeadNode(NegX);
6372       return N;
6373     }
6374     break;
6375   }
6376 
6377   case ISD::FP_EXTEND:
6378   case ISD::FSIN:
6379     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6380                                             OptForSize, Cost, Depth))
6381       return DAG.getNode(Opcode, DL, VT, NegV);
6382     break;
6383   case ISD::FP_ROUND:
6384     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6385                                             OptForSize, Cost, Depth))
6386       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6387     break;
6388   }
6389 
6390   return SDValue();
6391 }
6392 
6393 //===----------------------------------------------------------------------===//
6394 // Legalization Utilities
6395 //===----------------------------------------------------------------------===//
6396 
6397 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6398                                     SDValue LHS, SDValue RHS,
6399                                     SmallVectorImpl<SDValue> &Result,
6400                                     EVT HiLoVT, SelectionDAG &DAG,
6401                                     MulExpansionKind Kind, SDValue LL,
6402                                     SDValue LH, SDValue RL, SDValue RH) const {
6403   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6404          Opcode == ISD::SMUL_LOHI);
6405 
6406   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6407                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6408   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6409                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6410   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6411                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6412   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6413                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6414 
6415   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6416     return false;
6417 
6418   unsigned OuterBitSize = VT.getScalarSizeInBits();
6419   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6420 
6421   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6422   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6423          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6424 
6425   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6426   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6427                           bool Signed) -> bool {
6428     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6429       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6430       Hi = SDValue(Lo.getNode(), 1);
6431       return true;
6432     }
6433     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6434       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6435       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6436       return true;
6437     }
6438     return false;
6439   };
6440 
6441   SDValue Lo, Hi;
6442 
6443   if (!LL.getNode() && !RL.getNode() &&
6444       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6445     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6446     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6447   }
6448 
6449   if (!LL.getNode())
6450     return false;
6451 
6452   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6453   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6454       DAG.MaskedValueIsZero(RHS, HighMask)) {
6455     // The inputs are both zero-extended.
6456     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6457       Result.push_back(Lo);
6458       Result.push_back(Hi);
6459       if (Opcode != ISD::MUL) {
6460         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6461         Result.push_back(Zero);
6462         Result.push_back(Zero);
6463       }
6464       return true;
6465     }
6466   }
6467 
6468   if (!VT.isVector() && Opcode == ISD::MUL &&
6469       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6470       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6471     // The input values are both sign-extended.
6472     // TODO non-MUL case?
6473     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6474       Result.push_back(Lo);
6475       Result.push_back(Hi);
6476       return true;
6477     }
6478   }
6479 
6480   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6481   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6482   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6483     // FIXME getShiftAmountTy does not always return a sensible result when VT
6484     // is an illegal type, and so the type may be too small to fit the shift
6485     // amount. Override it with i32. The shift will have to be legalized.
6486     ShiftAmountTy = MVT::i32;
6487   }
6488   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6489 
6490   if (!LH.getNode() && !RH.getNode() &&
6491       isOperationLegalOrCustom(ISD::SRL, VT) &&
6492       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6493     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6494     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6495     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6496     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6497   }
6498 
6499   if (!LH.getNode())
6500     return false;
6501 
6502   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6503     return false;
6504 
6505   Result.push_back(Lo);
6506 
6507   if (Opcode == ISD::MUL) {
6508     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6509     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6510     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6511     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6512     Result.push_back(Hi);
6513     return true;
6514   }
6515 
6516   // Compute the full width result.
6517   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6518     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6519     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6520     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6521     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6522   };
6523 
6524   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6525   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6526     return false;
6527 
6528   // This is effectively the add part of a multiply-add of half-sized operands,
6529   // so it cannot overflow.
6530   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6531 
6532   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6533     return false;
6534 
6535   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6536   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6537 
6538   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6539                   isOperationLegalOrCustom(ISD::ADDE, VT));
6540   if (UseGlue)
6541     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6542                        Merge(Lo, Hi));
6543   else
6544     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6545                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6546 
6547   SDValue Carry = Next.getValue(1);
6548   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6549   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6550 
6551   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6552     return false;
6553 
6554   if (UseGlue)
6555     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6556                      Carry);
6557   else
6558     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6559                      Zero, Carry);
6560 
6561   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6562 
6563   if (Opcode == ISD::SMUL_LOHI) {
6564     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6565                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6566     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6567 
6568     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6569                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6570     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6571   }
6572 
6573   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6574   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6575   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6576   return true;
6577 }
6578 
6579 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6580                                SelectionDAG &DAG, MulExpansionKind Kind,
6581                                SDValue LL, SDValue LH, SDValue RL,
6582                                SDValue RH) const {
6583   SmallVector<SDValue, 2> Result;
6584   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6585                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6586                            DAG, Kind, LL, LH, RL, RH);
6587   if (Ok) {
6588     assert(Result.size() == 2);
6589     Lo = Result[0];
6590     Hi = Result[1];
6591   }
6592   return Ok;
6593 }
6594 
6595 // Check that (every element of) Z is undef or not an exact multiple of BW.
6596 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6597   return ISD::matchUnaryPredicate(
6598       Z,
6599       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6600       true);
6601 }
6602 
6603 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6604                                        SelectionDAG &DAG) const {
6605   EVT VT = Node->getValueType(0);
6606 
6607   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6608                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6609                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6610                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6611     return false;
6612 
6613   SDValue X = Node->getOperand(0);
6614   SDValue Y = Node->getOperand(1);
6615   SDValue Z = Node->getOperand(2);
6616 
6617   unsigned BW = VT.getScalarSizeInBits();
6618   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6619   SDLoc DL(SDValue(Node, 0));
6620 
6621   EVT ShVT = Z.getValueType();
6622 
6623   // If a funnel shift in the other direction is more supported, use it.
6624   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6625   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6626       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6627     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6628       // fshl X, Y, Z -> fshr X, Y, -Z
6629       // fshr X, Y, Z -> fshl X, Y, -Z
6630       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6631       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6632     } else {
6633       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6634       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6635       SDValue One = DAG.getConstant(1, DL, ShVT);
6636       if (IsFSHL) {
6637         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6638         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6639       } else {
6640         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6641         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6642       }
6643       Z = DAG.getNOT(DL, Z, ShVT);
6644     }
6645     Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6646     return true;
6647   }
6648 
6649   SDValue ShX, ShY;
6650   SDValue ShAmt, InvShAmt;
6651   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6652     // fshl: X << C | Y >> (BW - C)
6653     // fshr: X << (BW - C) | Y >> C
6654     // where C = Z % BW is not zero
6655     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6656     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6657     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6658     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6659     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6660   } else {
6661     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6662     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6663     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6664     if (isPowerOf2_32(BW)) {
6665       // Z % BW -> Z & (BW - 1)
6666       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6667       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6668       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6669     } else {
6670       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6671       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6672       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6673     }
6674 
6675     SDValue One = DAG.getConstant(1, DL, ShVT);
6676     if (IsFSHL) {
6677       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6678       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6679       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6680     } else {
6681       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6682       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6683       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6684     }
6685   }
6686   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6687   return true;
6688 }
6689 
6690 // TODO: Merge with expandFunnelShift.
6691 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6692                                SDValue &Result, SelectionDAG &DAG) const {
6693   EVT VT = Node->getValueType(0);
6694   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6695   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6696   SDValue Op0 = Node->getOperand(0);
6697   SDValue Op1 = Node->getOperand(1);
6698   SDLoc DL(SDValue(Node, 0));
6699 
6700   EVT ShVT = Op1.getValueType();
6701   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6702 
6703   // If a rotate in the other direction is supported, use it.
6704   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6705   if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6706     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6707     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6708     return true;
6709   }
6710 
6711   if (!AllowVectorOps && VT.isVector() &&
6712       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6713        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6714        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6715        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6716        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6717     return false;
6718 
6719   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6720   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6721   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6722   SDValue ShVal;
6723   SDValue HsVal;
6724   if (isPowerOf2_32(EltSizeInBits)) {
6725     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6726     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6727     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6728     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6729     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6730     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6731     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6732   } else {
6733     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6734     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6735     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6736     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6737     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6738     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6739     SDValue One = DAG.getConstant(1, DL, ShVT);
6740     HsVal =
6741         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6742   }
6743   Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6744   return true;
6745 }
6746 
6747 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
6748                                       SelectionDAG &DAG) const {
6749   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
6750   EVT VT = Node->getValueType(0);
6751   unsigned VTBits = VT.getScalarSizeInBits();
6752   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
6753 
6754   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
6755   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
6756   SDValue ShOpLo = Node->getOperand(0);
6757   SDValue ShOpHi = Node->getOperand(1);
6758   SDValue ShAmt = Node->getOperand(2);
6759   EVT ShAmtVT = ShAmt.getValueType();
6760   EVT ShAmtCCVT =
6761       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
6762   SDLoc dl(Node);
6763 
6764   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
6765   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
6766   // away during isel.
6767   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6768                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
6769   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6770                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
6771                        : DAG.getConstant(0, dl, VT);
6772 
6773   SDValue Tmp2, Tmp3;
6774   if (IsSHL) {
6775     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
6776     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
6777   } else {
6778     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
6779     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
6780   }
6781 
6782   // If the shift amount is larger or equal than the width of a part we don't
6783   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
6784   // values for large shift amounts.
6785   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6786                                 DAG.getConstant(VTBits, dl, ShAmtVT));
6787   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
6788                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
6789 
6790   if (IsSHL) {
6791     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6792     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6793   } else {
6794     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6795     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6796   }
6797 }
6798 
6799 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6800                                       SelectionDAG &DAG) const {
6801   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6802   SDValue Src = Node->getOperand(OpNo);
6803   EVT SrcVT = Src.getValueType();
6804   EVT DstVT = Node->getValueType(0);
6805   SDLoc dl(SDValue(Node, 0));
6806 
6807   // FIXME: Only f32 to i64 conversions are supported.
6808   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6809     return false;
6810 
6811   if (Node->isStrictFPOpcode())
6812     // When a NaN is converted to an integer a trap is allowed. We can't
6813     // use this expansion here because it would eliminate that trap. Other
6814     // traps are also allowed and cannot be eliminated. See
6815     // IEEE 754-2008 sec 5.8.
6816     return false;
6817 
6818   // Expand f32 -> i64 conversion
6819   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6820   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6821   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6822   EVT IntVT = SrcVT.changeTypeToInteger();
6823   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6824 
6825   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6826   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6827   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6828   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6829   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6830   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6831 
6832   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6833 
6834   SDValue ExponentBits = DAG.getNode(
6835       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6836       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6837   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6838 
6839   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6840                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6841                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6842   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6843 
6844   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6845                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6846                           DAG.getConstant(0x00800000, dl, IntVT));
6847 
6848   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6849 
6850   R = DAG.getSelectCC(
6851       dl, Exponent, ExponentLoBit,
6852       DAG.getNode(ISD::SHL, dl, DstVT, R,
6853                   DAG.getZExtOrTrunc(
6854                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6855                       dl, IntShVT)),
6856       DAG.getNode(ISD::SRL, dl, DstVT, R,
6857                   DAG.getZExtOrTrunc(
6858                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6859                       dl, IntShVT)),
6860       ISD::SETGT);
6861 
6862   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6863                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6864 
6865   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6866                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6867   return true;
6868 }
6869 
6870 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6871                                       SDValue &Chain,
6872                                       SelectionDAG &DAG) const {
6873   SDLoc dl(SDValue(Node, 0));
6874   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6875   SDValue Src = Node->getOperand(OpNo);
6876 
6877   EVT SrcVT = Src.getValueType();
6878   EVT DstVT = Node->getValueType(0);
6879   EVT SetCCVT =
6880       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6881   EVT DstSetCCVT =
6882       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6883 
6884   // Only expand vector types if we have the appropriate vector bit operations.
6885   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6886                                                    ISD::FP_TO_SINT;
6887   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6888                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6889     return false;
6890 
6891   // If the maximum float value is smaller then the signed integer range,
6892   // the destination signmask can't be represented by the float, so we can
6893   // just use FP_TO_SINT directly.
6894   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6895   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
6896   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6897   if (APFloat::opOverflow &
6898       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6899     if (Node->isStrictFPOpcode()) {
6900       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6901                            { Node->getOperand(0), Src });
6902       Chain = Result.getValue(1);
6903     } else
6904       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6905     return true;
6906   }
6907 
6908   // Don't expand it if there isn't cheap fsub instruction.
6909   if (!isOperationLegalOrCustom(
6910           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6911     return false;
6912 
6913   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6914   SDValue Sel;
6915 
6916   if (Node->isStrictFPOpcode()) {
6917     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6918                        Node->getOperand(0), /*IsSignaling*/ true);
6919     Chain = Sel.getValue(1);
6920   } else {
6921     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6922   }
6923 
6924   bool Strict = Node->isStrictFPOpcode() ||
6925                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6926 
6927   if (Strict) {
6928     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6929     // signmask then offset (the result of which should be fully representable).
6930     // Sel = Src < 0x8000000000000000
6931     // FltOfs = select Sel, 0, 0x8000000000000000
6932     // IntOfs = select Sel, 0, 0x8000000000000000
6933     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6934 
6935     // TODO: Should any fast-math-flags be set for the FSUB?
6936     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6937                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6938     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6939     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6940                                    DAG.getConstant(0, dl, DstVT),
6941                                    DAG.getConstant(SignMask, dl, DstVT));
6942     SDValue SInt;
6943     if (Node->isStrictFPOpcode()) {
6944       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6945                                 { Chain, Src, FltOfs });
6946       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6947                          { Val.getValue(1), Val });
6948       Chain = SInt.getValue(1);
6949     } else {
6950       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6951       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6952     }
6953     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6954   } else {
6955     // Expand based on maximum range of FP_TO_SINT:
6956     // True = fp_to_sint(Src)
6957     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6958     // Result = select (Src < 0x8000000000000000), True, False
6959 
6960     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6961     // TODO: Should any fast-math-flags be set for the FSUB?
6962     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6963                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6964     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6965                         DAG.getConstant(SignMask, dl, DstVT));
6966     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6967     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6968   }
6969   return true;
6970 }
6971 
6972 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6973                                       SDValue &Chain,
6974                                       SelectionDAG &DAG) const {
6975   // This transform is not correct for converting 0 when rounding mode is set
6976   // to round toward negative infinity which will produce -0.0. So disable under
6977   // strictfp.
6978   if (Node->isStrictFPOpcode())
6979     return false;
6980 
6981   SDValue Src = Node->getOperand(0);
6982   EVT SrcVT = Src.getValueType();
6983   EVT DstVT = Node->getValueType(0);
6984 
6985   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6986     return false;
6987 
6988   // Only expand vector types if we have the appropriate vector bit operations.
6989   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6990                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6991                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6992                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6993                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6994     return false;
6995 
6996   SDLoc dl(SDValue(Node, 0));
6997   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6998 
6999   // Implementation of unsigned i64 to f64 following the algorithm in
7000   // __floatundidf in compiler_rt.  This implementation performs rounding
7001   // correctly in all rounding modes with the exception of converting 0
7002   // when rounding toward negative infinity. In that case the fsub will produce
7003   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7004   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7005   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7006       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7007   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7008   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7009   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7010 
7011   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7012   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7013   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7014   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7015   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7016   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7017   SDValue HiSub =
7018       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7019   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7020   return true;
7021 }
7022 
7023 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7024                                               SelectionDAG &DAG) const {
7025   SDLoc dl(Node);
7026   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7027     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7028   EVT VT = Node->getValueType(0);
7029 
7030   if (VT.isScalableVector())
7031     report_fatal_error(
7032         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7033 
7034   if (isOperationLegalOrCustom(NewOp, VT)) {
7035     SDValue Quiet0 = Node->getOperand(0);
7036     SDValue Quiet1 = Node->getOperand(1);
7037 
7038     if (!Node->getFlags().hasNoNaNs()) {
7039       // Insert canonicalizes if it's possible we need to quiet to get correct
7040       // sNaN behavior.
7041       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7042         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7043                              Node->getFlags());
7044       }
7045       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7046         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7047                              Node->getFlags());
7048       }
7049     }
7050 
7051     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7052   }
7053 
7054   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7055   // instead if there are no NaNs.
7056   if (Node->getFlags().hasNoNaNs()) {
7057     unsigned IEEE2018Op =
7058         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7059     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7060       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7061                          Node->getOperand(1), Node->getFlags());
7062     }
7063   }
7064 
7065   // If none of the above worked, but there are no NaNs, then expand to
7066   // a compare/select sequence.  This is required for correctness since
7067   // InstCombine might have canonicalized a fcmp+select sequence to a
7068   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
7069   // expansion to libcall, we might introduce a link-time dependency
7070   // on libm into a file that originally did not have one.
7071   if (Node->getFlags().hasNoNaNs()) {
7072     ISD::CondCode Pred =
7073         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7074     SDValue Op1 = Node->getOperand(0);
7075     SDValue Op2 = Node->getOperand(1);
7076     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
7077     // Copy FMF flags, but always set the no-signed-zeros flag
7078     // as this is implied by the FMINNUM/FMAXNUM semantics.
7079     SDNodeFlags Flags = Node->getFlags();
7080     Flags.setNoSignedZeros(true);
7081     SelCC->setFlags(Flags);
7082     return SelCC;
7083   }
7084 
7085   return SDValue();
7086 }
7087 
7088 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
7089                                  SelectionDAG &DAG) const {
7090   SDLoc dl(Node);
7091   EVT VT = Node->getValueType(0);
7092   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7093   SDValue Op = Node->getOperand(0);
7094   unsigned Len = VT.getScalarSizeInBits();
7095   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7096 
7097   // TODO: Add support for irregular type lengths.
7098   if (!(Len <= 128 && Len % 8 == 0))
7099     return false;
7100 
7101   // Only expand vector types if we have the appropriate vector bit operations.
7102   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
7103                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7104                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7105                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
7106                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7107     return false;
7108 
7109   // This is the "best" algorithm from
7110   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7111   SDValue Mask55 =
7112       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7113   SDValue Mask33 =
7114       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7115   SDValue Mask0F =
7116       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7117   SDValue Mask01 =
7118       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7119 
7120   // v = v - ((v >> 1) & 0x55555555...)
7121   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7122                    DAG.getNode(ISD::AND, dl, VT,
7123                                DAG.getNode(ISD::SRL, dl, VT, Op,
7124                                            DAG.getConstant(1, dl, ShVT)),
7125                                Mask55));
7126   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7127   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7128                    DAG.getNode(ISD::AND, dl, VT,
7129                                DAG.getNode(ISD::SRL, dl, VT, Op,
7130                                            DAG.getConstant(2, dl, ShVT)),
7131                                Mask33));
7132   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7133   Op = DAG.getNode(ISD::AND, dl, VT,
7134                    DAG.getNode(ISD::ADD, dl, VT, Op,
7135                                DAG.getNode(ISD::SRL, dl, VT, Op,
7136                                            DAG.getConstant(4, dl, ShVT))),
7137                    Mask0F);
7138   // v = (v * 0x01010101...) >> (Len - 8)
7139   if (Len > 8)
7140     Op =
7141         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7142                     DAG.getConstant(Len - 8, dl, ShVT));
7143 
7144   Result = Op;
7145   return true;
7146 }
7147 
7148 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
7149                                 SelectionDAG &DAG) const {
7150   SDLoc dl(Node);
7151   EVT VT = Node->getValueType(0);
7152   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7153   SDValue Op = Node->getOperand(0);
7154   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7155 
7156   // If the non-ZERO_UNDEF version is supported we can use that instead.
7157   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7158       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
7159     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
7160     return true;
7161   }
7162 
7163   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7164   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7165     EVT SetCCVT =
7166         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7167     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7168     SDValue Zero = DAG.getConstant(0, dl, VT);
7169     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7170     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
7171                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7172     return true;
7173   }
7174 
7175   // Only expand vector types if we have the appropriate vector bit operations.
7176   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7177                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
7178                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7179                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7180     return false;
7181 
7182   // for now, we do this:
7183   // x = x | (x >> 1);
7184   // x = x | (x >> 2);
7185   // ...
7186   // x = x | (x >>16);
7187   // x = x | (x >>32); // for 64-bit input
7188   // return popcount(~x);
7189   //
7190   // Ref: "Hacker's Delight" by Henry Warren
7191   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7192     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7193     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7194                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7195   }
7196   Op = DAG.getNOT(dl, Op, VT);
7197   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
7198   return true;
7199 }
7200 
7201 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
7202                                 SelectionDAG &DAG) const {
7203   SDLoc dl(Node);
7204   EVT VT = Node->getValueType(0);
7205   SDValue Op = Node->getOperand(0);
7206   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7207 
7208   // If the non-ZERO_UNDEF version is supported we can use that instead.
7209   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7210       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
7211     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
7212     return true;
7213   }
7214 
7215   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7216   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7217     EVT SetCCVT =
7218         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7219     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7220     SDValue Zero = DAG.getConstant(0, dl, VT);
7221     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7222     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
7223                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7224     return true;
7225   }
7226 
7227   // Only expand vector types if we have the appropriate vector bit operations.
7228   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7229                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7230                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
7231                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7232                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7233                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7234     return false;
7235 
7236   // for now, we use: { return popcount(~x & (x - 1)); }
7237   // unless the target has ctlz but not ctpop, in which case we use:
7238   // { return 32 - nlz(~x & (x-1)); }
7239   // Ref: "Hacker's Delight" by Henry Warren
7240   SDValue Tmp = DAG.getNode(
7241       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7242       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7243 
7244   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7245   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7246     Result =
7247         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7248                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7249     return true;
7250   }
7251 
7252   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7253   return true;
7254 }
7255 
7256 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
7257                                SelectionDAG &DAG, bool IsNegative) const {
7258   SDLoc dl(N);
7259   EVT VT = N->getValueType(0);
7260   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7261   SDValue Op = N->getOperand(0);
7262 
7263   // abs(x) -> smax(x,sub(0,x))
7264   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7265       isOperationLegal(ISD::SMAX, VT)) {
7266     SDValue Zero = DAG.getConstant(0, dl, VT);
7267     Result = DAG.getNode(ISD::SMAX, dl, VT, Op,
7268                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7269     return true;
7270   }
7271 
7272   // abs(x) -> umin(x,sub(0,x))
7273   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7274       isOperationLegal(ISD::UMIN, VT)) {
7275     SDValue Zero = DAG.getConstant(0, dl, VT);
7276     Result = DAG.getNode(ISD::UMIN, dl, VT, Op,
7277                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7278     return true;
7279   }
7280 
7281   // 0 - abs(x) -> smin(x, sub(0,x))
7282   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7283       isOperationLegal(ISD::SMIN, VT)) {
7284     SDValue Zero = DAG.getConstant(0, dl, VT);
7285     Result = DAG.getNode(ISD::SMIN, dl, VT, Op,
7286                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7287     return true;
7288   }
7289 
7290   // Only expand vector types if we have the appropriate vector operations.
7291   if (VT.isVector() &&
7292       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7293        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7294        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7295        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7296     return false;
7297 
7298   SDValue Shift =
7299       DAG.getNode(ISD::SRA, dl, VT, Op,
7300                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7301   if (!IsNegative) {
7302     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7303     Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7304   } else {
7305     // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7306     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7307     Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7308   }
7309   return true;
7310 }
7311 
7312 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7313   SDLoc dl(N);
7314   EVT VT = N->getValueType(0);
7315   SDValue Op = N->getOperand(0);
7316 
7317   if (!VT.isSimple())
7318     return SDValue();
7319 
7320   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7321   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7322   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7323   default:
7324     return SDValue();
7325   case MVT::i16:
7326     // Use a rotate by 8. This can be further expanded if necessary.
7327     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7328   case MVT::i32:
7329     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7330     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7331     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7332     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7333     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7334                        DAG.getConstant(0xFF0000, dl, VT));
7335     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7336     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7337     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7338     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7339   case MVT::i64:
7340     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7341     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7342     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7343     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7344     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7345     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7346     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7347     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7348     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7349                        DAG.getConstant(255ULL<<48, dl, VT));
7350     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7351                        DAG.getConstant(255ULL<<40, dl, VT));
7352     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7353                        DAG.getConstant(255ULL<<32, dl, VT));
7354     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7355                        DAG.getConstant(255ULL<<24, dl, VT));
7356     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7357                        DAG.getConstant(255ULL<<16, dl, VT));
7358     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7359                        DAG.getConstant(255ULL<<8 , dl, VT));
7360     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7361     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7362     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7363     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7364     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7365     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7366     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7367   }
7368 }
7369 
7370 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7371   SDLoc dl(N);
7372   EVT VT = N->getValueType(0);
7373   SDValue Op = N->getOperand(0);
7374   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7375   unsigned Sz = VT.getScalarSizeInBits();
7376 
7377   SDValue Tmp, Tmp2, Tmp3;
7378 
7379   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7380   // and finally the i1 pairs.
7381   // TODO: We can easily support i4/i2 legal types if any target ever does.
7382   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7383     // Create the masks - repeating the pattern every byte.
7384     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7385     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7386     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7387 
7388     // BSWAP if the type is wider than a single byte.
7389     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7390 
7391     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7392     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7393     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7394     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7395     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7396     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7397 
7398     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
7399     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
7400     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
7401     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
7402     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7403     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7404 
7405     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
7406     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
7407     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
7408     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
7409     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7410     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7411     return Tmp;
7412   }
7413 
7414   Tmp = DAG.getConstant(0, dl, VT);
7415   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7416     if (I < J)
7417       Tmp2 =
7418           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7419     else
7420       Tmp2 =
7421           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7422 
7423     APInt Shift(Sz, 1);
7424     Shift <<= J;
7425     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7426     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7427   }
7428 
7429   return Tmp;
7430 }
7431 
7432 std::pair<SDValue, SDValue>
7433 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7434                                     SelectionDAG &DAG) const {
7435   SDLoc SL(LD);
7436   SDValue Chain = LD->getChain();
7437   SDValue BasePTR = LD->getBasePtr();
7438   EVT SrcVT = LD->getMemoryVT();
7439   EVT DstVT = LD->getValueType(0);
7440   ISD::LoadExtType ExtType = LD->getExtensionType();
7441 
7442   if (SrcVT.isScalableVector())
7443     report_fatal_error("Cannot scalarize scalable vector loads");
7444 
7445   unsigned NumElem = SrcVT.getVectorNumElements();
7446 
7447   EVT SrcEltVT = SrcVT.getScalarType();
7448   EVT DstEltVT = DstVT.getScalarType();
7449 
7450   // A vector must always be stored in memory as-is, i.e. without any padding
7451   // between the elements, since various code depend on it, e.g. in the
7452   // handling of a bitcast of a vector type to int, which may be done with a
7453   // vector store followed by an integer load. A vector that does not have
7454   // elements that are byte-sized must therefore be stored as an integer
7455   // built out of the extracted vector elements.
7456   if (!SrcEltVT.isByteSized()) {
7457     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7458     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7459 
7460     unsigned NumSrcBits = SrcVT.getSizeInBits();
7461     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7462 
7463     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7464     SDValue SrcEltBitMask = DAG.getConstant(
7465         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7466 
7467     // Load the whole vector and avoid masking off the top bits as it makes
7468     // the codegen worse.
7469     SDValue Load =
7470         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7471                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7472                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7473 
7474     SmallVector<SDValue, 8> Vals;
7475     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7476       unsigned ShiftIntoIdx =
7477           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7478       SDValue ShiftAmount =
7479           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7480                                      LoadVT, SL, /*LegalTypes=*/false);
7481       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7482       SDValue Elt =
7483           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7484       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7485 
7486       if (ExtType != ISD::NON_EXTLOAD) {
7487         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7488         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7489       }
7490 
7491       Vals.push_back(Scalar);
7492     }
7493 
7494     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7495     return std::make_pair(Value, Load.getValue(1));
7496   }
7497 
7498   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7499   assert(SrcEltVT.isByteSized());
7500 
7501   SmallVector<SDValue, 8> Vals;
7502   SmallVector<SDValue, 8> LoadChains;
7503 
7504   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7505     SDValue ScalarLoad =
7506         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7507                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7508                        SrcEltVT, LD->getOriginalAlign(),
7509                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7510 
7511     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7512 
7513     Vals.push_back(ScalarLoad.getValue(0));
7514     LoadChains.push_back(ScalarLoad.getValue(1));
7515   }
7516 
7517   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7518   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7519 
7520   return std::make_pair(Value, NewChain);
7521 }
7522 
7523 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7524                                              SelectionDAG &DAG) const {
7525   SDLoc SL(ST);
7526 
7527   SDValue Chain = ST->getChain();
7528   SDValue BasePtr = ST->getBasePtr();
7529   SDValue Value = ST->getValue();
7530   EVT StVT = ST->getMemoryVT();
7531 
7532   if (StVT.isScalableVector())
7533     report_fatal_error("Cannot scalarize scalable vector stores");
7534 
7535   // The type of the data we want to save
7536   EVT RegVT = Value.getValueType();
7537   EVT RegSclVT = RegVT.getScalarType();
7538 
7539   // The type of data as saved in memory.
7540   EVT MemSclVT = StVT.getScalarType();
7541 
7542   unsigned NumElem = StVT.getVectorNumElements();
7543 
7544   // A vector must always be stored in memory as-is, i.e. without any padding
7545   // between the elements, since various code depend on it, e.g. in the
7546   // handling of a bitcast of a vector type to int, which may be done with a
7547   // vector store followed by an integer load. A vector that does not have
7548   // elements that are byte-sized must therefore be stored as an integer
7549   // built out of the extracted vector elements.
7550   if (!MemSclVT.isByteSized()) {
7551     unsigned NumBits = StVT.getSizeInBits();
7552     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7553 
7554     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7555 
7556     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7557       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7558                                 DAG.getVectorIdxConstant(Idx, SL));
7559       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7560       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7561       unsigned ShiftIntoIdx =
7562           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7563       SDValue ShiftAmount =
7564           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7565       SDValue ShiftedElt =
7566           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7567       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7568     }
7569 
7570     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7571                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7572                         ST->getAAInfo());
7573   }
7574 
7575   // Store Stride in bytes
7576   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7577   assert(Stride && "Zero stride!");
7578   // Extract each of the elements from the original vector and save them into
7579   // memory individually.
7580   SmallVector<SDValue, 8> Stores;
7581   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7582     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7583                               DAG.getVectorIdxConstant(Idx, SL));
7584 
7585     SDValue Ptr =
7586         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7587 
7588     // This scalar TruncStore may be illegal, but we legalize it later.
7589     SDValue Store = DAG.getTruncStore(
7590         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7591         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7592         ST->getAAInfo());
7593 
7594     Stores.push_back(Store);
7595   }
7596 
7597   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7598 }
7599 
7600 std::pair<SDValue, SDValue>
7601 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7602   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7603          "unaligned indexed loads not implemented!");
7604   SDValue Chain = LD->getChain();
7605   SDValue Ptr = LD->getBasePtr();
7606   EVT VT = LD->getValueType(0);
7607   EVT LoadedVT = LD->getMemoryVT();
7608   SDLoc dl(LD);
7609   auto &MF = DAG.getMachineFunction();
7610 
7611   if (VT.isFloatingPoint() || VT.isVector()) {
7612     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7613     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7614       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7615           LoadedVT.isVector()) {
7616         // Scalarize the load and let the individual components be handled.
7617         return scalarizeVectorLoad(LD, DAG);
7618       }
7619 
7620       // Expand to a (misaligned) integer load of the same size,
7621       // then bitconvert to floating point or vector.
7622       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7623                                     LD->getMemOperand());
7624       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7625       if (LoadedVT != VT)
7626         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7627                              ISD::ANY_EXTEND, dl, VT, Result);
7628 
7629       return std::make_pair(Result, newLoad.getValue(1));
7630     }
7631 
7632     // Copy the value to a (aligned) stack slot using (unaligned) integer
7633     // loads and stores, then do a (aligned) load from the stack slot.
7634     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7635     unsigned LoadedBytes = LoadedVT.getStoreSize();
7636     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7637     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7638 
7639     // Make sure the stack slot is also aligned for the register type.
7640     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7641     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7642     SmallVector<SDValue, 8> Stores;
7643     SDValue StackPtr = StackBase;
7644     unsigned Offset = 0;
7645 
7646     EVT PtrVT = Ptr.getValueType();
7647     EVT StackPtrVT = StackPtr.getValueType();
7648 
7649     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7650     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7651 
7652     // Do all but one copies using the full register width.
7653     for (unsigned i = 1; i < NumRegs; i++) {
7654       // Load one integer register's worth from the original location.
7655       SDValue Load = DAG.getLoad(
7656           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7657           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7658           LD->getAAInfo());
7659       // Follow the load with a store to the stack slot.  Remember the store.
7660       Stores.push_back(DAG.getStore(
7661           Load.getValue(1), dl, Load, StackPtr,
7662           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7663       // Increment the pointers.
7664       Offset += RegBytes;
7665 
7666       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7667       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7668     }
7669 
7670     // The last copy may be partial.  Do an extending load.
7671     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7672                                   8 * (LoadedBytes - Offset));
7673     SDValue Load =
7674         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7675                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7676                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7677                        LD->getAAInfo());
7678     // Follow the load with a store to the stack slot.  Remember the store.
7679     // On big-endian machines this requires a truncating store to ensure
7680     // that the bits end up in the right place.
7681     Stores.push_back(DAG.getTruncStore(
7682         Load.getValue(1), dl, Load, StackPtr,
7683         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7684 
7685     // The order of the stores doesn't matter - say it with a TokenFactor.
7686     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7687 
7688     // Finally, perform the original load only redirected to the stack slot.
7689     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7690                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7691                           LoadedVT);
7692 
7693     // Callers expect a MERGE_VALUES node.
7694     return std::make_pair(Load, TF);
7695   }
7696 
7697   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7698          "Unaligned load of unsupported type.");
7699 
7700   // Compute the new VT that is half the size of the old one.  This is an
7701   // integer MVT.
7702   unsigned NumBits = LoadedVT.getSizeInBits();
7703   EVT NewLoadedVT;
7704   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7705   NumBits >>= 1;
7706 
7707   Align Alignment = LD->getOriginalAlign();
7708   unsigned IncrementSize = NumBits / 8;
7709   ISD::LoadExtType HiExtType = LD->getExtensionType();
7710 
7711   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7712   if (HiExtType == ISD::NON_EXTLOAD)
7713     HiExtType = ISD::ZEXTLOAD;
7714 
7715   // Load the value in two parts
7716   SDValue Lo, Hi;
7717   if (DAG.getDataLayout().isLittleEndian()) {
7718     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7719                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7720                         LD->getAAInfo());
7721 
7722     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7723     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7724                         LD->getPointerInfo().getWithOffset(IncrementSize),
7725                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7726                         LD->getAAInfo());
7727   } else {
7728     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7729                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7730                         LD->getAAInfo());
7731 
7732     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7733     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7734                         LD->getPointerInfo().getWithOffset(IncrementSize),
7735                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7736                         LD->getAAInfo());
7737   }
7738 
7739   // aggregate the two parts
7740   SDValue ShiftAmount =
7741       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7742                                                     DAG.getDataLayout()));
7743   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7744   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7745 
7746   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7747                              Hi.getValue(1));
7748 
7749   return std::make_pair(Result, TF);
7750 }
7751 
7752 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7753                                              SelectionDAG &DAG) const {
7754   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7755          "unaligned indexed stores not implemented!");
7756   SDValue Chain = ST->getChain();
7757   SDValue Ptr = ST->getBasePtr();
7758   SDValue Val = ST->getValue();
7759   EVT VT = Val.getValueType();
7760   Align Alignment = ST->getOriginalAlign();
7761   auto &MF = DAG.getMachineFunction();
7762   EVT StoreMemVT = ST->getMemoryVT();
7763 
7764   SDLoc dl(ST);
7765   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7766     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7767     if (isTypeLegal(intVT)) {
7768       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7769           StoreMemVT.isVector()) {
7770         // Scalarize the store and let the individual components be handled.
7771         SDValue Result = scalarizeVectorStore(ST, DAG);
7772         return Result;
7773       }
7774       // Expand to a bitconvert of the value to the integer type of the
7775       // same size, then a (misaligned) int store.
7776       // FIXME: Does not handle truncating floating point stores!
7777       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7778       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7779                             Alignment, ST->getMemOperand()->getFlags());
7780       return Result;
7781     }
7782     // Do a (aligned) store to a stack slot, then copy from the stack slot
7783     // to the final destination using (unaligned) integer loads and stores.
7784     MVT RegVT = getRegisterType(
7785         *DAG.getContext(),
7786         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7787     EVT PtrVT = Ptr.getValueType();
7788     unsigned StoredBytes = StoreMemVT.getStoreSize();
7789     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7790     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7791 
7792     // Make sure the stack slot is also aligned for the register type.
7793     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7794     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7795 
7796     // Perform the original store, only redirected to the stack slot.
7797     SDValue Store = DAG.getTruncStore(
7798         Chain, dl, Val, StackPtr,
7799         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7800 
7801     EVT StackPtrVT = StackPtr.getValueType();
7802 
7803     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7804     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7805     SmallVector<SDValue, 8> Stores;
7806     unsigned Offset = 0;
7807 
7808     // Do all but one copies using the full register width.
7809     for (unsigned i = 1; i < NumRegs; i++) {
7810       // Load one integer register's worth from the stack slot.
7811       SDValue Load = DAG.getLoad(
7812           RegVT, dl, Store, StackPtr,
7813           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7814       // Store it to the final location.  Remember the store.
7815       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7816                                     ST->getPointerInfo().getWithOffset(Offset),
7817                                     ST->getOriginalAlign(),
7818                                     ST->getMemOperand()->getFlags()));
7819       // Increment the pointers.
7820       Offset += RegBytes;
7821       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7822       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7823     }
7824 
7825     // The last store may be partial.  Do a truncating store.  On big-endian
7826     // machines this requires an extending load from the stack slot to ensure
7827     // that the bits are in the right place.
7828     EVT LoadMemVT =
7829         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7830 
7831     // Load from the stack slot.
7832     SDValue Load = DAG.getExtLoad(
7833         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7834         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7835 
7836     Stores.push_back(
7837         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7838                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7839                           ST->getOriginalAlign(),
7840                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7841     // The order of the stores doesn't matter - say it with a TokenFactor.
7842     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7843     return Result;
7844   }
7845 
7846   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7847          "Unaligned store of unknown type.");
7848   // Get the half-size VT
7849   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7850   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7851   unsigned IncrementSize = NumBits / 8;
7852 
7853   // Divide the stored value in two parts.
7854   SDValue ShiftAmount = DAG.getConstant(
7855       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7856   SDValue Lo = Val;
7857   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7858 
7859   // Store the two parts
7860   SDValue Store1, Store2;
7861   Store1 = DAG.getTruncStore(Chain, dl,
7862                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7863                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7864                              ST->getMemOperand()->getFlags());
7865 
7866   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7867   Store2 = DAG.getTruncStore(
7868       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7869       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7870       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7871 
7872   SDValue Result =
7873       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7874   return Result;
7875 }
7876 
7877 SDValue
7878 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7879                                        const SDLoc &DL, EVT DataVT,
7880                                        SelectionDAG &DAG,
7881                                        bool IsCompressedMemory) const {
7882   SDValue Increment;
7883   EVT AddrVT = Addr.getValueType();
7884   EVT MaskVT = Mask.getValueType();
7885   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7886          "Incompatible types of Data and Mask");
7887   if (IsCompressedMemory) {
7888     if (DataVT.isScalableVector())
7889       report_fatal_error(
7890           "Cannot currently handle compressed memory with scalable vectors");
7891     // Incrementing the pointer according to number of '1's in the mask.
7892     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7893     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7894     if (MaskIntVT.getSizeInBits() < 32) {
7895       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7896       MaskIntVT = MVT::i32;
7897     }
7898 
7899     // Count '1's with POPCNT.
7900     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7901     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7902     // Scale is an element size in bytes.
7903     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7904                                     AddrVT);
7905     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7906   } else if (DataVT.isScalableVector()) {
7907     Increment = DAG.getVScale(DL, AddrVT,
7908                               APInt(AddrVT.getFixedSizeInBits(),
7909                                     DataVT.getStoreSize().getKnownMinSize()));
7910   } else
7911     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7912 
7913   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7914 }
7915 
7916 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
7917                                        EVT VecVT, const SDLoc &dl,
7918                                        unsigned NumSubElts) {
7919   if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx))
7920     return Idx;
7921 
7922   EVT IdxVT = Idx.getValueType();
7923   unsigned NElts = VecVT.getVectorMinNumElements();
7924   if (VecVT.isScalableVector()) {
7925     // If this is a constant index and we know the value plus the number of the
7926     // elements in the subvector minus one is less than the minimum number of
7927     // elements then it's safe to return Idx.
7928     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
7929       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
7930         return Idx;
7931     SDValue VS =
7932         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
7933     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
7934     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
7935                               DAG.getConstant(NumSubElts, dl, IdxVT));
7936     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7937   }
7938   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
7939     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
7940     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7941                        DAG.getConstant(Imm, dl, IdxVT));
7942   }
7943   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
7944   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7945                      DAG.getConstant(MaxIndex, dl, IdxVT));
7946 }
7947 
7948 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7949                                                 SDValue VecPtr, EVT VecVT,
7950                                                 SDValue Index) const {
7951   return getVectorSubVecPointer(
7952       DAG, VecPtr, VecVT,
7953       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
7954       Index);
7955 }
7956 
7957 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
7958                                                SDValue VecPtr, EVT VecVT,
7959                                                EVT SubVecVT,
7960                                                SDValue Index) const {
7961   SDLoc dl(Index);
7962   // Make sure the index type is big enough to compute in.
7963   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7964 
7965   EVT EltVT = VecVT.getVectorElementType();
7966 
7967   // Calculate the element offset and add it to the pointer.
7968   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7969   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7970          "Converting bits to bytes lost precision");
7971 
7972   // Scalable vectors don't need clamping as these are checked at compile time
7973   if (SubVecVT.isFixedLengthVector()) {
7974     assert(SubVecVT.getVectorElementType() == EltVT &&
7975            "Sub-vector must be a fixed vector with matching element type");
7976     Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
7977                                     SubVecVT.getVectorNumElements());
7978   }
7979 
7980   EVT IdxVT = Index.getValueType();
7981 
7982   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7983                       DAG.getConstant(EltSize, dl, IdxVT));
7984   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7985 }
7986 
7987 //===----------------------------------------------------------------------===//
7988 // Implementation of Emulated TLS Model
7989 //===----------------------------------------------------------------------===//
7990 
7991 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7992                                                 SelectionDAG &DAG) const {
7993   // Access to address of TLS varialbe xyz is lowered to a function call:
7994   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7995   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7996   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7997   SDLoc dl(GA);
7998 
7999   ArgListTy Args;
8000   ArgListEntry Entry;
8001   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8002   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8003   StringRef EmuTlsVarName(NameString);
8004   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8005   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8006   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8007   Entry.Ty = VoidPtrType;
8008   Args.push_back(Entry);
8009 
8010   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8011 
8012   TargetLowering::CallLoweringInfo CLI(DAG);
8013   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8014   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8015   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8016 
8017   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8018   // At last for X86 targets, maybe good for other targets too?
8019   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8020   MFI.setAdjustsStack(true); // Is this only for X86 target?
8021   MFI.setHasCalls(true);
8022 
8023   assert((GA->getOffset() == 0) &&
8024          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8025   return CallResult.first;
8026 }
8027 
8028 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8029                                                 SelectionDAG &DAG) const {
8030   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8031   if (!isCtlzFast())
8032     return SDValue();
8033   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8034   SDLoc dl(Op);
8035   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8036     if (C->isZero() && CC == ISD::SETEQ) {
8037       EVT VT = Op.getOperand(0).getValueType();
8038       SDValue Zext = Op.getOperand(0);
8039       if (VT.bitsLT(MVT::i32)) {
8040         VT = MVT::i32;
8041         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8042       }
8043       unsigned Log2b = Log2_32(VT.getSizeInBits());
8044       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8045       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8046                                 DAG.getConstant(Log2b, dl, MVT::i32));
8047       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8048     }
8049   }
8050   return SDValue();
8051 }
8052 
8053 // Convert redundant addressing modes (e.g. scaling is redundant
8054 // when accessing bytes).
8055 ISD::MemIndexType
8056 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
8057                                       SDValue Offsets) const {
8058   bool IsScaledIndex =
8059       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
8060   bool IsSignedIndex =
8061       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
8062 
8063   // Scaling is unimportant for bytes, canonicalize to unscaled.
8064   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) {
8065     IsScaledIndex = false;
8066     IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
8067   }
8068 
8069   return IndexType;
8070 }
8071 
8072 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8073   SDValue Op0 = Node->getOperand(0);
8074   SDValue Op1 = Node->getOperand(1);
8075   EVT VT = Op0.getValueType();
8076   unsigned Opcode = Node->getOpcode();
8077   SDLoc DL(Node);
8078 
8079   // umin(x,y) -> sub(x,usubsat(x,y))
8080   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8081       isOperationLegal(ISD::USUBSAT, VT)) {
8082     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8083                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8084   }
8085 
8086   // umax(x,y) -> add(x,usubsat(y,x))
8087   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8088       isOperationLegal(ISD::USUBSAT, VT)) {
8089     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8090                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8091   }
8092 
8093   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8094   ISD::CondCode CC;
8095   switch (Opcode) {
8096   default: llvm_unreachable("How did we get here?");
8097   case ISD::SMAX: CC = ISD::SETGT; break;
8098   case ISD::SMIN: CC = ISD::SETLT; break;
8099   case ISD::UMAX: CC = ISD::SETUGT; break;
8100   case ISD::UMIN: CC = ISD::SETULT; break;
8101   }
8102 
8103   // FIXME: Should really try to split the vector in case it's legal on a
8104   // subvector.
8105   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8106     return DAG.UnrollVectorOp(Node);
8107 
8108   SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC);
8109   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8110 }
8111 
8112 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8113   unsigned Opcode = Node->getOpcode();
8114   SDValue LHS = Node->getOperand(0);
8115   SDValue RHS = Node->getOperand(1);
8116   EVT VT = LHS.getValueType();
8117   SDLoc dl(Node);
8118 
8119   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8120   assert(VT.isInteger() && "Expected operands to be integers");
8121 
8122   // usub.sat(a, b) -> umax(a, b) - b
8123   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8124     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8125     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8126   }
8127 
8128   // uadd.sat(a, b) -> umin(a, ~b) + b
8129   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8130     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8131     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8132     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8133   }
8134 
8135   unsigned OverflowOp;
8136   switch (Opcode) {
8137   case ISD::SADDSAT:
8138     OverflowOp = ISD::SADDO;
8139     break;
8140   case ISD::UADDSAT:
8141     OverflowOp = ISD::UADDO;
8142     break;
8143   case ISD::SSUBSAT:
8144     OverflowOp = ISD::SSUBO;
8145     break;
8146   case ISD::USUBSAT:
8147     OverflowOp = ISD::USUBO;
8148     break;
8149   default:
8150     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8151                      "addition or subtraction node.");
8152   }
8153 
8154   // FIXME: Should really try to split the vector in case it's legal on a
8155   // subvector.
8156   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8157     return DAG.UnrollVectorOp(Node);
8158 
8159   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8160   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8161   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8162   SDValue SumDiff = Result.getValue(0);
8163   SDValue Overflow = Result.getValue(1);
8164   SDValue Zero = DAG.getConstant(0, dl, VT);
8165   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8166 
8167   if (Opcode == ISD::UADDSAT) {
8168     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8169       // (LHS + RHS) | OverflowMask
8170       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8171       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8172     }
8173     // Overflow ? 0xffff.... : (LHS + RHS)
8174     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8175   }
8176 
8177   if (Opcode == ISD::USUBSAT) {
8178     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8179       // (LHS - RHS) & ~OverflowMask
8180       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8181       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8182       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8183     }
8184     // Overflow ? 0 : (LHS - RHS)
8185     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8186   }
8187 
8188   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8189   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8190   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8191   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8192                               DAG.getConstant(BitWidth - 1, dl, VT));
8193   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8194   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8195 }
8196 
8197 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8198   unsigned Opcode = Node->getOpcode();
8199   bool IsSigned = Opcode == ISD::SSHLSAT;
8200   SDValue LHS = Node->getOperand(0);
8201   SDValue RHS = Node->getOperand(1);
8202   EVT VT = LHS.getValueType();
8203   SDLoc dl(Node);
8204 
8205   assert((Node->getOpcode() == ISD::SSHLSAT ||
8206           Node->getOpcode() == ISD::USHLSAT) &&
8207           "Expected a SHLSAT opcode");
8208   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8209   assert(VT.isInteger() && "Expected operands to be integers");
8210 
8211   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8212 
8213   unsigned BW = VT.getScalarSizeInBits();
8214   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8215   SDValue Orig =
8216       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8217 
8218   SDValue SatVal;
8219   if (IsSigned) {
8220     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8221     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8222     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8223                              SatMin, SatMax, ISD::SETLT);
8224   } else {
8225     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8226   }
8227   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8228 
8229   return Result;
8230 }
8231 
8232 SDValue
8233 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8234   assert((Node->getOpcode() == ISD::SMULFIX ||
8235           Node->getOpcode() == ISD::UMULFIX ||
8236           Node->getOpcode() == ISD::SMULFIXSAT ||
8237           Node->getOpcode() == ISD::UMULFIXSAT) &&
8238          "Expected a fixed point multiplication opcode");
8239 
8240   SDLoc dl(Node);
8241   SDValue LHS = Node->getOperand(0);
8242   SDValue RHS = Node->getOperand(1);
8243   EVT VT = LHS.getValueType();
8244   unsigned Scale = Node->getConstantOperandVal(2);
8245   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8246                      Node->getOpcode() == ISD::UMULFIXSAT);
8247   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8248                  Node->getOpcode() == ISD::SMULFIXSAT);
8249   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8250   unsigned VTSize = VT.getScalarSizeInBits();
8251 
8252   if (!Scale) {
8253     // [us]mul.fix(a, b, 0) -> mul(a, b)
8254     if (!Saturating) {
8255       if (isOperationLegalOrCustom(ISD::MUL, VT))
8256         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8257     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8258       SDValue Result =
8259           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8260       SDValue Product = Result.getValue(0);
8261       SDValue Overflow = Result.getValue(1);
8262       SDValue Zero = DAG.getConstant(0, dl, VT);
8263 
8264       APInt MinVal = APInt::getSignedMinValue(VTSize);
8265       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8266       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8267       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8268       // Xor the inputs, if resulting sign bit is 0 the product will be
8269       // positive, else negative.
8270       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8271       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8272       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8273       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8274     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8275       SDValue Result =
8276           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8277       SDValue Product = Result.getValue(0);
8278       SDValue Overflow = Result.getValue(1);
8279 
8280       APInt MaxVal = APInt::getMaxValue(VTSize);
8281       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8282       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8283     }
8284   }
8285 
8286   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8287          "Expected scale to be less than the number of bits if signed or at "
8288          "most the number of bits if unsigned.");
8289   assert(LHS.getValueType() == RHS.getValueType() &&
8290          "Expected both operands to be the same type");
8291 
8292   // Get the upper and lower bits of the result.
8293   SDValue Lo, Hi;
8294   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8295   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8296   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8297     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8298     Lo = Result.getValue(0);
8299     Hi = Result.getValue(1);
8300   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8301     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8302     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8303   } else if (VT.isVector()) {
8304     return SDValue();
8305   } else {
8306     report_fatal_error("Unable to expand fixed point multiplication.");
8307   }
8308 
8309   if (Scale == VTSize)
8310     // Result is just the top half since we'd be shifting by the width of the
8311     // operand. Overflow impossible so this works for both UMULFIX and
8312     // UMULFIXSAT.
8313     return Hi;
8314 
8315   // The result will need to be shifted right by the scale since both operands
8316   // are scaled. The result is given to us in 2 halves, so we only want part of
8317   // both in the result.
8318   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8319   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8320                                DAG.getConstant(Scale, dl, ShiftTy));
8321   if (!Saturating)
8322     return Result;
8323 
8324   if (!Signed) {
8325     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8326     // widened multiplication) aren't all zeroes.
8327 
8328     // Saturate to max if ((Hi >> Scale) != 0),
8329     // which is the same as if (Hi > ((1 << Scale) - 1))
8330     APInt MaxVal = APInt::getMaxValue(VTSize);
8331     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8332                                       dl, VT);
8333     Result = DAG.getSelectCC(dl, Hi, LowMask,
8334                              DAG.getConstant(MaxVal, dl, VT), Result,
8335                              ISD::SETUGT);
8336 
8337     return Result;
8338   }
8339 
8340   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8341   // widened multiplication) aren't all ones or all zeroes.
8342 
8343   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8344   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8345 
8346   if (Scale == 0) {
8347     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8348                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8349     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8350     // Saturated to SatMin if wide product is negative, and SatMax if wide
8351     // product is positive ...
8352     SDValue Zero = DAG.getConstant(0, dl, VT);
8353     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8354                                                ISD::SETLT);
8355     // ... but only if we overflowed.
8356     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8357   }
8358 
8359   //  We handled Scale==0 above so all the bits to examine is in Hi.
8360 
8361   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8362   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8363   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8364                                     dl, VT);
8365   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8366   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8367   // which is the same as if (HI < (-1 << (Scale - 1))
8368   SDValue HighMask =
8369       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8370                       dl, VT);
8371   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8372   return Result;
8373 }
8374 
8375 SDValue
8376 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8377                                     SDValue LHS, SDValue RHS,
8378                                     unsigned Scale, SelectionDAG &DAG) const {
8379   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8380           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8381          "Expected a fixed point division opcode");
8382 
8383   EVT VT = LHS.getValueType();
8384   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8385   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8386   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8387 
8388   // If there is enough room in the type to upscale the LHS or downscale the
8389   // RHS before the division, we can perform it in this type without having to
8390   // resize. For signed operations, the LHS headroom is the number of
8391   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8392   // The headroom for the RHS is the number of trailing zeroes.
8393   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8394                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8395   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8396 
8397   // For signed saturating operations, we need to be able to detect true integer
8398   // division overflow; that is, when you have MIN / -EPS. However, this
8399   // is undefined behavior and if we emit divisions that could take such
8400   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8401   // example).
8402   // Avoid this by requiring an extra bit so that we never get this case.
8403   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8404   // signed saturating division, we need to emit a whopping 32-bit division.
8405   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8406     return SDValue();
8407 
8408   unsigned LHSShift = std::min(LHSLead, Scale);
8409   unsigned RHSShift = Scale - LHSShift;
8410 
8411   // At this point, we know that if we shift the LHS up by LHSShift and the
8412   // RHS down by RHSShift, we can emit a regular division with a final scaling
8413   // factor of Scale.
8414 
8415   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8416   if (LHSShift)
8417     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8418                       DAG.getConstant(LHSShift, dl, ShiftTy));
8419   if (RHSShift)
8420     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8421                       DAG.getConstant(RHSShift, dl, ShiftTy));
8422 
8423   SDValue Quot;
8424   if (Signed) {
8425     // For signed operations, if the resulting quotient is negative and the
8426     // remainder is nonzero, subtract 1 from the quotient to round towards
8427     // negative infinity.
8428     SDValue Rem;
8429     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8430     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8431     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8432     if (isTypeLegal(VT) &&
8433         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8434       Quot = DAG.getNode(ISD::SDIVREM, dl,
8435                          DAG.getVTList(VT, VT),
8436                          LHS, RHS);
8437       Rem = Quot.getValue(1);
8438       Quot = Quot.getValue(0);
8439     } else {
8440       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8441                          LHS, RHS);
8442       Rem = DAG.getNode(ISD::SREM, dl, VT,
8443                         LHS, RHS);
8444     }
8445     SDValue Zero = DAG.getConstant(0, dl, VT);
8446     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8447     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8448     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8449     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8450     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8451                                DAG.getConstant(1, dl, VT));
8452     Quot = DAG.getSelect(dl, VT,
8453                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8454                          Sub1, Quot);
8455   } else
8456     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8457                        LHS, RHS);
8458 
8459   return Quot;
8460 }
8461 
8462 void TargetLowering::expandUADDSUBO(
8463     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8464   SDLoc dl(Node);
8465   SDValue LHS = Node->getOperand(0);
8466   SDValue RHS = Node->getOperand(1);
8467   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8468 
8469   // If ADD/SUBCARRY is legal, use that instead.
8470   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8471   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8472     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8473     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8474                                     { LHS, RHS, CarryIn });
8475     Result = SDValue(NodeCarry.getNode(), 0);
8476     Overflow = SDValue(NodeCarry.getNode(), 1);
8477     return;
8478   }
8479 
8480   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8481                             LHS.getValueType(), LHS, RHS);
8482 
8483   EVT ResultType = Node->getValueType(1);
8484   EVT SetCCType = getSetCCResultType(
8485       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8486   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8487   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8488   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8489 }
8490 
8491 void TargetLowering::expandSADDSUBO(
8492     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8493   SDLoc dl(Node);
8494   SDValue LHS = Node->getOperand(0);
8495   SDValue RHS = Node->getOperand(1);
8496   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8497 
8498   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8499                             LHS.getValueType(), LHS, RHS);
8500 
8501   EVT ResultType = Node->getValueType(1);
8502   EVT OType = getSetCCResultType(
8503       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8504 
8505   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8506   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8507   if (isOperationLegal(OpcSat, LHS.getValueType())) {
8508     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8509     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8510     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8511     return;
8512   }
8513 
8514   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8515 
8516   // For an addition, the result should be less than one of the operands (LHS)
8517   // if and only if the other operand (RHS) is negative, otherwise there will
8518   // be overflow.
8519   // For a subtraction, the result should be less than one of the operands
8520   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8521   // otherwise there will be overflow.
8522   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8523   SDValue ConditionRHS =
8524       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8525 
8526   Overflow = DAG.getBoolExtOrTrunc(
8527       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8528       ResultType, ResultType);
8529 }
8530 
8531 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8532                                 SDValue &Overflow, SelectionDAG &DAG) const {
8533   SDLoc dl(Node);
8534   EVT VT = Node->getValueType(0);
8535   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8536   SDValue LHS = Node->getOperand(0);
8537   SDValue RHS = Node->getOperand(1);
8538   bool isSigned = Node->getOpcode() == ISD::SMULO;
8539 
8540   // For power-of-two multiplications we can use a simpler shift expansion.
8541   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8542     const APInt &C = RHSC->getAPIntValue();
8543     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8544     if (C.isPowerOf2()) {
8545       // smulo(x, signed_min) is same as umulo(x, signed_min).
8546       bool UseArithShift = isSigned && !C.isMinSignedValue();
8547       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8548       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8549       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8550       Overflow = DAG.getSetCC(dl, SetCCVT,
8551           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8552                       dl, VT, Result, ShiftAmt),
8553           LHS, ISD::SETNE);
8554       return true;
8555     }
8556   }
8557 
8558   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8559   if (VT.isVector())
8560     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
8561                               VT.getVectorNumElements());
8562 
8563   SDValue BottomHalf;
8564   SDValue TopHalf;
8565   static const unsigned Ops[2][3] =
8566       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8567         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8568   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8569     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8570     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8571   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8572     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8573                              RHS);
8574     TopHalf = BottomHalf.getValue(1);
8575   } else if (isTypeLegal(WideVT)) {
8576     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8577     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8578     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8579     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8580     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8581         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8582     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8583                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8584   } else {
8585     if (VT.isVector())
8586       return false;
8587 
8588     // We can fall back to a libcall with an illegal type for the MUL if we
8589     // have a libcall big enough.
8590     // Also, we can fall back to a division in some cases, but that's a big
8591     // performance hit in the general case.
8592     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8593     if (WideVT == MVT::i16)
8594       LC = RTLIB::MUL_I16;
8595     else if (WideVT == MVT::i32)
8596       LC = RTLIB::MUL_I32;
8597     else if (WideVT == MVT::i64)
8598       LC = RTLIB::MUL_I64;
8599     else if (WideVT == MVT::i128)
8600       LC = RTLIB::MUL_I128;
8601     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8602 
8603     SDValue HiLHS;
8604     SDValue HiRHS;
8605     if (isSigned) {
8606       // The high part is obtained by SRA'ing all but one of the bits of low
8607       // part.
8608       unsigned LoSize = VT.getFixedSizeInBits();
8609       HiLHS =
8610           DAG.getNode(ISD::SRA, dl, VT, LHS,
8611                       DAG.getConstant(LoSize - 1, dl,
8612                                       getPointerTy(DAG.getDataLayout())));
8613       HiRHS =
8614           DAG.getNode(ISD::SRA, dl, VT, RHS,
8615                       DAG.getConstant(LoSize - 1, dl,
8616                                       getPointerTy(DAG.getDataLayout())));
8617     } else {
8618         HiLHS = DAG.getConstant(0, dl, VT);
8619         HiRHS = DAG.getConstant(0, dl, VT);
8620     }
8621 
8622     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8623     // pre-lowered to the correct types. This all depends upon WideVT not
8624     // being a legal type for the architecture and thus has to be split to
8625     // two arguments.
8626     SDValue Ret;
8627     TargetLowering::MakeLibCallOptions CallOptions;
8628     CallOptions.setSExt(isSigned);
8629     CallOptions.setIsPostTypeLegalization(true);
8630     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8631       // Halves of WideVT are packed into registers in different order
8632       // depending on platform endianness. This is usually handled by
8633       // the C calling convention, but we can't defer to it in
8634       // the legalizer.
8635       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8636       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8637     } else {
8638       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8639       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8640     }
8641     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8642            "Ret value is a collection of constituent nodes holding result.");
8643     if (DAG.getDataLayout().isLittleEndian()) {
8644       // Same as above.
8645       BottomHalf = Ret.getOperand(0);
8646       TopHalf = Ret.getOperand(1);
8647     } else {
8648       BottomHalf = Ret.getOperand(1);
8649       TopHalf = Ret.getOperand(0);
8650     }
8651   }
8652 
8653   Result = BottomHalf;
8654   if (isSigned) {
8655     SDValue ShiftAmt = DAG.getConstant(
8656         VT.getScalarSizeInBits() - 1, dl,
8657         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8658     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8659     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8660   } else {
8661     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8662                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8663   }
8664 
8665   // Truncate the result if SetCC returns a larger type than needed.
8666   EVT RType = Node->getValueType(1);
8667   if (RType.bitsLT(Overflow.getValueType()))
8668     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8669 
8670   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8671          "Unexpected result type for S/UMULO legalization");
8672   return true;
8673 }
8674 
8675 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8676   SDLoc dl(Node);
8677   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8678   SDValue Op = Node->getOperand(0);
8679   EVT VT = Op.getValueType();
8680 
8681   if (VT.isScalableVector())
8682     report_fatal_error(
8683         "Expanding reductions for scalable vectors is undefined.");
8684 
8685   // Try to use a shuffle reduction for power of two vectors.
8686   if (VT.isPow2VectorType()) {
8687     while (VT.getVectorNumElements() > 1) {
8688       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8689       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8690         break;
8691 
8692       SDValue Lo, Hi;
8693       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8694       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8695       VT = HalfVT;
8696     }
8697   }
8698 
8699   EVT EltVT = VT.getVectorElementType();
8700   unsigned NumElts = VT.getVectorNumElements();
8701 
8702   SmallVector<SDValue, 8> Ops;
8703   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8704 
8705   SDValue Res = Ops[0];
8706   for (unsigned i = 1; i < NumElts; i++)
8707     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8708 
8709   // Result type may be wider than element type.
8710   if (EltVT != Node->getValueType(0))
8711     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8712   return Res;
8713 }
8714 
8715 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8716   SDLoc dl(Node);
8717   SDValue AccOp = Node->getOperand(0);
8718   SDValue VecOp = Node->getOperand(1);
8719   SDNodeFlags Flags = Node->getFlags();
8720 
8721   EVT VT = VecOp.getValueType();
8722   EVT EltVT = VT.getVectorElementType();
8723 
8724   if (VT.isScalableVector())
8725     report_fatal_error(
8726         "Expanding reductions for scalable vectors is undefined.");
8727 
8728   unsigned NumElts = VT.getVectorNumElements();
8729 
8730   SmallVector<SDValue, 8> Ops;
8731   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8732 
8733   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8734 
8735   SDValue Res = AccOp;
8736   for (unsigned i = 0; i < NumElts; i++)
8737     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8738 
8739   return Res;
8740 }
8741 
8742 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8743                                SelectionDAG &DAG) const {
8744   EVT VT = Node->getValueType(0);
8745   SDLoc dl(Node);
8746   bool isSigned = Node->getOpcode() == ISD::SREM;
8747   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8748   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8749   SDValue Dividend = Node->getOperand(0);
8750   SDValue Divisor = Node->getOperand(1);
8751   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8752     SDVTList VTs = DAG.getVTList(VT, VT);
8753     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8754     return true;
8755   }
8756   if (isOperationLegalOrCustom(DivOpc, VT)) {
8757     // X % Y -> X-X/Y*Y
8758     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8759     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8760     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8761     return true;
8762   }
8763   return false;
8764 }
8765 
8766 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8767                                             SelectionDAG &DAG) const {
8768   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8769   SDLoc dl(SDValue(Node, 0));
8770   SDValue Src = Node->getOperand(0);
8771 
8772   // DstVT is the result type, while SatVT is the size to which we saturate
8773   EVT SrcVT = Src.getValueType();
8774   EVT DstVT = Node->getValueType(0);
8775 
8776   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
8777   unsigned SatWidth = SatVT.getScalarSizeInBits();
8778   unsigned DstWidth = DstVT.getScalarSizeInBits();
8779   assert(SatWidth <= DstWidth &&
8780          "Expected saturation width smaller than result width");
8781 
8782   // Determine minimum and maximum integer values and their corresponding
8783   // floating-point values.
8784   APInt MinInt, MaxInt;
8785   if (IsSigned) {
8786     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8787     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8788   } else {
8789     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8790     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8791   }
8792 
8793   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8794   // libcall emission cannot handle this. Large result types will fail.
8795   if (SrcVT == MVT::f16) {
8796     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8797     SrcVT = Src.getValueType();
8798   }
8799 
8800   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8801   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8802 
8803   APFloat::opStatus MinStatus =
8804       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8805   APFloat::opStatus MaxStatus =
8806       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8807   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8808                              !(MaxStatus & APFloat::opStatus::opInexact);
8809 
8810   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8811   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8812 
8813   // If the integer bounds are exactly representable as floats and min/max are
8814   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8815   // of comparisons and selects.
8816   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8817                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8818   if (AreExactFloatBounds && MinMaxLegal) {
8819     SDValue Clamped = Src;
8820 
8821     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8822     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8823     // Clamp by MaxFloat from above. NaN cannot occur.
8824     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8825     // Convert clamped value to integer.
8826     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8827                                   dl, DstVT, Clamped);
8828 
8829     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8830     // which will cast to zero.
8831     if (!IsSigned)
8832       return FpToInt;
8833 
8834     // Otherwise, select 0 if Src is NaN.
8835     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8836     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8837                            ISD::CondCode::SETUO);
8838   }
8839 
8840   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8841   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8842 
8843   // Result of direct conversion. The assumption here is that the operation is
8844   // non-trapping and it's fine to apply it to an out-of-range value if we
8845   // select it away later.
8846   SDValue FpToInt =
8847       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8848 
8849   SDValue Select = FpToInt;
8850 
8851   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8852   // MinInt if Src is NaN.
8853   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8854                            ISD::CondCode::SETULT);
8855   // If Src OGT MaxFloat, select MaxInt.
8856   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8857                            ISD::CondCode::SETOGT);
8858 
8859   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8860   // is already zero.
8861   if (!IsSigned)
8862     return Select;
8863 
8864   // Otherwise, select 0 if Src is NaN.
8865   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8866   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8867 }
8868 
8869 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
8870                                            SelectionDAG &DAG) const {
8871   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
8872   assert(Node->getValueType(0).isScalableVector() &&
8873          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
8874 
8875   EVT VT = Node->getValueType(0);
8876   SDValue V1 = Node->getOperand(0);
8877   SDValue V2 = Node->getOperand(1);
8878   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
8879   SDLoc DL(Node);
8880 
8881   // Expand through memory thusly:
8882   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
8883   //  Store V1, Ptr
8884   //  Store V2, Ptr + sizeof(V1)
8885   //  If (Imm < 0)
8886   //    TrailingElts = -Imm
8887   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
8888   //  else
8889   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
8890   //  Res = Load Ptr
8891 
8892   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
8893 
8894   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8895                                VT.getVectorElementCount() * 2);
8896   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
8897   EVT PtrVT = StackPtr.getValueType();
8898   auto &MF = DAG.getMachineFunction();
8899   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8900   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
8901 
8902   // Store the lo part of CONCAT_VECTORS(V1, V2)
8903   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
8904   // Store the hi part of CONCAT_VECTORS(V1, V2)
8905   SDValue OffsetToV2 = DAG.getVScale(
8906       DL, PtrVT,
8907       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8908   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
8909   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
8910 
8911   if (Imm >= 0) {
8912     // Load back the required element. getVectorElementPointer takes care of
8913     // clamping the index if it's out-of-bounds.
8914     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
8915     // Load the spliced result
8916     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
8917                        MachinePointerInfo::getUnknownStack(MF));
8918   }
8919 
8920   uint64_t TrailingElts = -Imm;
8921 
8922   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
8923   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
8924   SDValue TrailingBytes =
8925       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
8926 
8927   if (TrailingElts > VT.getVectorMinNumElements()) {
8928     SDValue VLBytes = DAG.getVScale(
8929         DL, PtrVT,
8930         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8931     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
8932   }
8933 
8934   // Calculate the start address of the spliced result.
8935   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
8936 
8937   // Load the spliced result
8938   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
8939                      MachinePointerInfo::getUnknownStack(MF));
8940 }
8941 
8942 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
8943                                            SDValue &LHS, SDValue &RHS,
8944                                            SDValue &CC, bool &NeedInvert,
8945                                            const SDLoc &dl, SDValue &Chain,
8946                                            bool IsSignaling) const {
8947   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8948   MVT OpVT = LHS.getSimpleValueType();
8949   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
8950   NeedInvert = false;
8951   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
8952   default:
8953     llvm_unreachable("Unknown condition code action!");
8954   case TargetLowering::Legal:
8955     // Nothing to do.
8956     break;
8957   case TargetLowering::Expand: {
8958     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
8959     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8960       std::swap(LHS, RHS);
8961       CC = DAG.getCondCode(InvCC);
8962       return true;
8963     }
8964     // Swapping operands didn't work. Try inverting the condition.
8965     bool NeedSwap = false;
8966     InvCC = getSetCCInverse(CCCode, OpVT);
8967     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8968       // If inverting the condition is not enough, try swapping operands
8969       // on top of it.
8970       InvCC = ISD::getSetCCSwappedOperands(InvCC);
8971       NeedSwap = true;
8972     }
8973     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8974       CC = DAG.getCondCode(InvCC);
8975       NeedInvert = true;
8976       if (NeedSwap)
8977         std::swap(LHS, RHS);
8978       return true;
8979     }
8980 
8981     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
8982     unsigned Opc = 0;
8983     switch (CCCode) {
8984     default:
8985       llvm_unreachable("Don't know how to expand this condition!");
8986     case ISD::SETUO:
8987       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
8988         CC1 = ISD::SETUNE;
8989         CC2 = ISD::SETUNE;
8990         Opc = ISD::OR;
8991         break;
8992       }
8993       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8994              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
8995       NeedInvert = true;
8996       LLVM_FALLTHROUGH;
8997     case ISD::SETO:
8998       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8999              "If SETO is expanded, SETOEQ must be legal!");
9000       CC1 = ISD::SETOEQ;
9001       CC2 = ISD::SETOEQ;
9002       Opc = ISD::AND;
9003       break;
9004     case ISD::SETONE:
9005     case ISD::SETUEQ:
9006       // If the SETUO or SETO CC isn't legal, we might be able to use
9007       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9008       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9009       // the operands.
9010       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9011       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9012           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9013            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9014         CC1 = ISD::SETOGT;
9015         CC2 = ISD::SETOLT;
9016         Opc = ISD::OR;
9017         NeedInvert = ((unsigned)CCCode & 0x8U);
9018         break;
9019       }
9020       LLVM_FALLTHROUGH;
9021     case ISD::SETOEQ:
9022     case ISD::SETOGT:
9023     case ISD::SETOGE:
9024     case ISD::SETOLT:
9025     case ISD::SETOLE:
9026     case ISD::SETUNE:
9027     case ISD::SETUGT:
9028     case ISD::SETUGE:
9029     case ISD::SETULT:
9030     case ISD::SETULE:
9031       // If we are floating point, assign and break, otherwise fall through.
9032       if (!OpVT.isInteger()) {
9033         // We can use the 4th bit to tell if we are the unordered
9034         // or ordered version of the opcode.
9035         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9036         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9037         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9038         break;
9039       }
9040       // Fallthrough if we are unsigned integer.
9041       LLVM_FALLTHROUGH;
9042     case ISD::SETLE:
9043     case ISD::SETGT:
9044     case ISD::SETGE:
9045     case ISD::SETLT:
9046     case ISD::SETNE:
9047     case ISD::SETEQ:
9048       // If all combinations of inverting the condition and swapping operands
9049       // didn't work then we have no means to expand the condition.
9050       llvm_unreachable("Don't know how to expand this condition!");
9051     }
9052 
9053     SDValue SetCC1, SetCC2;
9054     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9055       // If we aren't the ordered or unorder operation,
9056       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9057       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9058       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9059     } else {
9060       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9061       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9062       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9063     }
9064     if (Chain)
9065       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9066                           SetCC2.getValue(1));
9067     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9068     RHS = SDValue();
9069     CC = SDValue();
9070     return true;
9071   }
9072   }
9073   return false;
9074 }
9075