1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // Conservatively require the attributes of the call to match those of 56 // the return. Ignore NoAlias and NonNull because they don't affect the 57 // call sequence. 58 AttributeList CallerAttrs = F.getAttributes(); 59 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 60 .removeAttribute(Attribute::NoAlias) 61 .removeAttribute(Attribute::NonNull) 62 .hasAttributes()) 63 return false; 64 65 // It's not safe to eliminate the sign / zero extension of the return value. 66 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 67 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 68 return false; 69 70 // Check if the only use is a function return node. 71 return isUsedByReturnOnly(Node, Chain); 72 } 73 74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 75 const uint32_t *CallerPreservedMask, 76 const SmallVectorImpl<CCValAssign> &ArgLocs, 77 const SmallVectorImpl<SDValue> &OutVals) const { 78 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 79 const CCValAssign &ArgLoc = ArgLocs[I]; 80 if (!ArgLoc.isRegLoc()) 81 continue; 82 Register Reg = ArgLoc.getLocReg(); 83 // Only look at callee saved registers. 84 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 85 continue; 86 // Check that we pass the value used for the caller. 87 // (We look for a CopyFromReg reading a virtual register that is used 88 // for the function live-in value of register Reg) 89 SDValue Value = OutVals[I]; 90 if (Value->getOpcode() != ISD::CopyFromReg) 91 return false; 92 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 93 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 94 return false; 95 } 96 return true; 97 } 98 99 /// Set CallLoweringInfo attribute flags based on a call instruction 100 /// and called function attributes. 101 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 102 unsigned ArgIdx) { 103 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 104 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 105 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 106 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 107 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 108 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 109 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 110 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 111 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 112 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 113 Alignment = Call->getParamAlignment(ArgIdx); 114 ByValType = nullptr; 115 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 116 ByValType = Call->getParamByValType(ArgIdx); 117 } 118 119 /// Generate a libcall taking the given operands as arguments and returning a 120 /// result of type RetVT. 121 std::pair<SDValue, SDValue> 122 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 123 ArrayRef<SDValue> Ops, 124 MakeLibCallOptions CallOptions, 125 const SDLoc &dl, 126 SDValue InChain) const { 127 if (!InChain) 128 InChain = DAG.getEntryNode(); 129 130 TargetLowering::ArgListTy Args; 131 Args.reserve(Ops.size()); 132 133 TargetLowering::ArgListEntry Entry; 134 for (unsigned i = 0; i < Ops.size(); ++i) { 135 SDValue NewOp = Ops[i]; 136 Entry.Node = NewOp; 137 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 138 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 139 CallOptions.IsSExt); 140 Entry.IsZExt = !Entry.IsSExt; 141 142 if (CallOptions.IsSoften && 143 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 144 Entry.IsSExt = Entry.IsZExt = false; 145 } 146 Args.push_back(Entry); 147 } 148 149 if (LC == RTLIB::UNKNOWN_LIBCALL) 150 report_fatal_error("Unsupported library call operation!"); 151 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 152 getPointerTy(DAG.getDataLayout())); 153 154 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 155 TargetLowering::CallLoweringInfo CLI(DAG); 156 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 157 bool zeroExtend = !signExtend; 158 159 if (CallOptions.IsSoften && 160 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 161 signExtend = zeroExtend = false; 162 } 163 164 CLI.setDebugLoc(dl) 165 .setChain(InChain) 166 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 167 .setNoReturn(CallOptions.DoesNotReturn) 168 .setDiscardResult(!CallOptions.IsReturnValueUsed) 169 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 170 .setSExtResult(signExtend) 171 .setZExtResult(zeroExtend); 172 return LowerCallTo(CLI); 173 } 174 175 bool 176 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps, 177 unsigned Limit, uint64_t Size, 178 unsigned DstAlign, unsigned SrcAlign, 179 bool IsMemset, 180 bool ZeroMemset, 181 bool MemcpyStrSrc, 182 bool AllowOverlap, 183 unsigned DstAS, unsigned SrcAS, 184 const AttributeList &FuncAttributes) const { 185 // If 'SrcAlign' is zero, that means the memory operation does not need to 186 // load the value, i.e. memset or memcpy from constant string. Otherwise, 187 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 188 // is the specified alignment of the memory operation. If it is zero, that 189 // means it's possible to change the alignment of the destination. 190 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 191 // not need to be loaded. 192 if (!(SrcAlign == 0 || SrcAlign >= DstAlign)) 193 return false; 194 195 EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign, 196 IsMemset, ZeroMemset, MemcpyStrSrc, 197 FuncAttributes); 198 199 if (VT == MVT::Other) { 200 // Use the largest integer type whose alignment constraints are satisfied. 201 // We only need to check DstAlign here as SrcAlign is always greater or 202 // equal to DstAlign (or zero). 203 VT = MVT::i64; 204 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 205 !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 206 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 207 assert(VT.isInteger()); 208 209 // Find the largest legal integer type. 210 MVT LVT = MVT::i64; 211 while (!isTypeLegal(LVT)) 212 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 213 assert(LVT.isInteger()); 214 215 // If the type we've chosen is larger than the largest legal integer type 216 // then use that instead. 217 if (VT.bitsGT(LVT)) 218 VT = LVT; 219 } 220 221 unsigned NumMemOps = 0; 222 while (Size != 0) { 223 unsigned VTSize = VT.getSizeInBits() / 8; 224 while (VTSize > Size) { 225 // For now, only use non-vector load / store's for the left-over pieces. 226 EVT NewVT = VT; 227 unsigned NewVTSize; 228 229 bool Found = false; 230 if (VT.isVector() || VT.isFloatingPoint()) { 231 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 232 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 233 isSafeMemOpType(NewVT.getSimpleVT())) 234 Found = true; 235 else if (NewVT == MVT::i64 && 236 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 237 isSafeMemOpType(MVT::f64)) { 238 // i64 is usually not legal on 32-bit targets, but f64 may be. 239 NewVT = MVT::f64; 240 Found = true; 241 } 242 } 243 244 if (!Found) { 245 do { 246 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 247 if (NewVT == MVT::i8) 248 break; 249 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 250 } 251 NewVTSize = NewVT.getSizeInBits() / 8; 252 253 // If the new VT cannot cover all of the remaining bits, then consider 254 // issuing a (or a pair of) unaligned and overlapping load / store. 255 bool Fast; 256 if (NumMemOps && AllowOverlap && NewVTSize < Size && 257 allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, 258 MachineMemOperand::MONone, &Fast) && 259 Fast) 260 VTSize = Size; 261 else { 262 VT = NewVT; 263 VTSize = NewVTSize; 264 } 265 } 266 267 if (++NumMemOps > Limit) 268 return false; 269 270 MemOps.push_back(VT); 271 Size -= VTSize; 272 } 273 274 return true; 275 } 276 277 /// Soften the operands of a comparison. This code is shared among BR_CC, 278 /// SELECT_CC, and SETCC handlers. 279 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 280 SDValue &NewLHS, SDValue &NewRHS, 281 ISD::CondCode &CCCode, 282 const SDLoc &dl, const SDValue OldLHS, 283 const SDValue OldRHS) const { 284 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 285 && "Unsupported setcc type!"); 286 287 // Expand into one or more soft-fp libcall(s). 288 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 289 bool ShouldInvertCC = false; 290 switch (CCCode) { 291 case ISD::SETEQ: 292 case ISD::SETOEQ: 293 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 294 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 295 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 296 break; 297 case ISD::SETNE: 298 case ISD::SETUNE: 299 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 300 (VT == MVT::f64) ? RTLIB::UNE_F64 : 301 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 302 break; 303 case ISD::SETGE: 304 case ISD::SETOGE: 305 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 306 (VT == MVT::f64) ? RTLIB::OGE_F64 : 307 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 308 break; 309 case ISD::SETLT: 310 case ISD::SETOLT: 311 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 312 (VT == MVT::f64) ? RTLIB::OLT_F64 : 313 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 314 break; 315 case ISD::SETLE: 316 case ISD::SETOLE: 317 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 318 (VT == MVT::f64) ? RTLIB::OLE_F64 : 319 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 320 break; 321 case ISD::SETGT: 322 case ISD::SETOGT: 323 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 324 (VT == MVT::f64) ? RTLIB::OGT_F64 : 325 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 326 break; 327 case ISD::SETUO: 328 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 329 (VT == MVT::f64) ? RTLIB::UO_F64 : 330 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 331 break; 332 case ISD::SETO: 333 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 334 (VT == MVT::f64) ? RTLIB::O_F64 : 335 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 336 break; 337 case ISD::SETONE: 338 // SETONE = SETOLT | SETOGT 339 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 340 (VT == MVT::f64) ? RTLIB::OLT_F64 : 341 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 342 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 343 (VT == MVT::f64) ? RTLIB::OGT_F64 : 344 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 345 break; 346 case ISD::SETUEQ: 347 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 348 (VT == MVT::f64) ? RTLIB::UO_F64 : 349 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 350 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 351 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 352 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 353 break; 354 default: 355 // Invert CC for unordered comparisons 356 ShouldInvertCC = true; 357 switch (CCCode) { 358 case ISD::SETULT: 359 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 360 (VT == MVT::f64) ? RTLIB::OGE_F64 : 361 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 362 break; 363 case ISD::SETULE: 364 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 365 (VT == MVT::f64) ? RTLIB::OGT_F64 : 366 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 367 break; 368 case ISD::SETUGT: 369 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 370 (VT == MVT::f64) ? RTLIB::OLE_F64 : 371 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 372 break; 373 case ISD::SETUGE: 374 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 375 (VT == MVT::f64) ? RTLIB::OLT_F64 : 376 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 377 break; 378 default: llvm_unreachable("Do not know how to soften this setcc!"); 379 } 380 } 381 382 // Use the target specific return value for comparions lib calls. 383 EVT RetVT = getCmpLibcallReturnType(); 384 SDValue Ops[2] = {NewLHS, NewRHS}; 385 TargetLowering::MakeLibCallOptions CallOptions; 386 EVT OpsVT[2] = { OldLHS.getValueType(), 387 OldRHS.getValueType() }; 388 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 389 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl).first; 390 NewRHS = DAG.getConstant(0, dl, RetVT); 391 392 CCCode = getCmpLibcallCC(LC1); 393 if (ShouldInvertCC) { 394 assert(RetVT.isInteger()); 395 CCCode = getSetCCInverse(CCCode, RetVT); 396 } 397 398 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 399 SDValue Tmp = DAG.getNode( 400 ISD::SETCC, dl, 401 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 402 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 403 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl).first; 404 NewLHS = DAG.getNode( 405 ISD::SETCC, dl, 406 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 407 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 408 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 409 NewRHS = SDValue(); 410 } 411 } 412 413 /// Return the entry encoding for a jump table in the current function. The 414 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 415 unsigned TargetLowering::getJumpTableEncoding() const { 416 // In non-pic modes, just use the address of a block. 417 if (!isPositionIndependent()) 418 return MachineJumpTableInfo::EK_BlockAddress; 419 420 // In PIC mode, if the target supports a GPRel32 directive, use it. 421 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 422 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 423 424 // Otherwise, use a label difference. 425 return MachineJumpTableInfo::EK_LabelDifference32; 426 } 427 428 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 429 SelectionDAG &DAG) const { 430 // If our PIC model is GP relative, use the global offset table as the base. 431 unsigned JTEncoding = getJumpTableEncoding(); 432 433 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 434 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 435 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 436 437 return Table; 438 } 439 440 /// This returns the relocation base for the given PIC jumptable, the same as 441 /// getPICJumpTableRelocBase, but as an MCExpr. 442 const MCExpr * 443 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 444 unsigned JTI,MCContext &Ctx) const{ 445 // The normal PIC reloc base is the label at the start of the jump table. 446 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 447 } 448 449 bool 450 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 451 const TargetMachine &TM = getTargetMachine(); 452 const GlobalValue *GV = GA->getGlobal(); 453 454 // If the address is not even local to this DSO we will have to load it from 455 // a got and then add the offset. 456 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 457 return false; 458 459 // If the code is position independent we will have to add a base register. 460 if (isPositionIndependent()) 461 return false; 462 463 // Otherwise we can do it. 464 return true; 465 } 466 467 //===----------------------------------------------------------------------===// 468 // Optimization Methods 469 //===----------------------------------------------------------------------===// 470 471 /// If the specified instruction has a constant integer operand and there are 472 /// bits set in that constant that are not demanded, then clear those bits and 473 /// return true. 474 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 475 TargetLoweringOpt &TLO) const { 476 SDLoc DL(Op); 477 unsigned Opcode = Op.getOpcode(); 478 479 // Do target-specific constant optimization. 480 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 481 return TLO.New.getNode(); 482 483 // FIXME: ISD::SELECT, ISD::SELECT_CC 484 switch (Opcode) { 485 default: 486 break; 487 case ISD::XOR: 488 case ISD::AND: 489 case ISD::OR: { 490 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 491 if (!Op1C) 492 return false; 493 494 // If this is a 'not' op, don't touch it because that's a canonical form. 495 const APInt &C = Op1C->getAPIntValue(); 496 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 497 return false; 498 499 if (!C.isSubsetOf(Demanded)) { 500 EVT VT = Op.getValueType(); 501 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 502 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 503 return TLO.CombineTo(Op, NewOp); 504 } 505 506 break; 507 } 508 } 509 510 return false; 511 } 512 513 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 514 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 515 /// generalized for targets with other types of implicit widening casts. 516 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 517 const APInt &Demanded, 518 TargetLoweringOpt &TLO) const { 519 assert(Op.getNumOperands() == 2 && 520 "ShrinkDemandedOp only supports binary operators!"); 521 assert(Op.getNode()->getNumValues() == 1 && 522 "ShrinkDemandedOp only supports nodes with one result!"); 523 524 SelectionDAG &DAG = TLO.DAG; 525 SDLoc dl(Op); 526 527 // Early return, as this function cannot handle vector types. 528 if (Op.getValueType().isVector()) 529 return false; 530 531 // Don't do this if the node has another user, which may require the 532 // full value. 533 if (!Op.getNode()->hasOneUse()) 534 return false; 535 536 // Search for the smallest integer type with free casts to and from 537 // Op's type. For expedience, just check power-of-2 integer types. 538 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 539 unsigned DemandedSize = Demanded.getActiveBits(); 540 unsigned SmallVTBits = DemandedSize; 541 if (!isPowerOf2_32(SmallVTBits)) 542 SmallVTBits = NextPowerOf2(SmallVTBits); 543 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 544 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 545 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 546 TLI.isZExtFree(SmallVT, Op.getValueType())) { 547 // We found a type with free casts. 548 SDValue X = DAG.getNode( 549 Op.getOpcode(), dl, SmallVT, 550 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 551 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 552 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 553 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 554 return TLO.CombineTo(Op, Z); 555 } 556 } 557 return false; 558 } 559 560 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 561 DAGCombinerInfo &DCI) const { 562 SelectionDAG &DAG = DCI.DAG; 563 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 564 !DCI.isBeforeLegalizeOps()); 565 KnownBits Known; 566 567 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 568 if (Simplified) { 569 DCI.AddToWorklist(Op.getNode()); 570 DCI.CommitTargetLoweringOpt(TLO); 571 } 572 return Simplified; 573 } 574 575 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 576 KnownBits &Known, 577 TargetLoweringOpt &TLO, 578 unsigned Depth, 579 bool AssumeSingleUse) const { 580 EVT VT = Op.getValueType(); 581 APInt DemandedElts = VT.isVector() 582 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 583 : APInt(1, 1); 584 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 585 AssumeSingleUse); 586 } 587 588 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 589 // TODO: Under what circumstances can we create nodes? Constant folding? 590 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 591 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 592 SelectionDAG &DAG, unsigned Depth) const { 593 // Limit search depth. 594 if (Depth >= SelectionDAG::MaxRecursionDepth) 595 return SDValue(); 596 597 // Ignore UNDEFs. 598 if (Op.isUndef()) 599 return SDValue(); 600 601 // Not demanding any bits/elts from Op. 602 if (DemandedBits == 0 || DemandedElts == 0) 603 return DAG.getUNDEF(Op.getValueType()); 604 605 unsigned NumElts = DemandedElts.getBitWidth(); 606 KnownBits LHSKnown, RHSKnown; 607 switch (Op.getOpcode()) { 608 case ISD::BITCAST: { 609 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 610 EVT SrcVT = Src.getValueType(); 611 EVT DstVT = Op.getValueType(); 612 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 613 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 614 615 if (NumSrcEltBits == NumDstEltBits) 616 if (SDValue V = SimplifyMultipleUseDemandedBits( 617 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 618 return DAG.getBitcast(DstVT, V); 619 620 // TODO - bigendian once we have test coverage. 621 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 622 DAG.getDataLayout().isLittleEndian()) { 623 unsigned Scale = NumDstEltBits / NumSrcEltBits; 624 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 625 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 626 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 627 for (unsigned i = 0; i != Scale; ++i) { 628 unsigned Offset = i * NumSrcEltBits; 629 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 630 if (!Sub.isNullValue()) { 631 DemandedSrcBits |= Sub; 632 for (unsigned j = 0; j != NumElts; ++j) 633 if (DemandedElts[j]) 634 DemandedSrcElts.setBit((j * Scale) + i); 635 } 636 } 637 638 if (SDValue V = SimplifyMultipleUseDemandedBits( 639 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 640 return DAG.getBitcast(DstVT, V); 641 } 642 643 // TODO - bigendian once we have test coverage. 644 if ((NumSrcEltBits % NumDstEltBits) == 0 && 645 DAG.getDataLayout().isLittleEndian()) { 646 unsigned Scale = NumSrcEltBits / NumDstEltBits; 647 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 648 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 649 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 650 for (unsigned i = 0; i != NumElts; ++i) 651 if (DemandedElts[i]) { 652 unsigned Offset = (i % Scale) * NumDstEltBits; 653 DemandedSrcBits.insertBits(DemandedBits, Offset); 654 DemandedSrcElts.setBit(i / Scale); 655 } 656 657 if (SDValue V = SimplifyMultipleUseDemandedBits( 658 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 659 return DAG.getBitcast(DstVT, V); 660 } 661 662 break; 663 } 664 case ISD::AND: { 665 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 666 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 667 668 // If all of the demanded bits are known 1 on one side, return the other. 669 // These bits cannot contribute to the result of the 'and' in this 670 // context. 671 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 672 return Op.getOperand(0); 673 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 674 return Op.getOperand(1); 675 break; 676 } 677 case ISD::OR: { 678 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 679 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 680 681 // If all of the demanded bits are known zero on one side, return the 682 // other. These bits cannot contribute to the result of the 'or' in this 683 // context. 684 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 685 return Op.getOperand(0); 686 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 687 return Op.getOperand(1); 688 break; 689 } 690 case ISD::XOR: { 691 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 692 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 693 694 // If all of the demanded bits are known zero on one side, return the 695 // other. 696 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 697 return Op.getOperand(0); 698 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 699 return Op.getOperand(1); 700 break; 701 } 702 case ISD::SIGN_EXTEND_INREG: { 703 // If none of the extended bits are demanded, eliminate the sextinreg. 704 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 705 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 706 return Op.getOperand(0); 707 break; 708 } 709 case ISD::INSERT_VECTOR_ELT: { 710 // If we don't demand the inserted element, return the base vector. 711 SDValue Vec = Op.getOperand(0); 712 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 713 EVT VecVT = Vec.getValueType(); 714 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 715 !DemandedElts[CIdx->getZExtValue()]) 716 return Vec; 717 break; 718 } 719 case ISD::VECTOR_SHUFFLE: { 720 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 721 722 // If all the demanded elts are from one operand and are inline, 723 // then we can use the operand directly. 724 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 725 for (unsigned i = 0; i != NumElts; ++i) { 726 int M = ShuffleMask[i]; 727 if (M < 0 || !DemandedElts[i]) 728 continue; 729 AllUndef = false; 730 IdentityLHS &= (M == (int)i); 731 IdentityRHS &= ((M - NumElts) == i); 732 } 733 734 if (AllUndef) 735 return DAG.getUNDEF(Op.getValueType()); 736 if (IdentityLHS) 737 return Op.getOperand(0); 738 if (IdentityRHS) 739 return Op.getOperand(1); 740 break; 741 } 742 default: 743 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 744 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 745 Op, DemandedBits, DemandedElts, DAG, Depth)) 746 return V; 747 break; 748 } 749 return SDValue(); 750 } 751 752 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 753 /// result of Op are ever used downstream. If we can use this information to 754 /// simplify Op, create a new simplified DAG node and return true, returning the 755 /// original and new nodes in Old and New. Otherwise, analyze the expression and 756 /// return a mask of Known bits for the expression (used to simplify the 757 /// caller). The Known bits may only be accurate for those bits in the 758 /// OriginalDemandedBits and OriginalDemandedElts. 759 bool TargetLowering::SimplifyDemandedBits( 760 SDValue Op, const APInt &OriginalDemandedBits, 761 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 762 unsigned Depth, bool AssumeSingleUse) const { 763 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 764 assert(Op.getScalarValueSizeInBits() == BitWidth && 765 "Mask size mismatches value type size!"); 766 767 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 768 assert((!Op.getValueType().isVector() || 769 NumElts == Op.getValueType().getVectorNumElements()) && 770 "Unexpected vector size"); 771 772 APInt DemandedBits = OriginalDemandedBits; 773 APInt DemandedElts = OriginalDemandedElts; 774 SDLoc dl(Op); 775 auto &DL = TLO.DAG.getDataLayout(); 776 777 // Don't know anything. 778 Known = KnownBits(BitWidth); 779 780 // Undef operand. 781 if (Op.isUndef()) 782 return false; 783 784 if (Op.getOpcode() == ISD::Constant) { 785 // We know all of the bits for a constant! 786 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 787 Known.Zero = ~Known.One; 788 return false; 789 } 790 791 // Other users may use these bits. 792 EVT VT = Op.getValueType(); 793 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 794 if (Depth != 0) { 795 // If not at the root, Just compute the Known bits to 796 // simplify things downstream. 797 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 798 return false; 799 } 800 // If this is the root being simplified, allow it to have multiple uses, 801 // just set the DemandedBits/Elts to all bits. 802 DemandedBits = APInt::getAllOnesValue(BitWidth); 803 DemandedElts = APInt::getAllOnesValue(NumElts); 804 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 805 // Not demanding any bits/elts from Op. 806 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 807 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 808 // Limit search depth. 809 return false; 810 } 811 812 KnownBits Known2, KnownOut; 813 switch (Op.getOpcode()) { 814 case ISD::TargetConstant: 815 llvm_unreachable("Can't simplify this node"); 816 case ISD::SCALAR_TO_VECTOR: { 817 if (!DemandedElts[0]) 818 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 819 820 KnownBits SrcKnown; 821 SDValue Src = Op.getOperand(0); 822 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 823 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 824 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 825 return true; 826 Known = SrcKnown.zextOrTrunc(BitWidth, false); 827 break; 828 } 829 case ISD::BUILD_VECTOR: 830 // Collect the known bits that are shared by every demanded element. 831 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 832 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 833 return false; // Don't fall through, will infinitely loop. 834 case ISD::LOAD: { 835 LoadSDNode *LD = cast<LoadSDNode>(Op); 836 if (getTargetConstantFromLoad(LD)) { 837 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 838 return false; // Don't fall through, will infinitely loop. 839 } 840 break; 841 } 842 case ISD::INSERT_VECTOR_ELT: { 843 SDValue Vec = Op.getOperand(0); 844 SDValue Scl = Op.getOperand(1); 845 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 846 EVT VecVT = Vec.getValueType(); 847 848 // If index isn't constant, assume we need all vector elements AND the 849 // inserted element. 850 APInt DemandedVecElts(DemandedElts); 851 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 852 unsigned Idx = CIdx->getZExtValue(); 853 DemandedVecElts.clearBit(Idx); 854 855 // Inserted element is not required. 856 if (!DemandedElts[Idx]) 857 return TLO.CombineTo(Op, Vec); 858 } 859 860 KnownBits KnownScl; 861 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 862 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 863 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 864 return true; 865 866 Known = KnownScl.zextOrTrunc(BitWidth, false); 867 868 KnownBits KnownVec; 869 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 870 Depth + 1)) 871 return true; 872 873 if (!!DemandedVecElts) { 874 Known.One &= KnownVec.One; 875 Known.Zero &= KnownVec.Zero; 876 } 877 878 return false; 879 } 880 case ISD::INSERT_SUBVECTOR: { 881 SDValue Base = Op.getOperand(0); 882 SDValue Sub = Op.getOperand(1); 883 EVT SubVT = Sub.getValueType(); 884 unsigned NumSubElts = SubVT.getVectorNumElements(); 885 886 // If index isn't constant, assume we need the original demanded base 887 // elements and ALL the inserted subvector elements. 888 APInt BaseElts = DemandedElts; 889 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 890 if (isa<ConstantSDNode>(Op.getOperand(2))) { 891 const APInt &Idx = Op.getConstantOperandAPInt(2); 892 if (Idx.ule(NumElts - NumSubElts)) { 893 unsigned SubIdx = Idx.getZExtValue(); 894 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 895 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 896 } 897 } 898 899 KnownBits KnownSub, KnownBase; 900 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 901 Depth + 1)) 902 return true; 903 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 904 Depth + 1)) 905 return true; 906 907 Known.Zero.setAllBits(); 908 Known.One.setAllBits(); 909 if (!!SubElts) { 910 Known.One &= KnownSub.One; 911 Known.Zero &= KnownSub.Zero; 912 } 913 if (!!BaseElts) { 914 Known.One &= KnownBase.One; 915 Known.Zero &= KnownBase.Zero; 916 } 917 break; 918 } 919 case ISD::EXTRACT_SUBVECTOR: { 920 // If index isn't constant, assume we need all the source vector elements. 921 SDValue Src = Op.getOperand(0); 922 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 923 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 924 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts); 925 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 926 // Offset the demanded elts by the subvector index. 927 uint64_t Idx = SubIdx->getZExtValue(); 928 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 929 } 930 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1)) 931 return true; 932 break; 933 } 934 case ISD::CONCAT_VECTORS: { 935 Known.Zero.setAllBits(); 936 Known.One.setAllBits(); 937 EVT SubVT = Op.getOperand(0).getValueType(); 938 unsigned NumSubVecs = Op.getNumOperands(); 939 unsigned NumSubElts = SubVT.getVectorNumElements(); 940 for (unsigned i = 0; i != NumSubVecs; ++i) { 941 APInt DemandedSubElts = 942 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 943 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 944 Known2, TLO, Depth + 1)) 945 return true; 946 // Known bits are shared by every demanded subvector element. 947 if (!!DemandedSubElts) { 948 Known.One &= Known2.One; 949 Known.Zero &= Known2.Zero; 950 } 951 } 952 break; 953 } 954 case ISD::VECTOR_SHUFFLE: { 955 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 956 957 // Collect demanded elements from shuffle operands.. 958 APInt DemandedLHS(NumElts, 0); 959 APInt DemandedRHS(NumElts, 0); 960 for (unsigned i = 0; i != NumElts; ++i) { 961 if (!DemandedElts[i]) 962 continue; 963 int M = ShuffleMask[i]; 964 if (M < 0) { 965 // For UNDEF elements, we don't know anything about the common state of 966 // the shuffle result. 967 DemandedLHS.clearAllBits(); 968 DemandedRHS.clearAllBits(); 969 break; 970 } 971 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 972 if (M < (int)NumElts) 973 DemandedLHS.setBit(M); 974 else 975 DemandedRHS.setBit(M - NumElts); 976 } 977 978 if (!!DemandedLHS || !!DemandedRHS) { 979 SDValue Op0 = Op.getOperand(0); 980 SDValue Op1 = Op.getOperand(1); 981 982 Known.Zero.setAllBits(); 983 Known.One.setAllBits(); 984 if (!!DemandedLHS) { 985 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 986 Depth + 1)) 987 return true; 988 Known.One &= Known2.One; 989 Known.Zero &= Known2.Zero; 990 } 991 if (!!DemandedRHS) { 992 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 993 Depth + 1)) 994 return true; 995 Known.One &= Known2.One; 996 Known.Zero &= Known2.Zero; 997 } 998 999 // Attempt to avoid multi-use ops if we don't need anything from them. 1000 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1001 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1002 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1003 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1004 if (DemandedOp0 || DemandedOp1) { 1005 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1006 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1007 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1008 return TLO.CombineTo(Op, NewOp); 1009 } 1010 } 1011 break; 1012 } 1013 case ISD::AND: { 1014 SDValue Op0 = Op.getOperand(0); 1015 SDValue Op1 = Op.getOperand(1); 1016 1017 // If the RHS is a constant, check to see if the LHS would be zero without 1018 // using the bits from the RHS. Below, we use knowledge about the RHS to 1019 // simplify the LHS, here we're using information from the LHS to simplify 1020 // the RHS. 1021 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1022 // Do not increment Depth here; that can cause an infinite loop. 1023 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1024 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1025 if ((LHSKnown.Zero & DemandedBits) == 1026 (~RHSC->getAPIntValue() & DemandedBits)) 1027 return TLO.CombineTo(Op, Op0); 1028 1029 // If any of the set bits in the RHS are known zero on the LHS, shrink 1030 // the constant. 1031 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1032 return true; 1033 1034 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1035 // constant, but if this 'and' is only clearing bits that were just set by 1036 // the xor, then this 'and' can be eliminated by shrinking the mask of 1037 // the xor. For example, for a 32-bit X: 1038 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1039 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1040 LHSKnown.One == ~RHSC->getAPIntValue()) { 1041 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1042 return TLO.CombineTo(Op, Xor); 1043 } 1044 } 1045 1046 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1047 Depth + 1)) 1048 return true; 1049 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1050 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1051 Known2, TLO, Depth + 1)) 1052 return true; 1053 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1054 1055 // Attempt to avoid multi-use ops if we don't need anything from them. 1056 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1057 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1058 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1059 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1060 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1061 if (DemandedOp0 || DemandedOp1) { 1062 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1063 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1064 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1065 return TLO.CombineTo(Op, NewOp); 1066 } 1067 } 1068 1069 // If all of the demanded bits are known one on one side, return the other. 1070 // These bits cannot contribute to the result of the 'and'. 1071 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1072 return TLO.CombineTo(Op, Op0); 1073 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1074 return TLO.CombineTo(Op, Op1); 1075 // If all of the demanded bits in the inputs are known zeros, return zero. 1076 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1077 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1078 // If the RHS is a constant, see if we can simplify it. 1079 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1080 return true; 1081 // If the operation can be done in a smaller type, do so. 1082 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1083 return true; 1084 1085 // Output known-1 bits are only known if set in both the LHS & RHS. 1086 Known.One &= Known2.One; 1087 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1088 Known.Zero |= Known2.Zero; 1089 break; 1090 } 1091 case ISD::OR: { 1092 SDValue Op0 = Op.getOperand(0); 1093 SDValue Op1 = Op.getOperand(1); 1094 1095 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1096 Depth + 1)) 1097 return true; 1098 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1099 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1100 Known2, TLO, Depth + 1)) 1101 return true; 1102 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1103 1104 // Attempt to avoid multi-use ops if we don't need anything from them. 1105 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1106 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1107 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1108 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1109 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1110 if (DemandedOp0 || DemandedOp1) { 1111 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1112 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1113 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1114 return TLO.CombineTo(Op, NewOp); 1115 } 1116 } 1117 1118 // If all of the demanded bits are known zero on one side, return the other. 1119 // These bits cannot contribute to the result of the 'or'. 1120 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1121 return TLO.CombineTo(Op, Op0); 1122 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1123 return TLO.CombineTo(Op, Op1); 1124 // If the RHS is a constant, see if we can simplify it. 1125 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1126 return true; 1127 // If the operation can be done in a smaller type, do so. 1128 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1129 return true; 1130 1131 // Output known-0 bits are only known if clear in both the LHS & RHS. 1132 Known.Zero &= Known2.Zero; 1133 // Output known-1 are known to be set if set in either the LHS | RHS. 1134 Known.One |= Known2.One; 1135 break; 1136 } 1137 case ISD::XOR: { 1138 SDValue Op0 = Op.getOperand(0); 1139 SDValue Op1 = Op.getOperand(1); 1140 1141 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1142 Depth + 1)) 1143 return true; 1144 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1145 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1146 Depth + 1)) 1147 return true; 1148 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1149 1150 // Attempt to avoid multi-use ops if we don't need anything from them. 1151 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1152 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1153 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1154 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1155 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1156 if (DemandedOp0 || DemandedOp1) { 1157 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1158 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1159 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1160 return TLO.CombineTo(Op, NewOp); 1161 } 1162 } 1163 1164 // If all of the demanded bits are known zero on one side, return the other. 1165 // These bits cannot contribute to the result of the 'xor'. 1166 if (DemandedBits.isSubsetOf(Known.Zero)) 1167 return TLO.CombineTo(Op, Op0); 1168 if (DemandedBits.isSubsetOf(Known2.Zero)) 1169 return TLO.CombineTo(Op, Op1); 1170 // If the operation can be done in a smaller type, do so. 1171 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1172 return true; 1173 1174 // If all of the unknown bits are known to be zero on one side or the other 1175 // (but not both) turn this into an *inclusive* or. 1176 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1177 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1178 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1179 1180 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1181 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1182 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1183 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1184 1185 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1186 // If one side is a constant, and all of the known set bits on the other 1187 // side are also set in the constant, turn this into an AND, as we know 1188 // the bits will be cleared. 1189 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1190 // NB: it is okay if more bits are known than are requested 1191 if (C->getAPIntValue() == Known2.One) { 1192 SDValue ANDC = 1193 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1194 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1195 } 1196 1197 // If the RHS is a constant, see if we can change it. Don't alter a -1 1198 // constant because that's a 'not' op, and that is better for combining 1199 // and codegen. 1200 if (!C->isAllOnesValue()) { 1201 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1202 // We're flipping all demanded bits. Flip the undemanded bits too. 1203 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1204 return TLO.CombineTo(Op, New); 1205 } 1206 // If we can't turn this into a 'not', try to shrink the constant. 1207 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1208 return true; 1209 } 1210 } 1211 1212 Known = std::move(KnownOut); 1213 break; 1214 } 1215 case ISD::SELECT: 1216 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1217 Depth + 1)) 1218 return true; 1219 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1220 Depth + 1)) 1221 return true; 1222 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1223 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1224 1225 // If the operands are constants, see if we can simplify them. 1226 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1227 return true; 1228 1229 // Only known if known in both the LHS and RHS. 1230 Known.One &= Known2.One; 1231 Known.Zero &= Known2.Zero; 1232 break; 1233 case ISD::SELECT_CC: 1234 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1235 Depth + 1)) 1236 return true; 1237 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1238 Depth + 1)) 1239 return true; 1240 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1241 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1242 1243 // If the operands are constants, see if we can simplify them. 1244 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1245 return true; 1246 1247 // Only known if known in both the LHS and RHS. 1248 Known.One &= Known2.One; 1249 Known.Zero &= Known2.Zero; 1250 break; 1251 case ISD::SETCC: { 1252 SDValue Op0 = Op.getOperand(0); 1253 SDValue Op1 = Op.getOperand(1); 1254 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1255 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1256 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1257 // -1, we may be able to bypass the setcc. 1258 if (DemandedBits.isSignMask() && 1259 Op0.getScalarValueSizeInBits() == BitWidth && 1260 getBooleanContents(VT) == 1261 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1262 // If we're testing X < 0, then this compare isn't needed - just use X! 1263 // FIXME: We're limiting to integer types here, but this should also work 1264 // if we don't care about FP signed-zero. The use of SETLT with FP means 1265 // that we don't care about NaNs. 1266 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1267 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1268 return TLO.CombineTo(Op, Op0); 1269 1270 // TODO: Should we check for other forms of sign-bit comparisons? 1271 // Examples: X <= -1, X >= 0 1272 } 1273 if (getBooleanContents(Op0.getValueType()) == 1274 TargetLowering::ZeroOrOneBooleanContent && 1275 BitWidth > 1) 1276 Known.Zero.setBitsFrom(1); 1277 break; 1278 } 1279 case ISD::SHL: { 1280 SDValue Op0 = Op.getOperand(0); 1281 SDValue Op1 = Op.getOperand(1); 1282 1283 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1284 // If the shift count is an invalid immediate, don't do anything. 1285 if (SA->getAPIntValue().uge(BitWidth)) 1286 break; 1287 1288 unsigned ShAmt = SA->getZExtValue(); 1289 if (ShAmt == 0) 1290 return TLO.CombineTo(Op, Op0); 1291 1292 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1293 // single shift. We can do this if the bottom bits (which are shifted 1294 // out) are never demanded. 1295 // TODO - support non-uniform vector amounts. 1296 if (Op0.getOpcode() == ISD::SRL) { 1297 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1298 if (ConstantSDNode *SA2 = 1299 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1300 if (SA2->getAPIntValue().ult(BitWidth)) { 1301 unsigned C1 = SA2->getZExtValue(); 1302 unsigned Opc = ISD::SHL; 1303 int Diff = ShAmt - C1; 1304 if (Diff < 0) { 1305 Diff = -Diff; 1306 Opc = ISD::SRL; 1307 } 1308 1309 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 1310 return TLO.CombineTo( 1311 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1312 } 1313 } 1314 } 1315 } 1316 1317 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, 1318 Known, TLO, Depth + 1)) 1319 return true; 1320 1321 // Try shrinking the operation as long as the shift amount will still be 1322 // in range. 1323 if ((ShAmt < DemandedBits.getActiveBits()) && 1324 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1325 return true; 1326 1327 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1328 // are not demanded. This will likely allow the anyext to be folded away. 1329 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1330 SDValue InnerOp = Op0.getOperand(0); 1331 EVT InnerVT = InnerOp.getValueType(); 1332 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1333 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1334 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1335 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1336 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1337 ShTy = InnerVT; 1338 SDValue NarrowShl = 1339 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1340 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1341 return TLO.CombineTo( 1342 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1343 } 1344 // Repeat the SHL optimization above in cases where an extension 1345 // intervenes: (shl (anyext (shr x, c1)), c2) to 1346 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1347 // aren't demanded (as above) and that the shifted upper c1 bits of 1348 // x aren't demanded. 1349 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1350 InnerOp.hasOneUse()) { 1351 if (ConstantSDNode *SA2 = 1352 isConstOrConstSplat(InnerOp.getOperand(1))) { 1353 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1354 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1355 DemandedBits.getActiveBits() <= 1356 (InnerBits - InnerShAmt + ShAmt) && 1357 DemandedBits.countTrailingZeros() >= ShAmt) { 1358 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 1359 Op1.getValueType()); 1360 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1361 InnerOp.getOperand(0)); 1362 return TLO.CombineTo( 1363 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1364 } 1365 } 1366 } 1367 } 1368 1369 Known.Zero <<= ShAmt; 1370 Known.One <<= ShAmt; 1371 // low bits known zero. 1372 Known.Zero.setLowBits(ShAmt); 1373 } 1374 break; 1375 } 1376 case ISD::SRL: { 1377 SDValue Op0 = Op.getOperand(0); 1378 SDValue Op1 = Op.getOperand(1); 1379 1380 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1381 // If the shift count is an invalid immediate, don't do anything. 1382 if (SA->getAPIntValue().uge(BitWidth)) 1383 break; 1384 1385 unsigned ShAmt = SA->getZExtValue(); 1386 if (ShAmt == 0) 1387 return TLO.CombineTo(Op, Op0); 1388 1389 EVT ShiftVT = Op1.getValueType(); 1390 APInt InDemandedMask = (DemandedBits << ShAmt); 1391 1392 // If the shift is exact, then it does demand the low bits (and knows that 1393 // they are zero). 1394 if (Op->getFlags().hasExact()) 1395 InDemandedMask.setLowBits(ShAmt); 1396 1397 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1398 // single shift. We can do this if the top bits (which are shifted out) 1399 // are never demanded. 1400 // TODO - support non-uniform vector amounts. 1401 if (Op0.getOpcode() == ISD::SHL) { 1402 if (ConstantSDNode *SA2 = 1403 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1404 if (!DemandedBits.intersects( 1405 APInt::getHighBitsSet(BitWidth, ShAmt))) { 1406 if (SA2->getAPIntValue().ult(BitWidth)) { 1407 unsigned C1 = SA2->getZExtValue(); 1408 unsigned Opc = ISD::SRL; 1409 int Diff = ShAmt - C1; 1410 if (Diff < 0) { 1411 Diff = -Diff; 1412 Opc = ISD::SHL; 1413 } 1414 1415 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1416 return TLO.CombineTo( 1417 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1418 } 1419 } 1420 } 1421 } 1422 1423 // Compute the new bits that are at the top now. 1424 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1425 Depth + 1)) 1426 return true; 1427 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1428 Known.Zero.lshrInPlace(ShAmt); 1429 Known.One.lshrInPlace(ShAmt); 1430 1431 Known.Zero.setHighBits(ShAmt); // High bits known zero. 1432 } 1433 break; 1434 } 1435 case ISD::SRA: { 1436 SDValue Op0 = Op.getOperand(0); 1437 SDValue Op1 = Op.getOperand(1); 1438 1439 // If this is an arithmetic shift right and only the low-bit is set, we can 1440 // always convert this into a logical shr, even if the shift amount is 1441 // variable. The low bit of the shift cannot be an input sign bit unless 1442 // the shift amount is >= the size of the datatype, which is undefined. 1443 if (DemandedBits.isOneValue()) 1444 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1445 1446 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1447 // If the shift count is an invalid immediate, don't do anything. 1448 if (SA->getAPIntValue().uge(BitWidth)) 1449 break; 1450 1451 unsigned ShAmt = SA->getZExtValue(); 1452 if (ShAmt == 0) 1453 return TLO.CombineTo(Op, Op0); 1454 1455 APInt InDemandedMask = (DemandedBits << ShAmt); 1456 1457 // If the shift is exact, then it does demand the low bits (and knows that 1458 // they are zero). 1459 if (Op->getFlags().hasExact()) 1460 InDemandedMask.setLowBits(ShAmt); 1461 1462 // If any of the demanded bits are produced by the sign extension, we also 1463 // demand the input sign bit. 1464 if (DemandedBits.countLeadingZeros() < ShAmt) 1465 InDemandedMask.setSignBit(); 1466 1467 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1468 Depth + 1)) 1469 return true; 1470 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1471 Known.Zero.lshrInPlace(ShAmt); 1472 Known.One.lshrInPlace(ShAmt); 1473 1474 // If the input sign bit is known to be zero, or if none of the top bits 1475 // are demanded, turn this into an unsigned shift right. 1476 if (Known.Zero[BitWidth - ShAmt - 1] || 1477 DemandedBits.countLeadingZeros() >= ShAmt) { 1478 SDNodeFlags Flags; 1479 Flags.setExact(Op->getFlags().hasExact()); 1480 return TLO.CombineTo( 1481 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1482 } 1483 1484 int Log2 = DemandedBits.exactLogBase2(); 1485 if (Log2 >= 0) { 1486 // The bit must come from the sign. 1487 SDValue NewSA = 1488 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1489 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1490 } 1491 1492 if (Known.One[BitWidth - ShAmt - 1]) 1493 // New bits are known one. 1494 Known.One.setHighBits(ShAmt); 1495 } 1496 break; 1497 } 1498 case ISD::FSHL: 1499 case ISD::FSHR: { 1500 SDValue Op0 = Op.getOperand(0); 1501 SDValue Op1 = Op.getOperand(1); 1502 SDValue Op2 = Op.getOperand(2); 1503 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1504 1505 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1506 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1507 1508 // For fshl, 0-shift returns the 1st arg. 1509 // For fshr, 0-shift returns the 2nd arg. 1510 if (Amt == 0) { 1511 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1512 Known, TLO, Depth + 1)) 1513 return true; 1514 break; 1515 } 1516 1517 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1518 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1519 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1520 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1521 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1522 Depth + 1)) 1523 return true; 1524 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1525 Depth + 1)) 1526 return true; 1527 1528 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1529 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1530 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1531 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1532 Known.One |= Known2.One; 1533 Known.Zero |= Known2.Zero; 1534 } 1535 break; 1536 } 1537 case ISD::BITREVERSE: { 1538 SDValue Src = Op.getOperand(0); 1539 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1540 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1541 Depth + 1)) 1542 return true; 1543 Known.One = Known2.One.reverseBits(); 1544 Known.Zero = Known2.Zero.reverseBits(); 1545 break; 1546 } 1547 case ISD::BSWAP: { 1548 SDValue Src = Op.getOperand(0); 1549 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1550 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1551 Depth + 1)) 1552 return true; 1553 Known.One = Known2.One.byteSwap(); 1554 Known.Zero = Known2.Zero.byteSwap(); 1555 break; 1556 } 1557 case ISD::SIGN_EXTEND_INREG: { 1558 SDValue Op0 = Op.getOperand(0); 1559 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1560 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1561 1562 // If we only care about the highest bit, don't bother shifting right. 1563 if (DemandedBits.isSignMask()) { 1564 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0); 1565 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1566 // However if the input is already sign extended we expect the sign 1567 // extension to be dropped altogether later and do not simplify. 1568 if (!AlreadySignExtended) { 1569 // Compute the correct shift amount type, which must be getShiftAmountTy 1570 // for scalar types after legalization. 1571 EVT ShiftAmtTy = VT; 1572 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1573 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1574 1575 SDValue ShiftAmt = 1576 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1577 return TLO.CombineTo(Op, 1578 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1579 } 1580 } 1581 1582 // If none of the extended bits are demanded, eliminate the sextinreg. 1583 if (DemandedBits.getActiveBits() <= ExVTBits) 1584 return TLO.CombineTo(Op, Op0); 1585 1586 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1587 1588 // Since the sign extended bits are demanded, we know that the sign 1589 // bit is demanded. 1590 InputDemandedBits.setBit(ExVTBits - 1); 1591 1592 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1593 return true; 1594 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1595 1596 // If the sign bit of the input is known set or clear, then we know the 1597 // top bits of the result. 1598 1599 // If the input sign bit is known zero, convert this into a zero extension. 1600 if (Known.Zero[ExVTBits - 1]) 1601 return TLO.CombineTo( 1602 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1603 1604 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1605 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1606 Known.One.setBitsFrom(ExVTBits); 1607 Known.Zero &= Mask; 1608 } else { // Input sign bit unknown 1609 Known.Zero &= Mask; 1610 Known.One &= Mask; 1611 } 1612 break; 1613 } 1614 case ISD::BUILD_PAIR: { 1615 EVT HalfVT = Op.getOperand(0).getValueType(); 1616 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1617 1618 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1619 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1620 1621 KnownBits KnownLo, KnownHi; 1622 1623 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1624 return true; 1625 1626 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1627 return true; 1628 1629 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1630 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1631 1632 Known.One = KnownLo.One.zext(BitWidth) | 1633 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1634 break; 1635 } 1636 case ISD::ZERO_EXTEND: 1637 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1638 SDValue Src = Op.getOperand(0); 1639 EVT SrcVT = Src.getValueType(); 1640 unsigned InBits = SrcVT.getScalarSizeInBits(); 1641 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1642 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1643 1644 // If none of the top bits are demanded, convert this into an any_extend. 1645 if (DemandedBits.getActiveBits() <= InBits) { 1646 // If we only need the non-extended bits of the bottom element 1647 // then we can just bitcast to the result. 1648 if (IsVecInReg && DemandedElts == 1 && 1649 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1650 TLO.DAG.getDataLayout().isLittleEndian()) 1651 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1652 1653 unsigned Opc = 1654 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1655 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1656 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1657 } 1658 1659 APInt InDemandedBits = DemandedBits.trunc(InBits); 1660 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1661 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1662 Depth + 1)) 1663 return true; 1664 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1665 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1666 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 1667 break; 1668 } 1669 case ISD::SIGN_EXTEND: 1670 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1671 SDValue Src = Op.getOperand(0); 1672 EVT SrcVT = Src.getValueType(); 1673 unsigned InBits = SrcVT.getScalarSizeInBits(); 1674 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1675 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1676 1677 // If none of the top bits are demanded, convert this into an any_extend. 1678 if (DemandedBits.getActiveBits() <= InBits) { 1679 // If we only need the non-extended bits of the bottom element 1680 // then we can just bitcast to the result. 1681 if (IsVecInReg && DemandedElts == 1 && 1682 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1683 TLO.DAG.getDataLayout().isLittleEndian()) 1684 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1685 1686 unsigned Opc = 1687 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1688 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1689 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1690 } 1691 1692 APInt InDemandedBits = DemandedBits.trunc(InBits); 1693 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1694 1695 // Since some of the sign extended bits are demanded, we know that the sign 1696 // bit is demanded. 1697 InDemandedBits.setBit(InBits - 1); 1698 1699 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1700 Depth + 1)) 1701 return true; 1702 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1703 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1704 1705 // If the sign bit is known one, the top bits match. 1706 Known = Known.sext(BitWidth); 1707 1708 // If the sign bit is known zero, convert this to a zero extend. 1709 if (Known.isNonNegative()) { 1710 unsigned Opc = 1711 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1712 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1713 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1714 } 1715 break; 1716 } 1717 case ISD::ANY_EXTEND: 1718 case ISD::ANY_EXTEND_VECTOR_INREG: { 1719 SDValue Src = Op.getOperand(0); 1720 EVT SrcVT = Src.getValueType(); 1721 unsigned InBits = SrcVT.getScalarSizeInBits(); 1722 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1723 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1724 1725 // If we only need the bottom element then we can just bitcast. 1726 // TODO: Handle ANY_EXTEND? 1727 if (IsVecInReg && DemandedElts == 1 && 1728 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1729 TLO.DAG.getDataLayout().isLittleEndian()) 1730 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1731 1732 APInt InDemandedBits = DemandedBits.trunc(InBits); 1733 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1734 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1735 Depth + 1)) 1736 return true; 1737 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1738 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1739 Known = Known.zext(BitWidth, false /* => any extend */); 1740 break; 1741 } 1742 case ISD::TRUNCATE: { 1743 SDValue Src = Op.getOperand(0); 1744 1745 // Simplify the input, using demanded bit information, and compute the known 1746 // zero/one bits live out. 1747 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1748 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1749 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1750 return true; 1751 Known = Known.trunc(BitWidth); 1752 1753 // Attempt to avoid multi-use ops if we don't need anything from them. 1754 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1755 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1756 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1757 1758 // If the input is only used by this truncate, see if we can shrink it based 1759 // on the known demanded bits. 1760 if (Src.getNode()->hasOneUse()) { 1761 switch (Src.getOpcode()) { 1762 default: 1763 break; 1764 case ISD::SRL: 1765 // Shrink SRL by a constant if none of the high bits shifted in are 1766 // demanded. 1767 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1768 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1769 // undesirable. 1770 break; 1771 1772 SDValue ShAmt = Src.getOperand(1); 1773 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1774 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1775 break; 1776 uint64_t ShVal = ShAmtC->getZExtValue(); 1777 1778 APInt HighBits = 1779 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1780 HighBits.lshrInPlace(ShVal); 1781 HighBits = HighBits.trunc(BitWidth); 1782 1783 if (!(HighBits & DemandedBits)) { 1784 // None of the shifted in bits are needed. Add a truncate of the 1785 // shift input, then shift it. 1786 if (TLO.LegalTypes()) 1787 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1788 SDValue NewTrunc = 1789 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1790 return TLO.CombineTo( 1791 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 1792 } 1793 break; 1794 } 1795 } 1796 1797 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1798 break; 1799 } 1800 case ISD::AssertZext: { 1801 // AssertZext demands all of the high bits, plus any of the low bits 1802 // demanded by its users. 1803 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1804 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1805 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1806 TLO, Depth + 1)) 1807 return true; 1808 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1809 1810 Known.Zero |= ~InMask; 1811 break; 1812 } 1813 case ISD::EXTRACT_VECTOR_ELT: { 1814 SDValue Src = Op.getOperand(0); 1815 SDValue Idx = Op.getOperand(1); 1816 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1817 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1818 1819 // Demand the bits from every vector element without a constant index. 1820 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1821 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1822 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1823 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1824 1825 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1826 // anything about the extended bits. 1827 APInt DemandedSrcBits = DemandedBits; 1828 if (BitWidth > EltBitWidth) 1829 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1830 1831 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1832 Depth + 1)) 1833 return true; 1834 1835 Known = Known2; 1836 if (BitWidth > EltBitWidth) 1837 Known = Known.zext(BitWidth, false /* => any extend */); 1838 break; 1839 } 1840 case ISD::BITCAST: { 1841 SDValue Src = Op.getOperand(0); 1842 EVT SrcVT = Src.getValueType(); 1843 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1844 1845 // If this is an FP->Int bitcast and if the sign bit is the only 1846 // thing demanded, turn this into a FGETSIGN. 1847 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1848 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1849 SrcVT.isFloatingPoint()) { 1850 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1851 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1852 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1853 SrcVT != MVT::f128) { 1854 // Cannot eliminate/lower SHL for f128 yet. 1855 EVT Ty = OpVTLegal ? VT : MVT::i32; 1856 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1857 // place. We expect the SHL to be eliminated by other optimizations. 1858 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1859 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1860 if (!OpVTLegal && OpVTSizeInBits > 32) 1861 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1862 unsigned ShVal = Op.getValueSizeInBits() - 1; 1863 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1864 return TLO.CombineTo(Op, 1865 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1866 } 1867 } 1868 1869 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1870 // Demand the elt/bit if any of the original elts/bits are demanded. 1871 // TODO - bigendian once we have test coverage. 1872 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 1873 TLO.DAG.getDataLayout().isLittleEndian()) { 1874 unsigned Scale = BitWidth / NumSrcEltBits; 1875 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1876 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1877 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1878 for (unsigned i = 0; i != Scale; ++i) { 1879 unsigned Offset = i * NumSrcEltBits; 1880 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1881 if (!Sub.isNullValue()) { 1882 DemandedSrcBits |= Sub; 1883 for (unsigned j = 0; j != NumElts; ++j) 1884 if (DemandedElts[j]) 1885 DemandedSrcElts.setBit((j * Scale) + i); 1886 } 1887 } 1888 1889 APInt KnownSrcUndef, KnownSrcZero; 1890 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1891 KnownSrcZero, TLO, Depth + 1)) 1892 return true; 1893 1894 KnownBits KnownSrcBits; 1895 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1896 KnownSrcBits, TLO, Depth + 1)) 1897 return true; 1898 } else if ((NumSrcEltBits % BitWidth) == 0 && 1899 TLO.DAG.getDataLayout().isLittleEndian()) { 1900 unsigned Scale = NumSrcEltBits / BitWidth; 1901 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1902 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1903 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1904 for (unsigned i = 0; i != NumElts; ++i) 1905 if (DemandedElts[i]) { 1906 unsigned Offset = (i % Scale) * BitWidth; 1907 DemandedSrcBits.insertBits(DemandedBits, Offset); 1908 DemandedSrcElts.setBit(i / Scale); 1909 } 1910 1911 if (SrcVT.isVector()) { 1912 APInt KnownSrcUndef, KnownSrcZero; 1913 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1914 KnownSrcZero, TLO, Depth + 1)) 1915 return true; 1916 } 1917 1918 KnownBits KnownSrcBits; 1919 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1920 KnownSrcBits, TLO, Depth + 1)) 1921 return true; 1922 } 1923 1924 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1925 // recursive call where Known may be useful to the caller. 1926 if (Depth > 0) { 1927 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1928 return false; 1929 } 1930 break; 1931 } 1932 case ISD::ADD: 1933 case ISD::MUL: 1934 case ISD::SUB: { 1935 // Add, Sub, and Mul don't demand any bits in positions beyond that 1936 // of the highest bit demanded of them. 1937 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1938 SDNodeFlags Flags = Op.getNode()->getFlags(); 1939 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1940 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1941 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 1942 Depth + 1) || 1943 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 1944 Depth + 1) || 1945 // See if the operation should be performed at a smaller bit width. 1946 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1947 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1948 // Disable the nsw and nuw flags. We can no longer guarantee that we 1949 // won't wrap after simplification. 1950 Flags.setNoSignedWrap(false); 1951 Flags.setNoUnsignedWrap(false); 1952 SDValue NewOp = 1953 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1954 return TLO.CombineTo(Op, NewOp); 1955 } 1956 return true; 1957 } 1958 1959 // Attempt to avoid multi-use ops if we don't need anything from them. 1960 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1961 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1962 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 1963 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1964 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 1965 if (DemandedOp0 || DemandedOp1) { 1966 Flags.setNoSignedWrap(false); 1967 Flags.setNoUnsignedWrap(false); 1968 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1969 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1970 SDValue NewOp = 1971 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1972 return TLO.CombineTo(Op, NewOp); 1973 } 1974 } 1975 1976 // If we have a constant operand, we may be able to turn it into -1 if we 1977 // do not demand the high bits. This can make the constant smaller to 1978 // encode, allow more general folding, or match specialized instruction 1979 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1980 // is probably not useful (and could be detrimental). 1981 ConstantSDNode *C = isConstOrConstSplat(Op1); 1982 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 1983 if (C && !C->isAllOnesValue() && !C->isOne() && 1984 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1985 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1986 // Disable the nsw and nuw flags. We can no longer guarantee that we 1987 // won't wrap after simplification. 1988 Flags.setNoSignedWrap(false); 1989 Flags.setNoUnsignedWrap(false); 1990 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1991 return TLO.CombineTo(Op, NewOp); 1992 } 1993 1994 LLVM_FALLTHROUGH; 1995 } 1996 default: 1997 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1998 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 1999 Known, TLO, Depth)) 2000 return true; 2001 break; 2002 } 2003 2004 // Just use computeKnownBits to compute output bits. 2005 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2006 break; 2007 } 2008 2009 // If we know the value of all of the demanded bits, return this as a 2010 // constant. 2011 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2012 // Avoid folding to a constant if any OpaqueConstant is involved. 2013 const SDNode *N = Op.getNode(); 2014 for (SDNodeIterator I = SDNodeIterator::begin(N), 2015 E = SDNodeIterator::end(N); 2016 I != E; ++I) { 2017 SDNode *Op = *I; 2018 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2019 if (C->isOpaque()) 2020 return false; 2021 } 2022 // TODO: Handle float bits as well. 2023 if (VT.isInteger()) 2024 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2025 } 2026 2027 return false; 2028 } 2029 2030 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2031 const APInt &DemandedElts, 2032 APInt &KnownUndef, 2033 APInt &KnownZero, 2034 DAGCombinerInfo &DCI) const { 2035 SelectionDAG &DAG = DCI.DAG; 2036 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2037 !DCI.isBeforeLegalizeOps()); 2038 2039 bool Simplified = 2040 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2041 if (Simplified) { 2042 DCI.AddToWorklist(Op.getNode()); 2043 DCI.CommitTargetLoweringOpt(TLO); 2044 } 2045 2046 return Simplified; 2047 } 2048 2049 /// Given a vector binary operation and known undefined elements for each input 2050 /// operand, compute whether each element of the output is undefined. 2051 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2052 const APInt &UndefOp0, 2053 const APInt &UndefOp1) { 2054 EVT VT = BO.getValueType(); 2055 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2056 "Vector binop only"); 2057 2058 EVT EltVT = VT.getVectorElementType(); 2059 unsigned NumElts = VT.getVectorNumElements(); 2060 assert(UndefOp0.getBitWidth() == NumElts && 2061 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2062 2063 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2064 const APInt &UndefVals) { 2065 if (UndefVals[Index]) 2066 return DAG.getUNDEF(EltVT); 2067 2068 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2069 // Try hard to make sure that the getNode() call is not creating temporary 2070 // nodes. Ignore opaque integers because they do not constant fold. 2071 SDValue Elt = BV->getOperand(Index); 2072 auto *C = dyn_cast<ConstantSDNode>(Elt); 2073 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2074 return Elt; 2075 } 2076 2077 return SDValue(); 2078 }; 2079 2080 APInt KnownUndef = APInt::getNullValue(NumElts); 2081 for (unsigned i = 0; i != NumElts; ++i) { 2082 // If both inputs for this element are either constant or undef and match 2083 // the element type, compute the constant/undef result for this element of 2084 // the vector. 2085 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2086 // not handle FP constants. The code within getNode() should be refactored 2087 // to avoid the danger of creating a bogus temporary node here. 2088 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2089 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2090 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2091 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2092 KnownUndef.setBit(i); 2093 } 2094 return KnownUndef; 2095 } 2096 2097 bool TargetLowering::SimplifyDemandedVectorElts( 2098 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2099 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2100 bool AssumeSingleUse) const { 2101 EVT VT = Op.getValueType(); 2102 APInt DemandedElts = OriginalDemandedElts; 2103 unsigned NumElts = DemandedElts.getBitWidth(); 2104 assert(VT.isVector() && "Expected vector op"); 2105 assert(VT.getVectorNumElements() == NumElts && 2106 "Mask size mismatches value type element count!"); 2107 2108 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2109 2110 // Undef operand. 2111 if (Op.isUndef()) { 2112 KnownUndef.setAllBits(); 2113 return false; 2114 } 2115 2116 // If Op has other users, assume that all elements are needed. 2117 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2118 DemandedElts.setAllBits(); 2119 2120 // Not demanding any elements from Op. 2121 if (DemandedElts == 0) { 2122 KnownUndef.setAllBits(); 2123 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2124 } 2125 2126 // Limit search depth. 2127 if (Depth >= SelectionDAG::MaxRecursionDepth) 2128 return false; 2129 2130 SDLoc DL(Op); 2131 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2132 2133 switch (Op.getOpcode()) { 2134 case ISD::SCALAR_TO_VECTOR: { 2135 if (!DemandedElts[0]) { 2136 KnownUndef.setAllBits(); 2137 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2138 } 2139 KnownUndef.setHighBits(NumElts - 1); 2140 break; 2141 } 2142 case ISD::BITCAST: { 2143 SDValue Src = Op.getOperand(0); 2144 EVT SrcVT = Src.getValueType(); 2145 2146 // We only handle vectors here. 2147 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2148 if (!SrcVT.isVector()) 2149 break; 2150 2151 // Fast handling of 'identity' bitcasts. 2152 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2153 if (NumSrcElts == NumElts) 2154 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2155 KnownZero, TLO, Depth + 1); 2156 2157 APInt SrcZero, SrcUndef; 2158 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2159 2160 // Bitcast from 'large element' src vector to 'small element' vector, we 2161 // must demand a source element if any DemandedElt maps to it. 2162 if ((NumElts % NumSrcElts) == 0) { 2163 unsigned Scale = NumElts / NumSrcElts; 2164 for (unsigned i = 0; i != NumElts; ++i) 2165 if (DemandedElts[i]) 2166 SrcDemandedElts.setBit(i / Scale); 2167 2168 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2169 TLO, Depth + 1)) 2170 return true; 2171 2172 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2173 // of the large element. 2174 // TODO - bigendian once we have test coverage. 2175 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2176 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2177 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2178 for (unsigned i = 0; i != NumElts; ++i) 2179 if (DemandedElts[i]) { 2180 unsigned Ofs = (i % Scale) * EltSizeInBits; 2181 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2182 } 2183 2184 KnownBits Known; 2185 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 2186 return true; 2187 } 2188 2189 // If the src element is zero/undef then all the output elements will be - 2190 // only demanded elements are guaranteed to be correct. 2191 for (unsigned i = 0; i != NumSrcElts; ++i) { 2192 if (SrcDemandedElts[i]) { 2193 if (SrcZero[i]) 2194 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2195 if (SrcUndef[i]) 2196 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2197 } 2198 } 2199 } 2200 2201 // Bitcast from 'small element' src vector to 'large element' vector, we 2202 // demand all smaller source elements covered by the larger demanded element 2203 // of this vector. 2204 if ((NumSrcElts % NumElts) == 0) { 2205 unsigned Scale = NumSrcElts / NumElts; 2206 for (unsigned i = 0; i != NumElts; ++i) 2207 if (DemandedElts[i]) 2208 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2209 2210 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2211 TLO, Depth + 1)) 2212 return true; 2213 2214 // If all the src elements covering an output element are zero/undef, then 2215 // the output element will be as well, assuming it was demanded. 2216 for (unsigned i = 0; i != NumElts; ++i) { 2217 if (DemandedElts[i]) { 2218 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2219 KnownZero.setBit(i); 2220 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2221 KnownUndef.setBit(i); 2222 } 2223 } 2224 } 2225 break; 2226 } 2227 case ISD::BUILD_VECTOR: { 2228 // Check all elements and simplify any unused elements with UNDEF. 2229 if (!DemandedElts.isAllOnesValue()) { 2230 // Don't simplify BROADCASTS. 2231 if (llvm::any_of(Op->op_values(), 2232 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2233 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2234 bool Updated = false; 2235 for (unsigned i = 0; i != NumElts; ++i) { 2236 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2237 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2238 KnownUndef.setBit(i); 2239 Updated = true; 2240 } 2241 } 2242 if (Updated) 2243 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2244 } 2245 } 2246 for (unsigned i = 0; i != NumElts; ++i) { 2247 SDValue SrcOp = Op.getOperand(i); 2248 if (SrcOp.isUndef()) { 2249 KnownUndef.setBit(i); 2250 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2251 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2252 KnownZero.setBit(i); 2253 } 2254 } 2255 break; 2256 } 2257 case ISD::CONCAT_VECTORS: { 2258 EVT SubVT = Op.getOperand(0).getValueType(); 2259 unsigned NumSubVecs = Op.getNumOperands(); 2260 unsigned NumSubElts = SubVT.getVectorNumElements(); 2261 for (unsigned i = 0; i != NumSubVecs; ++i) { 2262 SDValue SubOp = Op.getOperand(i); 2263 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2264 APInt SubUndef, SubZero; 2265 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2266 Depth + 1)) 2267 return true; 2268 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2269 KnownZero.insertBits(SubZero, i * NumSubElts); 2270 } 2271 break; 2272 } 2273 case ISD::INSERT_SUBVECTOR: { 2274 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2275 break; 2276 SDValue Base = Op.getOperand(0); 2277 SDValue Sub = Op.getOperand(1); 2278 EVT SubVT = Sub.getValueType(); 2279 unsigned NumSubElts = SubVT.getVectorNumElements(); 2280 const APInt &Idx = Op.getConstantOperandAPInt(2); 2281 if (Idx.ugt(NumElts - NumSubElts)) 2282 break; 2283 unsigned SubIdx = Idx.getZExtValue(); 2284 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2285 APInt SubUndef, SubZero; 2286 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2287 Depth + 1)) 2288 return true; 2289 APInt BaseElts = DemandedElts; 2290 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2291 2292 // If none of the base operand elements are demanded, replace it with undef. 2293 if (!BaseElts && !Base.isUndef()) 2294 return TLO.CombineTo(Op, 2295 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2296 TLO.DAG.getUNDEF(VT), 2297 Op.getOperand(1), 2298 Op.getOperand(2))); 2299 2300 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2301 Depth + 1)) 2302 return true; 2303 KnownUndef.insertBits(SubUndef, SubIdx); 2304 KnownZero.insertBits(SubZero, SubIdx); 2305 break; 2306 } 2307 case ISD::EXTRACT_SUBVECTOR: { 2308 SDValue Src = Op.getOperand(0); 2309 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2310 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2311 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2312 // Offset the demanded elts by the subvector index. 2313 uint64_t Idx = SubIdx->getZExtValue(); 2314 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2315 APInt SrcUndef, SrcZero; 2316 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2317 Depth + 1)) 2318 return true; 2319 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2320 KnownZero = SrcZero.extractBits(NumElts, Idx); 2321 } 2322 break; 2323 } 2324 case ISD::INSERT_VECTOR_ELT: { 2325 SDValue Vec = Op.getOperand(0); 2326 SDValue Scl = Op.getOperand(1); 2327 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2328 2329 // For a legal, constant insertion index, if we don't need this insertion 2330 // then strip it, else remove it from the demanded elts. 2331 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2332 unsigned Idx = CIdx->getZExtValue(); 2333 if (!DemandedElts[Idx]) 2334 return TLO.CombineTo(Op, Vec); 2335 2336 APInt DemandedVecElts(DemandedElts); 2337 DemandedVecElts.clearBit(Idx); 2338 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2339 KnownZero, TLO, Depth + 1)) 2340 return true; 2341 2342 KnownUndef.clearBit(Idx); 2343 if (Scl.isUndef()) 2344 KnownUndef.setBit(Idx); 2345 2346 KnownZero.clearBit(Idx); 2347 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2348 KnownZero.setBit(Idx); 2349 break; 2350 } 2351 2352 APInt VecUndef, VecZero; 2353 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2354 Depth + 1)) 2355 return true; 2356 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2357 break; 2358 } 2359 case ISD::VSELECT: { 2360 // Try to transform the select condition based on the current demanded 2361 // elements. 2362 // TODO: If a condition element is undef, we can choose from one arm of the 2363 // select (and if one arm is undef, then we can propagate that to the 2364 // result). 2365 // TODO - add support for constant vselect masks (see IR version of this). 2366 APInt UnusedUndef, UnusedZero; 2367 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2368 UnusedZero, TLO, Depth + 1)) 2369 return true; 2370 2371 // See if we can simplify either vselect operand. 2372 APInt DemandedLHS(DemandedElts); 2373 APInt DemandedRHS(DemandedElts); 2374 APInt UndefLHS, ZeroLHS; 2375 APInt UndefRHS, ZeroRHS; 2376 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2377 ZeroLHS, TLO, Depth + 1)) 2378 return true; 2379 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2380 ZeroRHS, TLO, Depth + 1)) 2381 return true; 2382 2383 KnownUndef = UndefLHS & UndefRHS; 2384 KnownZero = ZeroLHS & ZeroRHS; 2385 break; 2386 } 2387 case ISD::VECTOR_SHUFFLE: { 2388 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2389 2390 // Collect demanded elements from shuffle operands.. 2391 APInt DemandedLHS(NumElts, 0); 2392 APInt DemandedRHS(NumElts, 0); 2393 for (unsigned i = 0; i != NumElts; ++i) { 2394 int M = ShuffleMask[i]; 2395 if (M < 0 || !DemandedElts[i]) 2396 continue; 2397 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2398 if (M < (int)NumElts) 2399 DemandedLHS.setBit(M); 2400 else 2401 DemandedRHS.setBit(M - NumElts); 2402 } 2403 2404 // See if we can simplify either shuffle operand. 2405 APInt UndefLHS, ZeroLHS; 2406 APInt UndefRHS, ZeroRHS; 2407 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2408 ZeroLHS, TLO, Depth + 1)) 2409 return true; 2410 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2411 ZeroRHS, TLO, Depth + 1)) 2412 return true; 2413 2414 // Simplify mask using undef elements from LHS/RHS. 2415 bool Updated = false; 2416 bool IdentityLHS = true, IdentityRHS = true; 2417 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2418 for (unsigned i = 0; i != NumElts; ++i) { 2419 int &M = NewMask[i]; 2420 if (M < 0) 2421 continue; 2422 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2423 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2424 Updated = true; 2425 M = -1; 2426 } 2427 IdentityLHS &= (M < 0) || (M == (int)i); 2428 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2429 } 2430 2431 // Update legal shuffle masks based on demanded elements if it won't reduce 2432 // to Identity which can cause premature removal of the shuffle mask. 2433 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2434 SDValue LegalShuffle = 2435 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2436 NewMask, TLO.DAG); 2437 if (LegalShuffle) 2438 return TLO.CombineTo(Op, LegalShuffle); 2439 } 2440 2441 // Propagate undef/zero elements from LHS/RHS. 2442 for (unsigned i = 0; i != NumElts; ++i) { 2443 int M = ShuffleMask[i]; 2444 if (M < 0) { 2445 KnownUndef.setBit(i); 2446 } else if (M < (int)NumElts) { 2447 if (UndefLHS[M]) 2448 KnownUndef.setBit(i); 2449 if (ZeroLHS[M]) 2450 KnownZero.setBit(i); 2451 } else { 2452 if (UndefRHS[M - NumElts]) 2453 KnownUndef.setBit(i); 2454 if (ZeroRHS[M - NumElts]) 2455 KnownZero.setBit(i); 2456 } 2457 } 2458 break; 2459 } 2460 case ISD::ANY_EXTEND_VECTOR_INREG: 2461 case ISD::SIGN_EXTEND_VECTOR_INREG: 2462 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2463 APInt SrcUndef, SrcZero; 2464 SDValue Src = Op.getOperand(0); 2465 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2466 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2467 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2468 Depth + 1)) 2469 return true; 2470 KnownZero = SrcZero.zextOrTrunc(NumElts); 2471 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2472 2473 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2474 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2475 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2476 // aext - if we just need the bottom element then we can bitcast. 2477 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2478 } 2479 2480 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2481 // zext(undef) upper bits are guaranteed to be zero. 2482 if (DemandedElts.isSubsetOf(KnownUndef)) 2483 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2484 KnownUndef.clearAllBits(); 2485 } 2486 break; 2487 } 2488 2489 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2490 // MAX, saturated math, etc. 2491 case ISD::OR: 2492 case ISD::XOR: 2493 case ISD::ADD: 2494 case ISD::SUB: 2495 case ISD::FADD: 2496 case ISD::FSUB: 2497 case ISD::FMUL: 2498 case ISD::FDIV: 2499 case ISD::FREM: { 2500 APInt UndefRHS, ZeroRHS; 2501 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2502 ZeroRHS, TLO, Depth + 1)) 2503 return true; 2504 APInt UndefLHS, ZeroLHS; 2505 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2506 ZeroLHS, TLO, Depth + 1)) 2507 return true; 2508 2509 KnownZero = ZeroLHS & ZeroRHS; 2510 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2511 break; 2512 } 2513 case ISD::SHL: 2514 case ISD::SRL: 2515 case ISD::SRA: 2516 case ISD::ROTL: 2517 case ISD::ROTR: { 2518 APInt UndefRHS, ZeroRHS; 2519 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2520 ZeroRHS, TLO, Depth + 1)) 2521 return true; 2522 APInt UndefLHS, ZeroLHS; 2523 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2524 ZeroLHS, TLO, Depth + 1)) 2525 return true; 2526 2527 KnownZero = ZeroLHS; 2528 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2529 break; 2530 } 2531 case ISD::MUL: 2532 case ISD::AND: { 2533 APInt SrcUndef, SrcZero; 2534 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2535 SrcZero, TLO, Depth + 1)) 2536 return true; 2537 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2538 KnownZero, TLO, Depth + 1)) 2539 return true; 2540 2541 // If either side has a zero element, then the result element is zero, even 2542 // if the other is an UNDEF. 2543 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2544 // and then handle 'and' nodes with the rest of the binop opcodes. 2545 KnownZero |= SrcZero; 2546 KnownUndef &= SrcUndef; 2547 KnownUndef &= ~KnownZero; 2548 break; 2549 } 2550 case ISD::TRUNCATE: 2551 case ISD::SIGN_EXTEND: 2552 case ISD::ZERO_EXTEND: 2553 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2554 KnownZero, TLO, Depth + 1)) 2555 return true; 2556 2557 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2558 // zext(undef) upper bits are guaranteed to be zero. 2559 if (DemandedElts.isSubsetOf(KnownUndef)) 2560 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2561 KnownUndef.clearAllBits(); 2562 } 2563 break; 2564 default: { 2565 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2566 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2567 KnownZero, TLO, Depth)) 2568 return true; 2569 } else { 2570 KnownBits Known; 2571 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2572 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2573 TLO, Depth, AssumeSingleUse)) 2574 return true; 2575 } 2576 break; 2577 } 2578 } 2579 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2580 2581 // Constant fold all undef cases. 2582 // TODO: Handle zero cases as well. 2583 if (DemandedElts.isSubsetOf(KnownUndef)) 2584 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2585 2586 return false; 2587 } 2588 2589 /// Determine which of the bits specified in Mask are known to be either zero or 2590 /// one and return them in the Known. 2591 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2592 KnownBits &Known, 2593 const APInt &DemandedElts, 2594 const SelectionDAG &DAG, 2595 unsigned Depth) const { 2596 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2597 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2598 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2599 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2600 "Should use MaskedValueIsZero if you don't know whether Op" 2601 " is a target node!"); 2602 Known.resetAll(); 2603 } 2604 2605 void TargetLowering::computeKnownBitsForTargetInstr( 2606 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2607 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2608 unsigned Depth) const { 2609 Known.resetAll(); 2610 } 2611 2612 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2613 KnownBits &Known, 2614 const APInt &DemandedElts, 2615 const SelectionDAG &DAG, 2616 unsigned Depth) const { 2617 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2618 2619 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2620 // The low bits are known zero if the pointer is aligned. 2621 Known.Zero.setLowBits(Log2_32(Align)); 2622 } 2623 } 2624 2625 /// This method can be implemented by targets that want to expose additional 2626 /// information about sign bits to the DAG Combiner. 2627 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2628 const APInt &, 2629 const SelectionDAG &, 2630 unsigned Depth) const { 2631 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2632 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2633 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2634 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2635 "Should use ComputeNumSignBits if you don't know whether Op" 2636 " is a target node!"); 2637 return 1; 2638 } 2639 2640 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2641 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2642 TargetLoweringOpt &TLO, unsigned Depth) const { 2643 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2644 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2645 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2646 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2647 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2648 " is a target node!"); 2649 return false; 2650 } 2651 2652 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2653 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2654 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2655 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2656 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2657 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2658 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2659 "Should use SimplifyDemandedBits if you don't know whether Op" 2660 " is a target node!"); 2661 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2662 return false; 2663 } 2664 2665 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2666 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2667 SelectionDAG &DAG, unsigned Depth) const { 2668 assert( 2669 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2670 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2671 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2672 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2673 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2674 " is a target node!"); 2675 return SDValue(); 2676 } 2677 2678 SDValue 2679 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2680 SDValue N1, MutableArrayRef<int> Mask, 2681 SelectionDAG &DAG) const { 2682 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2683 if (!LegalMask) { 2684 std::swap(N0, N1); 2685 ShuffleVectorSDNode::commuteMask(Mask); 2686 LegalMask = isShuffleMaskLegal(Mask, VT); 2687 } 2688 2689 if (!LegalMask) 2690 return SDValue(); 2691 2692 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2693 } 2694 2695 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2696 return nullptr; 2697 } 2698 2699 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2700 const SelectionDAG &DAG, 2701 bool SNaN, 2702 unsigned Depth) const { 2703 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2704 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2705 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2706 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2707 "Should use isKnownNeverNaN if you don't know whether Op" 2708 " is a target node!"); 2709 return false; 2710 } 2711 2712 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2713 // work with truncating build vectors and vectors with elements of less than 2714 // 8 bits. 2715 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2716 if (!N) 2717 return false; 2718 2719 APInt CVal; 2720 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2721 CVal = CN->getAPIntValue(); 2722 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2723 auto *CN = BV->getConstantSplatNode(); 2724 if (!CN) 2725 return false; 2726 2727 // If this is a truncating build vector, truncate the splat value. 2728 // Otherwise, we may fail to match the expected values below. 2729 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2730 CVal = CN->getAPIntValue(); 2731 if (BVEltWidth < CVal.getBitWidth()) 2732 CVal = CVal.trunc(BVEltWidth); 2733 } else { 2734 return false; 2735 } 2736 2737 switch (getBooleanContents(N->getValueType(0))) { 2738 case UndefinedBooleanContent: 2739 return CVal[0]; 2740 case ZeroOrOneBooleanContent: 2741 return CVal.isOneValue(); 2742 case ZeroOrNegativeOneBooleanContent: 2743 return CVal.isAllOnesValue(); 2744 } 2745 2746 llvm_unreachable("Invalid boolean contents"); 2747 } 2748 2749 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2750 if (!N) 2751 return false; 2752 2753 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2754 if (!CN) { 2755 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2756 if (!BV) 2757 return false; 2758 2759 // Only interested in constant splats, we don't care about undef 2760 // elements in identifying boolean constants and getConstantSplatNode 2761 // returns NULL if all ops are undef; 2762 CN = BV->getConstantSplatNode(); 2763 if (!CN) 2764 return false; 2765 } 2766 2767 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2768 return !CN->getAPIntValue()[0]; 2769 2770 return CN->isNullValue(); 2771 } 2772 2773 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2774 bool SExt) const { 2775 if (VT == MVT::i1) 2776 return N->isOne(); 2777 2778 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2779 switch (Cnt) { 2780 case TargetLowering::ZeroOrOneBooleanContent: 2781 // An extended value of 1 is always true, unless its original type is i1, 2782 // in which case it will be sign extended to -1. 2783 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2784 case TargetLowering::UndefinedBooleanContent: 2785 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2786 return N->isAllOnesValue() && SExt; 2787 } 2788 llvm_unreachable("Unexpected enumeration."); 2789 } 2790 2791 /// This helper function of SimplifySetCC tries to optimize the comparison when 2792 /// either operand of the SetCC node is a bitwise-and instruction. 2793 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2794 ISD::CondCode Cond, const SDLoc &DL, 2795 DAGCombinerInfo &DCI) const { 2796 // Match these patterns in any of their permutations: 2797 // (X & Y) == Y 2798 // (X & Y) != Y 2799 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2800 std::swap(N0, N1); 2801 2802 EVT OpVT = N0.getValueType(); 2803 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2804 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2805 return SDValue(); 2806 2807 SDValue X, Y; 2808 if (N0.getOperand(0) == N1) { 2809 X = N0.getOperand(1); 2810 Y = N0.getOperand(0); 2811 } else if (N0.getOperand(1) == N1) { 2812 X = N0.getOperand(0); 2813 Y = N0.getOperand(1); 2814 } else { 2815 return SDValue(); 2816 } 2817 2818 SelectionDAG &DAG = DCI.DAG; 2819 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2820 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2821 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2822 // Note that where Y is variable and is known to have at most one bit set 2823 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2824 // equivalent when Y == 0. 2825 assert(OpVT.isInteger()); 2826 Cond = ISD::getSetCCInverse(Cond, OpVT); 2827 if (DCI.isBeforeLegalizeOps() || 2828 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2829 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2830 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2831 // If the target supports an 'and-not' or 'and-complement' logic operation, 2832 // try to use that to make a comparison operation more efficient. 2833 // But don't do this transform if the mask is a single bit because there are 2834 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2835 // 'rlwinm' on PPC). 2836 2837 // Bail out if the compare operand that we want to turn into a zero is 2838 // already a zero (otherwise, infinite loop). 2839 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2840 if (YConst && YConst->isNullValue()) 2841 return SDValue(); 2842 2843 // Transform this into: ~X & Y == 0. 2844 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2845 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2846 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2847 } 2848 2849 return SDValue(); 2850 } 2851 2852 /// There are multiple IR patterns that could be checking whether certain 2853 /// truncation of a signed number would be lossy or not. The pattern which is 2854 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2855 /// We are looking for the following pattern: (KeptBits is a constant) 2856 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2857 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2858 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2859 /// We will unfold it into the natural trunc+sext pattern: 2860 /// ((%x << C) a>> C) dstcond %x 2861 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2862 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2863 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2864 const SDLoc &DL) const { 2865 // We must be comparing with a constant. 2866 ConstantSDNode *C1; 2867 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2868 return SDValue(); 2869 2870 // N0 should be: add %x, (1 << (KeptBits-1)) 2871 if (N0->getOpcode() != ISD::ADD) 2872 return SDValue(); 2873 2874 // And we must be 'add'ing a constant. 2875 ConstantSDNode *C01; 2876 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2877 return SDValue(); 2878 2879 SDValue X = N0->getOperand(0); 2880 EVT XVT = X.getValueType(); 2881 2882 // Validate constants ... 2883 2884 APInt I1 = C1->getAPIntValue(); 2885 2886 ISD::CondCode NewCond; 2887 if (Cond == ISD::CondCode::SETULT) { 2888 NewCond = ISD::CondCode::SETEQ; 2889 } else if (Cond == ISD::CondCode::SETULE) { 2890 NewCond = ISD::CondCode::SETEQ; 2891 // But need to 'canonicalize' the constant. 2892 I1 += 1; 2893 } else if (Cond == ISD::CondCode::SETUGT) { 2894 NewCond = ISD::CondCode::SETNE; 2895 // But need to 'canonicalize' the constant. 2896 I1 += 1; 2897 } else if (Cond == ISD::CondCode::SETUGE) { 2898 NewCond = ISD::CondCode::SETNE; 2899 } else 2900 return SDValue(); 2901 2902 APInt I01 = C01->getAPIntValue(); 2903 2904 auto checkConstants = [&I1, &I01]() -> bool { 2905 // Both of them must be power-of-two, and the constant from setcc is bigger. 2906 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2907 }; 2908 2909 if (checkConstants()) { 2910 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2911 } else { 2912 // What if we invert constants? (and the target predicate) 2913 I1.negate(); 2914 I01.negate(); 2915 assert(XVT.isInteger()); 2916 NewCond = getSetCCInverse(NewCond, XVT); 2917 if (!checkConstants()) 2918 return SDValue(); 2919 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2920 } 2921 2922 // They are power-of-two, so which bit is set? 2923 const unsigned KeptBits = I1.logBase2(); 2924 const unsigned KeptBitsMinusOne = I01.logBase2(); 2925 2926 // Magic! 2927 if (KeptBits != (KeptBitsMinusOne + 1)) 2928 return SDValue(); 2929 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2930 2931 // We don't want to do this in every single case. 2932 SelectionDAG &DAG = DCI.DAG; 2933 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2934 XVT, KeptBits)) 2935 return SDValue(); 2936 2937 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2938 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2939 2940 // Unfold into: ((%x << C) a>> C) cond %x 2941 // Where 'cond' will be either 'eq' or 'ne'. 2942 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2943 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2944 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2945 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2946 2947 return T2; 2948 } 2949 2950 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 2951 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 2952 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 2953 DAGCombinerInfo &DCI, const SDLoc &DL) const { 2954 assert(isConstOrConstSplat(N1C) && 2955 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 2956 "Should be a comparison with 0."); 2957 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2958 "Valid only for [in]equality comparisons."); 2959 2960 unsigned NewShiftOpcode; 2961 SDValue X, C, Y; 2962 2963 SelectionDAG &DAG = DCI.DAG; 2964 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2965 2966 // Look for '(C l>>/<< Y)'. 2967 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 2968 // The shift should be one-use. 2969 if (!V.hasOneUse()) 2970 return false; 2971 unsigned OldShiftOpcode = V.getOpcode(); 2972 switch (OldShiftOpcode) { 2973 case ISD::SHL: 2974 NewShiftOpcode = ISD::SRL; 2975 break; 2976 case ISD::SRL: 2977 NewShiftOpcode = ISD::SHL; 2978 break; 2979 default: 2980 return false; // must be a logical shift. 2981 } 2982 // We should be shifting a constant. 2983 // FIXME: best to use isConstantOrConstantVector(). 2984 C = V.getOperand(0); 2985 ConstantSDNode *CC = 2986 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 2987 if (!CC) 2988 return false; 2989 Y = V.getOperand(1); 2990 2991 ConstantSDNode *XC = 2992 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 2993 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 2994 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 2995 }; 2996 2997 // LHS of comparison should be an one-use 'and'. 2998 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 2999 return SDValue(); 3000 3001 X = N0.getOperand(0); 3002 SDValue Mask = N0.getOperand(1); 3003 3004 // 'and' is commutative! 3005 if (!Match(Mask)) { 3006 std::swap(X, Mask); 3007 if (!Match(Mask)) 3008 return SDValue(); 3009 } 3010 3011 EVT VT = X.getValueType(); 3012 3013 // Produce: 3014 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3015 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3016 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3017 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3018 return T2; 3019 } 3020 3021 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3022 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3023 /// handle the commuted versions of these patterns. 3024 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3025 ISD::CondCode Cond, const SDLoc &DL, 3026 DAGCombinerInfo &DCI) const { 3027 unsigned BOpcode = N0.getOpcode(); 3028 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3029 "Unexpected binop"); 3030 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3031 3032 // (X + Y) == X --> Y == 0 3033 // (X - Y) == X --> Y == 0 3034 // (X ^ Y) == X --> Y == 0 3035 SelectionDAG &DAG = DCI.DAG; 3036 EVT OpVT = N0.getValueType(); 3037 SDValue X = N0.getOperand(0); 3038 SDValue Y = N0.getOperand(1); 3039 if (X == N1) 3040 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3041 3042 if (Y != N1) 3043 return SDValue(); 3044 3045 // (X + Y) == Y --> X == 0 3046 // (X ^ Y) == Y --> X == 0 3047 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3048 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3049 3050 // The shift would not be valid if the operands are boolean (i1). 3051 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3052 return SDValue(); 3053 3054 // (X - Y) == Y --> X == Y << 1 3055 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3056 !DCI.isBeforeLegalize()); 3057 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3058 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3059 if (!DCI.isCalledByLegalizer()) 3060 DCI.AddToWorklist(YShl1.getNode()); 3061 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3062 } 3063 3064 /// Try to simplify a setcc built with the specified operands and cc. If it is 3065 /// unable to simplify it, return a null SDValue. 3066 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3067 ISD::CondCode Cond, bool foldBooleans, 3068 DAGCombinerInfo &DCI, 3069 const SDLoc &dl) const { 3070 SelectionDAG &DAG = DCI.DAG; 3071 const DataLayout &Layout = DAG.getDataLayout(); 3072 EVT OpVT = N0.getValueType(); 3073 3074 // Constant fold or commute setcc. 3075 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3076 return Fold; 3077 3078 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3079 // TODO: Handle non-splat vector constants. All undef causes trouble. 3080 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3081 if (isConstOrConstSplat(N0) && 3082 (DCI.isBeforeLegalizeOps() || 3083 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3084 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3085 3086 // If we have a subtract with the same 2 non-constant operands as this setcc 3087 // -- but in reverse order -- then try to commute the operands of this setcc 3088 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3089 // instruction on some targets. 3090 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3091 (DCI.isBeforeLegalizeOps() || 3092 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3093 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3094 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3095 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3096 3097 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3098 const APInt &C1 = N1C->getAPIntValue(); 3099 3100 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3101 // equality comparison, then we're just comparing whether X itself is 3102 // zero. 3103 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3104 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3105 N0.getOperand(1).getOpcode() == ISD::Constant) { 3106 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3107 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3108 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3109 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3110 // (srl (ctlz x), 5) == 0 -> X != 0 3111 // (srl (ctlz x), 5) != 1 -> X != 0 3112 Cond = ISD::SETNE; 3113 } else { 3114 // (srl (ctlz x), 5) != 0 -> X == 0 3115 // (srl (ctlz x), 5) == 1 -> X == 0 3116 Cond = ISD::SETEQ; 3117 } 3118 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3119 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3120 Zero, Cond); 3121 } 3122 } 3123 3124 SDValue CTPOP = N0; 3125 // Look through truncs that don't change the value of a ctpop. 3126 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3127 CTPOP = N0.getOperand(0); 3128 3129 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3130 (N0 == CTPOP || 3131 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3132 EVT CTVT = CTPOP.getValueType(); 3133 SDValue CTOp = CTPOP.getOperand(0); 3134 3135 // (ctpop x) u< 2 -> (x & x-1) == 0 3136 // (ctpop x) u> 1 -> (x & x-1) != 0 3137 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3138 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3139 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3140 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3141 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3142 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3143 } 3144 3145 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3146 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3147 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3148 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3149 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3150 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3151 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3152 assert(CTVT.isInteger()); 3153 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3154 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3155 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3156 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3157 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3158 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3159 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3160 } 3161 } 3162 3163 // (zext x) == C --> x == (trunc C) 3164 // (sext x) == C --> x == (trunc C) 3165 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3166 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3167 unsigned MinBits = N0.getValueSizeInBits(); 3168 SDValue PreExt; 3169 bool Signed = false; 3170 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3171 // ZExt 3172 MinBits = N0->getOperand(0).getValueSizeInBits(); 3173 PreExt = N0->getOperand(0); 3174 } else if (N0->getOpcode() == ISD::AND) { 3175 // DAGCombine turns costly ZExts into ANDs 3176 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3177 if ((C->getAPIntValue()+1).isPowerOf2()) { 3178 MinBits = C->getAPIntValue().countTrailingOnes(); 3179 PreExt = N0->getOperand(0); 3180 } 3181 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3182 // SExt 3183 MinBits = N0->getOperand(0).getValueSizeInBits(); 3184 PreExt = N0->getOperand(0); 3185 Signed = true; 3186 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3187 // ZEXTLOAD / SEXTLOAD 3188 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3189 MinBits = LN0->getMemoryVT().getSizeInBits(); 3190 PreExt = N0; 3191 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3192 Signed = true; 3193 MinBits = LN0->getMemoryVT().getSizeInBits(); 3194 PreExt = N0; 3195 } 3196 } 3197 3198 // Figure out how many bits we need to preserve this constant. 3199 unsigned ReqdBits = Signed ? 3200 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3201 C1.getActiveBits(); 3202 3203 // Make sure we're not losing bits from the constant. 3204 if (MinBits > 0 && 3205 MinBits < C1.getBitWidth() && 3206 MinBits >= ReqdBits) { 3207 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3208 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3209 // Will get folded away. 3210 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3211 if (MinBits == 1 && C1 == 1) 3212 // Invert the condition. 3213 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3214 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3215 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3216 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3217 } 3218 3219 // If truncating the setcc operands is not desirable, we can still 3220 // simplify the expression in some cases: 3221 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3222 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3223 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3224 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3225 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3226 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3227 SDValue TopSetCC = N0->getOperand(0); 3228 unsigned N0Opc = N0->getOpcode(); 3229 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3230 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3231 TopSetCC.getOpcode() == ISD::SETCC && 3232 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3233 (isConstFalseVal(N1C) || 3234 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3235 3236 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3237 (!N1C->isNullValue() && Cond == ISD::SETNE); 3238 3239 if (!Inverse) 3240 return TopSetCC; 3241 3242 ISD::CondCode InvCond = ISD::getSetCCInverse( 3243 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3244 TopSetCC.getOperand(0).getValueType()); 3245 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3246 TopSetCC.getOperand(1), 3247 InvCond); 3248 } 3249 } 3250 } 3251 3252 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3253 // equality or unsigned, and all 1 bits of the const are in the same 3254 // partial word, see if we can shorten the load. 3255 if (DCI.isBeforeLegalize() && 3256 !ISD::isSignedIntSetCC(Cond) && 3257 N0.getOpcode() == ISD::AND && C1 == 0 && 3258 N0.getNode()->hasOneUse() && 3259 isa<LoadSDNode>(N0.getOperand(0)) && 3260 N0.getOperand(0).getNode()->hasOneUse() && 3261 isa<ConstantSDNode>(N0.getOperand(1))) { 3262 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3263 APInt bestMask; 3264 unsigned bestWidth = 0, bestOffset = 0; 3265 if (Lod->isSimple() && Lod->isUnindexed()) { 3266 unsigned origWidth = N0.getValueSizeInBits(); 3267 unsigned maskWidth = origWidth; 3268 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3269 // 8 bits, but have to be careful... 3270 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3271 origWidth = Lod->getMemoryVT().getSizeInBits(); 3272 const APInt &Mask = N0.getConstantOperandAPInt(1); 3273 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3274 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3275 for (unsigned offset=0; offset<origWidth/width; offset++) { 3276 if (Mask.isSubsetOf(newMask)) { 3277 if (Layout.isLittleEndian()) 3278 bestOffset = (uint64_t)offset * (width/8); 3279 else 3280 bestOffset = (origWidth/width - offset - 1) * (width/8); 3281 bestMask = Mask.lshr(offset * (width/8) * 8); 3282 bestWidth = width; 3283 break; 3284 } 3285 newMask <<= width; 3286 } 3287 } 3288 } 3289 if (bestWidth) { 3290 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3291 if (newVT.isRound() && 3292 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3293 SDValue Ptr = Lod->getBasePtr(); 3294 if (bestOffset != 0) 3295 Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); 3296 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3297 SDValue NewLoad = DAG.getLoad( 3298 newVT, dl, Lod->getChain(), Ptr, 3299 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3300 return DAG.getSetCC(dl, VT, 3301 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3302 DAG.getConstant(bestMask.trunc(bestWidth), 3303 dl, newVT)), 3304 DAG.getConstant(0LL, dl, newVT), Cond); 3305 } 3306 } 3307 } 3308 3309 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3310 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3311 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3312 3313 // If the comparison constant has bits in the upper part, the 3314 // zero-extended value could never match. 3315 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3316 C1.getBitWidth() - InSize))) { 3317 switch (Cond) { 3318 case ISD::SETUGT: 3319 case ISD::SETUGE: 3320 case ISD::SETEQ: 3321 return DAG.getConstant(0, dl, VT); 3322 case ISD::SETULT: 3323 case ISD::SETULE: 3324 case ISD::SETNE: 3325 return DAG.getConstant(1, dl, VT); 3326 case ISD::SETGT: 3327 case ISD::SETGE: 3328 // True if the sign bit of C1 is set. 3329 return DAG.getConstant(C1.isNegative(), dl, VT); 3330 case ISD::SETLT: 3331 case ISD::SETLE: 3332 // True if the sign bit of C1 isn't set. 3333 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3334 default: 3335 break; 3336 } 3337 } 3338 3339 // Otherwise, we can perform the comparison with the low bits. 3340 switch (Cond) { 3341 case ISD::SETEQ: 3342 case ISD::SETNE: 3343 case ISD::SETUGT: 3344 case ISD::SETUGE: 3345 case ISD::SETULT: 3346 case ISD::SETULE: { 3347 EVT newVT = N0.getOperand(0).getValueType(); 3348 if (DCI.isBeforeLegalizeOps() || 3349 (isOperationLegal(ISD::SETCC, newVT) && 3350 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3351 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3352 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3353 3354 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3355 NewConst, Cond); 3356 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3357 } 3358 break; 3359 } 3360 default: 3361 break; // todo, be more careful with signed comparisons 3362 } 3363 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3364 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3365 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3366 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3367 EVT ExtDstTy = N0.getValueType(); 3368 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3369 3370 // If the constant doesn't fit into the number of bits for the source of 3371 // the sign extension, it is impossible for both sides to be equal. 3372 if (C1.getMinSignedBits() > ExtSrcTyBits) 3373 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3374 3375 SDValue ZextOp; 3376 EVT Op0Ty = N0.getOperand(0).getValueType(); 3377 if (Op0Ty == ExtSrcTy) { 3378 ZextOp = N0.getOperand(0); 3379 } else { 3380 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3381 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3382 DAG.getConstant(Imm, dl, Op0Ty)); 3383 } 3384 if (!DCI.isCalledByLegalizer()) 3385 DCI.AddToWorklist(ZextOp.getNode()); 3386 // Otherwise, make this a use of a zext. 3387 return DAG.getSetCC(dl, VT, ZextOp, 3388 DAG.getConstant(C1 & APInt::getLowBitsSet( 3389 ExtDstTyBits, 3390 ExtSrcTyBits), 3391 dl, ExtDstTy), 3392 Cond); 3393 } else if ((N1C->isNullValue() || N1C->isOne()) && 3394 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3395 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3396 if (N0.getOpcode() == ISD::SETCC && 3397 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3398 (N0.getValueType() == MVT::i1 || 3399 getBooleanContents(N0.getOperand(0).getValueType()) == 3400 ZeroOrOneBooleanContent)) { 3401 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3402 if (TrueWhenTrue) 3403 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3404 // Invert the condition. 3405 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3406 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3407 if (DCI.isBeforeLegalizeOps() || 3408 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3409 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3410 } 3411 3412 if ((N0.getOpcode() == ISD::XOR || 3413 (N0.getOpcode() == ISD::AND && 3414 N0.getOperand(0).getOpcode() == ISD::XOR && 3415 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3416 isa<ConstantSDNode>(N0.getOperand(1)) && 3417 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3418 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3419 // can only do this if the top bits are known zero. 3420 unsigned BitWidth = N0.getValueSizeInBits(); 3421 if (DAG.MaskedValueIsZero(N0, 3422 APInt::getHighBitsSet(BitWidth, 3423 BitWidth-1))) { 3424 // Okay, get the un-inverted input value. 3425 SDValue Val; 3426 if (N0.getOpcode() == ISD::XOR) { 3427 Val = N0.getOperand(0); 3428 } else { 3429 assert(N0.getOpcode() == ISD::AND && 3430 N0.getOperand(0).getOpcode() == ISD::XOR); 3431 // ((X^1)&1)^1 -> X & 1 3432 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3433 N0.getOperand(0).getOperand(0), 3434 N0.getOperand(1)); 3435 } 3436 3437 return DAG.getSetCC(dl, VT, Val, N1, 3438 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3439 } 3440 } else if (N1C->isOne()) { 3441 SDValue Op0 = N0; 3442 if (Op0.getOpcode() == ISD::TRUNCATE) 3443 Op0 = Op0.getOperand(0); 3444 3445 if ((Op0.getOpcode() == ISD::XOR) && 3446 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3447 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3448 SDValue XorLHS = Op0.getOperand(0); 3449 SDValue XorRHS = Op0.getOperand(1); 3450 // Ensure that the input setccs return an i1 type or 0/1 value. 3451 if (Op0.getValueType() == MVT::i1 || 3452 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3453 ZeroOrOneBooleanContent && 3454 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3455 ZeroOrOneBooleanContent)) { 3456 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3457 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3458 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3459 } 3460 } 3461 if (Op0.getOpcode() == ISD::AND && 3462 isa<ConstantSDNode>(Op0.getOperand(1)) && 3463 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3464 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3465 if (Op0.getValueType().bitsGT(VT)) 3466 Op0 = DAG.getNode(ISD::AND, dl, VT, 3467 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3468 DAG.getConstant(1, dl, VT)); 3469 else if (Op0.getValueType().bitsLT(VT)) 3470 Op0 = DAG.getNode(ISD::AND, dl, VT, 3471 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3472 DAG.getConstant(1, dl, VT)); 3473 3474 return DAG.getSetCC(dl, VT, Op0, 3475 DAG.getConstant(0, dl, Op0.getValueType()), 3476 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3477 } 3478 if (Op0.getOpcode() == ISD::AssertZext && 3479 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3480 return DAG.getSetCC(dl, VT, Op0, 3481 DAG.getConstant(0, dl, Op0.getValueType()), 3482 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3483 } 3484 } 3485 3486 // Given: 3487 // icmp eq/ne (urem %x, %y), 0 3488 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3489 // icmp eq/ne %x, 0 3490 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3491 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3492 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3493 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3494 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3495 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3496 } 3497 3498 if (SDValue V = 3499 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3500 return V; 3501 } 3502 3503 // These simplifications apply to splat vectors as well. 3504 // TODO: Handle more splat vector cases. 3505 if (auto *N1C = isConstOrConstSplat(N1)) { 3506 const APInt &C1 = N1C->getAPIntValue(); 3507 3508 APInt MinVal, MaxVal; 3509 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3510 if (ISD::isSignedIntSetCC(Cond)) { 3511 MinVal = APInt::getSignedMinValue(OperandBitSize); 3512 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3513 } else { 3514 MinVal = APInt::getMinValue(OperandBitSize); 3515 MaxVal = APInt::getMaxValue(OperandBitSize); 3516 } 3517 3518 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3519 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3520 // X >= MIN --> true 3521 if (C1 == MinVal) 3522 return DAG.getBoolConstant(true, dl, VT, OpVT); 3523 3524 if (!VT.isVector()) { // TODO: Support this for vectors. 3525 // X >= C0 --> X > (C0 - 1) 3526 APInt C = C1 - 1; 3527 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3528 if ((DCI.isBeforeLegalizeOps() || 3529 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3530 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3531 isLegalICmpImmediate(C.getSExtValue())))) { 3532 return DAG.getSetCC(dl, VT, N0, 3533 DAG.getConstant(C, dl, N1.getValueType()), 3534 NewCC); 3535 } 3536 } 3537 } 3538 3539 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3540 // X <= MAX --> true 3541 if (C1 == MaxVal) 3542 return DAG.getBoolConstant(true, dl, VT, OpVT); 3543 3544 // X <= C0 --> X < (C0 + 1) 3545 if (!VT.isVector()) { // TODO: Support this for vectors. 3546 APInt C = C1 + 1; 3547 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3548 if ((DCI.isBeforeLegalizeOps() || 3549 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3550 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3551 isLegalICmpImmediate(C.getSExtValue())))) { 3552 return DAG.getSetCC(dl, VT, N0, 3553 DAG.getConstant(C, dl, N1.getValueType()), 3554 NewCC); 3555 } 3556 } 3557 } 3558 3559 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3560 if (C1 == MinVal) 3561 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3562 3563 // TODO: Support this for vectors after legalize ops. 3564 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3565 // Canonicalize setlt X, Max --> setne X, Max 3566 if (C1 == MaxVal) 3567 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3568 3569 // If we have setult X, 1, turn it into seteq X, 0 3570 if (C1 == MinVal+1) 3571 return DAG.getSetCC(dl, VT, N0, 3572 DAG.getConstant(MinVal, dl, N0.getValueType()), 3573 ISD::SETEQ); 3574 } 3575 } 3576 3577 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3578 if (C1 == MaxVal) 3579 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3580 3581 // TODO: Support this for vectors after legalize ops. 3582 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3583 // Canonicalize setgt X, Min --> setne X, Min 3584 if (C1 == MinVal) 3585 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3586 3587 // If we have setugt X, Max-1, turn it into seteq X, Max 3588 if (C1 == MaxVal-1) 3589 return DAG.getSetCC(dl, VT, N0, 3590 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3591 ISD::SETEQ); 3592 } 3593 } 3594 3595 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3596 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3597 if (C1.isNullValue()) 3598 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3599 VT, N0, N1, Cond, DCI, dl)) 3600 return CC; 3601 } 3602 3603 // If we have "setcc X, C0", check to see if we can shrink the immediate 3604 // by changing cc. 3605 // TODO: Support this for vectors after legalize ops. 3606 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3607 // SETUGT X, SINTMAX -> SETLT X, 0 3608 if (Cond == ISD::SETUGT && 3609 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3610 return DAG.getSetCC(dl, VT, N0, 3611 DAG.getConstant(0, dl, N1.getValueType()), 3612 ISD::SETLT); 3613 3614 // SETULT X, SINTMIN -> SETGT X, -1 3615 if (Cond == ISD::SETULT && 3616 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3617 SDValue ConstMinusOne = 3618 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3619 N1.getValueType()); 3620 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3621 } 3622 } 3623 } 3624 3625 // Back to non-vector simplifications. 3626 // TODO: Can we do these for vector splats? 3627 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3629 const APInt &C1 = N1C->getAPIntValue(); 3630 EVT ShValTy = N0.getValueType(); 3631 3632 // Fold bit comparisons when we can. 3633 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3634 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3635 N0.getOpcode() == ISD::AND) { 3636 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3637 EVT ShiftTy = 3638 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3639 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3640 // Perform the xform if the AND RHS is a single bit. 3641 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3642 if (AndRHS->getAPIntValue().isPowerOf2() && 3643 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3644 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3645 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3646 DAG.getConstant(ShCt, dl, ShiftTy))); 3647 } 3648 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3649 // (X & 8) == 8 --> (X & 8) >> 3 3650 // Perform the xform if C1 is a single bit. 3651 unsigned ShCt = C1.logBase2(); 3652 if (C1.isPowerOf2() && 3653 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3654 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3655 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3656 DAG.getConstant(ShCt, dl, ShiftTy))); 3657 } 3658 } 3659 } 3660 } 3661 3662 if (C1.getMinSignedBits() <= 64 && 3663 !isLegalICmpImmediate(C1.getSExtValue())) { 3664 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3665 // (X & -256) == 256 -> (X >> 8) == 1 3666 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3667 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3668 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3669 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3670 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3671 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3672 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3673 SDValue Shift = 3674 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3675 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3676 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3677 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3678 } 3679 } 3680 } 3681 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3682 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3683 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3684 // X < 0x100000000 -> (X >> 32) < 1 3685 // X >= 0x100000000 -> (X >> 32) >= 1 3686 // X <= 0x0ffffffff -> (X >> 32) < 1 3687 // X > 0x0ffffffff -> (X >> 32) >= 1 3688 unsigned ShiftBits; 3689 APInt NewC = C1; 3690 ISD::CondCode NewCond = Cond; 3691 if (AdjOne) { 3692 ShiftBits = C1.countTrailingOnes(); 3693 NewC = NewC + 1; 3694 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3695 } else { 3696 ShiftBits = C1.countTrailingZeros(); 3697 } 3698 NewC.lshrInPlace(ShiftBits); 3699 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3700 isLegalICmpImmediate(NewC.getSExtValue()) && 3701 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3702 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3703 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3704 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3705 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3706 } 3707 } 3708 } 3709 } 3710 3711 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3712 auto *CFP = cast<ConstantFPSDNode>(N1); 3713 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3714 3715 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3716 // constant if knowing that the operand is non-nan is enough. We prefer to 3717 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3718 // materialize 0.0. 3719 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3720 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3721 3722 // setcc (fneg x), C -> setcc swap(pred) x, -C 3723 if (N0.getOpcode() == ISD::FNEG) { 3724 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3725 if (DCI.isBeforeLegalizeOps() || 3726 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3727 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3728 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3729 } 3730 } 3731 3732 // If the condition is not legal, see if we can find an equivalent one 3733 // which is legal. 3734 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3735 // If the comparison was an awkward floating-point == or != and one of 3736 // the comparison operands is infinity or negative infinity, convert the 3737 // condition to a less-awkward <= or >=. 3738 if (CFP->getValueAPF().isInfinity()) { 3739 if (CFP->getValueAPF().isNegative()) { 3740 if (Cond == ISD::SETOEQ && 3741 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3742 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3743 if (Cond == ISD::SETUEQ && 3744 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3745 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3746 if (Cond == ISD::SETUNE && 3747 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3748 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3749 if (Cond == ISD::SETONE && 3750 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3751 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3752 } else { 3753 if (Cond == ISD::SETOEQ && 3754 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3755 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3756 if (Cond == ISD::SETUEQ && 3757 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3758 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3759 if (Cond == ISD::SETUNE && 3760 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3761 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3762 if (Cond == ISD::SETONE && 3763 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3764 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3765 } 3766 } 3767 } 3768 } 3769 3770 if (N0 == N1) { 3771 // The sext(setcc()) => setcc() optimization relies on the appropriate 3772 // constant being emitted. 3773 assert(!N0.getValueType().isInteger() && 3774 "Integer types should be handled by FoldSetCC"); 3775 3776 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3777 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3778 if (UOF == 2) // FP operators that are undefined on NaNs. 3779 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3780 if (UOF == unsigned(EqTrue)) 3781 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3782 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3783 // if it is not already. 3784 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3785 if (NewCond != Cond && 3786 (DCI.isBeforeLegalizeOps() || 3787 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3788 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3789 } 3790 3791 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3792 N0.getValueType().isInteger()) { 3793 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3794 N0.getOpcode() == ISD::XOR) { 3795 // Simplify (X+Y) == (X+Z) --> Y == Z 3796 if (N0.getOpcode() == N1.getOpcode()) { 3797 if (N0.getOperand(0) == N1.getOperand(0)) 3798 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3799 if (N0.getOperand(1) == N1.getOperand(1)) 3800 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3801 if (isCommutativeBinOp(N0.getOpcode())) { 3802 // If X op Y == Y op X, try other combinations. 3803 if (N0.getOperand(0) == N1.getOperand(1)) 3804 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3805 Cond); 3806 if (N0.getOperand(1) == N1.getOperand(0)) 3807 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3808 Cond); 3809 } 3810 } 3811 3812 // If RHS is a legal immediate value for a compare instruction, we need 3813 // to be careful about increasing register pressure needlessly. 3814 bool LegalRHSImm = false; 3815 3816 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3817 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3818 // Turn (X+C1) == C2 --> X == C2-C1 3819 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3820 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3821 DAG.getConstant(RHSC->getAPIntValue()- 3822 LHSR->getAPIntValue(), 3823 dl, N0.getValueType()), Cond); 3824 } 3825 3826 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3827 if (N0.getOpcode() == ISD::XOR) 3828 // If we know that all of the inverted bits are zero, don't bother 3829 // performing the inversion. 3830 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3831 return 3832 DAG.getSetCC(dl, VT, N0.getOperand(0), 3833 DAG.getConstant(LHSR->getAPIntValue() ^ 3834 RHSC->getAPIntValue(), 3835 dl, N0.getValueType()), 3836 Cond); 3837 } 3838 3839 // Turn (C1-X) == C2 --> X == C1-C2 3840 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3841 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3842 return 3843 DAG.getSetCC(dl, VT, N0.getOperand(1), 3844 DAG.getConstant(SUBC->getAPIntValue() - 3845 RHSC->getAPIntValue(), 3846 dl, N0.getValueType()), 3847 Cond); 3848 } 3849 } 3850 3851 // Could RHSC fold directly into a compare? 3852 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3853 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3854 } 3855 3856 // (X+Y) == X --> Y == 0 and similar folds. 3857 // Don't do this if X is an immediate that can fold into a cmp 3858 // instruction and X+Y has other uses. It could be an induction variable 3859 // chain, and the transform would increase register pressure. 3860 if (!LegalRHSImm || N0.hasOneUse()) 3861 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3862 return V; 3863 } 3864 3865 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3866 N1.getOpcode() == ISD::XOR) 3867 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3868 return V; 3869 3870 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3871 return V; 3872 } 3873 3874 // Fold remainder of division by a constant. 3875 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 3876 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3877 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3878 3879 // When division is cheap or optimizing for minimum size, 3880 // fall through to DIVREM creation by skipping this fold. 3881 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 3882 if (N0.getOpcode() == ISD::UREM) { 3883 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3884 return Folded; 3885 } else if (N0.getOpcode() == ISD::SREM) { 3886 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3887 return Folded; 3888 } 3889 } 3890 } 3891 3892 // Fold away ALL boolean setcc's. 3893 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3894 SDValue Temp; 3895 switch (Cond) { 3896 default: llvm_unreachable("Unknown integer setcc!"); 3897 case ISD::SETEQ: // X == Y -> ~(X^Y) 3898 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3899 N0 = DAG.getNOT(dl, Temp, OpVT); 3900 if (!DCI.isCalledByLegalizer()) 3901 DCI.AddToWorklist(Temp.getNode()); 3902 break; 3903 case ISD::SETNE: // X != Y --> (X^Y) 3904 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3905 break; 3906 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3907 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3908 Temp = DAG.getNOT(dl, N0, OpVT); 3909 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3910 if (!DCI.isCalledByLegalizer()) 3911 DCI.AddToWorklist(Temp.getNode()); 3912 break; 3913 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3914 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3915 Temp = DAG.getNOT(dl, N1, OpVT); 3916 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3917 if (!DCI.isCalledByLegalizer()) 3918 DCI.AddToWorklist(Temp.getNode()); 3919 break; 3920 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3921 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3922 Temp = DAG.getNOT(dl, N0, OpVT); 3923 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3924 if (!DCI.isCalledByLegalizer()) 3925 DCI.AddToWorklist(Temp.getNode()); 3926 break; 3927 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3928 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3929 Temp = DAG.getNOT(dl, N1, OpVT); 3930 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3931 break; 3932 } 3933 if (VT.getScalarType() != MVT::i1) { 3934 if (!DCI.isCalledByLegalizer()) 3935 DCI.AddToWorklist(N0.getNode()); 3936 // FIXME: If running after legalize, we probably can't do this. 3937 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3938 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3939 } 3940 return N0; 3941 } 3942 3943 // Could not fold it. 3944 return SDValue(); 3945 } 3946 3947 /// Returns true (and the GlobalValue and the offset) if the node is a 3948 /// GlobalAddress + offset. 3949 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 3950 int64_t &Offset) const { 3951 3952 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 3953 3954 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 3955 GA = GASD->getGlobal(); 3956 Offset += GASD->getOffset(); 3957 return true; 3958 } 3959 3960 if (N->getOpcode() == ISD::ADD) { 3961 SDValue N1 = N->getOperand(0); 3962 SDValue N2 = N->getOperand(1); 3963 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 3964 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 3965 Offset += V->getSExtValue(); 3966 return true; 3967 } 3968 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 3969 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 3970 Offset += V->getSExtValue(); 3971 return true; 3972 } 3973 } 3974 } 3975 3976 return false; 3977 } 3978 3979 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 3980 DAGCombinerInfo &DCI) const { 3981 // Default implementation: no optimization. 3982 return SDValue(); 3983 } 3984 3985 //===----------------------------------------------------------------------===// 3986 // Inline Assembler Implementation Methods 3987 //===----------------------------------------------------------------------===// 3988 3989 TargetLowering::ConstraintType 3990 TargetLowering::getConstraintType(StringRef Constraint) const { 3991 unsigned S = Constraint.size(); 3992 3993 if (S == 1) { 3994 switch (Constraint[0]) { 3995 default: break; 3996 case 'r': 3997 return C_RegisterClass; 3998 case 'm': // memory 3999 case 'o': // offsetable 4000 case 'V': // not offsetable 4001 return C_Memory; 4002 case 'n': // Simple Integer 4003 case 'E': // Floating Point Constant 4004 case 'F': // Floating Point Constant 4005 return C_Immediate; 4006 case 'i': // Simple Integer or Relocatable Constant 4007 case 's': // Relocatable Constant 4008 case 'p': // Address. 4009 case 'X': // Allow ANY value. 4010 case 'I': // Target registers. 4011 case 'J': 4012 case 'K': 4013 case 'L': 4014 case 'M': 4015 case 'N': 4016 case 'O': 4017 case 'P': 4018 case '<': 4019 case '>': 4020 return C_Other; 4021 } 4022 } 4023 4024 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4025 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4026 return C_Memory; 4027 return C_Register; 4028 } 4029 return C_Unknown; 4030 } 4031 4032 /// Try to replace an X constraint, which matches anything, with another that 4033 /// has more specific requirements based on the type of the corresponding 4034 /// operand. 4035 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4036 if (ConstraintVT.isInteger()) 4037 return "r"; 4038 if (ConstraintVT.isFloatingPoint()) 4039 return "f"; // works for many targets 4040 return nullptr; 4041 } 4042 4043 SDValue TargetLowering::LowerAsmOutputForConstraint( 4044 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4045 SelectionDAG &DAG) const { 4046 return SDValue(); 4047 } 4048 4049 /// Lower the specified operand into the Ops vector. 4050 /// If it is invalid, don't add anything to Ops. 4051 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4052 std::string &Constraint, 4053 std::vector<SDValue> &Ops, 4054 SelectionDAG &DAG) const { 4055 4056 if (Constraint.length() > 1) return; 4057 4058 char ConstraintLetter = Constraint[0]; 4059 switch (ConstraintLetter) { 4060 default: break; 4061 case 'X': // Allows any operand; labels (basic block) use this. 4062 if (Op.getOpcode() == ISD::BasicBlock || 4063 Op.getOpcode() == ISD::TargetBlockAddress) { 4064 Ops.push_back(Op); 4065 return; 4066 } 4067 LLVM_FALLTHROUGH; 4068 case 'i': // Simple Integer or Relocatable Constant 4069 case 'n': // Simple Integer 4070 case 's': { // Relocatable Constant 4071 4072 GlobalAddressSDNode *GA; 4073 ConstantSDNode *C; 4074 BlockAddressSDNode *BA; 4075 uint64_t Offset = 0; 4076 4077 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4078 // etc., since getelementpointer is variadic. We can't use 4079 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4080 // while in this case the GA may be furthest from the root node which is 4081 // likely an ISD::ADD. 4082 while (1) { 4083 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4084 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4085 GA->getValueType(0), 4086 Offset + GA->getOffset())); 4087 return; 4088 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4089 ConstraintLetter != 's') { 4090 // gcc prints these as sign extended. Sign extend value to 64 bits 4091 // now; without this it would get ZExt'd later in 4092 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4093 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4094 BooleanContent BCont = getBooleanContents(MVT::i64); 4095 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4096 : ISD::SIGN_EXTEND; 4097 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4098 : C->getSExtValue(); 4099 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4100 SDLoc(C), MVT::i64)); 4101 return; 4102 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4103 ConstraintLetter != 'n') { 4104 Ops.push_back(DAG.getTargetBlockAddress( 4105 BA->getBlockAddress(), BA->getValueType(0), 4106 Offset + BA->getOffset(), BA->getTargetFlags())); 4107 return; 4108 } else { 4109 const unsigned OpCode = Op.getOpcode(); 4110 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4111 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4112 Op = Op.getOperand(1); 4113 // Subtraction is not commutative. 4114 else if (OpCode == ISD::ADD && 4115 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4116 Op = Op.getOperand(0); 4117 else 4118 return; 4119 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4120 continue; 4121 } 4122 } 4123 return; 4124 } 4125 break; 4126 } 4127 } 4128 } 4129 4130 std::pair<unsigned, const TargetRegisterClass *> 4131 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4132 StringRef Constraint, 4133 MVT VT) const { 4134 if (Constraint.empty() || Constraint[0] != '{') 4135 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4136 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4137 4138 // Remove the braces from around the name. 4139 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4140 4141 std::pair<unsigned, const TargetRegisterClass *> R = 4142 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4143 4144 // Figure out which register class contains this reg. 4145 for (const TargetRegisterClass *RC : RI->regclasses()) { 4146 // If none of the value types for this register class are valid, we 4147 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4148 if (!isLegalRC(*RI, *RC)) 4149 continue; 4150 4151 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4152 I != E; ++I) { 4153 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4154 std::pair<unsigned, const TargetRegisterClass *> S = 4155 std::make_pair(*I, RC); 4156 4157 // If this register class has the requested value type, return it, 4158 // otherwise keep searching and return the first class found 4159 // if no other is found which explicitly has the requested type. 4160 if (RI->isTypeLegalForClass(*RC, VT)) 4161 return S; 4162 if (!R.second) 4163 R = S; 4164 } 4165 } 4166 } 4167 4168 return R; 4169 } 4170 4171 //===----------------------------------------------------------------------===// 4172 // Constraint Selection. 4173 4174 /// Return true of this is an input operand that is a matching constraint like 4175 /// "4". 4176 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4177 assert(!ConstraintCode.empty() && "No known constraint!"); 4178 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4179 } 4180 4181 /// If this is an input matching constraint, this method returns the output 4182 /// operand it matches. 4183 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4184 assert(!ConstraintCode.empty() && "No known constraint!"); 4185 return atoi(ConstraintCode.c_str()); 4186 } 4187 4188 /// Split up the constraint string from the inline assembly value into the 4189 /// specific constraints and their prefixes, and also tie in the associated 4190 /// operand values. 4191 /// If this returns an empty vector, and if the constraint string itself 4192 /// isn't empty, there was an error parsing. 4193 TargetLowering::AsmOperandInfoVector 4194 TargetLowering::ParseConstraints(const DataLayout &DL, 4195 const TargetRegisterInfo *TRI, 4196 ImmutableCallSite CS) const { 4197 /// Information about all of the constraints. 4198 AsmOperandInfoVector ConstraintOperands; 4199 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4200 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4201 4202 // Do a prepass over the constraints, canonicalizing them, and building up the 4203 // ConstraintOperands list. 4204 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4205 unsigned ResNo = 0; // ResNo - The result number of the next output. 4206 4207 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4208 ConstraintOperands.emplace_back(std::move(CI)); 4209 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4210 4211 // Update multiple alternative constraint count. 4212 if (OpInfo.multipleAlternatives.size() > maCount) 4213 maCount = OpInfo.multipleAlternatives.size(); 4214 4215 OpInfo.ConstraintVT = MVT::Other; 4216 4217 // Compute the value type for each operand. 4218 switch (OpInfo.Type) { 4219 case InlineAsm::isOutput: 4220 // Indirect outputs just consume an argument. 4221 if (OpInfo.isIndirect) { 4222 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4223 break; 4224 } 4225 4226 // The return value of the call is this value. As such, there is no 4227 // corresponding argument. 4228 assert(!CS.getType()->isVoidTy() && 4229 "Bad inline asm!"); 4230 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 4231 OpInfo.ConstraintVT = 4232 getSimpleValueType(DL, STy->getElementType(ResNo)); 4233 } else { 4234 assert(ResNo == 0 && "Asm only has one result!"); 4235 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 4236 } 4237 ++ResNo; 4238 break; 4239 case InlineAsm::isInput: 4240 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4241 break; 4242 case InlineAsm::isClobber: 4243 // Nothing to do. 4244 break; 4245 } 4246 4247 if (OpInfo.CallOperandVal) { 4248 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4249 if (OpInfo.isIndirect) { 4250 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4251 if (!PtrTy) 4252 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4253 OpTy = PtrTy->getElementType(); 4254 } 4255 4256 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4257 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4258 if (STy->getNumElements() == 1) 4259 OpTy = STy->getElementType(0); 4260 4261 // If OpTy is not a single value, it may be a struct/union that we 4262 // can tile with integers. 4263 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4264 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4265 switch (BitSize) { 4266 default: break; 4267 case 1: 4268 case 8: 4269 case 16: 4270 case 32: 4271 case 64: 4272 case 128: 4273 OpInfo.ConstraintVT = 4274 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4275 break; 4276 } 4277 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4278 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4279 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4280 } else { 4281 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4282 } 4283 } 4284 } 4285 4286 // If we have multiple alternative constraints, select the best alternative. 4287 if (!ConstraintOperands.empty()) { 4288 if (maCount) { 4289 unsigned bestMAIndex = 0; 4290 int bestWeight = -1; 4291 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4292 int weight = -1; 4293 unsigned maIndex; 4294 // Compute the sums of the weights for each alternative, keeping track 4295 // of the best (highest weight) one so far. 4296 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4297 int weightSum = 0; 4298 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4299 cIndex != eIndex; ++cIndex) { 4300 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4301 if (OpInfo.Type == InlineAsm::isClobber) 4302 continue; 4303 4304 // If this is an output operand with a matching input operand, 4305 // look up the matching input. If their types mismatch, e.g. one 4306 // is an integer, the other is floating point, or their sizes are 4307 // different, flag it as an maCantMatch. 4308 if (OpInfo.hasMatchingInput()) { 4309 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4310 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4311 if ((OpInfo.ConstraintVT.isInteger() != 4312 Input.ConstraintVT.isInteger()) || 4313 (OpInfo.ConstraintVT.getSizeInBits() != 4314 Input.ConstraintVT.getSizeInBits())) { 4315 weightSum = -1; // Can't match. 4316 break; 4317 } 4318 } 4319 } 4320 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4321 if (weight == -1) { 4322 weightSum = -1; 4323 break; 4324 } 4325 weightSum += weight; 4326 } 4327 // Update best. 4328 if (weightSum > bestWeight) { 4329 bestWeight = weightSum; 4330 bestMAIndex = maIndex; 4331 } 4332 } 4333 4334 // Now select chosen alternative in each constraint. 4335 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4336 cIndex != eIndex; ++cIndex) { 4337 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4338 if (cInfo.Type == InlineAsm::isClobber) 4339 continue; 4340 cInfo.selectAlternative(bestMAIndex); 4341 } 4342 } 4343 } 4344 4345 // Check and hook up tied operands, choose constraint code to use. 4346 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4347 cIndex != eIndex; ++cIndex) { 4348 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4349 4350 // If this is an output operand with a matching input operand, look up the 4351 // matching input. If their types mismatch, e.g. one is an integer, the 4352 // other is floating point, or their sizes are different, flag it as an 4353 // error. 4354 if (OpInfo.hasMatchingInput()) { 4355 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4356 4357 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4358 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4359 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4360 OpInfo.ConstraintVT); 4361 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4362 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4363 Input.ConstraintVT); 4364 if ((OpInfo.ConstraintVT.isInteger() != 4365 Input.ConstraintVT.isInteger()) || 4366 (MatchRC.second != InputRC.second)) { 4367 report_fatal_error("Unsupported asm: input constraint" 4368 " with a matching output constraint of" 4369 " incompatible type!"); 4370 } 4371 } 4372 } 4373 } 4374 4375 return ConstraintOperands; 4376 } 4377 4378 /// Return an integer indicating how general CT is. 4379 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4380 switch (CT) { 4381 case TargetLowering::C_Immediate: 4382 case TargetLowering::C_Other: 4383 case TargetLowering::C_Unknown: 4384 return 0; 4385 case TargetLowering::C_Register: 4386 return 1; 4387 case TargetLowering::C_RegisterClass: 4388 return 2; 4389 case TargetLowering::C_Memory: 4390 return 3; 4391 } 4392 llvm_unreachable("Invalid constraint type"); 4393 } 4394 4395 /// Examine constraint type and operand type and determine a weight value. 4396 /// This object must already have been set up with the operand type 4397 /// and the current alternative constraint selected. 4398 TargetLowering::ConstraintWeight 4399 TargetLowering::getMultipleConstraintMatchWeight( 4400 AsmOperandInfo &info, int maIndex) const { 4401 InlineAsm::ConstraintCodeVector *rCodes; 4402 if (maIndex >= (int)info.multipleAlternatives.size()) 4403 rCodes = &info.Codes; 4404 else 4405 rCodes = &info.multipleAlternatives[maIndex].Codes; 4406 ConstraintWeight BestWeight = CW_Invalid; 4407 4408 // Loop over the options, keeping track of the most general one. 4409 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4410 ConstraintWeight weight = 4411 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4412 if (weight > BestWeight) 4413 BestWeight = weight; 4414 } 4415 4416 return BestWeight; 4417 } 4418 4419 /// Examine constraint type and operand type and determine a weight value. 4420 /// This object must already have been set up with the operand type 4421 /// and the current alternative constraint selected. 4422 TargetLowering::ConstraintWeight 4423 TargetLowering::getSingleConstraintMatchWeight( 4424 AsmOperandInfo &info, const char *constraint) const { 4425 ConstraintWeight weight = CW_Invalid; 4426 Value *CallOperandVal = info.CallOperandVal; 4427 // If we don't have a value, we can't do a match, 4428 // but allow it at the lowest weight. 4429 if (!CallOperandVal) 4430 return CW_Default; 4431 // Look at the constraint type. 4432 switch (*constraint) { 4433 case 'i': // immediate integer. 4434 case 'n': // immediate integer with a known value. 4435 if (isa<ConstantInt>(CallOperandVal)) 4436 weight = CW_Constant; 4437 break; 4438 case 's': // non-explicit intregal immediate. 4439 if (isa<GlobalValue>(CallOperandVal)) 4440 weight = CW_Constant; 4441 break; 4442 case 'E': // immediate float if host format. 4443 case 'F': // immediate float. 4444 if (isa<ConstantFP>(CallOperandVal)) 4445 weight = CW_Constant; 4446 break; 4447 case '<': // memory operand with autodecrement. 4448 case '>': // memory operand with autoincrement. 4449 case 'm': // memory operand. 4450 case 'o': // offsettable memory operand 4451 case 'V': // non-offsettable memory operand 4452 weight = CW_Memory; 4453 break; 4454 case 'r': // general register. 4455 case 'g': // general register, memory operand or immediate integer. 4456 // note: Clang converts "g" to "imr". 4457 if (CallOperandVal->getType()->isIntegerTy()) 4458 weight = CW_Register; 4459 break; 4460 case 'X': // any operand. 4461 default: 4462 weight = CW_Default; 4463 break; 4464 } 4465 return weight; 4466 } 4467 4468 /// If there are multiple different constraints that we could pick for this 4469 /// operand (e.g. "imr") try to pick the 'best' one. 4470 /// This is somewhat tricky: constraints fall into four classes: 4471 /// Other -> immediates and magic values 4472 /// Register -> one specific register 4473 /// RegisterClass -> a group of regs 4474 /// Memory -> memory 4475 /// Ideally, we would pick the most specific constraint possible: if we have 4476 /// something that fits into a register, we would pick it. The problem here 4477 /// is that if we have something that could either be in a register or in 4478 /// memory that use of the register could cause selection of *other* 4479 /// operands to fail: they might only succeed if we pick memory. Because of 4480 /// this the heuristic we use is: 4481 /// 4482 /// 1) If there is an 'other' constraint, and if the operand is valid for 4483 /// that constraint, use it. This makes us take advantage of 'i' 4484 /// constraints when available. 4485 /// 2) Otherwise, pick the most general constraint present. This prefers 4486 /// 'm' over 'r', for example. 4487 /// 4488 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4489 const TargetLowering &TLI, 4490 SDValue Op, SelectionDAG *DAG) { 4491 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4492 unsigned BestIdx = 0; 4493 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4494 int BestGenerality = -1; 4495 4496 // Loop over the options, keeping track of the most general one. 4497 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4498 TargetLowering::ConstraintType CType = 4499 TLI.getConstraintType(OpInfo.Codes[i]); 4500 4501 // Indirect 'other' or 'immediate' constraints are not allowed. 4502 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4503 CType == TargetLowering::C_Register || 4504 CType == TargetLowering::C_RegisterClass)) 4505 continue; 4506 4507 // If this is an 'other' or 'immediate' constraint, see if the operand is 4508 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4509 // the operand is an integer in the range [0..31] we want to use I (saving a 4510 // load of a register), otherwise we must use 'r'. 4511 if ((CType == TargetLowering::C_Other || 4512 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4513 assert(OpInfo.Codes[i].size() == 1 && 4514 "Unhandled multi-letter 'other' constraint"); 4515 std::vector<SDValue> ResultOps; 4516 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4517 ResultOps, *DAG); 4518 if (!ResultOps.empty()) { 4519 BestType = CType; 4520 BestIdx = i; 4521 break; 4522 } 4523 } 4524 4525 // Things with matching constraints can only be registers, per gcc 4526 // documentation. This mainly affects "g" constraints. 4527 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4528 continue; 4529 4530 // This constraint letter is more general than the previous one, use it. 4531 int Generality = getConstraintGenerality(CType); 4532 if (Generality > BestGenerality) { 4533 BestType = CType; 4534 BestIdx = i; 4535 BestGenerality = Generality; 4536 } 4537 } 4538 4539 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4540 OpInfo.ConstraintType = BestType; 4541 } 4542 4543 /// Determines the constraint code and constraint type to use for the specific 4544 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4545 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4546 SDValue Op, 4547 SelectionDAG *DAG) const { 4548 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4549 4550 // Single-letter constraints ('r') are very common. 4551 if (OpInfo.Codes.size() == 1) { 4552 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4553 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4554 } else { 4555 ChooseConstraint(OpInfo, *this, Op, DAG); 4556 } 4557 4558 // 'X' matches anything. 4559 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4560 // Labels and constants are handled elsewhere ('X' is the only thing 4561 // that matches labels). For Functions, the type here is the type of 4562 // the result, which is not what we want to look at; leave them alone. 4563 Value *v = OpInfo.CallOperandVal; 4564 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4565 OpInfo.CallOperandVal = v; 4566 return; 4567 } 4568 4569 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4570 return; 4571 4572 // Otherwise, try to resolve it to something we know about by looking at 4573 // the actual operand type. 4574 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4575 OpInfo.ConstraintCode = Repl; 4576 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4577 } 4578 } 4579 } 4580 4581 /// Given an exact SDIV by a constant, create a multiplication 4582 /// with the multiplicative inverse of the constant. 4583 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4584 const SDLoc &dl, SelectionDAG &DAG, 4585 SmallVectorImpl<SDNode *> &Created) { 4586 SDValue Op0 = N->getOperand(0); 4587 SDValue Op1 = N->getOperand(1); 4588 EVT VT = N->getValueType(0); 4589 EVT SVT = VT.getScalarType(); 4590 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4591 EVT ShSVT = ShVT.getScalarType(); 4592 4593 bool UseSRA = false; 4594 SmallVector<SDValue, 16> Shifts, Factors; 4595 4596 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4597 if (C->isNullValue()) 4598 return false; 4599 APInt Divisor = C->getAPIntValue(); 4600 unsigned Shift = Divisor.countTrailingZeros(); 4601 if (Shift) { 4602 Divisor.ashrInPlace(Shift); 4603 UseSRA = true; 4604 } 4605 // Calculate the multiplicative inverse, using Newton's method. 4606 APInt t; 4607 APInt Factor = Divisor; 4608 while ((t = Divisor * Factor) != 1) 4609 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4610 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4611 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4612 return true; 4613 }; 4614 4615 // Collect all magic values from the build vector. 4616 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4617 return SDValue(); 4618 4619 SDValue Shift, Factor; 4620 if (VT.isVector()) { 4621 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4622 Factor = DAG.getBuildVector(VT, dl, Factors); 4623 } else { 4624 Shift = Shifts[0]; 4625 Factor = Factors[0]; 4626 } 4627 4628 SDValue Res = Op0; 4629 4630 // Shift the value upfront if it is even, so the LSB is one. 4631 if (UseSRA) { 4632 // TODO: For UDIV use SRL instead of SRA. 4633 SDNodeFlags Flags; 4634 Flags.setExact(true); 4635 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4636 Created.push_back(Res.getNode()); 4637 } 4638 4639 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4640 } 4641 4642 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4643 SelectionDAG &DAG, 4644 SmallVectorImpl<SDNode *> &Created) const { 4645 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4646 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4647 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4648 return SDValue(N, 0); // Lower SDIV as SDIV 4649 return SDValue(); 4650 } 4651 4652 /// Given an ISD::SDIV node expressing a divide by constant, 4653 /// return a DAG expression to select that will generate the same value by 4654 /// multiplying by a magic number. 4655 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4656 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4657 bool IsAfterLegalization, 4658 SmallVectorImpl<SDNode *> &Created) const { 4659 SDLoc dl(N); 4660 EVT VT = N->getValueType(0); 4661 EVT SVT = VT.getScalarType(); 4662 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4663 EVT ShSVT = ShVT.getScalarType(); 4664 unsigned EltBits = VT.getScalarSizeInBits(); 4665 4666 // Check to see if we can do this. 4667 // FIXME: We should be more aggressive here. 4668 if (!isTypeLegal(VT)) 4669 return SDValue(); 4670 4671 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4672 if (N->getFlags().hasExact()) 4673 return BuildExactSDIV(*this, N, dl, DAG, Created); 4674 4675 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4676 4677 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4678 if (C->isNullValue()) 4679 return false; 4680 4681 const APInt &Divisor = C->getAPIntValue(); 4682 APInt::ms magics = Divisor.magic(); 4683 int NumeratorFactor = 0; 4684 int ShiftMask = -1; 4685 4686 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4687 // If d is +1/-1, we just multiply the numerator by +1/-1. 4688 NumeratorFactor = Divisor.getSExtValue(); 4689 magics.m = 0; 4690 magics.s = 0; 4691 ShiftMask = 0; 4692 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4693 // If d > 0 and m < 0, add the numerator. 4694 NumeratorFactor = 1; 4695 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4696 // If d < 0 and m > 0, subtract the numerator. 4697 NumeratorFactor = -1; 4698 } 4699 4700 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4701 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4702 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4703 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4704 return true; 4705 }; 4706 4707 SDValue N0 = N->getOperand(0); 4708 SDValue N1 = N->getOperand(1); 4709 4710 // Collect the shifts / magic values from each element. 4711 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4712 return SDValue(); 4713 4714 SDValue MagicFactor, Factor, Shift, ShiftMask; 4715 if (VT.isVector()) { 4716 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4717 Factor = DAG.getBuildVector(VT, dl, Factors); 4718 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4719 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4720 } else { 4721 MagicFactor = MagicFactors[0]; 4722 Factor = Factors[0]; 4723 Shift = Shifts[0]; 4724 ShiftMask = ShiftMasks[0]; 4725 } 4726 4727 // Multiply the numerator (operand 0) by the magic value. 4728 // FIXME: We should support doing a MUL in a wider type. 4729 SDValue Q; 4730 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4731 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4732 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4733 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4734 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4735 SDValue LoHi = 4736 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4737 Q = SDValue(LoHi.getNode(), 1); 4738 } else 4739 return SDValue(); // No mulhs or equivalent. 4740 Created.push_back(Q.getNode()); 4741 4742 // (Optionally) Add/subtract the numerator using Factor. 4743 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4744 Created.push_back(Factor.getNode()); 4745 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4746 Created.push_back(Q.getNode()); 4747 4748 // Shift right algebraic by shift value. 4749 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4750 Created.push_back(Q.getNode()); 4751 4752 // Extract the sign bit, mask it and add it to the quotient. 4753 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4754 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4755 Created.push_back(T.getNode()); 4756 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4757 Created.push_back(T.getNode()); 4758 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4759 } 4760 4761 /// Given an ISD::UDIV node expressing a divide by constant, 4762 /// return a DAG expression to select that will generate the same value by 4763 /// multiplying by a magic number. 4764 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4765 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4766 bool IsAfterLegalization, 4767 SmallVectorImpl<SDNode *> &Created) const { 4768 SDLoc dl(N); 4769 EVT VT = N->getValueType(0); 4770 EVT SVT = VT.getScalarType(); 4771 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4772 EVT ShSVT = ShVT.getScalarType(); 4773 unsigned EltBits = VT.getScalarSizeInBits(); 4774 4775 // Check to see if we can do this. 4776 // FIXME: We should be more aggressive here. 4777 if (!isTypeLegal(VT)) 4778 return SDValue(); 4779 4780 bool UseNPQ = false; 4781 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4782 4783 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4784 if (C->isNullValue()) 4785 return false; 4786 // FIXME: We should use a narrower constant when the upper 4787 // bits are known to be zero. 4788 APInt Divisor = C->getAPIntValue(); 4789 APInt::mu magics = Divisor.magicu(); 4790 unsigned PreShift = 0, PostShift = 0; 4791 4792 // If the divisor is even, we can avoid using the expensive fixup by 4793 // shifting the divided value upfront. 4794 if (magics.a != 0 && !Divisor[0]) { 4795 PreShift = Divisor.countTrailingZeros(); 4796 // Get magic number for the shifted divisor. 4797 magics = Divisor.lshr(PreShift).magicu(PreShift); 4798 assert(magics.a == 0 && "Should use cheap fixup now"); 4799 } 4800 4801 APInt Magic = magics.m; 4802 4803 unsigned SelNPQ; 4804 if (magics.a == 0 || Divisor.isOneValue()) { 4805 assert(magics.s < Divisor.getBitWidth() && 4806 "We shouldn't generate an undefined shift!"); 4807 PostShift = magics.s; 4808 SelNPQ = false; 4809 } else { 4810 PostShift = magics.s - 1; 4811 SelNPQ = true; 4812 } 4813 4814 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4815 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4816 NPQFactors.push_back( 4817 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4818 : APInt::getNullValue(EltBits), 4819 dl, SVT)); 4820 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4821 UseNPQ |= SelNPQ; 4822 return true; 4823 }; 4824 4825 SDValue N0 = N->getOperand(0); 4826 SDValue N1 = N->getOperand(1); 4827 4828 // Collect the shifts/magic values from each element. 4829 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4830 return SDValue(); 4831 4832 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4833 if (VT.isVector()) { 4834 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4835 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4836 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4837 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4838 } else { 4839 PreShift = PreShifts[0]; 4840 MagicFactor = MagicFactors[0]; 4841 PostShift = PostShifts[0]; 4842 } 4843 4844 SDValue Q = N0; 4845 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4846 Created.push_back(Q.getNode()); 4847 4848 // FIXME: We should support doing a MUL in a wider type. 4849 auto GetMULHU = [&](SDValue X, SDValue Y) { 4850 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4851 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4852 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4853 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4854 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4855 SDValue LoHi = 4856 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4857 return SDValue(LoHi.getNode(), 1); 4858 } 4859 return SDValue(); // No mulhu or equivalent 4860 }; 4861 4862 // Multiply the numerator (operand 0) by the magic value. 4863 Q = GetMULHU(Q, MagicFactor); 4864 if (!Q) 4865 return SDValue(); 4866 4867 Created.push_back(Q.getNode()); 4868 4869 if (UseNPQ) { 4870 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4871 Created.push_back(NPQ.getNode()); 4872 4873 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4874 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4875 if (VT.isVector()) 4876 NPQ = GetMULHU(NPQ, NPQFactor); 4877 else 4878 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4879 4880 Created.push_back(NPQ.getNode()); 4881 4882 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4883 Created.push_back(Q.getNode()); 4884 } 4885 4886 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 4887 Created.push_back(Q.getNode()); 4888 4889 SDValue One = DAG.getConstant(1, dl, VT); 4890 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 4891 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4892 } 4893 4894 /// If all values in Values that *don't* match the predicate are same 'splat' 4895 /// value, then replace all values with that splat value. 4896 /// Else, if AlternativeReplacement was provided, then replace all values that 4897 /// do match predicate with AlternativeReplacement value. 4898 static void 4899 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 4900 std::function<bool(SDValue)> Predicate, 4901 SDValue AlternativeReplacement = SDValue()) { 4902 SDValue Replacement; 4903 // Is there a value for which the Predicate does *NOT* match? What is it? 4904 auto SplatValue = llvm::find_if_not(Values, Predicate); 4905 if (SplatValue != Values.end()) { 4906 // Does Values consist only of SplatValue's and values matching Predicate? 4907 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 4908 return Value == *SplatValue || Predicate(Value); 4909 })) // Then we shall replace values matching predicate with SplatValue. 4910 Replacement = *SplatValue; 4911 } 4912 if (!Replacement) { 4913 // Oops, we did not find the "baseline" splat value. 4914 if (!AlternativeReplacement) 4915 return; // Nothing to do. 4916 // Let's replace with provided value then. 4917 Replacement = AlternativeReplacement; 4918 } 4919 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 4920 } 4921 4922 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 4923 /// where the divisor is constant and the comparison target is zero, 4924 /// return a DAG expression that will generate the same comparison result 4925 /// using only multiplications, additions and shifts/rotations. 4926 /// Ref: "Hacker's Delight" 10-17. 4927 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 4928 SDValue CompTargetNode, 4929 ISD::CondCode Cond, 4930 DAGCombinerInfo &DCI, 4931 const SDLoc &DL) const { 4932 SmallVector<SDNode *, 5> Built; 4933 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 4934 DCI, DL, Built)) { 4935 for (SDNode *N : Built) 4936 DCI.AddToWorklist(N); 4937 return Folded; 4938 } 4939 4940 return SDValue(); 4941 } 4942 4943 SDValue 4944 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 4945 SDValue CompTargetNode, ISD::CondCode Cond, 4946 DAGCombinerInfo &DCI, const SDLoc &DL, 4947 SmallVectorImpl<SDNode *> &Created) const { 4948 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 4949 // - D must be constant, with D = D0 * 2^K where D0 is odd 4950 // - P is the multiplicative inverse of D0 modulo 2^W 4951 // - Q = floor(((2^W) - 1) / D) 4952 // where W is the width of the common type of N and D. 4953 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4954 "Only applicable for (in)equality comparisons."); 4955 4956 SelectionDAG &DAG = DCI.DAG; 4957 4958 EVT VT = REMNode.getValueType(); 4959 EVT SVT = VT.getScalarType(); 4960 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4961 EVT ShSVT = ShVT.getScalarType(); 4962 4963 // If MUL is unavailable, we cannot proceed in any case. 4964 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 4965 return SDValue(); 4966 4967 bool ComparingWithAllZeros = true; 4968 bool AllComparisonsWithNonZerosAreTautological = true; 4969 bool HadTautologicalLanes = false; 4970 bool AllLanesAreTautological = true; 4971 bool HadEvenDivisor = false; 4972 bool AllDivisorsArePowerOfTwo = true; 4973 bool HadTautologicalInvertedLanes = false; 4974 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 4975 4976 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 4977 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 4978 if (CDiv->isNullValue()) 4979 return false; 4980 4981 const APInt &D = CDiv->getAPIntValue(); 4982 const APInt &Cmp = CCmp->getAPIntValue(); 4983 4984 ComparingWithAllZeros &= Cmp.isNullValue(); 4985 4986 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 4987 // if C2 is not less than C1, the comparison is always false. 4988 // But we will only be able to produce the comparison that will give the 4989 // opposive tautological answer. So this lane would need to be fixed up. 4990 bool TautologicalInvertedLane = D.ule(Cmp); 4991 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 4992 4993 // If all lanes are tautological (either all divisors are ones, or divisor 4994 // is not greater than the constant we are comparing with), 4995 // we will prefer to avoid the fold. 4996 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 4997 HadTautologicalLanes |= TautologicalLane; 4998 AllLanesAreTautological &= TautologicalLane; 4999 5000 // If we are comparing with non-zero, we need'll need to subtract said 5001 // comparison value from the LHS. But there is no point in doing that if 5002 // every lane where we are comparing with non-zero is tautological.. 5003 if (!Cmp.isNullValue()) 5004 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5005 5006 // Decompose D into D0 * 2^K 5007 unsigned K = D.countTrailingZeros(); 5008 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5009 APInt D0 = D.lshr(K); 5010 5011 // D is even if it has trailing zeros. 5012 HadEvenDivisor |= (K != 0); 5013 // D is a power-of-two if D0 is one. 5014 // If all divisors are power-of-two, we will prefer to avoid the fold. 5015 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5016 5017 // P = inv(D0, 2^W) 5018 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5019 unsigned W = D.getBitWidth(); 5020 APInt P = D0.zext(W + 1) 5021 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5022 .trunc(W); 5023 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5024 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5025 5026 // Q = floor((2^W - 1) u/ D) 5027 // R = ((2^W - 1) u% D) 5028 APInt Q, R; 5029 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5030 5031 // If we are comparing with zero, then that comparison constant is okay, 5032 // else it may need to be one less than that. 5033 if (Cmp.ugt(R)) 5034 Q -= 1; 5035 5036 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5037 "We are expecting that K is always less than all-ones for ShSVT"); 5038 5039 // If the lane is tautological the result can be constant-folded. 5040 if (TautologicalLane) { 5041 // Set P and K amount to a bogus values so we can try to splat them. 5042 P = 0; 5043 K = -1; 5044 // And ensure that comparison constant is tautological, 5045 // it will always compare true/false. 5046 Q = -1; 5047 } 5048 5049 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5050 KAmts.push_back( 5051 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5052 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5053 return true; 5054 }; 5055 5056 SDValue N = REMNode.getOperand(0); 5057 SDValue D = REMNode.getOperand(1); 5058 5059 // Collect the values from each element. 5060 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5061 return SDValue(); 5062 5063 // If all lanes are tautological, the result can be constant-folded. 5064 if (AllLanesAreTautological) 5065 return SDValue(); 5066 5067 // If this is a urem by a powers-of-two, avoid the fold since it can be 5068 // best implemented as a bit test. 5069 if (AllDivisorsArePowerOfTwo) 5070 return SDValue(); 5071 5072 SDValue PVal, KVal, QVal; 5073 if (VT.isVector()) { 5074 if (HadTautologicalLanes) { 5075 // Try to turn PAmts into a splat, since we don't care about the values 5076 // that are currently '0'. If we can't, just keep '0'`s. 5077 turnVectorIntoSplatVector(PAmts, isNullConstant); 5078 // Try to turn KAmts into a splat, since we don't care about the values 5079 // that are currently '-1'. If we can't, change them to '0'`s. 5080 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5081 DAG.getConstant(0, DL, ShSVT)); 5082 } 5083 5084 PVal = DAG.getBuildVector(VT, DL, PAmts); 5085 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5086 QVal = DAG.getBuildVector(VT, DL, QAmts); 5087 } else { 5088 PVal = PAmts[0]; 5089 KVal = KAmts[0]; 5090 QVal = QAmts[0]; 5091 } 5092 5093 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5094 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5095 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5096 assert(CompTargetNode.getValueType() == N.getValueType() && 5097 "Expecting that the types on LHS and RHS of comparisons match."); 5098 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5099 } 5100 5101 // (mul N, P) 5102 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5103 Created.push_back(Op0.getNode()); 5104 5105 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5106 // divisors as a performance improvement, since rotating by 0 is a no-op. 5107 if (HadEvenDivisor) { 5108 // We need ROTR to do this. 5109 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5110 return SDValue(); 5111 SDNodeFlags Flags; 5112 Flags.setExact(true); 5113 // UREM: (rotr (mul N, P), K) 5114 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5115 Created.push_back(Op0.getNode()); 5116 } 5117 5118 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5119 SDValue NewCC = 5120 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5121 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5122 if (!HadTautologicalInvertedLanes) 5123 return NewCC; 5124 5125 // If any lanes previously compared always-false, the NewCC will give 5126 // always-true result for them, so we need to fixup those lanes. 5127 // Or the other way around for inequality predicate. 5128 assert(VT.isVector() && "Can/should only get here for vectors."); 5129 Created.push_back(NewCC.getNode()); 5130 5131 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5132 // if C2 is not less than C1, the comparison is always false. 5133 // But we have produced the comparison that will give the 5134 // opposive tautological answer. So these lanes would need to be fixed up. 5135 SDValue TautologicalInvertedChannels = 5136 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5137 Created.push_back(TautologicalInvertedChannels.getNode()); 5138 5139 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5140 // If we have a vector select, let's replace the comparison results in the 5141 // affected lanes with the correct tautological result. 5142 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5143 DL, SETCCVT, SETCCVT); 5144 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5145 Replacement, NewCC); 5146 } 5147 5148 // Else, we can just invert the comparison result in the appropriate lanes. 5149 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5150 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5151 TautologicalInvertedChannels); 5152 5153 return SDValue(); // Don't know how to lower. 5154 } 5155 5156 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5157 /// where the divisor is constant and the comparison target is zero, 5158 /// return a DAG expression that will generate the same comparison result 5159 /// using only multiplications, additions and shifts/rotations. 5160 /// Ref: "Hacker's Delight" 10-17. 5161 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5162 SDValue CompTargetNode, 5163 ISD::CondCode Cond, 5164 DAGCombinerInfo &DCI, 5165 const SDLoc &DL) const { 5166 SmallVector<SDNode *, 7> Built; 5167 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5168 DCI, DL, Built)) { 5169 assert(Built.size() <= 7 && "Max size prediction failed."); 5170 for (SDNode *N : Built) 5171 DCI.AddToWorklist(N); 5172 return Folded; 5173 } 5174 5175 return SDValue(); 5176 } 5177 5178 SDValue 5179 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5180 SDValue CompTargetNode, ISD::CondCode Cond, 5181 DAGCombinerInfo &DCI, const SDLoc &DL, 5182 SmallVectorImpl<SDNode *> &Created) const { 5183 // Fold: 5184 // (seteq/ne (srem N, D), 0) 5185 // To: 5186 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5187 // 5188 // - D must be constant, with D = D0 * 2^K where D0 is odd 5189 // - P is the multiplicative inverse of D0 modulo 2^W 5190 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5191 // - Q = floor((2 * A) / (2^K)) 5192 // where W is the width of the common type of N and D. 5193 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5194 "Only applicable for (in)equality comparisons."); 5195 5196 SelectionDAG &DAG = DCI.DAG; 5197 5198 EVT VT = REMNode.getValueType(); 5199 EVT SVT = VT.getScalarType(); 5200 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5201 EVT ShSVT = ShVT.getScalarType(); 5202 5203 // If MUL is unavailable, we cannot proceed in any case. 5204 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5205 return SDValue(); 5206 5207 // TODO: Could support comparing with non-zero too. 5208 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5209 if (!CompTarget || !CompTarget->isNullValue()) 5210 return SDValue(); 5211 5212 bool HadIntMinDivisor = false; 5213 bool HadOneDivisor = false; 5214 bool AllDivisorsAreOnes = true; 5215 bool HadEvenDivisor = false; 5216 bool NeedToApplyOffset = false; 5217 bool AllDivisorsArePowerOfTwo = true; 5218 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5219 5220 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5221 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5222 if (C->isNullValue()) 5223 return false; 5224 5225 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5226 5227 // WARNING: this fold is only valid for positive divisors! 5228 APInt D = C->getAPIntValue(); 5229 if (D.isNegative()) 5230 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5231 5232 HadIntMinDivisor |= D.isMinSignedValue(); 5233 5234 // If all divisors are ones, we will prefer to avoid the fold. 5235 HadOneDivisor |= D.isOneValue(); 5236 AllDivisorsAreOnes &= D.isOneValue(); 5237 5238 // Decompose D into D0 * 2^K 5239 unsigned K = D.countTrailingZeros(); 5240 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5241 APInt D0 = D.lshr(K); 5242 5243 if (!D.isMinSignedValue()) { 5244 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5245 // we don't care about this lane in this fold, we'll special-handle it. 5246 HadEvenDivisor |= (K != 0); 5247 } 5248 5249 // D is a power-of-two if D0 is one. This includes INT_MIN. 5250 // If all divisors are power-of-two, we will prefer to avoid the fold. 5251 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5252 5253 // P = inv(D0, 2^W) 5254 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5255 unsigned W = D.getBitWidth(); 5256 APInt P = D0.zext(W + 1) 5257 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5258 .trunc(W); 5259 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5260 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5261 5262 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5263 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5264 A.clearLowBits(K); 5265 5266 if (!D.isMinSignedValue()) { 5267 // If divisor INT_MIN, then we don't care about this lane in this fold, 5268 // we'll special-handle it. 5269 NeedToApplyOffset |= A != 0; 5270 } 5271 5272 // Q = floor((2 * A) / (2^K)) 5273 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5274 5275 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5276 "We are expecting that A is always less than all-ones for SVT"); 5277 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5278 "We are expecting that K is always less than all-ones for ShSVT"); 5279 5280 // If the divisor is 1 the result can be constant-folded. Likewise, we 5281 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5282 if (D.isOneValue()) { 5283 // Set P, A and K to a bogus values so we can try to splat them. 5284 P = 0; 5285 A = -1; 5286 K = -1; 5287 5288 // x ?% 1 == 0 <--> true <--> x u<= -1 5289 Q = -1; 5290 } 5291 5292 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5293 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5294 KAmts.push_back( 5295 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5296 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5297 return true; 5298 }; 5299 5300 SDValue N = REMNode.getOperand(0); 5301 SDValue D = REMNode.getOperand(1); 5302 5303 // Collect the values from each element. 5304 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5305 return SDValue(); 5306 5307 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5308 if (AllDivisorsAreOnes) 5309 return SDValue(); 5310 5311 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5312 // since it can be best implemented as a bit test. 5313 if (AllDivisorsArePowerOfTwo) 5314 return SDValue(); 5315 5316 SDValue PVal, AVal, KVal, QVal; 5317 if (VT.isVector()) { 5318 if (HadOneDivisor) { 5319 // Try to turn PAmts into a splat, since we don't care about the values 5320 // that are currently '0'. If we can't, just keep '0'`s. 5321 turnVectorIntoSplatVector(PAmts, isNullConstant); 5322 // Try to turn AAmts into a splat, since we don't care about the 5323 // values that are currently '-1'. If we can't, change them to '0'`s. 5324 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5325 DAG.getConstant(0, DL, SVT)); 5326 // Try to turn KAmts into a splat, since we don't care about the values 5327 // that are currently '-1'. If we can't, change them to '0'`s. 5328 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5329 DAG.getConstant(0, DL, ShSVT)); 5330 } 5331 5332 PVal = DAG.getBuildVector(VT, DL, PAmts); 5333 AVal = DAG.getBuildVector(VT, DL, AAmts); 5334 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5335 QVal = DAG.getBuildVector(VT, DL, QAmts); 5336 } else { 5337 PVal = PAmts[0]; 5338 AVal = AAmts[0]; 5339 KVal = KAmts[0]; 5340 QVal = QAmts[0]; 5341 } 5342 5343 // (mul N, P) 5344 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5345 Created.push_back(Op0.getNode()); 5346 5347 if (NeedToApplyOffset) { 5348 // We need ADD to do this. 5349 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5350 return SDValue(); 5351 5352 // (add (mul N, P), A) 5353 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5354 Created.push_back(Op0.getNode()); 5355 } 5356 5357 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5358 // divisors as a performance improvement, since rotating by 0 is a no-op. 5359 if (HadEvenDivisor) { 5360 // We need ROTR to do this. 5361 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5362 return SDValue(); 5363 SDNodeFlags Flags; 5364 Flags.setExact(true); 5365 // SREM: (rotr (add (mul N, P), A), K) 5366 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5367 Created.push_back(Op0.getNode()); 5368 } 5369 5370 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5371 SDValue Fold = 5372 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5373 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5374 5375 // If we didn't have lanes with INT_MIN divisor, then we're done. 5376 if (!HadIntMinDivisor) 5377 return Fold; 5378 5379 // That fold is only valid for positive divisors. Which effectively means, 5380 // it is invalid for INT_MIN divisors. So if we have such a lane, 5381 // we must fix-up results for said lanes. 5382 assert(VT.isVector() && "Can/should only get here for vectors."); 5383 5384 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5385 !isOperationLegalOrCustom(ISD::AND, VT) || 5386 !isOperationLegalOrCustom(Cond, VT) || 5387 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5388 return SDValue(); 5389 5390 Created.push_back(Fold.getNode()); 5391 5392 SDValue IntMin = DAG.getConstant( 5393 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5394 SDValue IntMax = DAG.getConstant( 5395 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5396 SDValue Zero = 5397 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5398 5399 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5400 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5401 Created.push_back(DivisorIsIntMin.getNode()); 5402 5403 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5404 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5405 Created.push_back(Masked.getNode()); 5406 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5407 Created.push_back(MaskedIsZero.getNode()); 5408 5409 // To produce final result we need to blend 2 vectors: 'SetCC' and 5410 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5411 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5412 // constant-folded, select can get lowered to a shuffle with constant mask. 5413 SDValue Blended = 5414 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5415 5416 return Blended; 5417 } 5418 5419 bool TargetLowering:: 5420 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5421 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5422 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5423 "be a constant integer"); 5424 return true; 5425 } 5426 5427 return false; 5428 } 5429 5430 char TargetLowering::isNegatibleForFree(SDValue Op, SelectionDAG &DAG, 5431 bool LegalOperations, bool ForCodeSize, 5432 unsigned Depth) const { 5433 // fneg is removable even if it has multiple uses. 5434 if (Op.getOpcode() == ISD::FNEG) 5435 return 2; 5436 5437 // Don't allow anything with multiple uses unless we know it is free. 5438 EVT VT = Op.getValueType(); 5439 const SDNodeFlags Flags = Op->getFlags(); 5440 const TargetOptions &Options = DAG.getTarget().Options; 5441 if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND && 5442 isFPExtFree(VT, Op.getOperand(0).getValueType()))) 5443 return 0; 5444 5445 // Don't recurse exponentially. 5446 if (Depth > SelectionDAG::MaxRecursionDepth) 5447 return 0; 5448 5449 switch (Op.getOpcode()) { 5450 case ISD::ConstantFP: { 5451 if (!LegalOperations) 5452 return 1; 5453 5454 // Don't invert constant FP values after legalization unless the target says 5455 // the negated constant is legal. 5456 return isOperationLegal(ISD::ConstantFP, VT) || 5457 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5458 ForCodeSize); 5459 } 5460 case ISD::BUILD_VECTOR: { 5461 // Only permit BUILD_VECTOR of constants. 5462 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5463 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5464 })) 5465 return 0; 5466 if (!LegalOperations) 5467 return 1; 5468 if (isOperationLegal(ISD::ConstantFP, VT) && 5469 isOperationLegal(ISD::BUILD_VECTOR, VT)) 5470 return 1; 5471 return llvm::all_of(Op->op_values(), [&](SDValue N) { 5472 return N.isUndef() || 5473 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5474 ForCodeSize); 5475 }); 5476 } 5477 case ISD::FADD: 5478 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5479 return 0; 5480 5481 // After operation legalization, it might not be legal to create new FSUBs. 5482 if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5483 return 0; 5484 5485 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5486 if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5487 ForCodeSize, Depth + 1)) 5488 return V; 5489 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5490 return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5491 ForCodeSize, Depth + 1); 5492 case ISD::FSUB: 5493 // We can't turn -(A-B) into B-A when we honor signed zeros. 5494 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5495 return 0; 5496 5497 // fold (fneg (fsub A, B)) -> (fsub B, A) 5498 return 1; 5499 5500 case ISD::FMUL: 5501 case ISD::FDIV: 5502 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 5503 if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5504 ForCodeSize, Depth + 1)) 5505 return V; 5506 5507 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5508 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5509 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5510 return 0; 5511 5512 return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5513 ForCodeSize, Depth + 1); 5514 5515 case ISD::FMA: 5516 case ISD::FMAD: { 5517 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5518 return 0; 5519 5520 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5521 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5522 char V2 = isNegatibleForFree(Op.getOperand(2), DAG, LegalOperations, 5523 ForCodeSize, Depth + 1); 5524 if (!V2) 5525 return 0; 5526 5527 // One of Op0/Op1 must be cheaply negatible, then select the cheapest. 5528 char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5529 ForCodeSize, Depth + 1); 5530 char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5531 ForCodeSize, Depth + 1); 5532 char V01 = std::max(V0, V1); 5533 return V01 ? std::max(V01, V2) : 0; 5534 } 5535 5536 case ISD::FP_EXTEND: 5537 case ISD::FP_ROUND: 5538 case ISD::FSIN: 5539 return isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5540 ForCodeSize, Depth + 1); 5541 } 5542 5543 return 0; 5544 } 5545 5546 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5547 bool LegalOperations, 5548 bool ForCodeSize, 5549 unsigned Depth) const { 5550 // fneg is removable even if it has multiple uses. 5551 if (Op.getOpcode() == ISD::FNEG) 5552 return Op.getOperand(0); 5553 5554 assert(Depth <= SelectionDAG::MaxRecursionDepth && 5555 "getNegatedExpression doesn't match isNegatibleForFree"); 5556 const SDNodeFlags Flags = Op->getFlags(); 5557 5558 switch (Op.getOpcode()) { 5559 case ISD::ConstantFP: { 5560 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5561 V.changeSign(); 5562 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 5563 } 5564 case ISD::BUILD_VECTOR: { 5565 SmallVector<SDValue, 4> Ops; 5566 for (SDValue C : Op->op_values()) { 5567 if (C.isUndef()) { 5568 Ops.push_back(C); 5569 continue; 5570 } 5571 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5572 V.changeSign(); 5573 Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType())); 5574 } 5575 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops); 5576 } 5577 case ISD::FADD: 5578 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5579 Flags.hasNoSignedZeros()) && 5580 "Expected NSZ fp-flag"); 5581 5582 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5583 if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5584 Depth + 1)) 5585 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5586 getNegatedExpression(Op.getOperand(0), DAG, 5587 LegalOperations, ForCodeSize, 5588 Depth + 1), 5589 Op.getOperand(1), Flags); 5590 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5591 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5592 getNegatedExpression(Op.getOperand(1), DAG, 5593 LegalOperations, ForCodeSize, 5594 Depth + 1), 5595 Op.getOperand(0), Flags); 5596 case ISD::FSUB: 5597 // fold (fneg (fsub 0, B)) -> B 5598 if (ConstantFPSDNode *N0CFP = 5599 isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true)) 5600 if (N0CFP->isZero()) 5601 return Op.getOperand(1); 5602 5603 // fold (fneg (fsub A, B)) -> (fsub B, A) 5604 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5605 Op.getOperand(1), Op.getOperand(0), Flags); 5606 5607 case ISD::FMUL: 5608 case ISD::FDIV: 5609 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5610 if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5611 Depth + 1)) 5612 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5613 getNegatedExpression(Op.getOperand(0), DAG, 5614 LegalOperations, ForCodeSize, 5615 Depth + 1), 5616 Op.getOperand(1), Flags); 5617 5618 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5619 return DAG.getNode( 5620 Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0), 5621 getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5622 ForCodeSize, Depth + 1), 5623 Flags); 5624 5625 case ISD::FMA: 5626 case ISD::FMAD: { 5627 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5628 Flags.hasNoSignedZeros()) && 5629 "Expected NSZ fp-flag"); 5630 5631 SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations, 5632 ForCodeSize, Depth + 1); 5633 5634 char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5635 ForCodeSize, Depth + 1); 5636 char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5637 ForCodeSize, Depth + 1); 5638 // TODO: This is a hack. It is possible that costs have changed between now 5639 // and the initial calls to isNegatibleForFree(). That is because we 5640 // are rewriting the expression, and that may change the number of 5641 // uses (and therefore the cost) of values. If the negation costs are 5642 // equal, only negate this value if it is a constant. Otherwise, try 5643 // operand 1. A better fix would eliminate uses as a cost factor or 5644 // track the change in uses as we rewrite the expression. 5645 if (V0 > V1 || (V0 == V1 && isa<ConstantFPSDNode>(Op.getOperand(0)))) { 5646 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5647 SDValue Neg0 = getNegatedExpression( 5648 Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1); 5649 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0, 5650 Op.getOperand(1), Neg2, Flags); 5651 } 5652 5653 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5654 SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5655 ForCodeSize, Depth + 1); 5656 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5657 Op.getOperand(0), Neg1, Neg2, Flags); 5658 } 5659 5660 case ISD::FP_EXTEND: 5661 case ISD::FSIN: 5662 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5663 getNegatedExpression(Op.getOperand(0), DAG, 5664 LegalOperations, ForCodeSize, 5665 Depth + 1)); 5666 case ISD::FP_ROUND: 5667 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 5668 getNegatedExpression(Op.getOperand(0), DAG, 5669 LegalOperations, ForCodeSize, 5670 Depth + 1), 5671 Op.getOperand(1)); 5672 } 5673 5674 llvm_unreachable("Unknown code"); 5675 } 5676 5677 //===----------------------------------------------------------------------===// 5678 // Legalization Utilities 5679 //===----------------------------------------------------------------------===// 5680 5681 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5682 SDValue LHS, SDValue RHS, 5683 SmallVectorImpl<SDValue> &Result, 5684 EVT HiLoVT, SelectionDAG &DAG, 5685 MulExpansionKind Kind, SDValue LL, 5686 SDValue LH, SDValue RL, SDValue RH) const { 5687 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5688 Opcode == ISD::SMUL_LOHI); 5689 5690 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5691 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5692 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5693 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5694 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5695 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5696 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5697 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5698 5699 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5700 return false; 5701 5702 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5703 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5704 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5705 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5706 5707 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5708 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5709 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5710 5711 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5712 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5713 bool Signed) -> bool { 5714 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5715 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5716 Hi = SDValue(Lo.getNode(), 1); 5717 return true; 5718 } 5719 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5720 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5721 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5722 return true; 5723 } 5724 return false; 5725 }; 5726 5727 SDValue Lo, Hi; 5728 5729 if (!LL.getNode() && !RL.getNode() && 5730 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5731 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5732 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5733 } 5734 5735 if (!LL.getNode()) 5736 return false; 5737 5738 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5739 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5740 DAG.MaskedValueIsZero(RHS, HighMask)) { 5741 // The inputs are both zero-extended. 5742 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5743 Result.push_back(Lo); 5744 Result.push_back(Hi); 5745 if (Opcode != ISD::MUL) { 5746 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5747 Result.push_back(Zero); 5748 Result.push_back(Zero); 5749 } 5750 return true; 5751 } 5752 } 5753 5754 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5755 RHSSB > InnerBitSize) { 5756 // The input values are both sign-extended. 5757 // TODO non-MUL case? 5758 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5759 Result.push_back(Lo); 5760 Result.push_back(Hi); 5761 return true; 5762 } 5763 } 5764 5765 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5766 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5767 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5768 // FIXME getShiftAmountTy does not always return a sensible result when VT 5769 // is an illegal type, and so the type may be too small to fit the shift 5770 // amount. Override it with i32. The shift will have to be legalized. 5771 ShiftAmountTy = MVT::i32; 5772 } 5773 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5774 5775 if (!LH.getNode() && !RH.getNode() && 5776 isOperationLegalOrCustom(ISD::SRL, VT) && 5777 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5778 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5779 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5780 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5781 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5782 } 5783 5784 if (!LH.getNode()) 5785 return false; 5786 5787 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5788 return false; 5789 5790 Result.push_back(Lo); 5791 5792 if (Opcode == ISD::MUL) { 5793 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5794 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5795 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5796 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5797 Result.push_back(Hi); 5798 return true; 5799 } 5800 5801 // Compute the full width result. 5802 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5803 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5804 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5805 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5806 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5807 }; 5808 5809 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5810 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5811 return false; 5812 5813 // This is effectively the add part of a multiply-add of half-sized operands, 5814 // so it cannot overflow. 5815 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5816 5817 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5818 return false; 5819 5820 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5821 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5822 5823 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5824 isOperationLegalOrCustom(ISD::ADDE, VT)); 5825 if (UseGlue) 5826 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5827 Merge(Lo, Hi)); 5828 else 5829 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5830 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5831 5832 SDValue Carry = Next.getValue(1); 5833 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5834 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5835 5836 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5837 return false; 5838 5839 if (UseGlue) 5840 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5841 Carry); 5842 else 5843 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 5844 Zero, Carry); 5845 5846 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5847 5848 if (Opcode == ISD::SMUL_LOHI) { 5849 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5850 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 5851 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 5852 5853 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5854 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 5855 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 5856 } 5857 5858 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5859 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5860 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5861 return true; 5862 } 5863 5864 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 5865 SelectionDAG &DAG, MulExpansionKind Kind, 5866 SDValue LL, SDValue LH, SDValue RL, 5867 SDValue RH) const { 5868 SmallVector<SDValue, 2> Result; 5869 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 5870 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 5871 DAG, Kind, LL, LH, RL, RH); 5872 if (Ok) { 5873 assert(Result.size() == 2); 5874 Lo = Result[0]; 5875 Hi = Result[1]; 5876 } 5877 return Ok; 5878 } 5879 5880 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 5881 SelectionDAG &DAG) const { 5882 EVT VT = Node->getValueType(0); 5883 5884 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 5885 !isOperationLegalOrCustom(ISD::SRL, VT) || 5886 !isOperationLegalOrCustom(ISD::SUB, VT) || 5887 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 5888 return false; 5889 5890 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5891 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5892 SDValue X = Node->getOperand(0); 5893 SDValue Y = Node->getOperand(1); 5894 SDValue Z = Node->getOperand(2); 5895 5896 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5897 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 5898 SDLoc DL(SDValue(Node, 0)); 5899 5900 EVT ShVT = Z.getValueType(); 5901 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5902 SDValue Zero = DAG.getConstant(0, DL, ShVT); 5903 5904 SDValue ShAmt; 5905 if (isPowerOf2_32(EltSizeInBits)) { 5906 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 5907 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 5908 } else { 5909 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 5910 } 5911 5912 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 5913 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 5914 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 5915 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 5916 5917 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 5918 // and that is undefined. We must compare and select to avoid UB. 5919 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 5920 5921 // For fshl, 0-shift returns the 1st arg (X). 5922 // For fshr, 0-shift returns the 2nd arg (Y). 5923 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 5924 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 5925 return true; 5926 } 5927 5928 // TODO: Merge with expandFunnelShift. 5929 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 5930 SelectionDAG &DAG) const { 5931 EVT VT = Node->getValueType(0); 5932 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5933 bool IsLeft = Node->getOpcode() == ISD::ROTL; 5934 SDValue Op0 = Node->getOperand(0); 5935 SDValue Op1 = Node->getOperand(1); 5936 SDLoc DL(SDValue(Node, 0)); 5937 5938 EVT ShVT = Op1.getValueType(); 5939 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5940 5941 // If a rotate in the other direction is legal, use it. 5942 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 5943 if (isOperationLegal(RevRot, VT)) { 5944 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 5945 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 5946 return true; 5947 } 5948 5949 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 5950 !isOperationLegalOrCustom(ISD::SRL, VT) || 5951 !isOperationLegalOrCustom(ISD::SUB, VT) || 5952 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 5953 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 5954 return false; 5955 5956 // Otherwise, 5957 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 5958 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 5959 // 5960 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 5961 "Expecting the type bitwidth to be a power of 2"); 5962 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 5963 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 5964 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 5965 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 5966 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 5967 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 5968 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 5969 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 5970 return true; 5971 } 5972 5973 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 5974 SelectionDAG &DAG) const { 5975 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 5976 SDValue Src = Node->getOperand(OpNo); 5977 EVT SrcVT = Src.getValueType(); 5978 EVT DstVT = Node->getValueType(0); 5979 SDLoc dl(SDValue(Node, 0)); 5980 5981 // FIXME: Only f32 to i64 conversions are supported. 5982 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 5983 return false; 5984 5985 if (Node->isStrictFPOpcode()) 5986 // When a NaN is converted to an integer a trap is allowed. We can't 5987 // use this expansion here because it would eliminate that trap. Other 5988 // traps are also allowed and cannot be eliminated. See 5989 // IEEE 754-2008 sec 5.8. 5990 return false; 5991 5992 // Expand f32 -> i64 conversion 5993 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5994 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 5995 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 5996 EVT IntVT = SrcVT.changeTypeToInteger(); 5997 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 5998 5999 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6000 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6001 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6002 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6003 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6004 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6005 6006 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6007 6008 SDValue ExponentBits = DAG.getNode( 6009 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6010 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6011 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6012 6013 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6014 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6015 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6016 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6017 6018 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6019 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6020 DAG.getConstant(0x00800000, dl, IntVT)); 6021 6022 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6023 6024 R = DAG.getSelectCC( 6025 dl, Exponent, ExponentLoBit, 6026 DAG.getNode(ISD::SHL, dl, DstVT, R, 6027 DAG.getZExtOrTrunc( 6028 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6029 dl, IntShVT)), 6030 DAG.getNode(ISD::SRL, dl, DstVT, R, 6031 DAG.getZExtOrTrunc( 6032 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6033 dl, IntShVT)), 6034 ISD::SETGT); 6035 6036 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6037 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6038 6039 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6040 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6041 return true; 6042 } 6043 6044 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6045 SDValue &Chain, 6046 SelectionDAG &DAG) const { 6047 SDLoc dl(SDValue(Node, 0)); 6048 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6049 SDValue Src = Node->getOperand(OpNo); 6050 6051 EVT SrcVT = Src.getValueType(); 6052 EVT DstVT = Node->getValueType(0); 6053 EVT SetCCVT = 6054 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6055 6056 // Only expand vector types if we have the appropriate vector bit operations. 6057 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6058 ISD::FP_TO_SINT; 6059 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6060 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6061 return false; 6062 6063 // If the maximum float value is smaller then the signed integer range, 6064 // the destination signmask can't be represented by the float, so we can 6065 // just use FP_TO_SINT directly. 6066 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6067 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6068 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6069 if (APFloat::opOverflow & 6070 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6071 if (Node->isStrictFPOpcode()) { 6072 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6073 { Node->getOperand(0), Src }); 6074 Chain = Result.getValue(1); 6075 } else 6076 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6077 return true; 6078 } 6079 6080 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6081 SDValue Sel; 6082 6083 if (Node->isStrictFPOpcode()) 6084 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6085 Node->getOperand(0), /*IsSignaling*/ true); 6086 else 6087 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6088 6089 bool Strict = Node->isStrictFPOpcode() || 6090 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6091 6092 if (Strict) { 6093 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6094 // signmask then offset (the result of which should be fully representable). 6095 // Sel = Src < 0x8000000000000000 6096 // FltOfs = select Sel, 0, 0x8000000000000000 6097 // IntOfs = select Sel, 0, 0x8000000000000000 6098 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6099 6100 // TODO: Should any fast-math-flags be set for the FSUB? 6101 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6102 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6103 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6104 DAG.getConstant(0, dl, DstVT), 6105 DAG.getConstant(SignMask, dl, DstVT)); 6106 SDValue SInt; 6107 if (Node->isStrictFPOpcode()) { 6108 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6109 { Node->getOperand(0), Src, FltOfs }); 6110 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6111 { Val.getValue(1), Val }); 6112 Chain = SInt.getValue(1); 6113 } else { 6114 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6115 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6116 } 6117 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6118 } else { 6119 // Expand based on maximum range of FP_TO_SINT: 6120 // True = fp_to_sint(Src) 6121 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6122 // Result = select (Src < 0x8000000000000000), True, False 6123 6124 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6125 // TODO: Should any fast-math-flags be set for the FSUB? 6126 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6127 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6128 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6129 DAG.getConstant(SignMask, dl, DstVT)); 6130 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6131 } 6132 return true; 6133 } 6134 6135 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6136 SDValue &Chain, 6137 SelectionDAG &DAG) const { 6138 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6139 SDValue Src = Node->getOperand(OpNo); 6140 EVT SrcVT = Src.getValueType(); 6141 EVT DstVT = Node->getValueType(0); 6142 6143 if (SrcVT.getScalarType() != MVT::i64) 6144 return false; 6145 6146 SDLoc dl(SDValue(Node, 0)); 6147 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6148 6149 if (DstVT.getScalarType() == MVT::f32) { 6150 // Only expand vector types if we have the appropriate vector bit 6151 // operations. 6152 if (SrcVT.isVector() && 6153 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6154 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6155 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 6156 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6157 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6158 return false; 6159 6160 // For unsigned conversions, convert them to signed conversions using the 6161 // algorithm from the x86_64 __floatundisf in compiler_rt. 6162 6163 // TODO: This really should be implemented using a branch rather than a 6164 // select. We happen to get lucky and machinesink does the right 6165 // thing most of the time. This would be a good candidate for a 6166 // pseudo-op, or, even better, for whole-function isel. 6167 EVT SetCCVT = 6168 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6169 6170 SDValue SignBitTest = DAG.getSetCC( 6171 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 6172 6173 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 6174 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 6175 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 6176 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 6177 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 6178 6179 SDValue Slow, Fast; 6180 if (Node->isStrictFPOpcode()) { 6181 // In strict mode, we must avoid spurious exceptions, and therefore 6182 // must make sure to only emit a single STRICT_SINT_TO_FP. 6183 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Src); 6184 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DstVT, MVT::Other }, 6185 { Node->getOperand(0), InCvt }); 6186 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DstVT, MVT::Other }, 6187 { Fast.getValue(1), Fast, Fast }); 6188 Chain = Slow.getValue(1); 6189 // The STRICT_SINT_TO_FP inherits the exception mode from the 6190 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 6191 // never raise any exception. 6192 SDNodeFlags Flags; 6193 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 6194 Fast->setFlags(Flags); 6195 Flags.setNoFPExcept(true); 6196 Slow->setFlags(Flags); 6197 } else { 6198 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 6199 Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 6200 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 6201 } 6202 6203 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 6204 return true; 6205 } 6206 6207 if (DstVT.getScalarType() == MVT::f64) { 6208 // Only expand vector types if we have the appropriate vector bit 6209 // operations. 6210 if (SrcVT.isVector() && 6211 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6212 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6213 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6214 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6215 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6216 return false; 6217 6218 // Implementation of unsigned i64 to f64 following the algorithm in 6219 // __floatundidf in compiler_rt. This implementation has the advantage 6220 // of performing rounding correctly, both in the default rounding mode 6221 // and in all alternate rounding modes. 6222 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6223 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6224 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6225 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6226 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6227 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6228 6229 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6230 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6231 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6232 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6233 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6234 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6235 if (Node->isStrictFPOpcode()) { 6236 SDValue HiSub = 6237 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6238 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6239 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6240 {HiSub.getValue(1), LoFlt, HiSub}); 6241 Chain = Result.getValue(1); 6242 } else { 6243 SDValue HiSub = 6244 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6245 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6246 } 6247 return true; 6248 } 6249 6250 return false; 6251 } 6252 6253 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6254 SelectionDAG &DAG) const { 6255 SDLoc dl(Node); 6256 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6257 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6258 EVT VT = Node->getValueType(0); 6259 if (isOperationLegalOrCustom(NewOp, VT)) { 6260 SDValue Quiet0 = Node->getOperand(0); 6261 SDValue Quiet1 = Node->getOperand(1); 6262 6263 if (!Node->getFlags().hasNoNaNs()) { 6264 // Insert canonicalizes if it's possible we need to quiet to get correct 6265 // sNaN behavior. 6266 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6267 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6268 Node->getFlags()); 6269 } 6270 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6271 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6272 Node->getFlags()); 6273 } 6274 } 6275 6276 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6277 } 6278 6279 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6280 // instead if there are no NaNs. 6281 if (Node->getFlags().hasNoNaNs()) { 6282 unsigned IEEE2018Op = 6283 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6284 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6285 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6286 Node->getOperand(1), Node->getFlags()); 6287 } 6288 } 6289 6290 // If none of the above worked, but there are no NaNs, then expand to 6291 // a compare/select sequence. This is required for correctness since 6292 // InstCombine might have canonicalized a fcmp+select sequence to a 6293 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6294 // expansion to libcall, we might introduce a link-time dependency 6295 // on libm into a file that originally did not have one. 6296 if (Node->getFlags().hasNoNaNs()) { 6297 ISD::CondCode Pred = 6298 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6299 SDValue Op1 = Node->getOperand(0); 6300 SDValue Op2 = Node->getOperand(1); 6301 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6302 // Copy FMF flags, but always set the no-signed-zeros flag 6303 // as this is implied by the FMINNUM/FMAXNUM semantics. 6304 SDNodeFlags Flags = Node->getFlags(); 6305 Flags.setNoSignedZeros(true); 6306 SelCC->setFlags(Flags); 6307 return SelCC; 6308 } 6309 6310 return SDValue(); 6311 } 6312 6313 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6314 SelectionDAG &DAG) const { 6315 SDLoc dl(Node); 6316 EVT VT = Node->getValueType(0); 6317 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6318 SDValue Op = Node->getOperand(0); 6319 unsigned Len = VT.getScalarSizeInBits(); 6320 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6321 6322 // TODO: Add support for irregular type lengths. 6323 if (!(Len <= 128 && Len % 8 == 0)) 6324 return false; 6325 6326 // Only expand vector types if we have the appropriate vector bit operations. 6327 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6328 !isOperationLegalOrCustom(ISD::SUB, VT) || 6329 !isOperationLegalOrCustom(ISD::SRL, VT) || 6330 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6331 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6332 return false; 6333 6334 // This is the "best" algorithm from 6335 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6336 SDValue Mask55 = 6337 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6338 SDValue Mask33 = 6339 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6340 SDValue Mask0F = 6341 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6342 SDValue Mask01 = 6343 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6344 6345 // v = v - ((v >> 1) & 0x55555555...) 6346 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6347 DAG.getNode(ISD::AND, dl, VT, 6348 DAG.getNode(ISD::SRL, dl, VT, Op, 6349 DAG.getConstant(1, dl, ShVT)), 6350 Mask55)); 6351 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6352 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6353 DAG.getNode(ISD::AND, dl, VT, 6354 DAG.getNode(ISD::SRL, dl, VT, Op, 6355 DAG.getConstant(2, dl, ShVT)), 6356 Mask33)); 6357 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6358 Op = DAG.getNode(ISD::AND, dl, VT, 6359 DAG.getNode(ISD::ADD, dl, VT, Op, 6360 DAG.getNode(ISD::SRL, dl, VT, Op, 6361 DAG.getConstant(4, dl, ShVT))), 6362 Mask0F); 6363 // v = (v * 0x01010101...) >> (Len - 8) 6364 if (Len > 8) 6365 Op = 6366 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6367 DAG.getConstant(Len - 8, dl, ShVT)); 6368 6369 Result = Op; 6370 return true; 6371 } 6372 6373 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6374 SelectionDAG &DAG) const { 6375 SDLoc dl(Node); 6376 EVT VT = Node->getValueType(0); 6377 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6378 SDValue Op = Node->getOperand(0); 6379 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6380 6381 // If the non-ZERO_UNDEF version is supported we can use that instead. 6382 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6383 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6384 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6385 return true; 6386 } 6387 6388 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6389 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6390 EVT SetCCVT = 6391 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6392 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6393 SDValue Zero = DAG.getConstant(0, dl, VT); 6394 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6395 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6396 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6397 return true; 6398 } 6399 6400 // Only expand vector types if we have the appropriate vector bit operations. 6401 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6402 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6403 !isOperationLegalOrCustom(ISD::SRL, VT) || 6404 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6405 return false; 6406 6407 // for now, we do this: 6408 // x = x | (x >> 1); 6409 // x = x | (x >> 2); 6410 // ... 6411 // x = x | (x >>16); 6412 // x = x | (x >>32); // for 64-bit input 6413 // return popcount(~x); 6414 // 6415 // Ref: "Hacker's Delight" by Henry Warren 6416 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6417 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6418 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6419 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6420 } 6421 Op = DAG.getNOT(dl, Op, VT); 6422 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6423 return true; 6424 } 6425 6426 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6427 SelectionDAG &DAG) const { 6428 SDLoc dl(Node); 6429 EVT VT = Node->getValueType(0); 6430 SDValue Op = Node->getOperand(0); 6431 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6432 6433 // If the non-ZERO_UNDEF version is supported we can use that instead. 6434 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6435 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6436 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6437 return true; 6438 } 6439 6440 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6441 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6442 EVT SetCCVT = 6443 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6444 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6445 SDValue Zero = DAG.getConstant(0, dl, VT); 6446 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6447 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6448 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6449 return true; 6450 } 6451 6452 // Only expand vector types if we have the appropriate vector bit operations. 6453 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6454 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6455 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6456 !isOperationLegalOrCustom(ISD::SUB, VT) || 6457 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6458 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6459 return false; 6460 6461 // for now, we use: { return popcount(~x & (x - 1)); } 6462 // unless the target has ctlz but not ctpop, in which case we use: 6463 // { return 32 - nlz(~x & (x-1)); } 6464 // Ref: "Hacker's Delight" by Henry Warren 6465 SDValue Tmp = DAG.getNode( 6466 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6467 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6468 6469 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6470 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6471 Result = 6472 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6473 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6474 return true; 6475 } 6476 6477 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6478 return true; 6479 } 6480 6481 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6482 SelectionDAG &DAG) const { 6483 SDLoc dl(N); 6484 EVT VT = N->getValueType(0); 6485 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6486 SDValue Op = N->getOperand(0); 6487 6488 // Only expand vector types if we have the appropriate vector operations. 6489 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6490 !isOperationLegalOrCustom(ISD::ADD, VT) || 6491 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6492 return false; 6493 6494 SDValue Shift = 6495 DAG.getNode(ISD::SRA, dl, VT, Op, 6496 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6497 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6498 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6499 return true; 6500 } 6501 6502 std::pair<SDValue, SDValue> 6503 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6504 SelectionDAG &DAG) const { 6505 SDLoc SL(LD); 6506 SDValue Chain = LD->getChain(); 6507 SDValue BasePTR = LD->getBasePtr(); 6508 EVT SrcVT = LD->getMemoryVT(); 6509 ISD::LoadExtType ExtType = LD->getExtensionType(); 6510 6511 unsigned NumElem = SrcVT.getVectorNumElements(); 6512 6513 EVT SrcEltVT = SrcVT.getScalarType(); 6514 EVT DstEltVT = LD->getValueType(0).getScalarType(); 6515 6516 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6517 assert(SrcEltVT.isByteSized()); 6518 6519 SmallVector<SDValue, 8> Vals; 6520 SmallVector<SDValue, 8> LoadChains; 6521 6522 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6523 SDValue ScalarLoad = 6524 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6525 LD->getPointerInfo().getWithOffset(Idx * Stride), 6526 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6527 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6528 6529 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6530 6531 Vals.push_back(ScalarLoad.getValue(0)); 6532 LoadChains.push_back(ScalarLoad.getValue(1)); 6533 } 6534 6535 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6536 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 6537 6538 return std::make_pair(Value, NewChain); 6539 } 6540 6541 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6542 SelectionDAG &DAG) const { 6543 SDLoc SL(ST); 6544 6545 SDValue Chain = ST->getChain(); 6546 SDValue BasePtr = ST->getBasePtr(); 6547 SDValue Value = ST->getValue(); 6548 EVT StVT = ST->getMemoryVT(); 6549 6550 // The type of the data we want to save 6551 EVT RegVT = Value.getValueType(); 6552 EVT RegSclVT = RegVT.getScalarType(); 6553 6554 // The type of data as saved in memory. 6555 EVT MemSclVT = StVT.getScalarType(); 6556 6557 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 6558 unsigned NumElem = StVT.getVectorNumElements(); 6559 6560 // A vector must always be stored in memory as-is, i.e. without any padding 6561 // between the elements, since various code depend on it, e.g. in the 6562 // handling of a bitcast of a vector type to int, which may be done with a 6563 // vector store followed by an integer load. A vector that does not have 6564 // elements that are byte-sized must therefore be stored as an integer 6565 // built out of the extracted vector elements. 6566 if (!MemSclVT.isByteSized()) { 6567 unsigned NumBits = StVT.getSizeInBits(); 6568 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6569 6570 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6571 6572 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6573 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6574 DAG.getConstant(Idx, SL, IdxVT)); 6575 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6576 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6577 unsigned ShiftIntoIdx = 6578 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6579 SDValue ShiftAmount = 6580 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6581 SDValue ShiftedElt = 6582 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6583 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6584 } 6585 6586 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6587 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6588 ST->getAAInfo()); 6589 } 6590 6591 // Store Stride in bytes 6592 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6593 assert(Stride && "Zero stride!"); 6594 // Extract each of the elements from the original vector and save them into 6595 // memory individually. 6596 SmallVector<SDValue, 8> Stores; 6597 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6598 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6599 DAG.getConstant(Idx, SL, IdxVT)); 6600 6601 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6602 6603 // This scalar TruncStore may be illegal, but we legalize it later. 6604 SDValue Store = DAG.getTruncStore( 6605 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6606 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6607 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6608 6609 Stores.push_back(Store); 6610 } 6611 6612 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6613 } 6614 6615 std::pair<SDValue, SDValue> 6616 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6617 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6618 "unaligned indexed loads not implemented!"); 6619 SDValue Chain = LD->getChain(); 6620 SDValue Ptr = LD->getBasePtr(); 6621 EVT VT = LD->getValueType(0); 6622 EVT LoadedVT = LD->getMemoryVT(); 6623 SDLoc dl(LD); 6624 auto &MF = DAG.getMachineFunction(); 6625 6626 if (VT.isFloatingPoint() || VT.isVector()) { 6627 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6628 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6629 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6630 LoadedVT.isVector()) { 6631 // Scalarize the load and let the individual components be handled. 6632 return scalarizeVectorLoad(LD, DAG); 6633 } 6634 6635 // Expand to a (misaligned) integer load of the same size, 6636 // then bitconvert to floating point or vector. 6637 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6638 LD->getMemOperand()); 6639 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6640 if (LoadedVT != VT) 6641 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6642 ISD::ANY_EXTEND, dl, VT, Result); 6643 6644 return std::make_pair(Result, newLoad.getValue(1)); 6645 } 6646 6647 // Copy the value to a (aligned) stack slot using (unaligned) integer 6648 // loads and stores, then do a (aligned) load from the stack slot. 6649 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6650 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6651 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6652 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6653 6654 // Make sure the stack slot is also aligned for the register type. 6655 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6656 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6657 SmallVector<SDValue, 8> Stores; 6658 SDValue StackPtr = StackBase; 6659 unsigned Offset = 0; 6660 6661 EVT PtrVT = Ptr.getValueType(); 6662 EVT StackPtrVT = StackPtr.getValueType(); 6663 6664 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6665 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6666 6667 // Do all but one copies using the full register width. 6668 for (unsigned i = 1; i < NumRegs; i++) { 6669 // Load one integer register's worth from the original location. 6670 SDValue Load = DAG.getLoad( 6671 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6672 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6673 LD->getAAInfo()); 6674 // Follow the load with a store to the stack slot. Remember the store. 6675 Stores.push_back(DAG.getStore( 6676 Load.getValue(1), dl, Load, StackPtr, 6677 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6678 // Increment the pointers. 6679 Offset += RegBytes; 6680 6681 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6682 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6683 } 6684 6685 // The last copy may be partial. Do an extending load. 6686 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6687 8 * (LoadedBytes - Offset)); 6688 SDValue Load = 6689 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6690 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6691 MinAlign(LD->getAlignment(), Offset), 6692 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6693 // Follow the load with a store to the stack slot. Remember the store. 6694 // On big-endian machines this requires a truncating store to ensure 6695 // that the bits end up in the right place. 6696 Stores.push_back(DAG.getTruncStore( 6697 Load.getValue(1), dl, Load, StackPtr, 6698 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6699 6700 // The order of the stores doesn't matter - say it with a TokenFactor. 6701 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6702 6703 // Finally, perform the original load only redirected to the stack slot. 6704 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6705 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6706 LoadedVT); 6707 6708 // Callers expect a MERGE_VALUES node. 6709 return std::make_pair(Load, TF); 6710 } 6711 6712 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6713 "Unaligned load of unsupported type."); 6714 6715 // Compute the new VT that is half the size of the old one. This is an 6716 // integer MVT. 6717 unsigned NumBits = LoadedVT.getSizeInBits(); 6718 EVT NewLoadedVT; 6719 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6720 NumBits >>= 1; 6721 6722 unsigned Alignment = LD->getAlignment(); 6723 unsigned IncrementSize = NumBits / 8; 6724 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6725 6726 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6727 if (HiExtType == ISD::NON_EXTLOAD) 6728 HiExtType = ISD::ZEXTLOAD; 6729 6730 // Load the value in two parts 6731 SDValue Lo, Hi; 6732 if (DAG.getDataLayout().isLittleEndian()) { 6733 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6734 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6735 LD->getAAInfo()); 6736 6737 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6738 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6739 LD->getPointerInfo().getWithOffset(IncrementSize), 6740 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6741 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6742 } else { 6743 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6744 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6745 LD->getAAInfo()); 6746 6747 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6748 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6749 LD->getPointerInfo().getWithOffset(IncrementSize), 6750 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6751 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6752 } 6753 6754 // aggregate the two parts 6755 SDValue ShiftAmount = 6756 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6757 DAG.getDataLayout())); 6758 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6759 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6760 6761 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6762 Hi.getValue(1)); 6763 6764 return std::make_pair(Result, TF); 6765 } 6766 6767 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6768 SelectionDAG &DAG) const { 6769 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6770 "unaligned indexed stores not implemented!"); 6771 SDValue Chain = ST->getChain(); 6772 SDValue Ptr = ST->getBasePtr(); 6773 SDValue Val = ST->getValue(); 6774 EVT VT = Val.getValueType(); 6775 int Alignment = ST->getAlignment(); 6776 auto &MF = DAG.getMachineFunction(); 6777 EVT StoreMemVT = ST->getMemoryVT(); 6778 6779 SDLoc dl(ST); 6780 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6781 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6782 if (isTypeLegal(intVT)) { 6783 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6784 StoreMemVT.isVector()) { 6785 // Scalarize the store and let the individual components be handled. 6786 SDValue Result = scalarizeVectorStore(ST, DAG); 6787 return Result; 6788 } 6789 // Expand to a bitconvert of the value to the integer type of the 6790 // same size, then a (misaligned) int store. 6791 // FIXME: Does not handle truncating floating point stores! 6792 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6793 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6794 Alignment, ST->getMemOperand()->getFlags()); 6795 return Result; 6796 } 6797 // Do a (aligned) store to a stack slot, then copy from the stack slot 6798 // to the final destination using (unaligned) integer loads and stores. 6799 MVT RegVT = getRegisterType( 6800 *DAG.getContext(), 6801 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6802 EVT PtrVT = Ptr.getValueType(); 6803 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6804 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6805 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6806 6807 // Make sure the stack slot is also aligned for the register type. 6808 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6809 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6810 6811 // Perform the original store, only redirected to the stack slot. 6812 SDValue Store = DAG.getTruncStore( 6813 Chain, dl, Val, StackPtr, 6814 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6815 6816 EVT StackPtrVT = StackPtr.getValueType(); 6817 6818 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6819 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6820 SmallVector<SDValue, 8> Stores; 6821 unsigned Offset = 0; 6822 6823 // Do all but one copies using the full register width. 6824 for (unsigned i = 1; i < NumRegs; i++) { 6825 // Load one integer register's worth from the stack slot. 6826 SDValue Load = DAG.getLoad( 6827 RegVT, dl, Store, StackPtr, 6828 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6829 // Store it to the final location. Remember the store. 6830 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6831 ST->getPointerInfo().getWithOffset(Offset), 6832 MinAlign(ST->getAlignment(), Offset), 6833 ST->getMemOperand()->getFlags())); 6834 // Increment the pointers. 6835 Offset += RegBytes; 6836 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6837 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6838 } 6839 6840 // The last store may be partial. Do a truncating store. On big-endian 6841 // machines this requires an extending load from the stack slot to ensure 6842 // that the bits are in the right place. 6843 EVT LoadMemVT = 6844 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6845 6846 // Load from the stack slot. 6847 SDValue Load = DAG.getExtLoad( 6848 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6849 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6850 6851 Stores.push_back( 6852 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 6853 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 6854 MinAlign(ST->getAlignment(), Offset), 6855 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 6856 // The order of the stores doesn't matter - say it with a TokenFactor. 6857 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6858 return Result; 6859 } 6860 6861 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 6862 "Unaligned store of unknown type."); 6863 // Get the half-size VT 6864 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 6865 int NumBits = NewStoredVT.getSizeInBits(); 6866 int IncrementSize = NumBits / 8; 6867 6868 // Divide the stored value in two parts. 6869 SDValue ShiftAmount = DAG.getConstant( 6870 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 6871 SDValue Lo = Val; 6872 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 6873 6874 // Store the two parts 6875 SDValue Store1, Store2; 6876 Store1 = DAG.getTruncStore(Chain, dl, 6877 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 6878 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 6879 ST->getMemOperand()->getFlags()); 6880 6881 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6882 Alignment = MinAlign(Alignment, IncrementSize); 6883 Store2 = DAG.getTruncStore( 6884 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 6885 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 6886 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6887 6888 SDValue Result = 6889 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 6890 return Result; 6891 } 6892 6893 SDValue 6894 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 6895 const SDLoc &DL, EVT DataVT, 6896 SelectionDAG &DAG, 6897 bool IsCompressedMemory) const { 6898 SDValue Increment; 6899 EVT AddrVT = Addr.getValueType(); 6900 EVT MaskVT = Mask.getValueType(); 6901 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 6902 "Incompatible types of Data and Mask"); 6903 if (IsCompressedMemory) { 6904 // Incrementing the pointer according to number of '1's in the mask. 6905 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 6906 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 6907 if (MaskIntVT.getSizeInBits() < 32) { 6908 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 6909 MaskIntVT = MVT::i32; 6910 } 6911 6912 // Count '1's with POPCNT. 6913 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 6914 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 6915 // Scale is an element size in bytes. 6916 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 6917 AddrVT); 6918 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 6919 } else 6920 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 6921 6922 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 6923 } 6924 6925 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 6926 SDValue Idx, 6927 EVT VecVT, 6928 const SDLoc &dl) { 6929 if (isa<ConstantSDNode>(Idx)) 6930 return Idx; 6931 6932 EVT IdxVT = Idx.getValueType(); 6933 unsigned NElts = VecVT.getVectorNumElements(); 6934 if (isPowerOf2_32(NElts)) { 6935 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 6936 Log2_32(NElts)); 6937 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 6938 DAG.getConstant(Imm, dl, IdxVT)); 6939 } 6940 6941 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 6942 DAG.getConstant(NElts - 1, dl, IdxVT)); 6943 } 6944 6945 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 6946 SDValue VecPtr, EVT VecVT, 6947 SDValue Index) const { 6948 SDLoc dl(Index); 6949 // Make sure the index type is big enough to compute in. 6950 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 6951 6952 EVT EltVT = VecVT.getVectorElementType(); 6953 6954 // Calculate the element offset and add it to the pointer. 6955 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 6956 assert(EltSize * 8 == EltVT.getSizeInBits() && 6957 "Converting bits to bytes lost precision"); 6958 6959 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 6960 6961 EVT IdxVT = Index.getValueType(); 6962 6963 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 6964 DAG.getConstant(EltSize, dl, IdxVT)); 6965 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 6966 } 6967 6968 //===----------------------------------------------------------------------===// 6969 // Implementation of Emulated TLS Model 6970 //===----------------------------------------------------------------------===// 6971 6972 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 6973 SelectionDAG &DAG) const { 6974 // Access to address of TLS varialbe xyz is lowered to a function call: 6975 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 6976 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6977 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 6978 SDLoc dl(GA); 6979 6980 ArgListTy Args; 6981 ArgListEntry Entry; 6982 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 6983 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 6984 StringRef EmuTlsVarName(NameString); 6985 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 6986 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 6987 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 6988 Entry.Ty = VoidPtrType; 6989 Args.push_back(Entry); 6990 6991 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 6992 6993 TargetLowering::CallLoweringInfo CLI(DAG); 6994 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 6995 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 6996 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 6997 6998 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 6999 // At last for X86 targets, maybe good for other targets too? 7000 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7001 MFI.setAdjustsStack(true); // Is this only for X86 target? 7002 MFI.setHasCalls(true); 7003 7004 assert((GA->getOffset() == 0) && 7005 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7006 return CallResult.first; 7007 } 7008 7009 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7010 SelectionDAG &DAG) const { 7011 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7012 if (!isCtlzFast()) 7013 return SDValue(); 7014 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7015 SDLoc dl(Op); 7016 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7017 if (C->isNullValue() && CC == ISD::SETEQ) { 7018 EVT VT = Op.getOperand(0).getValueType(); 7019 SDValue Zext = Op.getOperand(0); 7020 if (VT.bitsLT(MVT::i32)) { 7021 VT = MVT::i32; 7022 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7023 } 7024 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7025 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7026 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7027 DAG.getConstant(Log2b, dl, MVT::i32)); 7028 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7029 } 7030 } 7031 return SDValue(); 7032 } 7033 7034 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7035 unsigned Opcode = Node->getOpcode(); 7036 SDValue LHS = Node->getOperand(0); 7037 SDValue RHS = Node->getOperand(1); 7038 EVT VT = LHS.getValueType(); 7039 SDLoc dl(Node); 7040 7041 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7042 assert(VT.isInteger() && "Expected operands to be integers"); 7043 7044 // usub.sat(a, b) -> umax(a, b) - b 7045 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7046 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7047 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7048 } 7049 7050 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7051 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7052 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7053 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7054 } 7055 7056 unsigned OverflowOp; 7057 switch (Opcode) { 7058 case ISD::SADDSAT: 7059 OverflowOp = ISD::SADDO; 7060 break; 7061 case ISD::UADDSAT: 7062 OverflowOp = ISD::UADDO; 7063 break; 7064 case ISD::SSUBSAT: 7065 OverflowOp = ISD::SSUBO; 7066 break; 7067 case ISD::USUBSAT: 7068 OverflowOp = ISD::USUBO; 7069 break; 7070 default: 7071 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7072 "addition or subtraction node."); 7073 } 7074 7075 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7076 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7077 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7078 LHS, RHS); 7079 SDValue SumDiff = Result.getValue(0); 7080 SDValue Overflow = Result.getValue(1); 7081 SDValue Zero = DAG.getConstant(0, dl, VT); 7082 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7083 7084 if (Opcode == ISD::UADDSAT) { 7085 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7086 // (LHS + RHS) | OverflowMask 7087 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7088 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7089 } 7090 // Overflow ? 0xffff.... : (LHS + RHS) 7091 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7092 } else if (Opcode == ISD::USUBSAT) { 7093 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7094 // (LHS - RHS) & ~OverflowMask 7095 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7096 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7097 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7098 } 7099 // Overflow ? 0 : (LHS - RHS) 7100 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7101 } else { 7102 // SatMax -> Overflow && SumDiff < 0 7103 // SatMin -> Overflow && SumDiff >= 0 7104 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7105 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7106 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7107 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7108 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7109 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7110 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7111 } 7112 } 7113 7114 SDValue 7115 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7116 assert((Node->getOpcode() == ISD::SMULFIX || 7117 Node->getOpcode() == ISD::UMULFIX || 7118 Node->getOpcode() == ISD::SMULFIXSAT || 7119 Node->getOpcode() == ISD::UMULFIXSAT) && 7120 "Expected a fixed point multiplication opcode"); 7121 7122 SDLoc dl(Node); 7123 SDValue LHS = Node->getOperand(0); 7124 SDValue RHS = Node->getOperand(1); 7125 EVT VT = LHS.getValueType(); 7126 unsigned Scale = Node->getConstantOperandVal(2); 7127 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7128 Node->getOpcode() == ISD::UMULFIXSAT); 7129 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7130 Node->getOpcode() == ISD::SMULFIXSAT); 7131 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7132 unsigned VTSize = VT.getScalarSizeInBits(); 7133 7134 if (!Scale) { 7135 // [us]mul.fix(a, b, 0) -> mul(a, b) 7136 if (!Saturating) { 7137 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7138 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7139 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7140 SDValue Result = 7141 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7142 SDValue Product = Result.getValue(0); 7143 SDValue Overflow = Result.getValue(1); 7144 SDValue Zero = DAG.getConstant(0, dl, VT); 7145 7146 APInt MinVal = APInt::getSignedMinValue(VTSize); 7147 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7148 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7149 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7150 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7151 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7152 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7153 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7154 SDValue Result = 7155 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7156 SDValue Product = Result.getValue(0); 7157 SDValue Overflow = Result.getValue(1); 7158 7159 APInt MaxVal = APInt::getMaxValue(VTSize); 7160 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7161 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7162 } 7163 } 7164 7165 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7166 "Expected scale to be less than the number of bits if signed or at " 7167 "most the number of bits if unsigned."); 7168 assert(LHS.getValueType() == RHS.getValueType() && 7169 "Expected both operands to be the same type"); 7170 7171 // Get the upper and lower bits of the result. 7172 SDValue Lo, Hi; 7173 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7174 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7175 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7176 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7177 Lo = Result.getValue(0); 7178 Hi = Result.getValue(1); 7179 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7180 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7181 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7182 } else if (VT.isVector()) { 7183 return SDValue(); 7184 } else { 7185 report_fatal_error("Unable to expand fixed point multiplication."); 7186 } 7187 7188 if (Scale == VTSize) 7189 // Result is just the top half since we'd be shifting by the width of the 7190 // operand. Overflow impossible so this works for both UMULFIX and 7191 // UMULFIXSAT. 7192 return Hi; 7193 7194 // The result will need to be shifted right by the scale since both operands 7195 // are scaled. The result is given to us in 2 halves, so we only want part of 7196 // both in the result. 7197 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7198 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7199 DAG.getConstant(Scale, dl, ShiftTy)); 7200 if (!Saturating) 7201 return Result; 7202 7203 if (!Signed) { 7204 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7205 // widened multiplication) aren't all zeroes. 7206 7207 // Saturate to max if ((Hi >> Scale) != 0), 7208 // which is the same as if (Hi > ((1 << Scale) - 1)) 7209 APInt MaxVal = APInt::getMaxValue(VTSize); 7210 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7211 dl, VT); 7212 Result = DAG.getSelectCC(dl, Hi, LowMask, 7213 DAG.getConstant(MaxVal, dl, VT), Result, 7214 ISD::SETUGT); 7215 7216 return Result; 7217 } 7218 7219 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7220 // widened multiplication) aren't all ones or all zeroes. 7221 7222 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7223 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7224 7225 if (Scale == 0) { 7226 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7227 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7228 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7229 // Saturated to SatMin if wide product is negative, and SatMax if wide 7230 // product is positive ... 7231 SDValue Zero = DAG.getConstant(0, dl, VT); 7232 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7233 ISD::SETLT); 7234 // ... but only if we overflowed. 7235 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7236 } 7237 7238 // We handled Scale==0 above so all the bits to examine is in Hi. 7239 7240 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7241 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7242 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7243 dl, VT); 7244 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7245 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7246 // which is the same as if (HI < (-1 << (Scale - 1)) 7247 SDValue HighMask = 7248 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7249 dl, VT); 7250 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7251 return Result; 7252 } 7253 7254 void TargetLowering::expandUADDSUBO( 7255 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7256 SDLoc dl(Node); 7257 SDValue LHS = Node->getOperand(0); 7258 SDValue RHS = Node->getOperand(1); 7259 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7260 7261 // If ADD/SUBCARRY is legal, use that instead. 7262 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7263 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7264 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7265 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7266 { LHS, RHS, CarryIn }); 7267 Result = SDValue(NodeCarry.getNode(), 0); 7268 Overflow = SDValue(NodeCarry.getNode(), 1); 7269 return; 7270 } 7271 7272 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7273 LHS.getValueType(), LHS, RHS); 7274 7275 EVT ResultType = Node->getValueType(1); 7276 EVT SetCCType = getSetCCResultType( 7277 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7278 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7279 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7280 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7281 } 7282 7283 void TargetLowering::expandSADDSUBO( 7284 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7285 SDLoc dl(Node); 7286 SDValue LHS = Node->getOperand(0); 7287 SDValue RHS = Node->getOperand(1); 7288 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7289 7290 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7291 LHS.getValueType(), LHS, RHS); 7292 7293 EVT ResultType = Node->getValueType(1); 7294 EVT OType = getSetCCResultType( 7295 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7296 7297 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7298 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7299 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7300 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7301 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7302 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7303 return; 7304 } 7305 7306 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7307 7308 // For an addition, the result should be less than one of the operands (LHS) 7309 // if and only if the other operand (RHS) is negative, otherwise there will 7310 // be overflow. 7311 // For a subtraction, the result should be less than one of the operands 7312 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7313 // otherwise there will be overflow. 7314 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7315 SDValue ConditionRHS = 7316 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7317 7318 Overflow = DAG.getBoolExtOrTrunc( 7319 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7320 ResultType, ResultType); 7321 } 7322 7323 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7324 SDValue &Overflow, SelectionDAG &DAG) const { 7325 SDLoc dl(Node); 7326 EVT VT = Node->getValueType(0); 7327 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7328 SDValue LHS = Node->getOperand(0); 7329 SDValue RHS = Node->getOperand(1); 7330 bool isSigned = Node->getOpcode() == ISD::SMULO; 7331 7332 // For power-of-two multiplications we can use a simpler shift expansion. 7333 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7334 const APInt &C = RHSC->getAPIntValue(); 7335 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7336 if (C.isPowerOf2()) { 7337 // smulo(x, signed_min) is same as umulo(x, signed_min). 7338 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7339 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7340 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7341 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7342 Overflow = DAG.getSetCC(dl, SetCCVT, 7343 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7344 dl, VT, Result, ShiftAmt), 7345 LHS, ISD::SETNE); 7346 return true; 7347 } 7348 } 7349 7350 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7351 if (VT.isVector()) 7352 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7353 VT.getVectorNumElements()); 7354 7355 SDValue BottomHalf; 7356 SDValue TopHalf; 7357 static const unsigned Ops[2][3] = 7358 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7359 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7360 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7361 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7362 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7363 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7364 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7365 RHS); 7366 TopHalf = BottomHalf.getValue(1); 7367 } else if (isTypeLegal(WideVT)) { 7368 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7369 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7370 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7371 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7372 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7373 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7374 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7375 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7376 } else { 7377 if (VT.isVector()) 7378 return false; 7379 7380 // We can fall back to a libcall with an illegal type for the MUL if we 7381 // have a libcall big enough. 7382 // Also, we can fall back to a division in some cases, but that's a big 7383 // performance hit in the general case. 7384 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7385 if (WideVT == MVT::i16) 7386 LC = RTLIB::MUL_I16; 7387 else if (WideVT == MVT::i32) 7388 LC = RTLIB::MUL_I32; 7389 else if (WideVT == MVT::i64) 7390 LC = RTLIB::MUL_I64; 7391 else if (WideVT == MVT::i128) 7392 LC = RTLIB::MUL_I128; 7393 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7394 7395 SDValue HiLHS; 7396 SDValue HiRHS; 7397 if (isSigned) { 7398 // The high part is obtained by SRA'ing all but one of the bits of low 7399 // part. 7400 unsigned LoSize = VT.getSizeInBits(); 7401 HiLHS = 7402 DAG.getNode(ISD::SRA, dl, VT, LHS, 7403 DAG.getConstant(LoSize - 1, dl, 7404 getPointerTy(DAG.getDataLayout()))); 7405 HiRHS = 7406 DAG.getNode(ISD::SRA, dl, VT, RHS, 7407 DAG.getConstant(LoSize - 1, dl, 7408 getPointerTy(DAG.getDataLayout()))); 7409 } else { 7410 HiLHS = DAG.getConstant(0, dl, VT); 7411 HiRHS = DAG.getConstant(0, dl, VT); 7412 } 7413 7414 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7415 // pre-lowered to the correct types. This all depends upon WideVT not 7416 // being a legal type for the architecture and thus has to be split to 7417 // two arguments. 7418 SDValue Ret; 7419 TargetLowering::MakeLibCallOptions CallOptions; 7420 CallOptions.setSExt(isSigned); 7421 CallOptions.setIsPostTypeLegalization(true); 7422 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7423 // Halves of WideVT are packed into registers in different order 7424 // depending on platform endianness. This is usually handled by 7425 // the C calling convention, but we can't defer to it in 7426 // the legalizer. 7427 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7428 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7429 } else { 7430 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7431 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7432 } 7433 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7434 "Ret value is a collection of constituent nodes holding result."); 7435 if (DAG.getDataLayout().isLittleEndian()) { 7436 // Same as above. 7437 BottomHalf = Ret.getOperand(0); 7438 TopHalf = Ret.getOperand(1); 7439 } else { 7440 BottomHalf = Ret.getOperand(1); 7441 TopHalf = Ret.getOperand(0); 7442 } 7443 } 7444 7445 Result = BottomHalf; 7446 if (isSigned) { 7447 SDValue ShiftAmt = DAG.getConstant( 7448 VT.getScalarSizeInBits() - 1, dl, 7449 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7450 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7451 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7452 } else { 7453 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7454 DAG.getConstant(0, dl, VT), ISD::SETNE); 7455 } 7456 7457 // Truncate the result if SetCC returns a larger type than needed. 7458 EVT RType = Node->getValueType(1); 7459 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7460 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7461 7462 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7463 "Unexpected result type for S/UMULO legalization"); 7464 return true; 7465 } 7466 7467 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7468 SDLoc dl(Node); 7469 bool NoNaN = Node->getFlags().hasNoNaNs(); 7470 unsigned BaseOpcode = 0; 7471 switch (Node->getOpcode()) { 7472 default: llvm_unreachable("Expected VECREDUCE opcode"); 7473 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7474 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7475 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7476 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7477 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7478 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7479 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7480 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7481 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7482 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7483 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7484 case ISD::VECREDUCE_FMAX: 7485 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7486 break; 7487 case ISD::VECREDUCE_FMIN: 7488 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7489 break; 7490 } 7491 7492 SDValue Op = Node->getOperand(0); 7493 EVT VT = Op.getValueType(); 7494 7495 // Try to use a shuffle reduction for power of two vectors. 7496 if (VT.isPow2VectorType()) { 7497 while (VT.getVectorNumElements() > 1) { 7498 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7499 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7500 break; 7501 7502 SDValue Lo, Hi; 7503 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7504 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7505 VT = HalfVT; 7506 } 7507 } 7508 7509 EVT EltVT = VT.getVectorElementType(); 7510 unsigned NumElts = VT.getVectorNumElements(); 7511 7512 SmallVector<SDValue, 8> Ops; 7513 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7514 7515 SDValue Res = Ops[0]; 7516 for (unsigned i = 1; i < NumElts; i++) 7517 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7518 7519 // Result type may be wider than element type. 7520 if (EltVT != Node->getValueType(0)) 7521 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7522 return Res; 7523 } 7524