1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     Register Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
114   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
115   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
116   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
117   Alignment = Call->getParamAlignment(ArgIdx);
118   ByValType = nullptr;
119   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
120     ByValType = Call->getParamByValType(ArgIdx);
121 }
122 
123 /// Generate a libcall taking the given operands as arguments and returning a
124 /// result of type RetVT.
125 std::pair<SDValue, SDValue>
126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
127                             ArrayRef<SDValue> Ops,
128                             MakeLibCallOptions CallOptions,
129                             const SDLoc &dl,
130                             SDValue InChain) const {
131   if (!InChain)
132     InChain = DAG.getEntryNode();
133 
134   TargetLowering::ArgListTy Args;
135   Args.reserve(Ops.size());
136 
137   TargetLowering::ArgListEntry Entry;
138   for (unsigned i = 0; i < Ops.size(); ++i) {
139     SDValue NewOp = Ops[i];
140     Entry.Node = NewOp;
141     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
142     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
143                                                  CallOptions.IsSExt);
144     Entry.IsZExt = !Entry.IsSExt;
145 
146     if (CallOptions.IsSoften &&
147         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
148       Entry.IsSExt = Entry.IsZExt = false;
149     }
150     Args.push_back(Entry);
151   }
152 
153   if (LC == RTLIB::UNKNOWN_LIBCALL)
154     report_fatal_error("Unsupported library call operation!");
155   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
156                                          getPointerTy(DAG.getDataLayout()));
157 
158   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
159   TargetLowering::CallLoweringInfo CLI(DAG);
160   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
161   bool zeroExtend = !signExtend;
162 
163   if (CallOptions.IsSoften &&
164       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
165     signExtend = zeroExtend = false;
166   }
167 
168   CLI.setDebugLoc(dl)
169       .setChain(InChain)
170       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
171       .setNoReturn(CallOptions.DoesNotReturn)
172       .setDiscardResult(!CallOptions.IsReturnValueUsed)
173       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
174       .setSExtResult(signExtend)
175       .setZExtResult(zeroExtend);
176   return LowerCallTo(CLI);
177 }
178 
179 bool TargetLowering::findOptimalMemOpLowering(
180     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
181     unsigned SrcAS, const AttributeList &FuncAttributes) const {
182   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
183     return false;
184 
185   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
186 
187   if (VT == MVT::Other) {
188     // Use the largest integer type whose alignment constraints are satisfied.
189     // We only need to check DstAlign here as SrcAlign is always greater or
190     // equal to DstAlign (or zero).
191     VT = MVT::i64;
192     if (Op.isFixedDstAlign())
193       while (
194           Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
195           !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
196         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
197     assert(VT.isInteger());
198 
199     // Find the largest legal integer type.
200     MVT LVT = MVT::i64;
201     while (!isTypeLegal(LVT))
202       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
203     assert(LVT.isInteger());
204 
205     // If the type we've chosen is larger than the largest legal integer type
206     // then use that instead.
207     if (VT.bitsGT(LVT))
208       VT = LVT;
209   }
210 
211   unsigned NumMemOps = 0;
212   uint64_t Size = Op.size();
213   while (Size) {
214     unsigned VTSize = VT.getSizeInBits() / 8;
215     while (VTSize > Size) {
216       // For now, only use non-vector load / store's for the left-over pieces.
217       EVT NewVT = VT;
218       unsigned NewVTSize;
219 
220       bool Found = false;
221       if (VT.isVector() || VT.isFloatingPoint()) {
222         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
223         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
224             isSafeMemOpType(NewVT.getSimpleVT()))
225           Found = true;
226         else if (NewVT == MVT::i64 &&
227                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
228                  isSafeMemOpType(MVT::f64)) {
229           // i64 is usually not legal on 32-bit targets, but f64 may be.
230           NewVT = MVT::f64;
231           Found = true;
232         }
233       }
234 
235       if (!Found) {
236         do {
237           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
238           if (NewVT == MVT::i8)
239             break;
240         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
241       }
242       NewVTSize = NewVT.getSizeInBits() / 8;
243 
244       // If the new VT cannot cover all of the remaining bits, then consider
245       // issuing a (or a pair of) unaligned and overlapping load / store.
246       bool Fast;
247       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
248           allowsMisalignedMemoryAccesses(
249               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0,
250               MachineMemOperand::MONone, &Fast) &&
251           Fast)
252         VTSize = Size;
253       else {
254         VT = NewVT;
255         VTSize = NewVTSize;
256       }
257     }
258 
259     if (++NumMemOps > Limit)
260       return false;
261 
262     MemOps.push_back(VT);
263     Size -= VTSize;
264   }
265 
266   return true;
267 }
268 
269 /// Soften the operands of a comparison. This code is shared among BR_CC,
270 /// SELECT_CC, and SETCC handlers.
271 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
272                                          SDValue &NewLHS, SDValue &NewRHS,
273                                          ISD::CondCode &CCCode,
274                                          const SDLoc &dl, const SDValue OldLHS,
275                                          const SDValue OldRHS) const {
276   SDValue Chain;
277   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
278                              OldRHS, Chain);
279 }
280 
281 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
282                                          SDValue &NewLHS, SDValue &NewRHS,
283                                          ISD::CondCode &CCCode,
284                                          const SDLoc &dl, const SDValue OldLHS,
285                                          const SDValue OldRHS,
286                                          SDValue &Chain,
287                                          bool IsSignaling) const {
288   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
289   // not supporting it. We can update this code when libgcc provides such
290   // functions.
291 
292   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
293          && "Unsupported setcc type!");
294 
295   // Expand into one or more soft-fp libcall(s).
296   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
297   bool ShouldInvertCC = false;
298   switch (CCCode) {
299   case ISD::SETEQ:
300   case ISD::SETOEQ:
301     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
302           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
303           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
304     break;
305   case ISD::SETNE:
306   case ISD::SETUNE:
307     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
308           (VT == MVT::f64) ? RTLIB::UNE_F64 :
309           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
310     break;
311   case ISD::SETGE:
312   case ISD::SETOGE:
313     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
314           (VT == MVT::f64) ? RTLIB::OGE_F64 :
315           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
316     break;
317   case ISD::SETLT:
318   case ISD::SETOLT:
319     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
320           (VT == MVT::f64) ? RTLIB::OLT_F64 :
321           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
322     break;
323   case ISD::SETLE:
324   case ISD::SETOLE:
325     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
326           (VT == MVT::f64) ? RTLIB::OLE_F64 :
327           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
328     break;
329   case ISD::SETGT:
330   case ISD::SETOGT:
331     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
332           (VT == MVT::f64) ? RTLIB::OGT_F64 :
333           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
334     break;
335   case ISD::SETO:
336     ShouldInvertCC = true;
337     LLVM_FALLTHROUGH;
338   case ISD::SETUO:
339     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
340           (VT == MVT::f64) ? RTLIB::UO_F64 :
341           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
342     break;
343   case ISD::SETONE:
344     // SETONE = O && UNE
345     ShouldInvertCC = true;
346     LLVM_FALLTHROUGH;
347   case ISD::SETUEQ:
348     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
349           (VT == MVT::f64) ? RTLIB::UO_F64 :
350           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
351     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
352           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
353           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
354     break;
355   default:
356     // Invert CC for unordered comparisons
357     ShouldInvertCC = true;
358     switch (CCCode) {
359     case ISD::SETULT:
360       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
361             (VT == MVT::f64) ? RTLIB::OGE_F64 :
362             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
363       break;
364     case ISD::SETULE:
365       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
366             (VT == MVT::f64) ? RTLIB::OGT_F64 :
367             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
368       break;
369     case ISD::SETUGT:
370       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
371             (VT == MVT::f64) ? RTLIB::OLE_F64 :
372             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
373       break;
374     case ISD::SETUGE:
375       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
376             (VT == MVT::f64) ? RTLIB::OLT_F64 :
377             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
378       break;
379     default: llvm_unreachable("Do not know how to soften this setcc!");
380     }
381   }
382 
383   // Use the target specific return value for comparions lib calls.
384   EVT RetVT = getCmpLibcallReturnType();
385   SDValue Ops[2] = {NewLHS, NewRHS};
386   TargetLowering::MakeLibCallOptions CallOptions;
387   EVT OpsVT[2] = { OldLHS.getValueType(),
388                    OldRHS.getValueType() };
389   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
390   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
391   NewLHS = Call.first;
392   NewRHS = DAG.getConstant(0, dl, RetVT);
393 
394   CCCode = getCmpLibcallCC(LC1);
395   if (ShouldInvertCC) {
396     assert(RetVT.isInteger());
397     CCCode = getSetCCInverse(CCCode, RetVT);
398   }
399 
400   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
401     // Update Chain.
402     Chain = Call.second;
403   } else {
404     EVT SetCCVT =
405         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
406     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
407     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
408     CCCode = getCmpLibcallCC(LC2);
409     if (ShouldInvertCC)
410       CCCode = getSetCCInverse(CCCode, RetVT);
411     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
412     if (Chain)
413       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
414                           Call2.second);
415     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
416                          Tmp.getValueType(), Tmp, NewLHS);
417     NewRHS = SDValue();
418   }
419 }
420 
421 /// Return the entry encoding for a jump table in the current function. The
422 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
423 unsigned TargetLowering::getJumpTableEncoding() const {
424   // In non-pic modes, just use the address of a block.
425   if (!isPositionIndependent())
426     return MachineJumpTableInfo::EK_BlockAddress;
427 
428   // In PIC mode, if the target supports a GPRel32 directive, use it.
429   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
430     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
431 
432   // Otherwise, use a label difference.
433   return MachineJumpTableInfo::EK_LabelDifference32;
434 }
435 
436 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
437                                                  SelectionDAG &DAG) const {
438   // If our PIC model is GP relative, use the global offset table as the base.
439   unsigned JTEncoding = getJumpTableEncoding();
440 
441   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
442       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
443     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
444 
445   return Table;
446 }
447 
448 /// This returns the relocation base for the given PIC jumptable, the same as
449 /// getPICJumpTableRelocBase, but as an MCExpr.
450 const MCExpr *
451 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
452                                              unsigned JTI,MCContext &Ctx) const{
453   // The normal PIC reloc base is the label at the start of the jump table.
454   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
455 }
456 
457 bool
458 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
459   const TargetMachine &TM = getTargetMachine();
460   const GlobalValue *GV = GA->getGlobal();
461 
462   // If the address is not even local to this DSO we will have to load it from
463   // a got and then add the offset.
464   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
465     return false;
466 
467   // If the code is position independent we will have to add a base register.
468   if (isPositionIndependent())
469     return false;
470 
471   // Otherwise we can do it.
472   return true;
473 }
474 
475 //===----------------------------------------------------------------------===//
476 //  Optimization Methods
477 //===----------------------------------------------------------------------===//
478 
479 /// If the specified instruction has a constant integer operand and there are
480 /// bits set in that constant that are not demanded, then clear those bits and
481 /// return true.
482 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
483                                             TargetLoweringOpt &TLO) const {
484   SDLoc DL(Op);
485   unsigned Opcode = Op.getOpcode();
486 
487   // Do target-specific constant optimization.
488   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
489     return TLO.New.getNode();
490 
491   // FIXME: ISD::SELECT, ISD::SELECT_CC
492   switch (Opcode) {
493   default:
494     break;
495   case ISD::XOR:
496   case ISD::AND:
497   case ISD::OR: {
498     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
499     if (!Op1C)
500       return false;
501 
502     // If this is a 'not' op, don't touch it because that's a canonical form.
503     const APInt &C = Op1C->getAPIntValue();
504     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
505       return false;
506 
507     if (!C.isSubsetOf(Demanded)) {
508       EVT VT = Op.getValueType();
509       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
510       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
511       return TLO.CombineTo(Op, NewOp);
512     }
513 
514     break;
515   }
516   }
517 
518   return false;
519 }
520 
521 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
522 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
523 /// generalized for targets with other types of implicit widening casts.
524 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
525                                       const APInt &Demanded,
526                                       TargetLoweringOpt &TLO) const {
527   assert(Op.getNumOperands() == 2 &&
528          "ShrinkDemandedOp only supports binary operators!");
529   assert(Op.getNode()->getNumValues() == 1 &&
530          "ShrinkDemandedOp only supports nodes with one result!");
531 
532   SelectionDAG &DAG = TLO.DAG;
533   SDLoc dl(Op);
534 
535   // Early return, as this function cannot handle vector types.
536   if (Op.getValueType().isVector())
537     return false;
538 
539   // Don't do this if the node has another user, which may require the
540   // full value.
541   if (!Op.getNode()->hasOneUse())
542     return false;
543 
544   // Search for the smallest integer type with free casts to and from
545   // Op's type. For expedience, just check power-of-2 integer types.
546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
547   unsigned DemandedSize = Demanded.getActiveBits();
548   unsigned SmallVTBits = DemandedSize;
549   if (!isPowerOf2_32(SmallVTBits))
550     SmallVTBits = NextPowerOf2(SmallVTBits);
551   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
552     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
553     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
554         TLI.isZExtFree(SmallVT, Op.getValueType())) {
555       // We found a type with free casts.
556       SDValue X = DAG.getNode(
557           Op.getOpcode(), dl, SmallVT,
558           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
559           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
560       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
561       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
562       return TLO.CombineTo(Op, Z);
563     }
564   }
565   return false;
566 }
567 
568 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
569                                           DAGCombinerInfo &DCI) const {
570   SelectionDAG &DAG = DCI.DAG;
571   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
572                         !DCI.isBeforeLegalizeOps());
573   KnownBits Known;
574 
575   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
576   if (Simplified) {
577     DCI.AddToWorklist(Op.getNode());
578     DCI.CommitTargetLoweringOpt(TLO);
579   }
580   return Simplified;
581 }
582 
583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
584                                           KnownBits &Known,
585                                           TargetLoweringOpt &TLO,
586                                           unsigned Depth,
587                                           bool AssumeSingleUse) const {
588   EVT VT = Op.getValueType();
589   APInt DemandedElts = VT.isVector()
590                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
591                            : APInt(1, 1);
592   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
593                               AssumeSingleUse);
594 }
595 
596 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
597 // TODO: Under what circumstances can we create nodes? Constant folding?
598 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
599     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
600     SelectionDAG &DAG, unsigned Depth) const {
601   // Limit search depth.
602   if (Depth >= SelectionDAG::MaxRecursionDepth)
603     return SDValue();
604 
605   // Ignore UNDEFs.
606   if (Op.isUndef())
607     return SDValue();
608 
609   // Not demanding any bits/elts from Op.
610   if (DemandedBits == 0 || DemandedElts == 0)
611     return DAG.getUNDEF(Op.getValueType());
612 
613   unsigned NumElts = DemandedElts.getBitWidth();
614   KnownBits LHSKnown, RHSKnown;
615   switch (Op.getOpcode()) {
616   case ISD::BITCAST: {
617     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
618     EVT SrcVT = Src.getValueType();
619     EVT DstVT = Op.getValueType();
620     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
621     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
622 
623     if (NumSrcEltBits == NumDstEltBits)
624       if (SDValue V = SimplifyMultipleUseDemandedBits(
625               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
626         return DAG.getBitcast(DstVT, V);
627 
628     // TODO - bigendian once we have test coverage.
629     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
630         DAG.getDataLayout().isLittleEndian()) {
631       unsigned Scale = NumDstEltBits / NumSrcEltBits;
632       unsigned NumSrcElts = SrcVT.getVectorNumElements();
633       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
634       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
635       for (unsigned i = 0; i != Scale; ++i) {
636         unsigned Offset = i * NumSrcEltBits;
637         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
638         if (!Sub.isNullValue()) {
639           DemandedSrcBits |= Sub;
640           for (unsigned j = 0; j != NumElts; ++j)
641             if (DemandedElts[j])
642               DemandedSrcElts.setBit((j * Scale) + i);
643         }
644       }
645 
646       if (SDValue V = SimplifyMultipleUseDemandedBits(
647               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
648         return DAG.getBitcast(DstVT, V);
649     }
650 
651     // TODO - bigendian once we have test coverage.
652     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
653         DAG.getDataLayout().isLittleEndian()) {
654       unsigned Scale = NumSrcEltBits / NumDstEltBits;
655       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
656       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
657       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
658       for (unsigned i = 0; i != NumElts; ++i)
659         if (DemandedElts[i]) {
660           unsigned Offset = (i % Scale) * NumDstEltBits;
661           DemandedSrcBits.insertBits(DemandedBits, Offset);
662           DemandedSrcElts.setBit(i / Scale);
663         }
664 
665       if (SDValue V = SimplifyMultipleUseDemandedBits(
666               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
667         return DAG.getBitcast(DstVT, V);
668     }
669 
670     break;
671   }
672   case ISD::AND: {
673     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
674     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
675 
676     // If all of the demanded bits are known 1 on one side, return the other.
677     // These bits cannot contribute to the result of the 'and' in this
678     // context.
679     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
680       return Op.getOperand(0);
681     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
682       return Op.getOperand(1);
683     break;
684   }
685   case ISD::OR: {
686     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
687     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
688 
689     // If all of the demanded bits are known zero on one side, return the
690     // other.  These bits cannot contribute to the result of the 'or' in this
691     // context.
692     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
693       return Op.getOperand(0);
694     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
695       return Op.getOperand(1);
696     break;
697   }
698   case ISD::XOR: {
699     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
700     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
701 
702     // If all of the demanded bits are known zero on one side, return the
703     // other.
704     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
705       return Op.getOperand(0);
706     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
707       return Op.getOperand(1);
708     break;
709   }
710   case ISD::SETCC: {
711     SDValue Op0 = Op.getOperand(0);
712     SDValue Op1 = Op.getOperand(1);
713     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
714     // If (1) we only need the sign-bit, (2) the setcc operands are the same
715     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
716     // -1, we may be able to bypass the setcc.
717     if (DemandedBits.isSignMask() &&
718         Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() &&
719         getBooleanContents(Op0.getValueType()) ==
720             BooleanContent::ZeroOrNegativeOneBooleanContent) {
721       // If we're testing X < 0, then this compare isn't needed - just use X!
722       // FIXME: We're limiting to integer types here, but this should also work
723       // if we don't care about FP signed-zero. The use of SETLT with FP means
724       // that we don't care about NaNs.
725       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
726           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
727         return Op0;
728     }
729     break;
730   }
731   case ISD::SIGN_EXTEND_INREG: {
732     // If none of the extended bits are demanded, eliminate the sextinreg.
733     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
734     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
735       return Op.getOperand(0);
736     break;
737   }
738   case ISD::INSERT_VECTOR_ELT: {
739     // If we don't demand the inserted element, return the base vector.
740     SDValue Vec = Op.getOperand(0);
741     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
742     EVT VecVT = Vec.getValueType();
743     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
744         !DemandedElts[CIdx->getZExtValue()])
745       return Vec;
746     break;
747   }
748   case ISD::INSERT_SUBVECTOR: {
749     // If we don't demand the inserted subvector, return the base vector.
750     SDValue Vec = Op.getOperand(0);
751     SDValue Sub = Op.getOperand(1);
752     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
753     unsigned NumVecElts = Vec.getValueType().getVectorNumElements();
754     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
755     if (CIdx && CIdx->getAPIntValue().ule(NumVecElts - NumSubElts))
756       if (DemandedElts.extractBits(NumSubElts, CIdx->getZExtValue()) == 0)
757         return Vec;
758     break;
759   }
760   case ISD::VECTOR_SHUFFLE: {
761     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
762 
763     // If all the demanded elts are from one operand and are inline,
764     // then we can use the operand directly.
765     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
766     for (unsigned i = 0; i != NumElts; ++i) {
767       int M = ShuffleMask[i];
768       if (M < 0 || !DemandedElts[i])
769         continue;
770       AllUndef = false;
771       IdentityLHS &= (M == (int)i);
772       IdentityRHS &= ((M - NumElts) == i);
773     }
774 
775     if (AllUndef)
776       return DAG.getUNDEF(Op.getValueType());
777     if (IdentityLHS)
778       return Op.getOperand(0);
779     if (IdentityRHS)
780       return Op.getOperand(1);
781     break;
782   }
783   default:
784     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
785       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
786               Op, DemandedBits, DemandedElts, DAG, Depth))
787         return V;
788     break;
789   }
790   return SDValue();
791 }
792 
793 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
794     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
795     unsigned Depth) const {
796   EVT VT = Op.getValueType();
797   APInt DemandedElts = VT.isVector()
798                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
799                            : APInt(1, 1);
800   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
801                                          Depth);
802 }
803 
804 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
805 /// result of Op are ever used downstream. If we can use this information to
806 /// simplify Op, create a new simplified DAG node and return true, returning the
807 /// original and new nodes in Old and New. Otherwise, analyze the expression and
808 /// return a mask of Known bits for the expression (used to simplify the
809 /// caller).  The Known bits may only be accurate for those bits in the
810 /// OriginalDemandedBits and OriginalDemandedElts.
811 bool TargetLowering::SimplifyDemandedBits(
812     SDValue Op, const APInt &OriginalDemandedBits,
813     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
814     unsigned Depth, bool AssumeSingleUse) const {
815   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
816   assert(Op.getScalarValueSizeInBits() == BitWidth &&
817          "Mask size mismatches value type size!");
818 
819   unsigned NumElts = OriginalDemandedElts.getBitWidth();
820   assert((!Op.getValueType().isVector() ||
821           NumElts == Op.getValueType().getVectorNumElements()) &&
822          "Unexpected vector size");
823 
824   APInt DemandedBits = OriginalDemandedBits;
825   APInt DemandedElts = OriginalDemandedElts;
826   SDLoc dl(Op);
827   auto &DL = TLO.DAG.getDataLayout();
828 
829   // Don't know anything.
830   Known = KnownBits(BitWidth);
831 
832   // Undef operand.
833   if (Op.isUndef())
834     return false;
835 
836   if (Op.getOpcode() == ISD::Constant) {
837     // We know all of the bits for a constant!
838     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
839     Known.Zero = ~Known.One;
840     return false;
841   }
842 
843   // Other users may use these bits.
844   EVT VT = Op.getValueType();
845   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
846     if (Depth != 0) {
847       // If not at the root, Just compute the Known bits to
848       // simplify things downstream.
849       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
850       return false;
851     }
852     // If this is the root being simplified, allow it to have multiple uses,
853     // just set the DemandedBits/Elts to all bits.
854     DemandedBits = APInt::getAllOnesValue(BitWidth);
855     DemandedElts = APInt::getAllOnesValue(NumElts);
856   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
857     // Not demanding any bits/elts from Op.
858     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
859   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
860     // Limit search depth.
861     return false;
862   }
863 
864   KnownBits Known2, KnownOut;
865   switch (Op.getOpcode()) {
866   case ISD::TargetConstant:
867     llvm_unreachable("Can't simplify this node");
868   case ISD::SCALAR_TO_VECTOR: {
869     if (!DemandedElts[0])
870       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
871 
872     KnownBits SrcKnown;
873     SDValue Src = Op.getOperand(0);
874     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
875     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
876     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
877       return true;
878 
879     // Upper elements are undef, so only get the knownbits if we just demand
880     // the bottom element.
881     if (DemandedElts == 1)
882       Known = SrcKnown.anyextOrTrunc(BitWidth);
883     break;
884   }
885   case ISD::BUILD_VECTOR:
886     // Collect the known bits that are shared by every demanded element.
887     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
888     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
889     return false; // Don't fall through, will infinitely loop.
890   case ISD::LOAD: {
891     LoadSDNode *LD = cast<LoadSDNode>(Op);
892     if (getTargetConstantFromLoad(LD)) {
893       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
894       return false; // Don't fall through, will infinitely loop.
895     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
896       // If this is a ZEXTLoad and we are looking at the loaded value.
897       EVT MemVT = LD->getMemoryVT();
898       unsigned MemBits = MemVT.getScalarSizeInBits();
899       Known.Zero.setBitsFrom(MemBits);
900       return false; // Don't fall through, will infinitely loop.
901     }
902     break;
903   }
904   case ISD::INSERT_VECTOR_ELT: {
905     SDValue Vec = Op.getOperand(0);
906     SDValue Scl = Op.getOperand(1);
907     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
908     EVT VecVT = Vec.getValueType();
909 
910     // If index isn't constant, assume we need all vector elements AND the
911     // inserted element.
912     APInt DemandedVecElts(DemandedElts);
913     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
914       unsigned Idx = CIdx->getZExtValue();
915       DemandedVecElts.clearBit(Idx);
916 
917       // Inserted element is not required.
918       if (!DemandedElts[Idx])
919         return TLO.CombineTo(Op, Vec);
920     }
921 
922     KnownBits KnownScl;
923     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
924     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
925     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
926       return true;
927 
928     Known = KnownScl.anyextOrTrunc(BitWidth);
929 
930     KnownBits KnownVec;
931     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
932                              Depth + 1))
933       return true;
934 
935     if (!!DemandedVecElts) {
936       Known.One &= KnownVec.One;
937       Known.Zero &= KnownVec.Zero;
938     }
939 
940     return false;
941   }
942   case ISD::INSERT_SUBVECTOR: {
943     SDValue Base = Op.getOperand(0);
944     SDValue Sub = Op.getOperand(1);
945     EVT SubVT = Sub.getValueType();
946     unsigned NumSubElts = SubVT.getVectorNumElements();
947 
948     // If index isn't constant, assume we need the original demanded base
949     // elements and ALL the inserted subvector elements.
950     APInt BaseElts = DemandedElts;
951     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
952     if (isa<ConstantSDNode>(Op.getOperand(2))) {
953       const APInt &Idx = Op.getConstantOperandAPInt(2);
954       if (Idx.ule(NumElts - NumSubElts)) {
955         unsigned SubIdx = Idx.getZExtValue();
956         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
957         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
958       }
959     }
960 
961     KnownBits KnownSub, KnownBase;
962     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
963                              Depth + 1))
964       return true;
965     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
966                              Depth + 1))
967       return true;
968 
969     Known.Zero.setAllBits();
970     Known.One.setAllBits();
971     if (!!SubElts) {
972         Known.One &= KnownSub.One;
973         Known.Zero &= KnownSub.Zero;
974     }
975     if (!!BaseElts) {
976         Known.One &= KnownBase.One;
977         Known.Zero &= KnownBase.Zero;
978     }
979 
980     // Attempt to avoid multi-use src if we don't need anything from it.
981     if (!DemandedBits.isAllOnesValue() || !SubElts.isAllOnesValue() ||
982         !BaseElts.isAllOnesValue()) {
983       SDValue NewSub = SimplifyMultipleUseDemandedBits(
984           Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1);
985       SDValue NewBase = SimplifyMultipleUseDemandedBits(
986           Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1);
987       if (NewSub || NewBase) {
988         NewSub = NewSub ? NewSub : Sub;
989         NewBase = NewBase ? NewBase : Base;
990         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewBase, NewSub,
991                                         Op.getOperand(2));
992         return TLO.CombineTo(Op, NewOp);
993       }
994     }
995     break;
996   }
997   case ISD::EXTRACT_SUBVECTOR: {
998     // If index isn't constant, assume we need all the source vector elements.
999     SDValue Src = Op.getOperand(0);
1000     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1001     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1002     APInt SrcElts = APInt::getAllOnesValue(NumSrcElts);
1003     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
1004       // Offset the demanded elts by the subvector index.
1005       uint64_t Idx = SubIdx->getZExtValue();
1006       SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1007     }
1008     if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1))
1009       return true;
1010 
1011     // Attempt to avoid multi-use src if we don't need anything from it.
1012     if (!DemandedBits.isAllOnesValue() || !SrcElts.isAllOnesValue()) {
1013       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1014           Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1);
1015       if (DemandedSrc) {
1016         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1017                                         Op.getOperand(1));
1018         return TLO.CombineTo(Op, NewOp);
1019       }
1020     }
1021     break;
1022   }
1023   case ISD::CONCAT_VECTORS: {
1024     Known.Zero.setAllBits();
1025     Known.One.setAllBits();
1026     EVT SubVT = Op.getOperand(0).getValueType();
1027     unsigned NumSubVecs = Op.getNumOperands();
1028     unsigned NumSubElts = SubVT.getVectorNumElements();
1029     for (unsigned i = 0; i != NumSubVecs; ++i) {
1030       APInt DemandedSubElts =
1031           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1032       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1033                                Known2, TLO, Depth + 1))
1034         return true;
1035       // Known bits are shared by every demanded subvector element.
1036       if (!!DemandedSubElts) {
1037         Known.One &= Known2.One;
1038         Known.Zero &= Known2.Zero;
1039       }
1040     }
1041     break;
1042   }
1043   case ISD::VECTOR_SHUFFLE: {
1044     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1045 
1046     // Collect demanded elements from shuffle operands..
1047     APInt DemandedLHS(NumElts, 0);
1048     APInt DemandedRHS(NumElts, 0);
1049     for (unsigned i = 0; i != NumElts; ++i) {
1050       if (!DemandedElts[i])
1051         continue;
1052       int M = ShuffleMask[i];
1053       if (M < 0) {
1054         // For UNDEF elements, we don't know anything about the common state of
1055         // the shuffle result.
1056         DemandedLHS.clearAllBits();
1057         DemandedRHS.clearAllBits();
1058         break;
1059       }
1060       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1061       if (M < (int)NumElts)
1062         DemandedLHS.setBit(M);
1063       else
1064         DemandedRHS.setBit(M - NumElts);
1065     }
1066 
1067     if (!!DemandedLHS || !!DemandedRHS) {
1068       SDValue Op0 = Op.getOperand(0);
1069       SDValue Op1 = Op.getOperand(1);
1070 
1071       Known.Zero.setAllBits();
1072       Known.One.setAllBits();
1073       if (!!DemandedLHS) {
1074         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1075                                  Depth + 1))
1076           return true;
1077         Known.One &= Known2.One;
1078         Known.Zero &= Known2.Zero;
1079       }
1080       if (!!DemandedRHS) {
1081         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1082                                  Depth + 1))
1083           return true;
1084         Known.One &= Known2.One;
1085         Known.Zero &= Known2.Zero;
1086       }
1087 
1088       // Attempt to avoid multi-use ops if we don't need anything from them.
1089       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1090           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1091       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1092           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1093       if (DemandedOp0 || DemandedOp1) {
1094         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1095         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1096         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1097         return TLO.CombineTo(Op, NewOp);
1098       }
1099     }
1100     break;
1101   }
1102   case ISD::AND: {
1103     SDValue Op0 = Op.getOperand(0);
1104     SDValue Op1 = Op.getOperand(1);
1105 
1106     // If the RHS is a constant, check to see if the LHS would be zero without
1107     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1108     // simplify the LHS, here we're using information from the LHS to simplify
1109     // the RHS.
1110     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1111       // Do not increment Depth here; that can cause an infinite loop.
1112       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1113       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1114       if ((LHSKnown.Zero & DemandedBits) ==
1115           (~RHSC->getAPIntValue() & DemandedBits))
1116         return TLO.CombineTo(Op, Op0);
1117 
1118       // If any of the set bits in the RHS are known zero on the LHS, shrink
1119       // the constant.
1120       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1121         return true;
1122 
1123       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1124       // constant, but if this 'and' is only clearing bits that were just set by
1125       // the xor, then this 'and' can be eliminated by shrinking the mask of
1126       // the xor. For example, for a 32-bit X:
1127       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1128       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1129           LHSKnown.One == ~RHSC->getAPIntValue()) {
1130         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1131         return TLO.CombineTo(Op, Xor);
1132       }
1133     }
1134 
1135     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1136                              Depth + 1))
1137       return true;
1138     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1139     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1140                              Known2, TLO, Depth + 1))
1141       return true;
1142     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1143 
1144     // Attempt to avoid multi-use ops if we don't need anything from them.
1145     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1146       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1147           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1148       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1149           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1150       if (DemandedOp0 || DemandedOp1) {
1151         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1152         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1153         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1154         return TLO.CombineTo(Op, NewOp);
1155       }
1156     }
1157 
1158     // If all of the demanded bits are known one on one side, return the other.
1159     // These bits cannot contribute to the result of the 'and'.
1160     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1161       return TLO.CombineTo(Op, Op0);
1162     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1163       return TLO.CombineTo(Op, Op1);
1164     // If all of the demanded bits in the inputs are known zeros, return zero.
1165     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1166       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1167     // If the RHS is a constant, see if we can simplify it.
1168     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1169       return true;
1170     // If the operation can be done in a smaller type, do so.
1171     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1172       return true;
1173 
1174     // Output known-1 bits are only known if set in both the LHS & RHS.
1175     Known.One &= Known2.One;
1176     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1177     Known.Zero |= Known2.Zero;
1178     break;
1179   }
1180   case ISD::OR: {
1181     SDValue Op0 = Op.getOperand(0);
1182     SDValue Op1 = Op.getOperand(1);
1183 
1184     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1185                              Depth + 1))
1186       return true;
1187     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1188     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1189                              Known2, TLO, Depth + 1))
1190       return true;
1191     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1192 
1193     // Attempt to avoid multi-use ops if we don't need anything from them.
1194     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1195       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1196           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1197       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1198           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1199       if (DemandedOp0 || DemandedOp1) {
1200         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1201         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1202         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1203         return TLO.CombineTo(Op, NewOp);
1204       }
1205     }
1206 
1207     // If all of the demanded bits are known zero on one side, return the other.
1208     // These bits cannot contribute to the result of the 'or'.
1209     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1210       return TLO.CombineTo(Op, Op0);
1211     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1212       return TLO.CombineTo(Op, Op1);
1213     // If the RHS is a constant, see if we can simplify it.
1214     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1215       return true;
1216     // If the operation can be done in a smaller type, do so.
1217     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1218       return true;
1219 
1220     // Output known-0 bits are only known if clear in both the LHS & RHS.
1221     Known.Zero &= Known2.Zero;
1222     // Output known-1 are known to be set if set in either the LHS | RHS.
1223     Known.One |= Known2.One;
1224     break;
1225   }
1226   case ISD::XOR: {
1227     SDValue Op0 = Op.getOperand(0);
1228     SDValue Op1 = Op.getOperand(1);
1229 
1230     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1231                              Depth + 1))
1232       return true;
1233     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1234     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1235                              Depth + 1))
1236       return true;
1237     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1238 
1239     // Attempt to avoid multi-use ops if we don't need anything from them.
1240     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1241       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1242           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1243       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1244           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1245       if (DemandedOp0 || DemandedOp1) {
1246         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1247         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1248         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1249         return TLO.CombineTo(Op, NewOp);
1250       }
1251     }
1252 
1253     // If all of the demanded bits are known zero on one side, return the other.
1254     // These bits cannot contribute to the result of the 'xor'.
1255     if (DemandedBits.isSubsetOf(Known.Zero))
1256       return TLO.CombineTo(Op, Op0);
1257     if (DemandedBits.isSubsetOf(Known2.Zero))
1258       return TLO.CombineTo(Op, Op1);
1259     // If the operation can be done in a smaller type, do so.
1260     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1261       return true;
1262 
1263     // If all of the unknown bits are known to be zero on one side or the other
1264     // (but not both) turn this into an *inclusive* or.
1265     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1266     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1267       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1268 
1269     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1270     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1271     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1272     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1273 
1274     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1275       // If one side is a constant, and all of the known set bits on the other
1276       // side are also set in the constant, turn this into an AND, as we know
1277       // the bits will be cleared.
1278       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1279       // NB: it is okay if more bits are known than are requested
1280       if (C->getAPIntValue() == Known2.One) {
1281         SDValue ANDC =
1282             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1283         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1284       }
1285 
1286       // If the RHS is a constant, see if we can change it. Don't alter a -1
1287       // constant because that's a 'not' op, and that is better for combining
1288       // and codegen.
1289       if (!C->isAllOnesValue()) {
1290         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1291           // We're flipping all demanded bits. Flip the undemanded bits too.
1292           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1293           return TLO.CombineTo(Op, New);
1294         }
1295         // If we can't turn this into a 'not', try to shrink the constant.
1296         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1297           return true;
1298       }
1299     }
1300 
1301     Known = std::move(KnownOut);
1302     break;
1303   }
1304   case ISD::SELECT:
1305     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1306                              Depth + 1))
1307       return true;
1308     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1309                              Depth + 1))
1310       return true;
1311     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1312     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1313 
1314     // If the operands are constants, see if we can simplify them.
1315     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1316       return true;
1317 
1318     // Only known if known in both the LHS and RHS.
1319     Known.One &= Known2.One;
1320     Known.Zero &= Known2.Zero;
1321     break;
1322   case ISD::SELECT_CC:
1323     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1324                              Depth + 1))
1325       return true;
1326     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1327                              Depth + 1))
1328       return true;
1329     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1330     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1331 
1332     // If the operands are constants, see if we can simplify them.
1333     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1334       return true;
1335 
1336     // Only known if known in both the LHS and RHS.
1337     Known.One &= Known2.One;
1338     Known.Zero &= Known2.Zero;
1339     break;
1340   case ISD::SETCC: {
1341     SDValue Op0 = Op.getOperand(0);
1342     SDValue Op1 = Op.getOperand(1);
1343     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1344     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1345     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1346     // -1, we may be able to bypass the setcc.
1347     if (DemandedBits.isSignMask() &&
1348         Op0.getScalarValueSizeInBits() == BitWidth &&
1349         getBooleanContents(Op0.getValueType()) ==
1350             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1351       // If we're testing X < 0, then this compare isn't needed - just use X!
1352       // FIXME: We're limiting to integer types here, but this should also work
1353       // if we don't care about FP signed-zero. The use of SETLT with FP means
1354       // that we don't care about NaNs.
1355       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1356           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1357         return TLO.CombineTo(Op, Op0);
1358 
1359       // TODO: Should we check for other forms of sign-bit comparisons?
1360       // Examples: X <= -1, X >= 0
1361     }
1362     if (getBooleanContents(Op0.getValueType()) ==
1363             TargetLowering::ZeroOrOneBooleanContent &&
1364         BitWidth > 1)
1365       Known.Zero.setBitsFrom(1);
1366     break;
1367   }
1368   case ISD::SHL: {
1369     SDValue Op0 = Op.getOperand(0);
1370     SDValue Op1 = Op.getOperand(1);
1371     EVT ShiftVT = Op1.getValueType();
1372 
1373     if (const APInt *SA =
1374             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1375       unsigned ShAmt = SA->getZExtValue();
1376       if (ShAmt == 0)
1377         return TLO.CombineTo(Op, Op0);
1378 
1379       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1380       // single shift.  We can do this if the bottom bits (which are shifted
1381       // out) are never demanded.
1382       // TODO - support non-uniform vector amounts.
1383       if (Op0.getOpcode() == ISD::SRL) {
1384         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1385           if (const APInt *SA2 =
1386                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1387             if (SA2->ult(BitWidth)) {
1388               unsigned C1 = SA2->getZExtValue();
1389               unsigned Opc = ISD::SHL;
1390               int Diff = ShAmt - C1;
1391               if (Diff < 0) {
1392                 Diff = -Diff;
1393                 Opc = ISD::SRL;
1394               }
1395 
1396               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1397               return TLO.CombineTo(
1398                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1399             }
1400           }
1401         }
1402       }
1403 
1404       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1405       // are not demanded. This will likely allow the anyext to be folded away.
1406       // TODO - support non-uniform vector amounts.
1407       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1408         SDValue InnerOp = Op0.getOperand(0);
1409         EVT InnerVT = InnerOp.getValueType();
1410         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1411         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1412             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1413           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1414           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1415             ShTy = InnerVT;
1416           SDValue NarrowShl =
1417               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1418                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1419           return TLO.CombineTo(
1420               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1421         }
1422 
1423         // Repeat the SHL optimization above in cases where an extension
1424         // intervenes: (shl (anyext (shr x, c1)), c2) to
1425         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1426         // aren't demanded (as above) and that the shifted upper c1 bits of
1427         // x aren't demanded.
1428         // TODO - support non-uniform vector amounts.
1429         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1430             InnerOp.hasOneUse()) {
1431           if (const APInt *SA2 =
1432                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1433             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1434             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1435                 DemandedBits.getActiveBits() <=
1436                     (InnerBits - InnerShAmt + ShAmt) &&
1437                 DemandedBits.countTrailingZeros() >= ShAmt) {
1438               SDValue NewSA =
1439                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1440               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1441                                                InnerOp.getOperand(0));
1442               return TLO.CombineTo(
1443                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1444             }
1445           }
1446         }
1447       }
1448 
1449       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1450       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1451                                Depth + 1))
1452         return true;
1453       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1454       Known.Zero <<= ShAmt;
1455       Known.One <<= ShAmt;
1456       // low bits known zero.
1457       Known.Zero.setLowBits(ShAmt);
1458 
1459       // Try shrinking the operation as long as the shift amount will still be
1460       // in range.
1461       if ((ShAmt < DemandedBits.getActiveBits()) &&
1462           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1463         return true;
1464     }
1465     break;
1466   }
1467   case ISD::SRL: {
1468     SDValue Op0 = Op.getOperand(0);
1469     SDValue Op1 = Op.getOperand(1);
1470     EVT ShiftVT = Op1.getValueType();
1471 
1472     if (const APInt *SA =
1473             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1474       unsigned ShAmt = SA->getZExtValue();
1475       if (ShAmt == 0)
1476         return TLO.CombineTo(Op, Op0);
1477 
1478       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1479       // single shift.  We can do this if the top bits (which are shifted out)
1480       // are never demanded.
1481       // TODO - support non-uniform vector amounts.
1482       if (Op0.getOpcode() == ISD::SHL) {
1483         if (const APInt *SA2 =
1484                 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1485           if (!DemandedBits.intersects(
1486                   APInt::getHighBitsSet(BitWidth, ShAmt))) {
1487             if (SA2->ult(BitWidth)) {
1488               unsigned C1 = SA2->getZExtValue();
1489               unsigned Opc = ISD::SRL;
1490               int Diff = ShAmt - C1;
1491               if (Diff < 0) {
1492                 Diff = -Diff;
1493                 Opc = ISD::SHL;
1494               }
1495 
1496               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1497               return TLO.CombineTo(
1498                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1499             }
1500           }
1501         }
1502       }
1503 
1504       APInt InDemandedMask = (DemandedBits << ShAmt);
1505 
1506       // If the shift is exact, then it does demand the low bits (and knows that
1507       // they are zero).
1508       if (Op->getFlags().hasExact())
1509         InDemandedMask.setLowBits(ShAmt);
1510 
1511       // Compute the new bits that are at the top now.
1512       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1513                                Depth + 1))
1514         return true;
1515       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1516       Known.Zero.lshrInPlace(ShAmt);
1517       Known.One.lshrInPlace(ShAmt);
1518       // High bits known zero.
1519       Known.Zero.setHighBits(ShAmt);
1520     }
1521     break;
1522   }
1523   case ISD::SRA: {
1524     SDValue Op0 = Op.getOperand(0);
1525     SDValue Op1 = Op.getOperand(1);
1526     EVT ShiftVT = Op1.getValueType();
1527 
1528     // If we only want bits that already match the signbit then we don't need
1529     // to shift.
1530     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1531     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1532         NumHiDemandedBits)
1533       return TLO.CombineTo(Op, Op0);
1534 
1535     // If this is an arithmetic shift right and only the low-bit is set, we can
1536     // always convert this into a logical shr, even if the shift amount is
1537     // variable.  The low bit of the shift cannot be an input sign bit unless
1538     // the shift amount is >= the size of the datatype, which is undefined.
1539     if (DemandedBits.isOneValue())
1540       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1541 
1542     if (const APInt *SA =
1543             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1544       unsigned ShAmt = SA->getZExtValue();
1545       if (ShAmt == 0)
1546         return TLO.CombineTo(Op, Op0);
1547 
1548       APInt InDemandedMask = (DemandedBits << ShAmt);
1549 
1550       // If the shift is exact, then it does demand the low bits (and knows that
1551       // they are zero).
1552       if (Op->getFlags().hasExact())
1553         InDemandedMask.setLowBits(ShAmt);
1554 
1555       // If any of the demanded bits are produced by the sign extension, we also
1556       // demand the input sign bit.
1557       if (DemandedBits.countLeadingZeros() < ShAmt)
1558         InDemandedMask.setSignBit();
1559 
1560       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1561                                Depth + 1))
1562         return true;
1563       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1564       Known.Zero.lshrInPlace(ShAmt);
1565       Known.One.lshrInPlace(ShAmt);
1566 
1567       // If the input sign bit is known to be zero, or if none of the top bits
1568       // are demanded, turn this into an unsigned shift right.
1569       if (Known.Zero[BitWidth - ShAmt - 1] ||
1570           DemandedBits.countLeadingZeros() >= ShAmt) {
1571         SDNodeFlags Flags;
1572         Flags.setExact(Op->getFlags().hasExact());
1573         return TLO.CombineTo(
1574             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1575       }
1576 
1577       int Log2 = DemandedBits.exactLogBase2();
1578       if (Log2 >= 0) {
1579         // The bit must come from the sign.
1580         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1581         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1582       }
1583 
1584       if (Known.One[BitWidth - ShAmt - 1])
1585         // New bits are known one.
1586         Known.One.setHighBits(ShAmt);
1587 
1588       // Attempt to avoid multi-use ops if we don't need anything from them.
1589       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1590         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1591             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1592         if (DemandedOp0) {
1593           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1594           return TLO.CombineTo(Op, NewOp);
1595         }
1596       }
1597     }
1598     break;
1599   }
1600   case ISD::FSHL:
1601   case ISD::FSHR: {
1602     SDValue Op0 = Op.getOperand(0);
1603     SDValue Op1 = Op.getOperand(1);
1604     SDValue Op2 = Op.getOperand(2);
1605     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1606 
1607     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1608       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1609 
1610       // For fshl, 0-shift returns the 1st arg.
1611       // For fshr, 0-shift returns the 2nd arg.
1612       if (Amt == 0) {
1613         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1614                                  Known, TLO, Depth + 1))
1615           return true;
1616         break;
1617       }
1618 
1619       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1620       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1621       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1622       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1623       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1624                                Depth + 1))
1625         return true;
1626       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1627                                Depth + 1))
1628         return true;
1629 
1630       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1631       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1632       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1633       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1634       Known.One |= Known2.One;
1635       Known.Zero |= Known2.Zero;
1636     }
1637     break;
1638   }
1639   case ISD::ROTL:
1640   case ISD::ROTR: {
1641     SDValue Op0 = Op.getOperand(0);
1642 
1643     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1644     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1645       return TLO.CombineTo(Op, Op0);
1646     break;
1647   }
1648   case ISD::BITREVERSE: {
1649     SDValue Src = Op.getOperand(0);
1650     APInt DemandedSrcBits = DemandedBits.reverseBits();
1651     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1652                              Depth + 1))
1653       return true;
1654     Known.One = Known2.One.reverseBits();
1655     Known.Zero = Known2.Zero.reverseBits();
1656     break;
1657   }
1658   case ISD::BSWAP: {
1659     SDValue Src = Op.getOperand(0);
1660     APInt DemandedSrcBits = DemandedBits.byteSwap();
1661     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1662                              Depth + 1))
1663       return true;
1664     Known.One = Known2.One.byteSwap();
1665     Known.Zero = Known2.Zero.byteSwap();
1666     break;
1667   }
1668   case ISD::SIGN_EXTEND_INREG: {
1669     SDValue Op0 = Op.getOperand(0);
1670     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1671     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1672 
1673     // If we only care about the highest bit, don't bother shifting right.
1674     if (DemandedBits.isSignMask()) {
1675       unsigned NumSignBits =
1676           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1677       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1678       // However if the input is already sign extended we expect the sign
1679       // extension to be dropped altogether later and do not simplify.
1680       if (!AlreadySignExtended) {
1681         // Compute the correct shift amount type, which must be getShiftAmountTy
1682         // for scalar types after legalization.
1683         EVT ShiftAmtTy = VT;
1684         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1685           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1686 
1687         SDValue ShiftAmt =
1688             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1689         return TLO.CombineTo(Op,
1690                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1691       }
1692     }
1693 
1694     // If none of the extended bits are demanded, eliminate the sextinreg.
1695     if (DemandedBits.getActiveBits() <= ExVTBits)
1696       return TLO.CombineTo(Op, Op0);
1697 
1698     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1699 
1700     // Since the sign extended bits are demanded, we know that the sign
1701     // bit is demanded.
1702     InputDemandedBits.setBit(ExVTBits - 1);
1703 
1704     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1705       return true;
1706     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1707 
1708     // If the sign bit of the input is known set or clear, then we know the
1709     // top bits of the result.
1710 
1711     // If the input sign bit is known zero, convert this into a zero extension.
1712     if (Known.Zero[ExVTBits - 1])
1713       return TLO.CombineTo(
1714           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1715 
1716     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1717     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1718       Known.One.setBitsFrom(ExVTBits);
1719       Known.Zero &= Mask;
1720     } else { // Input sign bit unknown
1721       Known.Zero &= Mask;
1722       Known.One &= Mask;
1723     }
1724     break;
1725   }
1726   case ISD::BUILD_PAIR: {
1727     EVT HalfVT = Op.getOperand(0).getValueType();
1728     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1729 
1730     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1731     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1732 
1733     KnownBits KnownLo, KnownHi;
1734 
1735     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1736       return true;
1737 
1738     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1739       return true;
1740 
1741     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1742                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1743 
1744     Known.One = KnownLo.One.zext(BitWidth) |
1745                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1746     break;
1747   }
1748   case ISD::ZERO_EXTEND:
1749   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1750     SDValue Src = Op.getOperand(0);
1751     EVT SrcVT = Src.getValueType();
1752     unsigned InBits = SrcVT.getScalarSizeInBits();
1753     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1754     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1755 
1756     // If none of the top bits are demanded, convert this into an any_extend.
1757     if (DemandedBits.getActiveBits() <= InBits) {
1758       // If we only need the non-extended bits of the bottom element
1759       // then we can just bitcast to the result.
1760       if (IsVecInReg && DemandedElts == 1 &&
1761           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1762           TLO.DAG.getDataLayout().isLittleEndian())
1763         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1764 
1765       unsigned Opc =
1766           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1767       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1768         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1769     }
1770 
1771     APInt InDemandedBits = DemandedBits.trunc(InBits);
1772     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1773     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1774                              Depth + 1))
1775       return true;
1776     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1777     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1778     Known = Known.zext(BitWidth);
1779     break;
1780   }
1781   case ISD::SIGN_EXTEND:
1782   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1783     SDValue Src = Op.getOperand(0);
1784     EVT SrcVT = Src.getValueType();
1785     unsigned InBits = SrcVT.getScalarSizeInBits();
1786     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1787     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1788 
1789     // If none of the top bits are demanded, convert this into an any_extend.
1790     if (DemandedBits.getActiveBits() <= InBits) {
1791       // If we only need the non-extended bits of the bottom element
1792       // then we can just bitcast to the result.
1793       if (IsVecInReg && DemandedElts == 1 &&
1794           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1795           TLO.DAG.getDataLayout().isLittleEndian())
1796         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1797 
1798       unsigned Opc =
1799           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1800       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1801         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1802     }
1803 
1804     APInt InDemandedBits = DemandedBits.trunc(InBits);
1805     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1806 
1807     // Since some of the sign extended bits are demanded, we know that the sign
1808     // bit is demanded.
1809     InDemandedBits.setBit(InBits - 1);
1810 
1811     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1812                              Depth + 1))
1813       return true;
1814     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1815     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1816 
1817     // If the sign bit is known one, the top bits match.
1818     Known = Known.sext(BitWidth);
1819 
1820     // If the sign bit is known zero, convert this to a zero extend.
1821     if (Known.isNonNegative()) {
1822       unsigned Opc =
1823           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1824       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1825         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1826     }
1827     break;
1828   }
1829   case ISD::ANY_EXTEND:
1830   case ISD::ANY_EXTEND_VECTOR_INREG: {
1831     SDValue Src = Op.getOperand(0);
1832     EVT SrcVT = Src.getValueType();
1833     unsigned InBits = SrcVT.getScalarSizeInBits();
1834     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1835     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1836 
1837     // If we only need the bottom element then we can just bitcast.
1838     // TODO: Handle ANY_EXTEND?
1839     if (IsVecInReg && DemandedElts == 1 &&
1840         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1841         TLO.DAG.getDataLayout().isLittleEndian())
1842       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1843 
1844     APInt InDemandedBits = DemandedBits.trunc(InBits);
1845     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1846     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1847                              Depth + 1))
1848       return true;
1849     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1850     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1851     Known = Known.anyext(BitWidth);
1852 
1853     // Attempt to avoid multi-use ops if we don't need anything from them.
1854     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1855             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1856       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1857     break;
1858   }
1859   case ISD::TRUNCATE: {
1860     SDValue Src = Op.getOperand(0);
1861 
1862     // Simplify the input, using demanded bit information, and compute the known
1863     // zero/one bits live out.
1864     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1865     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1866     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1867       return true;
1868     Known = Known.trunc(BitWidth);
1869 
1870     // Attempt to avoid multi-use ops if we don't need anything from them.
1871     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1872             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1873       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1874 
1875     // If the input is only used by this truncate, see if we can shrink it based
1876     // on the known demanded bits.
1877     if (Src.getNode()->hasOneUse()) {
1878       switch (Src.getOpcode()) {
1879       default:
1880         break;
1881       case ISD::SRL:
1882         // Shrink SRL by a constant if none of the high bits shifted in are
1883         // demanded.
1884         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1885           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1886           // undesirable.
1887           break;
1888 
1889         SDValue ShAmt = Src.getOperand(1);
1890         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
1891         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
1892           break;
1893         uint64_t ShVal = ShAmtC->getZExtValue();
1894 
1895         APInt HighBits =
1896             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1897         HighBits.lshrInPlace(ShVal);
1898         HighBits = HighBits.trunc(BitWidth);
1899 
1900         if (!(HighBits & DemandedBits)) {
1901           // None of the shifted in bits are needed.  Add a truncate of the
1902           // shift input, then shift it.
1903           if (TLO.LegalTypes())
1904             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1905           SDValue NewTrunc =
1906               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1907           return TLO.CombineTo(
1908               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
1909         }
1910         break;
1911       }
1912     }
1913 
1914     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1915     break;
1916   }
1917   case ISD::AssertZext: {
1918     // AssertZext demands all of the high bits, plus any of the low bits
1919     // demanded by its users.
1920     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1921     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1922     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1923                              TLO, Depth + 1))
1924       return true;
1925     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1926 
1927     Known.Zero |= ~InMask;
1928     break;
1929   }
1930   case ISD::EXTRACT_VECTOR_ELT: {
1931     SDValue Src = Op.getOperand(0);
1932     SDValue Idx = Op.getOperand(1);
1933     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1934     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1935 
1936     // Demand the bits from every vector element without a constant index.
1937     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1938     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1939       if (CIdx->getAPIntValue().ult(NumSrcElts))
1940         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1941 
1942     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1943     // anything about the extended bits.
1944     APInt DemandedSrcBits = DemandedBits;
1945     if (BitWidth > EltBitWidth)
1946       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1947 
1948     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1949                              Depth + 1))
1950       return true;
1951 
1952     // Attempt to avoid multi-use ops if we don't need anything from them.
1953     if (!DemandedSrcBits.isAllOnesValue() ||
1954         !DemandedSrcElts.isAllOnesValue()) {
1955       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1956               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
1957         SDValue NewOp =
1958             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
1959         return TLO.CombineTo(Op, NewOp);
1960       }
1961     }
1962 
1963     Known = Known2;
1964     if (BitWidth > EltBitWidth)
1965       Known = Known.anyext(BitWidth);
1966     break;
1967   }
1968   case ISD::BITCAST: {
1969     SDValue Src = Op.getOperand(0);
1970     EVT SrcVT = Src.getValueType();
1971     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1972 
1973     // If this is an FP->Int bitcast and if the sign bit is the only
1974     // thing demanded, turn this into a FGETSIGN.
1975     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1976         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1977         SrcVT.isFloatingPoint()) {
1978       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1979       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1980       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1981           SrcVT != MVT::f128) {
1982         // Cannot eliminate/lower SHL for f128 yet.
1983         EVT Ty = OpVTLegal ? VT : MVT::i32;
1984         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1985         // place.  We expect the SHL to be eliminated by other optimizations.
1986         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1987         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1988         if (!OpVTLegal && OpVTSizeInBits > 32)
1989           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1990         unsigned ShVal = Op.getValueSizeInBits() - 1;
1991         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1992         return TLO.CombineTo(Op,
1993                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1994       }
1995     }
1996 
1997     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1998     // Demand the elt/bit if any of the original elts/bits are demanded.
1999     // TODO - bigendian once we have test coverage.
2000     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2001         TLO.DAG.getDataLayout().isLittleEndian()) {
2002       unsigned Scale = BitWidth / NumSrcEltBits;
2003       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2004       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2005       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2006       for (unsigned i = 0; i != Scale; ++i) {
2007         unsigned Offset = i * NumSrcEltBits;
2008         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2009         if (!Sub.isNullValue()) {
2010           DemandedSrcBits |= Sub;
2011           for (unsigned j = 0; j != NumElts; ++j)
2012             if (DemandedElts[j])
2013               DemandedSrcElts.setBit((j * Scale) + i);
2014         }
2015       }
2016 
2017       APInt KnownSrcUndef, KnownSrcZero;
2018       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2019                                      KnownSrcZero, TLO, Depth + 1))
2020         return true;
2021 
2022       KnownBits KnownSrcBits;
2023       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2024                                KnownSrcBits, TLO, Depth + 1))
2025         return true;
2026     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2027                TLO.DAG.getDataLayout().isLittleEndian()) {
2028       unsigned Scale = NumSrcEltBits / BitWidth;
2029       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2030       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2031       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2032       for (unsigned i = 0; i != NumElts; ++i)
2033         if (DemandedElts[i]) {
2034           unsigned Offset = (i % Scale) * BitWidth;
2035           DemandedSrcBits.insertBits(DemandedBits, Offset);
2036           DemandedSrcElts.setBit(i / Scale);
2037         }
2038 
2039       if (SrcVT.isVector()) {
2040         APInt KnownSrcUndef, KnownSrcZero;
2041         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2042                                        KnownSrcZero, TLO, Depth + 1))
2043           return true;
2044       }
2045 
2046       KnownBits KnownSrcBits;
2047       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2048                                KnownSrcBits, TLO, Depth + 1))
2049         return true;
2050     }
2051 
2052     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2053     // recursive call where Known may be useful to the caller.
2054     if (Depth > 0) {
2055       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2056       return false;
2057     }
2058     break;
2059   }
2060   case ISD::ADD:
2061   case ISD::MUL:
2062   case ISD::SUB: {
2063     // Add, Sub, and Mul don't demand any bits in positions beyond that
2064     // of the highest bit demanded of them.
2065     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2066     SDNodeFlags Flags = Op.getNode()->getFlags();
2067     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2068     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2069     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2070                              Depth + 1) ||
2071         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2072                              Depth + 1) ||
2073         // See if the operation should be performed at a smaller bit width.
2074         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2075       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2076         // Disable the nsw and nuw flags. We can no longer guarantee that we
2077         // won't wrap after simplification.
2078         Flags.setNoSignedWrap(false);
2079         Flags.setNoUnsignedWrap(false);
2080         SDValue NewOp =
2081             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2082         return TLO.CombineTo(Op, NewOp);
2083       }
2084       return true;
2085     }
2086 
2087     // Attempt to avoid multi-use ops if we don't need anything from them.
2088     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2089       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2090           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2091       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2092           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2093       if (DemandedOp0 || DemandedOp1) {
2094         Flags.setNoSignedWrap(false);
2095         Flags.setNoUnsignedWrap(false);
2096         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2097         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2098         SDValue NewOp =
2099             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2100         return TLO.CombineTo(Op, NewOp);
2101       }
2102     }
2103 
2104     // If we have a constant operand, we may be able to turn it into -1 if we
2105     // do not demand the high bits. This can make the constant smaller to
2106     // encode, allow more general folding, or match specialized instruction
2107     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2108     // is probably not useful (and could be detrimental).
2109     ConstantSDNode *C = isConstOrConstSplat(Op1);
2110     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2111     if (C && !C->isAllOnesValue() && !C->isOne() &&
2112         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2113       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2114       // Disable the nsw and nuw flags. We can no longer guarantee that we
2115       // won't wrap after simplification.
2116       Flags.setNoSignedWrap(false);
2117       Flags.setNoUnsignedWrap(false);
2118       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2119       return TLO.CombineTo(Op, NewOp);
2120     }
2121 
2122     LLVM_FALLTHROUGH;
2123   }
2124   default:
2125     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2126       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2127                                             Known, TLO, Depth))
2128         return true;
2129       break;
2130     }
2131 
2132     // Just use computeKnownBits to compute output bits.
2133     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2134     break;
2135   }
2136 
2137   // If we know the value of all of the demanded bits, return this as a
2138   // constant.
2139   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2140     // Avoid folding to a constant if any OpaqueConstant is involved.
2141     const SDNode *N = Op.getNode();
2142     for (SDNodeIterator I = SDNodeIterator::begin(N),
2143                         E = SDNodeIterator::end(N);
2144          I != E; ++I) {
2145       SDNode *Op = *I;
2146       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2147         if (C->isOpaque())
2148           return false;
2149     }
2150     // TODO: Handle float bits as well.
2151     if (VT.isInteger())
2152       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2153   }
2154 
2155   return false;
2156 }
2157 
2158 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2159                                                 const APInt &DemandedElts,
2160                                                 APInt &KnownUndef,
2161                                                 APInt &KnownZero,
2162                                                 DAGCombinerInfo &DCI) const {
2163   SelectionDAG &DAG = DCI.DAG;
2164   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2165                         !DCI.isBeforeLegalizeOps());
2166 
2167   bool Simplified =
2168       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2169   if (Simplified) {
2170     DCI.AddToWorklist(Op.getNode());
2171     DCI.CommitTargetLoweringOpt(TLO);
2172   }
2173 
2174   return Simplified;
2175 }
2176 
2177 /// Given a vector binary operation and known undefined elements for each input
2178 /// operand, compute whether each element of the output is undefined.
2179 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2180                                          const APInt &UndefOp0,
2181                                          const APInt &UndefOp1) {
2182   EVT VT = BO.getValueType();
2183   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2184          "Vector binop only");
2185 
2186   EVT EltVT = VT.getVectorElementType();
2187   unsigned NumElts = VT.getVectorNumElements();
2188   assert(UndefOp0.getBitWidth() == NumElts &&
2189          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2190 
2191   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2192                                    const APInt &UndefVals) {
2193     if (UndefVals[Index])
2194       return DAG.getUNDEF(EltVT);
2195 
2196     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2197       // Try hard to make sure that the getNode() call is not creating temporary
2198       // nodes. Ignore opaque integers because they do not constant fold.
2199       SDValue Elt = BV->getOperand(Index);
2200       auto *C = dyn_cast<ConstantSDNode>(Elt);
2201       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2202         return Elt;
2203     }
2204 
2205     return SDValue();
2206   };
2207 
2208   APInt KnownUndef = APInt::getNullValue(NumElts);
2209   for (unsigned i = 0; i != NumElts; ++i) {
2210     // If both inputs for this element are either constant or undef and match
2211     // the element type, compute the constant/undef result for this element of
2212     // the vector.
2213     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2214     // not handle FP constants. The code within getNode() should be refactored
2215     // to avoid the danger of creating a bogus temporary node here.
2216     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2217     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2218     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2219       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2220         KnownUndef.setBit(i);
2221   }
2222   return KnownUndef;
2223 }
2224 
2225 bool TargetLowering::SimplifyDemandedVectorElts(
2226     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2227     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2228     bool AssumeSingleUse) const {
2229   EVT VT = Op.getValueType();
2230   APInt DemandedElts = OriginalDemandedElts;
2231   unsigned NumElts = DemandedElts.getBitWidth();
2232   assert(VT.isVector() && "Expected vector op");
2233   assert(VT.getVectorNumElements() == NumElts &&
2234          "Mask size mismatches value type element count!");
2235 
2236   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2237 
2238   // Undef operand.
2239   if (Op.isUndef()) {
2240     KnownUndef.setAllBits();
2241     return false;
2242   }
2243 
2244   // If Op has other users, assume that all elements are needed.
2245   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2246     DemandedElts.setAllBits();
2247 
2248   // Not demanding any elements from Op.
2249   if (DemandedElts == 0) {
2250     KnownUndef.setAllBits();
2251     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2252   }
2253 
2254   // Limit search depth.
2255   if (Depth >= SelectionDAG::MaxRecursionDepth)
2256     return false;
2257 
2258   SDLoc DL(Op);
2259   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2260 
2261   switch (Op.getOpcode()) {
2262   case ISD::SCALAR_TO_VECTOR: {
2263     if (!DemandedElts[0]) {
2264       KnownUndef.setAllBits();
2265       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2266     }
2267     KnownUndef.setHighBits(NumElts - 1);
2268     break;
2269   }
2270   case ISD::BITCAST: {
2271     SDValue Src = Op.getOperand(0);
2272     EVT SrcVT = Src.getValueType();
2273 
2274     // We only handle vectors here.
2275     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2276     if (!SrcVT.isVector())
2277       break;
2278 
2279     // Fast handling of 'identity' bitcasts.
2280     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2281     if (NumSrcElts == NumElts)
2282       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2283                                         KnownZero, TLO, Depth + 1);
2284 
2285     APInt SrcZero, SrcUndef;
2286     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2287 
2288     // Bitcast from 'large element' src vector to 'small element' vector, we
2289     // must demand a source element if any DemandedElt maps to it.
2290     if ((NumElts % NumSrcElts) == 0) {
2291       unsigned Scale = NumElts / NumSrcElts;
2292       for (unsigned i = 0; i != NumElts; ++i)
2293         if (DemandedElts[i])
2294           SrcDemandedElts.setBit(i / Scale);
2295 
2296       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2297                                      TLO, Depth + 1))
2298         return true;
2299 
2300       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2301       // of the large element.
2302       // TODO - bigendian once we have test coverage.
2303       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2304         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2305         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2306         for (unsigned i = 0; i != NumElts; ++i)
2307           if (DemandedElts[i]) {
2308             unsigned Ofs = (i % Scale) * EltSizeInBits;
2309             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2310           }
2311 
2312         KnownBits Known;
2313         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
2314           return true;
2315       }
2316 
2317       // If the src element is zero/undef then all the output elements will be -
2318       // only demanded elements are guaranteed to be correct.
2319       for (unsigned i = 0; i != NumSrcElts; ++i) {
2320         if (SrcDemandedElts[i]) {
2321           if (SrcZero[i])
2322             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2323           if (SrcUndef[i])
2324             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2325         }
2326       }
2327     }
2328 
2329     // Bitcast from 'small element' src vector to 'large element' vector, we
2330     // demand all smaller source elements covered by the larger demanded element
2331     // of this vector.
2332     if ((NumSrcElts % NumElts) == 0) {
2333       unsigned Scale = NumSrcElts / NumElts;
2334       for (unsigned i = 0; i != NumElts; ++i)
2335         if (DemandedElts[i])
2336           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2337 
2338       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2339                                      TLO, Depth + 1))
2340         return true;
2341 
2342       // If all the src elements covering an output element are zero/undef, then
2343       // the output element will be as well, assuming it was demanded.
2344       for (unsigned i = 0; i != NumElts; ++i) {
2345         if (DemandedElts[i]) {
2346           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2347             KnownZero.setBit(i);
2348           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2349             KnownUndef.setBit(i);
2350         }
2351       }
2352     }
2353     break;
2354   }
2355   case ISD::BUILD_VECTOR: {
2356     // Check all elements and simplify any unused elements with UNDEF.
2357     if (!DemandedElts.isAllOnesValue()) {
2358       // Don't simplify BROADCASTS.
2359       if (llvm::any_of(Op->op_values(),
2360                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2361         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2362         bool Updated = false;
2363         for (unsigned i = 0; i != NumElts; ++i) {
2364           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2365             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2366             KnownUndef.setBit(i);
2367             Updated = true;
2368           }
2369         }
2370         if (Updated)
2371           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2372       }
2373     }
2374     for (unsigned i = 0; i != NumElts; ++i) {
2375       SDValue SrcOp = Op.getOperand(i);
2376       if (SrcOp.isUndef()) {
2377         KnownUndef.setBit(i);
2378       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2379                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2380         KnownZero.setBit(i);
2381       }
2382     }
2383     break;
2384   }
2385   case ISD::CONCAT_VECTORS: {
2386     EVT SubVT = Op.getOperand(0).getValueType();
2387     unsigned NumSubVecs = Op.getNumOperands();
2388     unsigned NumSubElts = SubVT.getVectorNumElements();
2389     for (unsigned i = 0; i != NumSubVecs; ++i) {
2390       SDValue SubOp = Op.getOperand(i);
2391       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2392       APInt SubUndef, SubZero;
2393       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2394                                      Depth + 1))
2395         return true;
2396       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2397       KnownZero.insertBits(SubZero, i * NumSubElts);
2398     }
2399     break;
2400   }
2401   case ISD::INSERT_SUBVECTOR: {
2402     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2403       break;
2404     SDValue Base = Op.getOperand(0);
2405     SDValue Sub = Op.getOperand(1);
2406     EVT SubVT = Sub.getValueType();
2407     unsigned NumSubElts = SubVT.getVectorNumElements();
2408     const APInt &Idx = Op.getConstantOperandAPInt(2);
2409     if (Idx.ugt(NumElts - NumSubElts))
2410       break;
2411     unsigned SubIdx = Idx.getZExtValue();
2412     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2413     APInt SubUndef, SubZero;
2414     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2415                                    Depth + 1))
2416       return true;
2417     APInt BaseElts = DemandedElts;
2418     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2419 
2420     // If none of the base operand elements are demanded, replace it with undef.
2421     if (!BaseElts && !Base.isUndef())
2422       return TLO.CombineTo(Op,
2423                            TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2424                                            TLO.DAG.getUNDEF(VT),
2425                                            Op.getOperand(1),
2426                                            Op.getOperand(2)));
2427 
2428     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2429                                    Depth + 1))
2430       return true;
2431     KnownUndef.insertBits(SubUndef, SubIdx);
2432     KnownZero.insertBits(SubZero, SubIdx);
2433     break;
2434   }
2435   case ISD::EXTRACT_SUBVECTOR: {
2436     SDValue Src = Op.getOperand(0);
2437     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2438     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2439     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2440       // Offset the demanded elts by the subvector index.
2441       uint64_t Idx = SubIdx->getZExtValue();
2442       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2443       APInt SrcUndef, SrcZero;
2444       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2445                                      Depth + 1))
2446         return true;
2447       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2448       KnownZero = SrcZero.extractBits(NumElts, Idx);
2449     }
2450     break;
2451   }
2452   case ISD::INSERT_VECTOR_ELT: {
2453     SDValue Vec = Op.getOperand(0);
2454     SDValue Scl = Op.getOperand(1);
2455     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2456 
2457     // For a legal, constant insertion index, if we don't need this insertion
2458     // then strip it, else remove it from the demanded elts.
2459     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2460       unsigned Idx = CIdx->getZExtValue();
2461       if (!DemandedElts[Idx])
2462         return TLO.CombineTo(Op, Vec);
2463 
2464       APInt DemandedVecElts(DemandedElts);
2465       DemandedVecElts.clearBit(Idx);
2466       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2467                                      KnownZero, TLO, Depth + 1))
2468         return true;
2469 
2470       KnownUndef.clearBit(Idx);
2471       if (Scl.isUndef())
2472         KnownUndef.setBit(Idx);
2473 
2474       KnownZero.clearBit(Idx);
2475       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2476         KnownZero.setBit(Idx);
2477       break;
2478     }
2479 
2480     APInt VecUndef, VecZero;
2481     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2482                                    Depth + 1))
2483       return true;
2484     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2485     break;
2486   }
2487   case ISD::VSELECT: {
2488     // Try to transform the select condition based on the current demanded
2489     // elements.
2490     // TODO: If a condition element is undef, we can choose from one arm of the
2491     //       select (and if one arm is undef, then we can propagate that to the
2492     //       result).
2493     // TODO - add support for constant vselect masks (see IR version of this).
2494     APInt UnusedUndef, UnusedZero;
2495     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2496                                    UnusedZero, TLO, Depth + 1))
2497       return true;
2498 
2499     // See if we can simplify either vselect operand.
2500     APInt DemandedLHS(DemandedElts);
2501     APInt DemandedRHS(DemandedElts);
2502     APInt UndefLHS, ZeroLHS;
2503     APInt UndefRHS, ZeroRHS;
2504     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2505                                    ZeroLHS, TLO, Depth + 1))
2506       return true;
2507     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2508                                    ZeroRHS, TLO, Depth + 1))
2509       return true;
2510 
2511     KnownUndef = UndefLHS & UndefRHS;
2512     KnownZero = ZeroLHS & ZeroRHS;
2513     break;
2514   }
2515   case ISD::VECTOR_SHUFFLE: {
2516     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2517 
2518     // Collect demanded elements from shuffle operands..
2519     APInt DemandedLHS(NumElts, 0);
2520     APInt DemandedRHS(NumElts, 0);
2521     for (unsigned i = 0; i != NumElts; ++i) {
2522       int M = ShuffleMask[i];
2523       if (M < 0 || !DemandedElts[i])
2524         continue;
2525       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2526       if (M < (int)NumElts)
2527         DemandedLHS.setBit(M);
2528       else
2529         DemandedRHS.setBit(M - NumElts);
2530     }
2531 
2532     // See if we can simplify either shuffle operand.
2533     APInt UndefLHS, ZeroLHS;
2534     APInt UndefRHS, ZeroRHS;
2535     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2536                                    ZeroLHS, TLO, Depth + 1))
2537       return true;
2538     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2539                                    ZeroRHS, TLO, Depth + 1))
2540       return true;
2541 
2542     // Simplify mask using undef elements from LHS/RHS.
2543     bool Updated = false;
2544     bool IdentityLHS = true, IdentityRHS = true;
2545     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2546     for (unsigned i = 0; i != NumElts; ++i) {
2547       int &M = NewMask[i];
2548       if (M < 0)
2549         continue;
2550       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2551           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2552         Updated = true;
2553         M = -1;
2554       }
2555       IdentityLHS &= (M < 0) || (M == (int)i);
2556       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2557     }
2558 
2559     // Update legal shuffle masks based on demanded elements if it won't reduce
2560     // to Identity which can cause premature removal of the shuffle mask.
2561     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2562       SDValue LegalShuffle =
2563           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2564                                   NewMask, TLO.DAG);
2565       if (LegalShuffle)
2566         return TLO.CombineTo(Op, LegalShuffle);
2567     }
2568 
2569     // Propagate undef/zero elements from LHS/RHS.
2570     for (unsigned i = 0; i != NumElts; ++i) {
2571       int M = ShuffleMask[i];
2572       if (M < 0) {
2573         KnownUndef.setBit(i);
2574       } else if (M < (int)NumElts) {
2575         if (UndefLHS[M])
2576           KnownUndef.setBit(i);
2577         if (ZeroLHS[M])
2578           KnownZero.setBit(i);
2579       } else {
2580         if (UndefRHS[M - NumElts])
2581           KnownUndef.setBit(i);
2582         if (ZeroRHS[M - NumElts])
2583           KnownZero.setBit(i);
2584       }
2585     }
2586     break;
2587   }
2588   case ISD::ANY_EXTEND_VECTOR_INREG:
2589   case ISD::SIGN_EXTEND_VECTOR_INREG:
2590   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2591     APInt SrcUndef, SrcZero;
2592     SDValue Src = Op.getOperand(0);
2593     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2594     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2595     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2596                                    Depth + 1))
2597       return true;
2598     KnownZero = SrcZero.zextOrTrunc(NumElts);
2599     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2600 
2601     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2602         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2603         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2604       // aext - if we just need the bottom element then we can bitcast.
2605       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2606     }
2607 
2608     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2609       // zext(undef) upper bits are guaranteed to be zero.
2610       if (DemandedElts.isSubsetOf(KnownUndef))
2611         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2612       KnownUndef.clearAllBits();
2613     }
2614     break;
2615   }
2616 
2617   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2618   // MAX, saturated math, etc.
2619   case ISD::OR:
2620   case ISD::XOR:
2621   case ISD::ADD:
2622   case ISD::SUB:
2623   case ISD::FADD:
2624   case ISD::FSUB:
2625   case ISD::FMUL:
2626   case ISD::FDIV:
2627   case ISD::FREM: {
2628     APInt UndefRHS, ZeroRHS;
2629     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2630                                    ZeroRHS, TLO, Depth + 1))
2631       return true;
2632     APInt UndefLHS, ZeroLHS;
2633     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2634                                    ZeroLHS, TLO, Depth + 1))
2635       return true;
2636 
2637     KnownZero = ZeroLHS & ZeroRHS;
2638     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2639     break;
2640   }
2641   case ISD::SHL:
2642   case ISD::SRL:
2643   case ISD::SRA:
2644   case ISD::ROTL:
2645   case ISD::ROTR: {
2646     APInt UndefRHS, ZeroRHS;
2647     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2648                                    ZeroRHS, TLO, Depth + 1))
2649       return true;
2650     APInt UndefLHS, ZeroLHS;
2651     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2652                                    ZeroLHS, TLO, Depth + 1))
2653       return true;
2654 
2655     KnownZero = ZeroLHS;
2656     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2657     break;
2658   }
2659   case ISD::MUL:
2660   case ISD::AND: {
2661     APInt SrcUndef, SrcZero;
2662     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2663                                    SrcZero, TLO, Depth + 1))
2664       return true;
2665     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2666                                    KnownZero, TLO, Depth + 1))
2667       return true;
2668 
2669     // If either side has a zero element, then the result element is zero, even
2670     // if the other is an UNDEF.
2671     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2672     // and then handle 'and' nodes with the rest of the binop opcodes.
2673     KnownZero |= SrcZero;
2674     KnownUndef &= SrcUndef;
2675     KnownUndef &= ~KnownZero;
2676     break;
2677   }
2678   case ISD::TRUNCATE:
2679   case ISD::SIGN_EXTEND:
2680   case ISD::ZERO_EXTEND:
2681     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2682                                    KnownZero, TLO, Depth + 1))
2683       return true;
2684 
2685     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2686       // zext(undef) upper bits are guaranteed to be zero.
2687       if (DemandedElts.isSubsetOf(KnownUndef))
2688         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2689       KnownUndef.clearAllBits();
2690     }
2691     break;
2692   default: {
2693     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2694       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2695                                                   KnownZero, TLO, Depth))
2696         return true;
2697     } else {
2698       KnownBits Known;
2699       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2700       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2701                                TLO, Depth, AssumeSingleUse))
2702         return true;
2703     }
2704     break;
2705   }
2706   }
2707   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2708 
2709   // Constant fold all undef cases.
2710   // TODO: Handle zero cases as well.
2711   if (DemandedElts.isSubsetOf(KnownUndef))
2712     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2713 
2714   return false;
2715 }
2716 
2717 /// Determine which of the bits specified in Mask are known to be either zero or
2718 /// one and return them in the Known.
2719 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2720                                                    KnownBits &Known,
2721                                                    const APInt &DemandedElts,
2722                                                    const SelectionDAG &DAG,
2723                                                    unsigned Depth) const {
2724   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2725           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2726           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2727           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2728          "Should use MaskedValueIsZero if you don't know whether Op"
2729          " is a target node!");
2730   Known.resetAll();
2731 }
2732 
2733 void TargetLowering::computeKnownBitsForTargetInstr(
2734     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2735     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2736     unsigned Depth) const {
2737   Known.resetAll();
2738 }
2739 
2740 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2741                                                    KnownBits &Known,
2742                                                    const APInt &DemandedElts,
2743                                                    const SelectionDAG &DAG,
2744                                                    unsigned Depth) const {
2745   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2746 
2747   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2748     // The low bits are known zero if the pointer is aligned.
2749     Known.Zero.setLowBits(Log2_32(Align));
2750   }
2751 }
2752 
2753 /// This method can be implemented by targets that want to expose additional
2754 /// information about sign bits to the DAG Combiner.
2755 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2756                                                          const APInt &,
2757                                                          const SelectionDAG &,
2758                                                          unsigned Depth) const {
2759   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2760           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2761           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2762           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2763          "Should use ComputeNumSignBits if you don't know whether Op"
2764          " is a target node!");
2765   return 1;
2766 }
2767 
2768 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2769     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2770     TargetLoweringOpt &TLO, unsigned Depth) const {
2771   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2772           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2773           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2774           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2775          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2776          " is a target node!");
2777   return false;
2778 }
2779 
2780 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2781     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2782     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2783   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2784           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2785           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2786           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2787          "Should use SimplifyDemandedBits if you don't know whether Op"
2788          " is a target node!");
2789   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2790   return false;
2791 }
2792 
2793 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2794     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2795     SelectionDAG &DAG, unsigned Depth) const {
2796   assert(
2797       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2798        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2799        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2800        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2801       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2802       " is a target node!");
2803   return SDValue();
2804 }
2805 
2806 SDValue
2807 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2808                                         SDValue N1, MutableArrayRef<int> Mask,
2809                                         SelectionDAG &DAG) const {
2810   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2811   if (!LegalMask) {
2812     std::swap(N0, N1);
2813     ShuffleVectorSDNode::commuteMask(Mask);
2814     LegalMask = isShuffleMaskLegal(Mask, VT);
2815   }
2816 
2817   if (!LegalMask)
2818     return SDValue();
2819 
2820   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2821 }
2822 
2823 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2824   return nullptr;
2825 }
2826 
2827 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2828                                                   const SelectionDAG &DAG,
2829                                                   bool SNaN,
2830                                                   unsigned Depth) const {
2831   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2832           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2833           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2834           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2835          "Should use isKnownNeverNaN if you don't know whether Op"
2836          " is a target node!");
2837   return false;
2838 }
2839 
2840 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2841 // work with truncating build vectors and vectors with elements of less than
2842 // 8 bits.
2843 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2844   if (!N)
2845     return false;
2846 
2847   APInt CVal;
2848   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2849     CVal = CN->getAPIntValue();
2850   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2851     auto *CN = BV->getConstantSplatNode();
2852     if (!CN)
2853       return false;
2854 
2855     // If this is a truncating build vector, truncate the splat value.
2856     // Otherwise, we may fail to match the expected values below.
2857     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2858     CVal = CN->getAPIntValue();
2859     if (BVEltWidth < CVal.getBitWidth())
2860       CVal = CVal.trunc(BVEltWidth);
2861   } else {
2862     return false;
2863   }
2864 
2865   switch (getBooleanContents(N->getValueType(0))) {
2866   case UndefinedBooleanContent:
2867     return CVal[0];
2868   case ZeroOrOneBooleanContent:
2869     return CVal.isOneValue();
2870   case ZeroOrNegativeOneBooleanContent:
2871     return CVal.isAllOnesValue();
2872   }
2873 
2874   llvm_unreachable("Invalid boolean contents");
2875 }
2876 
2877 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2878   if (!N)
2879     return false;
2880 
2881   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2882   if (!CN) {
2883     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2884     if (!BV)
2885       return false;
2886 
2887     // Only interested in constant splats, we don't care about undef
2888     // elements in identifying boolean constants and getConstantSplatNode
2889     // returns NULL if all ops are undef;
2890     CN = BV->getConstantSplatNode();
2891     if (!CN)
2892       return false;
2893   }
2894 
2895   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2896     return !CN->getAPIntValue()[0];
2897 
2898   return CN->isNullValue();
2899 }
2900 
2901 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2902                                        bool SExt) const {
2903   if (VT == MVT::i1)
2904     return N->isOne();
2905 
2906   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2907   switch (Cnt) {
2908   case TargetLowering::ZeroOrOneBooleanContent:
2909     // An extended value of 1 is always true, unless its original type is i1,
2910     // in which case it will be sign extended to -1.
2911     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2912   case TargetLowering::UndefinedBooleanContent:
2913   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2914     return N->isAllOnesValue() && SExt;
2915   }
2916   llvm_unreachable("Unexpected enumeration.");
2917 }
2918 
2919 /// This helper function of SimplifySetCC tries to optimize the comparison when
2920 /// either operand of the SetCC node is a bitwise-and instruction.
2921 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2922                                          ISD::CondCode Cond, const SDLoc &DL,
2923                                          DAGCombinerInfo &DCI) const {
2924   // Match these patterns in any of their permutations:
2925   // (X & Y) == Y
2926   // (X & Y) != Y
2927   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2928     std::swap(N0, N1);
2929 
2930   EVT OpVT = N0.getValueType();
2931   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2932       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2933     return SDValue();
2934 
2935   SDValue X, Y;
2936   if (N0.getOperand(0) == N1) {
2937     X = N0.getOperand(1);
2938     Y = N0.getOperand(0);
2939   } else if (N0.getOperand(1) == N1) {
2940     X = N0.getOperand(0);
2941     Y = N0.getOperand(1);
2942   } else {
2943     return SDValue();
2944   }
2945 
2946   SelectionDAG &DAG = DCI.DAG;
2947   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2948   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2949     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2950     // Note that where Y is variable and is known to have at most one bit set
2951     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2952     // equivalent when Y == 0.
2953     assert(OpVT.isInteger());
2954     Cond = ISD::getSetCCInverse(Cond, OpVT);
2955     if (DCI.isBeforeLegalizeOps() ||
2956         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2957       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2958   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2959     // If the target supports an 'and-not' or 'and-complement' logic operation,
2960     // try to use that to make a comparison operation more efficient.
2961     // But don't do this transform if the mask is a single bit because there are
2962     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2963     // 'rlwinm' on PPC).
2964 
2965     // Bail out if the compare operand that we want to turn into a zero is
2966     // already a zero (otherwise, infinite loop).
2967     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2968     if (YConst && YConst->isNullValue())
2969       return SDValue();
2970 
2971     // Transform this into: ~X & Y == 0.
2972     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2973     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2974     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2975   }
2976 
2977   return SDValue();
2978 }
2979 
2980 /// There are multiple IR patterns that could be checking whether certain
2981 /// truncation of a signed number would be lossy or not. The pattern which is
2982 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2983 /// We are looking for the following pattern: (KeptBits is a constant)
2984 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2985 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2986 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2987 /// We will unfold it into the natural trunc+sext pattern:
2988 ///   ((%x << C) a>> C) dstcond %x
2989 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2990 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2991     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2992     const SDLoc &DL) const {
2993   // We must be comparing with a constant.
2994   ConstantSDNode *C1;
2995   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2996     return SDValue();
2997 
2998   // N0 should be:  add %x, (1 << (KeptBits-1))
2999   if (N0->getOpcode() != ISD::ADD)
3000     return SDValue();
3001 
3002   // And we must be 'add'ing a constant.
3003   ConstantSDNode *C01;
3004   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3005     return SDValue();
3006 
3007   SDValue X = N0->getOperand(0);
3008   EVT XVT = X.getValueType();
3009 
3010   // Validate constants ...
3011 
3012   APInt I1 = C1->getAPIntValue();
3013 
3014   ISD::CondCode NewCond;
3015   if (Cond == ISD::CondCode::SETULT) {
3016     NewCond = ISD::CondCode::SETEQ;
3017   } else if (Cond == ISD::CondCode::SETULE) {
3018     NewCond = ISD::CondCode::SETEQ;
3019     // But need to 'canonicalize' the constant.
3020     I1 += 1;
3021   } else if (Cond == ISD::CondCode::SETUGT) {
3022     NewCond = ISD::CondCode::SETNE;
3023     // But need to 'canonicalize' the constant.
3024     I1 += 1;
3025   } else if (Cond == ISD::CondCode::SETUGE) {
3026     NewCond = ISD::CondCode::SETNE;
3027   } else
3028     return SDValue();
3029 
3030   APInt I01 = C01->getAPIntValue();
3031 
3032   auto checkConstants = [&I1, &I01]() -> bool {
3033     // Both of them must be power-of-two, and the constant from setcc is bigger.
3034     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3035   };
3036 
3037   if (checkConstants()) {
3038     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3039   } else {
3040     // What if we invert constants? (and the target predicate)
3041     I1.negate();
3042     I01.negate();
3043     assert(XVT.isInteger());
3044     NewCond = getSetCCInverse(NewCond, XVT);
3045     if (!checkConstants())
3046       return SDValue();
3047     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3048   }
3049 
3050   // They are power-of-two, so which bit is set?
3051   const unsigned KeptBits = I1.logBase2();
3052   const unsigned KeptBitsMinusOne = I01.logBase2();
3053 
3054   // Magic!
3055   if (KeptBits != (KeptBitsMinusOne + 1))
3056     return SDValue();
3057   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3058 
3059   // We don't want to do this in every single case.
3060   SelectionDAG &DAG = DCI.DAG;
3061   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3062           XVT, KeptBits))
3063     return SDValue();
3064 
3065   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3066   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3067 
3068   // Unfold into:  ((%x << C) a>> C) cond %x
3069   // Where 'cond' will be either 'eq' or 'ne'.
3070   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3071   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3072   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3073   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3074 
3075   return T2;
3076 }
3077 
3078 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3079 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3080     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3081     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3082   assert(isConstOrConstSplat(N1C) &&
3083          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3084          "Should be a comparison with 0.");
3085   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3086          "Valid only for [in]equality comparisons.");
3087 
3088   unsigned NewShiftOpcode;
3089   SDValue X, C, Y;
3090 
3091   SelectionDAG &DAG = DCI.DAG;
3092   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3093 
3094   // Look for '(C l>>/<< Y)'.
3095   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3096     // The shift should be one-use.
3097     if (!V.hasOneUse())
3098       return false;
3099     unsigned OldShiftOpcode = V.getOpcode();
3100     switch (OldShiftOpcode) {
3101     case ISD::SHL:
3102       NewShiftOpcode = ISD::SRL;
3103       break;
3104     case ISD::SRL:
3105       NewShiftOpcode = ISD::SHL;
3106       break;
3107     default:
3108       return false; // must be a logical shift.
3109     }
3110     // We should be shifting a constant.
3111     // FIXME: best to use isConstantOrConstantVector().
3112     C = V.getOperand(0);
3113     ConstantSDNode *CC =
3114         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3115     if (!CC)
3116       return false;
3117     Y = V.getOperand(1);
3118 
3119     ConstantSDNode *XC =
3120         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3121     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3122         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3123   };
3124 
3125   // LHS of comparison should be an one-use 'and'.
3126   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3127     return SDValue();
3128 
3129   X = N0.getOperand(0);
3130   SDValue Mask = N0.getOperand(1);
3131 
3132   // 'and' is commutative!
3133   if (!Match(Mask)) {
3134     std::swap(X, Mask);
3135     if (!Match(Mask))
3136       return SDValue();
3137   }
3138 
3139   EVT VT = X.getValueType();
3140 
3141   // Produce:
3142   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3143   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3144   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3145   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3146   return T2;
3147 }
3148 
3149 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3150 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3151 /// handle the commuted versions of these patterns.
3152 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3153                                            ISD::CondCode Cond, const SDLoc &DL,
3154                                            DAGCombinerInfo &DCI) const {
3155   unsigned BOpcode = N0.getOpcode();
3156   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3157          "Unexpected binop");
3158   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3159 
3160   // (X + Y) == X --> Y == 0
3161   // (X - Y) == X --> Y == 0
3162   // (X ^ Y) == X --> Y == 0
3163   SelectionDAG &DAG = DCI.DAG;
3164   EVT OpVT = N0.getValueType();
3165   SDValue X = N0.getOperand(0);
3166   SDValue Y = N0.getOperand(1);
3167   if (X == N1)
3168     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3169 
3170   if (Y != N1)
3171     return SDValue();
3172 
3173   // (X + Y) == Y --> X == 0
3174   // (X ^ Y) == Y --> X == 0
3175   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3176     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3177 
3178   // The shift would not be valid if the operands are boolean (i1).
3179   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3180     return SDValue();
3181 
3182   // (X - Y) == Y --> X == Y << 1
3183   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3184                                  !DCI.isBeforeLegalize());
3185   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3186   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3187   if (!DCI.isCalledByLegalizer())
3188     DCI.AddToWorklist(YShl1.getNode());
3189   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3190 }
3191 
3192 /// Try to simplify a setcc built with the specified operands and cc. If it is
3193 /// unable to simplify it, return a null SDValue.
3194 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3195                                       ISD::CondCode Cond, bool foldBooleans,
3196                                       DAGCombinerInfo &DCI,
3197                                       const SDLoc &dl) const {
3198   SelectionDAG &DAG = DCI.DAG;
3199   const DataLayout &Layout = DAG.getDataLayout();
3200   EVT OpVT = N0.getValueType();
3201 
3202   // Constant fold or commute setcc.
3203   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3204     return Fold;
3205 
3206   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3207   // TODO: Handle non-splat vector constants. All undef causes trouble.
3208   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3209   if (isConstOrConstSplat(N0) &&
3210       (DCI.isBeforeLegalizeOps() ||
3211        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3212     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3213 
3214   // If we have a subtract with the same 2 non-constant operands as this setcc
3215   // -- but in reverse order -- then try to commute the operands of this setcc
3216   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3217   // instruction on some targets.
3218   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3219       (DCI.isBeforeLegalizeOps() ||
3220        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3221       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3222       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3223     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3224 
3225   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3226     const APInt &C1 = N1C->getAPIntValue();
3227 
3228     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3229     // equality comparison, then we're just comparing whether X itself is
3230     // zero.
3231     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3232         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3233         N0.getOperand(1).getOpcode() == ISD::Constant) {
3234       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3235       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3236           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3237         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3238           // (srl (ctlz x), 5) == 0  -> X != 0
3239           // (srl (ctlz x), 5) != 1  -> X != 0
3240           Cond = ISD::SETNE;
3241         } else {
3242           // (srl (ctlz x), 5) != 0  -> X == 0
3243           // (srl (ctlz x), 5) == 1  -> X == 0
3244           Cond = ISD::SETEQ;
3245         }
3246         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3247         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3248                             Zero, Cond);
3249       }
3250     }
3251 
3252     SDValue CTPOP = N0;
3253     // Look through truncs that don't change the value of a ctpop.
3254     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3255       CTPOP = N0.getOperand(0);
3256 
3257     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3258         (N0 == CTPOP ||
3259          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3260       EVT CTVT = CTPOP.getValueType();
3261       SDValue CTOp = CTPOP.getOperand(0);
3262 
3263       // (ctpop x) u< 2 -> (x & x-1) == 0
3264       // (ctpop x) u> 1 -> (x & x-1) != 0
3265       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3266         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3267         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3268         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3269         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3270         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3271       }
3272 
3273       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3274       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3275           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3276         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3277         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3278         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3279         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3280         assert(CTVT.isInteger());
3281         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3282         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3283         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3284         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3285         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3286         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3287         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3288       }
3289     }
3290 
3291     // (zext x) == C --> x == (trunc C)
3292     // (sext x) == C --> x == (trunc C)
3293     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3294         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3295       unsigned MinBits = N0.getValueSizeInBits();
3296       SDValue PreExt;
3297       bool Signed = false;
3298       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3299         // ZExt
3300         MinBits = N0->getOperand(0).getValueSizeInBits();
3301         PreExt = N0->getOperand(0);
3302       } else if (N0->getOpcode() == ISD::AND) {
3303         // DAGCombine turns costly ZExts into ANDs
3304         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3305           if ((C->getAPIntValue()+1).isPowerOf2()) {
3306             MinBits = C->getAPIntValue().countTrailingOnes();
3307             PreExt = N0->getOperand(0);
3308           }
3309       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3310         // SExt
3311         MinBits = N0->getOperand(0).getValueSizeInBits();
3312         PreExt = N0->getOperand(0);
3313         Signed = true;
3314       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3315         // ZEXTLOAD / SEXTLOAD
3316         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3317           MinBits = LN0->getMemoryVT().getSizeInBits();
3318           PreExt = N0;
3319         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3320           Signed = true;
3321           MinBits = LN0->getMemoryVT().getSizeInBits();
3322           PreExt = N0;
3323         }
3324       }
3325 
3326       // Figure out how many bits we need to preserve this constant.
3327       unsigned ReqdBits = Signed ?
3328         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3329         C1.getActiveBits();
3330 
3331       // Make sure we're not losing bits from the constant.
3332       if (MinBits > 0 &&
3333           MinBits < C1.getBitWidth() &&
3334           MinBits >= ReqdBits) {
3335         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3336         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3337           // Will get folded away.
3338           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3339           if (MinBits == 1 && C1 == 1)
3340             // Invert the condition.
3341             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3342                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3343           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3344           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3345         }
3346 
3347         // If truncating the setcc operands is not desirable, we can still
3348         // simplify the expression in some cases:
3349         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3350         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3351         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3352         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3353         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3354         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3355         SDValue TopSetCC = N0->getOperand(0);
3356         unsigned N0Opc = N0->getOpcode();
3357         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3358         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3359             TopSetCC.getOpcode() == ISD::SETCC &&
3360             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3361             (isConstFalseVal(N1C) ||
3362              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3363 
3364           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3365                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3366 
3367           if (!Inverse)
3368             return TopSetCC;
3369 
3370           ISD::CondCode InvCond = ISD::getSetCCInverse(
3371               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3372               TopSetCC.getOperand(0).getValueType());
3373           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3374                                       TopSetCC.getOperand(1),
3375                                       InvCond);
3376         }
3377       }
3378     }
3379 
3380     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3381     // equality or unsigned, and all 1 bits of the const are in the same
3382     // partial word, see if we can shorten the load.
3383     if (DCI.isBeforeLegalize() &&
3384         !ISD::isSignedIntSetCC(Cond) &&
3385         N0.getOpcode() == ISD::AND && C1 == 0 &&
3386         N0.getNode()->hasOneUse() &&
3387         isa<LoadSDNode>(N0.getOperand(0)) &&
3388         N0.getOperand(0).getNode()->hasOneUse() &&
3389         isa<ConstantSDNode>(N0.getOperand(1))) {
3390       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3391       APInt bestMask;
3392       unsigned bestWidth = 0, bestOffset = 0;
3393       if (Lod->isSimple() && Lod->isUnindexed()) {
3394         unsigned origWidth = N0.getValueSizeInBits();
3395         unsigned maskWidth = origWidth;
3396         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3397         // 8 bits, but have to be careful...
3398         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3399           origWidth = Lod->getMemoryVT().getSizeInBits();
3400         const APInt &Mask = N0.getConstantOperandAPInt(1);
3401         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3402           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3403           for (unsigned offset=0; offset<origWidth/width; offset++) {
3404             if (Mask.isSubsetOf(newMask)) {
3405               if (Layout.isLittleEndian())
3406                 bestOffset = (uint64_t)offset * (width/8);
3407               else
3408                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3409               bestMask = Mask.lshr(offset * (width/8) * 8);
3410               bestWidth = width;
3411               break;
3412             }
3413             newMask <<= width;
3414           }
3415         }
3416       }
3417       if (bestWidth) {
3418         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3419         if (newVT.isRound() &&
3420             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3421           SDValue Ptr = Lod->getBasePtr();
3422           if (bestOffset != 0)
3423             Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl);
3424           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3425           SDValue NewLoad = DAG.getLoad(
3426               newVT, dl, Lod->getChain(), Ptr,
3427               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3428           return DAG.getSetCC(dl, VT,
3429                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3430                                       DAG.getConstant(bestMask.trunc(bestWidth),
3431                                                       dl, newVT)),
3432                               DAG.getConstant(0LL, dl, newVT), Cond);
3433         }
3434       }
3435     }
3436 
3437     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3438     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3439       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3440 
3441       // If the comparison constant has bits in the upper part, the
3442       // zero-extended value could never match.
3443       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3444                                               C1.getBitWidth() - InSize))) {
3445         switch (Cond) {
3446         case ISD::SETUGT:
3447         case ISD::SETUGE:
3448         case ISD::SETEQ:
3449           return DAG.getConstant(0, dl, VT);
3450         case ISD::SETULT:
3451         case ISD::SETULE:
3452         case ISD::SETNE:
3453           return DAG.getConstant(1, dl, VT);
3454         case ISD::SETGT:
3455         case ISD::SETGE:
3456           // True if the sign bit of C1 is set.
3457           return DAG.getConstant(C1.isNegative(), dl, VT);
3458         case ISD::SETLT:
3459         case ISD::SETLE:
3460           // True if the sign bit of C1 isn't set.
3461           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3462         default:
3463           break;
3464         }
3465       }
3466 
3467       // Otherwise, we can perform the comparison with the low bits.
3468       switch (Cond) {
3469       case ISD::SETEQ:
3470       case ISD::SETNE:
3471       case ISD::SETUGT:
3472       case ISD::SETUGE:
3473       case ISD::SETULT:
3474       case ISD::SETULE: {
3475         EVT newVT = N0.getOperand(0).getValueType();
3476         if (DCI.isBeforeLegalizeOps() ||
3477             (isOperationLegal(ISD::SETCC, newVT) &&
3478              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3479           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3480           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3481 
3482           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3483                                           NewConst, Cond);
3484           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3485         }
3486         break;
3487       }
3488       default:
3489         break; // todo, be more careful with signed comparisons
3490       }
3491     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3492                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3493       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3494       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3495       EVT ExtDstTy = N0.getValueType();
3496       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3497 
3498       // If the constant doesn't fit into the number of bits for the source of
3499       // the sign extension, it is impossible for both sides to be equal.
3500       if (C1.getMinSignedBits() > ExtSrcTyBits)
3501         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3502 
3503       SDValue ZextOp;
3504       EVT Op0Ty = N0.getOperand(0).getValueType();
3505       if (Op0Ty == ExtSrcTy) {
3506         ZextOp = N0.getOperand(0);
3507       } else {
3508         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3509         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3510                              DAG.getConstant(Imm, dl, Op0Ty));
3511       }
3512       if (!DCI.isCalledByLegalizer())
3513         DCI.AddToWorklist(ZextOp.getNode());
3514       // Otherwise, make this a use of a zext.
3515       return DAG.getSetCC(dl, VT, ZextOp,
3516                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3517                                                               ExtDstTyBits,
3518                                                               ExtSrcTyBits),
3519                                           dl, ExtDstTy),
3520                           Cond);
3521     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3522                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3523       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3524       if (N0.getOpcode() == ISD::SETCC &&
3525           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3526           (N0.getValueType() == MVT::i1 ||
3527            getBooleanContents(N0.getOperand(0).getValueType()) ==
3528                        ZeroOrOneBooleanContent)) {
3529         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3530         if (TrueWhenTrue)
3531           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3532         // Invert the condition.
3533         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3534         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3535         if (DCI.isBeforeLegalizeOps() ||
3536             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3537           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3538       }
3539 
3540       if ((N0.getOpcode() == ISD::XOR ||
3541            (N0.getOpcode() == ISD::AND &&
3542             N0.getOperand(0).getOpcode() == ISD::XOR &&
3543             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3544           isa<ConstantSDNode>(N0.getOperand(1)) &&
3545           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3546         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3547         // can only do this if the top bits are known zero.
3548         unsigned BitWidth = N0.getValueSizeInBits();
3549         if (DAG.MaskedValueIsZero(N0,
3550                                   APInt::getHighBitsSet(BitWidth,
3551                                                         BitWidth-1))) {
3552           // Okay, get the un-inverted input value.
3553           SDValue Val;
3554           if (N0.getOpcode() == ISD::XOR) {
3555             Val = N0.getOperand(0);
3556           } else {
3557             assert(N0.getOpcode() == ISD::AND &&
3558                     N0.getOperand(0).getOpcode() == ISD::XOR);
3559             // ((X^1)&1)^1 -> X & 1
3560             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3561                               N0.getOperand(0).getOperand(0),
3562                               N0.getOperand(1));
3563           }
3564 
3565           return DAG.getSetCC(dl, VT, Val, N1,
3566                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3567         }
3568       } else if (N1C->isOne()) {
3569         SDValue Op0 = N0;
3570         if (Op0.getOpcode() == ISD::TRUNCATE)
3571           Op0 = Op0.getOperand(0);
3572 
3573         if ((Op0.getOpcode() == ISD::XOR) &&
3574             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3575             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3576           SDValue XorLHS = Op0.getOperand(0);
3577           SDValue XorRHS = Op0.getOperand(1);
3578           // Ensure that the input setccs return an i1 type or 0/1 value.
3579           if (Op0.getValueType() == MVT::i1 ||
3580               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3581                       ZeroOrOneBooleanContent &&
3582                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3583                         ZeroOrOneBooleanContent)) {
3584             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3585             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3586             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3587           }
3588         }
3589         if (Op0.getOpcode() == ISD::AND &&
3590             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3591             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3592           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3593           if (Op0.getValueType().bitsGT(VT))
3594             Op0 = DAG.getNode(ISD::AND, dl, VT,
3595                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3596                           DAG.getConstant(1, dl, VT));
3597           else if (Op0.getValueType().bitsLT(VT))
3598             Op0 = DAG.getNode(ISD::AND, dl, VT,
3599                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3600                         DAG.getConstant(1, dl, VT));
3601 
3602           return DAG.getSetCC(dl, VT, Op0,
3603                               DAG.getConstant(0, dl, Op0.getValueType()),
3604                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3605         }
3606         if (Op0.getOpcode() == ISD::AssertZext &&
3607             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3608           return DAG.getSetCC(dl, VT, Op0,
3609                               DAG.getConstant(0, dl, Op0.getValueType()),
3610                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3611       }
3612     }
3613 
3614     // Given:
3615     //   icmp eq/ne (urem %x, %y), 0
3616     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3617     //   icmp eq/ne %x, 0
3618     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3619         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3620       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3621       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3622       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3623         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3624     }
3625 
3626     if (SDValue V =
3627             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3628       return V;
3629   }
3630 
3631   // These simplifications apply to splat vectors as well.
3632   // TODO: Handle more splat vector cases.
3633   if (auto *N1C = isConstOrConstSplat(N1)) {
3634     const APInt &C1 = N1C->getAPIntValue();
3635 
3636     APInt MinVal, MaxVal;
3637     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3638     if (ISD::isSignedIntSetCC(Cond)) {
3639       MinVal = APInt::getSignedMinValue(OperandBitSize);
3640       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3641     } else {
3642       MinVal = APInt::getMinValue(OperandBitSize);
3643       MaxVal = APInt::getMaxValue(OperandBitSize);
3644     }
3645 
3646     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3647     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3648       // X >= MIN --> true
3649       if (C1 == MinVal)
3650         return DAG.getBoolConstant(true, dl, VT, OpVT);
3651 
3652       if (!VT.isVector()) { // TODO: Support this for vectors.
3653         // X >= C0 --> X > (C0 - 1)
3654         APInt C = C1 - 1;
3655         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3656         if ((DCI.isBeforeLegalizeOps() ||
3657              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3658             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3659                                   isLegalICmpImmediate(C.getSExtValue())))) {
3660           return DAG.getSetCC(dl, VT, N0,
3661                               DAG.getConstant(C, dl, N1.getValueType()),
3662                               NewCC);
3663         }
3664       }
3665     }
3666 
3667     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3668       // X <= MAX --> true
3669       if (C1 == MaxVal)
3670         return DAG.getBoolConstant(true, dl, VT, OpVT);
3671 
3672       // X <= C0 --> X < (C0 + 1)
3673       if (!VT.isVector()) { // TODO: Support this for vectors.
3674         APInt C = C1 + 1;
3675         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3676         if ((DCI.isBeforeLegalizeOps() ||
3677              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3678             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3679                                   isLegalICmpImmediate(C.getSExtValue())))) {
3680           return DAG.getSetCC(dl, VT, N0,
3681                               DAG.getConstant(C, dl, N1.getValueType()),
3682                               NewCC);
3683         }
3684       }
3685     }
3686 
3687     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3688       if (C1 == MinVal)
3689         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3690 
3691       // TODO: Support this for vectors after legalize ops.
3692       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3693         // Canonicalize setlt X, Max --> setne X, Max
3694         if (C1 == MaxVal)
3695           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3696 
3697         // If we have setult X, 1, turn it into seteq X, 0
3698         if (C1 == MinVal+1)
3699           return DAG.getSetCC(dl, VT, N0,
3700                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3701                               ISD::SETEQ);
3702       }
3703     }
3704 
3705     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3706       if (C1 == MaxVal)
3707         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3708 
3709       // TODO: Support this for vectors after legalize ops.
3710       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3711         // Canonicalize setgt X, Min --> setne X, Min
3712         if (C1 == MinVal)
3713           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3714 
3715         // If we have setugt X, Max-1, turn it into seteq X, Max
3716         if (C1 == MaxVal-1)
3717           return DAG.getSetCC(dl, VT, N0,
3718                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3719                               ISD::SETEQ);
3720       }
3721     }
3722 
3723     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3724       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3725       if (C1.isNullValue())
3726         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3727                 VT, N0, N1, Cond, DCI, dl))
3728           return CC;
3729     }
3730 
3731     // If we have "setcc X, C0", check to see if we can shrink the immediate
3732     // by changing cc.
3733     // TODO: Support this for vectors after legalize ops.
3734     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3735       // SETUGT X, SINTMAX  -> SETLT X, 0
3736       if (Cond == ISD::SETUGT &&
3737           C1 == APInt::getSignedMaxValue(OperandBitSize))
3738         return DAG.getSetCC(dl, VT, N0,
3739                             DAG.getConstant(0, dl, N1.getValueType()),
3740                             ISD::SETLT);
3741 
3742       // SETULT X, SINTMIN  -> SETGT X, -1
3743       if (Cond == ISD::SETULT &&
3744           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3745         SDValue ConstMinusOne =
3746             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3747                             N1.getValueType());
3748         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3749       }
3750     }
3751   }
3752 
3753   // Back to non-vector simplifications.
3754   // TODO: Can we do these for vector splats?
3755   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3756     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3757     const APInt &C1 = N1C->getAPIntValue();
3758     EVT ShValTy = N0.getValueType();
3759 
3760     // Fold bit comparisons when we can.
3761     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3762         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3763         N0.getOpcode() == ISD::AND) {
3764       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3765         EVT ShiftTy =
3766             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3767         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3768           // Perform the xform if the AND RHS is a single bit.
3769           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3770           if (AndRHS->getAPIntValue().isPowerOf2() &&
3771               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3772             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3773                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3774                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3775           }
3776         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3777           // (X & 8) == 8  -->  (X & 8) >> 3
3778           // Perform the xform if C1 is a single bit.
3779           unsigned ShCt = C1.logBase2();
3780           if (C1.isPowerOf2() &&
3781               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3782             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3783                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3784                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3785           }
3786         }
3787       }
3788     }
3789 
3790     if (C1.getMinSignedBits() <= 64 &&
3791         !isLegalICmpImmediate(C1.getSExtValue())) {
3792       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3793       // (X & -256) == 256 -> (X >> 8) == 1
3794       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3795           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3796         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3797           const APInt &AndRHSC = AndRHS->getAPIntValue();
3798           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3799             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3800             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3801               SDValue Shift =
3802                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3803                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3804               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3805               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3806             }
3807           }
3808         }
3809       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3810                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3811         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3812         // X <  0x100000000 -> (X >> 32) <  1
3813         // X >= 0x100000000 -> (X >> 32) >= 1
3814         // X <= 0x0ffffffff -> (X >> 32) <  1
3815         // X >  0x0ffffffff -> (X >> 32) >= 1
3816         unsigned ShiftBits;
3817         APInt NewC = C1;
3818         ISD::CondCode NewCond = Cond;
3819         if (AdjOne) {
3820           ShiftBits = C1.countTrailingOnes();
3821           NewC = NewC + 1;
3822           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3823         } else {
3824           ShiftBits = C1.countTrailingZeros();
3825         }
3826         NewC.lshrInPlace(ShiftBits);
3827         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3828             isLegalICmpImmediate(NewC.getSExtValue()) &&
3829             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3830           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3831                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3832           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
3833           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3834         }
3835       }
3836     }
3837   }
3838 
3839   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3840     auto *CFP = cast<ConstantFPSDNode>(N1);
3841     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3842 
3843     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3844     // constant if knowing that the operand is non-nan is enough.  We prefer to
3845     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3846     // materialize 0.0.
3847     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3848       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3849 
3850     // setcc (fneg x), C -> setcc swap(pred) x, -C
3851     if (N0.getOpcode() == ISD::FNEG) {
3852       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3853       if (DCI.isBeforeLegalizeOps() ||
3854           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3855         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3856         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3857       }
3858     }
3859 
3860     // If the condition is not legal, see if we can find an equivalent one
3861     // which is legal.
3862     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3863       // If the comparison was an awkward floating-point == or != and one of
3864       // the comparison operands is infinity or negative infinity, convert the
3865       // condition to a less-awkward <= or >=.
3866       if (CFP->getValueAPF().isInfinity()) {
3867         bool IsNegInf = CFP->getValueAPF().isNegative();
3868         ISD::CondCode NewCond = ISD::SETCC_INVALID;
3869         switch (Cond) {
3870         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
3871         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
3872         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
3873         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
3874         default: break;
3875         }
3876         if (NewCond != ISD::SETCC_INVALID &&
3877             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
3878           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3879       }
3880     }
3881   }
3882 
3883   if (N0 == N1) {
3884     // The sext(setcc()) => setcc() optimization relies on the appropriate
3885     // constant being emitted.
3886     assert(!N0.getValueType().isInteger() &&
3887            "Integer types should be handled by FoldSetCC");
3888 
3889     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3890     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3891     if (UOF == 2) // FP operators that are undefined on NaNs.
3892       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3893     if (UOF == unsigned(EqTrue))
3894       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3895     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3896     // if it is not already.
3897     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3898     if (NewCond != Cond &&
3899         (DCI.isBeforeLegalizeOps() ||
3900                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3901       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3902   }
3903 
3904   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3905       N0.getValueType().isInteger()) {
3906     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3907         N0.getOpcode() == ISD::XOR) {
3908       // Simplify (X+Y) == (X+Z) -->  Y == Z
3909       if (N0.getOpcode() == N1.getOpcode()) {
3910         if (N0.getOperand(0) == N1.getOperand(0))
3911           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3912         if (N0.getOperand(1) == N1.getOperand(1))
3913           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3914         if (isCommutativeBinOp(N0.getOpcode())) {
3915           // If X op Y == Y op X, try other combinations.
3916           if (N0.getOperand(0) == N1.getOperand(1))
3917             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3918                                 Cond);
3919           if (N0.getOperand(1) == N1.getOperand(0))
3920             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3921                                 Cond);
3922         }
3923       }
3924 
3925       // If RHS is a legal immediate value for a compare instruction, we need
3926       // to be careful about increasing register pressure needlessly.
3927       bool LegalRHSImm = false;
3928 
3929       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3930         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3931           // Turn (X+C1) == C2 --> X == C2-C1
3932           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3933             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3934                                 DAG.getConstant(RHSC->getAPIntValue()-
3935                                                 LHSR->getAPIntValue(),
3936                                 dl, N0.getValueType()), Cond);
3937           }
3938 
3939           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3940           if (N0.getOpcode() == ISD::XOR)
3941             // If we know that all of the inverted bits are zero, don't bother
3942             // performing the inversion.
3943             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3944               return
3945                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3946                              DAG.getConstant(LHSR->getAPIntValue() ^
3947                                                RHSC->getAPIntValue(),
3948                                              dl, N0.getValueType()),
3949                              Cond);
3950         }
3951 
3952         // Turn (C1-X) == C2 --> X == C1-C2
3953         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3954           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3955             return
3956               DAG.getSetCC(dl, VT, N0.getOperand(1),
3957                            DAG.getConstant(SUBC->getAPIntValue() -
3958                                              RHSC->getAPIntValue(),
3959                                            dl, N0.getValueType()),
3960                            Cond);
3961           }
3962         }
3963 
3964         // Could RHSC fold directly into a compare?
3965         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3966           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3967       }
3968 
3969       // (X+Y) == X --> Y == 0 and similar folds.
3970       // Don't do this if X is an immediate that can fold into a cmp
3971       // instruction and X+Y has other uses. It could be an induction variable
3972       // chain, and the transform would increase register pressure.
3973       if (!LegalRHSImm || N0.hasOneUse())
3974         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3975           return V;
3976     }
3977 
3978     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3979         N1.getOpcode() == ISD::XOR)
3980       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3981         return V;
3982 
3983     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3984       return V;
3985   }
3986 
3987   // Fold remainder of division by a constant.
3988   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
3989       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3990     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3991 
3992     // When division is cheap or optimizing for minimum size,
3993     // fall through to DIVREM creation by skipping this fold.
3994     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
3995       if (N0.getOpcode() == ISD::UREM) {
3996         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
3997           return Folded;
3998       } else if (N0.getOpcode() == ISD::SREM) {
3999         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4000           return Folded;
4001       }
4002     }
4003   }
4004 
4005   // Fold away ALL boolean setcc's.
4006   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4007     SDValue Temp;
4008     switch (Cond) {
4009     default: llvm_unreachable("Unknown integer setcc!");
4010     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4011       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4012       N0 = DAG.getNOT(dl, Temp, OpVT);
4013       if (!DCI.isCalledByLegalizer())
4014         DCI.AddToWorklist(Temp.getNode());
4015       break;
4016     case ISD::SETNE:  // X != Y   -->  (X^Y)
4017       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4018       break;
4019     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4020     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4021       Temp = DAG.getNOT(dl, N0, OpVT);
4022       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4023       if (!DCI.isCalledByLegalizer())
4024         DCI.AddToWorklist(Temp.getNode());
4025       break;
4026     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4027     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4028       Temp = DAG.getNOT(dl, N1, OpVT);
4029       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4030       if (!DCI.isCalledByLegalizer())
4031         DCI.AddToWorklist(Temp.getNode());
4032       break;
4033     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4034     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4035       Temp = DAG.getNOT(dl, N0, OpVT);
4036       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4037       if (!DCI.isCalledByLegalizer())
4038         DCI.AddToWorklist(Temp.getNode());
4039       break;
4040     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4041     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4042       Temp = DAG.getNOT(dl, N1, OpVT);
4043       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4044       break;
4045     }
4046     if (VT.getScalarType() != MVT::i1) {
4047       if (!DCI.isCalledByLegalizer())
4048         DCI.AddToWorklist(N0.getNode());
4049       // FIXME: If running after legalize, we probably can't do this.
4050       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4051       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4052     }
4053     return N0;
4054   }
4055 
4056   // Could not fold it.
4057   return SDValue();
4058 }
4059 
4060 /// Returns true (and the GlobalValue and the offset) if the node is a
4061 /// GlobalAddress + offset.
4062 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4063                                     int64_t &Offset) const {
4064 
4065   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4066 
4067   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4068     GA = GASD->getGlobal();
4069     Offset += GASD->getOffset();
4070     return true;
4071   }
4072 
4073   if (N->getOpcode() == ISD::ADD) {
4074     SDValue N1 = N->getOperand(0);
4075     SDValue N2 = N->getOperand(1);
4076     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4077       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4078         Offset += V->getSExtValue();
4079         return true;
4080       }
4081     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4082       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4083         Offset += V->getSExtValue();
4084         return true;
4085       }
4086     }
4087   }
4088 
4089   return false;
4090 }
4091 
4092 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4093                                           DAGCombinerInfo &DCI) const {
4094   // Default implementation: no optimization.
4095   return SDValue();
4096 }
4097 
4098 //===----------------------------------------------------------------------===//
4099 //  Inline Assembler Implementation Methods
4100 //===----------------------------------------------------------------------===//
4101 
4102 TargetLowering::ConstraintType
4103 TargetLowering::getConstraintType(StringRef Constraint) const {
4104   unsigned S = Constraint.size();
4105 
4106   if (S == 1) {
4107     switch (Constraint[0]) {
4108     default: break;
4109     case 'r':
4110       return C_RegisterClass;
4111     case 'm': // memory
4112     case 'o': // offsetable
4113     case 'V': // not offsetable
4114       return C_Memory;
4115     case 'n': // Simple Integer
4116     case 'E': // Floating Point Constant
4117     case 'F': // Floating Point Constant
4118       return C_Immediate;
4119     case 'i': // Simple Integer or Relocatable Constant
4120     case 's': // Relocatable Constant
4121     case 'p': // Address.
4122     case 'X': // Allow ANY value.
4123     case 'I': // Target registers.
4124     case 'J':
4125     case 'K':
4126     case 'L':
4127     case 'M':
4128     case 'N':
4129     case 'O':
4130     case 'P':
4131     case '<':
4132     case '>':
4133       return C_Other;
4134     }
4135   }
4136 
4137   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4138     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4139       return C_Memory;
4140     return C_Register;
4141   }
4142   return C_Unknown;
4143 }
4144 
4145 /// Try to replace an X constraint, which matches anything, with another that
4146 /// has more specific requirements based on the type of the corresponding
4147 /// operand.
4148 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4149   if (ConstraintVT.isInteger())
4150     return "r";
4151   if (ConstraintVT.isFloatingPoint())
4152     return "f"; // works for many targets
4153   return nullptr;
4154 }
4155 
4156 SDValue TargetLowering::LowerAsmOutputForConstraint(
4157     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4158     SelectionDAG &DAG) const {
4159   return SDValue();
4160 }
4161 
4162 /// Lower the specified operand into the Ops vector.
4163 /// If it is invalid, don't add anything to Ops.
4164 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4165                                                   std::string &Constraint,
4166                                                   std::vector<SDValue> &Ops,
4167                                                   SelectionDAG &DAG) const {
4168 
4169   if (Constraint.length() > 1) return;
4170 
4171   char ConstraintLetter = Constraint[0];
4172   switch (ConstraintLetter) {
4173   default: break;
4174   case 'X':     // Allows any operand; labels (basic block) use this.
4175     if (Op.getOpcode() == ISD::BasicBlock ||
4176         Op.getOpcode() == ISD::TargetBlockAddress) {
4177       Ops.push_back(Op);
4178       return;
4179     }
4180     LLVM_FALLTHROUGH;
4181   case 'i':    // Simple Integer or Relocatable Constant
4182   case 'n':    // Simple Integer
4183   case 's': {  // Relocatable Constant
4184 
4185     GlobalAddressSDNode *GA;
4186     ConstantSDNode *C;
4187     BlockAddressSDNode *BA;
4188     uint64_t Offset = 0;
4189 
4190     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4191     // etc., since getelementpointer is variadic. We can't use
4192     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4193     // while in this case the GA may be furthest from the root node which is
4194     // likely an ISD::ADD.
4195     while (1) {
4196       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4197         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4198                                                  GA->getValueType(0),
4199                                                  Offset + GA->getOffset()));
4200         return;
4201       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4202                  ConstraintLetter != 's') {
4203         // gcc prints these as sign extended.  Sign extend value to 64 bits
4204         // now; without this it would get ZExt'd later in
4205         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4206         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4207         BooleanContent BCont = getBooleanContents(MVT::i64);
4208         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4209                                       : ISD::SIGN_EXTEND;
4210         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4211                                                     : C->getSExtValue();
4212         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4213                                             SDLoc(C), MVT::i64));
4214         return;
4215       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4216                  ConstraintLetter != 'n') {
4217         Ops.push_back(DAG.getTargetBlockAddress(
4218             BA->getBlockAddress(), BA->getValueType(0),
4219             Offset + BA->getOffset(), BA->getTargetFlags()));
4220         return;
4221       } else {
4222         const unsigned OpCode = Op.getOpcode();
4223         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4224           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4225             Op = Op.getOperand(1);
4226           // Subtraction is not commutative.
4227           else if (OpCode == ISD::ADD &&
4228                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4229             Op = Op.getOperand(0);
4230           else
4231             return;
4232           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4233           continue;
4234         }
4235       }
4236       return;
4237     }
4238     break;
4239   }
4240   }
4241 }
4242 
4243 std::pair<unsigned, const TargetRegisterClass *>
4244 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4245                                              StringRef Constraint,
4246                                              MVT VT) const {
4247   if (Constraint.empty() || Constraint[0] != '{')
4248     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4249   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4250 
4251   // Remove the braces from around the name.
4252   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4253 
4254   std::pair<unsigned, const TargetRegisterClass *> R =
4255       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4256 
4257   // Figure out which register class contains this reg.
4258   for (const TargetRegisterClass *RC : RI->regclasses()) {
4259     // If none of the value types for this register class are valid, we
4260     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4261     if (!isLegalRC(*RI, *RC))
4262       continue;
4263 
4264     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4265          I != E; ++I) {
4266       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4267         std::pair<unsigned, const TargetRegisterClass *> S =
4268             std::make_pair(*I, RC);
4269 
4270         // If this register class has the requested value type, return it,
4271         // otherwise keep searching and return the first class found
4272         // if no other is found which explicitly has the requested type.
4273         if (RI->isTypeLegalForClass(*RC, VT))
4274           return S;
4275         if (!R.second)
4276           R = S;
4277       }
4278     }
4279   }
4280 
4281   return R;
4282 }
4283 
4284 //===----------------------------------------------------------------------===//
4285 // Constraint Selection.
4286 
4287 /// Return true of this is an input operand that is a matching constraint like
4288 /// "4".
4289 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4290   assert(!ConstraintCode.empty() && "No known constraint!");
4291   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4292 }
4293 
4294 /// If this is an input matching constraint, this method returns the output
4295 /// operand it matches.
4296 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4297   assert(!ConstraintCode.empty() && "No known constraint!");
4298   return atoi(ConstraintCode.c_str());
4299 }
4300 
4301 /// Split up the constraint string from the inline assembly value into the
4302 /// specific constraints and their prefixes, and also tie in the associated
4303 /// operand values.
4304 /// If this returns an empty vector, and if the constraint string itself
4305 /// isn't empty, there was an error parsing.
4306 TargetLowering::AsmOperandInfoVector
4307 TargetLowering::ParseConstraints(const DataLayout &DL,
4308                                  const TargetRegisterInfo *TRI,
4309                                  ImmutableCallSite CS) const {
4310   /// Information about all of the constraints.
4311   AsmOperandInfoVector ConstraintOperands;
4312   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4313   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4314 
4315   // Do a prepass over the constraints, canonicalizing them, and building up the
4316   // ConstraintOperands list.
4317   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4318   unsigned ResNo = 0; // ResNo - The result number of the next output.
4319 
4320   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4321     ConstraintOperands.emplace_back(std::move(CI));
4322     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4323 
4324     // Update multiple alternative constraint count.
4325     if (OpInfo.multipleAlternatives.size() > maCount)
4326       maCount = OpInfo.multipleAlternatives.size();
4327 
4328     OpInfo.ConstraintVT = MVT::Other;
4329 
4330     // Compute the value type for each operand.
4331     switch (OpInfo.Type) {
4332     case InlineAsm::isOutput:
4333       // Indirect outputs just consume an argument.
4334       if (OpInfo.isIndirect) {
4335         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4336         break;
4337       }
4338 
4339       // The return value of the call is this value.  As such, there is no
4340       // corresponding argument.
4341       assert(!CS.getType()->isVoidTy() &&
4342              "Bad inline asm!");
4343       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4344         OpInfo.ConstraintVT =
4345             getSimpleValueType(DL, STy->getElementType(ResNo));
4346       } else {
4347         assert(ResNo == 0 && "Asm only has one result!");
4348         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4349       }
4350       ++ResNo;
4351       break;
4352     case InlineAsm::isInput:
4353       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4354       break;
4355     case InlineAsm::isClobber:
4356       // Nothing to do.
4357       break;
4358     }
4359 
4360     if (OpInfo.CallOperandVal) {
4361       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4362       if (OpInfo.isIndirect) {
4363         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4364         if (!PtrTy)
4365           report_fatal_error("Indirect operand for inline asm not a pointer!");
4366         OpTy = PtrTy->getElementType();
4367       }
4368 
4369       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4370       if (StructType *STy = dyn_cast<StructType>(OpTy))
4371         if (STy->getNumElements() == 1)
4372           OpTy = STy->getElementType(0);
4373 
4374       // If OpTy is not a single value, it may be a struct/union that we
4375       // can tile with integers.
4376       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4377         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4378         switch (BitSize) {
4379         default: break;
4380         case 1:
4381         case 8:
4382         case 16:
4383         case 32:
4384         case 64:
4385         case 128:
4386           OpInfo.ConstraintVT =
4387               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4388           break;
4389         }
4390       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4391         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4392         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4393       } else {
4394         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4395       }
4396     }
4397   }
4398 
4399   // If we have multiple alternative constraints, select the best alternative.
4400   if (!ConstraintOperands.empty()) {
4401     if (maCount) {
4402       unsigned bestMAIndex = 0;
4403       int bestWeight = -1;
4404       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4405       int weight = -1;
4406       unsigned maIndex;
4407       // Compute the sums of the weights for each alternative, keeping track
4408       // of the best (highest weight) one so far.
4409       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4410         int weightSum = 0;
4411         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4412              cIndex != eIndex; ++cIndex) {
4413           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4414           if (OpInfo.Type == InlineAsm::isClobber)
4415             continue;
4416 
4417           // If this is an output operand with a matching input operand,
4418           // look up the matching input. If their types mismatch, e.g. one
4419           // is an integer, the other is floating point, or their sizes are
4420           // different, flag it as an maCantMatch.
4421           if (OpInfo.hasMatchingInput()) {
4422             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4423             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4424               if ((OpInfo.ConstraintVT.isInteger() !=
4425                    Input.ConstraintVT.isInteger()) ||
4426                   (OpInfo.ConstraintVT.getSizeInBits() !=
4427                    Input.ConstraintVT.getSizeInBits())) {
4428                 weightSum = -1; // Can't match.
4429                 break;
4430               }
4431             }
4432           }
4433           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4434           if (weight == -1) {
4435             weightSum = -1;
4436             break;
4437           }
4438           weightSum += weight;
4439         }
4440         // Update best.
4441         if (weightSum > bestWeight) {
4442           bestWeight = weightSum;
4443           bestMAIndex = maIndex;
4444         }
4445       }
4446 
4447       // Now select chosen alternative in each constraint.
4448       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4449            cIndex != eIndex; ++cIndex) {
4450         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4451         if (cInfo.Type == InlineAsm::isClobber)
4452           continue;
4453         cInfo.selectAlternative(bestMAIndex);
4454       }
4455     }
4456   }
4457 
4458   // Check and hook up tied operands, choose constraint code to use.
4459   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4460        cIndex != eIndex; ++cIndex) {
4461     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4462 
4463     // If this is an output operand with a matching input operand, look up the
4464     // matching input. If their types mismatch, e.g. one is an integer, the
4465     // other is floating point, or their sizes are different, flag it as an
4466     // error.
4467     if (OpInfo.hasMatchingInput()) {
4468       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4469 
4470       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4471         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4472             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4473                                          OpInfo.ConstraintVT);
4474         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4475             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4476                                          Input.ConstraintVT);
4477         if ((OpInfo.ConstraintVT.isInteger() !=
4478              Input.ConstraintVT.isInteger()) ||
4479             (MatchRC.second != InputRC.second)) {
4480           report_fatal_error("Unsupported asm: input constraint"
4481                              " with a matching output constraint of"
4482                              " incompatible type!");
4483         }
4484       }
4485     }
4486   }
4487 
4488   return ConstraintOperands;
4489 }
4490 
4491 /// Return an integer indicating how general CT is.
4492 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4493   switch (CT) {
4494   case TargetLowering::C_Immediate:
4495   case TargetLowering::C_Other:
4496   case TargetLowering::C_Unknown:
4497     return 0;
4498   case TargetLowering::C_Register:
4499     return 1;
4500   case TargetLowering::C_RegisterClass:
4501     return 2;
4502   case TargetLowering::C_Memory:
4503     return 3;
4504   }
4505   llvm_unreachable("Invalid constraint type");
4506 }
4507 
4508 /// Examine constraint type and operand type and determine a weight value.
4509 /// This object must already have been set up with the operand type
4510 /// and the current alternative constraint selected.
4511 TargetLowering::ConstraintWeight
4512   TargetLowering::getMultipleConstraintMatchWeight(
4513     AsmOperandInfo &info, int maIndex) const {
4514   InlineAsm::ConstraintCodeVector *rCodes;
4515   if (maIndex >= (int)info.multipleAlternatives.size())
4516     rCodes = &info.Codes;
4517   else
4518     rCodes = &info.multipleAlternatives[maIndex].Codes;
4519   ConstraintWeight BestWeight = CW_Invalid;
4520 
4521   // Loop over the options, keeping track of the most general one.
4522   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4523     ConstraintWeight weight =
4524       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4525     if (weight > BestWeight)
4526       BestWeight = weight;
4527   }
4528 
4529   return BestWeight;
4530 }
4531 
4532 /// Examine constraint type and operand type and determine a weight value.
4533 /// This object must already have been set up with the operand type
4534 /// and the current alternative constraint selected.
4535 TargetLowering::ConstraintWeight
4536   TargetLowering::getSingleConstraintMatchWeight(
4537     AsmOperandInfo &info, const char *constraint) const {
4538   ConstraintWeight weight = CW_Invalid;
4539   Value *CallOperandVal = info.CallOperandVal;
4540     // If we don't have a value, we can't do a match,
4541     // but allow it at the lowest weight.
4542   if (!CallOperandVal)
4543     return CW_Default;
4544   // Look at the constraint type.
4545   switch (*constraint) {
4546     case 'i': // immediate integer.
4547     case 'n': // immediate integer with a known value.
4548       if (isa<ConstantInt>(CallOperandVal))
4549         weight = CW_Constant;
4550       break;
4551     case 's': // non-explicit intregal immediate.
4552       if (isa<GlobalValue>(CallOperandVal))
4553         weight = CW_Constant;
4554       break;
4555     case 'E': // immediate float if host format.
4556     case 'F': // immediate float.
4557       if (isa<ConstantFP>(CallOperandVal))
4558         weight = CW_Constant;
4559       break;
4560     case '<': // memory operand with autodecrement.
4561     case '>': // memory operand with autoincrement.
4562     case 'm': // memory operand.
4563     case 'o': // offsettable memory operand
4564     case 'V': // non-offsettable memory operand
4565       weight = CW_Memory;
4566       break;
4567     case 'r': // general register.
4568     case 'g': // general register, memory operand or immediate integer.
4569               // note: Clang converts "g" to "imr".
4570       if (CallOperandVal->getType()->isIntegerTy())
4571         weight = CW_Register;
4572       break;
4573     case 'X': // any operand.
4574   default:
4575     weight = CW_Default;
4576     break;
4577   }
4578   return weight;
4579 }
4580 
4581 /// If there are multiple different constraints that we could pick for this
4582 /// operand (e.g. "imr") try to pick the 'best' one.
4583 /// This is somewhat tricky: constraints fall into four classes:
4584 ///    Other         -> immediates and magic values
4585 ///    Register      -> one specific register
4586 ///    RegisterClass -> a group of regs
4587 ///    Memory        -> memory
4588 /// Ideally, we would pick the most specific constraint possible: if we have
4589 /// something that fits into a register, we would pick it.  The problem here
4590 /// is that if we have something that could either be in a register or in
4591 /// memory that use of the register could cause selection of *other*
4592 /// operands to fail: they might only succeed if we pick memory.  Because of
4593 /// this the heuristic we use is:
4594 ///
4595 ///  1) If there is an 'other' constraint, and if the operand is valid for
4596 ///     that constraint, use it.  This makes us take advantage of 'i'
4597 ///     constraints when available.
4598 ///  2) Otherwise, pick the most general constraint present.  This prefers
4599 ///     'm' over 'r', for example.
4600 ///
4601 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4602                              const TargetLowering &TLI,
4603                              SDValue Op, SelectionDAG *DAG) {
4604   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4605   unsigned BestIdx = 0;
4606   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4607   int BestGenerality = -1;
4608 
4609   // Loop over the options, keeping track of the most general one.
4610   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4611     TargetLowering::ConstraintType CType =
4612       TLI.getConstraintType(OpInfo.Codes[i]);
4613 
4614     // Indirect 'other' or 'immediate' constraints are not allowed.
4615     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4616                                CType == TargetLowering::C_Register ||
4617                                CType == TargetLowering::C_RegisterClass))
4618       continue;
4619 
4620     // If this is an 'other' or 'immediate' constraint, see if the operand is
4621     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4622     // the operand is an integer in the range [0..31] we want to use I (saving a
4623     // load of a register), otherwise we must use 'r'.
4624     if ((CType == TargetLowering::C_Other ||
4625          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4626       assert(OpInfo.Codes[i].size() == 1 &&
4627              "Unhandled multi-letter 'other' constraint");
4628       std::vector<SDValue> ResultOps;
4629       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4630                                        ResultOps, *DAG);
4631       if (!ResultOps.empty()) {
4632         BestType = CType;
4633         BestIdx = i;
4634         break;
4635       }
4636     }
4637 
4638     // Things with matching constraints can only be registers, per gcc
4639     // documentation.  This mainly affects "g" constraints.
4640     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4641       continue;
4642 
4643     // This constraint letter is more general than the previous one, use it.
4644     int Generality = getConstraintGenerality(CType);
4645     if (Generality > BestGenerality) {
4646       BestType = CType;
4647       BestIdx = i;
4648       BestGenerality = Generality;
4649     }
4650   }
4651 
4652   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4653   OpInfo.ConstraintType = BestType;
4654 }
4655 
4656 /// Determines the constraint code and constraint type to use for the specific
4657 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4658 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4659                                             SDValue Op,
4660                                             SelectionDAG *DAG) const {
4661   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4662 
4663   // Single-letter constraints ('r') are very common.
4664   if (OpInfo.Codes.size() == 1) {
4665     OpInfo.ConstraintCode = OpInfo.Codes[0];
4666     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4667   } else {
4668     ChooseConstraint(OpInfo, *this, Op, DAG);
4669   }
4670 
4671   // 'X' matches anything.
4672   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4673     // Labels and constants are handled elsewhere ('X' is the only thing
4674     // that matches labels).  For Functions, the type here is the type of
4675     // the result, which is not what we want to look at; leave them alone.
4676     Value *v = OpInfo.CallOperandVal;
4677     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4678       OpInfo.CallOperandVal = v;
4679       return;
4680     }
4681 
4682     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4683       return;
4684 
4685     // Otherwise, try to resolve it to something we know about by looking at
4686     // the actual operand type.
4687     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4688       OpInfo.ConstraintCode = Repl;
4689       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4690     }
4691   }
4692 }
4693 
4694 /// Given an exact SDIV by a constant, create a multiplication
4695 /// with the multiplicative inverse of the constant.
4696 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4697                               const SDLoc &dl, SelectionDAG &DAG,
4698                               SmallVectorImpl<SDNode *> &Created) {
4699   SDValue Op0 = N->getOperand(0);
4700   SDValue Op1 = N->getOperand(1);
4701   EVT VT = N->getValueType(0);
4702   EVT SVT = VT.getScalarType();
4703   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4704   EVT ShSVT = ShVT.getScalarType();
4705 
4706   bool UseSRA = false;
4707   SmallVector<SDValue, 16> Shifts, Factors;
4708 
4709   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4710     if (C->isNullValue())
4711       return false;
4712     APInt Divisor = C->getAPIntValue();
4713     unsigned Shift = Divisor.countTrailingZeros();
4714     if (Shift) {
4715       Divisor.ashrInPlace(Shift);
4716       UseSRA = true;
4717     }
4718     // Calculate the multiplicative inverse, using Newton's method.
4719     APInt t;
4720     APInt Factor = Divisor;
4721     while ((t = Divisor * Factor) != 1)
4722       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4723     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4724     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4725     return true;
4726   };
4727 
4728   // Collect all magic values from the build vector.
4729   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4730     return SDValue();
4731 
4732   SDValue Shift, Factor;
4733   if (VT.isVector()) {
4734     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4735     Factor = DAG.getBuildVector(VT, dl, Factors);
4736   } else {
4737     Shift = Shifts[0];
4738     Factor = Factors[0];
4739   }
4740 
4741   SDValue Res = Op0;
4742 
4743   // Shift the value upfront if it is even, so the LSB is one.
4744   if (UseSRA) {
4745     // TODO: For UDIV use SRL instead of SRA.
4746     SDNodeFlags Flags;
4747     Flags.setExact(true);
4748     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4749     Created.push_back(Res.getNode());
4750   }
4751 
4752   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4753 }
4754 
4755 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4756                               SelectionDAG &DAG,
4757                               SmallVectorImpl<SDNode *> &Created) const {
4758   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4759   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4760   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4761     return SDValue(N, 0); // Lower SDIV as SDIV
4762   return SDValue();
4763 }
4764 
4765 /// Given an ISD::SDIV node expressing a divide by constant,
4766 /// return a DAG expression to select that will generate the same value by
4767 /// multiplying by a magic number.
4768 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4769 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4770                                   bool IsAfterLegalization,
4771                                   SmallVectorImpl<SDNode *> &Created) const {
4772   SDLoc dl(N);
4773   EVT VT = N->getValueType(0);
4774   EVT SVT = VT.getScalarType();
4775   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4776   EVT ShSVT = ShVT.getScalarType();
4777   unsigned EltBits = VT.getScalarSizeInBits();
4778 
4779   // Check to see if we can do this.
4780   // FIXME: We should be more aggressive here.
4781   if (!isTypeLegal(VT))
4782     return SDValue();
4783 
4784   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4785   if (N->getFlags().hasExact())
4786     return BuildExactSDIV(*this, N, dl, DAG, Created);
4787 
4788   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4789 
4790   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4791     if (C->isNullValue())
4792       return false;
4793 
4794     const APInt &Divisor = C->getAPIntValue();
4795     APInt::ms magics = Divisor.magic();
4796     int NumeratorFactor = 0;
4797     int ShiftMask = -1;
4798 
4799     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4800       // If d is +1/-1, we just multiply the numerator by +1/-1.
4801       NumeratorFactor = Divisor.getSExtValue();
4802       magics.m = 0;
4803       magics.s = 0;
4804       ShiftMask = 0;
4805     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4806       // If d > 0 and m < 0, add the numerator.
4807       NumeratorFactor = 1;
4808     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4809       // If d < 0 and m > 0, subtract the numerator.
4810       NumeratorFactor = -1;
4811     }
4812 
4813     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4814     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4815     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4816     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4817     return true;
4818   };
4819 
4820   SDValue N0 = N->getOperand(0);
4821   SDValue N1 = N->getOperand(1);
4822 
4823   // Collect the shifts / magic values from each element.
4824   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4825     return SDValue();
4826 
4827   SDValue MagicFactor, Factor, Shift, ShiftMask;
4828   if (VT.isVector()) {
4829     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4830     Factor = DAG.getBuildVector(VT, dl, Factors);
4831     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4832     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4833   } else {
4834     MagicFactor = MagicFactors[0];
4835     Factor = Factors[0];
4836     Shift = Shifts[0];
4837     ShiftMask = ShiftMasks[0];
4838   }
4839 
4840   // Multiply the numerator (operand 0) by the magic value.
4841   // FIXME: We should support doing a MUL in a wider type.
4842   SDValue Q;
4843   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4844                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4845     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4846   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4847                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4848     SDValue LoHi =
4849         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4850     Q = SDValue(LoHi.getNode(), 1);
4851   } else
4852     return SDValue(); // No mulhs or equivalent.
4853   Created.push_back(Q.getNode());
4854 
4855   // (Optionally) Add/subtract the numerator using Factor.
4856   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4857   Created.push_back(Factor.getNode());
4858   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4859   Created.push_back(Q.getNode());
4860 
4861   // Shift right algebraic by shift value.
4862   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4863   Created.push_back(Q.getNode());
4864 
4865   // Extract the sign bit, mask it and add it to the quotient.
4866   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4867   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4868   Created.push_back(T.getNode());
4869   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4870   Created.push_back(T.getNode());
4871   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4872 }
4873 
4874 /// Given an ISD::UDIV node expressing a divide by constant,
4875 /// return a DAG expression to select that will generate the same value by
4876 /// multiplying by a magic number.
4877 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4878 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4879                                   bool IsAfterLegalization,
4880                                   SmallVectorImpl<SDNode *> &Created) const {
4881   SDLoc dl(N);
4882   EVT VT = N->getValueType(0);
4883   EVT SVT = VT.getScalarType();
4884   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4885   EVT ShSVT = ShVT.getScalarType();
4886   unsigned EltBits = VT.getScalarSizeInBits();
4887 
4888   // Check to see if we can do this.
4889   // FIXME: We should be more aggressive here.
4890   if (!isTypeLegal(VT))
4891     return SDValue();
4892 
4893   bool UseNPQ = false;
4894   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4895 
4896   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4897     if (C->isNullValue())
4898       return false;
4899     // FIXME: We should use a narrower constant when the upper
4900     // bits are known to be zero.
4901     APInt Divisor = C->getAPIntValue();
4902     APInt::mu magics = Divisor.magicu();
4903     unsigned PreShift = 0, PostShift = 0;
4904 
4905     // If the divisor is even, we can avoid using the expensive fixup by
4906     // shifting the divided value upfront.
4907     if (magics.a != 0 && !Divisor[0]) {
4908       PreShift = Divisor.countTrailingZeros();
4909       // Get magic number for the shifted divisor.
4910       magics = Divisor.lshr(PreShift).magicu(PreShift);
4911       assert(magics.a == 0 && "Should use cheap fixup now");
4912     }
4913 
4914     APInt Magic = magics.m;
4915 
4916     unsigned SelNPQ;
4917     if (magics.a == 0 || Divisor.isOneValue()) {
4918       assert(magics.s < Divisor.getBitWidth() &&
4919              "We shouldn't generate an undefined shift!");
4920       PostShift = magics.s;
4921       SelNPQ = false;
4922     } else {
4923       PostShift = magics.s - 1;
4924       SelNPQ = true;
4925     }
4926 
4927     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4928     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4929     NPQFactors.push_back(
4930         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4931                                : APInt::getNullValue(EltBits),
4932                         dl, SVT));
4933     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4934     UseNPQ |= SelNPQ;
4935     return true;
4936   };
4937 
4938   SDValue N0 = N->getOperand(0);
4939   SDValue N1 = N->getOperand(1);
4940 
4941   // Collect the shifts/magic values from each element.
4942   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4943     return SDValue();
4944 
4945   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4946   if (VT.isVector()) {
4947     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4948     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4949     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4950     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4951   } else {
4952     PreShift = PreShifts[0];
4953     MagicFactor = MagicFactors[0];
4954     PostShift = PostShifts[0];
4955   }
4956 
4957   SDValue Q = N0;
4958   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4959   Created.push_back(Q.getNode());
4960 
4961   // FIXME: We should support doing a MUL in a wider type.
4962   auto GetMULHU = [&](SDValue X, SDValue Y) {
4963     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4964                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4965       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4966     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4967                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4968       SDValue LoHi =
4969           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4970       return SDValue(LoHi.getNode(), 1);
4971     }
4972     return SDValue(); // No mulhu or equivalent
4973   };
4974 
4975   // Multiply the numerator (operand 0) by the magic value.
4976   Q = GetMULHU(Q, MagicFactor);
4977   if (!Q)
4978     return SDValue();
4979 
4980   Created.push_back(Q.getNode());
4981 
4982   if (UseNPQ) {
4983     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4984     Created.push_back(NPQ.getNode());
4985 
4986     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4987     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4988     if (VT.isVector())
4989       NPQ = GetMULHU(NPQ, NPQFactor);
4990     else
4991       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4992 
4993     Created.push_back(NPQ.getNode());
4994 
4995     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4996     Created.push_back(Q.getNode());
4997   }
4998 
4999   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5000   Created.push_back(Q.getNode());
5001 
5002   SDValue One = DAG.getConstant(1, dl, VT);
5003   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
5004   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5005 }
5006 
5007 /// If all values in Values that *don't* match the predicate are same 'splat'
5008 /// value, then replace all values with that splat value.
5009 /// Else, if AlternativeReplacement was provided, then replace all values that
5010 /// do match predicate with AlternativeReplacement value.
5011 static void
5012 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5013                           std::function<bool(SDValue)> Predicate,
5014                           SDValue AlternativeReplacement = SDValue()) {
5015   SDValue Replacement;
5016   // Is there a value for which the Predicate does *NOT* match? What is it?
5017   auto SplatValue = llvm::find_if_not(Values, Predicate);
5018   if (SplatValue != Values.end()) {
5019     // Does Values consist only of SplatValue's and values matching Predicate?
5020     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5021           return Value == *SplatValue || Predicate(Value);
5022         })) // Then we shall replace values matching predicate with SplatValue.
5023       Replacement = *SplatValue;
5024   }
5025   if (!Replacement) {
5026     // Oops, we did not find the "baseline" splat value.
5027     if (!AlternativeReplacement)
5028       return; // Nothing to do.
5029     // Let's replace with provided value then.
5030     Replacement = AlternativeReplacement;
5031   }
5032   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5033 }
5034 
5035 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5036 /// where the divisor is constant and the comparison target is zero,
5037 /// return a DAG expression that will generate the same comparison result
5038 /// using only multiplications, additions and shifts/rotations.
5039 /// Ref: "Hacker's Delight" 10-17.
5040 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5041                                         SDValue CompTargetNode,
5042                                         ISD::CondCode Cond,
5043                                         DAGCombinerInfo &DCI,
5044                                         const SDLoc &DL) const {
5045   SmallVector<SDNode *, 5> Built;
5046   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5047                                          DCI, DL, Built)) {
5048     for (SDNode *N : Built)
5049       DCI.AddToWorklist(N);
5050     return Folded;
5051   }
5052 
5053   return SDValue();
5054 }
5055 
5056 SDValue
5057 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5058                                   SDValue CompTargetNode, ISD::CondCode Cond,
5059                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5060                                   SmallVectorImpl<SDNode *> &Created) const {
5061   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5062   // - D must be constant, with D = D0 * 2^K where D0 is odd
5063   // - P is the multiplicative inverse of D0 modulo 2^W
5064   // - Q = floor(((2^W) - 1) / D)
5065   // where W is the width of the common type of N and D.
5066   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5067          "Only applicable for (in)equality comparisons.");
5068 
5069   SelectionDAG &DAG = DCI.DAG;
5070 
5071   EVT VT = REMNode.getValueType();
5072   EVT SVT = VT.getScalarType();
5073   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5074   EVT ShSVT = ShVT.getScalarType();
5075 
5076   // If MUL is unavailable, we cannot proceed in any case.
5077   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5078     return SDValue();
5079 
5080   bool ComparingWithAllZeros = true;
5081   bool AllComparisonsWithNonZerosAreTautological = true;
5082   bool HadTautologicalLanes = false;
5083   bool AllLanesAreTautological = true;
5084   bool HadEvenDivisor = false;
5085   bool AllDivisorsArePowerOfTwo = true;
5086   bool HadTautologicalInvertedLanes = false;
5087   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5088 
5089   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5090     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5091     if (CDiv->isNullValue())
5092       return false;
5093 
5094     const APInt &D = CDiv->getAPIntValue();
5095     const APInt &Cmp = CCmp->getAPIntValue();
5096 
5097     ComparingWithAllZeros &= Cmp.isNullValue();
5098 
5099     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5100     // if C2 is not less than C1, the comparison is always false.
5101     // But we will only be able to produce the comparison that will give the
5102     // opposive tautological answer. So this lane would need to be fixed up.
5103     bool TautologicalInvertedLane = D.ule(Cmp);
5104     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5105 
5106     // If all lanes are tautological (either all divisors are ones, or divisor
5107     // is not greater than the constant we are comparing with),
5108     // we will prefer to avoid the fold.
5109     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5110     HadTautologicalLanes |= TautologicalLane;
5111     AllLanesAreTautological &= TautologicalLane;
5112 
5113     // If we are comparing with non-zero, we need'll need  to subtract said
5114     // comparison value from the LHS. But there is no point in doing that if
5115     // every lane where we are comparing with non-zero is tautological..
5116     if (!Cmp.isNullValue())
5117       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5118 
5119     // Decompose D into D0 * 2^K
5120     unsigned K = D.countTrailingZeros();
5121     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5122     APInt D0 = D.lshr(K);
5123 
5124     // D is even if it has trailing zeros.
5125     HadEvenDivisor |= (K != 0);
5126     // D is a power-of-two if D0 is one.
5127     // If all divisors are power-of-two, we will prefer to avoid the fold.
5128     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5129 
5130     // P = inv(D0, 2^W)
5131     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5132     unsigned W = D.getBitWidth();
5133     APInt P = D0.zext(W + 1)
5134                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5135                   .trunc(W);
5136     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5137     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5138 
5139     // Q = floor((2^W - 1) u/ D)
5140     // R = ((2^W - 1) u% D)
5141     APInt Q, R;
5142     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5143 
5144     // If we are comparing with zero, then that comparison constant is okay,
5145     // else it may need to be one less than that.
5146     if (Cmp.ugt(R))
5147       Q -= 1;
5148 
5149     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5150            "We are expecting that K is always less than all-ones for ShSVT");
5151 
5152     // If the lane is tautological the result can be constant-folded.
5153     if (TautologicalLane) {
5154       // Set P and K amount to a bogus values so we can try to splat them.
5155       P = 0;
5156       K = -1;
5157       // And ensure that comparison constant is tautological,
5158       // it will always compare true/false.
5159       Q = -1;
5160     }
5161 
5162     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5163     KAmts.push_back(
5164         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5165     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5166     return true;
5167   };
5168 
5169   SDValue N = REMNode.getOperand(0);
5170   SDValue D = REMNode.getOperand(1);
5171 
5172   // Collect the values from each element.
5173   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5174     return SDValue();
5175 
5176   // If all lanes are tautological, the result can be constant-folded.
5177   if (AllLanesAreTautological)
5178     return SDValue();
5179 
5180   // If this is a urem by a powers-of-two, avoid the fold since it can be
5181   // best implemented as a bit test.
5182   if (AllDivisorsArePowerOfTwo)
5183     return SDValue();
5184 
5185   SDValue PVal, KVal, QVal;
5186   if (VT.isVector()) {
5187     if (HadTautologicalLanes) {
5188       // Try to turn PAmts into a splat, since we don't care about the values
5189       // that are currently '0'. If we can't, just keep '0'`s.
5190       turnVectorIntoSplatVector(PAmts, isNullConstant);
5191       // Try to turn KAmts into a splat, since we don't care about the values
5192       // that are currently '-1'. If we can't, change them to '0'`s.
5193       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5194                                 DAG.getConstant(0, DL, ShSVT));
5195     }
5196 
5197     PVal = DAG.getBuildVector(VT, DL, PAmts);
5198     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5199     QVal = DAG.getBuildVector(VT, DL, QAmts);
5200   } else {
5201     PVal = PAmts[0];
5202     KVal = KAmts[0];
5203     QVal = QAmts[0];
5204   }
5205 
5206   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5207     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5208       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5209     assert(CompTargetNode.getValueType() == N.getValueType() &&
5210            "Expecting that the types on LHS and RHS of comparisons match.");
5211     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5212   }
5213 
5214   // (mul N, P)
5215   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5216   Created.push_back(Op0.getNode());
5217 
5218   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5219   // divisors as a performance improvement, since rotating by 0 is a no-op.
5220   if (HadEvenDivisor) {
5221     // We need ROTR to do this.
5222     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5223       return SDValue();
5224     SDNodeFlags Flags;
5225     Flags.setExact(true);
5226     // UREM: (rotr (mul N, P), K)
5227     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5228     Created.push_back(Op0.getNode());
5229   }
5230 
5231   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5232   SDValue NewCC =
5233       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5234                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5235   if (!HadTautologicalInvertedLanes)
5236     return NewCC;
5237 
5238   // If any lanes previously compared always-false, the NewCC will give
5239   // always-true result for them, so we need to fixup those lanes.
5240   // Or the other way around for inequality predicate.
5241   assert(VT.isVector() && "Can/should only get here for vectors.");
5242   Created.push_back(NewCC.getNode());
5243 
5244   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5245   // if C2 is not less than C1, the comparison is always false.
5246   // But we have produced the comparison that will give the
5247   // opposive tautological answer. So these lanes would need to be fixed up.
5248   SDValue TautologicalInvertedChannels =
5249       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5250   Created.push_back(TautologicalInvertedChannels.getNode());
5251 
5252   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5253     // If we have a vector select, let's replace the comparison results in the
5254     // affected lanes with the correct tautological result.
5255     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5256                                               DL, SETCCVT, SETCCVT);
5257     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5258                        Replacement, NewCC);
5259   }
5260 
5261   // Else, we can just invert the comparison result in the appropriate lanes.
5262   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5263     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5264                        TautologicalInvertedChannels);
5265 
5266   return SDValue(); // Don't know how to lower.
5267 }
5268 
5269 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5270 /// where the divisor is constant and the comparison target is zero,
5271 /// return a DAG expression that will generate the same comparison result
5272 /// using only multiplications, additions and shifts/rotations.
5273 /// Ref: "Hacker's Delight" 10-17.
5274 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5275                                         SDValue CompTargetNode,
5276                                         ISD::CondCode Cond,
5277                                         DAGCombinerInfo &DCI,
5278                                         const SDLoc &DL) const {
5279   SmallVector<SDNode *, 7> Built;
5280   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5281                                          DCI, DL, Built)) {
5282     assert(Built.size() <= 7 && "Max size prediction failed.");
5283     for (SDNode *N : Built)
5284       DCI.AddToWorklist(N);
5285     return Folded;
5286   }
5287 
5288   return SDValue();
5289 }
5290 
5291 SDValue
5292 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5293                                   SDValue CompTargetNode, ISD::CondCode Cond,
5294                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5295                                   SmallVectorImpl<SDNode *> &Created) const {
5296   // Fold:
5297   //   (seteq/ne (srem N, D), 0)
5298   // To:
5299   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5300   //
5301   // - D must be constant, with D = D0 * 2^K where D0 is odd
5302   // - P is the multiplicative inverse of D0 modulo 2^W
5303   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5304   // - Q = floor((2 * A) / (2^K))
5305   // where W is the width of the common type of N and D.
5306   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5307          "Only applicable for (in)equality comparisons.");
5308 
5309   SelectionDAG &DAG = DCI.DAG;
5310 
5311   EVT VT = REMNode.getValueType();
5312   EVT SVT = VT.getScalarType();
5313   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5314   EVT ShSVT = ShVT.getScalarType();
5315 
5316   // If MUL is unavailable, we cannot proceed in any case.
5317   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5318     return SDValue();
5319 
5320   // TODO: Could support comparing with non-zero too.
5321   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5322   if (!CompTarget || !CompTarget->isNullValue())
5323     return SDValue();
5324 
5325   bool HadIntMinDivisor = false;
5326   bool HadOneDivisor = false;
5327   bool AllDivisorsAreOnes = true;
5328   bool HadEvenDivisor = false;
5329   bool NeedToApplyOffset = false;
5330   bool AllDivisorsArePowerOfTwo = true;
5331   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5332 
5333   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5334     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5335     if (C->isNullValue())
5336       return false;
5337 
5338     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5339 
5340     // WARNING: this fold is only valid for positive divisors!
5341     APInt D = C->getAPIntValue();
5342     if (D.isNegative())
5343       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5344 
5345     HadIntMinDivisor |= D.isMinSignedValue();
5346 
5347     // If all divisors are ones, we will prefer to avoid the fold.
5348     HadOneDivisor |= D.isOneValue();
5349     AllDivisorsAreOnes &= D.isOneValue();
5350 
5351     // Decompose D into D0 * 2^K
5352     unsigned K = D.countTrailingZeros();
5353     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5354     APInt D0 = D.lshr(K);
5355 
5356     if (!D.isMinSignedValue()) {
5357       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5358       // we don't care about this lane in this fold, we'll special-handle it.
5359       HadEvenDivisor |= (K != 0);
5360     }
5361 
5362     // D is a power-of-two if D0 is one. This includes INT_MIN.
5363     // If all divisors are power-of-two, we will prefer to avoid the fold.
5364     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5365 
5366     // P = inv(D0, 2^W)
5367     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5368     unsigned W = D.getBitWidth();
5369     APInt P = D0.zext(W + 1)
5370                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5371                   .trunc(W);
5372     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5373     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5374 
5375     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5376     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5377     A.clearLowBits(K);
5378 
5379     if (!D.isMinSignedValue()) {
5380       // If divisor INT_MIN, then we don't care about this lane in this fold,
5381       // we'll special-handle it.
5382       NeedToApplyOffset |= A != 0;
5383     }
5384 
5385     // Q = floor((2 * A) / (2^K))
5386     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5387 
5388     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5389            "We are expecting that A is always less than all-ones for SVT");
5390     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5391            "We are expecting that K is always less than all-ones for ShSVT");
5392 
5393     // If the divisor is 1 the result can be constant-folded. Likewise, we
5394     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5395     if (D.isOneValue()) {
5396       // Set P, A and K to a bogus values so we can try to splat them.
5397       P = 0;
5398       A = -1;
5399       K = -1;
5400 
5401       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5402       Q = -1;
5403     }
5404 
5405     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5406     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5407     KAmts.push_back(
5408         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5409     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5410     return true;
5411   };
5412 
5413   SDValue N = REMNode.getOperand(0);
5414   SDValue D = REMNode.getOperand(1);
5415 
5416   // Collect the values from each element.
5417   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5418     return SDValue();
5419 
5420   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5421   if (AllDivisorsAreOnes)
5422     return SDValue();
5423 
5424   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5425   // since it can be best implemented as a bit test.
5426   if (AllDivisorsArePowerOfTwo)
5427     return SDValue();
5428 
5429   SDValue PVal, AVal, KVal, QVal;
5430   if (VT.isVector()) {
5431     if (HadOneDivisor) {
5432       // Try to turn PAmts into a splat, since we don't care about the values
5433       // that are currently '0'. If we can't, just keep '0'`s.
5434       turnVectorIntoSplatVector(PAmts, isNullConstant);
5435       // Try to turn AAmts into a splat, since we don't care about the
5436       // values that are currently '-1'. If we can't, change them to '0'`s.
5437       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5438                                 DAG.getConstant(0, DL, SVT));
5439       // Try to turn KAmts into a splat, since we don't care about the values
5440       // that are currently '-1'. If we can't, change them to '0'`s.
5441       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5442                                 DAG.getConstant(0, DL, ShSVT));
5443     }
5444 
5445     PVal = DAG.getBuildVector(VT, DL, PAmts);
5446     AVal = DAG.getBuildVector(VT, DL, AAmts);
5447     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5448     QVal = DAG.getBuildVector(VT, DL, QAmts);
5449   } else {
5450     PVal = PAmts[0];
5451     AVal = AAmts[0];
5452     KVal = KAmts[0];
5453     QVal = QAmts[0];
5454   }
5455 
5456   // (mul N, P)
5457   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5458   Created.push_back(Op0.getNode());
5459 
5460   if (NeedToApplyOffset) {
5461     // We need ADD to do this.
5462     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5463       return SDValue();
5464 
5465     // (add (mul N, P), A)
5466     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5467     Created.push_back(Op0.getNode());
5468   }
5469 
5470   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5471   // divisors as a performance improvement, since rotating by 0 is a no-op.
5472   if (HadEvenDivisor) {
5473     // We need ROTR to do this.
5474     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5475       return SDValue();
5476     SDNodeFlags Flags;
5477     Flags.setExact(true);
5478     // SREM: (rotr (add (mul N, P), A), K)
5479     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5480     Created.push_back(Op0.getNode());
5481   }
5482 
5483   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5484   SDValue Fold =
5485       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5486                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5487 
5488   // If we didn't have lanes with INT_MIN divisor, then we're done.
5489   if (!HadIntMinDivisor)
5490     return Fold;
5491 
5492   // That fold is only valid for positive divisors. Which effectively means,
5493   // it is invalid for INT_MIN divisors. So if we have such a lane,
5494   // we must fix-up results for said lanes.
5495   assert(VT.isVector() && "Can/should only get here for vectors.");
5496 
5497   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5498       !isOperationLegalOrCustom(ISD::AND, VT) ||
5499       !isOperationLegalOrCustom(Cond, VT) ||
5500       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5501     return SDValue();
5502 
5503   Created.push_back(Fold.getNode());
5504 
5505   SDValue IntMin = DAG.getConstant(
5506       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5507   SDValue IntMax = DAG.getConstant(
5508       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5509   SDValue Zero =
5510       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5511 
5512   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5513   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5514   Created.push_back(DivisorIsIntMin.getNode());
5515 
5516   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5517   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5518   Created.push_back(Masked.getNode());
5519   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5520   Created.push_back(MaskedIsZero.getNode());
5521 
5522   // To produce final result we need to blend 2 vectors: 'SetCC' and
5523   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5524   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5525   // constant-folded, select can get lowered to a shuffle with constant mask.
5526   SDValue Blended =
5527       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5528 
5529   return Blended;
5530 }
5531 
5532 bool TargetLowering::
5533 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5534   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5535     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5536                                 "be a constant integer");
5537     return true;
5538   }
5539 
5540   return false;
5541 }
5542 
5543 TargetLowering::NegatibleCost
5544 TargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG,
5545                                  bool LegalOperations, bool ForCodeSize,
5546                                  unsigned Depth) const {
5547   // fneg is removable even if it has multiple uses.
5548   if (Op.getOpcode() == ISD::FNEG)
5549     return NegatibleCost::Cheaper;
5550 
5551   // Don't allow anything with multiple uses unless we know it is free.
5552   EVT VT = Op.getValueType();
5553   const SDNodeFlags Flags = Op->getFlags();
5554   const TargetOptions &Options = DAG.getTarget().Options;
5555   if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND &&
5556                            isFPExtFree(VT, Op.getOperand(0).getValueType())))
5557     return NegatibleCost::Expensive;
5558 
5559   // Don't recurse exponentially.
5560   if (Depth > SelectionDAG::MaxRecursionDepth)
5561     return NegatibleCost::Expensive;
5562 
5563   switch (Op.getOpcode()) {
5564   case ISD::ConstantFP: {
5565     if (!LegalOperations)
5566       return NegatibleCost::Neutral;
5567 
5568     // Don't invert constant FP values after legalization unless the target says
5569     // the negated constant is legal.
5570     if (isOperationLegal(ISD::ConstantFP, VT) ||
5571         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5572                      ForCodeSize))
5573       return NegatibleCost::Neutral;
5574     break;
5575   }
5576   case ISD::BUILD_VECTOR: {
5577     // Only permit BUILD_VECTOR of constants.
5578     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5579           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5580         }))
5581       return NegatibleCost::Expensive;
5582     if (!LegalOperations)
5583       return NegatibleCost::Neutral;
5584     if (isOperationLegal(ISD::ConstantFP, VT) &&
5585         isOperationLegal(ISD::BUILD_VECTOR, VT))
5586       return NegatibleCost::Neutral;
5587     if (llvm::all_of(Op->op_values(), [&](SDValue N) {
5588           return N.isUndef() ||
5589                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5590                               ForCodeSize);
5591         }))
5592       return NegatibleCost::Neutral;
5593     break;
5594   }
5595   case ISD::FADD: {
5596     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5597       return NegatibleCost::Expensive;
5598 
5599     // After operation legalization, it might not be legal to create new FSUBs.
5600     if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT))
5601       return NegatibleCost::Expensive;
5602 
5603     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5604     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5605                                         ForCodeSize, Depth + 1);
5606     if (V0 != NegatibleCost::Expensive)
5607       return V0;
5608     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5609     return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize,
5610                             Depth + 1);
5611   }
5612   case ISD::FSUB:
5613     // We can't turn -(A-B) into B-A when we honor signed zeros.
5614     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5615       return NegatibleCost::Expensive;
5616 
5617     // fold (fneg (fsub A, B)) -> (fsub B, A)
5618     return NegatibleCost::Neutral;
5619   case ISD::FMUL:
5620   case ISD::FDIV: {
5621     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
5622     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5623                                         ForCodeSize, Depth + 1);
5624     if (V0 != NegatibleCost::Expensive)
5625       return V0;
5626 
5627     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5628     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5629       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5630         return NegatibleCost::Expensive;
5631 
5632     return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize,
5633                             Depth + 1);
5634   }
5635   case ISD::FMA:
5636   case ISD::FMAD: {
5637     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5638       return NegatibleCost::Expensive;
5639 
5640     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5641     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5642     NegatibleCost V2 = getNegatibleCost(Op.getOperand(2), DAG, LegalOperations,
5643                                         ForCodeSize, Depth + 1);
5644     if (NegatibleCost::Expensive == V2)
5645       return NegatibleCost::Expensive;
5646 
5647     // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
5648     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5649                                         ForCodeSize, Depth + 1);
5650     NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations,
5651                                         ForCodeSize, Depth + 1);
5652     NegatibleCost V01 = std::max(V0, V1);
5653     if (V01 == NegatibleCost::Expensive)
5654       return NegatibleCost::Expensive;
5655     return std::max(V01, V2);
5656   }
5657 
5658   case ISD::FP_EXTEND:
5659   case ISD::FP_ROUND:
5660   case ISD::FSIN:
5661     return getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5662                             Depth + 1);
5663   }
5664 
5665   return NegatibleCost::Expensive;
5666 }
5667 
5668 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5669                                              bool LegalOperations,
5670                                              bool ForCodeSize,
5671                                              unsigned Depth) const {
5672   // fneg is removable even if it has multiple uses.
5673   if (Op.getOpcode() == ISD::FNEG)
5674     return Op.getOperand(0);
5675 
5676   assert(Depth <= SelectionDAG::MaxRecursionDepth &&
5677          "getNegatedExpression doesn't match getNegatibleCost");
5678   const SDNodeFlags Flags = Op->getFlags();
5679 
5680   switch (Op.getOpcode()) {
5681   case ISD::ConstantFP: {
5682     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5683     V.changeSign();
5684     return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
5685   }
5686   case ISD::BUILD_VECTOR: {
5687     SmallVector<SDValue, 4> Ops;
5688     for (SDValue C : Op->op_values()) {
5689       if (C.isUndef()) {
5690         Ops.push_back(C);
5691         continue;
5692       }
5693       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5694       V.changeSign();
5695       Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType()));
5696     }
5697     return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops);
5698   }
5699   case ISD::FADD: {
5700     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5701             Flags.hasNoSignedZeros()) &&
5702            "Expected NSZ fp-flag");
5703 
5704     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5705     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5706                                         ForCodeSize, Depth + 1);
5707     if (V0 != NegatibleCost::Expensive)
5708       return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5709                          getNegatedExpression(Op.getOperand(0), DAG,
5710                                               LegalOperations, ForCodeSize,
5711                                               Depth + 1),
5712                          Op.getOperand(1), Flags);
5713     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5714     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5715                        getNegatedExpression(Op.getOperand(1), DAG,
5716                                             LegalOperations, ForCodeSize,
5717                                             Depth + 1),
5718                        Op.getOperand(0), Flags);
5719   }
5720   case ISD::FSUB:
5721     // fold (fneg (fsub 0, B)) -> B
5722     if (ConstantFPSDNode *N0CFP =
5723             isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true))
5724       if (N0CFP->isZero())
5725         return Op.getOperand(1);
5726 
5727     // fold (fneg (fsub A, B)) -> (fsub B, A)
5728     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5729                        Op.getOperand(1), Op.getOperand(0), Flags);
5730 
5731   case ISD::FMUL:
5732   case ISD::FDIV: {
5733     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5734     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5735                                         ForCodeSize, Depth + 1);
5736     if (V0 != NegatibleCost::Expensive)
5737       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5738                          getNegatedExpression(Op.getOperand(0), DAG,
5739                                               LegalOperations, ForCodeSize,
5740                                               Depth + 1),
5741                          Op.getOperand(1), Flags);
5742 
5743     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5744     return DAG.getNode(
5745         Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0),
5746         getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5747                              ForCodeSize, Depth + 1),
5748         Flags);
5749   }
5750   case ISD::FMA:
5751   case ISD::FMAD: {
5752     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5753             Flags.hasNoSignedZeros()) &&
5754            "Expected NSZ fp-flag");
5755 
5756     SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations,
5757                                         ForCodeSize, Depth + 1);
5758 
5759     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5760                                         ForCodeSize, Depth + 1);
5761     NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations,
5762                                         ForCodeSize, Depth + 1);
5763     // TODO: This is a hack. It is possible that costs have changed between now
5764     //       and the initial calls to getNegatibleCost(). That is because we
5765     //       are rewriting the expression, and that may change the number of
5766     //       uses (and therefore the cost) of values. If the negation costs are
5767     //       equal, only negate this value if it is a constant. Otherwise, try
5768     //       operand 1. A better fix would eliminate uses as a cost factor or
5769     //       track the change in uses as we rewrite the expression.
5770     if (V0 > V1 || (V0 == V1 && isa<ConstantFPSDNode>(Op.getOperand(0)))) {
5771       // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5772       SDValue Neg0 = getNegatedExpression(
5773           Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1);
5774       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0,
5775                          Op.getOperand(1), Neg2, Flags);
5776     }
5777 
5778     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5779     SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5780                                         ForCodeSize, Depth + 1);
5781     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5782                        Op.getOperand(0), Neg1, Neg2, Flags);
5783   }
5784 
5785   case ISD::FP_EXTEND:
5786   case ISD::FSIN:
5787     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5788                        getNegatedExpression(Op.getOperand(0), DAG,
5789                                             LegalOperations, ForCodeSize,
5790                                             Depth + 1));
5791   case ISD::FP_ROUND:
5792     return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
5793                        getNegatedExpression(Op.getOperand(0), DAG,
5794                                             LegalOperations, ForCodeSize,
5795                                             Depth + 1),
5796                        Op.getOperand(1));
5797   }
5798 
5799   llvm_unreachable("Unknown code");
5800 }
5801 
5802 //===----------------------------------------------------------------------===//
5803 // Legalization Utilities
5804 //===----------------------------------------------------------------------===//
5805 
5806 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5807                                     SDValue LHS, SDValue RHS,
5808                                     SmallVectorImpl<SDValue> &Result,
5809                                     EVT HiLoVT, SelectionDAG &DAG,
5810                                     MulExpansionKind Kind, SDValue LL,
5811                                     SDValue LH, SDValue RL, SDValue RH) const {
5812   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5813          Opcode == ISD::SMUL_LOHI);
5814 
5815   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5816                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5817   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5818                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5819   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5820                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5821   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5822                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5823 
5824   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5825     return false;
5826 
5827   unsigned OuterBitSize = VT.getScalarSizeInBits();
5828   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5829   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5830   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5831 
5832   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5833   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5834          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5835 
5836   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5837   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5838                           bool Signed) -> bool {
5839     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5840       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5841       Hi = SDValue(Lo.getNode(), 1);
5842       return true;
5843     }
5844     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5845       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5846       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5847       return true;
5848     }
5849     return false;
5850   };
5851 
5852   SDValue Lo, Hi;
5853 
5854   if (!LL.getNode() && !RL.getNode() &&
5855       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5856     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5857     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5858   }
5859 
5860   if (!LL.getNode())
5861     return false;
5862 
5863   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5864   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5865       DAG.MaskedValueIsZero(RHS, HighMask)) {
5866     // The inputs are both zero-extended.
5867     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5868       Result.push_back(Lo);
5869       Result.push_back(Hi);
5870       if (Opcode != ISD::MUL) {
5871         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5872         Result.push_back(Zero);
5873         Result.push_back(Zero);
5874       }
5875       return true;
5876     }
5877   }
5878 
5879   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5880       RHSSB > InnerBitSize) {
5881     // The input values are both sign-extended.
5882     // TODO non-MUL case?
5883     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5884       Result.push_back(Lo);
5885       Result.push_back(Hi);
5886       return true;
5887     }
5888   }
5889 
5890   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5891   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5892   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5893     // FIXME getShiftAmountTy does not always return a sensible result when VT
5894     // is an illegal type, and so the type may be too small to fit the shift
5895     // amount. Override it with i32. The shift will have to be legalized.
5896     ShiftAmountTy = MVT::i32;
5897   }
5898   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5899 
5900   if (!LH.getNode() && !RH.getNode() &&
5901       isOperationLegalOrCustom(ISD::SRL, VT) &&
5902       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5903     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5904     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5905     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5906     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5907   }
5908 
5909   if (!LH.getNode())
5910     return false;
5911 
5912   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5913     return false;
5914 
5915   Result.push_back(Lo);
5916 
5917   if (Opcode == ISD::MUL) {
5918     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5919     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5920     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5921     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5922     Result.push_back(Hi);
5923     return true;
5924   }
5925 
5926   // Compute the full width result.
5927   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5928     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5929     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5930     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5931     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5932   };
5933 
5934   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5935   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5936     return false;
5937 
5938   // This is effectively the add part of a multiply-add of half-sized operands,
5939   // so it cannot overflow.
5940   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5941 
5942   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5943     return false;
5944 
5945   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5946   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5947 
5948   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5949                   isOperationLegalOrCustom(ISD::ADDE, VT));
5950   if (UseGlue)
5951     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5952                        Merge(Lo, Hi));
5953   else
5954     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5955                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5956 
5957   SDValue Carry = Next.getValue(1);
5958   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5959   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5960 
5961   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5962     return false;
5963 
5964   if (UseGlue)
5965     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5966                      Carry);
5967   else
5968     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5969                      Zero, Carry);
5970 
5971   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5972 
5973   if (Opcode == ISD::SMUL_LOHI) {
5974     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5975                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5976     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5977 
5978     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5979                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5980     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5981   }
5982 
5983   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5984   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5985   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5986   return true;
5987 }
5988 
5989 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5990                                SelectionDAG &DAG, MulExpansionKind Kind,
5991                                SDValue LL, SDValue LH, SDValue RL,
5992                                SDValue RH) const {
5993   SmallVector<SDValue, 2> Result;
5994   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5995                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5996                            DAG, Kind, LL, LH, RL, RH);
5997   if (Ok) {
5998     assert(Result.size() == 2);
5999     Lo = Result[0];
6000     Hi = Result[1];
6001   }
6002   return Ok;
6003 }
6004 
6005 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6006                                        SelectionDAG &DAG) const {
6007   EVT VT = Node->getValueType(0);
6008 
6009   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6010                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6011                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6012                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6013     return false;
6014 
6015   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6016   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6017   SDValue X = Node->getOperand(0);
6018   SDValue Y = Node->getOperand(1);
6019   SDValue Z = Node->getOperand(2);
6020 
6021   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6022   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6023   SDLoc DL(SDValue(Node, 0));
6024 
6025   EVT ShVT = Z.getValueType();
6026   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6027   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6028 
6029   SDValue ShAmt;
6030   if (isPowerOf2_32(EltSizeInBits)) {
6031     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6032     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6033   } else {
6034     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6035   }
6036 
6037   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6038   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6039   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6040   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6041 
6042   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6043   // and that is undefined. We must compare and select to avoid UB.
6044   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
6045 
6046   // For fshl, 0-shift returns the 1st arg (X).
6047   // For fshr, 0-shift returns the 2nd arg (Y).
6048   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
6049   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
6050   return true;
6051 }
6052 
6053 // TODO: Merge with expandFunnelShift.
6054 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
6055                                SelectionDAG &DAG) const {
6056   EVT VT = Node->getValueType(0);
6057   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6058   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6059   SDValue Op0 = Node->getOperand(0);
6060   SDValue Op1 = Node->getOperand(1);
6061   SDLoc DL(SDValue(Node, 0));
6062 
6063   EVT ShVT = Op1.getValueType();
6064   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6065 
6066   // If a rotate in the other direction is legal, use it.
6067   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6068   if (isOperationLegal(RevRot, VT)) {
6069     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6070     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6071     return true;
6072   }
6073 
6074   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6075                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6076                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6077                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6078                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6079     return false;
6080 
6081   // Otherwise,
6082   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
6083   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
6084   //
6085   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
6086          "Expecting the type bitwidth to be a power of 2");
6087   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6088   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6089   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6090   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6091   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6092   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6093   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
6094                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
6095   return true;
6096 }
6097 
6098 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6099                                       SelectionDAG &DAG) const {
6100   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6101   SDValue Src = Node->getOperand(OpNo);
6102   EVT SrcVT = Src.getValueType();
6103   EVT DstVT = Node->getValueType(0);
6104   SDLoc dl(SDValue(Node, 0));
6105 
6106   // FIXME: Only f32 to i64 conversions are supported.
6107   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6108     return false;
6109 
6110   if (Node->isStrictFPOpcode())
6111     // When a NaN is converted to an integer a trap is allowed. We can't
6112     // use this expansion here because it would eliminate that trap. Other
6113     // traps are also allowed and cannot be eliminated. See
6114     // IEEE 754-2008 sec 5.8.
6115     return false;
6116 
6117   // Expand f32 -> i64 conversion
6118   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6119   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6120   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6121   EVT IntVT = SrcVT.changeTypeToInteger();
6122   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6123 
6124   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6125   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6126   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6127   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6128   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6129   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6130 
6131   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6132 
6133   SDValue ExponentBits = DAG.getNode(
6134       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6135       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6136   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6137 
6138   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6139                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6140                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6141   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6142 
6143   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6144                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6145                           DAG.getConstant(0x00800000, dl, IntVT));
6146 
6147   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6148 
6149   R = DAG.getSelectCC(
6150       dl, Exponent, ExponentLoBit,
6151       DAG.getNode(ISD::SHL, dl, DstVT, R,
6152                   DAG.getZExtOrTrunc(
6153                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6154                       dl, IntShVT)),
6155       DAG.getNode(ISD::SRL, dl, DstVT, R,
6156                   DAG.getZExtOrTrunc(
6157                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6158                       dl, IntShVT)),
6159       ISD::SETGT);
6160 
6161   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6162                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6163 
6164   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6165                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6166   return true;
6167 }
6168 
6169 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6170                                       SDValue &Chain,
6171                                       SelectionDAG &DAG) const {
6172   SDLoc dl(SDValue(Node, 0));
6173   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6174   SDValue Src = Node->getOperand(OpNo);
6175 
6176   EVT SrcVT = Src.getValueType();
6177   EVT DstVT = Node->getValueType(0);
6178   EVT SetCCVT =
6179       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6180   EVT DstSetCCVT =
6181       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6182 
6183   // Only expand vector types if we have the appropriate vector bit operations.
6184   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6185                                                    ISD::FP_TO_SINT;
6186   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6187                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6188     return false;
6189 
6190   // If the maximum float value is smaller then the signed integer range,
6191   // the destination signmask can't be represented by the float, so we can
6192   // just use FP_TO_SINT directly.
6193   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6194   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6195   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6196   if (APFloat::opOverflow &
6197       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6198     if (Node->isStrictFPOpcode()) {
6199       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6200                            { Node->getOperand(0), Src });
6201       Chain = Result.getValue(1);
6202     } else
6203       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6204     return true;
6205   }
6206 
6207   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6208   SDValue Sel;
6209 
6210   if (Node->isStrictFPOpcode()) {
6211     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6212                        Node->getOperand(0), /*IsSignaling*/ true);
6213     Chain = Sel.getValue(1);
6214   } else {
6215     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6216   }
6217 
6218   bool Strict = Node->isStrictFPOpcode() ||
6219                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6220 
6221   if (Strict) {
6222     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6223     // signmask then offset (the result of which should be fully representable).
6224     // Sel = Src < 0x8000000000000000
6225     // FltOfs = select Sel, 0, 0x8000000000000000
6226     // IntOfs = select Sel, 0, 0x8000000000000000
6227     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6228 
6229     // TODO: Should any fast-math-flags be set for the FSUB?
6230     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6231                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6232     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6233     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6234                                    DAG.getConstant(0, dl, DstVT),
6235                                    DAG.getConstant(SignMask, dl, DstVT));
6236     SDValue SInt;
6237     if (Node->isStrictFPOpcode()) {
6238       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6239                                 { Chain, Src, FltOfs });
6240       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6241                          { Val.getValue(1), Val });
6242       Chain = SInt.getValue(1);
6243     } else {
6244       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6245       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6246     }
6247     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6248   } else {
6249     // Expand based on maximum range of FP_TO_SINT:
6250     // True = fp_to_sint(Src)
6251     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6252     // Result = select (Src < 0x8000000000000000), True, False
6253 
6254     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6255     // TODO: Should any fast-math-flags be set for the FSUB?
6256     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6257                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6258     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6259                         DAG.getConstant(SignMask, dl, DstVT));
6260     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6261     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6262   }
6263   return true;
6264 }
6265 
6266 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6267                                       SDValue &Chain,
6268                                       SelectionDAG &DAG) const {
6269   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6270   SDValue Src = Node->getOperand(OpNo);
6271   EVT SrcVT = Src.getValueType();
6272   EVT DstVT = Node->getValueType(0);
6273 
6274   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6275     return false;
6276 
6277   // Only expand vector types if we have the appropriate vector bit operations.
6278   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6279                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6280                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6281                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6282                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6283     return false;
6284 
6285   SDLoc dl(SDValue(Node, 0));
6286   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6287 
6288   // Implementation of unsigned i64 to f64 following the algorithm in
6289   // __floatundidf in compiler_rt. This implementation has the advantage
6290   // of performing rounding correctly, both in the default rounding mode
6291   // and in all alternate rounding modes.
6292   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6293   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6294       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6295   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6296   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6297   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6298 
6299   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6300   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6301   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6302   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6303   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6304   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6305   if (Node->isStrictFPOpcode()) {
6306     SDValue HiSub =
6307         DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6308                     {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6309     Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6310                          {HiSub.getValue(1), LoFlt, HiSub});
6311     Chain = Result.getValue(1);
6312   } else {
6313     SDValue HiSub =
6314         DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6315     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6316   }
6317   return true;
6318 }
6319 
6320 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6321                                               SelectionDAG &DAG) const {
6322   SDLoc dl(Node);
6323   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6324     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6325   EVT VT = Node->getValueType(0);
6326   if (isOperationLegalOrCustom(NewOp, VT)) {
6327     SDValue Quiet0 = Node->getOperand(0);
6328     SDValue Quiet1 = Node->getOperand(1);
6329 
6330     if (!Node->getFlags().hasNoNaNs()) {
6331       // Insert canonicalizes if it's possible we need to quiet to get correct
6332       // sNaN behavior.
6333       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6334         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6335                              Node->getFlags());
6336       }
6337       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6338         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6339                              Node->getFlags());
6340       }
6341     }
6342 
6343     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6344   }
6345 
6346   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6347   // instead if there are no NaNs.
6348   if (Node->getFlags().hasNoNaNs()) {
6349     unsigned IEEE2018Op =
6350         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6351     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6352       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6353                          Node->getOperand(1), Node->getFlags());
6354     }
6355   }
6356 
6357   // If none of the above worked, but there are no NaNs, then expand to
6358   // a compare/select sequence.  This is required for correctness since
6359   // InstCombine might have canonicalized a fcmp+select sequence to a
6360   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6361   // expansion to libcall, we might introduce a link-time dependency
6362   // on libm into a file that originally did not have one.
6363   if (Node->getFlags().hasNoNaNs()) {
6364     ISD::CondCode Pred =
6365         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6366     SDValue Op1 = Node->getOperand(0);
6367     SDValue Op2 = Node->getOperand(1);
6368     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6369     // Copy FMF flags, but always set the no-signed-zeros flag
6370     // as this is implied by the FMINNUM/FMAXNUM semantics.
6371     SDNodeFlags Flags = Node->getFlags();
6372     Flags.setNoSignedZeros(true);
6373     SelCC->setFlags(Flags);
6374     return SelCC;
6375   }
6376 
6377   return SDValue();
6378 }
6379 
6380 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6381                                  SelectionDAG &DAG) const {
6382   SDLoc dl(Node);
6383   EVT VT = Node->getValueType(0);
6384   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6385   SDValue Op = Node->getOperand(0);
6386   unsigned Len = VT.getScalarSizeInBits();
6387   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6388 
6389   // TODO: Add support for irregular type lengths.
6390   if (!(Len <= 128 && Len % 8 == 0))
6391     return false;
6392 
6393   // Only expand vector types if we have the appropriate vector bit operations.
6394   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6395                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6396                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6397                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6398                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6399     return false;
6400 
6401   // This is the "best" algorithm from
6402   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6403   SDValue Mask55 =
6404       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6405   SDValue Mask33 =
6406       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6407   SDValue Mask0F =
6408       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6409   SDValue Mask01 =
6410       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6411 
6412   // v = v - ((v >> 1) & 0x55555555...)
6413   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6414                    DAG.getNode(ISD::AND, dl, VT,
6415                                DAG.getNode(ISD::SRL, dl, VT, Op,
6416                                            DAG.getConstant(1, dl, ShVT)),
6417                                Mask55));
6418   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6419   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6420                    DAG.getNode(ISD::AND, dl, VT,
6421                                DAG.getNode(ISD::SRL, dl, VT, Op,
6422                                            DAG.getConstant(2, dl, ShVT)),
6423                                Mask33));
6424   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6425   Op = DAG.getNode(ISD::AND, dl, VT,
6426                    DAG.getNode(ISD::ADD, dl, VT, Op,
6427                                DAG.getNode(ISD::SRL, dl, VT, Op,
6428                                            DAG.getConstant(4, dl, ShVT))),
6429                    Mask0F);
6430   // v = (v * 0x01010101...) >> (Len - 8)
6431   if (Len > 8)
6432     Op =
6433         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6434                     DAG.getConstant(Len - 8, dl, ShVT));
6435 
6436   Result = Op;
6437   return true;
6438 }
6439 
6440 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6441                                 SelectionDAG &DAG) const {
6442   SDLoc dl(Node);
6443   EVT VT = Node->getValueType(0);
6444   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6445   SDValue Op = Node->getOperand(0);
6446   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6447 
6448   // If the non-ZERO_UNDEF version is supported we can use that instead.
6449   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6450       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6451     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6452     return true;
6453   }
6454 
6455   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6456   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6457     EVT SetCCVT =
6458         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6459     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6460     SDValue Zero = DAG.getConstant(0, dl, VT);
6461     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6462     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6463                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6464     return true;
6465   }
6466 
6467   // Only expand vector types if we have the appropriate vector bit operations.
6468   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6469                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6470                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6471                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6472     return false;
6473 
6474   // for now, we do this:
6475   // x = x | (x >> 1);
6476   // x = x | (x >> 2);
6477   // ...
6478   // x = x | (x >>16);
6479   // x = x | (x >>32); // for 64-bit input
6480   // return popcount(~x);
6481   //
6482   // Ref: "Hacker's Delight" by Henry Warren
6483   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6484     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6485     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6486                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6487   }
6488   Op = DAG.getNOT(dl, Op, VT);
6489   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6490   return true;
6491 }
6492 
6493 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6494                                 SelectionDAG &DAG) const {
6495   SDLoc dl(Node);
6496   EVT VT = Node->getValueType(0);
6497   SDValue Op = Node->getOperand(0);
6498   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6499 
6500   // If the non-ZERO_UNDEF version is supported we can use that instead.
6501   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6502       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6503     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6504     return true;
6505   }
6506 
6507   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6508   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6509     EVT SetCCVT =
6510         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6511     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6512     SDValue Zero = DAG.getConstant(0, dl, VT);
6513     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6514     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6515                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6516     return true;
6517   }
6518 
6519   // Only expand vector types if we have the appropriate vector bit operations.
6520   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6521                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6522                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6523                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6524                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6525                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6526     return false;
6527 
6528   // for now, we use: { return popcount(~x & (x - 1)); }
6529   // unless the target has ctlz but not ctpop, in which case we use:
6530   // { return 32 - nlz(~x & (x-1)); }
6531   // Ref: "Hacker's Delight" by Henry Warren
6532   SDValue Tmp = DAG.getNode(
6533       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6534       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6535 
6536   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6537   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6538     Result =
6539         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6540                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6541     return true;
6542   }
6543 
6544   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6545   return true;
6546 }
6547 
6548 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6549                                SelectionDAG &DAG) const {
6550   SDLoc dl(N);
6551   EVT VT = N->getValueType(0);
6552   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6553   SDValue Op = N->getOperand(0);
6554 
6555   // Only expand vector types if we have the appropriate vector operations.
6556   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6557                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6558                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6559     return false;
6560 
6561   SDValue Shift =
6562       DAG.getNode(ISD::SRA, dl, VT, Op,
6563                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6564   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6565   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6566   return true;
6567 }
6568 
6569 std::pair<SDValue, SDValue>
6570 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6571                                     SelectionDAG &DAG) const {
6572   SDLoc SL(LD);
6573   SDValue Chain = LD->getChain();
6574   SDValue BasePTR = LD->getBasePtr();
6575   EVT SrcVT = LD->getMemoryVT();
6576   EVT DstVT = LD->getValueType(0);
6577   ISD::LoadExtType ExtType = LD->getExtensionType();
6578 
6579   unsigned NumElem = SrcVT.getVectorNumElements();
6580 
6581   EVT SrcEltVT = SrcVT.getScalarType();
6582   EVT DstEltVT = DstVT.getScalarType();
6583 
6584   // A vector must always be stored in memory as-is, i.e. without any padding
6585   // between the elements, since various code depend on it, e.g. in the
6586   // handling of a bitcast of a vector type to int, which may be done with a
6587   // vector store followed by an integer load. A vector that does not have
6588   // elements that are byte-sized must therefore be stored as an integer
6589   // built out of the extracted vector elements.
6590   if (!SrcEltVT.isByteSized()) {
6591     unsigned NumBits = SrcVT.getSizeInBits();
6592     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6593 
6594     SDValue Load = DAG.getLoad(IntVT, SL, Chain, BasePTR, LD->getPointerInfo(),
6595                                LD->getAlignment(),
6596                                LD->getMemOperand()->getFlags(),
6597                                LD->getAAInfo());
6598 
6599     SmallVector<SDValue, 8> Vals;
6600     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6601       unsigned ShiftIntoIdx =
6602           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6603       SDValue ShiftAmount =
6604           DAG.getConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), SL, IntVT);
6605       SDValue ShiftedElt =
6606           DAG.getNode(ISD::SRL, SL, IntVT, Load, ShiftAmount);
6607       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, ShiftedElt);
6608       if (ExtType != ISD::NON_EXTLOAD) {
6609         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
6610         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
6611       }
6612       Vals.push_back(Scalar);
6613     }
6614 
6615     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6616     return std::make_pair(Value, Load.getValue(1));
6617   }
6618 
6619   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6620   assert(SrcEltVT.isByteSized());
6621 
6622   SmallVector<SDValue, 8> Vals;
6623   SmallVector<SDValue, 8> LoadChains;
6624 
6625   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6626     SDValue ScalarLoad =
6627         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6628                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6629                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6630                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6631 
6632     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6633 
6634     Vals.push_back(ScalarLoad.getValue(0));
6635     LoadChains.push_back(ScalarLoad.getValue(1));
6636   }
6637 
6638   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6639   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6640 
6641   return std::make_pair(Value, NewChain);
6642 }
6643 
6644 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6645                                              SelectionDAG &DAG) const {
6646   SDLoc SL(ST);
6647 
6648   SDValue Chain = ST->getChain();
6649   SDValue BasePtr = ST->getBasePtr();
6650   SDValue Value = ST->getValue();
6651   EVT StVT = ST->getMemoryVT();
6652 
6653   // The type of the data we want to save
6654   EVT RegVT = Value.getValueType();
6655   EVT RegSclVT = RegVT.getScalarType();
6656 
6657   // The type of data as saved in memory.
6658   EVT MemSclVT = StVT.getScalarType();
6659 
6660   unsigned NumElem = StVT.getVectorNumElements();
6661 
6662   // A vector must always be stored in memory as-is, i.e. without any padding
6663   // between the elements, since various code depend on it, e.g. in the
6664   // handling of a bitcast of a vector type to int, which may be done with a
6665   // vector store followed by an integer load. A vector that does not have
6666   // elements that are byte-sized must therefore be stored as an integer
6667   // built out of the extracted vector elements.
6668   if (!MemSclVT.isByteSized()) {
6669     unsigned NumBits = StVT.getSizeInBits();
6670     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6671 
6672     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6673 
6674     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6675       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6676                                 DAG.getVectorIdxConstant(Idx, SL));
6677       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6678       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6679       unsigned ShiftIntoIdx =
6680           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6681       SDValue ShiftAmount =
6682           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6683       SDValue ShiftedElt =
6684           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6685       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6686     }
6687 
6688     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6689                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6690                         ST->getAAInfo());
6691   }
6692 
6693   // Store Stride in bytes
6694   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6695   assert(Stride && "Zero stride!");
6696   // Extract each of the elements from the original vector and save them into
6697   // memory individually.
6698   SmallVector<SDValue, 8> Stores;
6699   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6700     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6701                               DAG.getVectorIdxConstant(Idx, SL));
6702 
6703     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6704 
6705     // This scalar TruncStore may be illegal, but we legalize it later.
6706     SDValue Store = DAG.getTruncStore(
6707         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6708         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6709         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6710 
6711     Stores.push_back(Store);
6712   }
6713 
6714   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6715 }
6716 
6717 std::pair<SDValue, SDValue>
6718 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6719   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6720          "unaligned indexed loads not implemented!");
6721   SDValue Chain = LD->getChain();
6722   SDValue Ptr = LD->getBasePtr();
6723   EVT VT = LD->getValueType(0);
6724   EVT LoadedVT = LD->getMemoryVT();
6725   SDLoc dl(LD);
6726   auto &MF = DAG.getMachineFunction();
6727 
6728   if (VT.isFloatingPoint() || VT.isVector()) {
6729     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6730     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6731       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6732           LoadedVT.isVector()) {
6733         // Scalarize the load and let the individual components be handled.
6734         return scalarizeVectorLoad(LD, DAG);
6735       }
6736 
6737       // Expand to a (misaligned) integer load of the same size,
6738       // then bitconvert to floating point or vector.
6739       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6740                                     LD->getMemOperand());
6741       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6742       if (LoadedVT != VT)
6743         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6744                              ISD::ANY_EXTEND, dl, VT, Result);
6745 
6746       return std::make_pair(Result, newLoad.getValue(1));
6747     }
6748 
6749     // Copy the value to a (aligned) stack slot using (unaligned) integer
6750     // loads and stores, then do a (aligned) load from the stack slot.
6751     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6752     unsigned LoadedBytes = LoadedVT.getStoreSize();
6753     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6754     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6755 
6756     // Make sure the stack slot is also aligned for the register type.
6757     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6758     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6759     SmallVector<SDValue, 8> Stores;
6760     SDValue StackPtr = StackBase;
6761     unsigned Offset = 0;
6762 
6763     EVT PtrVT = Ptr.getValueType();
6764     EVT StackPtrVT = StackPtr.getValueType();
6765 
6766     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6767     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6768 
6769     // Do all but one copies using the full register width.
6770     for (unsigned i = 1; i < NumRegs; i++) {
6771       // Load one integer register's worth from the original location.
6772       SDValue Load = DAG.getLoad(
6773           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6774           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6775           LD->getAAInfo());
6776       // Follow the load with a store to the stack slot.  Remember the store.
6777       Stores.push_back(DAG.getStore(
6778           Load.getValue(1), dl, Load, StackPtr,
6779           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6780       // Increment the pointers.
6781       Offset += RegBytes;
6782 
6783       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6784       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6785     }
6786 
6787     // The last copy may be partial.  Do an extending load.
6788     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6789                                   8 * (LoadedBytes - Offset));
6790     SDValue Load =
6791         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6792                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6793                        MinAlign(LD->getAlignment(), Offset),
6794                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6795     // Follow the load with a store to the stack slot.  Remember the store.
6796     // On big-endian machines this requires a truncating store to ensure
6797     // that the bits end up in the right place.
6798     Stores.push_back(DAG.getTruncStore(
6799         Load.getValue(1), dl, Load, StackPtr,
6800         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6801 
6802     // The order of the stores doesn't matter - say it with a TokenFactor.
6803     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6804 
6805     // Finally, perform the original load only redirected to the stack slot.
6806     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6807                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6808                           LoadedVT);
6809 
6810     // Callers expect a MERGE_VALUES node.
6811     return std::make_pair(Load, TF);
6812   }
6813 
6814   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6815          "Unaligned load of unsupported type.");
6816 
6817   // Compute the new VT that is half the size of the old one.  This is an
6818   // integer MVT.
6819   unsigned NumBits = LoadedVT.getSizeInBits();
6820   EVT NewLoadedVT;
6821   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6822   NumBits >>= 1;
6823 
6824   unsigned Alignment = LD->getAlignment();
6825   unsigned IncrementSize = NumBits / 8;
6826   ISD::LoadExtType HiExtType = LD->getExtensionType();
6827 
6828   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6829   if (HiExtType == ISD::NON_EXTLOAD)
6830     HiExtType = ISD::ZEXTLOAD;
6831 
6832   // Load the value in two parts
6833   SDValue Lo, Hi;
6834   if (DAG.getDataLayout().isLittleEndian()) {
6835     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6836                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6837                         LD->getAAInfo());
6838 
6839     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6840     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6841                         LD->getPointerInfo().getWithOffset(IncrementSize),
6842                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6843                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6844   } else {
6845     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6846                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6847                         LD->getAAInfo());
6848 
6849     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6850     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6851                         LD->getPointerInfo().getWithOffset(IncrementSize),
6852                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6853                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6854   }
6855 
6856   // aggregate the two parts
6857   SDValue ShiftAmount =
6858       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6859                                                     DAG.getDataLayout()));
6860   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6861   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6862 
6863   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6864                              Hi.getValue(1));
6865 
6866   return std::make_pair(Result, TF);
6867 }
6868 
6869 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6870                                              SelectionDAG &DAG) const {
6871   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6872          "unaligned indexed stores not implemented!");
6873   SDValue Chain = ST->getChain();
6874   SDValue Ptr = ST->getBasePtr();
6875   SDValue Val = ST->getValue();
6876   EVT VT = Val.getValueType();
6877   int Alignment = ST->getAlignment();
6878   auto &MF = DAG.getMachineFunction();
6879   EVT StoreMemVT = ST->getMemoryVT();
6880 
6881   SDLoc dl(ST);
6882   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6883     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6884     if (isTypeLegal(intVT)) {
6885       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6886           StoreMemVT.isVector()) {
6887         // Scalarize the store and let the individual components be handled.
6888         SDValue Result = scalarizeVectorStore(ST, DAG);
6889         return Result;
6890       }
6891       // Expand to a bitconvert of the value to the integer type of the
6892       // same size, then a (misaligned) int store.
6893       // FIXME: Does not handle truncating floating point stores!
6894       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6895       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6896                             Alignment, ST->getMemOperand()->getFlags());
6897       return Result;
6898     }
6899     // Do a (aligned) store to a stack slot, then copy from the stack slot
6900     // to the final destination using (unaligned) integer loads and stores.
6901     MVT RegVT = getRegisterType(
6902         *DAG.getContext(),
6903         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6904     EVT PtrVT = Ptr.getValueType();
6905     unsigned StoredBytes = StoreMemVT.getStoreSize();
6906     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6907     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6908 
6909     // Make sure the stack slot is also aligned for the register type.
6910     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6911     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6912 
6913     // Perform the original store, only redirected to the stack slot.
6914     SDValue Store = DAG.getTruncStore(
6915         Chain, dl, Val, StackPtr,
6916         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6917 
6918     EVT StackPtrVT = StackPtr.getValueType();
6919 
6920     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6921     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6922     SmallVector<SDValue, 8> Stores;
6923     unsigned Offset = 0;
6924 
6925     // Do all but one copies using the full register width.
6926     for (unsigned i = 1; i < NumRegs; i++) {
6927       // Load one integer register's worth from the stack slot.
6928       SDValue Load = DAG.getLoad(
6929           RegVT, dl, Store, StackPtr,
6930           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6931       // Store it to the final location.  Remember the store.
6932       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6933                                     ST->getPointerInfo().getWithOffset(Offset),
6934                                     MinAlign(ST->getAlignment(), Offset),
6935                                     ST->getMemOperand()->getFlags()));
6936       // Increment the pointers.
6937       Offset += RegBytes;
6938       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6939       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6940     }
6941 
6942     // The last store may be partial.  Do a truncating store.  On big-endian
6943     // machines this requires an extending load from the stack slot to ensure
6944     // that the bits are in the right place.
6945     EVT LoadMemVT =
6946         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6947 
6948     // Load from the stack slot.
6949     SDValue Load = DAG.getExtLoad(
6950         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6951         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6952 
6953     Stores.push_back(
6954         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6955                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6956                           MinAlign(ST->getAlignment(), Offset),
6957                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6958     // The order of the stores doesn't matter - say it with a TokenFactor.
6959     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6960     return Result;
6961   }
6962 
6963   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6964          "Unaligned store of unknown type.");
6965   // Get the half-size VT
6966   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6967   int NumBits = NewStoredVT.getSizeInBits();
6968   int IncrementSize = NumBits / 8;
6969 
6970   // Divide the stored value in two parts.
6971   SDValue ShiftAmount = DAG.getConstant(
6972       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6973   SDValue Lo = Val;
6974   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6975 
6976   // Store the two parts
6977   SDValue Store1, Store2;
6978   Store1 = DAG.getTruncStore(Chain, dl,
6979                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6980                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6981                              ST->getMemOperand()->getFlags());
6982 
6983   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6984   Alignment = MinAlign(Alignment, IncrementSize);
6985   Store2 = DAG.getTruncStore(
6986       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6987       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6988       ST->getMemOperand()->getFlags(), ST->getAAInfo());
6989 
6990   SDValue Result =
6991       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6992   return Result;
6993 }
6994 
6995 SDValue
6996 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6997                                        const SDLoc &DL, EVT DataVT,
6998                                        SelectionDAG &DAG,
6999                                        bool IsCompressedMemory) const {
7000   SDValue Increment;
7001   EVT AddrVT = Addr.getValueType();
7002   EVT MaskVT = Mask.getValueType();
7003   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
7004          "Incompatible types of Data and Mask");
7005   if (IsCompressedMemory) {
7006     // Incrementing the pointer according to number of '1's in the mask.
7007     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7008     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7009     if (MaskIntVT.getSizeInBits() < 32) {
7010       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7011       MaskIntVT = MVT::i32;
7012     }
7013 
7014     // Count '1's with POPCNT.
7015     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7016     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7017     // Scale is an element size in bytes.
7018     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7019                                     AddrVT);
7020     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7021   } else
7022     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7023 
7024   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7025 }
7026 
7027 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7028                                        SDValue Idx,
7029                                        EVT VecVT,
7030                                        const SDLoc &dl) {
7031   if (isa<ConstantSDNode>(Idx))
7032     return Idx;
7033 
7034   EVT IdxVT = Idx.getValueType();
7035   unsigned NElts = VecVT.getVectorNumElements();
7036   if (isPowerOf2_32(NElts)) {
7037     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7038                                      Log2_32(NElts));
7039     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7040                        DAG.getConstant(Imm, dl, IdxVT));
7041   }
7042 
7043   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7044                      DAG.getConstant(NElts - 1, dl, IdxVT));
7045 }
7046 
7047 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7048                                                 SDValue VecPtr, EVT VecVT,
7049                                                 SDValue Index) const {
7050   SDLoc dl(Index);
7051   // Make sure the index type is big enough to compute in.
7052   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7053 
7054   EVT EltVT = VecVT.getVectorElementType();
7055 
7056   // Calculate the element offset and add it to the pointer.
7057   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
7058   assert(EltSize * 8 == EltVT.getSizeInBits() &&
7059          "Converting bits to bytes lost precision");
7060 
7061   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7062 
7063   EVT IdxVT = Index.getValueType();
7064 
7065   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7066                       DAG.getConstant(EltSize, dl, IdxVT));
7067   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7068 }
7069 
7070 //===----------------------------------------------------------------------===//
7071 // Implementation of Emulated TLS Model
7072 //===----------------------------------------------------------------------===//
7073 
7074 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7075                                                 SelectionDAG &DAG) const {
7076   // Access to address of TLS varialbe xyz is lowered to a function call:
7077   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7078   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7079   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7080   SDLoc dl(GA);
7081 
7082   ArgListTy Args;
7083   ArgListEntry Entry;
7084   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7085   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7086   StringRef EmuTlsVarName(NameString);
7087   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7088   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7089   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7090   Entry.Ty = VoidPtrType;
7091   Args.push_back(Entry);
7092 
7093   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7094 
7095   TargetLowering::CallLoweringInfo CLI(DAG);
7096   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7097   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7098   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7099 
7100   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7101   // At last for X86 targets, maybe good for other targets too?
7102   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7103   MFI.setAdjustsStack(true); // Is this only for X86 target?
7104   MFI.setHasCalls(true);
7105 
7106   assert((GA->getOffset() == 0) &&
7107          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7108   return CallResult.first;
7109 }
7110 
7111 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7112                                                 SelectionDAG &DAG) const {
7113   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7114   if (!isCtlzFast())
7115     return SDValue();
7116   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7117   SDLoc dl(Op);
7118   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7119     if (C->isNullValue() && CC == ISD::SETEQ) {
7120       EVT VT = Op.getOperand(0).getValueType();
7121       SDValue Zext = Op.getOperand(0);
7122       if (VT.bitsLT(MVT::i32)) {
7123         VT = MVT::i32;
7124         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7125       }
7126       unsigned Log2b = Log2_32(VT.getSizeInBits());
7127       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7128       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7129                                 DAG.getConstant(Log2b, dl, MVT::i32));
7130       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7131     }
7132   }
7133   return SDValue();
7134 }
7135 
7136 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7137   unsigned Opcode = Node->getOpcode();
7138   SDValue LHS = Node->getOperand(0);
7139   SDValue RHS = Node->getOperand(1);
7140   EVT VT = LHS.getValueType();
7141   SDLoc dl(Node);
7142 
7143   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7144   assert(VT.isInteger() && "Expected operands to be integers");
7145 
7146   // usub.sat(a, b) -> umax(a, b) - b
7147   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7148     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7149     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7150   }
7151 
7152   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7153     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7154     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7155     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7156   }
7157 
7158   unsigned OverflowOp;
7159   switch (Opcode) {
7160   case ISD::SADDSAT:
7161     OverflowOp = ISD::SADDO;
7162     break;
7163   case ISD::UADDSAT:
7164     OverflowOp = ISD::UADDO;
7165     break;
7166   case ISD::SSUBSAT:
7167     OverflowOp = ISD::SSUBO;
7168     break;
7169   case ISD::USUBSAT:
7170     OverflowOp = ISD::USUBO;
7171     break;
7172   default:
7173     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7174                      "addition or subtraction node.");
7175   }
7176 
7177   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7178   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7179   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7180                                LHS, RHS);
7181   SDValue SumDiff = Result.getValue(0);
7182   SDValue Overflow = Result.getValue(1);
7183   SDValue Zero = DAG.getConstant(0, dl, VT);
7184   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7185 
7186   if (Opcode == ISD::UADDSAT) {
7187     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7188       // (LHS + RHS) | OverflowMask
7189       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7190       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7191     }
7192     // Overflow ? 0xffff.... : (LHS + RHS)
7193     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7194   } else if (Opcode == ISD::USUBSAT) {
7195     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7196       // (LHS - RHS) & ~OverflowMask
7197       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7198       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7199       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7200     }
7201     // Overflow ? 0 : (LHS - RHS)
7202     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7203   } else {
7204     // SatMax -> Overflow && SumDiff < 0
7205     // SatMin -> Overflow && SumDiff >= 0
7206     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7207     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7208     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7209     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7210     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7211     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7212     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7213   }
7214 }
7215 
7216 SDValue
7217 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7218   assert((Node->getOpcode() == ISD::SMULFIX ||
7219           Node->getOpcode() == ISD::UMULFIX ||
7220           Node->getOpcode() == ISD::SMULFIXSAT ||
7221           Node->getOpcode() == ISD::UMULFIXSAT) &&
7222          "Expected a fixed point multiplication opcode");
7223 
7224   SDLoc dl(Node);
7225   SDValue LHS = Node->getOperand(0);
7226   SDValue RHS = Node->getOperand(1);
7227   EVT VT = LHS.getValueType();
7228   unsigned Scale = Node->getConstantOperandVal(2);
7229   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7230                      Node->getOpcode() == ISD::UMULFIXSAT);
7231   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7232                  Node->getOpcode() == ISD::SMULFIXSAT);
7233   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7234   unsigned VTSize = VT.getScalarSizeInBits();
7235 
7236   if (!Scale) {
7237     // [us]mul.fix(a, b, 0) -> mul(a, b)
7238     if (!Saturating) {
7239       if (isOperationLegalOrCustom(ISD::MUL, VT))
7240         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7241     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7242       SDValue Result =
7243           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7244       SDValue Product = Result.getValue(0);
7245       SDValue Overflow = Result.getValue(1);
7246       SDValue Zero = DAG.getConstant(0, dl, VT);
7247 
7248       APInt MinVal = APInt::getSignedMinValue(VTSize);
7249       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7250       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7251       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7252       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7253       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7254       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7255     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7256       SDValue Result =
7257           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7258       SDValue Product = Result.getValue(0);
7259       SDValue Overflow = Result.getValue(1);
7260 
7261       APInt MaxVal = APInt::getMaxValue(VTSize);
7262       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7263       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7264     }
7265   }
7266 
7267   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7268          "Expected scale to be less than the number of bits if signed or at "
7269          "most the number of bits if unsigned.");
7270   assert(LHS.getValueType() == RHS.getValueType() &&
7271          "Expected both operands to be the same type");
7272 
7273   // Get the upper and lower bits of the result.
7274   SDValue Lo, Hi;
7275   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7276   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7277   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7278     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7279     Lo = Result.getValue(0);
7280     Hi = Result.getValue(1);
7281   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7282     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7283     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7284   } else if (VT.isVector()) {
7285     return SDValue();
7286   } else {
7287     report_fatal_error("Unable to expand fixed point multiplication.");
7288   }
7289 
7290   if (Scale == VTSize)
7291     // Result is just the top half since we'd be shifting by the width of the
7292     // operand. Overflow impossible so this works for both UMULFIX and
7293     // UMULFIXSAT.
7294     return Hi;
7295 
7296   // The result will need to be shifted right by the scale since both operands
7297   // are scaled. The result is given to us in 2 halves, so we only want part of
7298   // both in the result.
7299   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7300   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7301                                DAG.getConstant(Scale, dl, ShiftTy));
7302   if (!Saturating)
7303     return Result;
7304 
7305   if (!Signed) {
7306     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7307     // widened multiplication) aren't all zeroes.
7308 
7309     // Saturate to max if ((Hi >> Scale) != 0),
7310     // which is the same as if (Hi > ((1 << Scale) - 1))
7311     APInt MaxVal = APInt::getMaxValue(VTSize);
7312     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7313                                       dl, VT);
7314     Result = DAG.getSelectCC(dl, Hi, LowMask,
7315                              DAG.getConstant(MaxVal, dl, VT), Result,
7316                              ISD::SETUGT);
7317 
7318     return Result;
7319   }
7320 
7321   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7322   // widened multiplication) aren't all ones or all zeroes.
7323 
7324   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7325   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7326 
7327   if (Scale == 0) {
7328     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7329                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7330     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7331     // Saturated to SatMin if wide product is negative, and SatMax if wide
7332     // product is positive ...
7333     SDValue Zero = DAG.getConstant(0, dl, VT);
7334     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7335                                                ISD::SETLT);
7336     // ... but only if we overflowed.
7337     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7338   }
7339 
7340   //  We handled Scale==0 above so all the bits to examine is in Hi.
7341 
7342   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7343   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7344   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7345                                     dl, VT);
7346   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7347   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7348   // which is the same as if (HI < (-1 << (Scale - 1))
7349   SDValue HighMask =
7350       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7351                       dl, VT);
7352   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7353   return Result;
7354 }
7355 
7356 SDValue
7357 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7358                                     SDValue LHS, SDValue RHS,
7359                                     unsigned Scale, SelectionDAG &DAG) const {
7360   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
7361           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
7362          "Expected a fixed point division opcode");
7363 
7364   EVT VT = LHS.getValueType();
7365   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
7366   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
7367   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7368 
7369   // If there is enough room in the type to upscale the LHS or downscale the
7370   // RHS before the division, we can perform it in this type without having to
7371   // resize. For signed operations, the LHS headroom is the number of
7372   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7373   // The headroom for the RHS is the number of trailing zeroes.
7374   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7375                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7376   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7377 
7378   // For signed saturating operations, we need to be able to detect true integer
7379   // division overflow; that is, when you have MIN / -EPS. However, this
7380   // is undefined behavior and if we emit divisions that could take such
7381   // values it may cause undesired behavior (arithmetic exceptions on x86, for
7382   // example).
7383   // Avoid this by requiring an extra bit so that we never get this case.
7384   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
7385   // signed saturating division, we need to emit a whopping 32-bit division.
7386   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
7387     return SDValue();
7388 
7389   unsigned LHSShift = std::min(LHSLead, Scale);
7390   unsigned RHSShift = Scale - LHSShift;
7391 
7392   // At this point, we know that if we shift the LHS up by LHSShift and the
7393   // RHS down by RHSShift, we can emit a regular division with a final scaling
7394   // factor of Scale.
7395 
7396   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7397   if (LHSShift)
7398     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7399                       DAG.getConstant(LHSShift, dl, ShiftTy));
7400   if (RHSShift)
7401     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7402                       DAG.getConstant(RHSShift, dl, ShiftTy));
7403 
7404   SDValue Quot;
7405   if (Signed) {
7406     // For signed operations, if the resulting quotient is negative and the
7407     // remainder is nonzero, subtract 1 from the quotient to round towards
7408     // negative infinity.
7409     SDValue Rem;
7410     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7411     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7412     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7413     if (isTypeLegal(VT) &&
7414         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7415       Quot = DAG.getNode(ISD::SDIVREM, dl,
7416                          DAG.getVTList(VT, VT),
7417                          LHS, RHS);
7418       Rem = Quot.getValue(1);
7419       Quot = Quot.getValue(0);
7420     } else {
7421       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7422                          LHS, RHS);
7423       Rem = DAG.getNode(ISD::SREM, dl, VT,
7424                         LHS, RHS);
7425     }
7426     SDValue Zero = DAG.getConstant(0, dl, VT);
7427     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7428     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7429     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7430     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7431     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7432                                DAG.getConstant(1, dl, VT));
7433     Quot = DAG.getSelect(dl, VT,
7434                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7435                          Sub1, Quot);
7436   } else
7437     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7438                        LHS, RHS);
7439 
7440   return Quot;
7441 }
7442 
7443 void TargetLowering::expandUADDSUBO(
7444     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7445   SDLoc dl(Node);
7446   SDValue LHS = Node->getOperand(0);
7447   SDValue RHS = Node->getOperand(1);
7448   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7449 
7450   // If ADD/SUBCARRY is legal, use that instead.
7451   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7452   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7453     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7454     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7455                                     { LHS, RHS, CarryIn });
7456     Result = SDValue(NodeCarry.getNode(), 0);
7457     Overflow = SDValue(NodeCarry.getNode(), 1);
7458     return;
7459   }
7460 
7461   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7462                             LHS.getValueType(), LHS, RHS);
7463 
7464   EVT ResultType = Node->getValueType(1);
7465   EVT SetCCType = getSetCCResultType(
7466       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7467   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7468   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7469   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7470 }
7471 
7472 void TargetLowering::expandSADDSUBO(
7473     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7474   SDLoc dl(Node);
7475   SDValue LHS = Node->getOperand(0);
7476   SDValue RHS = Node->getOperand(1);
7477   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7478 
7479   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7480                             LHS.getValueType(), LHS, RHS);
7481 
7482   EVT ResultType = Node->getValueType(1);
7483   EVT OType = getSetCCResultType(
7484       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7485 
7486   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7487   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7488   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7489     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7490     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7491     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7492     return;
7493   }
7494 
7495   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7496 
7497   // For an addition, the result should be less than one of the operands (LHS)
7498   // if and only if the other operand (RHS) is negative, otherwise there will
7499   // be overflow.
7500   // For a subtraction, the result should be less than one of the operands
7501   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7502   // otherwise there will be overflow.
7503   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7504   SDValue ConditionRHS =
7505       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7506 
7507   Overflow = DAG.getBoolExtOrTrunc(
7508       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7509       ResultType, ResultType);
7510 }
7511 
7512 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7513                                 SDValue &Overflow, SelectionDAG &DAG) const {
7514   SDLoc dl(Node);
7515   EVT VT = Node->getValueType(0);
7516   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7517   SDValue LHS = Node->getOperand(0);
7518   SDValue RHS = Node->getOperand(1);
7519   bool isSigned = Node->getOpcode() == ISD::SMULO;
7520 
7521   // For power-of-two multiplications we can use a simpler shift expansion.
7522   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7523     const APInt &C = RHSC->getAPIntValue();
7524     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7525     if (C.isPowerOf2()) {
7526       // smulo(x, signed_min) is same as umulo(x, signed_min).
7527       bool UseArithShift = isSigned && !C.isMinSignedValue();
7528       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7529       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7530       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7531       Overflow = DAG.getSetCC(dl, SetCCVT,
7532           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7533                       dl, VT, Result, ShiftAmt),
7534           LHS, ISD::SETNE);
7535       return true;
7536     }
7537   }
7538 
7539   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7540   if (VT.isVector())
7541     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7542                               VT.getVectorNumElements());
7543 
7544   SDValue BottomHalf;
7545   SDValue TopHalf;
7546   static const unsigned Ops[2][3] =
7547       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7548         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7549   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7550     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7551     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7552   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7553     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7554                              RHS);
7555     TopHalf = BottomHalf.getValue(1);
7556   } else if (isTypeLegal(WideVT)) {
7557     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7558     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7559     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7560     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7561     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7562         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7563     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7564                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7565   } else {
7566     if (VT.isVector())
7567       return false;
7568 
7569     // We can fall back to a libcall with an illegal type for the MUL if we
7570     // have a libcall big enough.
7571     // Also, we can fall back to a division in some cases, but that's a big
7572     // performance hit in the general case.
7573     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7574     if (WideVT == MVT::i16)
7575       LC = RTLIB::MUL_I16;
7576     else if (WideVT == MVT::i32)
7577       LC = RTLIB::MUL_I32;
7578     else if (WideVT == MVT::i64)
7579       LC = RTLIB::MUL_I64;
7580     else if (WideVT == MVT::i128)
7581       LC = RTLIB::MUL_I128;
7582     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7583 
7584     SDValue HiLHS;
7585     SDValue HiRHS;
7586     if (isSigned) {
7587       // The high part is obtained by SRA'ing all but one of the bits of low
7588       // part.
7589       unsigned LoSize = VT.getSizeInBits();
7590       HiLHS =
7591           DAG.getNode(ISD::SRA, dl, VT, LHS,
7592                       DAG.getConstant(LoSize - 1, dl,
7593                                       getPointerTy(DAG.getDataLayout())));
7594       HiRHS =
7595           DAG.getNode(ISD::SRA, dl, VT, RHS,
7596                       DAG.getConstant(LoSize - 1, dl,
7597                                       getPointerTy(DAG.getDataLayout())));
7598     } else {
7599         HiLHS = DAG.getConstant(0, dl, VT);
7600         HiRHS = DAG.getConstant(0, dl, VT);
7601     }
7602 
7603     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7604     // pre-lowered to the correct types. This all depends upon WideVT not
7605     // being a legal type for the architecture and thus has to be split to
7606     // two arguments.
7607     SDValue Ret;
7608     TargetLowering::MakeLibCallOptions CallOptions;
7609     CallOptions.setSExt(isSigned);
7610     CallOptions.setIsPostTypeLegalization(true);
7611     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7612       // Halves of WideVT are packed into registers in different order
7613       // depending on platform endianness. This is usually handled by
7614       // the C calling convention, but we can't defer to it in
7615       // the legalizer.
7616       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7617       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7618     } else {
7619       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7620       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7621     }
7622     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7623            "Ret value is a collection of constituent nodes holding result.");
7624     if (DAG.getDataLayout().isLittleEndian()) {
7625       // Same as above.
7626       BottomHalf = Ret.getOperand(0);
7627       TopHalf = Ret.getOperand(1);
7628     } else {
7629       BottomHalf = Ret.getOperand(1);
7630       TopHalf = Ret.getOperand(0);
7631     }
7632   }
7633 
7634   Result = BottomHalf;
7635   if (isSigned) {
7636     SDValue ShiftAmt = DAG.getConstant(
7637         VT.getScalarSizeInBits() - 1, dl,
7638         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7639     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7640     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7641   } else {
7642     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7643                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7644   }
7645 
7646   // Truncate the result if SetCC returns a larger type than needed.
7647   EVT RType = Node->getValueType(1);
7648   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7649     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7650 
7651   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7652          "Unexpected result type for S/UMULO legalization");
7653   return true;
7654 }
7655 
7656 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7657   SDLoc dl(Node);
7658   bool NoNaN = Node->getFlags().hasNoNaNs();
7659   unsigned BaseOpcode = 0;
7660   switch (Node->getOpcode()) {
7661   default: llvm_unreachable("Expected VECREDUCE opcode");
7662   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7663   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7664   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7665   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7666   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7667   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7668   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7669   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7670   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7671   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7672   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7673   case ISD::VECREDUCE_FMAX:
7674     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7675     break;
7676   case ISD::VECREDUCE_FMIN:
7677     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7678     break;
7679   }
7680 
7681   SDValue Op = Node->getOperand(0);
7682   EVT VT = Op.getValueType();
7683 
7684   // Try to use a shuffle reduction for power of two vectors.
7685   if (VT.isPow2VectorType()) {
7686     while (VT.getVectorNumElements() > 1) {
7687       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7688       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7689         break;
7690 
7691       SDValue Lo, Hi;
7692       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7693       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7694       VT = HalfVT;
7695     }
7696   }
7697 
7698   EVT EltVT = VT.getVectorElementType();
7699   unsigned NumElts = VT.getVectorNumElements();
7700 
7701   SmallVector<SDValue, 8> Ops;
7702   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7703 
7704   SDValue Res = Ops[0];
7705   for (unsigned i = 1; i < NumElts; i++)
7706     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7707 
7708   // Result type may be wider than element type.
7709   if (EltVT != Node->getValueType(0))
7710     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7711   return Res;
7712 }
7713