1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 MCRegister Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 114 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 115 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 116 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 117 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 118 Alignment = Call->getParamAlign(ArgIdx); 119 ByValType = nullptr; 120 if (IsByVal) 121 ByValType = Call->getParamByValType(ArgIdx); 122 PreallocatedType = nullptr; 123 if (IsPreallocated) 124 PreallocatedType = Call->getParamPreallocatedType(ArgIdx); 125 } 126 127 /// Generate a libcall taking the given operands as arguments and returning a 128 /// result of type RetVT. 129 std::pair<SDValue, SDValue> 130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 131 ArrayRef<SDValue> Ops, 132 MakeLibCallOptions CallOptions, 133 const SDLoc &dl, 134 SDValue InChain) const { 135 if (!InChain) 136 InChain = DAG.getEntryNode(); 137 138 TargetLowering::ArgListTy Args; 139 Args.reserve(Ops.size()); 140 141 TargetLowering::ArgListEntry Entry; 142 for (unsigned i = 0; i < Ops.size(); ++i) { 143 SDValue NewOp = Ops[i]; 144 Entry.Node = NewOp; 145 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 146 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 147 CallOptions.IsSExt); 148 Entry.IsZExt = !Entry.IsSExt; 149 150 if (CallOptions.IsSoften && 151 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 152 Entry.IsSExt = Entry.IsZExt = false; 153 } 154 Args.push_back(Entry); 155 } 156 157 if (LC == RTLIB::UNKNOWN_LIBCALL) 158 report_fatal_error("Unsupported library call operation!"); 159 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 160 getPointerTy(DAG.getDataLayout())); 161 162 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 163 TargetLowering::CallLoweringInfo CLI(DAG); 164 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 165 bool zeroExtend = !signExtend; 166 167 if (CallOptions.IsSoften && 168 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 169 signExtend = zeroExtend = false; 170 } 171 172 CLI.setDebugLoc(dl) 173 .setChain(InChain) 174 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 175 .setNoReturn(CallOptions.DoesNotReturn) 176 .setDiscardResult(!CallOptions.IsReturnValueUsed) 177 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 178 .setSExtResult(signExtend) 179 .setZExtResult(zeroExtend); 180 return LowerCallTo(CLI); 181 } 182 183 bool TargetLowering::findOptimalMemOpLowering( 184 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 185 unsigned SrcAS, const AttributeList &FuncAttributes) const { 186 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 187 return false; 188 189 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 190 191 if (VT == MVT::Other) { 192 // Use the largest integer type whose alignment constraints are satisfied. 193 // We only need to check DstAlign here as SrcAlign is always greater or 194 // equal to DstAlign (or zero). 195 VT = MVT::i64; 196 if (Op.isFixedDstAlign()) 197 while ( 198 Op.getDstAlign() < (VT.getSizeInBits() / 8) && 199 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value())) 200 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 201 assert(VT.isInteger()); 202 203 // Find the largest legal integer type. 204 MVT LVT = MVT::i64; 205 while (!isTypeLegal(LVT)) 206 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 207 assert(LVT.isInteger()); 208 209 // If the type we've chosen is larger than the largest legal integer type 210 // then use that instead. 211 if (VT.bitsGT(LVT)) 212 VT = LVT; 213 } 214 215 unsigned NumMemOps = 0; 216 uint64_t Size = Op.size(); 217 while (Size) { 218 unsigned VTSize = VT.getSizeInBits() / 8; 219 while (VTSize > Size) { 220 // For now, only use non-vector load / store's for the left-over pieces. 221 EVT NewVT = VT; 222 unsigned NewVTSize; 223 224 bool Found = false; 225 if (VT.isVector() || VT.isFloatingPoint()) { 226 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 227 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 228 isSafeMemOpType(NewVT.getSimpleVT())) 229 Found = true; 230 else if (NewVT == MVT::i64 && 231 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 232 isSafeMemOpType(MVT::f64)) { 233 // i64 is usually not legal on 32-bit targets, but f64 may be. 234 NewVT = MVT::f64; 235 Found = true; 236 } 237 } 238 239 if (!Found) { 240 do { 241 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 242 if (NewVT == MVT::i8) 243 break; 244 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 245 } 246 NewVTSize = NewVT.getSizeInBits() / 8; 247 248 // If the new VT cannot cover all of the remaining bits, then consider 249 // issuing a (or a pair of) unaligned and overlapping load / store. 250 bool Fast; 251 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 252 allowsMisalignedMemoryAccesses( 253 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 254 MachineMemOperand::MONone, &Fast) && 255 Fast) 256 VTSize = Size; 257 else { 258 VT = NewVT; 259 VTSize = NewVTSize; 260 } 261 } 262 263 if (++NumMemOps > Limit) 264 return false; 265 266 MemOps.push_back(VT); 267 Size -= VTSize; 268 } 269 270 return true; 271 } 272 273 /// Soften the operands of a comparison. This code is shared among BR_CC, 274 /// SELECT_CC, and SETCC handlers. 275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 276 SDValue &NewLHS, SDValue &NewRHS, 277 ISD::CondCode &CCCode, 278 const SDLoc &dl, const SDValue OldLHS, 279 const SDValue OldRHS) const { 280 SDValue Chain; 281 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 282 OldRHS, Chain); 283 } 284 285 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 286 SDValue &NewLHS, SDValue &NewRHS, 287 ISD::CondCode &CCCode, 288 const SDLoc &dl, const SDValue OldLHS, 289 const SDValue OldRHS, 290 SDValue &Chain, 291 bool IsSignaling) const { 292 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 293 // not supporting it. We can update this code when libgcc provides such 294 // functions. 295 296 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 297 && "Unsupported setcc type!"); 298 299 // Expand into one or more soft-fp libcall(s). 300 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 301 bool ShouldInvertCC = false; 302 switch (CCCode) { 303 case ISD::SETEQ: 304 case ISD::SETOEQ: 305 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 306 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 307 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 308 break; 309 case ISD::SETNE: 310 case ISD::SETUNE: 311 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 312 (VT == MVT::f64) ? RTLIB::UNE_F64 : 313 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 314 break; 315 case ISD::SETGE: 316 case ISD::SETOGE: 317 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 318 (VT == MVT::f64) ? RTLIB::OGE_F64 : 319 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 320 break; 321 case ISD::SETLT: 322 case ISD::SETOLT: 323 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 324 (VT == MVT::f64) ? RTLIB::OLT_F64 : 325 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 326 break; 327 case ISD::SETLE: 328 case ISD::SETOLE: 329 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 330 (VT == MVT::f64) ? RTLIB::OLE_F64 : 331 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 332 break; 333 case ISD::SETGT: 334 case ISD::SETOGT: 335 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 336 (VT == MVT::f64) ? RTLIB::OGT_F64 : 337 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 338 break; 339 case ISD::SETO: 340 ShouldInvertCC = true; 341 LLVM_FALLTHROUGH; 342 case ISD::SETUO: 343 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 344 (VT == MVT::f64) ? RTLIB::UO_F64 : 345 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 346 break; 347 case ISD::SETONE: 348 // SETONE = O && UNE 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUEQ: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 356 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 357 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 358 break; 359 default: 360 // Invert CC for unordered comparisons 361 ShouldInvertCC = true; 362 switch (CCCode) { 363 case ISD::SETULT: 364 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 365 (VT == MVT::f64) ? RTLIB::OGE_F64 : 366 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 367 break; 368 case ISD::SETULE: 369 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 370 (VT == MVT::f64) ? RTLIB::OGT_F64 : 371 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 372 break; 373 case ISD::SETUGT: 374 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 375 (VT == MVT::f64) ? RTLIB::OLE_F64 : 376 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 377 break; 378 case ISD::SETUGE: 379 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 380 (VT == MVT::f64) ? RTLIB::OLT_F64 : 381 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 382 break; 383 default: llvm_unreachable("Do not know how to soften this setcc!"); 384 } 385 } 386 387 // Use the target specific return value for comparions lib calls. 388 EVT RetVT = getCmpLibcallReturnType(); 389 SDValue Ops[2] = {NewLHS, NewRHS}; 390 TargetLowering::MakeLibCallOptions CallOptions; 391 EVT OpsVT[2] = { OldLHS.getValueType(), 392 OldRHS.getValueType() }; 393 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 394 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 395 NewLHS = Call.first; 396 NewRHS = DAG.getConstant(0, dl, RetVT); 397 398 CCCode = getCmpLibcallCC(LC1); 399 if (ShouldInvertCC) { 400 assert(RetVT.isInteger()); 401 CCCode = getSetCCInverse(CCCode, RetVT); 402 } 403 404 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 405 // Update Chain. 406 Chain = Call.second; 407 } else { 408 EVT SetCCVT = 409 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 410 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 411 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 412 CCCode = getCmpLibcallCC(LC2); 413 if (ShouldInvertCC) 414 CCCode = getSetCCInverse(CCCode, RetVT); 415 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 416 if (Chain) 417 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 418 Call2.second); 419 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 420 Tmp.getValueType(), Tmp, NewLHS); 421 NewRHS = SDValue(); 422 } 423 } 424 425 /// Return the entry encoding for a jump table in the current function. The 426 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 427 unsigned TargetLowering::getJumpTableEncoding() const { 428 // In non-pic modes, just use the address of a block. 429 if (!isPositionIndependent()) 430 return MachineJumpTableInfo::EK_BlockAddress; 431 432 // In PIC mode, if the target supports a GPRel32 directive, use it. 433 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 434 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 435 436 // Otherwise, use a label difference. 437 return MachineJumpTableInfo::EK_LabelDifference32; 438 } 439 440 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 441 SelectionDAG &DAG) const { 442 // If our PIC model is GP relative, use the global offset table as the base. 443 unsigned JTEncoding = getJumpTableEncoding(); 444 445 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 446 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 447 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 448 449 return Table; 450 } 451 452 /// This returns the relocation base for the given PIC jumptable, the same as 453 /// getPICJumpTableRelocBase, but as an MCExpr. 454 const MCExpr * 455 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 456 unsigned JTI,MCContext &Ctx) const{ 457 // The normal PIC reloc base is the label at the start of the jump table. 458 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 459 } 460 461 bool 462 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 463 const TargetMachine &TM = getTargetMachine(); 464 const GlobalValue *GV = GA->getGlobal(); 465 466 // If the address is not even local to this DSO we will have to load it from 467 // a got and then add the offset. 468 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 469 return false; 470 471 // If the code is position independent we will have to add a base register. 472 if (isPositionIndependent()) 473 return false; 474 475 // Otherwise we can do it. 476 return true; 477 } 478 479 //===----------------------------------------------------------------------===// 480 // Optimization Methods 481 //===----------------------------------------------------------------------===// 482 483 /// If the specified instruction has a constant integer operand and there are 484 /// bits set in that constant that are not demanded, then clear those bits and 485 /// return true. 486 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 487 TargetLoweringOpt &TLO) const { 488 SDLoc DL(Op); 489 unsigned Opcode = Op.getOpcode(); 490 491 // Do target-specific constant optimization. 492 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 493 return TLO.New.getNode(); 494 495 // FIXME: ISD::SELECT, ISD::SELECT_CC 496 switch (Opcode) { 497 default: 498 break; 499 case ISD::XOR: 500 case ISD::AND: 501 case ISD::OR: { 502 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 503 if (!Op1C) 504 return false; 505 506 // If this is a 'not' op, don't touch it because that's a canonical form. 507 const APInt &C = Op1C->getAPIntValue(); 508 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 509 return false; 510 511 if (!C.isSubsetOf(Demanded)) { 512 EVT VT = Op.getValueType(); 513 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 514 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 515 return TLO.CombineTo(Op, NewOp); 516 } 517 518 break; 519 } 520 } 521 522 return false; 523 } 524 525 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 526 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 527 /// generalized for targets with other types of implicit widening casts. 528 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 529 const APInt &Demanded, 530 TargetLoweringOpt &TLO) const { 531 assert(Op.getNumOperands() == 2 && 532 "ShrinkDemandedOp only supports binary operators!"); 533 assert(Op.getNode()->getNumValues() == 1 && 534 "ShrinkDemandedOp only supports nodes with one result!"); 535 536 SelectionDAG &DAG = TLO.DAG; 537 SDLoc dl(Op); 538 539 // Early return, as this function cannot handle vector types. 540 if (Op.getValueType().isVector()) 541 return false; 542 543 // Don't do this if the node has another user, which may require the 544 // full value. 545 if (!Op.getNode()->hasOneUse()) 546 return false; 547 548 // Search for the smallest integer type with free casts to and from 549 // Op's type. For expedience, just check power-of-2 integer types. 550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 551 unsigned DemandedSize = Demanded.getActiveBits(); 552 unsigned SmallVTBits = DemandedSize; 553 if (!isPowerOf2_32(SmallVTBits)) 554 SmallVTBits = NextPowerOf2(SmallVTBits); 555 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 556 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 557 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 558 TLI.isZExtFree(SmallVT, Op.getValueType())) { 559 // We found a type with free casts. 560 SDValue X = DAG.getNode( 561 Op.getOpcode(), dl, SmallVT, 562 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 563 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 564 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 565 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 566 return TLO.CombineTo(Op, Z); 567 } 568 } 569 return false; 570 } 571 572 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 573 DAGCombinerInfo &DCI) const { 574 SelectionDAG &DAG = DCI.DAG; 575 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 576 !DCI.isBeforeLegalizeOps()); 577 KnownBits Known; 578 579 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 580 if (Simplified) { 581 DCI.AddToWorklist(Op.getNode()); 582 DCI.CommitTargetLoweringOpt(TLO); 583 } 584 return Simplified; 585 } 586 587 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 588 KnownBits &Known, 589 TargetLoweringOpt &TLO, 590 unsigned Depth, 591 bool AssumeSingleUse) const { 592 EVT VT = Op.getValueType(); 593 594 // TODO: We can probably do more work on calculating the known bits and 595 // simplifying the operations for scalable vectors, but for now we just 596 // bail out. 597 if (VT.isScalableVector()) { 598 // Pretend we don't know anything for now. 599 Known = KnownBits(DemandedBits.getBitWidth()); 600 return false; 601 } 602 603 APInt DemandedElts = VT.isVector() 604 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 605 : APInt(1, 1); 606 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 607 AssumeSingleUse); 608 } 609 610 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 611 // TODO: Under what circumstances can we create nodes? Constant folding? 612 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 613 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 614 SelectionDAG &DAG, unsigned Depth) const { 615 // Limit search depth. 616 if (Depth >= SelectionDAG::MaxRecursionDepth) 617 return SDValue(); 618 619 // Ignore UNDEFs. 620 if (Op.isUndef()) 621 return SDValue(); 622 623 // Not demanding any bits/elts from Op. 624 if (DemandedBits == 0 || DemandedElts == 0) 625 return DAG.getUNDEF(Op.getValueType()); 626 627 unsigned NumElts = DemandedElts.getBitWidth(); 628 unsigned BitWidth = DemandedBits.getBitWidth(); 629 KnownBits LHSKnown, RHSKnown; 630 switch (Op.getOpcode()) { 631 case ISD::BITCAST: { 632 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 633 EVT SrcVT = Src.getValueType(); 634 EVT DstVT = Op.getValueType(); 635 if (SrcVT == DstVT) 636 return Src; 637 638 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 639 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 640 if (NumSrcEltBits == NumDstEltBits) 641 if (SDValue V = SimplifyMultipleUseDemandedBits( 642 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 643 return DAG.getBitcast(DstVT, V); 644 645 // TODO - bigendian once we have test coverage. 646 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 647 DAG.getDataLayout().isLittleEndian()) { 648 unsigned Scale = NumDstEltBits / NumSrcEltBits; 649 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 650 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 651 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 652 for (unsigned i = 0; i != Scale; ++i) { 653 unsigned Offset = i * NumSrcEltBits; 654 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 655 if (!Sub.isNullValue()) { 656 DemandedSrcBits |= Sub; 657 for (unsigned j = 0; j != NumElts; ++j) 658 if (DemandedElts[j]) 659 DemandedSrcElts.setBit((j * Scale) + i); 660 } 661 } 662 663 if (SDValue V = SimplifyMultipleUseDemandedBits( 664 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 665 return DAG.getBitcast(DstVT, V); 666 } 667 668 // TODO - bigendian once we have test coverage. 669 if ((NumSrcEltBits % NumDstEltBits) == 0 && 670 DAG.getDataLayout().isLittleEndian()) { 671 unsigned Scale = NumSrcEltBits / NumDstEltBits; 672 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 673 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 674 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 675 for (unsigned i = 0; i != NumElts; ++i) 676 if (DemandedElts[i]) { 677 unsigned Offset = (i % Scale) * NumDstEltBits; 678 DemandedSrcBits.insertBits(DemandedBits, Offset); 679 DemandedSrcElts.setBit(i / Scale); 680 } 681 682 if (SDValue V = SimplifyMultipleUseDemandedBits( 683 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 684 return DAG.getBitcast(DstVT, V); 685 } 686 687 break; 688 } 689 case ISD::AND: { 690 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 691 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 692 693 // If all of the demanded bits are known 1 on one side, return the other. 694 // These bits cannot contribute to the result of the 'and' in this 695 // context. 696 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 697 return Op.getOperand(0); 698 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 699 return Op.getOperand(1); 700 break; 701 } 702 case ISD::OR: { 703 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 704 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 705 706 // If all of the demanded bits are known zero on one side, return the 707 // other. These bits cannot contribute to the result of the 'or' in this 708 // context. 709 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 710 return Op.getOperand(0); 711 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 712 return Op.getOperand(1); 713 break; 714 } 715 case ISD::XOR: { 716 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 717 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 718 719 // If all of the demanded bits are known zero on one side, return the 720 // other. 721 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 722 return Op.getOperand(0); 723 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 724 return Op.getOperand(1); 725 break; 726 } 727 case ISD::SHL: { 728 // If we are only demanding sign bits then we can use the shift source 729 // directly. 730 if (const APInt *MaxSA = 731 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 732 SDValue Op0 = Op.getOperand(0); 733 unsigned ShAmt = MaxSA->getZExtValue(); 734 unsigned NumSignBits = 735 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 736 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 737 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 738 return Op0; 739 } 740 break; 741 } 742 case ISD::SETCC: { 743 SDValue Op0 = Op.getOperand(0); 744 SDValue Op1 = Op.getOperand(1); 745 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 746 // If (1) we only need the sign-bit, (2) the setcc operands are the same 747 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 748 // -1, we may be able to bypass the setcc. 749 if (DemandedBits.isSignMask() && 750 Op0.getScalarValueSizeInBits() == BitWidth && 751 getBooleanContents(Op0.getValueType()) == 752 BooleanContent::ZeroOrNegativeOneBooleanContent) { 753 // If we're testing X < 0, then this compare isn't needed - just use X! 754 // FIXME: We're limiting to integer types here, but this should also work 755 // if we don't care about FP signed-zero. The use of SETLT with FP means 756 // that we don't care about NaNs. 757 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 758 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 759 return Op0; 760 } 761 break; 762 } 763 case ISD::SIGN_EXTEND_INREG: { 764 // If none of the extended bits are demanded, eliminate the sextinreg. 765 SDValue Op0 = Op.getOperand(0); 766 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 767 unsigned ExBits = ExVT.getScalarSizeInBits(); 768 if (DemandedBits.getActiveBits() <= ExBits) 769 return Op0; 770 // If the input is already sign extended, just drop the extension. 771 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 772 if (NumSignBits >= (BitWidth - ExBits + 1)) 773 return Op0; 774 break; 775 } 776 case ISD::INSERT_VECTOR_ELT: { 777 // If we don't demand the inserted element, return the base vector. 778 SDValue Vec = Op.getOperand(0); 779 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 780 EVT VecVT = Vec.getValueType(); 781 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 782 !DemandedElts[CIdx->getZExtValue()]) 783 return Vec; 784 break; 785 } 786 case ISD::INSERT_SUBVECTOR: { 787 // If we don't demand the inserted subvector, return the base vector. 788 SDValue Vec = Op.getOperand(0); 789 SDValue Sub = Op.getOperand(1); 790 uint64_t Idx = Op.getConstantOperandVal(2); 791 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 792 if (DemandedElts.extractBits(NumSubElts, Idx) == 0) 793 return Vec; 794 break; 795 } 796 case ISD::VECTOR_SHUFFLE: { 797 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 798 799 // If all the demanded elts are from one operand and are inline, 800 // then we can use the operand directly. 801 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 802 for (unsigned i = 0; i != NumElts; ++i) { 803 int M = ShuffleMask[i]; 804 if (M < 0 || !DemandedElts[i]) 805 continue; 806 AllUndef = false; 807 IdentityLHS &= (M == (int)i); 808 IdentityRHS &= ((M - NumElts) == i); 809 } 810 811 if (AllUndef) 812 return DAG.getUNDEF(Op.getValueType()); 813 if (IdentityLHS) 814 return Op.getOperand(0); 815 if (IdentityRHS) 816 return Op.getOperand(1); 817 break; 818 } 819 default: 820 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 821 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 822 Op, DemandedBits, DemandedElts, DAG, Depth)) 823 return V; 824 break; 825 } 826 return SDValue(); 827 } 828 829 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 830 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 831 unsigned Depth) const { 832 EVT VT = Op.getValueType(); 833 APInt DemandedElts = VT.isVector() 834 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 835 : APInt(1, 1); 836 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 837 Depth); 838 } 839 840 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 841 /// result of Op are ever used downstream. If we can use this information to 842 /// simplify Op, create a new simplified DAG node and return true, returning the 843 /// original and new nodes in Old and New. Otherwise, analyze the expression and 844 /// return a mask of Known bits for the expression (used to simplify the 845 /// caller). The Known bits may only be accurate for those bits in the 846 /// OriginalDemandedBits and OriginalDemandedElts. 847 bool TargetLowering::SimplifyDemandedBits( 848 SDValue Op, const APInt &OriginalDemandedBits, 849 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 850 unsigned Depth, bool AssumeSingleUse) const { 851 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 852 assert(Op.getScalarValueSizeInBits() == BitWidth && 853 "Mask size mismatches value type size!"); 854 855 // Don't know anything. 856 Known = KnownBits(BitWidth); 857 858 // TODO: We can probably do more work on calculating the known bits and 859 // simplifying the operations for scalable vectors, but for now we just 860 // bail out. 861 if (Op.getValueType().isScalableVector()) 862 return false; 863 864 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 865 assert((!Op.getValueType().isVector() || 866 NumElts == Op.getValueType().getVectorNumElements()) && 867 "Unexpected vector size"); 868 869 APInt DemandedBits = OriginalDemandedBits; 870 APInt DemandedElts = OriginalDemandedElts; 871 SDLoc dl(Op); 872 auto &DL = TLO.DAG.getDataLayout(); 873 874 // Undef operand. 875 if (Op.isUndef()) 876 return false; 877 878 if (Op.getOpcode() == ISD::Constant) { 879 // We know all of the bits for a constant! 880 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 881 Known.Zero = ~Known.One; 882 return false; 883 } 884 885 // Other users may use these bits. 886 EVT VT = Op.getValueType(); 887 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 888 if (Depth != 0) { 889 // If not at the root, Just compute the Known bits to 890 // simplify things downstream. 891 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 892 return false; 893 } 894 // If this is the root being simplified, allow it to have multiple uses, 895 // just set the DemandedBits/Elts to all bits. 896 DemandedBits = APInt::getAllOnesValue(BitWidth); 897 DemandedElts = APInt::getAllOnesValue(NumElts); 898 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 899 // Not demanding any bits/elts from Op. 900 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 901 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 902 // Limit search depth. 903 return false; 904 } 905 906 KnownBits Known2; 907 switch (Op.getOpcode()) { 908 case ISD::TargetConstant: 909 llvm_unreachable("Can't simplify this node"); 910 case ISD::SCALAR_TO_VECTOR: { 911 if (!DemandedElts[0]) 912 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 913 914 KnownBits SrcKnown; 915 SDValue Src = Op.getOperand(0); 916 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 917 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 918 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 919 return true; 920 921 // Upper elements are undef, so only get the knownbits if we just demand 922 // the bottom element. 923 if (DemandedElts == 1) 924 Known = SrcKnown.anyextOrTrunc(BitWidth); 925 break; 926 } 927 case ISD::BUILD_VECTOR: 928 // Collect the known bits that are shared by every demanded element. 929 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 930 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 931 return false; // Don't fall through, will infinitely loop. 932 case ISD::LOAD: { 933 LoadSDNode *LD = cast<LoadSDNode>(Op); 934 if (getTargetConstantFromLoad(LD)) { 935 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 936 return false; // Don't fall through, will infinitely loop. 937 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 938 // If this is a ZEXTLoad and we are looking at the loaded value. 939 EVT MemVT = LD->getMemoryVT(); 940 unsigned MemBits = MemVT.getScalarSizeInBits(); 941 Known.Zero.setBitsFrom(MemBits); 942 return false; // Don't fall through, will infinitely loop. 943 } 944 break; 945 } 946 case ISD::INSERT_VECTOR_ELT: { 947 SDValue Vec = Op.getOperand(0); 948 SDValue Scl = Op.getOperand(1); 949 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 950 EVT VecVT = Vec.getValueType(); 951 952 // If index isn't constant, assume we need all vector elements AND the 953 // inserted element. 954 APInt DemandedVecElts(DemandedElts); 955 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 956 unsigned Idx = CIdx->getZExtValue(); 957 DemandedVecElts.clearBit(Idx); 958 959 // Inserted element is not required. 960 if (!DemandedElts[Idx]) 961 return TLO.CombineTo(Op, Vec); 962 } 963 964 KnownBits KnownScl; 965 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 966 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 967 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 968 return true; 969 970 Known = KnownScl.anyextOrTrunc(BitWidth); 971 972 KnownBits KnownVec; 973 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 974 Depth + 1)) 975 return true; 976 977 if (!!DemandedVecElts) { 978 Known.One &= KnownVec.One; 979 Known.Zero &= KnownVec.Zero; 980 } 981 982 return false; 983 } 984 case ISD::INSERT_SUBVECTOR: { 985 // Demand any elements from the subvector and the remainder from the src its 986 // inserted into. 987 SDValue Src = Op.getOperand(0); 988 SDValue Sub = Op.getOperand(1); 989 uint64_t Idx = Op.getConstantOperandVal(2); 990 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 991 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 992 APInt DemandedSrcElts = DemandedElts; 993 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 994 995 KnownBits KnownSub, KnownSrc; 996 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 997 Depth + 1)) 998 return true; 999 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1000 Depth + 1)) 1001 return true; 1002 1003 Known.Zero.setAllBits(); 1004 Known.One.setAllBits(); 1005 if (!!DemandedSubElts) { 1006 Known.One &= KnownSub.One; 1007 Known.Zero &= KnownSub.Zero; 1008 } 1009 if (!!DemandedSrcElts) { 1010 Known.One &= KnownSrc.One; 1011 Known.Zero &= KnownSrc.Zero; 1012 } 1013 1014 // Attempt to avoid multi-use src if we don't need anything from it. 1015 if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() || 1016 !DemandedSrcElts.isAllOnesValue()) { 1017 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1018 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1019 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1020 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1021 if (NewSub || NewSrc) { 1022 NewSub = NewSub ? NewSub : Sub; 1023 NewSrc = NewSrc ? NewSrc : Src; 1024 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1025 Op.getOperand(2)); 1026 return TLO.CombineTo(Op, NewOp); 1027 } 1028 } 1029 break; 1030 } 1031 case ISD::EXTRACT_SUBVECTOR: { 1032 // Offset the demanded elts by the subvector index. 1033 SDValue Src = Op.getOperand(0); 1034 uint64_t Idx = Op.getConstantOperandVal(1); 1035 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1036 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1037 1038 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1039 Depth + 1)) 1040 return true; 1041 1042 // Attempt to avoid multi-use src if we don't need anything from it. 1043 if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) { 1044 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1045 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1046 if (DemandedSrc) { 1047 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1048 Op.getOperand(1)); 1049 return TLO.CombineTo(Op, NewOp); 1050 } 1051 } 1052 break; 1053 } 1054 case ISD::CONCAT_VECTORS: { 1055 Known.Zero.setAllBits(); 1056 Known.One.setAllBits(); 1057 EVT SubVT = Op.getOperand(0).getValueType(); 1058 unsigned NumSubVecs = Op.getNumOperands(); 1059 unsigned NumSubElts = SubVT.getVectorNumElements(); 1060 for (unsigned i = 0; i != NumSubVecs; ++i) { 1061 APInt DemandedSubElts = 1062 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1063 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1064 Known2, TLO, Depth + 1)) 1065 return true; 1066 // Known bits are shared by every demanded subvector element. 1067 if (!!DemandedSubElts) { 1068 Known.One &= Known2.One; 1069 Known.Zero &= Known2.Zero; 1070 } 1071 } 1072 break; 1073 } 1074 case ISD::VECTOR_SHUFFLE: { 1075 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1076 1077 // Collect demanded elements from shuffle operands.. 1078 APInt DemandedLHS(NumElts, 0); 1079 APInt DemandedRHS(NumElts, 0); 1080 for (unsigned i = 0; i != NumElts; ++i) { 1081 if (!DemandedElts[i]) 1082 continue; 1083 int M = ShuffleMask[i]; 1084 if (M < 0) { 1085 // For UNDEF elements, we don't know anything about the common state of 1086 // the shuffle result. 1087 DemandedLHS.clearAllBits(); 1088 DemandedRHS.clearAllBits(); 1089 break; 1090 } 1091 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1092 if (M < (int)NumElts) 1093 DemandedLHS.setBit(M); 1094 else 1095 DemandedRHS.setBit(M - NumElts); 1096 } 1097 1098 if (!!DemandedLHS || !!DemandedRHS) { 1099 SDValue Op0 = Op.getOperand(0); 1100 SDValue Op1 = Op.getOperand(1); 1101 1102 Known.Zero.setAllBits(); 1103 Known.One.setAllBits(); 1104 if (!!DemandedLHS) { 1105 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1106 Depth + 1)) 1107 return true; 1108 Known.One &= Known2.One; 1109 Known.Zero &= Known2.Zero; 1110 } 1111 if (!!DemandedRHS) { 1112 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1113 Depth + 1)) 1114 return true; 1115 Known.One &= Known2.One; 1116 Known.Zero &= Known2.Zero; 1117 } 1118 1119 // Attempt to avoid multi-use ops if we don't need anything from them. 1120 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1121 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1122 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1123 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1124 if (DemandedOp0 || DemandedOp1) { 1125 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1126 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1127 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1128 return TLO.CombineTo(Op, NewOp); 1129 } 1130 } 1131 break; 1132 } 1133 case ISD::AND: { 1134 SDValue Op0 = Op.getOperand(0); 1135 SDValue Op1 = Op.getOperand(1); 1136 1137 // If the RHS is a constant, check to see if the LHS would be zero without 1138 // using the bits from the RHS. Below, we use knowledge about the RHS to 1139 // simplify the LHS, here we're using information from the LHS to simplify 1140 // the RHS. 1141 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1142 // Do not increment Depth here; that can cause an infinite loop. 1143 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1144 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1145 if ((LHSKnown.Zero & DemandedBits) == 1146 (~RHSC->getAPIntValue() & DemandedBits)) 1147 return TLO.CombineTo(Op, Op0); 1148 1149 // If any of the set bits in the RHS are known zero on the LHS, shrink 1150 // the constant. 1151 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1152 return true; 1153 1154 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1155 // constant, but if this 'and' is only clearing bits that were just set by 1156 // the xor, then this 'and' can be eliminated by shrinking the mask of 1157 // the xor. For example, for a 32-bit X: 1158 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1159 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1160 LHSKnown.One == ~RHSC->getAPIntValue()) { 1161 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1162 return TLO.CombineTo(Op, Xor); 1163 } 1164 } 1165 1166 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1167 Depth + 1)) 1168 return true; 1169 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1170 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1171 Known2, TLO, Depth + 1)) 1172 return true; 1173 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1174 1175 // Attempt to avoid multi-use ops if we don't need anything from them. 1176 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1177 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1178 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1179 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1180 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1181 if (DemandedOp0 || DemandedOp1) { 1182 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1183 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1184 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1185 return TLO.CombineTo(Op, NewOp); 1186 } 1187 } 1188 1189 // If all of the demanded bits are known one on one side, return the other. 1190 // These bits cannot contribute to the result of the 'and'. 1191 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1192 return TLO.CombineTo(Op, Op0); 1193 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1194 return TLO.CombineTo(Op, Op1); 1195 // If all of the demanded bits in the inputs are known zeros, return zero. 1196 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1197 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1198 // If the RHS is a constant, see if we can simplify it. 1199 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1200 return true; 1201 // If the operation can be done in a smaller type, do so. 1202 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1203 return true; 1204 1205 Known &= Known2; 1206 break; 1207 } 1208 case ISD::OR: { 1209 SDValue Op0 = Op.getOperand(0); 1210 SDValue Op1 = Op.getOperand(1); 1211 1212 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1213 Depth + 1)) 1214 return true; 1215 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1216 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1217 Known2, TLO, Depth + 1)) 1218 return true; 1219 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1220 1221 // Attempt to avoid multi-use ops if we don't need anything from them. 1222 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1223 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1224 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1225 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1226 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1227 if (DemandedOp0 || DemandedOp1) { 1228 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1229 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1230 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1231 return TLO.CombineTo(Op, NewOp); 1232 } 1233 } 1234 1235 // If all of the demanded bits are known zero on one side, return the other. 1236 // These bits cannot contribute to the result of the 'or'. 1237 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1238 return TLO.CombineTo(Op, Op0); 1239 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1240 return TLO.CombineTo(Op, Op1); 1241 // If the RHS is a constant, see if we can simplify it. 1242 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1243 return true; 1244 // If the operation can be done in a smaller type, do so. 1245 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1246 return true; 1247 1248 Known |= Known2; 1249 break; 1250 } 1251 case ISD::XOR: { 1252 SDValue Op0 = Op.getOperand(0); 1253 SDValue Op1 = Op.getOperand(1); 1254 1255 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1256 Depth + 1)) 1257 return true; 1258 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1259 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1260 Depth + 1)) 1261 return true; 1262 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1263 1264 // Attempt to avoid multi-use ops if we don't need anything from them. 1265 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1266 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1267 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1268 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1269 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1270 if (DemandedOp0 || DemandedOp1) { 1271 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1272 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1273 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1274 return TLO.CombineTo(Op, NewOp); 1275 } 1276 } 1277 1278 // If all of the demanded bits are known zero on one side, return the other. 1279 // These bits cannot contribute to the result of the 'xor'. 1280 if (DemandedBits.isSubsetOf(Known.Zero)) 1281 return TLO.CombineTo(Op, Op0); 1282 if (DemandedBits.isSubsetOf(Known2.Zero)) 1283 return TLO.CombineTo(Op, Op1); 1284 // If the operation can be done in a smaller type, do so. 1285 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1286 return true; 1287 1288 // If all of the unknown bits are known to be zero on one side or the other 1289 // (but not both) turn this into an *inclusive* or. 1290 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1291 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1292 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1293 1294 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1295 // If one side is a constant, and all of the known set bits on the other 1296 // side are also set in the constant, turn this into an AND, as we know 1297 // the bits will be cleared. 1298 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1299 // NB: it is okay if more bits are known than are requested 1300 if (C->getAPIntValue() == Known2.One) { 1301 SDValue ANDC = 1302 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1303 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1304 } 1305 1306 // If the RHS is a constant, see if we can change it. Don't alter a -1 1307 // constant because that's a 'not' op, and that is better for combining 1308 // and codegen. 1309 if (!C->isAllOnesValue()) { 1310 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1311 // We're flipping all demanded bits. Flip the undemanded bits too. 1312 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1313 return TLO.CombineTo(Op, New); 1314 } 1315 // If we can't turn this into a 'not', try to shrink the constant. 1316 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1317 return true; 1318 } 1319 } 1320 1321 Known ^= Known2; 1322 break; 1323 } 1324 case ISD::SELECT: 1325 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1326 Depth + 1)) 1327 return true; 1328 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1329 Depth + 1)) 1330 return true; 1331 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1332 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1333 1334 // If the operands are constants, see if we can simplify them. 1335 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1336 return true; 1337 1338 // Only known if known in both the LHS and RHS. 1339 Known.One &= Known2.One; 1340 Known.Zero &= Known2.Zero; 1341 break; 1342 case ISD::SELECT_CC: 1343 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1344 Depth + 1)) 1345 return true; 1346 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1347 Depth + 1)) 1348 return true; 1349 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1350 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1351 1352 // If the operands are constants, see if we can simplify them. 1353 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1354 return true; 1355 1356 // Only known if known in both the LHS and RHS. 1357 Known.One &= Known2.One; 1358 Known.Zero &= Known2.Zero; 1359 break; 1360 case ISD::SETCC: { 1361 SDValue Op0 = Op.getOperand(0); 1362 SDValue Op1 = Op.getOperand(1); 1363 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1364 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1365 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1366 // -1, we may be able to bypass the setcc. 1367 if (DemandedBits.isSignMask() && 1368 Op0.getScalarValueSizeInBits() == BitWidth && 1369 getBooleanContents(Op0.getValueType()) == 1370 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1371 // If we're testing X < 0, then this compare isn't needed - just use X! 1372 // FIXME: We're limiting to integer types here, but this should also work 1373 // if we don't care about FP signed-zero. The use of SETLT with FP means 1374 // that we don't care about NaNs. 1375 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1376 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1377 return TLO.CombineTo(Op, Op0); 1378 1379 // TODO: Should we check for other forms of sign-bit comparisons? 1380 // Examples: X <= -1, X >= 0 1381 } 1382 if (getBooleanContents(Op0.getValueType()) == 1383 TargetLowering::ZeroOrOneBooleanContent && 1384 BitWidth > 1) 1385 Known.Zero.setBitsFrom(1); 1386 break; 1387 } 1388 case ISD::SHL: { 1389 SDValue Op0 = Op.getOperand(0); 1390 SDValue Op1 = Op.getOperand(1); 1391 EVT ShiftVT = Op1.getValueType(); 1392 1393 if (const APInt *SA = 1394 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1395 unsigned ShAmt = SA->getZExtValue(); 1396 if (ShAmt == 0) 1397 return TLO.CombineTo(Op, Op0); 1398 1399 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1400 // single shift. We can do this if the bottom bits (which are shifted 1401 // out) are never demanded. 1402 // TODO - support non-uniform vector amounts. 1403 if (Op0.getOpcode() == ISD::SRL) { 1404 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1405 if (const APInt *SA2 = 1406 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1407 unsigned C1 = SA2->getZExtValue(); 1408 unsigned Opc = ISD::SHL; 1409 int Diff = ShAmt - C1; 1410 if (Diff < 0) { 1411 Diff = -Diff; 1412 Opc = ISD::SRL; 1413 } 1414 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1415 return TLO.CombineTo( 1416 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1417 } 1418 } 1419 } 1420 1421 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1422 // are not demanded. This will likely allow the anyext to be folded away. 1423 // TODO - support non-uniform vector amounts. 1424 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1425 SDValue InnerOp = Op0.getOperand(0); 1426 EVT InnerVT = InnerOp.getValueType(); 1427 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1428 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1429 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1430 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1431 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1432 ShTy = InnerVT; 1433 SDValue NarrowShl = 1434 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1435 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1436 return TLO.CombineTo( 1437 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1438 } 1439 1440 // Repeat the SHL optimization above in cases where an extension 1441 // intervenes: (shl (anyext (shr x, c1)), c2) to 1442 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1443 // aren't demanded (as above) and that the shifted upper c1 bits of 1444 // x aren't demanded. 1445 // TODO - support non-uniform vector amounts. 1446 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1447 InnerOp.hasOneUse()) { 1448 if (const APInt *SA2 = 1449 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1450 unsigned InnerShAmt = SA2->getZExtValue(); 1451 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1452 DemandedBits.getActiveBits() <= 1453 (InnerBits - InnerShAmt + ShAmt) && 1454 DemandedBits.countTrailingZeros() >= ShAmt) { 1455 SDValue NewSA = 1456 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1457 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1458 InnerOp.getOperand(0)); 1459 return TLO.CombineTo( 1460 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1461 } 1462 } 1463 } 1464 } 1465 1466 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1467 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1468 Depth + 1)) 1469 return true; 1470 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1471 Known.Zero <<= ShAmt; 1472 Known.One <<= ShAmt; 1473 // low bits known zero. 1474 Known.Zero.setLowBits(ShAmt); 1475 1476 // Try shrinking the operation as long as the shift amount will still be 1477 // in range. 1478 if ((ShAmt < DemandedBits.getActiveBits()) && 1479 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1480 return true; 1481 } 1482 1483 // If we are only demanding sign bits then we can use the shift source 1484 // directly. 1485 if (const APInt *MaxSA = 1486 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1487 unsigned ShAmt = MaxSA->getZExtValue(); 1488 unsigned NumSignBits = 1489 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1490 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1491 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1492 return TLO.CombineTo(Op, Op0); 1493 } 1494 break; 1495 } 1496 case ISD::SRL: { 1497 SDValue Op0 = Op.getOperand(0); 1498 SDValue Op1 = Op.getOperand(1); 1499 EVT ShiftVT = Op1.getValueType(); 1500 1501 if (const APInt *SA = 1502 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1503 unsigned ShAmt = SA->getZExtValue(); 1504 if (ShAmt == 0) 1505 return TLO.CombineTo(Op, Op0); 1506 1507 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1508 // single shift. We can do this if the top bits (which are shifted out) 1509 // are never demanded. 1510 // TODO - support non-uniform vector amounts. 1511 if (Op0.getOpcode() == ISD::SHL) { 1512 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1513 if (const APInt *SA2 = 1514 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1515 unsigned C1 = SA2->getZExtValue(); 1516 unsigned Opc = ISD::SRL; 1517 int Diff = ShAmt - C1; 1518 if (Diff < 0) { 1519 Diff = -Diff; 1520 Opc = ISD::SHL; 1521 } 1522 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1523 return TLO.CombineTo( 1524 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1525 } 1526 } 1527 } 1528 1529 APInt InDemandedMask = (DemandedBits << ShAmt); 1530 1531 // If the shift is exact, then it does demand the low bits (and knows that 1532 // they are zero). 1533 if (Op->getFlags().hasExact()) 1534 InDemandedMask.setLowBits(ShAmt); 1535 1536 // Compute the new bits that are at the top now. 1537 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1538 Depth + 1)) 1539 return true; 1540 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1541 Known.Zero.lshrInPlace(ShAmt); 1542 Known.One.lshrInPlace(ShAmt); 1543 // High bits known zero. 1544 Known.Zero.setHighBits(ShAmt); 1545 } 1546 break; 1547 } 1548 case ISD::SRA: { 1549 SDValue Op0 = Op.getOperand(0); 1550 SDValue Op1 = Op.getOperand(1); 1551 EVT ShiftVT = Op1.getValueType(); 1552 1553 // If we only want bits that already match the signbit then we don't need 1554 // to shift. 1555 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1556 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1557 NumHiDemandedBits) 1558 return TLO.CombineTo(Op, Op0); 1559 1560 // If this is an arithmetic shift right and only the low-bit is set, we can 1561 // always convert this into a logical shr, even if the shift amount is 1562 // variable. The low bit of the shift cannot be an input sign bit unless 1563 // the shift amount is >= the size of the datatype, which is undefined. 1564 if (DemandedBits.isOneValue()) 1565 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1566 1567 if (const APInt *SA = 1568 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1569 unsigned ShAmt = SA->getZExtValue(); 1570 if (ShAmt == 0) 1571 return TLO.CombineTo(Op, Op0); 1572 1573 APInt InDemandedMask = (DemandedBits << ShAmt); 1574 1575 // If the shift is exact, then it does demand the low bits (and knows that 1576 // they are zero). 1577 if (Op->getFlags().hasExact()) 1578 InDemandedMask.setLowBits(ShAmt); 1579 1580 // If any of the demanded bits are produced by the sign extension, we also 1581 // demand the input sign bit. 1582 if (DemandedBits.countLeadingZeros() < ShAmt) 1583 InDemandedMask.setSignBit(); 1584 1585 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1586 Depth + 1)) 1587 return true; 1588 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1589 Known.Zero.lshrInPlace(ShAmt); 1590 Known.One.lshrInPlace(ShAmt); 1591 1592 // If the input sign bit is known to be zero, or if none of the top bits 1593 // are demanded, turn this into an unsigned shift right. 1594 if (Known.Zero[BitWidth - ShAmt - 1] || 1595 DemandedBits.countLeadingZeros() >= ShAmt) { 1596 SDNodeFlags Flags; 1597 Flags.setExact(Op->getFlags().hasExact()); 1598 return TLO.CombineTo( 1599 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1600 } 1601 1602 int Log2 = DemandedBits.exactLogBase2(); 1603 if (Log2 >= 0) { 1604 // The bit must come from the sign. 1605 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1606 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1607 } 1608 1609 if (Known.One[BitWidth - ShAmt - 1]) 1610 // New bits are known one. 1611 Known.One.setHighBits(ShAmt); 1612 1613 // Attempt to avoid multi-use ops if we don't need anything from them. 1614 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1615 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1616 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1617 if (DemandedOp0) { 1618 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1619 return TLO.CombineTo(Op, NewOp); 1620 } 1621 } 1622 } 1623 break; 1624 } 1625 case ISD::FSHL: 1626 case ISD::FSHR: { 1627 SDValue Op0 = Op.getOperand(0); 1628 SDValue Op1 = Op.getOperand(1); 1629 SDValue Op2 = Op.getOperand(2); 1630 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1631 1632 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1633 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1634 1635 // For fshl, 0-shift returns the 1st arg. 1636 // For fshr, 0-shift returns the 2nd arg. 1637 if (Amt == 0) { 1638 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1639 Known, TLO, Depth + 1)) 1640 return true; 1641 break; 1642 } 1643 1644 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1645 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1646 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1647 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1648 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1649 Depth + 1)) 1650 return true; 1651 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1652 Depth + 1)) 1653 return true; 1654 1655 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1656 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1657 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1658 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1659 Known.One |= Known2.One; 1660 Known.Zero |= Known2.Zero; 1661 } 1662 1663 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1664 if (isPowerOf2_32(BitWidth)) { 1665 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1666 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1667 Known2, TLO, Depth + 1)) 1668 return true; 1669 } 1670 break; 1671 } 1672 case ISD::ROTL: 1673 case ISD::ROTR: { 1674 SDValue Op0 = Op.getOperand(0); 1675 SDValue Op1 = Op.getOperand(1); 1676 1677 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1678 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1679 return TLO.CombineTo(Op, Op0); 1680 1681 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1682 if (isPowerOf2_32(BitWidth)) { 1683 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1684 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1685 Depth + 1)) 1686 return true; 1687 } 1688 break; 1689 } 1690 case ISD::BITREVERSE: { 1691 SDValue Src = Op.getOperand(0); 1692 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1693 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1694 Depth + 1)) 1695 return true; 1696 Known.One = Known2.One.reverseBits(); 1697 Known.Zero = Known2.Zero.reverseBits(); 1698 break; 1699 } 1700 case ISD::BSWAP: { 1701 SDValue Src = Op.getOperand(0); 1702 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1703 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1704 Depth + 1)) 1705 return true; 1706 Known.One = Known2.One.byteSwap(); 1707 Known.Zero = Known2.Zero.byteSwap(); 1708 break; 1709 } 1710 case ISD::SIGN_EXTEND_INREG: { 1711 SDValue Op0 = Op.getOperand(0); 1712 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1713 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1714 1715 // If we only care about the highest bit, don't bother shifting right. 1716 if (DemandedBits.isSignMask()) { 1717 unsigned NumSignBits = 1718 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1719 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1720 // However if the input is already sign extended we expect the sign 1721 // extension to be dropped altogether later and do not simplify. 1722 if (!AlreadySignExtended) { 1723 // Compute the correct shift amount type, which must be getShiftAmountTy 1724 // for scalar types after legalization. 1725 EVT ShiftAmtTy = VT; 1726 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1727 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1728 1729 SDValue ShiftAmt = 1730 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1731 return TLO.CombineTo(Op, 1732 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1733 } 1734 } 1735 1736 // If none of the extended bits are demanded, eliminate the sextinreg. 1737 if (DemandedBits.getActiveBits() <= ExVTBits) 1738 return TLO.CombineTo(Op, Op0); 1739 1740 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1741 1742 // Since the sign extended bits are demanded, we know that the sign 1743 // bit is demanded. 1744 InputDemandedBits.setBit(ExVTBits - 1); 1745 1746 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1747 return true; 1748 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1749 1750 // If the sign bit of the input is known set or clear, then we know the 1751 // top bits of the result. 1752 1753 // If the input sign bit is known zero, convert this into a zero extension. 1754 if (Known.Zero[ExVTBits - 1]) 1755 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1756 1757 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1758 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1759 Known.One.setBitsFrom(ExVTBits); 1760 Known.Zero &= Mask; 1761 } else { // Input sign bit unknown 1762 Known.Zero &= Mask; 1763 Known.One &= Mask; 1764 } 1765 break; 1766 } 1767 case ISD::BUILD_PAIR: { 1768 EVT HalfVT = Op.getOperand(0).getValueType(); 1769 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1770 1771 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1772 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1773 1774 KnownBits KnownLo, KnownHi; 1775 1776 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1777 return true; 1778 1779 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1780 return true; 1781 1782 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1783 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1784 1785 Known.One = KnownLo.One.zext(BitWidth) | 1786 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1787 break; 1788 } 1789 case ISD::ZERO_EXTEND: 1790 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1791 SDValue Src = Op.getOperand(0); 1792 EVT SrcVT = Src.getValueType(); 1793 unsigned InBits = SrcVT.getScalarSizeInBits(); 1794 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1795 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1796 1797 // If none of the top bits are demanded, convert this into an any_extend. 1798 if (DemandedBits.getActiveBits() <= InBits) { 1799 // If we only need the non-extended bits of the bottom element 1800 // then we can just bitcast to the result. 1801 if (IsVecInReg && DemandedElts == 1 && 1802 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1803 TLO.DAG.getDataLayout().isLittleEndian()) 1804 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1805 1806 unsigned Opc = 1807 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1808 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1809 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1810 } 1811 1812 APInt InDemandedBits = DemandedBits.trunc(InBits); 1813 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1814 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1815 Depth + 1)) 1816 return true; 1817 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1818 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1819 Known = Known.zext(BitWidth); 1820 break; 1821 } 1822 case ISD::SIGN_EXTEND: 1823 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1824 SDValue Src = Op.getOperand(0); 1825 EVT SrcVT = Src.getValueType(); 1826 unsigned InBits = SrcVT.getScalarSizeInBits(); 1827 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1828 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1829 1830 // If none of the top bits are demanded, convert this into an any_extend. 1831 if (DemandedBits.getActiveBits() <= InBits) { 1832 // If we only need the non-extended bits of the bottom element 1833 // then we can just bitcast to the result. 1834 if (IsVecInReg && DemandedElts == 1 && 1835 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1836 TLO.DAG.getDataLayout().isLittleEndian()) 1837 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1838 1839 unsigned Opc = 1840 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1841 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1842 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1843 } 1844 1845 APInt InDemandedBits = DemandedBits.trunc(InBits); 1846 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1847 1848 // Since some of the sign extended bits are demanded, we know that the sign 1849 // bit is demanded. 1850 InDemandedBits.setBit(InBits - 1); 1851 1852 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1853 Depth + 1)) 1854 return true; 1855 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1856 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1857 1858 // If the sign bit is known one, the top bits match. 1859 Known = Known.sext(BitWidth); 1860 1861 // If the sign bit is known zero, convert this to a zero extend. 1862 if (Known.isNonNegative()) { 1863 unsigned Opc = 1864 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1865 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1866 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1867 } 1868 break; 1869 } 1870 case ISD::ANY_EXTEND: 1871 case ISD::ANY_EXTEND_VECTOR_INREG: { 1872 SDValue Src = Op.getOperand(0); 1873 EVT SrcVT = Src.getValueType(); 1874 unsigned InBits = SrcVT.getScalarSizeInBits(); 1875 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1876 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1877 1878 // If we only need the bottom element then we can just bitcast. 1879 // TODO: Handle ANY_EXTEND? 1880 if (IsVecInReg && DemandedElts == 1 && 1881 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1882 TLO.DAG.getDataLayout().isLittleEndian()) 1883 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1884 1885 APInt InDemandedBits = DemandedBits.trunc(InBits); 1886 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1887 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1888 Depth + 1)) 1889 return true; 1890 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1891 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1892 Known = Known.anyext(BitWidth); 1893 1894 // Attempt to avoid multi-use ops if we don't need anything from them. 1895 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1896 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1897 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1898 break; 1899 } 1900 case ISD::TRUNCATE: { 1901 SDValue Src = Op.getOperand(0); 1902 1903 // Simplify the input, using demanded bit information, and compute the known 1904 // zero/one bits live out. 1905 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1906 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1907 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1908 return true; 1909 Known = Known.trunc(BitWidth); 1910 1911 // Attempt to avoid multi-use ops if we don't need anything from them. 1912 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1913 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1914 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1915 1916 // If the input is only used by this truncate, see if we can shrink it based 1917 // on the known demanded bits. 1918 if (Src.getNode()->hasOneUse()) { 1919 switch (Src.getOpcode()) { 1920 default: 1921 break; 1922 case ISD::SRL: 1923 // Shrink SRL by a constant if none of the high bits shifted in are 1924 // demanded. 1925 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1926 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1927 // undesirable. 1928 break; 1929 1930 SDValue ShAmt = Src.getOperand(1); 1931 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1932 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1933 break; 1934 uint64_t ShVal = ShAmtC->getZExtValue(); 1935 1936 APInt HighBits = 1937 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1938 HighBits.lshrInPlace(ShVal); 1939 HighBits = HighBits.trunc(BitWidth); 1940 1941 if (!(HighBits & DemandedBits)) { 1942 // None of the shifted in bits are needed. Add a truncate of the 1943 // shift input, then shift it. 1944 if (TLO.LegalTypes()) 1945 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1946 SDValue NewTrunc = 1947 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1948 return TLO.CombineTo( 1949 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 1950 } 1951 break; 1952 } 1953 } 1954 1955 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1956 break; 1957 } 1958 case ISD::AssertZext: { 1959 // AssertZext demands all of the high bits, plus any of the low bits 1960 // demanded by its users. 1961 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1962 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1963 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1964 TLO, Depth + 1)) 1965 return true; 1966 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1967 1968 Known.Zero |= ~InMask; 1969 break; 1970 } 1971 case ISD::EXTRACT_VECTOR_ELT: { 1972 SDValue Src = Op.getOperand(0); 1973 SDValue Idx = Op.getOperand(1); 1974 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1975 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1976 1977 // Demand the bits from every vector element without a constant index. 1978 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1979 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1980 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1981 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1982 1983 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1984 // anything about the extended bits. 1985 APInt DemandedSrcBits = DemandedBits; 1986 if (BitWidth > EltBitWidth) 1987 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1988 1989 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1990 Depth + 1)) 1991 return true; 1992 1993 // Attempt to avoid multi-use ops if we don't need anything from them. 1994 if (!DemandedSrcBits.isAllOnesValue() || 1995 !DemandedSrcElts.isAllOnesValue()) { 1996 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1997 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 1998 SDValue NewOp = 1999 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2000 return TLO.CombineTo(Op, NewOp); 2001 } 2002 } 2003 2004 Known = Known2; 2005 if (BitWidth > EltBitWidth) 2006 Known = Known.anyext(BitWidth); 2007 break; 2008 } 2009 case ISD::BITCAST: { 2010 SDValue Src = Op.getOperand(0); 2011 EVT SrcVT = Src.getValueType(); 2012 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2013 2014 // If this is an FP->Int bitcast and if the sign bit is the only 2015 // thing demanded, turn this into a FGETSIGN. 2016 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2017 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2018 SrcVT.isFloatingPoint()) { 2019 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2020 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2021 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2022 SrcVT != MVT::f128) { 2023 // Cannot eliminate/lower SHL for f128 yet. 2024 EVT Ty = OpVTLegal ? VT : MVT::i32; 2025 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2026 // place. We expect the SHL to be eliminated by other optimizations. 2027 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2028 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2029 if (!OpVTLegal && OpVTSizeInBits > 32) 2030 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2031 unsigned ShVal = Op.getValueSizeInBits() - 1; 2032 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2033 return TLO.CombineTo(Op, 2034 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2035 } 2036 } 2037 2038 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2039 // Demand the elt/bit if any of the original elts/bits are demanded. 2040 // TODO - bigendian once we have test coverage. 2041 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2042 TLO.DAG.getDataLayout().isLittleEndian()) { 2043 unsigned Scale = BitWidth / NumSrcEltBits; 2044 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2045 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2046 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2047 for (unsigned i = 0; i != Scale; ++i) { 2048 unsigned Offset = i * NumSrcEltBits; 2049 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2050 if (!Sub.isNullValue()) { 2051 DemandedSrcBits |= Sub; 2052 for (unsigned j = 0; j != NumElts; ++j) 2053 if (DemandedElts[j]) 2054 DemandedSrcElts.setBit((j * Scale) + i); 2055 } 2056 } 2057 2058 APInt KnownSrcUndef, KnownSrcZero; 2059 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2060 KnownSrcZero, TLO, Depth + 1)) 2061 return true; 2062 2063 KnownBits KnownSrcBits; 2064 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2065 KnownSrcBits, TLO, Depth + 1)) 2066 return true; 2067 } else if ((NumSrcEltBits % BitWidth) == 0 && 2068 TLO.DAG.getDataLayout().isLittleEndian()) { 2069 unsigned Scale = NumSrcEltBits / BitWidth; 2070 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2071 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2072 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2073 for (unsigned i = 0; i != NumElts; ++i) 2074 if (DemandedElts[i]) { 2075 unsigned Offset = (i % Scale) * BitWidth; 2076 DemandedSrcBits.insertBits(DemandedBits, Offset); 2077 DemandedSrcElts.setBit(i / Scale); 2078 } 2079 2080 if (SrcVT.isVector()) { 2081 APInt KnownSrcUndef, KnownSrcZero; 2082 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2083 KnownSrcZero, TLO, Depth + 1)) 2084 return true; 2085 } 2086 2087 KnownBits KnownSrcBits; 2088 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2089 KnownSrcBits, TLO, Depth + 1)) 2090 return true; 2091 } 2092 2093 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2094 // recursive call where Known may be useful to the caller. 2095 if (Depth > 0) { 2096 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2097 return false; 2098 } 2099 break; 2100 } 2101 case ISD::ADD: 2102 case ISD::MUL: 2103 case ISD::SUB: { 2104 // Add, Sub, and Mul don't demand any bits in positions beyond that 2105 // of the highest bit demanded of them. 2106 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2107 SDNodeFlags Flags = Op.getNode()->getFlags(); 2108 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2109 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2110 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2111 Depth + 1) || 2112 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2113 Depth + 1) || 2114 // See if the operation should be performed at a smaller bit width. 2115 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2116 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2117 // Disable the nsw and nuw flags. We can no longer guarantee that we 2118 // won't wrap after simplification. 2119 Flags.setNoSignedWrap(false); 2120 Flags.setNoUnsignedWrap(false); 2121 SDValue NewOp = 2122 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2123 return TLO.CombineTo(Op, NewOp); 2124 } 2125 return true; 2126 } 2127 2128 // Attempt to avoid multi-use ops if we don't need anything from them. 2129 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2130 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2131 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2132 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2133 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2134 if (DemandedOp0 || DemandedOp1) { 2135 Flags.setNoSignedWrap(false); 2136 Flags.setNoUnsignedWrap(false); 2137 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2138 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2139 SDValue NewOp = 2140 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2141 return TLO.CombineTo(Op, NewOp); 2142 } 2143 } 2144 2145 // If we have a constant operand, we may be able to turn it into -1 if we 2146 // do not demand the high bits. This can make the constant smaller to 2147 // encode, allow more general folding, or match specialized instruction 2148 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2149 // is probably not useful (and could be detrimental). 2150 ConstantSDNode *C = isConstOrConstSplat(Op1); 2151 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2152 if (C && !C->isAllOnesValue() && !C->isOne() && 2153 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2154 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2155 // Disable the nsw and nuw flags. We can no longer guarantee that we 2156 // won't wrap after simplification. 2157 Flags.setNoSignedWrap(false); 2158 Flags.setNoUnsignedWrap(false); 2159 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2160 return TLO.CombineTo(Op, NewOp); 2161 } 2162 2163 LLVM_FALLTHROUGH; 2164 } 2165 default: 2166 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2167 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2168 Known, TLO, Depth)) 2169 return true; 2170 break; 2171 } 2172 2173 // Just use computeKnownBits to compute output bits. 2174 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2175 break; 2176 } 2177 2178 // If we know the value of all of the demanded bits, return this as a 2179 // constant. 2180 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2181 // Avoid folding to a constant if any OpaqueConstant is involved. 2182 const SDNode *N = Op.getNode(); 2183 for (SDNodeIterator I = SDNodeIterator::begin(N), 2184 E = SDNodeIterator::end(N); 2185 I != E; ++I) { 2186 SDNode *Op = *I; 2187 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2188 if (C->isOpaque()) 2189 return false; 2190 } 2191 // TODO: Handle float bits as well. 2192 if (VT.isInteger()) 2193 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2194 } 2195 2196 return false; 2197 } 2198 2199 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2200 const APInt &DemandedElts, 2201 APInt &KnownUndef, 2202 APInt &KnownZero, 2203 DAGCombinerInfo &DCI) const { 2204 SelectionDAG &DAG = DCI.DAG; 2205 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2206 !DCI.isBeforeLegalizeOps()); 2207 2208 bool Simplified = 2209 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2210 if (Simplified) { 2211 DCI.AddToWorklist(Op.getNode()); 2212 DCI.CommitTargetLoweringOpt(TLO); 2213 } 2214 2215 return Simplified; 2216 } 2217 2218 /// Given a vector binary operation and known undefined elements for each input 2219 /// operand, compute whether each element of the output is undefined. 2220 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2221 const APInt &UndefOp0, 2222 const APInt &UndefOp1) { 2223 EVT VT = BO.getValueType(); 2224 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2225 "Vector binop only"); 2226 2227 EVT EltVT = VT.getVectorElementType(); 2228 unsigned NumElts = VT.getVectorNumElements(); 2229 assert(UndefOp0.getBitWidth() == NumElts && 2230 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2231 2232 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2233 const APInt &UndefVals) { 2234 if (UndefVals[Index]) 2235 return DAG.getUNDEF(EltVT); 2236 2237 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2238 // Try hard to make sure that the getNode() call is not creating temporary 2239 // nodes. Ignore opaque integers because they do not constant fold. 2240 SDValue Elt = BV->getOperand(Index); 2241 auto *C = dyn_cast<ConstantSDNode>(Elt); 2242 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2243 return Elt; 2244 } 2245 2246 return SDValue(); 2247 }; 2248 2249 APInt KnownUndef = APInt::getNullValue(NumElts); 2250 for (unsigned i = 0; i != NumElts; ++i) { 2251 // If both inputs for this element are either constant or undef and match 2252 // the element type, compute the constant/undef result for this element of 2253 // the vector. 2254 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2255 // not handle FP constants. The code within getNode() should be refactored 2256 // to avoid the danger of creating a bogus temporary node here. 2257 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2258 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2259 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2260 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2261 KnownUndef.setBit(i); 2262 } 2263 return KnownUndef; 2264 } 2265 2266 bool TargetLowering::SimplifyDemandedVectorElts( 2267 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2268 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2269 bool AssumeSingleUse) const { 2270 EVT VT = Op.getValueType(); 2271 unsigned Opcode = Op.getOpcode(); 2272 APInt DemandedElts = OriginalDemandedElts; 2273 unsigned NumElts = DemandedElts.getBitWidth(); 2274 assert(VT.isVector() && "Expected vector op"); 2275 2276 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2277 2278 // TODO: For now we assume we know nothing about scalable vectors. 2279 if (VT.isScalableVector()) 2280 return false; 2281 2282 assert(VT.getVectorNumElements() == NumElts && 2283 "Mask size mismatches value type element count!"); 2284 2285 // Undef operand. 2286 if (Op.isUndef()) { 2287 KnownUndef.setAllBits(); 2288 return false; 2289 } 2290 2291 // If Op has other users, assume that all elements are needed. 2292 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2293 DemandedElts.setAllBits(); 2294 2295 // Not demanding any elements from Op. 2296 if (DemandedElts == 0) { 2297 KnownUndef.setAllBits(); 2298 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2299 } 2300 2301 // Limit search depth. 2302 if (Depth >= SelectionDAG::MaxRecursionDepth) 2303 return false; 2304 2305 SDLoc DL(Op); 2306 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2307 2308 // Helper for demanding the specified elements and all the bits of both binary 2309 // operands. 2310 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2311 unsigned NumBits0 = Op0.getScalarValueSizeInBits(); 2312 unsigned NumBits1 = Op1.getScalarValueSizeInBits(); 2313 APInt DemandedBits0 = APInt::getAllOnesValue(NumBits0); 2314 APInt DemandedBits1 = APInt::getAllOnesValue(NumBits1); 2315 SDValue NewOp0 = SimplifyMultipleUseDemandedBits( 2316 Op0, DemandedBits0, DemandedElts, TLO.DAG, Depth + 1); 2317 SDValue NewOp1 = SimplifyMultipleUseDemandedBits( 2318 Op1, DemandedBits1, DemandedElts, TLO.DAG, Depth + 1); 2319 if (NewOp0 || NewOp1) { 2320 SDValue NewOp = TLO.DAG.getNode( 2321 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2322 return TLO.CombineTo(Op, NewOp); 2323 } 2324 return false; 2325 }; 2326 2327 switch (Opcode) { 2328 case ISD::SCALAR_TO_VECTOR: { 2329 if (!DemandedElts[0]) { 2330 KnownUndef.setAllBits(); 2331 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2332 } 2333 KnownUndef.setHighBits(NumElts - 1); 2334 break; 2335 } 2336 case ISD::BITCAST: { 2337 SDValue Src = Op.getOperand(0); 2338 EVT SrcVT = Src.getValueType(); 2339 2340 // We only handle vectors here. 2341 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2342 if (!SrcVT.isVector()) 2343 break; 2344 2345 // Fast handling of 'identity' bitcasts. 2346 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2347 if (NumSrcElts == NumElts) 2348 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2349 KnownZero, TLO, Depth + 1); 2350 2351 APInt SrcZero, SrcUndef; 2352 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2353 2354 // Bitcast from 'large element' src vector to 'small element' vector, we 2355 // must demand a source element if any DemandedElt maps to it. 2356 if ((NumElts % NumSrcElts) == 0) { 2357 unsigned Scale = NumElts / NumSrcElts; 2358 for (unsigned i = 0; i != NumElts; ++i) 2359 if (DemandedElts[i]) 2360 SrcDemandedElts.setBit(i / Scale); 2361 2362 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2363 TLO, Depth + 1)) 2364 return true; 2365 2366 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2367 // of the large element. 2368 // TODO - bigendian once we have test coverage. 2369 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2370 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2371 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2372 for (unsigned i = 0; i != NumElts; ++i) 2373 if (DemandedElts[i]) { 2374 unsigned Ofs = (i % Scale) * EltSizeInBits; 2375 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2376 } 2377 2378 KnownBits Known; 2379 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2380 TLO, Depth + 1)) 2381 return true; 2382 } 2383 2384 // If the src element is zero/undef then all the output elements will be - 2385 // only demanded elements are guaranteed to be correct. 2386 for (unsigned i = 0; i != NumSrcElts; ++i) { 2387 if (SrcDemandedElts[i]) { 2388 if (SrcZero[i]) 2389 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2390 if (SrcUndef[i]) 2391 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2392 } 2393 } 2394 } 2395 2396 // Bitcast from 'small element' src vector to 'large element' vector, we 2397 // demand all smaller source elements covered by the larger demanded element 2398 // of this vector. 2399 if ((NumSrcElts % NumElts) == 0) { 2400 unsigned Scale = NumSrcElts / NumElts; 2401 for (unsigned i = 0; i != NumElts; ++i) 2402 if (DemandedElts[i]) 2403 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2404 2405 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2406 TLO, Depth + 1)) 2407 return true; 2408 2409 // If all the src elements covering an output element are zero/undef, then 2410 // the output element will be as well, assuming it was demanded. 2411 for (unsigned i = 0; i != NumElts; ++i) { 2412 if (DemandedElts[i]) { 2413 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2414 KnownZero.setBit(i); 2415 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2416 KnownUndef.setBit(i); 2417 } 2418 } 2419 } 2420 break; 2421 } 2422 case ISD::BUILD_VECTOR: { 2423 // Check all elements and simplify any unused elements with UNDEF. 2424 if (!DemandedElts.isAllOnesValue()) { 2425 // Don't simplify BROADCASTS. 2426 if (llvm::any_of(Op->op_values(), 2427 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2428 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2429 bool Updated = false; 2430 for (unsigned i = 0; i != NumElts; ++i) { 2431 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2432 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2433 KnownUndef.setBit(i); 2434 Updated = true; 2435 } 2436 } 2437 if (Updated) 2438 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2439 } 2440 } 2441 for (unsigned i = 0; i != NumElts; ++i) { 2442 SDValue SrcOp = Op.getOperand(i); 2443 if (SrcOp.isUndef()) { 2444 KnownUndef.setBit(i); 2445 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2446 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2447 KnownZero.setBit(i); 2448 } 2449 } 2450 break; 2451 } 2452 case ISD::CONCAT_VECTORS: { 2453 EVT SubVT = Op.getOperand(0).getValueType(); 2454 unsigned NumSubVecs = Op.getNumOperands(); 2455 unsigned NumSubElts = SubVT.getVectorNumElements(); 2456 for (unsigned i = 0; i != NumSubVecs; ++i) { 2457 SDValue SubOp = Op.getOperand(i); 2458 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2459 APInt SubUndef, SubZero; 2460 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2461 Depth + 1)) 2462 return true; 2463 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2464 KnownZero.insertBits(SubZero, i * NumSubElts); 2465 } 2466 break; 2467 } 2468 case ISD::INSERT_SUBVECTOR: { 2469 // Demand any elements from the subvector and the remainder from the src its 2470 // inserted into. 2471 SDValue Src = Op.getOperand(0); 2472 SDValue Sub = Op.getOperand(1); 2473 uint64_t Idx = Op.getConstantOperandVal(2); 2474 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2475 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2476 APInt DemandedSrcElts = DemandedElts; 2477 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2478 2479 APInt SubUndef, SubZero; 2480 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2481 Depth + 1)) 2482 return true; 2483 2484 // If none of the src operand elements are demanded, replace it with undef. 2485 if (!DemandedSrcElts && !Src.isUndef()) 2486 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2487 TLO.DAG.getUNDEF(VT), Sub, 2488 Op.getOperand(2))); 2489 2490 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2491 TLO, Depth + 1)) 2492 return true; 2493 KnownUndef.insertBits(SubUndef, Idx); 2494 KnownZero.insertBits(SubZero, Idx); 2495 2496 // Attempt to avoid multi-use ops if we don't need anything from them. 2497 if (!DemandedSrcElts.isAllOnesValue() || 2498 !DemandedSubElts.isAllOnesValue()) { 2499 APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits()); 2500 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2501 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 2502 SDValue NewSub = SimplifyMultipleUseDemandedBits( 2503 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 2504 if (NewSrc || NewSub) { 2505 NewSrc = NewSrc ? NewSrc : Src; 2506 NewSub = NewSub ? NewSub : Sub; 2507 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2508 NewSub, Op.getOperand(2)); 2509 return TLO.CombineTo(Op, NewOp); 2510 } 2511 } 2512 break; 2513 } 2514 case ISD::EXTRACT_SUBVECTOR: { 2515 // Offset the demanded elts by the subvector index. 2516 SDValue Src = Op.getOperand(0); 2517 uint64_t Idx = Op.getConstantOperandVal(1); 2518 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2519 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2520 2521 APInt SrcUndef, SrcZero; 2522 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2523 Depth + 1)) 2524 return true; 2525 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2526 KnownZero = SrcZero.extractBits(NumElts, Idx); 2527 2528 // Attempt to avoid multi-use ops if we don't need anything from them. 2529 if (!DemandedElts.isAllOnesValue()) { 2530 APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits()); 2531 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2532 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 2533 if (NewSrc) { 2534 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2535 Op.getOperand(1)); 2536 return TLO.CombineTo(Op, NewOp); 2537 } 2538 } 2539 break; 2540 } 2541 case ISD::INSERT_VECTOR_ELT: { 2542 SDValue Vec = Op.getOperand(0); 2543 SDValue Scl = Op.getOperand(1); 2544 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2545 2546 // For a legal, constant insertion index, if we don't need this insertion 2547 // then strip it, else remove it from the demanded elts. 2548 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2549 unsigned Idx = CIdx->getZExtValue(); 2550 if (!DemandedElts[Idx]) 2551 return TLO.CombineTo(Op, Vec); 2552 2553 APInt DemandedVecElts(DemandedElts); 2554 DemandedVecElts.clearBit(Idx); 2555 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2556 KnownZero, TLO, Depth + 1)) 2557 return true; 2558 2559 KnownUndef.clearBit(Idx); 2560 if (Scl.isUndef()) 2561 KnownUndef.setBit(Idx); 2562 2563 KnownZero.clearBit(Idx); 2564 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2565 KnownZero.setBit(Idx); 2566 break; 2567 } 2568 2569 APInt VecUndef, VecZero; 2570 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2571 Depth + 1)) 2572 return true; 2573 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2574 break; 2575 } 2576 case ISD::VSELECT: { 2577 // Try to transform the select condition based on the current demanded 2578 // elements. 2579 // TODO: If a condition element is undef, we can choose from one arm of the 2580 // select (and if one arm is undef, then we can propagate that to the 2581 // result). 2582 // TODO - add support for constant vselect masks (see IR version of this). 2583 APInt UnusedUndef, UnusedZero; 2584 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2585 UnusedZero, TLO, Depth + 1)) 2586 return true; 2587 2588 // See if we can simplify either vselect operand. 2589 APInt DemandedLHS(DemandedElts); 2590 APInt DemandedRHS(DemandedElts); 2591 APInt UndefLHS, ZeroLHS; 2592 APInt UndefRHS, ZeroRHS; 2593 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2594 ZeroLHS, TLO, Depth + 1)) 2595 return true; 2596 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2597 ZeroRHS, TLO, Depth + 1)) 2598 return true; 2599 2600 KnownUndef = UndefLHS & UndefRHS; 2601 KnownZero = ZeroLHS & ZeroRHS; 2602 break; 2603 } 2604 case ISD::VECTOR_SHUFFLE: { 2605 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2606 2607 // Collect demanded elements from shuffle operands.. 2608 APInt DemandedLHS(NumElts, 0); 2609 APInt DemandedRHS(NumElts, 0); 2610 for (unsigned i = 0; i != NumElts; ++i) { 2611 int M = ShuffleMask[i]; 2612 if (M < 0 || !DemandedElts[i]) 2613 continue; 2614 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2615 if (M < (int)NumElts) 2616 DemandedLHS.setBit(M); 2617 else 2618 DemandedRHS.setBit(M - NumElts); 2619 } 2620 2621 // See if we can simplify either shuffle operand. 2622 APInt UndefLHS, ZeroLHS; 2623 APInt UndefRHS, ZeroRHS; 2624 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2625 ZeroLHS, TLO, Depth + 1)) 2626 return true; 2627 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2628 ZeroRHS, TLO, Depth + 1)) 2629 return true; 2630 2631 // Simplify mask using undef elements from LHS/RHS. 2632 bool Updated = false; 2633 bool IdentityLHS = true, IdentityRHS = true; 2634 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2635 for (unsigned i = 0; i != NumElts; ++i) { 2636 int &M = NewMask[i]; 2637 if (M < 0) 2638 continue; 2639 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2640 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2641 Updated = true; 2642 M = -1; 2643 } 2644 IdentityLHS &= (M < 0) || (M == (int)i); 2645 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2646 } 2647 2648 // Update legal shuffle masks based on demanded elements if it won't reduce 2649 // to Identity which can cause premature removal of the shuffle mask. 2650 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2651 SDValue LegalShuffle = 2652 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2653 NewMask, TLO.DAG); 2654 if (LegalShuffle) 2655 return TLO.CombineTo(Op, LegalShuffle); 2656 } 2657 2658 // Propagate undef/zero elements from LHS/RHS. 2659 for (unsigned i = 0; i != NumElts; ++i) { 2660 int M = ShuffleMask[i]; 2661 if (M < 0) { 2662 KnownUndef.setBit(i); 2663 } else if (M < (int)NumElts) { 2664 if (UndefLHS[M]) 2665 KnownUndef.setBit(i); 2666 if (ZeroLHS[M]) 2667 KnownZero.setBit(i); 2668 } else { 2669 if (UndefRHS[M - NumElts]) 2670 KnownUndef.setBit(i); 2671 if (ZeroRHS[M - NumElts]) 2672 KnownZero.setBit(i); 2673 } 2674 } 2675 break; 2676 } 2677 case ISD::ANY_EXTEND_VECTOR_INREG: 2678 case ISD::SIGN_EXTEND_VECTOR_INREG: 2679 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2680 APInt SrcUndef, SrcZero; 2681 SDValue Src = Op.getOperand(0); 2682 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2683 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2684 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2685 Depth + 1)) 2686 return true; 2687 KnownZero = SrcZero.zextOrTrunc(NumElts); 2688 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2689 2690 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2691 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2692 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2693 // aext - if we just need the bottom element then we can bitcast. 2694 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2695 } 2696 2697 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2698 // zext(undef) upper bits are guaranteed to be zero. 2699 if (DemandedElts.isSubsetOf(KnownUndef)) 2700 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2701 KnownUndef.clearAllBits(); 2702 } 2703 break; 2704 } 2705 2706 // TODO: There are more binop opcodes that could be handled here - MIN, 2707 // MAX, saturated math, etc. 2708 case ISD::OR: 2709 case ISD::XOR: 2710 case ISD::ADD: 2711 case ISD::SUB: 2712 case ISD::FADD: 2713 case ISD::FSUB: 2714 case ISD::FMUL: 2715 case ISD::FDIV: 2716 case ISD::FREM: { 2717 SDValue Op0 = Op.getOperand(0); 2718 SDValue Op1 = Op.getOperand(1); 2719 2720 APInt UndefRHS, ZeroRHS; 2721 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2722 Depth + 1)) 2723 return true; 2724 APInt UndefLHS, ZeroLHS; 2725 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2726 Depth + 1)) 2727 return true; 2728 2729 KnownZero = ZeroLHS & ZeroRHS; 2730 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2731 2732 // Attempt to avoid multi-use ops if we don't need anything from them. 2733 // TODO - use KnownUndef to relax the demandedelts? 2734 if (!DemandedElts.isAllOnesValue()) 2735 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2736 return true; 2737 break; 2738 } 2739 case ISD::SHL: 2740 case ISD::SRL: 2741 case ISD::SRA: 2742 case ISD::ROTL: 2743 case ISD::ROTR: { 2744 SDValue Op0 = Op.getOperand(0); 2745 SDValue Op1 = Op.getOperand(1); 2746 2747 APInt UndefRHS, ZeroRHS; 2748 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2749 Depth + 1)) 2750 return true; 2751 APInt UndefLHS, ZeroLHS; 2752 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2753 Depth + 1)) 2754 return true; 2755 2756 KnownZero = ZeroLHS; 2757 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2758 2759 // Attempt to avoid multi-use ops if we don't need anything from them. 2760 // TODO - use KnownUndef to relax the demandedelts? 2761 if (!DemandedElts.isAllOnesValue()) 2762 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2763 return true; 2764 break; 2765 } 2766 case ISD::MUL: 2767 case ISD::AND: { 2768 SDValue Op0 = Op.getOperand(0); 2769 SDValue Op1 = Op.getOperand(1); 2770 2771 APInt SrcUndef, SrcZero; 2772 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2773 Depth + 1)) 2774 return true; 2775 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2776 TLO, Depth + 1)) 2777 return true; 2778 2779 // If either side has a zero element, then the result element is zero, even 2780 // if the other is an UNDEF. 2781 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2782 // and then handle 'and' nodes with the rest of the binop opcodes. 2783 KnownZero |= SrcZero; 2784 KnownUndef &= SrcUndef; 2785 KnownUndef &= ~KnownZero; 2786 2787 // Attempt to avoid multi-use ops if we don't need anything from them. 2788 // TODO - use KnownUndef to relax the demandedelts? 2789 if (!DemandedElts.isAllOnesValue()) 2790 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2791 return true; 2792 break; 2793 } 2794 case ISD::TRUNCATE: 2795 case ISD::SIGN_EXTEND: 2796 case ISD::ZERO_EXTEND: 2797 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2798 KnownZero, TLO, Depth + 1)) 2799 return true; 2800 2801 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2802 // zext(undef) upper bits are guaranteed to be zero. 2803 if (DemandedElts.isSubsetOf(KnownUndef)) 2804 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2805 KnownUndef.clearAllBits(); 2806 } 2807 break; 2808 default: { 2809 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2810 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2811 KnownZero, TLO, Depth)) 2812 return true; 2813 } else { 2814 KnownBits Known; 2815 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2816 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2817 TLO, Depth, AssumeSingleUse)) 2818 return true; 2819 } 2820 break; 2821 } 2822 } 2823 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2824 2825 // Constant fold all undef cases. 2826 // TODO: Handle zero cases as well. 2827 if (DemandedElts.isSubsetOf(KnownUndef)) 2828 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2829 2830 return false; 2831 } 2832 2833 /// Determine which of the bits specified in Mask are known to be either zero or 2834 /// one and return them in the Known. 2835 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2836 KnownBits &Known, 2837 const APInt &DemandedElts, 2838 const SelectionDAG &DAG, 2839 unsigned Depth) const { 2840 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2841 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2842 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2843 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2844 "Should use MaskedValueIsZero if you don't know whether Op" 2845 " is a target node!"); 2846 Known.resetAll(); 2847 } 2848 2849 void TargetLowering::computeKnownBitsForTargetInstr( 2850 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2851 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2852 unsigned Depth) const { 2853 Known.resetAll(); 2854 } 2855 2856 void TargetLowering::computeKnownBitsForFrameIndex( 2857 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2858 // The low bits are known zero if the pointer is aligned. 2859 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2860 } 2861 2862 Align TargetLowering::computeKnownAlignForTargetInstr( 2863 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 2864 unsigned Depth) const { 2865 return Align(1); 2866 } 2867 2868 /// This method can be implemented by targets that want to expose additional 2869 /// information about sign bits to the DAG Combiner. 2870 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2871 const APInt &, 2872 const SelectionDAG &, 2873 unsigned Depth) const { 2874 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2875 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2876 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2877 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2878 "Should use ComputeNumSignBits if you don't know whether Op" 2879 " is a target node!"); 2880 return 1; 2881 } 2882 2883 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2884 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2885 const MachineRegisterInfo &MRI, unsigned Depth) const { 2886 return 1; 2887 } 2888 2889 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2890 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2891 TargetLoweringOpt &TLO, unsigned Depth) const { 2892 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2893 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2894 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2895 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2896 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2897 " is a target node!"); 2898 return false; 2899 } 2900 2901 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2902 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2903 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2904 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2905 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2906 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2907 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2908 "Should use SimplifyDemandedBits if you don't know whether Op" 2909 " is a target node!"); 2910 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2911 return false; 2912 } 2913 2914 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2915 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2916 SelectionDAG &DAG, unsigned Depth) const { 2917 assert( 2918 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2919 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2920 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2921 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2922 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2923 " is a target node!"); 2924 return SDValue(); 2925 } 2926 2927 SDValue 2928 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2929 SDValue N1, MutableArrayRef<int> Mask, 2930 SelectionDAG &DAG) const { 2931 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2932 if (!LegalMask) { 2933 std::swap(N0, N1); 2934 ShuffleVectorSDNode::commuteMask(Mask); 2935 LegalMask = isShuffleMaskLegal(Mask, VT); 2936 } 2937 2938 if (!LegalMask) 2939 return SDValue(); 2940 2941 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2942 } 2943 2944 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2945 return nullptr; 2946 } 2947 2948 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2949 const SelectionDAG &DAG, 2950 bool SNaN, 2951 unsigned Depth) const { 2952 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2953 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2954 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2955 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2956 "Should use isKnownNeverNaN if you don't know whether Op" 2957 " is a target node!"); 2958 return false; 2959 } 2960 2961 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2962 // work with truncating build vectors and vectors with elements of less than 2963 // 8 bits. 2964 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2965 if (!N) 2966 return false; 2967 2968 APInt CVal; 2969 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2970 CVal = CN->getAPIntValue(); 2971 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2972 auto *CN = BV->getConstantSplatNode(); 2973 if (!CN) 2974 return false; 2975 2976 // If this is a truncating build vector, truncate the splat value. 2977 // Otherwise, we may fail to match the expected values below. 2978 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2979 CVal = CN->getAPIntValue(); 2980 if (BVEltWidth < CVal.getBitWidth()) 2981 CVal = CVal.trunc(BVEltWidth); 2982 } else { 2983 return false; 2984 } 2985 2986 switch (getBooleanContents(N->getValueType(0))) { 2987 case UndefinedBooleanContent: 2988 return CVal[0]; 2989 case ZeroOrOneBooleanContent: 2990 return CVal.isOneValue(); 2991 case ZeroOrNegativeOneBooleanContent: 2992 return CVal.isAllOnesValue(); 2993 } 2994 2995 llvm_unreachable("Invalid boolean contents"); 2996 } 2997 2998 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2999 if (!N) 3000 return false; 3001 3002 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3003 if (!CN) { 3004 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3005 if (!BV) 3006 return false; 3007 3008 // Only interested in constant splats, we don't care about undef 3009 // elements in identifying boolean constants and getConstantSplatNode 3010 // returns NULL if all ops are undef; 3011 CN = BV->getConstantSplatNode(); 3012 if (!CN) 3013 return false; 3014 } 3015 3016 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3017 return !CN->getAPIntValue()[0]; 3018 3019 return CN->isNullValue(); 3020 } 3021 3022 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3023 bool SExt) const { 3024 if (VT == MVT::i1) 3025 return N->isOne(); 3026 3027 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3028 switch (Cnt) { 3029 case TargetLowering::ZeroOrOneBooleanContent: 3030 // An extended value of 1 is always true, unless its original type is i1, 3031 // in which case it will be sign extended to -1. 3032 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3033 case TargetLowering::UndefinedBooleanContent: 3034 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3035 return N->isAllOnesValue() && SExt; 3036 } 3037 llvm_unreachable("Unexpected enumeration."); 3038 } 3039 3040 /// This helper function of SimplifySetCC tries to optimize the comparison when 3041 /// either operand of the SetCC node is a bitwise-and instruction. 3042 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3043 ISD::CondCode Cond, const SDLoc &DL, 3044 DAGCombinerInfo &DCI) const { 3045 // Match these patterns in any of their permutations: 3046 // (X & Y) == Y 3047 // (X & Y) != Y 3048 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3049 std::swap(N0, N1); 3050 3051 EVT OpVT = N0.getValueType(); 3052 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3053 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3054 return SDValue(); 3055 3056 SDValue X, Y; 3057 if (N0.getOperand(0) == N1) { 3058 X = N0.getOperand(1); 3059 Y = N0.getOperand(0); 3060 } else if (N0.getOperand(1) == N1) { 3061 X = N0.getOperand(0); 3062 Y = N0.getOperand(1); 3063 } else { 3064 return SDValue(); 3065 } 3066 3067 SelectionDAG &DAG = DCI.DAG; 3068 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3069 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3070 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3071 // Note that where Y is variable and is known to have at most one bit set 3072 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3073 // equivalent when Y == 0. 3074 assert(OpVT.isInteger()); 3075 Cond = ISD::getSetCCInverse(Cond, OpVT); 3076 if (DCI.isBeforeLegalizeOps() || 3077 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3078 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3079 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3080 // If the target supports an 'and-not' or 'and-complement' logic operation, 3081 // try to use that to make a comparison operation more efficient. 3082 // But don't do this transform if the mask is a single bit because there are 3083 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3084 // 'rlwinm' on PPC). 3085 3086 // Bail out if the compare operand that we want to turn into a zero is 3087 // already a zero (otherwise, infinite loop). 3088 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3089 if (YConst && YConst->isNullValue()) 3090 return SDValue(); 3091 3092 // Transform this into: ~X & Y == 0. 3093 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3094 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3095 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3096 } 3097 3098 return SDValue(); 3099 } 3100 3101 /// There are multiple IR patterns that could be checking whether certain 3102 /// truncation of a signed number would be lossy or not. The pattern which is 3103 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3104 /// We are looking for the following pattern: (KeptBits is a constant) 3105 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3106 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3107 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3108 /// We will unfold it into the natural trunc+sext pattern: 3109 /// ((%x << C) a>> C) dstcond %x 3110 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3111 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3112 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3113 const SDLoc &DL) const { 3114 // We must be comparing with a constant. 3115 ConstantSDNode *C1; 3116 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3117 return SDValue(); 3118 3119 // N0 should be: add %x, (1 << (KeptBits-1)) 3120 if (N0->getOpcode() != ISD::ADD) 3121 return SDValue(); 3122 3123 // And we must be 'add'ing a constant. 3124 ConstantSDNode *C01; 3125 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3126 return SDValue(); 3127 3128 SDValue X = N0->getOperand(0); 3129 EVT XVT = X.getValueType(); 3130 3131 // Validate constants ... 3132 3133 APInt I1 = C1->getAPIntValue(); 3134 3135 ISD::CondCode NewCond; 3136 if (Cond == ISD::CondCode::SETULT) { 3137 NewCond = ISD::CondCode::SETEQ; 3138 } else if (Cond == ISD::CondCode::SETULE) { 3139 NewCond = ISD::CondCode::SETEQ; 3140 // But need to 'canonicalize' the constant. 3141 I1 += 1; 3142 } else if (Cond == ISD::CondCode::SETUGT) { 3143 NewCond = ISD::CondCode::SETNE; 3144 // But need to 'canonicalize' the constant. 3145 I1 += 1; 3146 } else if (Cond == ISD::CondCode::SETUGE) { 3147 NewCond = ISD::CondCode::SETNE; 3148 } else 3149 return SDValue(); 3150 3151 APInt I01 = C01->getAPIntValue(); 3152 3153 auto checkConstants = [&I1, &I01]() -> bool { 3154 // Both of them must be power-of-two, and the constant from setcc is bigger. 3155 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3156 }; 3157 3158 if (checkConstants()) { 3159 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3160 } else { 3161 // What if we invert constants? (and the target predicate) 3162 I1.negate(); 3163 I01.negate(); 3164 assert(XVT.isInteger()); 3165 NewCond = getSetCCInverse(NewCond, XVT); 3166 if (!checkConstants()) 3167 return SDValue(); 3168 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3169 } 3170 3171 // They are power-of-two, so which bit is set? 3172 const unsigned KeptBits = I1.logBase2(); 3173 const unsigned KeptBitsMinusOne = I01.logBase2(); 3174 3175 // Magic! 3176 if (KeptBits != (KeptBitsMinusOne + 1)) 3177 return SDValue(); 3178 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3179 3180 // We don't want to do this in every single case. 3181 SelectionDAG &DAG = DCI.DAG; 3182 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3183 XVT, KeptBits)) 3184 return SDValue(); 3185 3186 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3187 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3188 3189 // Unfold into: ((%x << C) a>> C) cond %x 3190 // Where 'cond' will be either 'eq' or 'ne'. 3191 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3192 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3193 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3194 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3195 3196 return T2; 3197 } 3198 3199 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3200 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3201 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3202 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3203 assert(isConstOrConstSplat(N1C) && 3204 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3205 "Should be a comparison with 0."); 3206 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3207 "Valid only for [in]equality comparisons."); 3208 3209 unsigned NewShiftOpcode; 3210 SDValue X, C, Y; 3211 3212 SelectionDAG &DAG = DCI.DAG; 3213 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3214 3215 // Look for '(C l>>/<< Y)'. 3216 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3217 // The shift should be one-use. 3218 if (!V.hasOneUse()) 3219 return false; 3220 unsigned OldShiftOpcode = V.getOpcode(); 3221 switch (OldShiftOpcode) { 3222 case ISD::SHL: 3223 NewShiftOpcode = ISD::SRL; 3224 break; 3225 case ISD::SRL: 3226 NewShiftOpcode = ISD::SHL; 3227 break; 3228 default: 3229 return false; // must be a logical shift. 3230 } 3231 // We should be shifting a constant. 3232 // FIXME: best to use isConstantOrConstantVector(). 3233 C = V.getOperand(0); 3234 ConstantSDNode *CC = 3235 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3236 if (!CC) 3237 return false; 3238 Y = V.getOperand(1); 3239 3240 ConstantSDNode *XC = 3241 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3242 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3243 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3244 }; 3245 3246 // LHS of comparison should be an one-use 'and'. 3247 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3248 return SDValue(); 3249 3250 X = N0.getOperand(0); 3251 SDValue Mask = N0.getOperand(1); 3252 3253 // 'and' is commutative! 3254 if (!Match(Mask)) { 3255 std::swap(X, Mask); 3256 if (!Match(Mask)) 3257 return SDValue(); 3258 } 3259 3260 EVT VT = X.getValueType(); 3261 3262 // Produce: 3263 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3264 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3265 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3266 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3267 return T2; 3268 } 3269 3270 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3271 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3272 /// handle the commuted versions of these patterns. 3273 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3274 ISD::CondCode Cond, const SDLoc &DL, 3275 DAGCombinerInfo &DCI) const { 3276 unsigned BOpcode = N0.getOpcode(); 3277 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3278 "Unexpected binop"); 3279 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3280 3281 // (X + Y) == X --> Y == 0 3282 // (X - Y) == X --> Y == 0 3283 // (X ^ Y) == X --> Y == 0 3284 SelectionDAG &DAG = DCI.DAG; 3285 EVT OpVT = N0.getValueType(); 3286 SDValue X = N0.getOperand(0); 3287 SDValue Y = N0.getOperand(1); 3288 if (X == N1) 3289 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3290 3291 if (Y != N1) 3292 return SDValue(); 3293 3294 // (X + Y) == Y --> X == 0 3295 // (X ^ Y) == Y --> X == 0 3296 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3297 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3298 3299 // The shift would not be valid if the operands are boolean (i1). 3300 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3301 return SDValue(); 3302 3303 // (X - Y) == Y --> X == Y << 1 3304 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3305 !DCI.isBeforeLegalize()); 3306 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3307 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3308 if (!DCI.isCalledByLegalizer()) 3309 DCI.AddToWorklist(YShl1.getNode()); 3310 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3311 } 3312 3313 /// Try to simplify a setcc built with the specified operands and cc. If it is 3314 /// unable to simplify it, return a null SDValue. 3315 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3316 ISD::CondCode Cond, bool foldBooleans, 3317 DAGCombinerInfo &DCI, 3318 const SDLoc &dl) const { 3319 SelectionDAG &DAG = DCI.DAG; 3320 const DataLayout &Layout = DAG.getDataLayout(); 3321 EVT OpVT = N0.getValueType(); 3322 3323 // Constant fold or commute setcc. 3324 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3325 return Fold; 3326 3327 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3328 // TODO: Handle non-splat vector constants. All undef causes trouble. 3329 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3330 if (isConstOrConstSplat(N0) && 3331 (DCI.isBeforeLegalizeOps() || 3332 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3333 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3334 3335 // If we have a subtract with the same 2 non-constant operands as this setcc 3336 // -- but in reverse order -- then try to commute the operands of this setcc 3337 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3338 // instruction on some targets. 3339 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3340 (DCI.isBeforeLegalizeOps() || 3341 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3342 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3343 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3344 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3345 3346 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3347 const APInt &C1 = N1C->getAPIntValue(); 3348 3349 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3350 // equality comparison, then we're just comparing whether X itself is 3351 // zero. 3352 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3353 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3354 N0.getOperand(1).getOpcode() == ISD::Constant) { 3355 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3356 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3357 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3358 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3359 // (srl (ctlz x), 5) == 0 -> X != 0 3360 // (srl (ctlz x), 5) != 1 -> X != 0 3361 Cond = ISD::SETNE; 3362 } else { 3363 // (srl (ctlz x), 5) != 0 -> X == 0 3364 // (srl (ctlz x), 5) == 1 -> X == 0 3365 Cond = ISD::SETEQ; 3366 } 3367 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3368 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3369 Zero, Cond); 3370 } 3371 } 3372 3373 SDValue CTPOP = N0; 3374 // Look through truncs that don't change the value of a ctpop. 3375 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3376 CTPOP = N0.getOperand(0); 3377 3378 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3379 (N0 == CTPOP || 3380 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3381 EVT CTVT = CTPOP.getValueType(); 3382 SDValue CTOp = CTPOP.getOperand(0); 3383 3384 // (ctpop x) u< 2 -> (x & x-1) == 0 3385 // (ctpop x) u> 1 -> (x & x-1) != 0 3386 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3387 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3388 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3389 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3390 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3391 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3392 } 3393 3394 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3395 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3396 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3397 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3398 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3399 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3400 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3401 assert(CTVT.isInteger()); 3402 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3403 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3404 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3405 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3406 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3407 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3408 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3409 } 3410 } 3411 3412 // (zext x) == C --> x == (trunc C) 3413 // (sext x) == C --> x == (trunc C) 3414 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3415 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3416 unsigned MinBits = N0.getValueSizeInBits(); 3417 SDValue PreExt; 3418 bool Signed = false; 3419 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3420 // ZExt 3421 MinBits = N0->getOperand(0).getValueSizeInBits(); 3422 PreExt = N0->getOperand(0); 3423 } else if (N0->getOpcode() == ISD::AND) { 3424 // DAGCombine turns costly ZExts into ANDs 3425 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3426 if ((C->getAPIntValue()+1).isPowerOf2()) { 3427 MinBits = C->getAPIntValue().countTrailingOnes(); 3428 PreExt = N0->getOperand(0); 3429 } 3430 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3431 // SExt 3432 MinBits = N0->getOperand(0).getValueSizeInBits(); 3433 PreExt = N0->getOperand(0); 3434 Signed = true; 3435 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3436 // ZEXTLOAD / SEXTLOAD 3437 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3438 MinBits = LN0->getMemoryVT().getSizeInBits(); 3439 PreExt = N0; 3440 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3441 Signed = true; 3442 MinBits = LN0->getMemoryVT().getSizeInBits(); 3443 PreExt = N0; 3444 } 3445 } 3446 3447 // Figure out how many bits we need to preserve this constant. 3448 unsigned ReqdBits = Signed ? 3449 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3450 C1.getActiveBits(); 3451 3452 // Make sure we're not losing bits from the constant. 3453 if (MinBits > 0 && 3454 MinBits < C1.getBitWidth() && 3455 MinBits >= ReqdBits) { 3456 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3457 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3458 // Will get folded away. 3459 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3460 if (MinBits == 1 && C1 == 1) 3461 // Invert the condition. 3462 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3463 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3464 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3465 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3466 } 3467 3468 // If truncating the setcc operands is not desirable, we can still 3469 // simplify the expression in some cases: 3470 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3471 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3472 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3473 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3474 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3475 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3476 SDValue TopSetCC = N0->getOperand(0); 3477 unsigned N0Opc = N0->getOpcode(); 3478 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3479 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3480 TopSetCC.getOpcode() == ISD::SETCC && 3481 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3482 (isConstFalseVal(N1C) || 3483 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3484 3485 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3486 (!N1C->isNullValue() && Cond == ISD::SETNE); 3487 3488 if (!Inverse) 3489 return TopSetCC; 3490 3491 ISD::CondCode InvCond = ISD::getSetCCInverse( 3492 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3493 TopSetCC.getOperand(0).getValueType()); 3494 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3495 TopSetCC.getOperand(1), 3496 InvCond); 3497 } 3498 } 3499 } 3500 3501 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3502 // equality or unsigned, and all 1 bits of the const are in the same 3503 // partial word, see if we can shorten the load. 3504 if (DCI.isBeforeLegalize() && 3505 !ISD::isSignedIntSetCC(Cond) && 3506 N0.getOpcode() == ISD::AND && C1 == 0 && 3507 N0.getNode()->hasOneUse() && 3508 isa<LoadSDNode>(N0.getOperand(0)) && 3509 N0.getOperand(0).getNode()->hasOneUse() && 3510 isa<ConstantSDNode>(N0.getOperand(1))) { 3511 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3512 APInt bestMask; 3513 unsigned bestWidth = 0, bestOffset = 0; 3514 if (Lod->isSimple() && Lod->isUnindexed()) { 3515 unsigned origWidth = N0.getValueSizeInBits(); 3516 unsigned maskWidth = origWidth; 3517 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3518 // 8 bits, but have to be careful... 3519 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3520 origWidth = Lod->getMemoryVT().getSizeInBits(); 3521 const APInt &Mask = N0.getConstantOperandAPInt(1); 3522 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3523 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3524 for (unsigned offset=0; offset<origWidth/width; offset++) { 3525 if (Mask.isSubsetOf(newMask)) { 3526 if (Layout.isLittleEndian()) 3527 bestOffset = (uint64_t)offset * (width/8); 3528 else 3529 bestOffset = (origWidth/width - offset - 1) * (width/8); 3530 bestMask = Mask.lshr(offset * (width/8) * 8); 3531 bestWidth = width; 3532 break; 3533 } 3534 newMask <<= width; 3535 } 3536 } 3537 } 3538 if (bestWidth) { 3539 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3540 if (newVT.isRound() && 3541 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3542 SDValue Ptr = Lod->getBasePtr(); 3543 if (bestOffset != 0) 3544 Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); 3545 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3546 SDValue NewLoad = DAG.getLoad( 3547 newVT, dl, Lod->getChain(), Ptr, 3548 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3549 return DAG.getSetCC(dl, VT, 3550 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3551 DAG.getConstant(bestMask.trunc(bestWidth), 3552 dl, newVT)), 3553 DAG.getConstant(0LL, dl, newVT), Cond); 3554 } 3555 } 3556 } 3557 3558 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3559 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3560 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3561 3562 // If the comparison constant has bits in the upper part, the 3563 // zero-extended value could never match. 3564 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3565 C1.getBitWidth() - InSize))) { 3566 switch (Cond) { 3567 case ISD::SETUGT: 3568 case ISD::SETUGE: 3569 case ISD::SETEQ: 3570 return DAG.getConstant(0, dl, VT); 3571 case ISD::SETULT: 3572 case ISD::SETULE: 3573 case ISD::SETNE: 3574 return DAG.getConstant(1, dl, VT); 3575 case ISD::SETGT: 3576 case ISD::SETGE: 3577 // True if the sign bit of C1 is set. 3578 return DAG.getConstant(C1.isNegative(), dl, VT); 3579 case ISD::SETLT: 3580 case ISD::SETLE: 3581 // True if the sign bit of C1 isn't set. 3582 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3583 default: 3584 break; 3585 } 3586 } 3587 3588 // Otherwise, we can perform the comparison with the low bits. 3589 switch (Cond) { 3590 case ISD::SETEQ: 3591 case ISD::SETNE: 3592 case ISD::SETUGT: 3593 case ISD::SETUGE: 3594 case ISD::SETULT: 3595 case ISD::SETULE: { 3596 EVT newVT = N0.getOperand(0).getValueType(); 3597 if (DCI.isBeforeLegalizeOps() || 3598 (isOperationLegal(ISD::SETCC, newVT) && 3599 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3600 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3601 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3602 3603 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3604 NewConst, Cond); 3605 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3606 } 3607 break; 3608 } 3609 default: 3610 break; // todo, be more careful with signed comparisons 3611 } 3612 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3613 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3614 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3615 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3616 EVT ExtDstTy = N0.getValueType(); 3617 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3618 3619 // If the constant doesn't fit into the number of bits for the source of 3620 // the sign extension, it is impossible for both sides to be equal. 3621 if (C1.getMinSignedBits() > ExtSrcTyBits) 3622 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3623 3624 SDValue ZextOp; 3625 EVT Op0Ty = N0.getOperand(0).getValueType(); 3626 if (Op0Ty == ExtSrcTy) { 3627 ZextOp = N0.getOperand(0); 3628 } else { 3629 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3630 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3631 DAG.getConstant(Imm, dl, Op0Ty)); 3632 } 3633 if (!DCI.isCalledByLegalizer()) 3634 DCI.AddToWorklist(ZextOp.getNode()); 3635 // Otherwise, make this a use of a zext. 3636 return DAG.getSetCC(dl, VT, ZextOp, 3637 DAG.getConstant(C1 & APInt::getLowBitsSet( 3638 ExtDstTyBits, 3639 ExtSrcTyBits), 3640 dl, ExtDstTy), 3641 Cond); 3642 } else if ((N1C->isNullValue() || N1C->isOne()) && 3643 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3644 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3645 if (N0.getOpcode() == ISD::SETCC && 3646 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3647 (N0.getValueType() == MVT::i1 || 3648 getBooleanContents(N0.getOperand(0).getValueType()) == 3649 ZeroOrOneBooleanContent)) { 3650 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3651 if (TrueWhenTrue) 3652 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3653 // Invert the condition. 3654 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3655 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3656 if (DCI.isBeforeLegalizeOps() || 3657 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3658 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3659 } 3660 3661 if ((N0.getOpcode() == ISD::XOR || 3662 (N0.getOpcode() == ISD::AND && 3663 N0.getOperand(0).getOpcode() == ISD::XOR && 3664 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3665 isa<ConstantSDNode>(N0.getOperand(1)) && 3666 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3667 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3668 // can only do this if the top bits are known zero. 3669 unsigned BitWidth = N0.getValueSizeInBits(); 3670 if (DAG.MaskedValueIsZero(N0, 3671 APInt::getHighBitsSet(BitWidth, 3672 BitWidth-1))) { 3673 // Okay, get the un-inverted input value. 3674 SDValue Val; 3675 if (N0.getOpcode() == ISD::XOR) { 3676 Val = N0.getOperand(0); 3677 } else { 3678 assert(N0.getOpcode() == ISD::AND && 3679 N0.getOperand(0).getOpcode() == ISD::XOR); 3680 // ((X^1)&1)^1 -> X & 1 3681 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3682 N0.getOperand(0).getOperand(0), 3683 N0.getOperand(1)); 3684 } 3685 3686 return DAG.getSetCC(dl, VT, Val, N1, 3687 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3688 } 3689 } else if (N1C->isOne()) { 3690 SDValue Op0 = N0; 3691 if (Op0.getOpcode() == ISD::TRUNCATE) 3692 Op0 = Op0.getOperand(0); 3693 3694 if ((Op0.getOpcode() == ISD::XOR) && 3695 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3696 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3697 SDValue XorLHS = Op0.getOperand(0); 3698 SDValue XorRHS = Op0.getOperand(1); 3699 // Ensure that the input setccs return an i1 type or 0/1 value. 3700 if (Op0.getValueType() == MVT::i1 || 3701 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3702 ZeroOrOneBooleanContent && 3703 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3704 ZeroOrOneBooleanContent)) { 3705 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3706 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3707 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3708 } 3709 } 3710 if (Op0.getOpcode() == ISD::AND && 3711 isa<ConstantSDNode>(Op0.getOperand(1)) && 3712 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3713 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3714 if (Op0.getValueType().bitsGT(VT)) 3715 Op0 = DAG.getNode(ISD::AND, dl, VT, 3716 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3717 DAG.getConstant(1, dl, VT)); 3718 else if (Op0.getValueType().bitsLT(VT)) 3719 Op0 = DAG.getNode(ISD::AND, dl, VT, 3720 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3721 DAG.getConstant(1, dl, VT)); 3722 3723 return DAG.getSetCC(dl, VT, Op0, 3724 DAG.getConstant(0, dl, Op0.getValueType()), 3725 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3726 } 3727 if (Op0.getOpcode() == ISD::AssertZext && 3728 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3729 return DAG.getSetCC(dl, VT, Op0, 3730 DAG.getConstant(0, dl, Op0.getValueType()), 3731 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3732 } 3733 } 3734 3735 // Given: 3736 // icmp eq/ne (urem %x, %y), 0 3737 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3738 // icmp eq/ne %x, 0 3739 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3740 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3741 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3742 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3743 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3744 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3745 } 3746 3747 if (SDValue V = 3748 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3749 return V; 3750 } 3751 3752 // These simplifications apply to splat vectors as well. 3753 // TODO: Handle more splat vector cases. 3754 if (auto *N1C = isConstOrConstSplat(N1)) { 3755 const APInt &C1 = N1C->getAPIntValue(); 3756 3757 APInt MinVal, MaxVal; 3758 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3759 if (ISD::isSignedIntSetCC(Cond)) { 3760 MinVal = APInt::getSignedMinValue(OperandBitSize); 3761 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3762 } else { 3763 MinVal = APInt::getMinValue(OperandBitSize); 3764 MaxVal = APInt::getMaxValue(OperandBitSize); 3765 } 3766 3767 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3768 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3769 // X >= MIN --> true 3770 if (C1 == MinVal) 3771 return DAG.getBoolConstant(true, dl, VT, OpVT); 3772 3773 if (!VT.isVector()) { // TODO: Support this for vectors. 3774 // X >= C0 --> X > (C0 - 1) 3775 APInt C = C1 - 1; 3776 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3777 if ((DCI.isBeforeLegalizeOps() || 3778 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3779 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3780 isLegalICmpImmediate(C.getSExtValue())))) { 3781 return DAG.getSetCC(dl, VT, N0, 3782 DAG.getConstant(C, dl, N1.getValueType()), 3783 NewCC); 3784 } 3785 } 3786 } 3787 3788 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3789 // X <= MAX --> true 3790 if (C1 == MaxVal) 3791 return DAG.getBoolConstant(true, dl, VT, OpVT); 3792 3793 // X <= C0 --> X < (C0 + 1) 3794 if (!VT.isVector()) { // TODO: Support this for vectors. 3795 APInt C = C1 + 1; 3796 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3797 if ((DCI.isBeforeLegalizeOps() || 3798 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3799 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3800 isLegalICmpImmediate(C.getSExtValue())))) { 3801 return DAG.getSetCC(dl, VT, N0, 3802 DAG.getConstant(C, dl, N1.getValueType()), 3803 NewCC); 3804 } 3805 } 3806 } 3807 3808 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3809 if (C1 == MinVal) 3810 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3811 3812 // TODO: Support this for vectors after legalize ops. 3813 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3814 // Canonicalize setlt X, Max --> setne X, Max 3815 if (C1 == MaxVal) 3816 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3817 3818 // If we have setult X, 1, turn it into seteq X, 0 3819 if (C1 == MinVal+1) 3820 return DAG.getSetCC(dl, VT, N0, 3821 DAG.getConstant(MinVal, dl, N0.getValueType()), 3822 ISD::SETEQ); 3823 } 3824 } 3825 3826 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3827 if (C1 == MaxVal) 3828 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3829 3830 // TODO: Support this for vectors after legalize ops. 3831 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3832 // Canonicalize setgt X, Min --> setne X, Min 3833 if (C1 == MinVal) 3834 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3835 3836 // If we have setugt X, Max-1, turn it into seteq X, Max 3837 if (C1 == MaxVal-1) 3838 return DAG.getSetCC(dl, VT, N0, 3839 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3840 ISD::SETEQ); 3841 } 3842 } 3843 3844 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3845 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3846 if (C1.isNullValue()) 3847 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3848 VT, N0, N1, Cond, DCI, dl)) 3849 return CC; 3850 } 3851 3852 // If we have "setcc X, C0", check to see if we can shrink the immediate 3853 // by changing cc. 3854 // TODO: Support this for vectors after legalize ops. 3855 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3856 // SETUGT X, SINTMAX -> SETLT X, 0 3857 if (Cond == ISD::SETUGT && 3858 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3859 return DAG.getSetCC(dl, VT, N0, 3860 DAG.getConstant(0, dl, N1.getValueType()), 3861 ISD::SETLT); 3862 3863 // SETULT X, SINTMIN -> SETGT X, -1 3864 if (Cond == ISD::SETULT && 3865 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3866 SDValue ConstMinusOne = 3867 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3868 N1.getValueType()); 3869 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3870 } 3871 } 3872 } 3873 3874 // Back to non-vector simplifications. 3875 // TODO: Can we do these for vector splats? 3876 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3877 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3878 const APInt &C1 = N1C->getAPIntValue(); 3879 EVT ShValTy = N0.getValueType(); 3880 3881 // Fold bit comparisons when we can. 3882 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3883 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3884 N0.getOpcode() == ISD::AND) { 3885 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3886 EVT ShiftTy = 3887 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3888 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3889 // Perform the xform if the AND RHS is a single bit. 3890 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3891 if (AndRHS->getAPIntValue().isPowerOf2() && 3892 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3893 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3894 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3895 DAG.getConstant(ShCt, dl, ShiftTy))); 3896 } 3897 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3898 // (X & 8) == 8 --> (X & 8) >> 3 3899 // Perform the xform if C1 is a single bit. 3900 unsigned ShCt = C1.logBase2(); 3901 if (C1.isPowerOf2() && 3902 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3903 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3904 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3905 DAG.getConstant(ShCt, dl, ShiftTy))); 3906 } 3907 } 3908 } 3909 } 3910 3911 if (C1.getMinSignedBits() <= 64 && 3912 !isLegalICmpImmediate(C1.getSExtValue())) { 3913 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3914 // (X & -256) == 256 -> (X >> 8) == 1 3915 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3916 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3917 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3918 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3919 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3920 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3921 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3922 SDValue Shift = 3923 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3924 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3925 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3926 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3927 } 3928 } 3929 } 3930 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3931 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3932 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3933 // X < 0x100000000 -> (X >> 32) < 1 3934 // X >= 0x100000000 -> (X >> 32) >= 1 3935 // X <= 0x0ffffffff -> (X >> 32) < 1 3936 // X > 0x0ffffffff -> (X >> 32) >= 1 3937 unsigned ShiftBits; 3938 APInt NewC = C1; 3939 ISD::CondCode NewCond = Cond; 3940 if (AdjOne) { 3941 ShiftBits = C1.countTrailingOnes(); 3942 NewC = NewC + 1; 3943 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3944 } else { 3945 ShiftBits = C1.countTrailingZeros(); 3946 } 3947 NewC.lshrInPlace(ShiftBits); 3948 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3949 isLegalICmpImmediate(NewC.getSExtValue()) && 3950 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3951 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3952 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3953 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3954 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3955 } 3956 } 3957 } 3958 } 3959 3960 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3961 auto *CFP = cast<ConstantFPSDNode>(N1); 3962 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3963 3964 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3965 // constant if knowing that the operand is non-nan is enough. We prefer to 3966 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3967 // materialize 0.0. 3968 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3969 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3970 3971 // setcc (fneg x), C -> setcc swap(pred) x, -C 3972 if (N0.getOpcode() == ISD::FNEG) { 3973 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3974 if (DCI.isBeforeLegalizeOps() || 3975 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3976 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3977 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3978 } 3979 } 3980 3981 // If the condition is not legal, see if we can find an equivalent one 3982 // which is legal. 3983 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3984 // If the comparison was an awkward floating-point == or != and one of 3985 // the comparison operands is infinity or negative infinity, convert the 3986 // condition to a less-awkward <= or >=. 3987 if (CFP->getValueAPF().isInfinity()) { 3988 bool IsNegInf = CFP->getValueAPF().isNegative(); 3989 ISD::CondCode NewCond = ISD::SETCC_INVALID; 3990 switch (Cond) { 3991 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 3992 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 3993 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 3994 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 3995 default: break; 3996 } 3997 if (NewCond != ISD::SETCC_INVALID && 3998 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 3999 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4000 } 4001 } 4002 } 4003 4004 if (N0 == N1) { 4005 // The sext(setcc()) => setcc() optimization relies on the appropriate 4006 // constant being emitted. 4007 assert(!N0.getValueType().isInteger() && 4008 "Integer types should be handled by FoldSetCC"); 4009 4010 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4011 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4012 if (UOF == 2) // FP operators that are undefined on NaNs. 4013 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4014 if (UOF == unsigned(EqTrue)) 4015 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4016 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4017 // if it is not already. 4018 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4019 if (NewCond != Cond && 4020 (DCI.isBeforeLegalizeOps() || 4021 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4022 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4023 } 4024 4025 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4026 N0.getValueType().isInteger()) { 4027 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4028 N0.getOpcode() == ISD::XOR) { 4029 // Simplify (X+Y) == (X+Z) --> Y == Z 4030 if (N0.getOpcode() == N1.getOpcode()) { 4031 if (N0.getOperand(0) == N1.getOperand(0)) 4032 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4033 if (N0.getOperand(1) == N1.getOperand(1)) 4034 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4035 if (isCommutativeBinOp(N0.getOpcode())) { 4036 // If X op Y == Y op X, try other combinations. 4037 if (N0.getOperand(0) == N1.getOperand(1)) 4038 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4039 Cond); 4040 if (N0.getOperand(1) == N1.getOperand(0)) 4041 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4042 Cond); 4043 } 4044 } 4045 4046 // If RHS is a legal immediate value for a compare instruction, we need 4047 // to be careful about increasing register pressure needlessly. 4048 bool LegalRHSImm = false; 4049 4050 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4051 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4052 // Turn (X+C1) == C2 --> X == C2-C1 4053 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4054 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4055 DAG.getConstant(RHSC->getAPIntValue()- 4056 LHSR->getAPIntValue(), 4057 dl, N0.getValueType()), Cond); 4058 } 4059 4060 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4061 if (N0.getOpcode() == ISD::XOR) 4062 // If we know that all of the inverted bits are zero, don't bother 4063 // performing the inversion. 4064 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4065 return 4066 DAG.getSetCC(dl, VT, N0.getOperand(0), 4067 DAG.getConstant(LHSR->getAPIntValue() ^ 4068 RHSC->getAPIntValue(), 4069 dl, N0.getValueType()), 4070 Cond); 4071 } 4072 4073 // Turn (C1-X) == C2 --> X == C1-C2 4074 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4075 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4076 return 4077 DAG.getSetCC(dl, VT, N0.getOperand(1), 4078 DAG.getConstant(SUBC->getAPIntValue() - 4079 RHSC->getAPIntValue(), 4080 dl, N0.getValueType()), 4081 Cond); 4082 } 4083 } 4084 4085 // Could RHSC fold directly into a compare? 4086 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4087 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4088 } 4089 4090 // (X+Y) == X --> Y == 0 and similar folds. 4091 // Don't do this if X is an immediate that can fold into a cmp 4092 // instruction and X+Y has other uses. It could be an induction variable 4093 // chain, and the transform would increase register pressure. 4094 if (!LegalRHSImm || N0.hasOneUse()) 4095 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4096 return V; 4097 } 4098 4099 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4100 N1.getOpcode() == ISD::XOR) 4101 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4102 return V; 4103 4104 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4105 return V; 4106 } 4107 4108 // Fold remainder of division by a constant. 4109 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4110 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4111 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4112 4113 // When division is cheap or optimizing for minimum size, 4114 // fall through to DIVREM creation by skipping this fold. 4115 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4116 if (N0.getOpcode() == ISD::UREM) { 4117 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4118 return Folded; 4119 } else if (N0.getOpcode() == ISD::SREM) { 4120 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4121 return Folded; 4122 } 4123 } 4124 } 4125 4126 // Fold away ALL boolean setcc's. 4127 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4128 SDValue Temp; 4129 switch (Cond) { 4130 default: llvm_unreachable("Unknown integer setcc!"); 4131 case ISD::SETEQ: // X == Y -> ~(X^Y) 4132 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4133 N0 = DAG.getNOT(dl, Temp, OpVT); 4134 if (!DCI.isCalledByLegalizer()) 4135 DCI.AddToWorklist(Temp.getNode()); 4136 break; 4137 case ISD::SETNE: // X != Y --> (X^Y) 4138 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4139 break; 4140 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4141 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4142 Temp = DAG.getNOT(dl, N0, OpVT); 4143 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4144 if (!DCI.isCalledByLegalizer()) 4145 DCI.AddToWorklist(Temp.getNode()); 4146 break; 4147 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4148 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4149 Temp = DAG.getNOT(dl, N1, OpVT); 4150 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4151 if (!DCI.isCalledByLegalizer()) 4152 DCI.AddToWorklist(Temp.getNode()); 4153 break; 4154 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4155 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4156 Temp = DAG.getNOT(dl, N0, OpVT); 4157 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4158 if (!DCI.isCalledByLegalizer()) 4159 DCI.AddToWorklist(Temp.getNode()); 4160 break; 4161 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4162 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4163 Temp = DAG.getNOT(dl, N1, OpVT); 4164 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4165 break; 4166 } 4167 if (VT.getScalarType() != MVT::i1) { 4168 if (!DCI.isCalledByLegalizer()) 4169 DCI.AddToWorklist(N0.getNode()); 4170 // FIXME: If running after legalize, we probably can't do this. 4171 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4172 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4173 } 4174 return N0; 4175 } 4176 4177 // Could not fold it. 4178 return SDValue(); 4179 } 4180 4181 /// Returns true (and the GlobalValue and the offset) if the node is a 4182 /// GlobalAddress + offset. 4183 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4184 int64_t &Offset) const { 4185 4186 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4187 4188 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4189 GA = GASD->getGlobal(); 4190 Offset += GASD->getOffset(); 4191 return true; 4192 } 4193 4194 if (N->getOpcode() == ISD::ADD) { 4195 SDValue N1 = N->getOperand(0); 4196 SDValue N2 = N->getOperand(1); 4197 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4198 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4199 Offset += V->getSExtValue(); 4200 return true; 4201 } 4202 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4203 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4204 Offset += V->getSExtValue(); 4205 return true; 4206 } 4207 } 4208 } 4209 4210 return false; 4211 } 4212 4213 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4214 DAGCombinerInfo &DCI) const { 4215 // Default implementation: no optimization. 4216 return SDValue(); 4217 } 4218 4219 //===----------------------------------------------------------------------===// 4220 // Inline Assembler Implementation Methods 4221 //===----------------------------------------------------------------------===// 4222 4223 TargetLowering::ConstraintType 4224 TargetLowering::getConstraintType(StringRef Constraint) const { 4225 unsigned S = Constraint.size(); 4226 4227 if (S == 1) { 4228 switch (Constraint[0]) { 4229 default: break; 4230 case 'r': 4231 return C_RegisterClass; 4232 case 'm': // memory 4233 case 'o': // offsetable 4234 case 'V': // not offsetable 4235 return C_Memory; 4236 case 'n': // Simple Integer 4237 case 'E': // Floating Point Constant 4238 case 'F': // Floating Point Constant 4239 return C_Immediate; 4240 case 'i': // Simple Integer or Relocatable Constant 4241 case 's': // Relocatable Constant 4242 case 'p': // Address. 4243 case 'X': // Allow ANY value. 4244 case 'I': // Target registers. 4245 case 'J': 4246 case 'K': 4247 case 'L': 4248 case 'M': 4249 case 'N': 4250 case 'O': 4251 case 'P': 4252 case '<': 4253 case '>': 4254 return C_Other; 4255 } 4256 } 4257 4258 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4259 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4260 return C_Memory; 4261 return C_Register; 4262 } 4263 return C_Unknown; 4264 } 4265 4266 /// Try to replace an X constraint, which matches anything, with another that 4267 /// has more specific requirements based on the type of the corresponding 4268 /// operand. 4269 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4270 if (ConstraintVT.isInteger()) 4271 return "r"; 4272 if (ConstraintVT.isFloatingPoint()) 4273 return "f"; // works for many targets 4274 return nullptr; 4275 } 4276 4277 SDValue TargetLowering::LowerAsmOutputForConstraint( 4278 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4279 SelectionDAG &DAG) const { 4280 return SDValue(); 4281 } 4282 4283 /// Lower the specified operand into the Ops vector. 4284 /// If it is invalid, don't add anything to Ops. 4285 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4286 std::string &Constraint, 4287 std::vector<SDValue> &Ops, 4288 SelectionDAG &DAG) const { 4289 4290 if (Constraint.length() > 1) return; 4291 4292 char ConstraintLetter = Constraint[0]; 4293 switch (ConstraintLetter) { 4294 default: break; 4295 case 'X': // Allows any operand; labels (basic block) use this. 4296 if (Op.getOpcode() == ISD::BasicBlock || 4297 Op.getOpcode() == ISD::TargetBlockAddress) { 4298 Ops.push_back(Op); 4299 return; 4300 } 4301 LLVM_FALLTHROUGH; 4302 case 'i': // Simple Integer or Relocatable Constant 4303 case 'n': // Simple Integer 4304 case 's': { // Relocatable Constant 4305 4306 GlobalAddressSDNode *GA; 4307 ConstantSDNode *C; 4308 BlockAddressSDNode *BA; 4309 uint64_t Offset = 0; 4310 4311 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4312 // etc., since getelementpointer is variadic. We can't use 4313 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4314 // while in this case the GA may be furthest from the root node which is 4315 // likely an ISD::ADD. 4316 while (1) { 4317 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4318 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4319 GA->getValueType(0), 4320 Offset + GA->getOffset())); 4321 return; 4322 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4323 ConstraintLetter != 's') { 4324 // gcc prints these as sign extended. Sign extend value to 64 bits 4325 // now; without this it would get ZExt'd later in 4326 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4327 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4328 BooleanContent BCont = getBooleanContents(MVT::i64); 4329 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4330 : ISD::SIGN_EXTEND; 4331 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4332 : C->getSExtValue(); 4333 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4334 SDLoc(C), MVT::i64)); 4335 return; 4336 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4337 ConstraintLetter != 'n') { 4338 Ops.push_back(DAG.getTargetBlockAddress( 4339 BA->getBlockAddress(), BA->getValueType(0), 4340 Offset + BA->getOffset(), BA->getTargetFlags())); 4341 return; 4342 } else { 4343 const unsigned OpCode = Op.getOpcode(); 4344 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4345 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4346 Op = Op.getOperand(1); 4347 // Subtraction is not commutative. 4348 else if (OpCode == ISD::ADD && 4349 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4350 Op = Op.getOperand(0); 4351 else 4352 return; 4353 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4354 continue; 4355 } 4356 } 4357 return; 4358 } 4359 break; 4360 } 4361 } 4362 } 4363 4364 std::pair<unsigned, const TargetRegisterClass *> 4365 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4366 StringRef Constraint, 4367 MVT VT) const { 4368 if (Constraint.empty() || Constraint[0] != '{') 4369 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4370 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4371 4372 // Remove the braces from around the name. 4373 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4374 4375 std::pair<unsigned, const TargetRegisterClass *> R = 4376 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4377 4378 // Figure out which register class contains this reg. 4379 for (const TargetRegisterClass *RC : RI->regclasses()) { 4380 // If none of the value types for this register class are valid, we 4381 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4382 if (!isLegalRC(*RI, *RC)) 4383 continue; 4384 4385 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4386 I != E; ++I) { 4387 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4388 std::pair<unsigned, const TargetRegisterClass *> S = 4389 std::make_pair(*I, RC); 4390 4391 // If this register class has the requested value type, return it, 4392 // otherwise keep searching and return the first class found 4393 // if no other is found which explicitly has the requested type. 4394 if (RI->isTypeLegalForClass(*RC, VT)) 4395 return S; 4396 if (!R.second) 4397 R = S; 4398 } 4399 } 4400 } 4401 4402 return R; 4403 } 4404 4405 //===----------------------------------------------------------------------===// 4406 // Constraint Selection. 4407 4408 /// Return true of this is an input operand that is a matching constraint like 4409 /// "4". 4410 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4411 assert(!ConstraintCode.empty() && "No known constraint!"); 4412 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4413 } 4414 4415 /// If this is an input matching constraint, this method returns the output 4416 /// operand it matches. 4417 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4418 assert(!ConstraintCode.empty() && "No known constraint!"); 4419 return atoi(ConstraintCode.c_str()); 4420 } 4421 4422 /// Split up the constraint string from the inline assembly value into the 4423 /// specific constraints and their prefixes, and also tie in the associated 4424 /// operand values. 4425 /// If this returns an empty vector, and if the constraint string itself 4426 /// isn't empty, there was an error parsing. 4427 TargetLowering::AsmOperandInfoVector 4428 TargetLowering::ParseConstraints(const DataLayout &DL, 4429 const TargetRegisterInfo *TRI, 4430 const CallBase &Call) const { 4431 /// Information about all of the constraints. 4432 AsmOperandInfoVector ConstraintOperands; 4433 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4434 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4435 4436 // Do a prepass over the constraints, canonicalizing them, and building up the 4437 // ConstraintOperands list. 4438 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4439 unsigned ResNo = 0; // ResNo - The result number of the next output. 4440 4441 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4442 ConstraintOperands.emplace_back(std::move(CI)); 4443 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4444 4445 // Update multiple alternative constraint count. 4446 if (OpInfo.multipleAlternatives.size() > maCount) 4447 maCount = OpInfo.multipleAlternatives.size(); 4448 4449 OpInfo.ConstraintVT = MVT::Other; 4450 4451 // Compute the value type for each operand. 4452 switch (OpInfo.Type) { 4453 case InlineAsm::isOutput: 4454 // Indirect outputs just consume an argument. 4455 if (OpInfo.isIndirect) { 4456 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4457 break; 4458 } 4459 4460 // The return value of the call is this value. As such, there is no 4461 // corresponding argument. 4462 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4463 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4464 OpInfo.ConstraintVT = 4465 getSimpleValueType(DL, STy->getElementType(ResNo)); 4466 } else { 4467 assert(ResNo == 0 && "Asm only has one result!"); 4468 OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType()); 4469 } 4470 ++ResNo; 4471 break; 4472 case InlineAsm::isInput: 4473 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4474 break; 4475 case InlineAsm::isClobber: 4476 // Nothing to do. 4477 break; 4478 } 4479 4480 if (OpInfo.CallOperandVal) { 4481 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4482 if (OpInfo.isIndirect) { 4483 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4484 if (!PtrTy) 4485 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4486 OpTy = PtrTy->getElementType(); 4487 } 4488 4489 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4490 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4491 if (STy->getNumElements() == 1) 4492 OpTy = STy->getElementType(0); 4493 4494 // If OpTy is not a single value, it may be a struct/union that we 4495 // can tile with integers. 4496 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4497 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4498 switch (BitSize) { 4499 default: break; 4500 case 1: 4501 case 8: 4502 case 16: 4503 case 32: 4504 case 64: 4505 case 128: 4506 OpInfo.ConstraintVT = 4507 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4508 break; 4509 } 4510 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4511 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4512 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4513 } else { 4514 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4515 } 4516 } 4517 } 4518 4519 // If we have multiple alternative constraints, select the best alternative. 4520 if (!ConstraintOperands.empty()) { 4521 if (maCount) { 4522 unsigned bestMAIndex = 0; 4523 int bestWeight = -1; 4524 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4525 int weight = -1; 4526 unsigned maIndex; 4527 // Compute the sums of the weights for each alternative, keeping track 4528 // of the best (highest weight) one so far. 4529 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4530 int weightSum = 0; 4531 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4532 cIndex != eIndex; ++cIndex) { 4533 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4534 if (OpInfo.Type == InlineAsm::isClobber) 4535 continue; 4536 4537 // If this is an output operand with a matching input operand, 4538 // look up the matching input. If their types mismatch, e.g. one 4539 // is an integer, the other is floating point, or their sizes are 4540 // different, flag it as an maCantMatch. 4541 if (OpInfo.hasMatchingInput()) { 4542 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4543 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4544 if ((OpInfo.ConstraintVT.isInteger() != 4545 Input.ConstraintVT.isInteger()) || 4546 (OpInfo.ConstraintVT.getSizeInBits() != 4547 Input.ConstraintVT.getSizeInBits())) { 4548 weightSum = -1; // Can't match. 4549 break; 4550 } 4551 } 4552 } 4553 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4554 if (weight == -1) { 4555 weightSum = -1; 4556 break; 4557 } 4558 weightSum += weight; 4559 } 4560 // Update best. 4561 if (weightSum > bestWeight) { 4562 bestWeight = weightSum; 4563 bestMAIndex = maIndex; 4564 } 4565 } 4566 4567 // Now select chosen alternative in each constraint. 4568 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4569 cIndex != eIndex; ++cIndex) { 4570 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4571 if (cInfo.Type == InlineAsm::isClobber) 4572 continue; 4573 cInfo.selectAlternative(bestMAIndex); 4574 } 4575 } 4576 } 4577 4578 // Check and hook up tied operands, choose constraint code to use. 4579 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4580 cIndex != eIndex; ++cIndex) { 4581 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4582 4583 // If this is an output operand with a matching input operand, look up the 4584 // matching input. If their types mismatch, e.g. one is an integer, the 4585 // other is floating point, or their sizes are different, flag it as an 4586 // error. 4587 if (OpInfo.hasMatchingInput()) { 4588 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4589 4590 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4591 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4592 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4593 OpInfo.ConstraintVT); 4594 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4595 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4596 Input.ConstraintVT); 4597 if ((OpInfo.ConstraintVT.isInteger() != 4598 Input.ConstraintVT.isInteger()) || 4599 (MatchRC.second != InputRC.second)) { 4600 report_fatal_error("Unsupported asm: input constraint" 4601 " with a matching output constraint of" 4602 " incompatible type!"); 4603 } 4604 } 4605 } 4606 } 4607 4608 return ConstraintOperands; 4609 } 4610 4611 /// Return an integer indicating how general CT is. 4612 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4613 switch (CT) { 4614 case TargetLowering::C_Immediate: 4615 case TargetLowering::C_Other: 4616 case TargetLowering::C_Unknown: 4617 return 0; 4618 case TargetLowering::C_Register: 4619 return 1; 4620 case TargetLowering::C_RegisterClass: 4621 return 2; 4622 case TargetLowering::C_Memory: 4623 return 3; 4624 } 4625 llvm_unreachable("Invalid constraint type"); 4626 } 4627 4628 /// Examine constraint type and operand type and determine a weight value. 4629 /// This object must already have been set up with the operand type 4630 /// and the current alternative constraint selected. 4631 TargetLowering::ConstraintWeight 4632 TargetLowering::getMultipleConstraintMatchWeight( 4633 AsmOperandInfo &info, int maIndex) const { 4634 InlineAsm::ConstraintCodeVector *rCodes; 4635 if (maIndex >= (int)info.multipleAlternatives.size()) 4636 rCodes = &info.Codes; 4637 else 4638 rCodes = &info.multipleAlternatives[maIndex].Codes; 4639 ConstraintWeight BestWeight = CW_Invalid; 4640 4641 // Loop over the options, keeping track of the most general one. 4642 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4643 ConstraintWeight weight = 4644 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4645 if (weight > BestWeight) 4646 BestWeight = weight; 4647 } 4648 4649 return BestWeight; 4650 } 4651 4652 /// Examine constraint type and operand type and determine a weight value. 4653 /// This object must already have been set up with the operand type 4654 /// and the current alternative constraint selected. 4655 TargetLowering::ConstraintWeight 4656 TargetLowering::getSingleConstraintMatchWeight( 4657 AsmOperandInfo &info, const char *constraint) const { 4658 ConstraintWeight weight = CW_Invalid; 4659 Value *CallOperandVal = info.CallOperandVal; 4660 // If we don't have a value, we can't do a match, 4661 // but allow it at the lowest weight. 4662 if (!CallOperandVal) 4663 return CW_Default; 4664 // Look at the constraint type. 4665 switch (*constraint) { 4666 case 'i': // immediate integer. 4667 case 'n': // immediate integer with a known value. 4668 if (isa<ConstantInt>(CallOperandVal)) 4669 weight = CW_Constant; 4670 break; 4671 case 's': // non-explicit intregal immediate. 4672 if (isa<GlobalValue>(CallOperandVal)) 4673 weight = CW_Constant; 4674 break; 4675 case 'E': // immediate float if host format. 4676 case 'F': // immediate float. 4677 if (isa<ConstantFP>(CallOperandVal)) 4678 weight = CW_Constant; 4679 break; 4680 case '<': // memory operand with autodecrement. 4681 case '>': // memory operand with autoincrement. 4682 case 'm': // memory operand. 4683 case 'o': // offsettable memory operand 4684 case 'V': // non-offsettable memory operand 4685 weight = CW_Memory; 4686 break; 4687 case 'r': // general register. 4688 case 'g': // general register, memory operand or immediate integer. 4689 // note: Clang converts "g" to "imr". 4690 if (CallOperandVal->getType()->isIntegerTy()) 4691 weight = CW_Register; 4692 break; 4693 case 'X': // any operand. 4694 default: 4695 weight = CW_Default; 4696 break; 4697 } 4698 return weight; 4699 } 4700 4701 /// If there are multiple different constraints that we could pick for this 4702 /// operand (e.g. "imr") try to pick the 'best' one. 4703 /// This is somewhat tricky: constraints fall into four classes: 4704 /// Other -> immediates and magic values 4705 /// Register -> one specific register 4706 /// RegisterClass -> a group of regs 4707 /// Memory -> memory 4708 /// Ideally, we would pick the most specific constraint possible: if we have 4709 /// something that fits into a register, we would pick it. The problem here 4710 /// is that if we have something that could either be in a register or in 4711 /// memory that use of the register could cause selection of *other* 4712 /// operands to fail: they might only succeed if we pick memory. Because of 4713 /// this the heuristic we use is: 4714 /// 4715 /// 1) If there is an 'other' constraint, and if the operand is valid for 4716 /// that constraint, use it. This makes us take advantage of 'i' 4717 /// constraints when available. 4718 /// 2) Otherwise, pick the most general constraint present. This prefers 4719 /// 'm' over 'r', for example. 4720 /// 4721 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4722 const TargetLowering &TLI, 4723 SDValue Op, SelectionDAG *DAG) { 4724 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4725 unsigned BestIdx = 0; 4726 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4727 int BestGenerality = -1; 4728 4729 // Loop over the options, keeping track of the most general one. 4730 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4731 TargetLowering::ConstraintType CType = 4732 TLI.getConstraintType(OpInfo.Codes[i]); 4733 4734 // Indirect 'other' or 'immediate' constraints are not allowed. 4735 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4736 CType == TargetLowering::C_Register || 4737 CType == TargetLowering::C_RegisterClass)) 4738 continue; 4739 4740 // If this is an 'other' or 'immediate' constraint, see if the operand is 4741 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4742 // the operand is an integer in the range [0..31] we want to use I (saving a 4743 // load of a register), otherwise we must use 'r'. 4744 if ((CType == TargetLowering::C_Other || 4745 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4746 assert(OpInfo.Codes[i].size() == 1 && 4747 "Unhandled multi-letter 'other' constraint"); 4748 std::vector<SDValue> ResultOps; 4749 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4750 ResultOps, *DAG); 4751 if (!ResultOps.empty()) { 4752 BestType = CType; 4753 BestIdx = i; 4754 break; 4755 } 4756 } 4757 4758 // Things with matching constraints can only be registers, per gcc 4759 // documentation. This mainly affects "g" constraints. 4760 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4761 continue; 4762 4763 // This constraint letter is more general than the previous one, use it. 4764 int Generality = getConstraintGenerality(CType); 4765 if (Generality > BestGenerality) { 4766 BestType = CType; 4767 BestIdx = i; 4768 BestGenerality = Generality; 4769 } 4770 } 4771 4772 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4773 OpInfo.ConstraintType = BestType; 4774 } 4775 4776 /// Determines the constraint code and constraint type to use for the specific 4777 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4778 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4779 SDValue Op, 4780 SelectionDAG *DAG) const { 4781 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4782 4783 // Single-letter constraints ('r') are very common. 4784 if (OpInfo.Codes.size() == 1) { 4785 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4786 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4787 } else { 4788 ChooseConstraint(OpInfo, *this, Op, DAG); 4789 } 4790 4791 // 'X' matches anything. 4792 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4793 // Labels and constants are handled elsewhere ('X' is the only thing 4794 // that matches labels). For Functions, the type here is the type of 4795 // the result, which is not what we want to look at; leave them alone. 4796 Value *v = OpInfo.CallOperandVal; 4797 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4798 OpInfo.CallOperandVal = v; 4799 return; 4800 } 4801 4802 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4803 return; 4804 4805 // Otherwise, try to resolve it to something we know about by looking at 4806 // the actual operand type. 4807 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4808 OpInfo.ConstraintCode = Repl; 4809 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4810 } 4811 } 4812 } 4813 4814 /// Given an exact SDIV by a constant, create a multiplication 4815 /// with the multiplicative inverse of the constant. 4816 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4817 const SDLoc &dl, SelectionDAG &DAG, 4818 SmallVectorImpl<SDNode *> &Created) { 4819 SDValue Op0 = N->getOperand(0); 4820 SDValue Op1 = N->getOperand(1); 4821 EVT VT = N->getValueType(0); 4822 EVT SVT = VT.getScalarType(); 4823 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4824 EVT ShSVT = ShVT.getScalarType(); 4825 4826 bool UseSRA = false; 4827 SmallVector<SDValue, 16> Shifts, Factors; 4828 4829 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4830 if (C->isNullValue()) 4831 return false; 4832 APInt Divisor = C->getAPIntValue(); 4833 unsigned Shift = Divisor.countTrailingZeros(); 4834 if (Shift) { 4835 Divisor.ashrInPlace(Shift); 4836 UseSRA = true; 4837 } 4838 // Calculate the multiplicative inverse, using Newton's method. 4839 APInt t; 4840 APInt Factor = Divisor; 4841 while ((t = Divisor * Factor) != 1) 4842 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4843 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4844 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4845 return true; 4846 }; 4847 4848 // Collect all magic values from the build vector. 4849 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4850 return SDValue(); 4851 4852 SDValue Shift, Factor; 4853 if (VT.isVector()) { 4854 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4855 Factor = DAG.getBuildVector(VT, dl, Factors); 4856 } else { 4857 Shift = Shifts[0]; 4858 Factor = Factors[0]; 4859 } 4860 4861 SDValue Res = Op0; 4862 4863 // Shift the value upfront if it is even, so the LSB is one. 4864 if (UseSRA) { 4865 // TODO: For UDIV use SRL instead of SRA. 4866 SDNodeFlags Flags; 4867 Flags.setExact(true); 4868 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4869 Created.push_back(Res.getNode()); 4870 } 4871 4872 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4873 } 4874 4875 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4876 SelectionDAG &DAG, 4877 SmallVectorImpl<SDNode *> &Created) const { 4878 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4879 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4880 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4881 return SDValue(N, 0); // Lower SDIV as SDIV 4882 return SDValue(); 4883 } 4884 4885 /// Given an ISD::SDIV node expressing a divide by constant, 4886 /// return a DAG expression to select that will generate the same value by 4887 /// multiplying by a magic number. 4888 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4889 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4890 bool IsAfterLegalization, 4891 SmallVectorImpl<SDNode *> &Created) const { 4892 SDLoc dl(N); 4893 EVT VT = N->getValueType(0); 4894 EVT SVT = VT.getScalarType(); 4895 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4896 EVT ShSVT = ShVT.getScalarType(); 4897 unsigned EltBits = VT.getScalarSizeInBits(); 4898 4899 // Check to see if we can do this. 4900 // FIXME: We should be more aggressive here. 4901 if (!isTypeLegal(VT)) 4902 return SDValue(); 4903 4904 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4905 if (N->getFlags().hasExact()) 4906 return BuildExactSDIV(*this, N, dl, DAG, Created); 4907 4908 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4909 4910 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4911 if (C->isNullValue()) 4912 return false; 4913 4914 const APInt &Divisor = C->getAPIntValue(); 4915 APInt::ms magics = Divisor.magic(); 4916 int NumeratorFactor = 0; 4917 int ShiftMask = -1; 4918 4919 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4920 // If d is +1/-1, we just multiply the numerator by +1/-1. 4921 NumeratorFactor = Divisor.getSExtValue(); 4922 magics.m = 0; 4923 magics.s = 0; 4924 ShiftMask = 0; 4925 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4926 // If d > 0 and m < 0, add the numerator. 4927 NumeratorFactor = 1; 4928 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4929 // If d < 0 and m > 0, subtract the numerator. 4930 NumeratorFactor = -1; 4931 } 4932 4933 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4934 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4935 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4936 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4937 return true; 4938 }; 4939 4940 SDValue N0 = N->getOperand(0); 4941 SDValue N1 = N->getOperand(1); 4942 4943 // Collect the shifts / magic values from each element. 4944 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4945 return SDValue(); 4946 4947 SDValue MagicFactor, Factor, Shift, ShiftMask; 4948 if (VT.isVector()) { 4949 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4950 Factor = DAG.getBuildVector(VT, dl, Factors); 4951 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4952 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4953 } else { 4954 MagicFactor = MagicFactors[0]; 4955 Factor = Factors[0]; 4956 Shift = Shifts[0]; 4957 ShiftMask = ShiftMasks[0]; 4958 } 4959 4960 // Multiply the numerator (operand 0) by the magic value. 4961 // FIXME: We should support doing a MUL in a wider type. 4962 SDValue Q; 4963 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4964 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4965 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4966 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4967 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4968 SDValue LoHi = 4969 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4970 Q = SDValue(LoHi.getNode(), 1); 4971 } else 4972 return SDValue(); // No mulhs or equivalent. 4973 Created.push_back(Q.getNode()); 4974 4975 // (Optionally) Add/subtract the numerator using Factor. 4976 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4977 Created.push_back(Factor.getNode()); 4978 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4979 Created.push_back(Q.getNode()); 4980 4981 // Shift right algebraic by shift value. 4982 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4983 Created.push_back(Q.getNode()); 4984 4985 // Extract the sign bit, mask it and add it to the quotient. 4986 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4987 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4988 Created.push_back(T.getNode()); 4989 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4990 Created.push_back(T.getNode()); 4991 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4992 } 4993 4994 /// Given an ISD::UDIV node expressing a divide by constant, 4995 /// return a DAG expression to select that will generate the same value by 4996 /// multiplying by a magic number. 4997 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4998 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4999 bool IsAfterLegalization, 5000 SmallVectorImpl<SDNode *> &Created) const { 5001 SDLoc dl(N); 5002 EVT VT = N->getValueType(0); 5003 EVT SVT = VT.getScalarType(); 5004 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5005 EVT ShSVT = ShVT.getScalarType(); 5006 unsigned EltBits = VT.getScalarSizeInBits(); 5007 5008 // Check to see if we can do this. 5009 // FIXME: We should be more aggressive here. 5010 if (!isTypeLegal(VT)) 5011 return SDValue(); 5012 5013 bool UseNPQ = false; 5014 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5015 5016 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5017 if (C->isNullValue()) 5018 return false; 5019 // FIXME: We should use a narrower constant when the upper 5020 // bits are known to be zero. 5021 APInt Divisor = C->getAPIntValue(); 5022 APInt::mu magics = Divisor.magicu(); 5023 unsigned PreShift = 0, PostShift = 0; 5024 5025 // If the divisor is even, we can avoid using the expensive fixup by 5026 // shifting the divided value upfront. 5027 if (magics.a != 0 && !Divisor[0]) { 5028 PreShift = Divisor.countTrailingZeros(); 5029 // Get magic number for the shifted divisor. 5030 magics = Divisor.lshr(PreShift).magicu(PreShift); 5031 assert(magics.a == 0 && "Should use cheap fixup now"); 5032 } 5033 5034 APInt Magic = magics.m; 5035 5036 unsigned SelNPQ; 5037 if (magics.a == 0 || Divisor.isOneValue()) { 5038 assert(magics.s < Divisor.getBitWidth() && 5039 "We shouldn't generate an undefined shift!"); 5040 PostShift = magics.s; 5041 SelNPQ = false; 5042 } else { 5043 PostShift = magics.s - 1; 5044 SelNPQ = true; 5045 } 5046 5047 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5048 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5049 NPQFactors.push_back( 5050 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5051 : APInt::getNullValue(EltBits), 5052 dl, SVT)); 5053 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5054 UseNPQ |= SelNPQ; 5055 return true; 5056 }; 5057 5058 SDValue N0 = N->getOperand(0); 5059 SDValue N1 = N->getOperand(1); 5060 5061 // Collect the shifts/magic values from each element. 5062 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5063 return SDValue(); 5064 5065 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5066 if (VT.isVector()) { 5067 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5068 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5069 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5070 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5071 } else { 5072 PreShift = PreShifts[0]; 5073 MagicFactor = MagicFactors[0]; 5074 PostShift = PostShifts[0]; 5075 } 5076 5077 SDValue Q = N0; 5078 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5079 Created.push_back(Q.getNode()); 5080 5081 // FIXME: We should support doing a MUL in a wider type. 5082 auto GetMULHU = [&](SDValue X, SDValue Y) { 5083 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 5084 : isOperationLegalOrCustom(ISD::MULHU, VT)) 5085 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5086 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 5087 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 5088 SDValue LoHi = 5089 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5090 return SDValue(LoHi.getNode(), 1); 5091 } 5092 return SDValue(); // No mulhu or equivalent 5093 }; 5094 5095 // Multiply the numerator (operand 0) by the magic value. 5096 Q = GetMULHU(Q, MagicFactor); 5097 if (!Q) 5098 return SDValue(); 5099 5100 Created.push_back(Q.getNode()); 5101 5102 if (UseNPQ) { 5103 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5104 Created.push_back(NPQ.getNode()); 5105 5106 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5107 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5108 if (VT.isVector()) 5109 NPQ = GetMULHU(NPQ, NPQFactor); 5110 else 5111 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5112 5113 Created.push_back(NPQ.getNode()); 5114 5115 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5116 Created.push_back(Q.getNode()); 5117 } 5118 5119 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5120 Created.push_back(Q.getNode()); 5121 5122 SDValue One = DAG.getConstant(1, dl, VT); 5123 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 5124 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5125 } 5126 5127 /// If all values in Values that *don't* match the predicate are same 'splat' 5128 /// value, then replace all values with that splat value. 5129 /// Else, if AlternativeReplacement was provided, then replace all values that 5130 /// do match predicate with AlternativeReplacement value. 5131 static void 5132 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5133 std::function<bool(SDValue)> Predicate, 5134 SDValue AlternativeReplacement = SDValue()) { 5135 SDValue Replacement; 5136 // Is there a value for which the Predicate does *NOT* match? What is it? 5137 auto SplatValue = llvm::find_if_not(Values, Predicate); 5138 if (SplatValue != Values.end()) { 5139 // Does Values consist only of SplatValue's and values matching Predicate? 5140 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5141 return Value == *SplatValue || Predicate(Value); 5142 })) // Then we shall replace values matching predicate with SplatValue. 5143 Replacement = *SplatValue; 5144 } 5145 if (!Replacement) { 5146 // Oops, we did not find the "baseline" splat value. 5147 if (!AlternativeReplacement) 5148 return; // Nothing to do. 5149 // Let's replace with provided value then. 5150 Replacement = AlternativeReplacement; 5151 } 5152 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5153 } 5154 5155 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5156 /// where the divisor is constant and the comparison target is zero, 5157 /// return a DAG expression that will generate the same comparison result 5158 /// using only multiplications, additions and shifts/rotations. 5159 /// Ref: "Hacker's Delight" 10-17. 5160 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5161 SDValue CompTargetNode, 5162 ISD::CondCode Cond, 5163 DAGCombinerInfo &DCI, 5164 const SDLoc &DL) const { 5165 SmallVector<SDNode *, 5> Built; 5166 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5167 DCI, DL, Built)) { 5168 for (SDNode *N : Built) 5169 DCI.AddToWorklist(N); 5170 return Folded; 5171 } 5172 5173 return SDValue(); 5174 } 5175 5176 SDValue 5177 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5178 SDValue CompTargetNode, ISD::CondCode Cond, 5179 DAGCombinerInfo &DCI, const SDLoc &DL, 5180 SmallVectorImpl<SDNode *> &Created) const { 5181 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5182 // - D must be constant, with D = D0 * 2^K where D0 is odd 5183 // - P is the multiplicative inverse of D0 modulo 2^W 5184 // - Q = floor(((2^W) - 1) / D) 5185 // where W is the width of the common type of N and D. 5186 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5187 "Only applicable for (in)equality comparisons."); 5188 5189 SelectionDAG &DAG = DCI.DAG; 5190 5191 EVT VT = REMNode.getValueType(); 5192 EVT SVT = VT.getScalarType(); 5193 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5194 EVT ShSVT = ShVT.getScalarType(); 5195 5196 // If MUL is unavailable, we cannot proceed in any case. 5197 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5198 return SDValue(); 5199 5200 bool ComparingWithAllZeros = true; 5201 bool AllComparisonsWithNonZerosAreTautological = true; 5202 bool HadTautologicalLanes = false; 5203 bool AllLanesAreTautological = true; 5204 bool HadEvenDivisor = false; 5205 bool AllDivisorsArePowerOfTwo = true; 5206 bool HadTautologicalInvertedLanes = false; 5207 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5208 5209 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5210 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5211 if (CDiv->isNullValue()) 5212 return false; 5213 5214 const APInt &D = CDiv->getAPIntValue(); 5215 const APInt &Cmp = CCmp->getAPIntValue(); 5216 5217 ComparingWithAllZeros &= Cmp.isNullValue(); 5218 5219 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5220 // if C2 is not less than C1, the comparison is always false. 5221 // But we will only be able to produce the comparison that will give the 5222 // opposive tautological answer. So this lane would need to be fixed up. 5223 bool TautologicalInvertedLane = D.ule(Cmp); 5224 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5225 5226 // If all lanes are tautological (either all divisors are ones, or divisor 5227 // is not greater than the constant we are comparing with), 5228 // we will prefer to avoid the fold. 5229 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5230 HadTautologicalLanes |= TautologicalLane; 5231 AllLanesAreTautological &= TautologicalLane; 5232 5233 // If we are comparing with non-zero, we need'll need to subtract said 5234 // comparison value from the LHS. But there is no point in doing that if 5235 // every lane where we are comparing with non-zero is tautological.. 5236 if (!Cmp.isNullValue()) 5237 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5238 5239 // Decompose D into D0 * 2^K 5240 unsigned K = D.countTrailingZeros(); 5241 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5242 APInt D0 = D.lshr(K); 5243 5244 // D is even if it has trailing zeros. 5245 HadEvenDivisor |= (K != 0); 5246 // D is a power-of-two if D0 is one. 5247 // If all divisors are power-of-two, we will prefer to avoid the fold. 5248 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5249 5250 // P = inv(D0, 2^W) 5251 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5252 unsigned W = D.getBitWidth(); 5253 APInt P = D0.zext(W + 1) 5254 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5255 .trunc(W); 5256 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5257 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5258 5259 // Q = floor((2^W - 1) u/ D) 5260 // R = ((2^W - 1) u% D) 5261 APInt Q, R; 5262 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5263 5264 // If we are comparing with zero, then that comparison constant is okay, 5265 // else it may need to be one less than that. 5266 if (Cmp.ugt(R)) 5267 Q -= 1; 5268 5269 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5270 "We are expecting that K is always less than all-ones for ShSVT"); 5271 5272 // If the lane is tautological the result can be constant-folded. 5273 if (TautologicalLane) { 5274 // Set P and K amount to a bogus values so we can try to splat them. 5275 P = 0; 5276 K = -1; 5277 // And ensure that comparison constant is tautological, 5278 // it will always compare true/false. 5279 Q = -1; 5280 } 5281 5282 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5283 KAmts.push_back( 5284 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5285 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5286 return true; 5287 }; 5288 5289 SDValue N = REMNode.getOperand(0); 5290 SDValue D = REMNode.getOperand(1); 5291 5292 // Collect the values from each element. 5293 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5294 return SDValue(); 5295 5296 // If all lanes are tautological, the result can be constant-folded. 5297 if (AllLanesAreTautological) 5298 return SDValue(); 5299 5300 // If this is a urem by a powers-of-two, avoid the fold since it can be 5301 // best implemented as a bit test. 5302 if (AllDivisorsArePowerOfTwo) 5303 return SDValue(); 5304 5305 SDValue PVal, KVal, QVal; 5306 if (VT.isVector()) { 5307 if (HadTautologicalLanes) { 5308 // Try to turn PAmts into a splat, since we don't care about the values 5309 // that are currently '0'. If we can't, just keep '0'`s. 5310 turnVectorIntoSplatVector(PAmts, isNullConstant); 5311 // Try to turn KAmts into a splat, since we don't care about the values 5312 // that are currently '-1'. If we can't, change them to '0'`s. 5313 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5314 DAG.getConstant(0, DL, ShSVT)); 5315 } 5316 5317 PVal = DAG.getBuildVector(VT, DL, PAmts); 5318 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5319 QVal = DAG.getBuildVector(VT, DL, QAmts); 5320 } else { 5321 PVal = PAmts[0]; 5322 KVal = KAmts[0]; 5323 QVal = QAmts[0]; 5324 } 5325 5326 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5327 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5328 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5329 assert(CompTargetNode.getValueType() == N.getValueType() && 5330 "Expecting that the types on LHS and RHS of comparisons match."); 5331 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5332 } 5333 5334 // (mul N, P) 5335 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5336 Created.push_back(Op0.getNode()); 5337 5338 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5339 // divisors as a performance improvement, since rotating by 0 is a no-op. 5340 if (HadEvenDivisor) { 5341 // We need ROTR to do this. 5342 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5343 return SDValue(); 5344 SDNodeFlags Flags; 5345 Flags.setExact(true); 5346 // UREM: (rotr (mul N, P), K) 5347 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5348 Created.push_back(Op0.getNode()); 5349 } 5350 5351 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5352 SDValue NewCC = 5353 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5354 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5355 if (!HadTautologicalInvertedLanes) 5356 return NewCC; 5357 5358 // If any lanes previously compared always-false, the NewCC will give 5359 // always-true result for them, so we need to fixup those lanes. 5360 // Or the other way around for inequality predicate. 5361 assert(VT.isVector() && "Can/should only get here for vectors."); 5362 Created.push_back(NewCC.getNode()); 5363 5364 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5365 // if C2 is not less than C1, the comparison is always false. 5366 // But we have produced the comparison that will give the 5367 // opposive tautological answer. So these lanes would need to be fixed up. 5368 SDValue TautologicalInvertedChannels = 5369 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5370 Created.push_back(TautologicalInvertedChannels.getNode()); 5371 5372 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5373 // If we have a vector select, let's replace the comparison results in the 5374 // affected lanes with the correct tautological result. 5375 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5376 DL, SETCCVT, SETCCVT); 5377 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5378 Replacement, NewCC); 5379 } 5380 5381 // Else, we can just invert the comparison result in the appropriate lanes. 5382 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5383 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5384 TautologicalInvertedChannels); 5385 5386 return SDValue(); // Don't know how to lower. 5387 } 5388 5389 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5390 /// where the divisor is constant and the comparison target is zero, 5391 /// return a DAG expression that will generate the same comparison result 5392 /// using only multiplications, additions and shifts/rotations. 5393 /// Ref: "Hacker's Delight" 10-17. 5394 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5395 SDValue CompTargetNode, 5396 ISD::CondCode Cond, 5397 DAGCombinerInfo &DCI, 5398 const SDLoc &DL) const { 5399 SmallVector<SDNode *, 7> Built; 5400 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5401 DCI, DL, Built)) { 5402 assert(Built.size() <= 7 && "Max size prediction failed."); 5403 for (SDNode *N : Built) 5404 DCI.AddToWorklist(N); 5405 return Folded; 5406 } 5407 5408 return SDValue(); 5409 } 5410 5411 SDValue 5412 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5413 SDValue CompTargetNode, ISD::CondCode Cond, 5414 DAGCombinerInfo &DCI, const SDLoc &DL, 5415 SmallVectorImpl<SDNode *> &Created) const { 5416 // Fold: 5417 // (seteq/ne (srem N, D), 0) 5418 // To: 5419 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5420 // 5421 // - D must be constant, with D = D0 * 2^K where D0 is odd 5422 // - P is the multiplicative inverse of D0 modulo 2^W 5423 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5424 // - Q = floor((2 * A) / (2^K)) 5425 // where W is the width of the common type of N and D. 5426 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5427 "Only applicable for (in)equality comparisons."); 5428 5429 SelectionDAG &DAG = DCI.DAG; 5430 5431 EVT VT = REMNode.getValueType(); 5432 EVT SVT = VT.getScalarType(); 5433 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5434 EVT ShSVT = ShVT.getScalarType(); 5435 5436 // If MUL is unavailable, we cannot proceed in any case. 5437 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5438 return SDValue(); 5439 5440 // TODO: Could support comparing with non-zero too. 5441 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5442 if (!CompTarget || !CompTarget->isNullValue()) 5443 return SDValue(); 5444 5445 bool HadIntMinDivisor = false; 5446 bool HadOneDivisor = false; 5447 bool AllDivisorsAreOnes = true; 5448 bool HadEvenDivisor = false; 5449 bool NeedToApplyOffset = false; 5450 bool AllDivisorsArePowerOfTwo = true; 5451 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5452 5453 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5454 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5455 if (C->isNullValue()) 5456 return false; 5457 5458 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5459 5460 // WARNING: this fold is only valid for positive divisors! 5461 APInt D = C->getAPIntValue(); 5462 if (D.isNegative()) 5463 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5464 5465 HadIntMinDivisor |= D.isMinSignedValue(); 5466 5467 // If all divisors are ones, we will prefer to avoid the fold. 5468 HadOneDivisor |= D.isOneValue(); 5469 AllDivisorsAreOnes &= D.isOneValue(); 5470 5471 // Decompose D into D0 * 2^K 5472 unsigned K = D.countTrailingZeros(); 5473 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5474 APInt D0 = D.lshr(K); 5475 5476 if (!D.isMinSignedValue()) { 5477 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5478 // we don't care about this lane in this fold, we'll special-handle it. 5479 HadEvenDivisor |= (K != 0); 5480 } 5481 5482 // D is a power-of-two if D0 is one. This includes INT_MIN. 5483 // If all divisors are power-of-two, we will prefer to avoid the fold. 5484 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5485 5486 // P = inv(D0, 2^W) 5487 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5488 unsigned W = D.getBitWidth(); 5489 APInt P = D0.zext(W + 1) 5490 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5491 .trunc(W); 5492 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5493 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5494 5495 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5496 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5497 A.clearLowBits(K); 5498 5499 if (!D.isMinSignedValue()) { 5500 // If divisor INT_MIN, then we don't care about this lane in this fold, 5501 // we'll special-handle it. 5502 NeedToApplyOffset |= A != 0; 5503 } 5504 5505 // Q = floor((2 * A) / (2^K)) 5506 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5507 5508 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5509 "We are expecting that A is always less than all-ones for SVT"); 5510 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5511 "We are expecting that K is always less than all-ones for ShSVT"); 5512 5513 // If the divisor is 1 the result can be constant-folded. Likewise, we 5514 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5515 if (D.isOneValue()) { 5516 // Set P, A and K to a bogus values so we can try to splat them. 5517 P = 0; 5518 A = -1; 5519 K = -1; 5520 5521 // x ?% 1 == 0 <--> true <--> x u<= -1 5522 Q = -1; 5523 } 5524 5525 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5526 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5527 KAmts.push_back( 5528 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5529 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5530 return true; 5531 }; 5532 5533 SDValue N = REMNode.getOperand(0); 5534 SDValue D = REMNode.getOperand(1); 5535 5536 // Collect the values from each element. 5537 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5538 return SDValue(); 5539 5540 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5541 if (AllDivisorsAreOnes) 5542 return SDValue(); 5543 5544 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5545 // since it can be best implemented as a bit test. 5546 if (AllDivisorsArePowerOfTwo) 5547 return SDValue(); 5548 5549 SDValue PVal, AVal, KVal, QVal; 5550 if (VT.isVector()) { 5551 if (HadOneDivisor) { 5552 // Try to turn PAmts into a splat, since we don't care about the values 5553 // that are currently '0'. If we can't, just keep '0'`s. 5554 turnVectorIntoSplatVector(PAmts, isNullConstant); 5555 // Try to turn AAmts into a splat, since we don't care about the 5556 // values that are currently '-1'. If we can't, change them to '0'`s. 5557 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5558 DAG.getConstant(0, DL, SVT)); 5559 // Try to turn KAmts into a splat, since we don't care about the values 5560 // that are currently '-1'. If we can't, change them to '0'`s. 5561 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5562 DAG.getConstant(0, DL, ShSVT)); 5563 } 5564 5565 PVal = DAG.getBuildVector(VT, DL, PAmts); 5566 AVal = DAG.getBuildVector(VT, DL, AAmts); 5567 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5568 QVal = DAG.getBuildVector(VT, DL, QAmts); 5569 } else { 5570 PVal = PAmts[0]; 5571 AVal = AAmts[0]; 5572 KVal = KAmts[0]; 5573 QVal = QAmts[0]; 5574 } 5575 5576 // (mul N, P) 5577 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5578 Created.push_back(Op0.getNode()); 5579 5580 if (NeedToApplyOffset) { 5581 // We need ADD to do this. 5582 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5583 return SDValue(); 5584 5585 // (add (mul N, P), A) 5586 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5587 Created.push_back(Op0.getNode()); 5588 } 5589 5590 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5591 // divisors as a performance improvement, since rotating by 0 is a no-op. 5592 if (HadEvenDivisor) { 5593 // We need ROTR to do this. 5594 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5595 return SDValue(); 5596 SDNodeFlags Flags; 5597 Flags.setExact(true); 5598 // SREM: (rotr (add (mul N, P), A), K) 5599 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5600 Created.push_back(Op0.getNode()); 5601 } 5602 5603 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5604 SDValue Fold = 5605 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5606 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5607 5608 // If we didn't have lanes with INT_MIN divisor, then we're done. 5609 if (!HadIntMinDivisor) 5610 return Fold; 5611 5612 // That fold is only valid for positive divisors. Which effectively means, 5613 // it is invalid for INT_MIN divisors. So if we have such a lane, 5614 // we must fix-up results for said lanes. 5615 assert(VT.isVector() && "Can/should only get here for vectors."); 5616 5617 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5618 !isOperationLegalOrCustom(ISD::AND, VT) || 5619 !isOperationLegalOrCustom(Cond, VT) || 5620 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5621 return SDValue(); 5622 5623 Created.push_back(Fold.getNode()); 5624 5625 SDValue IntMin = DAG.getConstant( 5626 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5627 SDValue IntMax = DAG.getConstant( 5628 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5629 SDValue Zero = 5630 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5631 5632 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5633 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5634 Created.push_back(DivisorIsIntMin.getNode()); 5635 5636 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5637 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5638 Created.push_back(Masked.getNode()); 5639 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5640 Created.push_back(MaskedIsZero.getNode()); 5641 5642 // To produce final result we need to blend 2 vectors: 'SetCC' and 5643 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5644 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5645 // constant-folded, select can get lowered to a shuffle with constant mask. 5646 SDValue Blended = 5647 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5648 5649 return Blended; 5650 } 5651 5652 bool TargetLowering:: 5653 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5654 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5655 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5656 "be a constant integer"); 5657 return true; 5658 } 5659 5660 return false; 5661 } 5662 5663 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5664 bool LegalOps, bool OptForSize, 5665 NegatibleCost &Cost, 5666 unsigned Depth) const { 5667 // fneg is removable even if it has multiple uses. 5668 if (Op.getOpcode() == ISD::FNEG) { 5669 Cost = NegatibleCost::Cheaper; 5670 return Op.getOperand(0); 5671 } 5672 5673 // Don't recurse exponentially. 5674 if (Depth > SelectionDAG::MaxRecursionDepth) 5675 return SDValue(); 5676 5677 // Pre-increment recursion depth for use in recursive calls. 5678 ++Depth; 5679 const SDNodeFlags Flags = Op->getFlags(); 5680 const TargetOptions &Options = DAG.getTarget().Options; 5681 EVT VT = Op.getValueType(); 5682 unsigned Opcode = Op.getOpcode(); 5683 5684 // Don't allow anything with multiple uses unless we know it is free. 5685 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 5686 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 5687 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5688 if (!IsFreeExtend) 5689 return SDValue(); 5690 } 5691 5692 SDLoc DL(Op); 5693 5694 switch (Opcode) { 5695 case ISD::ConstantFP: { 5696 // Don't invert constant FP values after legalization unless the target says 5697 // the negated constant is legal. 5698 bool IsOpLegal = 5699 isOperationLegal(ISD::ConstantFP, VT) || 5700 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5701 OptForSize); 5702 5703 if (LegalOps && !IsOpLegal) 5704 break; 5705 5706 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5707 V.changeSign(); 5708 SDValue CFP = DAG.getConstantFP(V, DL, VT); 5709 5710 // If we already have the use of the negated floating constant, it is free 5711 // to negate it even it has multiple uses. 5712 if (!Op.hasOneUse() && CFP.use_empty()) 5713 break; 5714 Cost = NegatibleCost::Neutral; 5715 return CFP; 5716 } 5717 case ISD::BUILD_VECTOR: { 5718 // Only permit BUILD_VECTOR of constants. 5719 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5720 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5721 })) 5722 break; 5723 5724 bool IsOpLegal = 5725 (isOperationLegal(ISD::ConstantFP, VT) && 5726 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 5727 llvm::all_of(Op->op_values(), [&](SDValue N) { 5728 return N.isUndef() || 5729 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5730 OptForSize); 5731 }); 5732 5733 if (LegalOps && !IsOpLegal) 5734 break; 5735 5736 SmallVector<SDValue, 4> Ops; 5737 for (SDValue C : Op->op_values()) { 5738 if (C.isUndef()) { 5739 Ops.push_back(C); 5740 continue; 5741 } 5742 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5743 V.changeSign(); 5744 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 5745 } 5746 Cost = NegatibleCost::Neutral; 5747 return DAG.getBuildVector(VT, DL, Ops); 5748 } 5749 case ISD::FADD: { 5750 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5751 break; 5752 5753 // After operation legalization, it might not be legal to create new FSUBs. 5754 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5755 break; 5756 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5757 5758 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 5759 NegatibleCost CostX = NegatibleCost::Expensive; 5760 SDValue NegX = 5761 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5762 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 5763 NegatibleCost CostY = NegatibleCost::Expensive; 5764 SDValue NegY = 5765 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5766 5767 // Negate the X if its cost is less or equal than Y. 5768 if (NegX && (CostX <= CostY)) { 5769 Cost = CostX; 5770 return DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 5771 } 5772 5773 // Negate the Y if it is not expensive. 5774 if (NegY) { 5775 Cost = CostY; 5776 return DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 5777 } 5778 break; 5779 } 5780 case ISD::FSUB: { 5781 // We can't turn -(A-B) into B-A when we honor signed zeros. 5782 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5783 break; 5784 5785 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5786 // fold (fneg (fsub 0, Y)) -> Y 5787 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 5788 if (C->isZero()) { 5789 Cost = NegatibleCost::Cheaper; 5790 return Y; 5791 } 5792 5793 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 5794 Cost = NegatibleCost::Neutral; 5795 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 5796 } 5797 case ISD::FMUL: 5798 case ISD::FDIV: { 5799 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5800 5801 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5802 NegatibleCost CostX = NegatibleCost::Expensive; 5803 SDValue NegX = 5804 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5805 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5806 NegatibleCost CostY = NegatibleCost::Expensive; 5807 SDValue NegY = 5808 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5809 5810 // Negate the X if its cost is less or equal than Y. 5811 if (NegX && (CostX <= CostY)) { 5812 Cost = CostX; 5813 return DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 5814 } 5815 5816 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5817 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5818 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5819 break; 5820 5821 // Negate the Y if it is not expensive. 5822 if (NegY) { 5823 Cost = CostY; 5824 return DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 5825 } 5826 break; 5827 } 5828 case ISD::FMA: 5829 case ISD::FMAD: { 5830 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5831 break; 5832 5833 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 5834 NegatibleCost CostZ = NegatibleCost::Expensive; 5835 SDValue NegZ = 5836 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 5837 // Give up if fail to negate the Z. 5838 if (!NegZ) 5839 break; 5840 5841 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5842 NegatibleCost CostX = NegatibleCost::Expensive; 5843 SDValue NegX = 5844 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5845 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5846 NegatibleCost CostY = NegatibleCost::Expensive; 5847 SDValue NegY = 5848 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5849 5850 // Negate the X if its cost is less or equal than Y. 5851 if (NegX && (CostX <= CostY)) { 5852 Cost = std::min(CostX, CostZ); 5853 return DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 5854 } 5855 5856 // Negate the Y if it is not expensive. 5857 if (NegY) { 5858 Cost = std::min(CostY, CostZ); 5859 return DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 5860 } 5861 break; 5862 } 5863 5864 case ISD::FP_EXTEND: 5865 case ISD::FSIN: 5866 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 5867 OptForSize, Cost, Depth)) 5868 return DAG.getNode(Opcode, DL, VT, NegV); 5869 break; 5870 case ISD::FP_ROUND: 5871 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 5872 OptForSize, Cost, Depth)) 5873 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 5874 break; 5875 } 5876 5877 return SDValue(); 5878 } 5879 5880 //===----------------------------------------------------------------------===// 5881 // Legalization Utilities 5882 //===----------------------------------------------------------------------===// 5883 5884 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5885 SDValue LHS, SDValue RHS, 5886 SmallVectorImpl<SDValue> &Result, 5887 EVT HiLoVT, SelectionDAG &DAG, 5888 MulExpansionKind Kind, SDValue LL, 5889 SDValue LH, SDValue RL, SDValue RH) const { 5890 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5891 Opcode == ISD::SMUL_LOHI); 5892 5893 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5894 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5895 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5896 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5897 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5898 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5899 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5900 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5901 5902 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5903 return false; 5904 5905 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5906 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5907 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5908 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5909 5910 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5911 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5912 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5913 5914 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5915 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5916 bool Signed) -> bool { 5917 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5918 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5919 Hi = SDValue(Lo.getNode(), 1); 5920 return true; 5921 } 5922 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5923 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5924 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5925 return true; 5926 } 5927 return false; 5928 }; 5929 5930 SDValue Lo, Hi; 5931 5932 if (!LL.getNode() && !RL.getNode() && 5933 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5934 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5935 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5936 } 5937 5938 if (!LL.getNode()) 5939 return false; 5940 5941 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5942 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5943 DAG.MaskedValueIsZero(RHS, HighMask)) { 5944 // The inputs are both zero-extended. 5945 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5946 Result.push_back(Lo); 5947 Result.push_back(Hi); 5948 if (Opcode != ISD::MUL) { 5949 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5950 Result.push_back(Zero); 5951 Result.push_back(Zero); 5952 } 5953 return true; 5954 } 5955 } 5956 5957 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5958 RHSSB > InnerBitSize) { 5959 // The input values are both sign-extended. 5960 // TODO non-MUL case? 5961 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5962 Result.push_back(Lo); 5963 Result.push_back(Hi); 5964 return true; 5965 } 5966 } 5967 5968 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5969 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5970 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5971 // FIXME getShiftAmountTy does not always return a sensible result when VT 5972 // is an illegal type, and so the type may be too small to fit the shift 5973 // amount. Override it with i32. The shift will have to be legalized. 5974 ShiftAmountTy = MVT::i32; 5975 } 5976 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5977 5978 if (!LH.getNode() && !RH.getNode() && 5979 isOperationLegalOrCustom(ISD::SRL, VT) && 5980 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5981 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5982 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5983 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5984 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5985 } 5986 5987 if (!LH.getNode()) 5988 return false; 5989 5990 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5991 return false; 5992 5993 Result.push_back(Lo); 5994 5995 if (Opcode == ISD::MUL) { 5996 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5997 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5998 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5999 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6000 Result.push_back(Hi); 6001 return true; 6002 } 6003 6004 // Compute the full width result. 6005 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6006 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6007 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6008 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6009 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6010 }; 6011 6012 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6013 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6014 return false; 6015 6016 // This is effectively the add part of a multiply-add of half-sized operands, 6017 // so it cannot overflow. 6018 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6019 6020 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6021 return false; 6022 6023 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6024 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6025 6026 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6027 isOperationLegalOrCustom(ISD::ADDE, VT)); 6028 if (UseGlue) 6029 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6030 Merge(Lo, Hi)); 6031 else 6032 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6033 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6034 6035 SDValue Carry = Next.getValue(1); 6036 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6037 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6038 6039 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6040 return false; 6041 6042 if (UseGlue) 6043 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6044 Carry); 6045 else 6046 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6047 Zero, Carry); 6048 6049 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6050 6051 if (Opcode == ISD::SMUL_LOHI) { 6052 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6053 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6054 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6055 6056 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6057 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6058 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6059 } 6060 6061 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6062 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6063 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6064 return true; 6065 } 6066 6067 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6068 SelectionDAG &DAG, MulExpansionKind Kind, 6069 SDValue LL, SDValue LH, SDValue RL, 6070 SDValue RH) const { 6071 SmallVector<SDValue, 2> Result; 6072 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 6073 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6074 DAG, Kind, LL, LH, RL, RH); 6075 if (Ok) { 6076 assert(Result.size() == 2); 6077 Lo = Result[0]; 6078 Hi = Result[1]; 6079 } 6080 return Ok; 6081 } 6082 6083 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6084 SelectionDAG &DAG) const { 6085 EVT VT = Node->getValueType(0); 6086 6087 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6088 !isOperationLegalOrCustom(ISD::SRL, VT) || 6089 !isOperationLegalOrCustom(ISD::SUB, VT) || 6090 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6091 return false; 6092 6093 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6094 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6095 SDValue X = Node->getOperand(0); 6096 SDValue Y = Node->getOperand(1); 6097 SDValue Z = Node->getOperand(2); 6098 6099 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6100 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6101 SDLoc DL(SDValue(Node, 0)); 6102 6103 EVT ShVT = Z.getValueType(); 6104 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6105 SDValue ShAmt, InvShAmt; 6106 if (isPowerOf2_32(EltSizeInBits)) { 6107 // Z % BW -> Z & (BW - 1) 6108 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6109 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6110 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6111 } else { 6112 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6113 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6114 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6115 } 6116 6117 SDValue One = DAG.getConstant(1, DL, ShVT); 6118 SDValue ShX, ShY; 6119 if (IsFSHL) { 6120 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6121 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6122 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6123 } else { 6124 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6125 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6126 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6127 } 6128 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6129 return true; 6130 } 6131 6132 // TODO: Merge with expandFunnelShift. 6133 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 6134 SelectionDAG &DAG) const { 6135 EVT VT = Node->getValueType(0); 6136 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6137 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6138 SDValue Op0 = Node->getOperand(0); 6139 SDValue Op1 = Node->getOperand(1); 6140 SDLoc DL(SDValue(Node, 0)); 6141 6142 EVT ShVT = Op1.getValueType(); 6143 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6144 6145 // If a rotate in the other direction is legal, use it. 6146 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6147 if (isOperationLegal(RevRot, VT)) { 6148 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6149 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6150 return true; 6151 } 6152 6153 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6154 !isOperationLegalOrCustom(ISD::SRL, VT) || 6155 !isOperationLegalOrCustom(ISD::SUB, VT) || 6156 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6157 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6158 return false; 6159 6160 // Otherwise, 6161 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 6162 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 6163 // 6164 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 6165 "Expecting the type bitwidth to be a power of 2"); 6166 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6167 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6168 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6169 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6170 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6171 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6172 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 6173 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 6174 return true; 6175 } 6176 6177 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6178 SelectionDAG &DAG) const { 6179 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6180 SDValue Src = Node->getOperand(OpNo); 6181 EVT SrcVT = Src.getValueType(); 6182 EVT DstVT = Node->getValueType(0); 6183 SDLoc dl(SDValue(Node, 0)); 6184 6185 // FIXME: Only f32 to i64 conversions are supported. 6186 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6187 return false; 6188 6189 if (Node->isStrictFPOpcode()) 6190 // When a NaN is converted to an integer a trap is allowed. We can't 6191 // use this expansion here because it would eliminate that trap. Other 6192 // traps are also allowed and cannot be eliminated. See 6193 // IEEE 754-2008 sec 5.8. 6194 return false; 6195 6196 // Expand f32 -> i64 conversion 6197 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6198 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6199 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6200 EVT IntVT = SrcVT.changeTypeToInteger(); 6201 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6202 6203 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6204 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6205 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6206 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6207 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6208 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6209 6210 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6211 6212 SDValue ExponentBits = DAG.getNode( 6213 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6214 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6215 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6216 6217 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6218 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6219 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6220 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6221 6222 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6223 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6224 DAG.getConstant(0x00800000, dl, IntVT)); 6225 6226 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6227 6228 R = DAG.getSelectCC( 6229 dl, Exponent, ExponentLoBit, 6230 DAG.getNode(ISD::SHL, dl, DstVT, R, 6231 DAG.getZExtOrTrunc( 6232 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6233 dl, IntShVT)), 6234 DAG.getNode(ISD::SRL, dl, DstVT, R, 6235 DAG.getZExtOrTrunc( 6236 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6237 dl, IntShVT)), 6238 ISD::SETGT); 6239 6240 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6241 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6242 6243 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6244 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6245 return true; 6246 } 6247 6248 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6249 SDValue &Chain, 6250 SelectionDAG &DAG) const { 6251 SDLoc dl(SDValue(Node, 0)); 6252 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6253 SDValue Src = Node->getOperand(OpNo); 6254 6255 EVT SrcVT = Src.getValueType(); 6256 EVT DstVT = Node->getValueType(0); 6257 EVT SetCCVT = 6258 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6259 EVT DstSetCCVT = 6260 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6261 6262 // Only expand vector types if we have the appropriate vector bit operations. 6263 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6264 ISD::FP_TO_SINT; 6265 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6266 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6267 return false; 6268 6269 // If the maximum float value is smaller then the signed integer range, 6270 // the destination signmask can't be represented by the float, so we can 6271 // just use FP_TO_SINT directly. 6272 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6273 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6274 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6275 if (APFloat::opOverflow & 6276 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6277 if (Node->isStrictFPOpcode()) { 6278 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6279 { Node->getOperand(0), Src }); 6280 Chain = Result.getValue(1); 6281 } else 6282 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6283 return true; 6284 } 6285 6286 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6287 SDValue Sel; 6288 6289 if (Node->isStrictFPOpcode()) { 6290 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6291 Node->getOperand(0), /*IsSignaling*/ true); 6292 Chain = Sel.getValue(1); 6293 } else { 6294 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6295 } 6296 6297 bool Strict = Node->isStrictFPOpcode() || 6298 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6299 6300 if (Strict) { 6301 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6302 // signmask then offset (the result of which should be fully representable). 6303 // Sel = Src < 0x8000000000000000 6304 // FltOfs = select Sel, 0, 0x8000000000000000 6305 // IntOfs = select Sel, 0, 0x8000000000000000 6306 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6307 6308 // TODO: Should any fast-math-flags be set for the FSUB? 6309 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6310 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6311 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6312 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6313 DAG.getConstant(0, dl, DstVT), 6314 DAG.getConstant(SignMask, dl, DstVT)); 6315 SDValue SInt; 6316 if (Node->isStrictFPOpcode()) { 6317 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6318 { Chain, Src, FltOfs }); 6319 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6320 { Val.getValue(1), Val }); 6321 Chain = SInt.getValue(1); 6322 } else { 6323 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6324 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6325 } 6326 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6327 } else { 6328 // Expand based on maximum range of FP_TO_SINT: 6329 // True = fp_to_sint(Src) 6330 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6331 // Result = select (Src < 0x8000000000000000), True, False 6332 6333 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6334 // TODO: Should any fast-math-flags be set for the FSUB? 6335 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6336 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6337 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6338 DAG.getConstant(SignMask, dl, DstVT)); 6339 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6340 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6341 } 6342 return true; 6343 } 6344 6345 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6346 SDValue &Chain, 6347 SelectionDAG &DAG) const { 6348 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6349 SDValue Src = Node->getOperand(OpNo); 6350 EVT SrcVT = Src.getValueType(); 6351 EVT DstVT = Node->getValueType(0); 6352 6353 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6354 return false; 6355 6356 // Only expand vector types if we have the appropriate vector bit operations. 6357 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6358 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6359 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6360 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6361 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6362 return false; 6363 6364 SDLoc dl(SDValue(Node, 0)); 6365 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6366 6367 // Implementation of unsigned i64 to f64 following the algorithm in 6368 // __floatundidf in compiler_rt. This implementation has the advantage 6369 // of performing rounding correctly, both in the default rounding mode 6370 // and in all alternate rounding modes. 6371 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6372 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6373 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6374 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6375 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6376 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6377 6378 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6379 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6380 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6381 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6382 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6383 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6384 if (Node->isStrictFPOpcode()) { 6385 SDValue HiSub = 6386 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6387 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6388 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6389 {HiSub.getValue(1), LoFlt, HiSub}); 6390 Chain = Result.getValue(1); 6391 } else { 6392 SDValue HiSub = 6393 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6394 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6395 } 6396 return true; 6397 } 6398 6399 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6400 SelectionDAG &DAG) const { 6401 SDLoc dl(Node); 6402 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6403 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6404 EVT VT = Node->getValueType(0); 6405 if (isOperationLegalOrCustom(NewOp, VT)) { 6406 SDValue Quiet0 = Node->getOperand(0); 6407 SDValue Quiet1 = Node->getOperand(1); 6408 6409 if (!Node->getFlags().hasNoNaNs()) { 6410 // Insert canonicalizes if it's possible we need to quiet to get correct 6411 // sNaN behavior. 6412 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6413 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6414 Node->getFlags()); 6415 } 6416 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6417 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6418 Node->getFlags()); 6419 } 6420 } 6421 6422 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6423 } 6424 6425 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6426 // instead if there are no NaNs. 6427 if (Node->getFlags().hasNoNaNs()) { 6428 unsigned IEEE2018Op = 6429 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6430 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6431 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6432 Node->getOperand(1), Node->getFlags()); 6433 } 6434 } 6435 6436 // If none of the above worked, but there are no NaNs, then expand to 6437 // a compare/select sequence. This is required for correctness since 6438 // InstCombine might have canonicalized a fcmp+select sequence to a 6439 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6440 // expansion to libcall, we might introduce a link-time dependency 6441 // on libm into a file that originally did not have one. 6442 if (Node->getFlags().hasNoNaNs()) { 6443 ISD::CondCode Pred = 6444 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6445 SDValue Op1 = Node->getOperand(0); 6446 SDValue Op2 = Node->getOperand(1); 6447 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6448 // Copy FMF flags, but always set the no-signed-zeros flag 6449 // as this is implied by the FMINNUM/FMAXNUM semantics. 6450 SDNodeFlags Flags = Node->getFlags(); 6451 Flags.setNoSignedZeros(true); 6452 SelCC->setFlags(Flags); 6453 return SelCC; 6454 } 6455 6456 return SDValue(); 6457 } 6458 6459 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6460 SelectionDAG &DAG) const { 6461 SDLoc dl(Node); 6462 EVT VT = Node->getValueType(0); 6463 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6464 SDValue Op = Node->getOperand(0); 6465 unsigned Len = VT.getScalarSizeInBits(); 6466 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6467 6468 // TODO: Add support for irregular type lengths. 6469 if (!(Len <= 128 && Len % 8 == 0)) 6470 return false; 6471 6472 // Only expand vector types if we have the appropriate vector bit operations. 6473 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6474 !isOperationLegalOrCustom(ISD::SUB, VT) || 6475 !isOperationLegalOrCustom(ISD::SRL, VT) || 6476 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6477 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6478 return false; 6479 6480 // This is the "best" algorithm from 6481 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6482 SDValue Mask55 = 6483 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6484 SDValue Mask33 = 6485 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6486 SDValue Mask0F = 6487 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6488 SDValue Mask01 = 6489 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6490 6491 // v = v - ((v >> 1) & 0x55555555...) 6492 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6493 DAG.getNode(ISD::AND, dl, VT, 6494 DAG.getNode(ISD::SRL, dl, VT, Op, 6495 DAG.getConstant(1, dl, ShVT)), 6496 Mask55)); 6497 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6498 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6499 DAG.getNode(ISD::AND, dl, VT, 6500 DAG.getNode(ISD::SRL, dl, VT, Op, 6501 DAG.getConstant(2, dl, ShVT)), 6502 Mask33)); 6503 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6504 Op = DAG.getNode(ISD::AND, dl, VT, 6505 DAG.getNode(ISD::ADD, dl, VT, Op, 6506 DAG.getNode(ISD::SRL, dl, VT, Op, 6507 DAG.getConstant(4, dl, ShVT))), 6508 Mask0F); 6509 // v = (v * 0x01010101...) >> (Len - 8) 6510 if (Len > 8) 6511 Op = 6512 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6513 DAG.getConstant(Len - 8, dl, ShVT)); 6514 6515 Result = Op; 6516 return true; 6517 } 6518 6519 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6520 SelectionDAG &DAG) const { 6521 SDLoc dl(Node); 6522 EVT VT = Node->getValueType(0); 6523 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6524 SDValue Op = Node->getOperand(0); 6525 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6526 6527 // If the non-ZERO_UNDEF version is supported we can use that instead. 6528 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6529 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6530 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6531 return true; 6532 } 6533 6534 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6535 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6536 EVT SetCCVT = 6537 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6538 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6539 SDValue Zero = DAG.getConstant(0, dl, VT); 6540 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6541 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6542 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6543 return true; 6544 } 6545 6546 // Only expand vector types if we have the appropriate vector bit operations. 6547 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6548 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6549 !isOperationLegalOrCustom(ISD::SRL, VT) || 6550 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6551 return false; 6552 6553 // for now, we do this: 6554 // x = x | (x >> 1); 6555 // x = x | (x >> 2); 6556 // ... 6557 // x = x | (x >>16); 6558 // x = x | (x >>32); // for 64-bit input 6559 // return popcount(~x); 6560 // 6561 // Ref: "Hacker's Delight" by Henry Warren 6562 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6563 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6564 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6565 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6566 } 6567 Op = DAG.getNOT(dl, Op, VT); 6568 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6569 return true; 6570 } 6571 6572 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6573 SelectionDAG &DAG) const { 6574 SDLoc dl(Node); 6575 EVT VT = Node->getValueType(0); 6576 SDValue Op = Node->getOperand(0); 6577 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6578 6579 // If the non-ZERO_UNDEF version is supported we can use that instead. 6580 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6581 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6582 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6583 return true; 6584 } 6585 6586 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6587 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6588 EVT SetCCVT = 6589 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6590 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6591 SDValue Zero = DAG.getConstant(0, dl, VT); 6592 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6593 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6594 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6595 return true; 6596 } 6597 6598 // Only expand vector types if we have the appropriate vector bit operations. 6599 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6600 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6601 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6602 !isOperationLegalOrCustom(ISD::SUB, VT) || 6603 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6604 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6605 return false; 6606 6607 // for now, we use: { return popcount(~x & (x - 1)); } 6608 // unless the target has ctlz but not ctpop, in which case we use: 6609 // { return 32 - nlz(~x & (x-1)); } 6610 // Ref: "Hacker's Delight" by Henry Warren 6611 SDValue Tmp = DAG.getNode( 6612 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6613 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6614 6615 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6616 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6617 Result = 6618 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6619 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6620 return true; 6621 } 6622 6623 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6624 return true; 6625 } 6626 6627 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6628 SelectionDAG &DAG) const { 6629 SDLoc dl(N); 6630 EVT VT = N->getValueType(0); 6631 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6632 SDValue Op = N->getOperand(0); 6633 6634 // Only expand vector types if we have the appropriate vector operations. 6635 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6636 !isOperationLegalOrCustom(ISD::ADD, VT) || 6637 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6638 return false; 6639 6640 SDValue Shift = 6641 DAG.getNode(ISD::SRA, dl, VT, Op, 6642 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6643 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6644 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6645 return true; 6646 } 6647 6648 std::pair<SDValue, SDValue> 6649 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6650 SelectionDAG &DAG) const { 6651 SDLoc SL(LD); 6652 SDValue Chain = LD->getChain(); 6653 SDValue BasePTR = LD->getBasePtr(); 6654 EVT SrcVT = LD->getMemoryVT(); 6655 EVT DstVT = LD->getValueType(0); 6656 ISD::LoadExtType ExtType = LD->getExtensionType(); 6657 6658 unsigned NumElem = SrcVT.getVectorNumElements(); 6659 6660 EVT SrcEltVT = SrcVT.getScalarType(); 6661 EVT DstEltVT = DstVT.getScalarType(); 6662 6663 // A vector must always be stored in memory as-is, i.e. without any padding 6664 // between the elements, since various code depend on it, e.g. in the 6665 // handling of a bitcast of a vector type to int, which may be done with a 6666 // vector store followed by an integer load. A vector that does not have 6667 // elements that are byte-sized must therefore be stored as an integer 6668 // built out of the extracted vector elements. 6669 if (!SrcEltVT.isByteSized()) { 6670 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 6671 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 6672 6673 unsigned NumSrcBits = SrcVT.getSizeInBits(); 6674 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 6675 6676 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 6677 SDValue SrcEltBitMask = DAG.getConstant( 6678 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 6679 6680 // Load the whole vector and avoid masking off the top bits as it makes 6681 // the codegen worse. 6682 SDValue Load = 6683 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 6684 LD->getPointerInfo(), SrcIntVT, LD->getAlignment(), 6685 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6686 6687 SmallVector<SDValue, 8> Vals; 6688 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6689 unsigned ShiftIntoIdx = 6690 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6691 SDValue ShiftAmount = 6692 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 6693 LoadVT, SL, /*LegalTypes=*/false); 6694 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 6695 SDValue Elt = 6696 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 6697 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 6698 6699 if (ExtType != ISD::NON_EXTLOAD) { 6700 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 6701 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 6702 } 6703 6704 Vals.push_back(Scalar); 6705 } 6706 6707 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6708 return std::make_pair(Value, Load.getValue(1)); 6709 } 6710 6711 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6712 assert(SrcEltVT.isByteSized()); 6713 6714 SmallVector<SDValue, 8> Vals; 6715 SmallVector<SDValue, 8> LoadChains; 6716 6717 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6718 SDValue ScalarLoad = 6719 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6720 LD->getPointerInfo().getWithOffset(Idx * Stride), 6721 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6722 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6723 6724 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6725 6726 Vals.push_back(ScalarLoad.getValue(0)); 6727 LoadChains.push_back(ScalarLoad.getValue(1)); 6728 } 6729 6730 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6731 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6732 6733 return std::make_pair(Value, NewChain); 6734 } 6735 6736 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6737 SelectionDAG &DAG) const { 6738 SDLoc SL(ST); 6739 6740 SDValue Chain = ST->getChain(); 6741 SDValue BasePtr = ST->getBasePtr(); 6742 SDValue Value = ST->getValue(); 6743 EVT StVT = ST->getMemoryVT(); 6744 6745 // The type of the data we want to save 6746 EVT RegVT = Value.getValueType(); 6747 EVT RegSclVT = RegVT.getScalarType(); 6748 6749 // The type of data as saved in memory. 6750 EVT MemSclVT = StVT.getScalarType(); 6751 6752 unsigned NumElem = StVT.getVectorNumElements(); 6753 6754 // A vector must always be stored in memory as-is, i.e. without any padding 6755 // between the elements, since various code depend on it, e.g. in the 6756 // handling of a bitcast of a vector type to int, which may be done with a 6757 // vector store followed by an integer load. A vector that does not have 6758 // elements that are byte-sized must therefore be stored as an integer 6759 // built out of the extracted vector elements. 6760 if (!MemSclVT.isByteSized()) { 6761 unsigned NumBits = StVT.getSizeInBits(); 6762 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6763 6764 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6765 6766 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6767 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6768 DAG.getVectorIdxConstant(Idx, SL)); 6769 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6770 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6771 unsigned ShiftIntoIdx = 6772 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6773 SDValue ShiftAmount = 6774 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6775 SDValue ShiftedElt = 6776 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6777 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6778 } 6779 6780 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6781 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6782 ST->getAAInfo()); 6783 } 6784 6785 // Store Stride in bytes 6786 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6787 assert(Stride && "Zero stride!"); 6788 // Extract each of the elements from the original vector and save them into 6789 // memory individually. 6790 SmallVector<SDValue, 8> Stores; 6791 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6792 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6793 DAG.getVectorIdxConstant(Idx, SL)); 6794 6795 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6796 6797 // This scalar TruncStore may be illegal, but we legalize it later. 6798 SDValue Store = DAG.getTruncStore( 6799 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6800 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6801 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6802 6803 Stores.push_back(Store); 6804 } 6805 6806 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6807 } 6808 6809 std::pair<SDValue, SDValue> 6810 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6811 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6812 "unaligned indexed loads not implemented!"); 6813 SDValue Chain = LD->getChain(); 6814 SDValue Ptr = LD->getBasePtr(); 6815 EVT VT = LD->getValueType(0); 6816 EVT LoadedVT = LD->getMemoryVT(); 6817 SDLoc dl(LD); 6818 auto &MF = DAG.getMachineFunction(); 6819 6820 if (VT.isFloatingPoint() || VT.isVector()) { 6821 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6822 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6823 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6824 LoadedVT.isVector()) { 6825 // Scalarize the load and let the individual components be handled. 6826 return scalarizeVectorLoad(LD, DAG); 6827 } 6828 6829 // Expand to a (misaligned) integer load of the same size, 6830 // then bitconvert to floating point or vector. 6831 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6832 LD->getMemOperand()); 6833 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6834 if (LoadedVT != VT) 6835 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6836 ISD::ANY_EXTEND, dl, VT, Result); 6837 6838 return std::make_pair(Result, newLoad.getValue(1)); 6839 } 6840 6841 // Copy the value to a (aligned) stack slot using (unaligned) integer 6842 // loads and stores, then do a (aligned) load from the stack slot. 6843 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6844 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6845 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6846 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6847 6848 // Make sure the stack slot is also aligned for the register type. 6849 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6850 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6851 SmallVector<SDValue, 8> Stores; 6852 SDValue StackPtr = StackBase; 6853 unsigned Offset = 0; 6854 6855 EVT PtrVT = Ptr.getValueType(); 6856 EVT StackPtrVT = StackPtr.getValueType(); 6857 6858 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6859 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6860 6861 // Do all but one copies using the full register width. 6862 for (unsigned i = 1; i < NumRegs; i++) { 6863 // Load one integer register's worth from the original location. 6864 SDValue Load = DAG.getLoad( 6865 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6866 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6867 LD->getAAInfo()); 6868 // Follow the load with a store to the stack slot. Remember the store. 6869 Stores.push_back(DAG.getStore( 6870 Load.getValue(1), dl, Load, StackPtr, 6871 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6872 // Increment the pointers. 6873 Offset += RegBytes; 6874 6875 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6876 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6877 } 6878 6879 // The last copy may be partial. Do an extending load. 6880 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6881 8 * (LoadedBytes - Offset)); 6882 SDValue Load = 6883 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6884 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6885 MinAlign(LD->getAlignment(), Offset), 6886 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6887 // Follow the load with a store to the stack slot. Remember the store. 6888 // On big-endian machines this requires a truncating store to ensure 6889 // that the bits end up in the right place. 6890 Stores.push_back(DAG.getTruncStore( 6891 Load.getValue(1), dl, Load, StackPtr, 6892 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6893 6894 // The order of the stores doesn't matter - say it with a TokenFactor. 6895 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6896 6897 // Finally, perform the original load only redirected to the stack slot. 6898 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6899 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6900 LoadedVT); 6901 6902 // Callers expect a MERGE_VALUES node. 6903 return std::make_pair(Load, TF); 6904 } 6905 6906 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6907 "Unaligned load of unsupported type."); 6908 6909 // Compute the new VT that is half the size of the old one. This is an 6910 // integer MVT. 6911 unsigned NumBits = LoadedVT.getSizeInBits(); 6912 EVT NewLoadedVT; 6913 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6914 NumBits >>= 1; 6915 6916 unsigned Alignment = LD->getAlignment(); 6917 unsigned IncrementSize = NumBits / 8; 6918 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6919 6920 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6921 if (HiExtType == ISD::NON_EXTLOAD) 6922 HiExtType = ISD::ZEXTLOAD; 6923 6924 // Load the value in two parts 6925 SDValue Lo, Hi; 6926 if (DAG.getDataLayout().isLittleEndian()) { 6927 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6928 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6929 LD->getAAInfo()); 6930 6931 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6932 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6933 LD->getPointerInfo().getWithOffset(IncrementSize), 6934 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6935 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6936 } else { 6937 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6938 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6939 LD->getAAInfo()); 6940 6941 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6942 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6943 LD->getPointerInfo().getWithOffset(IncrementSize), 6944 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6945 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6946 } 6947 6948 // aggregate the two parts 6949 SDValue ShiftAmount = 6950 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6951 DAG.getDataLayout())); 6952 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6953 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6954 6955 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6956 Hi.getValue(1)); 6957 6958 return std::make_pair(Result, TF); 6959 } 6960 6961 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6962 SelectionDAG &DAG) const { 6963 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6964 "unaligned indexed stores not implemented!"); 6965 SDValue Chain = ST->getChain(); 6966 SDValue Ptr = ST->getBasePtr(); 6967 SDValue Val = ST->getValue(); 6968 EVT VT = Val.getValueType(); 6969 int Alignment = ST->getAlignment(); 6970 auto &MF = DAG.getMachineFunction(); 6971 EVT StoreMemVT = ST->getMemoryVT(); 6972 6973 SDLoc dl(ST); 6974 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6975 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6976 if (isTypeLegal(intVT)) { 6977 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6978 StoreMemVT.isVector()) { 6979 // Scalarize the store and let the individual components be handled. 6980 SDValue Result = scalarizeVectorStore(ST, DAG); 6981 return Result; 6982 } 6983 // Expand to a bitconvert of the value to the integer type of the 6984 // same size, then a (misaligned) int store. 6985 // FIXME: Does not handle truncating floating point stores! 6986 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6987 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6988 Alignment, ST->getMemOperand()->getFlags()); 6989 return Result; 6990 } 6991 // Do a (aligned) store to a stack slot, then copy from the stack slot 6992 // to the final destination using (unaligned) integer loads and stores. 6993 MVT RegVT = getRegisterType( 6994 *DAG.getContext(), 6995 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6996 EVT PtrVT = Ptr.getValueType(); 6997 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6998 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6999 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7000 7001 // Make sure the stack slot is also aligned for the register type. 7002 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7003 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7004 7005 // Perform the original store, only redirected to the stack slot. 7006 SDValue Store = DAG.getTruncStore( 7007 Chain, dl, Val, StackPtr, 7008 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7009 7010 EVT StackPtrVT = StackPtr.getValueType(); 7011 7012 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7013 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7014 SmallVector<SDValue, 8> Stores; 7015 unsigned Offset = 0; 7016 7017 // Do all but one copies using the full register width. 7018 for (unsigned i = 1; i < NumRegs; i++) { 7019 // Load one integer register's worth from the stack slot. 7020 SDValue Load = DAG.getLoad( 7021 RegVT, dl, Store, StackPtr, 7022 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7023 // Store it to the final location. Remember the store. 7024 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7025 ST->getPointerInfo().getWithOffset(Offset), 7026 MinAlign(ST->getAlignment(), Offset), 7027 ST->getMemOperand()->getFlags())); 7028 // Increment the pointers. 7029 Offset += RegBytes; 7030 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7031 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7032 } 7033 7034 // The last store may be partial. Do a truncating store. On big-endian 7035 // machines this requires an extending load from the stack slot to ensure 7036 // that the bits are in the right place. 7037 EVT LoadMemVT = 7038 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7039 7040 // Load from the stack slot. 7041 SDValue Load = DAG.getExtLoad( 7042 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7043 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7044 7045 Stores.push_back( 7046 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7047 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7048 MinAlign(ST->getAlignment(), Offset), 7049 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7050 // The order of the stores doesn't matter - say it with a TokenFactor. 7051 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7052 return Result; 7053 } 7054 7055 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7056 "Unaligned store of unknown type."); 7057 // Get the half-size VT 7058 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7059 int NumBits = NewStoredVT.getSizeInBits(); 7060 int IncrementSize = NumBits / 8; 7061 7062 // Divide the stored value in two parts. 7063 SDValue ShiftAmount = DAG.getConstant( 7064 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7065 SDValue Lo = Val; 7066 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7067 7068 // Store the two parts 7069 SDValue Store1, Store2; 7070 Store1 = DAG.getTruncStore(Chain, dl, 7071 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7072 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7073 ST->getMemOperand()->getFlags()); 7074 7075 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 7076 Alignment = MinAlign(Alignment, IncrementSize); 7077 Store2 = DAG.getTruncStore( 7078 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7079 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7080 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7081 7082 SDValue Result = 7083 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7084 return Result; 7085 } 7086 7087 SDValue 7088 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7089 const SDLoc &DL, EVT DataVT, 7090 SelectionDAG &DAG, 7091 bool IsCompressedMemory) const { 7092 SDValue Increment; 7093 EVT AddrVT = Addr.getValueType(); 7094 EVT MaskVT = Mask.getValueType(); 7095 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 7096 "Incompatible types of Data and Mask"); 7097 if (IsCompressedMemory) { 7098 // Incrementing the pointer according to number of '1's in the mask. 7099 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7100 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7101 if (MaskIntVT.getSizeInBits() < 32) { 7102 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7103 MaskIntVT = MVT::i32; 7104 } 7105 7106 // Count '1's with POPCNT. 7107 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7108 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7109 // Scale is an element size in bytes. 7110 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7111 AddrVT); 7112 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7113 } else 7114 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7115 7116 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7117 } 7118 7119 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7120 SDValue Idx, 7121 EVT VecVT, 7122 const SDLoc &dl) { 7123 if (isa<ConstantSDNode>(Idx)) 7124 return Idx; 7125 7126 EVT IdxVT = Idx.getValueType(); 7127 unsigned NElts = VecVT.getVectorNumElements(); 7128 if (isPowerOf2_32(NElts)) { 7129 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7130 Log2_32(NElts)); 7131 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7132 DAG.getConstant(Imm, dl, IdxVT)); 7133 } 7134 7135 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7136 DAG.getConstant(NElts - 1, dl, IdxVT)); 7137 } 7138 7139 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7140 SDValue VecPtr, EVT VecVT, 7141 SDValue Index) const { 7142 SDLoc dl(Index); 7143 // Make sure the index type is big enough to compute in. 7144 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7145 7146 EVT EltVT = VecVT.getVectorElementType(); 7147 7148 // Calculate the element offset and add it to the pointer. 7149 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 7150 assert(EltSize * 8 == EltVT.getSizeInBits() && 7151 "Converting bits to bytes lost precision"); 7152 7153 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7154 7155 EVT IdxVT = Index.getValueType(); 7156 7157 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7158 DAG.getConstant(EltSize, dl, IdxVT)); 7159 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7160 } 7161 7162 //===----------------------------------------------------------------------===// 7163 // Implementation of Emulated TLS Model 7164 //===----------------------------------------------------------------------===// 7165 7166 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7167 SelectionDAG &DAG) const { 7168 // Access to address of TLS varialbe xyz is lowered to a function call: 7169 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7170 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7171 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7172 SDLoc dl(GA); 7173 7174 ArgListTy Args; 7175 ArgListEntry Entry; 7176 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7177 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7178 StringRef EmuTlsVarName(NameString); 7179 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7180 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7181 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7182 Entry.Ty = VoidPtrType; 7183 Args.push_back(Entry); 7184 7185 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7186 7187 TargetLowering::CallLoweringInfo CLI(DAG); 7188 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7189 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7190 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7191 7192 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7193 // At last for X86 targets, maybe good for other targets too? 7194 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7195 MFI.setAdjustsStack(true); // Is this only for X86 target? 7196 MFI.setHasCalls(true); 7197 7198 assert((GA->getOffset() == 0) && 7199 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7200 return CallResult.first; 7201 } 7202 7203 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7204 SelectionDAG &DAG) const { 7205 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7206 if (!isCtlzFast()) 7207 return SDValue(); 7208 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7209 SDLoc dl(Op); 7210 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7211 if (C->isNullValue() && CC == ISD::SETEQ) { 7212 EVT VT = Op.getOperand(0).getValueType(); 7213 SDValue Zext = Op.getOperand(0); 7214 if (VT.bitsLT(MVT::i32)) { 7215 VT = MVT::i32; 7216 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7217 } 7218 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7219 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7220 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7221 DAG.getConstant(Log2b, dl, MVT::i32)); 7222 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7223 } 7224 } 7225 return SDValue(); 7226 } 7227 7228 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7229 unsigned Opcode = Node->getOpcode(); 7230 SDValue LHS = Node->getOperand(0); 7231 SDValue RHS = Node->getOperand(1); 7232 EVT VT = LHS.getValueType(); 7233 SDLoc dl(Node); 7234 7235 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7236 assert(VT.isInteger() && "Expected operands to be integers"); 7237 7238 // usub.sat(a, b) -> umax(a, b) - b 7239 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7240 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7241 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7242 } 7243 7244 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7245 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7246 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7247 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7248 } 7249 7250 unsigned OverflowOp; 7251 switch (Opcode) { 7252 case ISD::SADDSAT: 7253 OverflowOp = ISD::SADDO; 7254 break; 7255 case ISD::UADDSAT: 7256 OverflowOp = ISD::UADDO; 7257 break; 7258 case ISD::SSUBSAT: 7259 OverflowOp = ISD::SSUBO; 7260 break; 7261 case ISD::USUBSAT: 7262 OverflowOp = ISD::USUBO; 7263 break; 7264 default: 7265 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7266 "addition or subtraction node."); 7267 } 7268 7269 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7270 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7271 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7272 LHS, RHS); 7273 SDValue SumDiff = Result.getValue(0); 7274 SDValue Overflow = Result.getValue(1); 7275 SDValue Zero = DAG.getConstant(0, dl, VT); 7276 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7277 7278 if (Opcode == ISD::UADDSAT) { 7279 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7280 // (LHS + RHS) | OverflowMask 7281 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7282 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7283 } 7284 // Overflow ? 0xffff.... : (LHS + RHS) 7285 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7286 } else if (Opcode == ISD::USUBSAT) { 7287 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7288 // (LHS - RHS) & ~OverflowMask 7289 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7290 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7291 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7292 } 7293 // Overflow ? 0 : (LHS - RHS) 7294 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7295 } else { 7296 // SatMax -> Overflow && SumDiff < 0 7297 // SatMin -> Overflow && SumDiff >= 0 7298 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7299 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7300 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7301 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7302 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7303 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7304 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7305 } 7306 } 7307 7308 SDValue 7309 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7310 assert((Node->getOpcode() == ISD::SMULFIX || 7311 Node->getOpcode() == ISD::UMULFIX || 7312 Node->getOpcode() == ISD::SMULFIXSAT || 7313 Node->getOpcode() == ISD::UMULFIXSAT) && 7314 "Expected a fixed point multiplication opcode"); 7315 7316 SDLoc dl(Node); 7317 SDValue LHS = Node->getOperand(0); 7318 SDValue RHS = Node->getOperand(1); 7319 EVT VT = LHS.getValueType(); 7320 unsigned Scale = Node->getConstantOperandVal(2); 7321 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7322 Node->getOpcode() == ISD::UMULFIXSAT); 7323 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7324 Node->getOpcode() == ISD::SMULFIXSAT); 7325 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7326 unsigned VTSize = VT.getScalarSizeInBits(); 7327 7328 if (!Scale) { 7329 // [us]mul.fix(a, b, 0) -> mul(a, b) 7330 if (!Saturating) { 7331 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7332 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7333 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7334 SDValue Result = 7335 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7336 SDValue Product = Result.getValue(0); 7337 SDValue Overflow = Result.getValue(1); 7338 SDValue Zero = DAG.getConstant(0, dl, VT); 7339 7340 APInt MinVal = APInt::getSignedMinValue(VTSize); 7341 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7342 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7343 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7344 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7345 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7346 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7347 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7348 SDValue Result = 7349 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7350 SDValue Product = Result.getValue(0); 7351 SDValue Overflow = Result.getValue(1); 7352 7353 APInt MaxVal = APInt::getMaxValue(VTSize); 7354 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7355 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7356 } 7357 } 7358 7359 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7360 "Expected scale to be less than the number of bits if signed or at " 7361 "most the number of bits if unsigned."); 7362 assert(LHS.getValueType() == RHS.getValueType() && 7363 "Expected both operands to be the same type"); 7364 7365 // Get the upper and lower bits of the result. 7366 SDValue Lo, Hi; 7367 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7368 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7369 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7370 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7371 Lo = Result.getValue(0); 7372 Hi = Result.getValue(1); 7373 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7374 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7375 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7376 } else if (VT.isVector()) { 7377 return SDValue(); 7378 } else { 7379 report_fatal_error("Unable to expand fixed point multiplication."); 7380 } 7381 7382 if (Scale == VTSize) 7383 // Result is just the top half since we'd be shifting by the width of the 7384 // operand. Overflow impossible so this works for both UMULFIX and 7385 // UMULFIXSAT. 7386 return Hi; 7387 7388 // The result will need to be shifted right by the scale since both operands 7389 // are scaled. The result is given to us in 2 halves, so we only want part of 7390 // both in the result. 7391 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7392 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7393 DAG.getConstant(Scale, dl, ShiftTy)); 7394 if (!Saturating) 7395 return Result; 7396 7397 if (!Signed) { 7398 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7399 // widened multiplication) aren't all zeroes. 7400 7401 // Saturate to max if ((Hi >> Scale) != 0), 7402 // which is the same as if (Hi > ((1 << Scale) - 1)) 7403 APInt MaxVal = APInt::getMaxValue(VTSize); 7404 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7405 dl, VT); 7406 Result = DAG.getSelectCC(dl, Hi, LowMask, 7407 DAG.getConstant(MaxVal, dl, VT), Result, 7408 ISD::SETUGT); 7409 7410 return Result; 7411 } 7412 7413 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7414 // widened multiplication) aren't all ones or all zeroes. 7415 7416 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7417 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7418 7419 if (Scale == 0) { 7420 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7421 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7422 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7423 // Saturated to SatMin if wide product is negative, and SatMax if wide 7424 // product is positive ... 7425 SDValue Zero = DAG.getConstant(0, dl, VT); 7426 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7427 ISD::SETLT); 7428 // ... but only if we overflowed. 7429 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7430 } 7431 7432 // We handled Scale==0 above so all the bits to examine is in Hi. 7433 7434 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7435 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7436 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7437 dl, VT); 7438 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7439 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7440 // which is the same as if (HI < (-1 << (Scale - 1)) 7441 SDValue HighMask = 7442 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7443 dl, VT); 7444 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7445 return Result; 7446 } 7447 7448 SDValue 7449 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7450 SDValue LHS, SDValue RHS, 7451 unsigned Scale, SelectionDAG &DAG) const { 7452 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 7453 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 7454 "Expected a fixed point division opcode"); 7455 7456 EVT VT = LHS.getValueType(); 7457 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 7458 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 7459 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7460 7461 // If there is enough room in the type to upscale the LHS or downscale the 7462 // RHS before the division, we can perform it in this type without having to 7463 // resize. For signed operations, the LHS headroom is the number of 7464 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7465 // The headroom for the RHS is the number of trailing zeroes. 7466 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7467 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7468 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7469 7470 // For signed saturating operations, we need to be able to detect true integer 7471 // division overflow; that is, when you have MIN / -EPS. However, this 7472 // is undefined behavior and if we emit divisions that could take such 7473 // values it may cause undesired behavior (arithmetic exceptions on x86, for 7474 // example). 7475 // Avoid this by requiring an extra bit so that we never get this case. 7476 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 7477 // signed saturating division, we need to emit a whopping 32-bit division. 7478 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 7479 return SDValue(); 7480 7481 unsigned LHSShift = std::min(LHSLead, Scale); 7482 unsigned RHSShift = Scale - LHSShift; 7483 7484 // At this point, we know that if we shift the LHS up by LHSShift and the 7485 // RHS down by RHSShift, we can emit a regular division with a final scaling 7486 // factor of Scale. 7487 7488 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7489 if (LHSShift) 7490 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7491 DAG.getConstant(LHSShift, dl, ShiftTy)); 7492 if (RHSShift) 7493 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7494 DAG.getConstant(RHSShift, dl, ShiftTy)); 7495 7496 SDValue Quot; 7497 if (Signed) { 7498 // For signed operations, if the resulting quotient is negative and the 7499 // remainder is nonzero, subtract 1 from the quotient to round towards 7500 // negative infinity. 7501 SDValue Rem; 7502 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7503 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7504 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7505 if (isTypeLegal(VT) && 7506 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7507 Quot = DAG.getNode(ISD::SDIVREM, dl, 7508 DAG.getVTList(VT, VT), 7509 LHS, RHS); 7510 Rem = Quot.getValue(1); 7511 Quot = Quot.getValue(0); 7512 } else { 7513 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7514 LHS, RHS); 7515 Rem = DAG.getNode(ISD::SREM, dl, VT, 7516 LHS, RHS); 7517 } 7518 SDValue Zero = DAG.getConstant(0, dl, VT); 7519 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7520 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7521 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7522 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7523 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7524 DAG.getConstant(1, dl, VT)); 7525 Quot = DAG.getSelect(dl, VT, 7526 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7527 Sub1, Quot); 7528 } else 7529 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7530 LHS, RHS); 7531 7532 return Quot; 7533 } 7534 7535 void TargetLowering::expandUADDSUBO( 7536 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7537 SDLoc dl(Node); 7538 SDValue LHS = Node->getOperand(0); 7539 SDValue RHS = Node->getOperand(1); 7540 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7541 7542 // If ADD/SUBCARRY is legal, use that instead. 7543 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7544 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7545 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7546 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7547 { LHS, RHS, CarryIn }); 7548 Result = SDValue(NodeCarry.getNode(), 0); 7549 Overflow = SDValue(NodeCarry.getNode(), 1); 7550 return; 7551 } 7552 7553 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7554 LHS.getValueType(), LHS, RHS); 7555 7556 EVT ResultType = Node->getValueType(1); 7557 EVT SetCCType = getSetCCResultType( 7558 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7559 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7560 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7561 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7562 } 7563 7564 void TargetLowering::expandSADDSUBO( 7565 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7566 SDLoc dl(Node); 7567 SDValue LHS = Node->getOperand(0); 7568 SDValue RHS = Node->getOperand(1); 7569 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7570 7571 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7572 LHS.getValueType(), LHS, RHS); 7573 7574 EVT ResultType = Node->getValueType(1); 7575 EVT OType = getSetCCResultType( 7576 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7577 7578 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7579 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7580 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7581 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7582 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7583 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7584 return; 7585 } 7586 7587 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7588 7589 // For an addition, the result should be less than one of the operands (LHS) 7590 // if and only if the other operand (RHS) is negative, otherwise there will 7591 // be overflow. 7592 // For a subtraction, the result should be less than one of the operands 7593 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7594 // otherwise there will be overflow. 7595 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7596 SDValue ConditionRHS = 7597 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7598 7599 Overflow = DAG.getBoolExtOrTrunc( 7600 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7601 ResultType, ResultType); 7602 } 7603 7604 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7605 SDValue &Overflow, SelectionDAG &DAG) const { 7606 SDLoc dl(Node); 7607 EVT VT = Node->getValueType(0); 7608 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7609 SDValue LHS = Node->getOperand(0); 7610 SDValue RHS = Node->getOperand(1); 7611 bool isSigned = Node->getOpcode() == ISD::SMULO; 7612 7613 // For power-of-two multiplications we can use a simpler shift expansion. 7614 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7615 const APInt &C = RHSC->getAPIntValue(); 7616 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7617 if (C.isPowerOf2()) { 7618 // smulo(x, signed_min) is same as umulo(x, signed_min). 7619 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7620 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7621 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7622 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7623 Overflow = DAG.getSetCC(dl, SetCCVT, 7624 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7625 dl, VT, Result, ShiftAmt), 7626 LHS, ISD::SETNE); 7627 return true; 7628 } 7629 } 7630 7631 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7632 if (VT.isVector()) 7633 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7634 VT.getVectorNumElements()); 7635 7636 SDValue BottomHalf; 7637 SDValue TopHalf; 7638 static const unsigned Ops[2][3] = 7639 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7640 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7641 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7642 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7643 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7644 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7645 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7646 RHS); 7647 TopHalf = BottomHalf.getValue(1); 7648 } else if (isTypeLegal(WideVT)) { 7649 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7650 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7651 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7652 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7653 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7654 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7655 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7656 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7657 } else { 7658 if (VT.isVector()) 7659 return false; 7660 7661 // We can fall back to a libcall with an illegal type for the MUL if we 7662 // have a libcall big enough. 7663 // Also, we can fall back to a division in some cases, but that's a big 7664 // performance hit in the general case. 7665 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7666 if (WideVT == MVT::i16) 7667 LC = RTLIB::MUL_I16; 7668 else if (WideVT == MVT::i32) 7669 LC = RTLIB::MUL_I32; 7670 else if (WideVT == MVT::i64) 7671 LC = RTLIB::MUL_I64; 7672 else if (WideVT == MVT::i128) 7673 LC = RTLIB::MUL_I128; 7674 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7675 7676 SDValue HiLHS; 7677 SDValue HiRHS; 7678 if (isSigned) { 7679 // The high part is obtained by SRA'ing all but one of the bits of low 7680 // part. 7681 unsigned LoSize = VT.getSizeInBits(); 7682 HiLHS = 7683 DAG.getNode(ISD::SRA, dl, VT, LHS, 7684 DAG.getConstant(LoSize - 1, dl, 7685 getPointerTy(DAG.getDataLayout()))); 7686 HiRHS = 7687 DAG.getNode(ISD::SRA, dl, VT, RHS, 7688 DAG.getConstant(LoSize - 1, dl, 7689 getPointerTy(DAG.getDataLayout()))); 7690 } else { 7691 HiLHS = DAG.getConstant(0, dl, VT); 7692 HiRHS = DAG.getConstant(0, dl, VT); 7693 } 7694 7695 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7696 // pre-lowered to the correct types. This all depends upon WideVT not 7697 // being a legal type for the architecture and thus has to be split to 7698 // two arguments. 7699 SDValue Ret; 7700 TargetLowering::MakeLibCallOptions CallOptions; 7701 CallOptions.setSExt(isSigned); 7702 CallOptions.setIsPostTypeLegalization(true); 7703 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7704 // Halves of WideVT are packed into registers in different order 7705 // depending on platform endianness. This is usually handled by 7706 // the C calling convention, but we can't defer to it in 7707 // the legalizer. 7708 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7709 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7710 } else { 7711 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7712 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7713 } 7714 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7715 "Ret value is a collection of constituent nodes holding result."); 7716 if (DAG.getDataLayout().isLittleEndian()) { 7717 // Same as above. 7718 BottomHalf = Ret.getOperand(0); 7719 TopHalf = Ret.getOperand(1); 7720 } else { 7721 BottomHalf = Ret.getOperand(1); 7722 TopHalf = Ret.getOperand(0); 7723 } 7724 } 7725 7726 Result = BottomHalf; 7727 if (isSigned) { 7728 SDValue ShiftAmt = DAG.getConstant( 7729 VT.getScalarSizeInBits() - 1, dl, 7730 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7731 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7732 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7733 } else { 7734 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7735 DAG.getConstant(0, dl, VT), ISD::SETNE); 7736 } 7737 7738 // Truncate the result if SetCC returns a larger type than needed. 7739 EVT RType = Node->getValueType(1); 7740 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7741 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7742 7743 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7744 "Unexpected result type for S/UMULO legalization"); 7745 return true; 7746 } 7747 7748 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7749 SDLoc dl(Node); 7750 bool NoNaN = Node->getFlags().hasNoNaNs(); 7751 unsigned BaseOpcode = 0; 7752 switch (Node->getOpcode()) { 7753 default: llvm_unreachable("Expected VECREDUCE opcode"); 7754 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7755 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7756 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7757 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7758 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7759 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7760 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7761 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7762 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7763 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7764 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7765 case ISD::VECREDUCE_FMAX: 7766 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7767 break; 7768 case ISD::VECREDUCE_FMIN: 7769 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7770 break; 7771 } 7772 7773 SDValue Op = Node->getOperand(0); 7774 EVT VT = Op.getValueType(); 7775 7776 // Try to use a shuffle reduction for power of two vectors. 7777 if (VT.isPow2VectorType()) { 7778 while (VT.getVectorNumElements() > 1) { 7779 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7780 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7781 break; 7782 7783 SDValue Lo, Hi; 7784 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7785 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7786 VT = HalfVT; 7787 } 7788 } 7789 7790 EVT EltVT = VT.getVectorElementType(); 7791 unsigned NumElts = VT.getVectorNumElements(); 7792 7793 SmallVector<SDValue, 8> Ops; 7794 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7795 7796 SDValue Res = Ops[0]; 7797 for (unsigned i = 1; i < NumElts; i++) 7798 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7799 7800 // Result type may be wider than element type. 7801 if (EltVT != Node->getValueType(0)) 7802 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7803 return Res; 7804 } 7805